
Journal of Artificial Intelligence Research 58 (2017) 67-121 Submitted 06/16; published 01/17

Tie-Breaking Strategies for Cost-Optimal Best First Search

Masataro Asai GUICHO2.71828 α©GMAIL.COM

Alex Fukunaga FUKUNAGA α©IDEA.C.U-TOKYO.AC.JP

Graduate School of Arts and Sciences
The University of Tokyo
Japan

Abstract
Best-first search algorithms such as A* need to apply tie-breaking strategies in order to decide

which node to expand when multiple search nodes have the same evaluation score. We investigate
and improve tie-breaking strategies for cost-optimal search using A*. We first experimentally an-
alyze the performance of common tie-breaking strategies that break ties according to the heuristic
value of the nodes. We find that the tie-breaking strategy has a significant impact on search algo-
rithm performance when there are 0-cost operators that induce large plateau regions in the search
space. Based on this, we develop two new classes of tie-breaking strategies. We first propose a depth
diversification strategy which breaks ties according to the distance from the entrance to the plateau,
and then show that this new strategy significantly outperforms standard strategies on domains with
0-cost actions. Next, we propose a new framework for interpreting A* search as a series of satis-
ficing searches within plateaus consisting of nodes with the same f-cost. Based on this framework,
we investigate a second, new class of tie-breaking strategy, a multi-heuristic tie-breaking strategy
which embeds inadmissible, distance-to-go variations of various heuristics within an admissible
search. This is shown to further improve the performance in combination with the depth metric.

1. Introduction

In this paper, we investigate tie-breaking strategies for cost-optimal A∗. A∗ is a standard search
algorithm for finding an optimal cost path from an initial state s to some goal state g ∈ G in
a search space represented as a graph (Hart, Nilsson, & Raphael, 1968). It expands the nodes in
best-first order of f(n) up to f∗, where f(n) is a lower bound of the cost of the shortest path that
contains a node n and f∗ is the cost of the optimal path. In many combinatorial search problems,
the size of the last layer f(n) = f∗ of the search, called a final plateau, accounts for a significant
fraction of the effective search space of A∗. Figure 1.1 (p.68) compares the number of states in this
final plateau with f(n) = f∗ (y-axis) vs. f(n) ≤ f∗ (x-axis) for 1104 problem instances from
the International Planning Competition (IPC1998-2011). For many instances, a large fraction of
the nodes in the effective search space have f(n) = f∗: The points are located very close to the
diagonal line (x = y), indicating that almost all states with f(n) ≤ f∗ have cost f∗.

Figure 1.2 depicts this phenomenon conceptually. On the left, we show one natural view of the
search space that considers the space searched byA∗ as a large number of closed nodes with f < f∗,
surrounded by a thin layer of final plateau f(n) = f∗. This intuitive view accurately reflects the
search spaces of some real-world problems such as 2D pathfinding on an explicit graph. It has also
served as a model for algorithms such as Frontier Search (Korf, 1999; Korf & Zhang, 2000), which
tries to reduce the memory requirement by discarding the information associated with states with
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f < f∗, an effective strategy when the number of such states accounts for a large fraction of the
memory usage.

However, for many other classes of combinatorial search problems, e.g., the IPC Planning Com-
petition Benchmarks, the figure on the right is a more accurate depiction – here, the search space
has a large plateau for f = f∗. In fact, Iterative Deepening approaches (Korf, 1985) assume this
type of search space where this final frontier is quite large and the overhead of re-evaluating f < f∗

is limited. Classical planning problems in the IPC benchmark set are clearly the instances of such
combinatorial search problems.
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Figure 1.1: The number of nodes with f = f∗ (y-axis) compared to the total number of nodes in the
search space (x-axis) with f ≤ f∗ on 1104 IPC benchmark problems. This experiment
uses a modified Fast Downward with LMcut which continues the search within the
current f after any cost-optimal solution is found. This effectively generates all nodes
with cost f∗.

For the majority of such IPC problem domains where the last layer (f(n) = f∗) accounts
for a significant fraction of the effective search space, a tie-breaking strategy, which determines
which node to expand among nodes with the same f -cost, can have a significant impact on the
performance of A∗. It is widely believed that among nodes with the same f -cost, ties should be
broken according to h(n), i.e., nodes with smaller h-values should be expanded first. While this
is a useful rule of thumb in many domains, it turns out that tie-breaking requires more careful
consideration, particularly for problems where most or all of the nodes in the last layer have the
same h-value.

We empirically evaluate the existing, commonly used, standard tie-breaking strategies for A∗

(Section 3). We show that:

1. In the experiments on IPC domains, A Last-In-First-Out (lifo) criterion tends to be more
efficient than a First-In-First-Out (fifo) criterion.
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Figure 1.2: (Left) One possible class of search space which is dominated by the states with cost
f < f∗. (Right) This paper focuses on another class of search space, where the plateau
containing the cost-optimal goals (f = f∗) is large, and it even accounts for most of
the search effort required by A∗.

2. Tie-breaking according to the heuristic value h, which is frequently mentioned in the heuristic
search literature, has little impact on the performance as long as lifo default criterion is used
– in other words, a lifo tie-breaking policy is sufficient for most IPC domains.

3. There are significant performance differences among tie-breaking strategies when domains
include 0-cost actions. This is true even when h-based tie-breaking is used.

While there are currently relatively few standard benchmark domains with 0-cost actions, we
argue that 0-cost actions naturally occur in practical cost-minimization problems. 0-cost actions
induce g-value plateaus which are known to significantly increase difficulty of search (Benton,
Talamadupula, Eyerich, Mattmüller, & Kambhampati, 2010). Also, according to a parameterized
complexity analysis, problem instances containing 0-cost actions are harder than the instances with
strictly positive action costs (Aghighi & Bäckström, 2015). Therefore, we introduce a new set of
benchmarks called Zerocost domains (Section 4), which are a set of domains based on standard IPC
domains for which only the most important actions directly related to resource usage incur the non-
zero costs. We compare these domains with the original IPC domains from which they are derived,
and empirically show that Zerocost domains have a different search space structure and pose dif-
ferent, practical difficulties. Hereafter, we use “0-cost” as a general adjective for actions and search
edges, while “Zerocost” refers to this specific set of benchmark domains we introduce in this paper.

In order to solve such problems more efficiently, we propose and evaluate depth diversification, a
new tie-breaking method based on the notion of a node’s depth within a plateau, which corresponds
to the number of steps from the “entrance” to the plateau (Section 5, Section 6). Our new depth-
based diversification strategy significantly improves upon the standard tie-breaking strategies.

We then propose a new framework which considers cost-optimal search using A∗ as a series of
satisficing searches on each plateau. This allows the problem of tie-breaking to be reduced to satis-
ficing search within a plateau (Section 7). Based on this insight, we then investigate an admissible
tie-breaking strategy which uses the distance-to-go estimate, a heuristic function which treats every
action to have the unit costs (Section 8). Although distance-to-go estimates are inadmissible, it does
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compromise the admissibility of A∗ as long as it is used only for tie-breaking. We empirically show
that:

1. Tie-breaking using distance-to-go variations of LMcut, M&S and FF heuristics, with LMcut
or M&S as a primary heuristics for computing f value (for maintaining admissibility), signif-
icantly improves the standard tie-breaking strategies.

2. Combining depth-based diversification with distance-to-go heuristics further improves the
performance.

This paper significantly extends an earlier conference paper (Asai & Fukunaga, 2016), which
experimentally evaluated standard tie-breaking strategies, identified the significant effect of tie-
breaking strategies in domains with zero-cost edges, and proposed randomized depth-based diver-
sification. In this paper we present an expanded analysis of domains with zero-cost edges, a new,
deterministic, depth-based diversification strategy, and an expanded empirical and theoretical anal-
ysis of depth-based diversification. We also introduce the framework for treating A∗ as a sequence
of satisficing searches on a set of f -cost plateaus, and propose tie-breaking strategies which incor-
porates distance-to-go estimates.

2. Preliminaries and Definitions

We first define some notation and terminology used throughout the rest of the paper. h(n) denotes
the estimate of the cost from the current node n to the nearest goal node. g(n) is the current shortest
known path cost from the initial node to the current node. f(n) = g(n) + h(n) is the estimate of
the cost of a path to a goal containing the current node. We omit the argument (n) unless necessary.

Below, we first present a general Best First Search (BFS) algorithm template which includes
A∗, Dijkstra’s algorithm (1959), Greedy Best-First Search (GBFS). It uses two sets, OPEN and
CLOSED, where unexpanded nodes are stored in OPEN and expanded nodes are stored in CLOSED.
Three operations, pop(S), push(n, S) and remove(n, S), are assumed for a node n and a set S.
pop(S) operation tries to select a single node from S, push(n, S) stores the node n into S and
remove(n, S) removes n from S if n is already stored.

Algorithm 1 Best-First Search Algorithm using OPEN/CLOSED list
Input: n0, is goal(·), successors(·)

1: Initialize OPEN = ∅, CLOSED = ∅, g(n0) = 0, (∀n 6= n0; g(n) =∞)
2: push(n0,OPEN)
3: while OPEN 6= ∅ do
4: n = pop(OPEN); push(n,CLOSED)
5: return n if is goal(n) = true
6: for each m ∈ successors(n) do
7: gnew = g(n) + cost(n,m)
8: if gnew < g(m) then
9: g(m)← gnew; parent(m)← n; push(m,OPEN); remove(m,CLOSED)

OPEN is sorted according to a sorting strategy and the node selected by pop(S) always returns
the best node according to the strategy. Each sorting strategy is denoted as a vector of several sorting
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criteria, such as [criterion1, criterion2, . . ., criterionk], which defines a lexicographic ordering, i.e.,
from the OPEN list, first, select a set of nodes using criterion1, and if there are still multiple nodes
remaining in the set, then break ties using criterion2 and so on, until a single node is selected. The
first-level sorting criterion of a strategy is criterion1, the second-level sorting criterion is criterion2,
and so on.1

Using this notation, A∗ without any tie-breaking strategy can be denoted as a BFS with [f ] and
A∗ which breaks ties according to h value is denoted as [f, h]. Unless stated otherwise, we assume
the nodes are sorted in the increasing order of the key value and a BFS always selects the smallest
key value.

However, a sorting strategy may only provide a partial ordering, i.e., the sorting strategy may
fail to select a single node because some nodes may share the same sorting keys. For such cases, a
BFS algorithm must decide which node to expand by applying some default tie-breaking criterion
criterionk which is guaranteed to return a single node, such as fifo (oldest node first: first-in-first-
out), lifo (most recently inserted first: last-in-first-out) or ro (random ordering). For example, A∗

using h tie-breaking and fifo default tie-breaking is denoted as [f, h, fifo]. By definition, there is
only 1 node which satisfies the default criterion, so strategies with a default criterion guarantee a
total ordering among all nodes and are able to select a single node from the set of nodes. When
the default criterion is irrelevant to the discussion, we either use a wildcard “*”, e.g. [f, h, ∗], or
sometimes omit it altogether for brevity.

Given a search algorithm with a sorting strategy, a plateau (criterion . . .) is a set of nodes in
OPEN whose elements share the same sort keys according to non-default sorting criteria and are
therefore indistinguishable. In the case of A∗ using tie-breaking with h (sorting strategy [f, h, ∗]),
the plateaus are denoted as plateau (f, h), the set of nodes with the same f cost and the same h cost.
We can also refer to a specific plateau with f = fp and h = hp by plateau (fp, hp).

An entrance to a plateau (criterion . . .) = P is a node n ∈ P , whose current parent is not in
P . The final plateau is the plateau containing the solution found by the search algorithm. In A∗ us-
ing admissible heuristics, the final plateau is plateau (f∗) (without tie-breaking), or plateau (f∗, 0)
(with h-based tie-breaking).

2.1 Tie-Breaking Strategies for A∗

A∗ is a standard search algorithm for finding an optimal cost path on a graph. On a finite graph, A∗

is complete regardless of the tiebreaking strategy (Hart et al., 1968).
It can be defined as a subclass of BFS which uses f -value as the first sorting criterion and

returns a cost-optimal solution when h is admissible, i.e., when ∀n;h(n) ≤ h∗(n), where h∗(n) is
the optimal distance from n to the nearest goal. The best-first order of the expansion is the key to
guaranteeing solution optimality. The first solution found by the algorithm is guaranteed to have the
optimal cost f = f∗ because all nodes with f(n) < k are already expanded when it starts expanding
the nodes with f(n) = k. Thus, the effective search space of A∗ is the set of nodes with f(n) ≤ f∗:
A∗ expands all nodes with f(n) < f∗, then expands some of the nodes with f(n) = f∗, and never
expands the nodes with f(n) > f∗.

If there are multiple nodes with the same f -cost, A∗ must implement some tie-breaking strat-
egy (either explicitly or implicitly) which selects from among these nodes. The early literature on
heuristic search seems to have been mostly agnostic regarding tie-breaking. The original A∗ paper,

1. This notation corresponds to the command line option format of Fast Downward (Helmert, 2006).
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as well as Nilsson’s subsequent textbook states: “Select the open node n whose value f is small-
est. Resolve ties arbitrarily, but always in favor of any [goal node]” (Hart et al., 1968, p. 102 Step
2; Nilsson, 1971, p. 69). Pearl’s textbook on heuristic search specifies that best-first search should
“break ties arbitrarily” (Pearl, 1984, p. 48, Step 3), and does not specifically mention tie-breaking
for A∗. To the best of our knowledge, the first explicit mention of a tie-breaking strategy that con-
siders node generation order is by Korf in his analysis of IDA*: “IfA∗ employs the tie-breaking rule
of ’most-recently generated’, it must also expand the same nodes [as IDA*]”, i.e., a lifo ordering.

In recent years, tie-breaking according to h-values has become “folklore” in the search com-
munity. Hansen and Zhou state that “[i]t is well-known that A∗ achieves best performance when it
breaks ties in favor of nodes with least h-cost” (Hansen & Zhou, 2007). Holte writes “A∗ breaks
ties in favor of larger g-values, as is most often done” (Holte, 2010). Note that preferring large g is
equivalent to preferring smaller h, since f = g+h. Felner et al. also assume “ties are broken in favor
of low h-values” in describing Bidirectional Pathmax for A∗ (2011). In their detailed survey/tutorial
on efficient A∗ implementations, Burns et al. (2012) also break ties “preferring high g” (equivalent
to low h). Thus, tie-breaking according to h-values appears to be ubiquitous in practice. However,
to our knowledge, an in-depth experimental analysis of tie-breaking strategies for A∗ is lacking in
the literature.

Although the standard practice of tie-breaking according to h might be sufficient in some do-
mains, further levels of tie-breaking (explicit or implicit) are required if multiple nodes have the
same f as well as the same h values. To date, the effect of such default tie-breaking has not been
investigated in depth. For example, although the survey of efficient A∗ implementation techniques
by Burns et al. did not explicitly mention the default tie-breaking (2012), their library code uses
lifo default tie-breaking (Burns, 2012). It first breaks ties according to h, and then breaks remaining
ties according to a lifo criterion (most recently generated nodes first), i.e., [f, h, lifo]. Although not
documented, their choice of a lifo 2nd-level tie-breaking criterion appears to be a natural conse-
quence of the fact it can be trivially and efficiently implemented in their two-level bucket (vector)
implementation of OPEN. In contrast, the current implementation of the State-of-the-Art A∗ based
planner Fast Downward (Helmert, 2006), as well as the work by Röger and Helmert (2010) uses a
[f, h, fifo] tie-breaking strategy. Although we could not find a published explanation, this choice is
most likely due to their use of alternating OPEN lists, in which case the fifo second-level criterion
serves to provide a limited form of fairness.

3. Analysis of Standard Strategies

We first we evaluated standard tie-breaking strategies for domain-independent cost-optimal classi-
cal planning and analyze their performance differences. In our experiments, all planners are based
on Fast Downward, and all experiments are run with a 5-minute, 4GB memory limit for the search
binary (FD translation/preprocessing times are not included in the 5-minute limit). All experiments
were conducted on Xeon E5410@2.33GHz CPUs. For the randomized configurations, we took the
average of 10 runs. We used two State-of-the-Art heuristic functions LMcut (Helmert & Domshlak,
2009) and M&S (Helmert, Haslum, Hoffmann, & Nissim, 2014) as the primary heuristic functions
used for calculating f and h. For M&S, we used the bisimulation-based shrink strategy, DFP merge
strategy, and exact label reduction. These basic experimental configurations are shared in all perfor-
mance evaluation experiments throughout this paper.
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We used 1104 instances from 35 standard IPC benchmark domains: airport (50 instances),
barman-opt11(20), blocks(35), cybersec(19), depot(22), driverlog(20), elevators-opt11(20), floor-
tile-opt11(20), freecell(80), grid(5), gripper(20), hanoi(30), logistics00(28), miconic(150), mprime(35),
mystery(30), nomystery-opt11(20), openstacks-opt11(20), parcprinter-opt11(20), parking-opt11(20),
pathways(30), pegsol-opt11(20), pipesworld-notankage(50), pipesworld-tankage(50), psr-small(50),
rovers(40), scanalyzer-opt11(20), sokoban-opt11(20), storage(30), tidybot-opt11(20), tpp(30), trans-
port-opt11(20), visitall-opt11(20), woodworking-opt11(20), zenotravel(20).

3.1 Is h-Based Tie-Breaking Necessary?

As noted in Section 2.1, the current standard practice is to use a tie-breaking criterion which uses
the h-value of the nodes. However, to our knowledge, the need for h-based tie-breaking has not been
previously empirically investigated.

In Table 3.1, we show the summary results for [f, fifo] and [f, lifo], the A∗ variants which rely
on fifo or lifo default tie-breaking only, as well as the standard [f, h, fifo] and [f, h, lifo] strategies.
(Detailed results are in Table A.1 and Table A.2 in the Appendix.) [f, lifo], which simply breaks
ties among nodes with the same f -cost by expanding the most recently generated nodes first (Korf,
1985), clearly dominates [f, fifo]. Interestingly, the performance of the [f, lifo] strategy is com-
parable to [f, h, lifo] and [f, h, fifo]. This may be surprising, considering the ubiquity of h-based
tie-breaking in the search and planning communities.

This is explained by the fact that lifo behaves somewhat similarly to h-based tie-breaking. lifo
expands the most recently generated node n. For any child n′, if the heuristic function is admissible
and f(n′) = f(n), there are only 2 possibilities : (1) g(n′) > g(n) and h(n′) < h(n), or (2)
g(n′) = g(n) and h(n′) = h(n). Thus, as lifo expands nodes in a “depth-first” manner, the nodes
that continue to be expanded in plateau (f) by lifo usually have non-increasing h-values, much
like in h-based tie-breaking which always searches toward the least h cost. Thus, although the
expansion order of [f, lifo] is not exactly the same as that of h-based tie-breaking strategies, they
perform similarly.

3.2 Do Default Strategies Make a Difference?

Next, we compared two commonly used tie-breaking strategies, [f, h, fifo], [f, h, lifo], which first
break ties according to h, and then apply fifo or lifo default tie-breaking, respectively. Summary re-
sults for LMcut and M&S are shown in Table 3.1, and the detailed results are in Table A.1 and Table
A.2 (Section A, Appendix). Differences in coverage are observed in several domains and [f, h, lifo]
outperforms [f, h, fifo] overall. Thus, the choice of default criterion seems to have a modest but
measurable impact when the first tie-breaking criterion is h.

We also conducted experiments using ro (Random Order) default tie-breaking because it is an-
other trivial way to break ties. We ran the experiments 10 times with the different random seeds,
then took the average and the standard deviation of the coverages. The performance of ro is com-
parable to fifo default tie-breaking regardless of the primary heuristics, or the presence of h-based
tie-breaking.
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Sorting Criteria IPC(1104) IPC(1104)
LMcut M&S

[f, fifo] 443 460
[f, lifo] 558 490
[f, ro] 448.9 ± 1.3 460.9 ± 1.6

[f, h, fifo] 558 491
[f, h, lifo] 565 496
[f, h, ro] 558.9 ± 2.1 489.4 ± 1.0

Table 3.1: Summary of coverage comparison (the number of instances solved in 5min, 4GB, LMcut
heuristics) among the standard baseline tie-breaking algorithms (details in Table A.1 and
Table A.2, leftmost 2 columns).

3.3 Plateaus and Tie-Breaking

Figure 3.1 provides a more fine-grained analysis by comparing the number of node evaluations
(calls to the expensive LMcut heuristic function) on each instance by the [f, h, lifo] and [f, h, fifo]
strategies. The difference in the number of nodes evaluated can sometimes be larger than a factor of
10 (Openstacks, Cybersec domains). As noted in Section 2.1, the choice among default criteria has
not been considered very important in the literature, as evidenced by the lack of explicit descriptions
of the default tie-breaking criterion in recent papers. Our results suggest that 2nd-level default tie-
breaking can have a surprisingly large effect on the search performance.

The effect of the choice of 2nd-level default tie-breaking criteria (lifo vs. fifo) when the 1st-level
tie-breaking criterion is h tie-breaking is limited to each search plateau plateau (f, h), the set of
nodes which share the same f value and h value. Also, in admissible search, two A∗ implementa-
tions using different default tie-breaking criteria both expand the same set of nodes in the region
where f < f∗. Furthermore, nodes with h > 0 can not be goal nodes when h is admissible. There-
fore, the effect of default tie-breaking becomes most prominent in the final plateau, plateau (f∗, 0).

Counterintuitively, the plateau (f∗, 0) region can be large enough to cause a significant perfor-
mance difference – in fact, this final plateau can even account for most of the search effort required
by A∗. Figure 3.2 plots the size of the final plateau on 1104 IPC benchmark instances. The y-axis
represents the number of nodes in the final plateau (plateau (f∗, 0)), and the x-axis represents the to-
tal number of nodes expanded so far. This figure suggests that in some domains such as Openstacks
and Cybersec, the planner spends most of the runtime searching plateau (f∗, 0) for a solution, even
with the help of h tie-breaking.

A natural question is: What makes these two domains (Openstacks and Cybersec) different
from all other domains which have much smaller final plateaus?

4. Domains with 0-Cost Actions

Openstacks is a cost minimization domain introduced in IPC-2006, where the objective is to mini-
mize the number of stacks used. One characteristic of Openstacks is the presence of many actions
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Figure 3.1: The number of LMcut evaluations on various IPC planning benchmark domains, with
standard fifo vs lifo default tie-breaking, both with h tie-breaking. lifo evaluates less
than 1/10 of the nodes evaluated by fifo in Cybersec and Openstacks.
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Figure 3.2: The number of nodes in plateau (f∗, 0) (y-axis), which form the final plateau for sorting
strategy [f, h], compared to the total number of nodes in the search space with f ≤
f∗ (x-axis) on 1104 IPC benchmark problems. Note that Openstacks and Cybersec
instances are near the y = x line. These statistics are obtained by running a modified
Fast Downward with LMcut which continues searching after the solution is found until
all nodes with cost f = f∗ are expanded.
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which have zero cost because they do not increase the number of stacks. These 0-cost actions create
the problem depicted in Figure 4.1. Since 0-cost actions (edges) allow “free” transitions between
many neighboring nodes, the number of neighboring nodes sharing the same h also becomes quite
large. This creates huge plateaus that share the same h-value, and the standard h-based tie-breaking
criterion can not provide informative guidance for search within a plateau. Since the g-values of the
nodes in these plateaus are all identical, these plateaus are an instance of g-value plateaus, which
are known to increase the difficulty of search (Benton et al., 2010).

f = f*
f > f*

Optimal solution
f < f*

h=0h=1h=2h=3

h=0h=1

search cost 0 cost 0

In the final plateau (f=f*,h=0), 
applying an action does not 
increase the solution cost

(some nodes are expanded)
(all nodes are expanded)

(entire search space, A* never expands outside ellipse)

Figure 4.1: Search space of A∗ and its contour according to admissible heuristic h. (Right) In do-
mains with only positive-cost actions, h-based tie-breaking provides meaningful guid-
ance. (Left) In domains with 0-cost actions, applying an action may not increase the cost
of the path and the region with h = 0 could be quite large. With the same mechanism,
other heuristic plateaus (e.g. h = 1) also become larger. Thus, h-based tie-breaking
fails to provide meaningful guidance in this space.

Although most traditional benchmark problems in the planning community and the combinato-
rial search community do not have 0-cost actions, we argue that such domains are of an important
class of models for cost-minimization problems, i.e., assigning 0-costs makes sense from a practi-
cal, modeling perspective. For example, consider the driverlog domain, where the task is to move
packages between locations using trucks. The IPC version of this domain assigns unit costs to all
actions. Thus, cost-optimal planning on this domain seeks to minimize the number of steps in the
plan. However, another natural objective function would be the one which minimizes the amount of
fuel spent by driving the trucks, assigning cost 0 to all actions except drive-truck – we believe that
for cost-optimal planning, this is at least as natural as the current IPC model of driverlog in which
all actions are of unit cost.

Similarly, for many practical applications, a natural objective is to optimize the usage of one key
consumable resource, e.g., fuel/energy minimization. In fact, two of the IPC domains, Openstacks
and Cybersec, which were shown to be difficult for standard tie-breaking methods in the previous
section, both contain many 0-cost actions and are based on industrial applications: Openstacks mod-
els production planning (Fink & Voss, 1999) and Cybersec models Behavioral Adversary Modeling
System (Boddy, Gohde, Haigh, & Harp, 2005, minimizing decryption, data transfer, etc.).

Therefore, in this paper, we modified various standard domains into cost minimization domains
with many 0-cost actions. Specifically, each of our “Zerocost domains” is a standard domain which
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has been modified so that all action schema are assigned cost 0 except for a few (usually one)
action schema which consumes some key resource. The suffixes in the names of these domains
indicate the actions with non-zero costs, e.g., logistics-fuel is a modified logistics domain where
only actions which consume fuel have non-zero cost. Most of the transportation-type domains are
modified to optimize energy usage (logistics-fuel, elevator-up etc.), and assembly-type domains are
modified to minimize resource usage (Woodworking-cut minimizes wood usage, etc.). When no
action makes sense from the practical point of view, we chose an action schema arbitrarily (e.g.
mprime-succumb). We did not include domains which have only a single action schema, or which
already had many 0-cost actions.

The new set of 28 Zerocost domains are: airport-fuel (20 instances), blocks-stack (20), depot-
fuel (22), driverlog-fuel (20), elevators-up (20), floortile-ink (20), freecell-move (20), grid-fuel (5),
gripper-move (20), hiking-fuel (20), logistics00-fuel (28), miconic-up (30), mprime-succumb (35),
mystery-feast (20), nomystery-fuel (20), parking-movecc (20), pathways-fuel (30), pipesnt-pushstart
(20), pipesworld-pushend (20), psr-small-open (20), rovers-fuel (40), scanalyzer-analyze (20), soko-
ban-pushgoal (20), storage-lift (20), tidybot-motion (20), tpp-fuel (30), woodworking-cut (20), zeno-
travel-fuel (20).

While the action costs in the PDDL domain definitions are modified, we did not modify the
PDDL problem definitions. Although some domains (specifically, blocks, freecell, pipesworld-no-
tankage, miconic) have fewer instances than the original domain does, their problem definitions are
the evenly sampled subset of the original set of instances. For example, the original miconic domain
has 150 instances, while our version has 30 instances. These 30 instances are selected evenly from
the original set of instances, by picking instances p05, p10, ... p150. The reason for reducing the
number of instances is to avoid the problem of the overall coverage sums being skewed by the
domains with a larger number of instances. Thus, we did not modify the problem definitions at all,
and only modified the action costs in the domain definitions.

4.1 Difference in Problem Characteristics between IPC and Zerocost Domains

Domains containing 0-cost operators are known to be difficult for traditional planners (Thayer &
Ruml, 2009; Cushing, Benton, & Kambhampati, 2010; Wilt & Ruml, 2011; Thayer & Ruml, 2011;
Richter, Westphal, & Helmert, 2011). Cushing et al. (2010) and Wilt and Ruml (2011) noted that a
large ratio between maximum and minimum operator costs can pose a challenge to existing plan-
ners. They both addressed this using plan-length heuristics instead of plan-cost heuristics, which
sacrifice the optimality of the solution. In contrast, we investigate methods for handling 0-cost oper-
ators within the framework of admissible search. In Section 8, we show how plan length heuristics
can be incorporated into admissible search. In a parameterized complexity analysis of planning do-
mains, Aghighi and Bäckström (2015, 2016) showed that domains with 0-cost operators comprise
a complexity class that is harder (para-NP-hard) than the domains with strictly positive-cost opera-
tors (W[2] complete), indicating the inherent difficulty of optimally solving planning problems with
0-cost actions.

Therefore we experimentally evaluate whether our new set of Zerocost benchmarks based on
standard IPC domains pose a new challenge for standard tie-breaking strategies. Results using the
LMcut heuristic are shown in Table 4.1. In each table, the left-hand side shows the results in the
original domains and the right-hand side shows the results for the corresponding Zerocost domains.
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We observed a significant performance difference between the original IPC domains and the
Zerocost domains. The coverage in Zerocost domains was lower in 11 domains while more instances
were solved in 5 domains. The coverage increase in some domains is not surprising, considering
that 0-cost actions also make some suboptimal paths into cost-optimal paths. However, the coverage
decreased overall, confirming the difficulty of these domains.

Figure 4.2 plots the size of the final plateau of the Zerocost instances, with LMcut heuristics
and h tie-breaking. In this plot, each point shows the total number of nodes in plateau (f∗, 0) vs
the total number of nodes with f ≤ f∗. Compared to Figure 3.2, most Zerocost instances have
larger plateaus even with the help of h tie-breaking. Thus, in these cost-minimization problems, the
search strategy within plateaus, i.e., tie-breaking, becomes even more critical in determining search
performance.

[f, h, fifo] [f, h, fifo] (difference)
depot(22) 6 6 depot-fuel(22)
driverlog(20) 13 8 (-5) driverlog-fuel(20)
elevators-opt11(20) 15 7 (-8) elevators-up(20)
floortile-opt11(20) 6 8 (+2) floortile-ink(20)
grid(5) 1 1 grid-fuel(5)
gripper(20) 6 7 (+1) gripper-move(20)
logistics00(28) 20 16 (-4) logistics00-fuel(28)
mprime(35) 21 15 (-6) mprime-succumb(35)
nomystery-opt11(20) 14 10 (-4) nomystery-fuel(20)
parking-opt11(20) 1 0 (-1) parking-movecc(20)
pathways(30) 5 5 pathways-fuel(30)
rovers(40) 7 8 (+1) rovers-fuel(40)
scanalyzer-opt11(20) 10 9 (-1) scanalyzer-analyze(20)
sokoban-opt11(20) 19 18 (-1) sokoban-pushgoal(20)
storage(30) 14 4 (-10) storage-lift(20)
tidybot-opt11(20) 12 16 (+4) tidybot-motion(20)
tpp(30) 6 8 (+2) tpp-fuel(30)
woodworking-opt11(20) 10 5 (-5) woodworking-cut(20)
zenotravel(20) 11 7 (-4) zenotravel-fuel(20)

Table 4.1: Assessment of the relative difficulty of Zerocost domains vs. their corresponding stan-
dard domains, for the standard [f, h, fifo] strategy. Coverage comparison (the number
of instances solved) between the original IPC domains and the modified Zerocost do-
mains are shown, using the same planner configuration and experimental setting (5min,
4GB, LMcut heuristics). This table does not include domains where the total number of
instances in the Zerocost domain and the original domain differ.

Note that the difficulty posed by these domains sometimes cannot be tackled by improving
the heuristic estimates, or reducing the underestimation of an admissible heuristic function. Due
to the existence of 0-cost edges, some non-goal neighbors of a goal node have h∗ = 0. For those
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Figure 4.2: The number of nodes in plateau (f∗, 0) (y-axis), which form the final plateau under h-
based tie-breaking, compared to the total number of nodes in the search space (x-axis)
with f ≤ f∗ on 620 instances in our Zerocost domains. The final plateaus tends to
account for a larger portion of the entire search space compared to Figure 3.2. These
statistics are obtained by running a modified Fast Downward with LMcut which con-
tinues searching after the solution is found until expanding all nodes with cost f = f∗.

nodes, there is clearly no room for improving the heuristic estimate; Any positive value causes the
heuristics to be inadmissible.

One approach to improving the search performance in such plateaus produced by 0-cost edges is
to perform an efficient knowledge-free search within plateau; It may reuse the effort that is already
spent to guide the search but without requiring additional effort to compute multiple heuristics. In
the next section, we propose and evaluate an implementation of such a technique. It turns out that
introducing a notion of depth within a plateau can have a significant impact on the performance
of knowledge-free search, and can also provide a good understanding of the behavior of standard
tie-breaking strategies.

5. Depth-Based Tie-Breaking for A*

As shown in the previous section, the search spaces of Zerocost domains have many 0-cost edges,
resulting in a large final plateau (plateau (f∗, 0)). In a final plateau, all nodes have h = 0, so h-
based tie-breaking cannot provide useful guidance toward a goal. Thus, we need a new metric for
discriminating among nodes in the plateau so that the search algorithm can make progress in the
plateau.

We define the depth of a node as an integer representing the distance (number of steps) from the
entrance of the plateau. An entrance of the plateau is the first node which encountered the plateau
along the path from the initial node. These notions are depicted in Figure 5.1 (subfigure 1).

The depth d(n) of a node n is 0 when n and the parent node m are in the different plateaus,
and d(n) = d(m) + 1 when they are on the same plateau. As defined in Section 2, if two nodes
are on the same plateau, they share the same key values for the sorting strategy. For example, when
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f = f*
f > f*

(some nodes are expanded)
(all nodes are expanded)f < f*

h=0
h=1

depth= 0 1 2 3 4

(entrance)

Breadth-first behavior could
stagnate around the entrance

Depth-first behavior could
 miss the shallow solutions

Depth-diversification distributes
the search in various depths

1 2

3 4

(entire search space, A* never expands outside ellipse)

Figure 5.1: (Subfigure 1) The nodes in a plateau are divided into several layers, and each layer has
a corresponding depth. Since all nodes have f = f∗, depth does not affect optimality,
so all goals in the final plateau are cost-optimal, regardless of whether they are in shal-
low/deep regions. (Subfigure 2) lifo tie-breaking strategy results in depth-first behavior
in a plateau, which could miss solutions if they are concentrated near the entrance.
(Subfigure 3) fifo tie-breaking strategy results in breadth-first behavior in a plateau,
which could fail to reach solutions in deeper layers within the time limit. (Subfigure
4) Depth-based diversification allows A∗ to search the plateau space in a less biased
manner. This balances exploration and exploitation, avoiding the problems with both
lifo (depth-first) and fifo (breadth-first) behavior.
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the strategy is [f, h, ∗], it means plateau (f(n), h(n)) = plateau (f(m), h(m)), therefore f(n) =
f(m) ∧ h(n) = h(m).

The traditional lifo and fifo tie-breaking strategies search each plateau in decreasing and in-
creasing order of the depth, respectively. Assume we are using [f, h, ∗] sorting strategy. The lifo
strategy always selects the most recently generated node within plateau (f, h), and the behavior in
the plateau is equivalent to depth-first search. Thus, lifo always selects a node in the largest depth, as
depicted in Figure 5.1 (subfigure 2). Similarly, the behavior of fifo strategy in a plateau is equivalent
to breadth-first search. Thus fifo always selects the nodes with the least depth (subfigure 3). Note
that [f, h, lifo] is equivalent to [f, h,−d, lifo] and [f, h, fifo] is equivalent to [f, h, d, fifo].

The problem with these traditional strategies is that we have no knowledge regarding whether
the goals are located close to or far from the entrance. Recall that since f = f∗, all goal nodes in the
final plateau are optimal with respect to solution cost regardless of the depth. However, until we find
a solution, we do not know how the goals are distributed among various depths. In some problem
instances the goals can be concentrated around the entrance, while in other problem instances the
goals can be concentrated at some large depth.

In the former case, fifo should perform well because its breadth-first behavior naturally focuses
the search around the entrance, favoring the smaller depths. However, in the latter case, exhaustively
searching the shallower depths can result in not finding any solutions within the time limit because
fifo may never reach the depth where the goals exist. On the other hand, lifo behaves in a depth-fist
manner, so it may reach solutions at deeper depths quickly, but risks missing solutions at shallower
depths. Thus, both fifo and lifo tie-breaking are prone to failures due to pathological cases.

In order to avoid focusing the search at the wrong depths (too shallow/deep), the safest pol-
icy seems to be to simply diversify the depths which are being searched, in order to avoid any
depth-based biases which could lead to pathological behavior. In our proposed depth diversification
strategy, the nodes are inserted into buckets associated with depths, and upon expansion, search
effort is distributed in a more balanced manner among various depths (Section 5.2 defines “more
balanced” more precisely). Nodes are not “sorted” according to increasing or decreasing order of
depth – instead, we try to “diversify” the node expansion within the plateau. We denote this depth
diversification criterion as 〈d〉. For example, [f, h, 〈d〉] first breaks ties according to h values, then
uses the 〈d〉 criterion to break ties in plateau (f, h).

Algorithm 2 Class Definition of Depth-Diversified Node Selector
Initialization of Instance Variables:

Counter dc ← 0, Buckets B = {B0, B1, . . .}, ∀d;Bd = ∅ (instantiated on-demand)
Method push(node n, selector):

Instantiate Bd(n) if it does not exist
push(n,Bd(n))

Method pop(selector):
1: loop
2: dc ← dc − 1
3: dc ← |B| − 1 if dc < 0
4: if Bdc 6= ∅ then
5: return pop(Bdc) — Note: Actual “pop” method is subject to default tiebreaking.
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In order to diversify the expansion among depths, we simply iterate over the depth buckets
(Algorithm 2). This iteration is managed by a Depth-Diversified Node Selector instance associated
with each plateau (e.g. each of plateau (1, 0) , plateau (2, 0) , plateau (2, 1) . . .). In order to select a
single node from the OPEN list for expansion, we first select the plateau with the smallest key value,
such as plateau (f = 5, h = 1), as usual. This plateau is now represented by a selector instance, and
we call pop(selector) method on this instance in order to obtain a node. Each instance holds an
index dc, the current depth (bucket index) selected in the last expansion, initialized to 0. On each
call to pop(selector), the counter is decremented (dc ← dc − 1) and a node is further popped from
dc-th bucket, which can be a lifo, fifo or ro queue. When dc reaches below 0, then dc is reset to the
current largest depth in the plateau.

In an earlier, conference paper, we used a non-deterministic, randomized implementation of this
idea (Asai & Fukunaga, 2016), which does not have this counter and pops a node from a randomly
selected bucket (Brandom()), but we use a deterministic implementation here because it facilitates
the theoretical analysis below in Section 5.2.

Depth-based diversification is significantly different from the ro strategy which simply selects a
random node from the OPEN list. The uniform sampling behavior of ro behaves very similar to fifo,
and is insufficient to achieve the level of diversity provided by our depth diversification tie-breaking,
which is also already evidenced by the performance similarity between fifo and ro-based tiebreaking
strategies (Table 3.1). This is because at any given point in the search, more nodes will tend to have
shallower depths than deeper depths, and a uniform, random selection will, therefore, be biased to
select a node with shallow depths. For example, imagine we have 100 nodes at depth d = 1 and a
single node at depth d = 2. Since ro does not consider the depth, the chance of expanding d = 2
is only 1/101. This probability does not improve until a sufficient number of expansions decreases
the number of nodes in d = 1. In contrast, our depth diversification policy expands nodes at d = 1
and d = 2 with equal probability.

Depth-based tie-breaking does not affect the order of node expansion when there are no remain-
ing ties after the higher priority tie-breaking criteria, in which case all nodes have depth 0. More
formally:

Lemma 1. If all edge costs are positive, then d(n) = 0 for every node n expanded byA∗ [f, h, 〈d〉, ∗].

Proof. Let n be a child of a node m. Regardless whether the parent m of the node n is newly
assigned, updated, or the old parent is kept in line 10 of Algorithm 1, the invariant g(n) = g(m) +
cost(m,n) > g(m) holds because cost(m,n) > 0, and therefore f(n) − h(n) > f(m) − h(m).
This means that either f(n) 6= f(m) or h(n) 6= h(m), so d(n) = 0. �

Theorem 1. If all edge costs are positive, then A∗ [f, h, 〈d〉, ∗] expands nodes in the same order as
A∗ [f, h, ∗] (where “∗” is any criterion).

Proof. By Lemma 1, all nodes expanded by A∗ [f, h, 〈d〉, ∗] have depth 0, and all nodes are in
the same depth bucket in Algorithm 2, so A∗ [f, h, 〈d〉, ∗] expands nodes in the same order as A∗

[f, h, ∗] regardless of the criterion ∗. �

5.1 Tie-Breaking within Depth Buckets

Depth diversification cannot be a default tie-breaking by itself. Consider a tie-breaking strategy such
as [f, h, 〈d〉] which applies a depth-diversification tie-breaking. After the 〈d〉 criterion is applied,
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there may be multiple nodes within the same depth bucket, so a default tie-breaking criterion is
still necessary to break ties among them. Thus, we should, for example, apply one of lifo, fifo or ro
(random order) criteria after the 〈d〉 criterion.

There are two concerns about this default tie-breaking criteria. First, the default tie-breaking
behavior is still susceptible to accidental biases, e.g., names/orders of action schema in the PDDL
domain definition (Vallati, Hutter, Chrpa, & McCluskey, 2015). Second, in addition to accidental
biases, there may be some nontrivial biases that require sophisticated algorithms to be removed.

Recent work showed that the performance of a satisficing planner can be significantly affected
by the order in which actions appear in a PDDL file (Vallati et al., 2015). However, the conference
version of this paper (Asai & Fukunaga, 2016) showed that the effect of such an accidental bias is
not statistically significant in cost-optimal search, by comparing the performance on several sets of
randomly “mangled” domains whose action names are replaced with random strings. Moreover, the
ro default tie-breaking should be unaffected by such an accidental bias. Thus, we believe it is safe
to claim that the experimental results in this paper are not a product of such accidental biases.

In addition to accidental biases, there may be other nontrivial biases such as some form of sym-
metry among states which can be removed using some tie-breaking criterion X . Such a criterion
can be applied after the depth criterion but before the default criterion, resulting in a sorting strat-
egy [f, h, 〈d〉, X, fifo]. Candidates for X may be related to pruning techniques such as Symmetry
Breaking (Fox & Long, 1998; Pochter, Zohar, & Rosenschein, 2011; Domshlak, Katz, & Shleyf-
man, 2013) or Partial Order Reduction (Hall, Cohen, Burkett, & Klein, 2013; Wehrle, Helmert,
Alkhazraji, & Mattmüller, 2013). While these are usually described as “pruning techniques”, they
can also be interpreted as strong bias removal mechanisms because they seek to prune redundant
nodes, and redundancy causes a biased search effort. For example, imagine we have a set of nodes
S = {a1, a2, a3, a4, b, c, d}whereA = {a1, a2, a3, a4} are “redundant” according to some measure
(e.g. by Symmetry, Partial-Order). If a search algorithm expands S by random selection, it favors
the group A by giving 4 times larger chance of expansion than each of b, c or d. Despite this simi-
larity, search diversification is weaker than pruning methods because diversification can only delay
the expansion of nodes sharing the similar attributes (such as depth), not prune the nodes.

5.2 Theoretical Characteristics of the Depth Distribution

We give further insight into the search behavior of our implementation of depth-based diversifica-
tion. In depth-based diversification, although it is possible to select from a randomly selected depth
bucket, as was done in an earlier conference paper (Asai & Fukunaga, 2016), the implementation
used in this paper performs a deterministic, round-robin sampling from the available depth buckets
as described in Algorithm 2. We are particularly interested in how the nodes selected for expan-
sion are distributed among the various depths in a plateau region. Assume that a search algorithm
is searching a plateau region P . The precise definition of P depends on the higher-level sorting
strategy e.g. [f, h, 〈d〉] or [f, 〈d〉]. Using a simplified model where this P forms a forest (a set of
disjoint trees), we can analyze the number of expansions in a particular depth can be represented by
a simple formula.

In the discussion below, we first assume that P forms a forest of a fixed branching factor w ≥
2 (forest assumption), rather than a graph with an indefinite number of successor nodes. In the
later experiments, we show this is a fairly accurate model. We also assume that no depth bucket is
exhausted due to the expansion (no-exhaustion assumption). This implies that there are a sufficiently
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large number of nodes in depth d = 0 so that depth 0 is not exhausted, which may cause fifo
default tiebreaking to fail due to the heavy bias to the shallow depth. We provide a condition for this
assumption to hold within this section. An example of running depth diversification with w = 3 is
depicted in Figure 5.2.

D=0 D=1

w=3

D=2

Many initial nodes in d=0 due to
 no-exhaustion assumption

(causing FIFO to fail)

Iteration 1 Iteration 2

Two nodes

are expanded

Figure 5.2: Depth Diversification applied to a plateau with forest assumption and no-exhaustion
assumption.

Let D ≥ 0 be the current largest depth of the nodes found in P so far. This is equal to |B|−1 in
Algorithm 2, the size of the buckets in Depth-Diversified Node Selector instance. An expansion of
a node at depth D results in w more nodes with depth D+1 on the same plateau P . These children
are all newly generated because by the forest assumption, each child has a single incoming edge.
Since the expansion is diversified by a sequence of iterations from the current largest depth to 0,
when the current largest depth of the plateau is D, the number of iteration executed so far is also
D because at the beginning of each iteration the largest depth is increased by 1. Therefore, at the
end of the D’th iteration, each depth d has been expanded exactly D − d times, with D(D − 1)
expansions in total. In Figure 5.2, after iteration 2, depth d = 0 is expanded twice and depth d = 1
is expanded once.

It also means that a sufficient condition for no-exhaustion assumption to hold until the end of
the D’th iteration is that the initial number of nodes in depth 0 is at least D. If there are at least D
nodes in depth 0, depth 0 is trivially never exhausted until the D’th iteration. Also, no depth buckets
in depth d > 0 will be exhausted because each bucket has w(D − d + 1) generated nodes in total
(i.e. OPEN+CLOSED) while the expansion has happened only D − d times. The number of nodes
in each bucket (w(D−d+1)) follows from the fact that depth d−1 is expanded D− (d−1) times
in the preceding D iterations. Since w ≥ 2, w(D − d+ 1) ≥ 2(D − d) + 2 > D − d.

If there are no solutions, every depth-selection criterion, including least depth selection (fifo)
or largest depth selection (lifo), expands the same set of nodes and results in the same distribution
as depth diversification. For example, if the number of nodes in depth 0 is D, each d is expanded
Dwd times. However, their online characteristics are different. Under our assumptions, the D − d
distribution of depth diversification is an invariant which holds at any point in the search until the
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solution is found. In contrast, in fifo, all nodes with d < D − 1 are expanded, depth d = D − 1
can take an arbitrary number of expansions e ∈ [0, DwD−1] and d ≥ D are not expanded at all.
In lifo, for some k ∈ [0, Dmax] (assuming the forest has a finite maximum depth Dmax), there can
be a situation where all depths d ∈ [0, k] get only 1 expansion each while all nodes in depths d ∈
[k + 1, Dmax] are expanded. In this case, the number of expansions in d ∈ [k,Dmax] is exponential
to Dmax − k (

∑i=Dmax
i=k wi−k = 1−wDmax−k+1

1−w ) while the number of expansions in d ∈ [0, k − 1]
is linear to k (i.e. k − 1). Such an imbalance during the search causes the pathological behavior
mentioned above.

All nodes in
d < D-1 are
expanded

Some nodes
in depth D-1

are expanded

No node in
depth D are
expanded

d=Dd=D-1 d=Dmaxd=k

FIFO
LIFO

A single node is
expanded per depth

Exponential
number of 
expansion

Figure 5.3: FIFO and LIFO applied to a plateau with forest assumption and no-exhaustion assump-
tion.

6. Evaluating Depth-Based Tie-Breaking

We compared the performance of standard tie-breaking methods to depth-based tie-breaking meth-
ods. These all use h as the second-level sorting criterion and either fifo, lifo or ro (random order)
default tie-breaking criterion. The only difference is the presence of the third, depth-diversification
criterion.

Experiments are conducted on 1104 standard IPC benchmark instances from 35 domains and
620 Zerocost instances from 28 domains (see Section 3 and Section 4 for full lists of these do-
mains). The basic experimental settings are the same as the previous ones: Each experiment uses
the Fast Downward planner using A∗ search and either the LMcut heuristic or M&S heuristic. Each
experiment is run for 5 minutes excluding SAS translation time, with 4GB memory constraints.

We first show the summary results of these experiments (Table 6.1). Overall, depth-based tie-
breaking tends to show larger coverages than the standard tie-breaking strategies. Interestingly,
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when the depth diversity criterion 〈d〉 is used, the performance relationship between lifo and fifo
seems to flip: fifo tends to perform better than lifo in Zerocost domains for both LMcut and M&S
heuristics (299 vs 279 for LMcut, 317 vs 303 for M&S). Also, ro (random order) outperforms both
fifo and lifo. In the following, we describe and discuss each experiment. Detailed data tables are in
the Appendix (Section A).

Sorting Criteria Zerocost(620) Zerocost(620) IPC(1104) IPC(1104)
LMcut M&S LMcut M&S

Standard
[f, h, fifo] 256 280 558 491
[f, h, lifo] 279 301 565 496
[f, h, ro] 261.9 ± 1.4 287.7 ± 3.2 558.9 ± 2.1 489.4 ± 1.0

Depth-based
[f, h, 〈d〉, fifo] 284 302 571 487
[f, h, 〈d〉, lifo] 264 288 575 487
[f, h, 〈d〉, ro] 288.1 ± 1.6 308.1 ± 2.1 571.4 ± 1.7 485.6 ± 1.5

Table 6.1: Main summary results: Coverage comparison (number of instances solved in 5min, 4GB,
LMcut/M&S heuristics) between standard tie-breaking and depth-based tie-breaking
(〈d〉). When LMcut is used, 〈d〉 outperforms standard strategies both in IPC instances
(1104 problems total) and Zerocost instances (620 problems total). When M&S is used,
〈d〉 outperforms standard strategies in Zerocost instances. Bold shows the best configu-
ration.

Table A.3 and Table A.4 show the number of Zerocost instances (out of 620) solved by LMcut
and M&S heuristics. In these Zerocost domains, our proposed method outperforms the traditional
tie-breaking methods in both heuristics. Significant improvements were observed in 10 domains
when using LMcut, and 7 domains when using M&S.

Table A.5 shows the number standard IPC benchmark instances (out of 1104) solved by the
configuration using LMcut heuristics. Depth-based tie-breaking (〈d〉) achieves impressive results
on Openstacks (fifo : 2 → 8, lifo : 3 → 12, ro : 3.9 → 10) and Cybersec (fifo : 11 → 18, ro :
11.7 → 18) because these domains contain many instances of 0-cost edges (See Figure 3.2). Most
other instances are unaffected by depth-based tie-breaking. Thus, depth-based tie-breaking yields
better performance in the domains with 0-cost actions, without sacrificing performance in other
domains.

In contrast, Table A.6 shows that depth-based tie-breaking degrades the performance of the
configuration using M&S when applied to 1104 standard IPC benchmark instances. This result can
be explained as follows. First, similar to the case of LMcut, Openstacks coverage improved for fifo
(15 → 19) and ro (15.4 → 19), which is expected according to our analysis of Zerocost domains.
Although there was no improvement on Cybersec, this is because the coverage of Cybersec is
0 in all M&S configurations, regardless of tie-breaking. Thus, the positive contribution of depth
diversification to the overall score was limited for M&S compared to LMcut.

Second, with M&S, performance degraded across a wide range of domains due to the low-level
overhead of depth-based tie-breaking (i.e., updates to the depth-based bucket data structures). As
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shown in Figure 6.1, when depth-based tie-breaking was used, the node evaluations rate significantly
decreased with the M&S heuristic, while node evaluation rate decreased much less for LMcut. This
is because the M&S heuristic is implemented as an efficient table lookup, and M&S is able to eval-
uate an order of magnitude larger number of nodes compared to LMcut. Thus, even the relatively
small overhead incurred by depth bucket updates decreases the node evaluation rate enough to no-
ticeably degrade M&S performance. Figure 6.2 shows a cumulative coverage plot which shows the
number of node evaluations required to solve IPC instances. According to Figure 6.2, the number
of evaluations required to solve IPC instances for [f, h, ∗] and [f, h, 〈d〉, ∗] were almost identical,
which is expected because IPC instances mostly consist of instances with only positive-cost actions
which are unaffected by depth-based tie-breaking (as predicted by our analysis in Section 5). This
shows that the coverage degradation on IPC instances when using depth diversification is caused by
the low-level overhead.
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Figure 6.1: Histogram comparing the node evaluation ratio (node/sec) between standard tie-
breaking ([f, h, fifo]) and depth-based tie-breaking ([f, h, 〈d〉, fifo]) on LMcut and M&S
heuristics. This plot includes both IPC and Zerocost instances. (See Appendix Figure
A.1 for the data on [f, h, lifo] vs. [f, h, 〈d〉, lifo].) On M&S, compared to LMcut, node
evaluation rate more often becomes slower when depth is enabled. This is because the
node evaluation of M&S is an order of magnitude faster than LMcut, and the overhead
of managing depth-based tie-breaking queue becomes significant.

Finally, the per-domain results for Zerocost domains (Tables A.3 - A.4) show that 〈d〉 can cause
both improvement and degradation (despite the total coverage improvement). This is natural consid-
ering that depth-diversification is designed to be a conservative, domain-independent strategy which
is designed to avoid worst-case pathological behaviors. Overall, 〈d〉 tends to perform well, but the
best-performing strategy on particular domain varies — for example, fifo is the best in airport-fuel
with LMcut, while lifo is the best in freecell-move with LMcut. An adaptive tie-breaking which
selects the tie-breaking strategy for a given domain is discussed in Section 8.3.
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Figure 6.2: Cumulative coverage (y-axis) vs the number of evaluated nodes (x-axis), on IPC in-
stances solved by both [f, h, ∗] and [f, h, 〈d〉, ∗] where h = M&S. Left: fifo, Right:
lifo.

6.1 Search Behavior Within a Plateau

To understand the behavior of depth-based policies, we plotted histograms of the depths of search
nodes evaluated by several tie-breaking strategies in the final plateau plateau (f∗, 0) until the so-
lution is found. We plotted a depth-based strategy [f, h, 〈d〉, fifo], as well as the standard strategies
[f, h, fifo], [f, h, lifo] and a single run of randomized strategy [f, h, ro].

In order to obtain the data for the strategies which do not use depth-based tie-breaking ([f, h, fifo],
[f, h, lifo], [f, h, ro]), we added some instrumentation to these strategies so that, the depth of each
of the expanded nodes is computed, although they do not affect the search behavior. Note that this
instrumentation, which adds some runtime overhead, was not used in the performance comparison
experiments above, and were only used for this experiment, which analyzes search behavior.

Figure 6.3 (as well as Figures A.2 - A.3 in the Appendix) show the results on exemplary in-
stances from various Zerocost domains. We do not show some domains where we did not observe
any depths greater than 3, in which case both the depth metric and lifo/fifo/ro have a negligible
impact on search performance. We observed very similar results across a wide range of domains as
shown in the figures. This indicates that the depth metric accurately describes the behavior of each
tie-breaking criterion.

For example, consider the first figure, which plots depths searched on depot-fuel, p07. The
[f, h, lifo] plot shows that the depth-first behavior results in deeper search (≈ 103), while only a
handful of nodes are expanded at intermediate depths (usually once). Thus, lifo’s depth-first behavior
is prone to missing the key branch at intermediate depths that may lead to solutions earlier. On the
other hand, the breadth-first behavior of [f, h, fifo] often gets stuck spending an excessive amount
of time searching around the plateau entrance (expanding ≈ 103 nodes at depth 10).

Also, we noticed that the node distribution of the global randomization [f, h, ro] is very similar
to [f, h, fifo]. This shows that ro actually behaves very similar to fifo, which is consistent with the
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previous performance comparisons in Section 3 and our observation regarding ro in Section 5.
Thus, the overall behavior of ro tends to be similar to fifo, and naive randomization does not solve
the problem of heavy bias for shallower depth nodes.

In contrast, [f, h, 〈d〉, fifo] is balancing the search at various depths. The yellow curve represent-
ing [f, h, 〈d〉, fifo] tends to be almost flat at shallow depths while gradually decreasing the number of
nodes at larger depths. Moreover, its node distribution almost accurately followsD−d, a theoretical
model from Section 5.2 which applies the simplified assumption that the plateau is a forest with a
fixed branching factor. D denotes the largest depth of the unexpanded nodes in the final plateau,
which is 1 larger than the largest depth of the expanded nodes.

The discrepancy of the [f, h, 〈d〉, fifo] curve from the theoretical prediction D−d can be caused
by the following factors: First, the outdegree of each node in the graph may not be uniform across
the search space. Second, some depth buckets could be exhausted, as depicted in the [f, h, fifo] line
which shows that all nodes in the shallower depths are expanded while the line is still below D− d.
Since [f, h, fifo] exhaustively expands the nodes in shallower depth, the number of expansion by
[f, h, fifo] in the shallower depths constitutes an upper bound, which may be below D − d.

Next, Figure 6.4 shows the same results on the standard IPC Openstacks and Cybersec domains.
The Openstacks results were similar to those of the Zerocost domains. In Cybersec, we found
that the performance improvement was not due to the number of nodes in plateau (f∗, 0), because
all tie-breaking strategies have generated only a small number of such nodes before the solution
was found. Instead, we observed a large difference in the depth distributions in non-final plateaus
plateau (f∗, h) , h 6= 0 caused by the difference of tie-breaking. Note that depth diversification
is always applied regardless of f or h values. This suggests that most children of the nodes in
plateau (f∗, h) have f value larger than f∗ or stays in plateau (f∗, h), and the planner is struggling
to find nodes with better h. Due to the unbiased search, the depth-based strategy has a better chance
of improving h values, finding a node in plateau (f∗, 0) more quickly. This shows that considering
depth can also help the search in non-final plateaus to find the nodes in the next plateau. Similar
phenomena were observed in several other instances and domains, e.g., depot-fuel, driverlog-fuel,
zenotravel-fuel, floortile-ink, mprime-succumb, storage-lift (Figure A.4 in Appendix).

Note that the small number of nodes in plateau (f∗, 0) in this experiment does not contradict the
results in Figure 3.2, which shows that the number of such nodes is quite large. This is because, while
in Figure 3.2 the search continues until expanding all nodes in the final plateau, in this experiment
the search stops when the first solution is found – Figure 3.2 was intended to show the size of the
entire final plateau, while Figures 6.3 - 6.4 were meant to show the actual search behavior. If we
continue the search until exhausting the final plateau, all tie-breaking strategies will expand the
same set of nodes (in different orders), so we would obtain plots similar to Figure 3.2 regardless of
the tie-breaking strategy.
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Figure 6.3: Number of nodes (y-axis) expanded per depth (x-axis) in the final plateau with different
tie-breaking strategies. Both axes are in logarithmic scale.

90



TIE-BREAKING STRATEGIES FOR COST-OPTIMAL BEST FIRST SEARCH

100

101

102

103

104

105

100 101 102

N
u

m
b

e
r 

o
f 

n
o

d
e

s

Depth

openstacks-opt11-strips, p07, depth in f=f*, h=0

[f,h,fifo]
[f,h,lifo]
[f,h,ro]

[f,h,<d>,fifo]
D-d

100

101

100 101

N
u

m
b

e
r 

o
f 

n
o

d
e

s

Depth

cybersec, p06, depth in f=f*, h=0

[f,h,fifo]
[f,h,lifo]
[f,h,ro]

[f,h,<d>,fifo]
D-d

100

101

102

103

104

105

106

100 101 102

N
u

m
b

e
r 

o
f 

n
o

d
e

s

Depth

cybersec, p06, depth in f=f*, h=1

[f,h,fifo]
[f,h,lifo]
[f,h,ro]

[f,h,<d>,fifo]
D-d

100

101

102

103

104

105

106

100 101 102

N
u

m
b

e
r 

o
f 

n
o

d
e

s

Depth

cybersec, p06, depth in f=f*, h=5

[f,h,fifo]
[f,h,lifo]
[f,h,ro]

[f,h,<d>,fifo]
D-d

Figure 6.4: Depth distribution of Openstacks and Cybersec instances in the final (plateau (f∗, 0))
and non-final plateaus (plateau (f∗, h) , h 6= 0). In Cybersec p06, although the num-
ber of nodes generated in plateau (f∗, 0) is small, fifo and ro behaved poorly on
plateau (f∗, 1), and also lifo behaved poorly on plateau (f∗, 5).
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7. A New Framework: A∗ as a Series of Satisficing Search Episodes

So far, we have shown that by carefully analyzing search within an f -cost plateau, we were able to
develop an effective knowledge-free, depth-based tie-breaking method which can significantly im-
prove search performance on domains with 0-cost actions. We now propose a more general frame-
work which underscores the importance of tie-breaking in A∗. Cost-optimal search can be seen as
a series of satisficing searches on each plateau. In this framework, the problem of tie-breaking can
be reduced to a satisficing search.

While A∗ requires the first sorting criterion f to use an admissible heuristic in order to find an
optimal solution, there are no requirements on the second or later sorting criterion. This means that
the search within the same f plateau can be an arbitrary satisficing search2 without any cost mini-
mization requirement. For example, if we ignore the first sorting criterion in the standard admissible
strategy [f, h, fifo], we have [h, fifo], which is exactly the same configuration as a Greedy Best First
Search (GBFS) using fifo default tie-breaking. This means that within a particular f -cost plateau,
[f, h, fifo] is performing a satisficing GBFS. As another example, the reason for the poor perfor-
mance of [f, fifo] is clearly that it is running [fifo], an uninformed satisficing breadth-first search in
the plateau.

From this perspective, we can reinterpret A∗ as in Algorithm 3: A∗ expands the nodes in best-
first order of f value. When the heuristic function is admissible, the f values of the nodes expanded
by A∗ never decreases during the search process. Thus, the entire process of A∗ can be considered
as a series of search episodes on each plateau (f). The search on each plateau terminates when the
plateau is proven to contain no goal nodes (UNSAT), or when a goal is found (SAT). When the
plateau is UNSAT, then the search continues to the plateau with the next smallest f value. Figure
7.1 also illustrates this framework.

Algorithm 3 Reinterpretation of A∗ as iterations of satisficing search on plateaus
loop

Search plateau (f) for any goal state, using satisficing search algorithm
if plateau (f) contains some goal (Plateau is SAT) then

return solution
else

Increase f

This is somewhat similar to the standard approach to model-based planning using SAT/IP/CP
solvers (Kautz & Selman, 1992; van den Briel & Kambhampati, 2005), based on an iterative strategy
where a planning problem is converted to a corresponding constraint satisfaction problem with a
finite horizon t (plan length / makespan). The search starts from the horizon 0 and tests if the
problem is satisfiable. If not, then it increases the horizon, add constraints excluding solutions below
t, and retests the same problem with additional constraints for a new horizon t+ 1.

It is also reminiscent of the behavior of iterative deepening A∗ (Korf, 1985), which executes
a series of satisficing searches with an f -cost limit which increases on each iteration. However,
“A∗-as a sequence of satisficing search” differs from IDA* in that IDA*, in order to achieve linear

2. This refers to any algorithm which seeks a satisficing solution, as opposed to the “satisficing” track setting in IPC
which also seeks to minimize the plan cost with anytime algorithms
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Figure 7.1: The concept of A∗ as a sequence of satisficing searches.

memory usage, repeats previous work on each iteration. Instead of searching a particular plateau in
each iteration, IDA* searches through the union of several plateaus.

The framework of “A∗ as a series of satisficing searches” suggests that we can directly apply
satisficing search techniques to optimal search using A∗, especially for each f -cost plateau search.
In the following two subsections, as well as in the next section, we show that this framework (1)
provides a better understanding of depth-diversification (Section 7.1), (2) allows us to prove the
completeness of A∗ on infinite graph depending on the tie-breaking methods (Section 7.2), and (3)
allows us to improve the performance of A∗ on Zerocost domains (Section 8).

7.1 Depth Diversification as Satisficing Search

Within this framework, the implementation of depth diversification can be viewed as a variant of
the Type-based diversification approach (Xie, Müller, Holte, & Imai, 2014), specifically tailored for
Zerocost domains.

Xie et al. proposed type based buckets, an implementation of the OPEN list which partitions the
nodes into buckets according to some set of key values (types). They proposed several types such
as 〈1〉, 〈g〉, 〈h〉 or 〈g, h〉. At each type-based expansion, a randomly selected node from a randomly
selected single bucket is selected. For example, with type 〈g, h〉, a node with g = 5 and h = 3 is put
into a bucket 〈5, 3〉. This mechanism diversifies the search so that it tries to expand the nodes with
various distances from the initial state and various distances from a goal state.

They then proposed Type-GBFS, which alternates the expansion between normal GBFS with a
[h, fifo] sorting criteria and type-based expansion. This alternating framework addresses a weakness
of GBFS: GBFS is solely guided by the heuristic function h, and heuristic errors in h can easily
misguide GBFS to spend all of its time in the wrong part of the search space – GBFS can become
trapped due to heuristic error and cannot recover from the wrong decision until expanding all nodes
in that branch. In the worst case, on infinite graphs, GBFS is not complete because it can be mis-
directed by the heuristic guidance forever (Valenzano & Xie, 2016). In contrast, in Type-GBFS,
the alternation with type-based expansion introduces exploratory behavior of nodes with low g and
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high h, offering the possibility of escaping from heuristic error traps. As a result, Type-GBFS is
probabilistically complete on infinite graphs (Valenzano & Xie, 2016).

Type-GBFS was primarily evaluated in the context of satisficing search with no consideration
of plan quality, and performance is solely evaluated according to coverage. Thus, Xie et al adopted
a unit-cost domain model: All action costs are ignored and replaced with unit costs in their experi-
ments in order to boost coverage (Xie et al., 2014). This is a commonly used technique for satisficing
search which is also used in the first iteration of LAMA2011 (Richter et al., 2011).

In our framework of A∗ as a sequence of satisficing searches, depth diversification after h tie-
breaking ([f, h, 〈d〉]) can be viewed as the combination of (1) an implicit transformation of all 0-cost
edges within a single plateau (f, h) to unit-cost edges, and (2) a pure type-based exploration within
that plateau (unlike Type-GBFS, which alternates GBFS and type-based buckets).

The notion of depth counts the number of 0-cost actions, which does not change the f value
and h value, on the path from the entrance to the current plateau, to the current node. Thus, depth-
diversification treats the problem of finding an exit from a particular plateau as a unit-cost satisficing
search problem – the depth is analogous to a g-value which is calculated with unit costs and is
restricted to a particular plateau.

Depth diversification for tie-breaking in admissible A∗ has a different purpose and context from
Type-GBFS for satisficing search, and differs as follows. First, depth diversification is focused on
finding a satisficing plan within a single plateau and on solving domains with 0-cost actions. There-
fore, depth diversification is applied after the sorting by h. In contrast, type buckets are global —
type buckets have no preceding sorting criteria, and all open nodes are stored in these buckets.
Type-GBFS then alternates type buckets and sorting by h, not applying them in a cascade manner.

Nevertheless, the close relationship between depth diversification for admissible A∗ and Type-
GBFS for satisficing search is important. It shows that if we apply our framework of “A∗ as a
series of satisficing searches”, we can directly use ideas which have been previously proposed for
satisficing search within each f -cost plateau search.

7.2 Completeness of A∗ on an Infinite Graph

Similarly, we can use this framework for analyzing the completeness of A∗ on infinite graphs with
respect to various tie-breaking criteria. First, A∗ is complete on finite graphs regardless of the tie-
breaking strategy (Hart et al., 1968). However, if the graph is infinite, the completeness of the
algorithm depends on tie-breaking. We consider several cases depending on which plateau is infinite.
We only need to consider plateaus for f ≤ f∗ because A∗ does not expand the nodes in plateau (f)
for f > f∗.

Definition 1. A graph is infinite when the number of nodes in the graph has no upper bound.

Proposition 1. If any plateau (f) for f < f∗ is infinite, then A∗ does not terminate.

Proof. Algorithm 3 requires proving the UNSAT-isfiability (that there is no solution) of all non-final
plateaus, plateau (f) (∀f < f∗), so if any of them are infinite, A∗ does not terminate. �

The remaining cases assume that the following two conditions hold: plateau (f) is finite ∀f <
f∗, and plateau (f∗) is infinite. Under this assumption, the completeness of A∗ using tie-breaking
[f, criterion2, . . . criterionk] depends on the completeness of the satisficing search algorithm corre-
sponding to [criterion2, . . . criterionk] on plateau (f∗). For the standard tie-breaking criteria, we can
apply previously known results.
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Theorem 2 (Valenzano and Xie (2016)). ε-greedy node selection (Valenzano, Schaeffer, Sturtevant,
& Xie, 2014) is probabilistically complete on an infinite graph, i.e., the probability of finding a
solution approaches to 1 when the number of expansion t approaches∞.

Corollary 1. A∗ with Random Order tiebreaking [f, ro] is probabilistically complete on an infinite
graph when plateau (f) is finite for all f < f∗.

Proof. [f, ro] is an instance of A∗ using [ro] as a satisficing algorithm for plateau-search. Since [ro]
is a special case of ε-greedy node selection with ε = 1, [ro] is also probabilistically complete on an
infinite plateau (f∗). �

Breadth-first search is complete when the graph has a finite branch factor below the solution
depth. Since FIFO tiebreaking [f, fifo] applies breadth-first search to plateau (f∗), it follows that

Proposition 2. A∗ with FIFO tiebreaking [f, fifo] is complete on an infinite graph when plateau (f)
is finite ∀f < f∗ and the maximum outdegree of the nodes is finite in plateau (f∗) below the solution
depth.

LIFO tie-breaking behaves equivalently to a depth-first search with duplicate detection (DFS-
dup) on plateau (f∗). Assuming a fixed successor ordering, we get the following:

Proposition 3. A∗ with LIFO tiebreaking [f, lifo] is complete on an infinite graph iff plateau (f) is
finite for all f ≤ f∗.

Proof. If plateau (f∗) is infinite, then either the maximum depth or the maximum outdegree of the
nodes is infinite (has no upper bound). If the maximum depth has no upper bound, DFS-dup requires
an arbitrary longer runtime before the first backtracking unless the solution is found before it. If the
maximum outdegree has no upper bound, there is a successor ordering which forces DFS-dup to
search all subtrees that do not contain solutions, and the size of the subtrees has no upper bound.
If both the maximum depth and the maximum outdegree are finite, then plateau (f∗) is finite and
DFS-dup is complete. Combined with Proposition 1, LIFO tie-breaking requires a finite plateau (f)
for all f ≤ f∗. �

Finally, we show the completeness of our iteration-based depth diversification in Algorithm 2.

Theorem 3. A∗ with Depth Diversification [f, 〈d〉, ∗] is complete when plateau (f) is finite ∀f < f∗

and the maximum outdegree of the nodes is finite in plateau (f∗) for depths below the solution depth.

Proof. Any solution must have a finite depth d∗ on plateau (f∗). On every iteration of the pop
method of Algorithm 2 from the largest depth D to the depth 0, each depth is expanded once. Since
the maximum outdegree is finite, every node with depth d ≤ d∗ will be expanded in a finite number
of iterations. �

8. Tie-Breaking Using Distance-to-Go Estimates

In the previous section, we proposed a framework which views cost-optimal A∗ search as a series
of satisficing searches on each f -cost plateau, and argued that the problem of tie-breaking can
be reduced to a satisficing search. We showed that the depth diversification tie-breaking criterion,
which is highly effective on Zerocost domains, is in fact a case where a previously studied technique
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for satisficing search (type-based exploration) turns out to be highly effective when applied to tie-
breaking. In this section, we push this insight further and propose another approach to improving the
search performance in plateaus produced by Zerocost domains – using inadmissible distance-to-go
estimates (heuristics) as a tie-breaking criterion within an admissible A∗ search.

Distance-to-go estimates are a class of heuristics which treat all actions as if they have unit cost.
Even when 0-cost actions are present, these estimates can predict the number of operations required
to reach a goal. In general, the estimates are inadmissible (unless the estimates are guaranteed to
underestimate the number of required actions and all actions in the original domain have unit cost).
Previous work on distance-to-go-heuristics has focused on their use for satisficing planning.

A∗ε (Pearl & Kim, 1982) is one of the earliest algorithms that combines distance-to-go estimates
with the cost estimates. It is a bounded-suboptimal search which expands nodes from the focal list,
the set of nodes with f(n) ≤ w · fmin where weight w serves as a suboptimality bound, similar to
weighted A∗, and fmin is the minimum f value in the OPEN list. While f is based on an admissible
heuristic function, the nodes in the focal list are expanded in increasing order of an inadmissible
distance-to-go estimate ĥ. Since the search does not follow the best-first order according to f , it is
not admissible, and is instead w-admissible. One exception is the case of w = 1 where the focal
list is equivalent to the f plateau and the expansion order in the focal list corresponds to the tie-
breaking on plateaus. In our notation, this algorithm can be written3 as a BFS with the following
sorting criteria:

[d f

w · fmin
e, ĥ, ∗]

This notation is derived from the fact that the focal list “blur”s f up to w · fmin. For example, when
w = 2, fmin = 5 and f(n) = 5, 9, 11, then d f

w·fmin
e = 1, 1, 2 respectively.

Continuing this line of work, Thayer and Ruml (2009, 2011) evaluated various distance-to-
go configurations of Weighted A∗, Dynamically Weighted A∗ (Pohl, 1973) and A∗ε , where some
configurations use distance-to-go as part of tie-breaking. This work focused on bounded-suboptimal
search rather than cost-optimal search. Cushing et al. (2010) pointed out the danger of relying on
cost estimates in a satisficing search by investigating “ε-cost traps” and other pitfalls caused by
cost estimators for search guidance. Finally, the FD/LAMA2011 satisficing planner incorporates
distance-to-go estimates in its iterated search framework (Richter et al., 2011). The first iteration of
LAMA uses distance-to-go estimates combined with various satisficing search enhancements.

Benton et al. (2010) proposed an inadmissible technique for temporal planning where short
actions are hidden behind long actions and do not increase makespan . Such actions cause “g-value
plateaus”, which are similar to the large plateaus caused by 0-cost actions in sequential planning.
They implemented an inadmissible heuristic function combined with distance-to-go estimates as an
extension of Temporal Fast Downward (Eyerich, Mattmüller, & Röger, 2009).

8.1 Embedding Distance-to-Go Estimates in Admissible Search

Although previous work on distance-to-go estimates assume a satisficing context, we show that
distance-to-go estimates can be useful for cost-optimal search. Since the admissibility of the sorting
strategy and the optimality of the solution are not affected by the second or later levels of sorting
criteria, it is possible to use an inadmissible distance-to-go estimate in these subsequent sorting

3. However, an actual implementation may differ due to dynamic updates to fmin.
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criteria without sacrificing the optimality of the solution found. This means inadmissible heuristics
can be used for tie-breaking.

Let h be an admissible heuristic function, and ĥ be a distance-to-go variation of h, i.e., ĥ uses
essentially the same algorithm as h, except that while h uses the actual action costs for the problem
domain, ĥ replaces all action costs with 1. Since h is admissible, multi-heuristic sorting strategies
such as [g + h, h, ĥ] or [g + h, ĥ] are admissible.

Moreover, we can even use a multi-heuristic strategy which uses an inadmissible heuristic for
tie-breaking which is unrelated to the primary, admissible heuristic h. For example, [g+hLMcut, ĥFF]
is an admissible sorting strategy because the first sorting criterion f = g+hLMcut uses an admissible
LMcut heuristic. Its second sorting criterion, the distance-to-go FF heuristic (Hoffmann & Nebel,
2001), does not affect the admissibility of this entire sorting strategy.

A potential problem with sorting strategies which use multiple heuristics is the cost of comput-
ing additional heuristic estimates. For example, [g+hLMcut, ĥFF] requires more time to evaluate each
node compared to a standard tie-breaking strategy such as [g + hLMcut, hLMcut] because computing
the ĥFF heuristic incurs significant overhead per node while the results of hLMcut can be reused by
a caching mechanism. When the inadmissible heuristic for tie-breaking is ĥ, i.e. a distance-to-go
(unit cost) variant of the primary, admissible heuristic h, it may be possible to reduce this overhead
to some extent by implementing h and ĥ so that they share some of the computation – this is a
direction for future work.

8.1.1 COMBINING DISTANCE-TO-GO ESTIMATES WITH DEFAULT TIE-BREAKING AND

DEPTH DIVERSIFICATION

Tie-breaking using distance-to-go estimates can still leave a set of nodes which are equivalent up
to the distance-to-go criterion (multiple nodes can have the same f , h, and ĥ values), so additional
level(s) of tie-breaking are necessary in order to select a single node. By adding a standard default
criterion such as fifo, lifo, ro, we obtain a sorting strategy that imposes a total order. For example,
[fLMcut, ĥFF, fifo] applies fifo after the distance-to-go estimate ĥFF.

Furthermore, it is possible to combine depth diversity based tie-breaking with distance-to-go
estimates by applying the depth-diversity criterion after the distance-to-go estimate. For example,
[fLMcut, ĥFF, 〈d〉, fifo] applies depth diversification criterion after the ĥFF distance-to-go estimate.
As we shall see below, a sorting strategy which performs tie-breaking using both distance-to-go
estimates and depth diversity results in the best performance overall.

8.2 Evaluation of Distance-to-Go Estimates as Tie-Breaking Criteria for Admissible Search

We tested various admissible sorting strategies on IPC domains and Zerocost domains. The con-
figurations are listed in Table 8.1. In all configurations, the first sorting criterion is the f = g + h
value where h is an admissible heuristic (either LMcut or M&S) using the actual action-cost based
cost calculation. As the second (and third) criteria, we used ĥ, the distance-to-go version tested of
the original heuristic function h, as well as a distance-to-go variation of FF heuristic (ĥFF). We also
added configurations with the depth metric within plateau

(
f, ĥFF

)
. A summary of the results is

shown in Table 8.2. Detailed per-domain results are shown in Tables A.7 - A.10.
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(1) [h+ g, h, ∗] (2) [h+ g, h, ĥ, ∗] (3) [h+ g, ĥ, ∗]
(4) [h+ g, ĥFF, ∗] (5) [h+ g, h, 〈d〉, ∗] (6) [h+ g, ĥFF, 〈d〉, ∗]

Table 8.1: Configurations compared in this section. h is either LMcut or M&S.

Sorting Criteria Zerocost(620) Zerocost(620) IPC (1104) IPC (1104)
h = LMcut h = M&S h = LMcut h = M&S

Baselines
[f, h, fifo] 256 280 558 491
[f, h, lifo] 279 301 565 496
[f, h, ro] 261.9 ± 1.4 287.7 ± 3.2 558.9 ± 2.1 489.4 ± 1.0
[f, h, 〈d〉, fifo] 284 302 571 487
[f, h, 〈d〉, lifo] 264 288 575 487
[f, h, 〈d〉, ro] 288.1 ± 1.6 308.1 ± 2.1 571.4 ± 1.7 485.6 ± 1.5

Distance-to-Go
[f, ĥ, fifo] 295 308 534 477
[f, ĥ, lifo] 303 305 534 475
[f, ĥ, ro] 301.0 307.3 ± 1.5 534 ± 2.1 470.4 ± 0.9
[f, h, ĥ, fifo] 305 307 536 476
[f, h, ĥ, lifo] 309 306 535 475
[f, h, ĥ, ro] 305.9 ± 2.1 307.8 ± 1.4 534.7 ± 1.5 470.9 ± 0.9
[f, ĥFF, fifo] 337 336 564 458
[f, ĥFF, lifo] 340 331 562 457
[f, ĥFF, ro] 341 ± 2.2 337.9 ± 2.1 563.7 ± 1.4 457 ± 1.3

Distance + Depth
[f, ĥFF, 〈d〉, fifo] 340 (> 337) 337 (> 336) 563 457
[f, ĥFF, 〈d〉, lifo] 342 (> 340) 333 (> 331) 560 457
[f, ĥFF, 〈d〉, ro] 344.3 ± 1.8 337.6 ± 1.3 561.9 ± 1.4 456.8 ± 1.2

Table 8.2: Summary Results: Coverage comparison (the number of instances solved in 5min, 4GB)
between several sorting strategies. For comparison, we also include the results of config-
urations evaluated in the previous sections.
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8.2.1 EVALUATION ON ZEROCOST DOMAINS

In Zerocost domains, we see that ĥ tie-breaking outperforms h tie-breaking for both LMcut (e.g.
256 → 295 with fifo) and M&S (e.g. 280 → 308 with fifo). Also, combining h and ĥ can fur-
ther improve performance when the heuristic is LMcut (e.g. 295 → 305 with fifo). The results of
combining h and ĥ were comparable to ĥ when the main heuristic function h is M&S. Yet more
surprisingly, using ĥFF further improved the performance for both LMcut (e.g. [f, h, ĥ, fifo] : 305→
[f, ĥFF, fifo] : 337) and M&S (e.g. [f, h, ĥ, fifo] : 307 → [f, ĥFF, fifo] : 336). Thus, when the depth
diversity criterion is not used, the best configurations are those which use ĥFF.

The reason for the good performance of [fLMcut, ĥFF, ∗] is not surprising: ĥFF is by itself known
to be a powerful inadmissible heuristic function for satisficing GBFS, and if we ignore the first
sorting criterion, [fLMcut, ĥFF, ∗] is a GBFS with [ĥFF, ∗].

Adding the depth diversity criterion further improves the performance of the ĥFF-based strate-
gies, although the impact was small. The coverage increased in both h = hLMcut (fifo: 337 → 340,
lifo: 340 → 342, ro: 341 → 344.3) and h = hM&S (fifo: 336 → 337, lifo: 331 → 333). When
the default tie-breaking was ro and the heuristic is M&S, [f, ĥFF, 〈d〉, ro] performed slightly worse
than [f, ĥFF, ro], but the difference was very small (337.9→ 337.6) and 〈d〉 made the performance
slightly more robust (smaller standard deviation: 2.1→ 1.3).

8.2.2 EVALUATION ON STANDARD IPC DOMAINS

For the standard IPC benchmark instances, the overhead due to the additional computation of ĥ
or ĥFF tends to harm the overall performance. Therefore, the best configuration using LMcut was
[f, h, 〈d〉, lifo] which uses depth and does not impose the cost of additional heuristics, and the best
result using M&S was [f, h, lifo] which imposes no overhead including the depth.

If we look further into the detail, we observed the following: In Cybersec, distance-to-go vari-
ants (e.g. [fLMcut, ĥFF, lifo]:5) improve upon the standard strategy (e.g. [fLMcut, hLMcut, lifo]:3), but
does not improve upon depth (e.g. [f, h, 〈d〉, lifo]: 12). When h = hM&S, all coverages are zero.
Overheads by ĥFF also slightly degrade the performance in Openstacks (e.g. [fLMcut, hLMcut, lifo]:18,
[fLMcut, ĥFF, lifo]:17, [fLMcut, hLMcut, 〈d〉, lifo]: 18; Also, [fM&S, hM&S, lifo]:19, [fM&S, ĥFF, lifo]:18,
[fM&S, hM&S, 〈d〉, lifo]: 19). Thus, in these two domains, although there are some improvements in
search efficiency due to the guidance by ĥFF or ĥ, the runtime overhead of computing the distance-
to-go heuristics outweighed the benefit.

In the domains with only positive cost actions (all IPC domains except Openstacks and Cyber-
sec), ĥ or ĥFF only harm the overall performance due to the overhead. When the primary heuristics
is LMcut, we do not observe a significant difference between single-heuristics strategies except
for the fractional difference in the configurations using ro. When the primary heuristic is M&S,
[fM&S, hM&S, lifo] performs slightly better than other default tie-breaking strategies; It also outper-
forms the depth-based variants as we already discussed in Section 6.

8.2.3 SUMMARY OF THE EVALUATION

Table 8.3 summarizes the overall conclusions of our performance evaluations. We conclude that
although the performance gain by depth diversification and distance-to-go heuristics depend on the
domain characteristics, they provide a promising overall performance enhancement.

99



ASAI & FUKUNAGA

Primary
Heuristics

Zerocost domains Zerocost IPC domains
(Cybersec, Openstacks)

Positive-cost IPC do-
mains

LMcut [f, ĥFF, 〈d〉, ro] [f, h, 〈d〉, lifo] [f, h, ∗] or [f, h, 〈d〉, ∗]
(any default tie-
breaking)

M&S [f, ĥFF, ro] or
[f, ĥFF, 〈d〉, ro],
but the latter has a
smaller variance.

[f, h, lifo] or [f, h, 〈d〉, ∗]
(any default tie-
breaking)

[f, h, lifo]

Table 8.3: Summary of the performance evaluation: Best tie-breaking strategy for each group of
domains and each primary heuristic function.

8.3 Simple Dynamic Configuration for Overall Performance

In practice, the performance degradation when using multi-heuristic strategy in domains with only
positive cost actions does not pose a problem. We can easily avoid the overhead incurred by the
distance-to-go heuristics in those domains by applying the following simple policy: If there are any
0-cost actions, use a multi-heuristic strategy; Otherwise, use a single-heuristic strategy.

Since the impact of such a check on the total runtime is negligible, we can extrapolate the
result of applying this rule based on the previously obtained results. Coverage results in Table 8.4
show the total coverage of Zerocost and IPC benchmark domains. The bottom two rows, labeled
as dynamic configuration, are the extrapolated results when the switching policy is applied – this
dynamic configuration achieves the highest overall coverage.

When the configuration rule is applied to standard IPC instances, the domains with 0-cost ac-
tions are Cybersec and Openstacks only. They are solved using a multi-heuristic strategy while
other domains are solved in the best performing single-heuristic strategy. In Zerocost instances, all
domains are solved using the multi-heuristic strategy.

Overall, these results also strengthen our claim that one should not necessarily rely upon h-based
tie-breaking in some domains, as already discussed in Section 3.1. In Zerocost domains, using a
distance-to-go version of an inadmissible heuristic function for tie-breaking is more effective. Also,
combining the depth metric with such an inadmissible heuristics is also effective.

We only tested this relatively simple dynamic configuration that switches between two strategies
based on the presence of 0-cost operators. However, as noted in Section 6, domain-specific solvers
(as opposed to domain-independent solvers, which are the main focus of this paper) can benefit from
fine-tuning the tiebreaking strategy so that it is most suited to the target domain.

9. Related Work

Previous work on escaping search space plateaus has focused on non-admissible search. DBFS
(Imai & Kishimoto, 2011) adds stochastic backtracking to Greedy Best First Search (GBFS) to
avoid being misdirected by the heuristic function. Type based buckets (Xie et al., 2014) classify
plateaus in GBFS according to the [g, h] pair and distributes the effort.4 Marvin (Coles & Smith,

4. The relationship between Type-GBFS and our work is discussed in detail in Section 7.1.
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IPC+Zerocost (1724) IPC+Zerocost (1724)
h = LMcut h = M&S

Single-heuristic strategies
[f, h, lifo] 844 797
[f, h, 〈d〉, fifo] 855 789
[f, h, 〈d〉, lifo] 839 775
[f, h, 〈d〉, ro] 859.5 793.7

Multi-heuristic strategies
[f, ĥFF, 〈d〉, fifo] 903 794
[f, ĥFF, 〈d〉, lifo] 902 790
[f, ĥFF, 〈d〉, ro] 906.2 794.4

Dynamic Configuration
If a problem contains zerocost actions:
Then [f, ĥFF, 〈d〉, ro] ; Else [f, h, 〈d〉, lifo] 911.9
If a problem contains zerocost actions:
Then [f, ĥFF, 〈d〉, ro] ; Else [f, h, lifo] 832.3

Table 8.4: Summary Results: Coverage comparison, the total of IPC domains and Zerocost domains
(the number of instances solved in 5min, 4GB) between several sorting strategies, plus
a dynamic configuration strategy. [f, h, fifo], [f, h, ro], [f, ĥ, ∗], [f, h, ĥ, ∗], [f, ĥFF, ∗] are
not shown because they achieve smaller coverage.

2007) learns plateau-escaping macros from the Enhanced Hill Climbing phase of the FF planner
(Hoffmann & Nebel, 2001). Hoffmann gives a detailed analysis of the structure of the search spaces
of satisficing planning (2005, 2011).

Benton et al. (2010) proposes inadmissible technique for temporal planning where short ac-
tions are hidden behind long actions and do not increase makespan. Wilt and Ruml (2011) also
analyzes inadmissible distance-to-go estimates. To our knowledge, plateaus have not been previ-
ously investigated for cost-optimal search. Admissible and inadmissible search differ significantly
in how non-final plateaus (plateaus with f < f∗) are treated: Inadmissible search can skip or escape
plateaus whenever possible, while admissible search cannot, unless it is the plateau with f = f∗

where the goals can immediately be found.
Some real-time search algorithms like ARA∗ (Likhachev, Ferguson, Gordon, Stentz, & Thrun,

2008) are able to prune some states in the final plateau using the knowledge acquired in the previous
iterations of suboptimal searches.ARA∗ uses a sequence ofWA∗ ([g+wh]) with decreasing weights
w, with the final round of iterations being optimalA∗ with an uninflated heuristic value (i.e. w = 1).
When f = g + wh reaches the cost of best path found so far by the previous suboptimal iterations,
it can safely terminate the search maintaining the current bounded optimality guarantee w, that is,
w = 1 in the final iteration. Thus, in an iterated, real-time search setting, this could largely avoid
the problem of searching the final plateau if the previous suboptimal searches happen to have found
the optimal solution already.
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In their work on combining multiple inadmissible heuristics in a planner, Röger and Helmert
(2010) considered a tie-breaking approach which works as follows: When combining two heuristics
h1 and h2, h1 is used as the primary criterion, and h2 is used to break ties among nodes with the same
h1 — [h1, h2, fifo]. This did not perform well in their work on satisficing planning compared to the
approaches based on alternation queues and Pareto-optimal queue selection. Since their focus is on
how to combine multiple heuristics, this tie-breaking-based approach is just one instance of various
implementations of OPEN lists. In contrast, this paper provides a focused, in-depth investigation
of various tie-breaking strategies, and shows how tie-breaking enables the efficient search on the
plateau created by the earlier levels of sorting criteria.

A∗ with lookahead (AL∗) (Stern, Kulberis, Felner, & Holte, 2010) extends A∗ by performing a
cost-bounded depth-first lookahead from each node as it is generated. Upon the normal expansion
of a node n in A∗, lookahead search performs a depth-first search with cost bound f(n) + k rooted
at n. As a special case, under the cost bound k = 0 (AL∗0 in their notation), depth-first lookahead
expands only the children with the same f -value. AL∗, or AL∗0 in particular, is similar to [f, lifo]
in that the lookahead is a depth-first search. However, there are both conceptual and algorithmic
differences: First of all, AL∗0 does not specify the intermediate tie-breaking (such as h-based tie-
breaking) for its main A∗, and depth-first lookahead does not perform best-first expansion, so the
tie-breaking is irrelevant. Thus, the problems and the solutions addressed in these approaches are
different. Second,AL∗ propagates the maximum and the minimum f values found in the lookahead
search, which allows for more pruning.

Another relevant line of work, in similar spirit to Zerocost domains, is the Preference Track
in the deterministic part of IPC4 (Gerevini, Saetti, & Vallati, 2009). One difference between our
Zerocost domains and these domains is that the latter allows a more complex semantics such as
multiplication. More recently, Wray et al. (2015) proposed a model called conditional lexicographic
preferences with slack in the context of planning under uncertainty. Lexicographic preferences al-
low the problem to have multiple preference criteria evaluated individually. The solution quality is
determined by the first preference, breaking ties by the second preference and so on. Slack refers
to a constant amount of error from the optimal value. With slack, one can model a situation where
the goal is to optimize the first preference, but the difference up to some amount is ignored and
ties are broken according to the second preference. An example of a planning problem with such
lexicographic preferences with slack would be a transportation problem where the first optimization
objective is the amount of fuel usage, allowing a slack up to 5 liters, and the second optimization
target is the makespan of the plan. In this case, a plan with 100 liters of fuel usage and a plan with
105 liters of fuel usage are considered equally preferable in the first criterion, and the better plan
is the one with a shorter makespan. Since slack allows multiple values (e.g. 100 and 105) to have
the same preference, it should introduce larger plateaus. Applying our techniques to problems with
slack is an avenue of future work.

10. Conclusions and Future Work

In this paper, we investigated tie-breaking strategies for cost-optimal search using A∗. Our contri-
butions are as follows: First, we showed that tie-breaking has a significant role in the cost-optimal
search using A∗. We empirically showed that most IPC benchmark instances have large plateaus
with regard to f , and most of the search effort is spent in the final plateau with f = f∗.
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We then showed that the commonly used tie-breaking policy based on h value fails to provide
guidance in the plateau when problem instances have 0-cost actions and have large plateaus with
regard to h. We empirically showed that most of the search effort can be spent in the final plateau
with f = f∗, h = 0 in some domains, and noted that in such a plateau, the search is controlled
solely by the default tie-breaking fifo, lifo or ro.

We proposed a new set of benchmark instances for cost-optimal planning, called Zerocost do-
mains, which contain many 0-cost actions. We showed that Zerocost versions of IPC benchmark
domains tend to have larger final plateaus with f = f∗, h = 0 and pose a new challenge to tradi-
tional search algorithms.

As one approach to improving search performance in Zerocost domains, we proposed a depth
metric which measures the distance from the entrance to the plateau. Using this metric, we described
the pathological behaviors of fifo, lifo and ro, proposed a new diversification strategy, theoretically
and empirically showed that it avoids the pathological behavior and achieves a better performance.

We then introduced a new interpretation of cost-optimal A∗ search as a series of satisficing
searches among f -cost plateaus of an increasing order of f . This perspective led to another ap-
proach for effective tie-breaking in Zerocost domains, the use of inadmissible distance-to-go esti-
mates as part of a multi-heuristics tie-breaking strategy. Combination of depth diversification and
distance-to-go estimates results in the best overall performance. Although there is an additional
cost to compute multiple heuristic values, the overhead can be eliminated by a simple case-based
configuration which only uses multiple heuristics when 0-cost actions are present in the problem
instance.

Our reformulation of A∗ as a sequence of satisficing searches points to an interesting direction
for future work. Although we evaluated only one relatively simple, satisficing configuration (ĥFF)
in the experiments, many techniques which have previously been developed for satisficing planning
can be applied to enhance tie-breaking (plateau-search) in cost-optimal search, including lazy eval-
uation (Richter & Westphal, 2010), alternating/Pareto open list (Röger & Helmert, 2010), helpful
actions (preferred operators) (Hoffmann & Nebel, 2001), random walk local search (Nakhost &
Müller, 2009), macro operators (Botea, Enzenberger, Müller, & Schaeffer, 2005; Chrpa, Vallati, &
McCluskey, 2015), factored planning (Amir & Engelhardt, 2003; Brafman & Domshlak, 2006; Asai
& Fukunaga, 2015) and exploration-based search enhancements (Valenzano et al., 2014; Xie et al.,
2014; Valenzano & Xie, 2016).
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Appendix A. Detailed Data

This Appendix contains some detailed figures and data which are referenced from the text in the
previous sections.

A.1 Detailed Data for Table 3.1

Domain [f, fifo] [f, lifo] [f, ro] [f, h, fifo] [f, h, lifo] [f, h, ro]
IPC benchmark (1104) 443 558 448.9 ± 1.3 558 565 558.9 ± 2.1

airport(50) 18 26 18 ± 0 27 26 25.7 ± 0.5
barman-opt11(20) 0 0 0 ± 0 0 0 0 ± 0

blocks(35) 26 26 26 ± 0 28 28 28 ± 0
cybersec(19) 0 3 0 ± 0 2 3 3.9 ± 1.1

depot(22) 5 5 5 ± 0 6 6 6 ± 0
driverlog(20) 12 13 12 ± 0 13 13 13 ± 0

elevators-opt11(20) 14 15 14 ± 0 15 15 15 ± 0
floortile-opt11(20) 6 6 6 ± 0 6 6 6 ± 0

freecell(80) 8 9 8.7 ± 0.5 9 9 9 ± 0
grid(5) 1 1 1 ± 0 1 1 1 ± 0

gripper(20) 6 6 6 ± 0 6 6 6 ± 0
hanoi(30) 12 12 12 ± 0 12 12 12 ± 0

logistics00(28) 16 18 16 ± 0 20 20 20 ± 0
miconic(150) 68 140 68 ± 0 140 140 140 ± 0

mprime(35) 20 22 19.9 ± 0.3 21 21 20.9 ± 0.3
mystery(30) 15 16 15 ± 0 16 16 15.2 ± 0.4

nomystery-opt11(20) 12 13 12 ± 0 14 14 14 ± 0
openstacks-opt11(20) 11 18 11.2 ± 0.4 11 18 11.7 ± 0.5
parcprinter-opt11(20) 12 13 12 ± 0 13 13 13 ± 0

parking-opt11(20) 1 1 1 ± 0 1 1 1 ± 0
pathways(30) 4 5 4 ± 0 5 5 5 ± 0

pegsol-opt11(20) 17 17 17 ± 0 17 17 17 ± 0
pipesworld-notankage(50) 13 13 13 ± 0 14 14 14.6 ± 0.5

pipesworld-tankage(50) 7 8 8 ± 0 8 8 8 ± 0
psr-small(50) 48 48 48 ± 0 48 48 48 ± 0

rovers(40) 7 7 7 ± 0 7 7 7 ± 0
scanalyzer-opt11(20) 4 10 5.4 ± 0.7 10 10 10 ± 0

sokoban-opt11(20) 19 19 19 ± 0 19 19 19 ± 0
storage(30) 14 14 14 ± 0 14 14 14 ± 0

tidybot-opt11(20) 11 12 11 ± 0 12 12 12 ± 0
tpp(30) 6 6 6 ± 0 6 6 6 ± 0

transport-opt11(20) 6 6 6 ± 0 6 6 6 ± 0
visitall-opt11(20) 9 10 9.4 ± 0.5 10 10 10 ± 0

woodworking-opt11(20) 6 9 8.2 ± 0.4 10 10 10 ± 0
zenotravel(20) 9 11 9 ± 0 11 11 11 ± 0

Table A.1: Coverage comparison (the number of instances solved in 5min, 4GB, LMcut heuristics)
among the standard baseline tie-breaking algorithms. We highlight the best results when
the difference between the maximum and the minimum coverage exceeds 2.
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Domain [f, fifo] [f, lifo] [f, ro] [f, h, fifo] [f, h, lifo] [f, h, ro]
IPC benchmark (1104) 460 490 460.9 ± 1.6 491 496 489.4 ± 1.0

airport(50) 9 9 9 ± 0 9 9 9 ± 0
barman-opt11(20) 4 4 4 ± 0 4 4 4 ± 0

blocks(35) 21 22 21 ± 0 22 22 22 ± 0
cybersec(19) 0 0 0 ± 0 0 0 0 ± 0

depot(22) 5 6 5 ± 0 6 6 5 ± 0
driverlog(20) 12 12 12 ± 0 12 12 12 ± 0

elevators-opt11(20) 13 13 13 ± 0 13 13 13 ± 0
floortile-opt11(20) 5 6 5 ± 0 6 6 6 ± 0

freecell(80) 15 16 15 ± 0 17 17 16 ± 0
grid(5) 2 2 2 ± 0 2 2 2 ± 0

gripper(20) 8 20 8 ± 0 20 20 20 ± 0
hanoi(30) 14 14 14 ± 0 14 14 14 ± 0

logistics00(28) 20 20 20 ± 0 20 20 20 ± 0
miconic(150) 68 73 68.3 ± 0.7 73 73 73.2 ± 0.4

mprime(35) 23 23 22 ± 0 23 24 23.7 ± 0.5
mystery(30) 15 15 15 ± 0 15 16 15 ± 0

nomystery-opt11(20) 17 18 17.8 ± 0.4 18 18 18 ± 0
openstacks-opt11(20) 15 19 15.4 ± 0.5 15 19 15.4 ± 0.5
parcprinter-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

parking-opt11(20) 1 1 1 ± 0 1 1 1 ± 0
pathways(30) 4 4 4 ± 0 4 4 4 ± 0

pegsol-opt11(20) 17 19 17.2 ± 0.4 19 19 19 ± 0
pipesworld-notankage(50) 9 9 8.9 ± 0.3 10 10 9.9 ± 0.3

pipesworld-tankage(50) 13 13 13.1 ± 0.3 13 13 13.2 ± 0.4
psr-small(50) 50 50 50 ± 0 50 50 50 ± 0

rovers(40) 6 8 6.1 ± 0.3 8 8 8 ± 0
scanalyzer-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

sokoban-opt11(20) 20 20 20 ± 0 20 20 20 ± 0
storage(30) 15 15 15 ± 0 15 15 15 ± 0

tidybot-opt11(20) 0 0 0 ± 0 0 0 0 ± 0
tpp(30) 6 6 6 ± 0 7 6 6 ± 0

transport-opt11(20) 7 7 7 ± 0 7 7 7 ± 0
visitall-opt11(20) 9 9 9 ± 0 9 9 9 ± 0

woodworking-opt11(20) 7 7 7 ± 0 7 7 7 ± 0
zenotravel(20) 10 10 10 ± 0 12 12 12 ± 0

Table A.2: Coverage comparison (the number of instances solved in 5min, 4GB, M&S heuristics)
among the standard baseline tie-breaking algorithms. We highlight the best results when
the difference between the maximum and the minimum coverage exceeds 2.
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A.2 Detailed Data for Table 6.1
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Zerocost (620) 256 279 261.9 ± 1.4 284 264 288.1 ± 1.6

airport-fuel(20) 15 13 13.8 ± 0.4 14 13 14 ± 0.5
blocks-stack(20) 17 17 17 ± 0 17 17 17 ± 0

depot-fuel(22) 6 6 6 ± 0 6 6 6 ± 0
driverlog-fuel(20) 8 8 8 ± 0 8 8 8 ± 0

elevators-up(20) 7 13 7 ± 0 7 9 9.1 ± 0.8
floortile-ink(20) 8 8 8.1 ± 0.3 8 8 8.2 ± 0.4

freecell-move(20) 4 19 4.9 ± 0.3 17 10 16.4 ± 0.7
grid-fuel(5) 1 1 1 ± 0 1 1 1 ± 0

gripper-move(20) 7 7 7 ± 0 7 7 7 ± 0
hiking-fuel(20) 9 9 9 ± 0 9 9 9 ± 0

logistics00-fuel(28) 16 16 16 ± 0 16 16 15.3 ± 0.5
miconic-up(30) 16 17 16.6 ± 0.5 19 18 20.3 ± 0.7

mprime-succumb(35) 15 14 17.1 ± 0.8 22 14 20.1 ± 0.3
mystery-feast(20) 7 5 7.7 ± 0.5 6 5 7.2 ± 0.8

nomystery-fuel(20) 10 10 10 ± 0 10 10 10 ± 0
parking-movecc(20) 0 0 0 ± 0 0 0 0 ± 0

pathways-fuel(30) 5 5 4.3 ± 0.5 5 5 4.1 ± 0.3
pipesnt-pushstart(20) 8 8 8.4 ± 0.5 8 8 9.8 ± 0.4

pipesworld-pushend(20) 3 4 3.8 ± 0.4 3 3 4.8 ± 0.4
psr-small-open(20) 19 19 19 ± 0 19 19 19 ± 0

rovers-fuel(40) 8 8 8 ± 0 8 8 8 ± 0
scanalyzer-analyze(20) 9 9 9.1 ± 0.3 9 10 9.2 ± 0.4
sokoban-pushgoal(20) 18 18 18 ± 0 18 18 18 ± 0

storage-lift(20) 4 4 4.1 ± 0.3 5 4 4.2 ± 0.4
tidybot-motion(20) 16 16 16 ± 0 16 16 16 ± 0

tpp-fuel(30) 8 11 8 ± 0 11 10 11 ± 0
woodworking-cut(20) 5 7 7 ± 0 8 5 8.2 ± 0.8

zenotravel-fuel(20) 7 7 7 ± 0 7 7 7 ± 0

Table A.3: Coverage comparison (the number of instances solved in 5min, 4GB, LMcut heuristics)
on 620 Zerocost instances. We highlight the best results when the difference between
the best and the worst coverages is greater than 2.
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Zerocost (620) 280 301 287.7 ± 3.2 302 288 308.1 ± 2.1

airport-fuel(20) 5 5 5 ± 0 5 5 5 ± 0
blocks-stack(20) 20 20 20 ± 0 20 20 20 ± 0

depot-fuel(22) 5 5 6 ± 0 6 5 6 ± 0
driverlog-fuel(20) 9 9 9 ± 0 9 9 9 ± 0
elevators-up(20) 8 14 8.6 ± 0.5 9 13 11 ± 1
floortile-ink(20) 8 8 8 ± 0 7 7 6.9 ± 0.3

freecell-move(20) 5 17 6.7 ± 0.9 17 15 17.3 ± 0.5
grid-fuel(5) 2 2 2 ± 0 2 2 2 ± 0

gripper-move(20) 20 20 20 ± 0 20 20 20 ± 0
hiking-fuel(20) 13 13 12.8 ± 0.4 13 12 12.1 ± 0.3

logistics00-fuel(28) 16 16 16 ± 0 16 16 16 ± 0
miconic-up(30) 29 30 30 ± 0 30 30 30 ± 0

mprime-succumb(35) 21 19 19.6 ± 0.7 25 15 23.4 ± 0.9
mystery-feast(20) 4 4 5.9 ± 0.3 4 4 6 ± 0

nomystery-fuel(20) 16 16 16 ± 0 16 16 16 ± 0
parking-movecc(20) 0 0 0 ± 0 0 0 0 ± 0

pathways-fuel(30) 4 4 4 ± 0 4 4 4 ± 0
pipesnt-pushstart(20) 3 3 3.4 ± 0.5 5 3 5 ± 0

pipesworld-pushend(20) 5 9 7.7 ± 0.5 5 6 9 ± 0.9
psr-small-open(20) 19 19 19 ± 0 19 19 19 ± 0

rovers-fuel(40) 8 8 8 ± 0 8 8 8 ± 0
scanalyzer-analyze(20) 11 11 11 ± 0 11 11 11 ± 0
sokoban-pushgoal(20) 19 19 18 ± 0 18 18 18 ± 0

storage-lift(20) 4 4 4 ± 0 4 4 4 ± 0
tidybot-motion(20) 0 0 0 ± 0 0 0 0 ± 0

tpp-fuel(30) 9 10 9.6 ± 0.5 11 10 11 ± 0
woodworking-cut(20) 7 7 8 ± 0.5 8 7 9 ± 1

zenotravel-fuel(20) 10 9 9.6 ± 0.7 10 9 9.3 ± 1.0

Table A.4: Coverage comparison (the number of instances solved in 5min, 4GB, M&S heuristics)
on 620 Zerocost instances. We highlight the best results when the difference between
the maximum and the minimum coverage exceeds 2.
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IPC benchmark (1104) 558 565 558.9 ± 2.1 571 575 571.4 ± 1.7

airport(50) 27 26 25.7 ± 0.5 27 26 25.7 ± 0.5
barman-opt11(20) 0 0 0 ± 0 0 0 0 ± 0

blocks(35) 28 28 28 ± 0 28 28 28 ± 0
cybersec(19) 2 3 3.9 ± 1.1 8 12 10 ± 1

depot(22) 6 6 6 ± 0 6 6 6 ± 0
driverlog(20) 13 13 13 ± 0 13 13 13 ± 0

elevators-opt11(20) 15 15 15 ± 0 15 15 15 ± 0
floortile-opt11(20) 6 6 6 ± 0 6 6 6 ± 0

freecell(80) 9 9 9 ± 0 9 9 9 ± 0
grid(5) 1 1 1 ± 0 1 1 1 ± 0

gripper(20) 6 6 6 ± 0 6 6 6 ± 0
hanoi(30) 12 12 12 ± 0 12 12 12 ± 0

logistics00(28) 20 20 20 ± 0 20 20 20 ± 0
miconic(150) 140 140 140 ± 0 140 140 140 ± 0

mprime(35) 21 21 20.9 ± 0.3 21 21 20.9 ± 0.3
mystery(30) 16 16 15.2 ± 0.4 16 16 15.4 ± 0.5

nomystery-opt11(20) 14 14 14 ± 0 14 14 14 ± 0
openstacks-opt11(20) 11 18 11.7 ± 0.5 18 18 18 ± 0
parcprinter-opt11(20) 13 13 13 ± 0 13 13 13 ± 0

parking-opt11(20) 1 1 1 ± 0 1 1 1 ± 0
pathways(30) 5 5 5 ± 0 5 5 5 ± 0

pegsol-opt11(20) 17 17 17 ± 0 17 17 17 ± 0
pipesworld-notankage(50) 14 14 14.6 ± 0.5 14 15 14.4 ± 0.5

pipesworld-tankage(50) 8 8 8 ± 0 8 8 8 ± 0
psr-small(50) 48 48 48 ± 0 48 48 48 ± 0

rovers(40) 7 7 7 ± 0 7 7 7 ± 0
scanalyzer-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

sokoban-opt11(20) 19 19 19 ± 0 19 19 19 ± 0
storage(30) 14 14 14 ± 0 14 14 14 ± 0

tidybot-opt11(20) 12 12 12 ± 0 12 12 12 ± 0
tpp(30) 6 6 6 ± 0 6 6 6 ± 0

transport-opt11(20) 6 6 6 ± 0 6 6 6 ± 0
visitall-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

woodworking-opt11(20) 10 10 10 ± 0 10 10 10 ± 0
zenotravel(20) 11 11 11 ± 0 11 11 11 ± 0

Table A.5: Coverage comparison (the number of instances solved in 5min, 4GB, LMcut heuris-
tics) on 1104 standard IPC benchmark instances. We highlight the best results when the
difference between the maximum and the minimum coverage exceeds 2.
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IPC benchmark (1104) 491 496 489.4 ± 1.0 487 487 485.6 ± 1.5

airport(50) 9 9 9 ± 0 9 9 9 ± 0
barman-opt11(20) 4 4 4 ± 0 4 4 4 ± 0

blocks(35) 22 22 22 ± 0 22 21 21.9 ± 0.3
cybersec(19) 0 0 0 ± 0 0 0 0 ± 0

depot(22) 6 6 5 ± 0 5 5 5 ± 0
driverlog(20) 12 12 12 ± 0 12 12 12 ± 0

elevators-opt11(20) 13 13 13 ± 0 12 12 12 ± 0
floortile-opt11(20) 6 6 6 ± 0 6 6 6 ± 0

freecell(80) 17 17 16 ± 0 16 16 16 ± 0
grid(5) 2 2 2 ± 0 2 2 2 ± 0

gripper(20) 20 20 20 ± 0 20 20 20 ± 0
hanoi(30) 14 14 14 ± 0 14 14 14 ± 0

logistics00(28) 20 20 20 ± 0 20 20 20 ± 0
miconic(150) 73 73 73.2 ± 0.4 73 73 72.2 ± 0.4

mprime(35) 23 24 23.7 ± 0.5 23 24 23.4 ± 0.5
mystery(30) 15 16 15 ± 0 15 16 15 ± 0

nomystery-opt11(20) 18 18 18 ± 0 18 18 18 ± 0
openstacks-opt11(20) 15 19 15.4 ± 0.5 19 19 19 ± 0
parcprinter-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

parking-opt11(20) 1 1 1 ± 0 1 1 1 ± 0
pathways(30) 4 4 4 ± 0 4 4 4 ± 0

pegsol-opt11(20) 19 19 19 ± 0 19 19 19 ± 0
pipesworld-notankage(50) 10 10 9.9 ± 0.3 10 9 9.8 ± 0.4

pipesworld-tankage(50) 13 13 13.2 ± 0.4 13 13 13 ± 0
psr-small(50) 50 50 50 ± 0 50 50 50 ± 0

rovers(40) 8 8 8 ± 0 8 8 7.1 ± 0.3
scanalyzer-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

sokoban-opt11(20) 20 20 20 ± 0 19 19 19 ± 0
storage(30) 15 15 15 ± 0 15 15 15 ± 0

tidybot-opt11(20) 0 0 0 ± 0 0 0 0 ± 0
tpp(30) 7 6 6 ± 0 6 6 6 ± 0

transport-opt11(20) 7 7 7 ± 0 6 6 6 ± 0
visitall-opt11(20) 9 9 9 ± 0 9 9 9 ± 0

woodworking-opt11(20) 7 7 7 ± 0 7 7 7 ± 0
zenotravel(20) 12 12 12 ± 0 10 10 10.1 ± 0.3

Table A.6: Coverage comparison (the number of instances solved in 5min, 4GB, M&S heuristics)
on 1104 standard IPC benchmark instances. We highlight the best results when the dif-
ference between the maximum and the minimum coverage exceeds 2.
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A.3 Additional Figures for Figure 6.1: lifo Default Tiebreaking
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Figure A.1: Histogram comparing the node evaluation ratio (node/sec) between standard tie-
breaking ([f, h, lifo]) and depth-based tie-breaking ([f, h, 〈d〉, lifo]) on LMcut and
M&S heuristics. On M&S, compared to LMcut, node evaluation rate more often be-
comes slower when depth is enabled. This is because the node evaluation of M&S is
an order of magnitude faster than LMcut, and the overhead of managing depth-based
tie-breaking queue becomes significant.
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A.4 Additional Figures for Figure 6.3: More Histograms for the Size of Final Plateaus

These includes 12 additional histograms for the size of final plateaus on more variety of domains
and instances.
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Figure A.2: (Page 1/2) Number of nodes (y-axis) expanded per depth (x-axis) in the final plateau
with different tie-breaking strategies. Both axes are in logarithmic scale.
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Figure A.3: (Page 2/2) Number of nodes (y-axis) expanded per depth (x-axis) in the final plateau
with different tie-breaking strategies. Both axes are in logarithmic scale.
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A.5 Additional Figures for Figure 6.4: More Histograms for the Size of Non-final Plateaus

These are the additional histograms for the size of non-final plateaus on more variety of domains
and instances.
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Figure A.4: Depth distribution in the non-final plateaus (plateau (f∗, h) , h 6= 0): Other domains.
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A.6 Detailed Data for Table 8.2
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Zerocost (620) 295 303 301.0 305 309 305.9 ± 2.1 337 340 341 ± 2.2 340 342 344.3 ± 1.8

airport-fuel(20) 13 12 12.7 14 12 12.8 ± 0.8 13 11 11.7 ± 0.5 13 11 11.7 ± 0.5
blocks-stack(20) 15 15 15.0 15 15 15 ± 0 17 17 17 ± 0 17 17 17 ± 0

depot-fuel(22) 6 6 6.0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0
driverlog-fuel(20) 8 8 8.0 8 8 8 ± 0 8 8 8 ± 0 8 8 8 ± 0
elevators-up(20) 20 20 19.9 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0
floortile-ink(20) 8 8 8.0 8 8 8 ± 0 9 8 8.7 ± 0.5 9 8 8.7 ± 0.5

freecell-move(20) 12 14 13.3 12 14 13.2 ± 0.4 17 18 17.9 ± 0.8 17 18 18.3 ± 0.9
grid-fuel(5) 1 1 1.0 1 1 1 ± 0 1 1 1 ± 0 1 1 1 ± 0

gripper-move(20) 6 6 6.0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0
hiking-fuel(20) 8 8 8.0 8 8 8 ± 0 9 9 9 ± 0 9 9 9 ± 0

logistics00-fuel(28) 15 15 15.0 15 15 15 ± 0 15 15 15 ± 0 15 15 15 ± 0
miconic-up(30) 14 17 15.1 14 17 15.1 ± 0.9 15 21 17.9 ± 1.2 15 21 18 ± 1.2

mprime-succumb(35) 19 16 19.1 20 16 20.1 ± 0.6 30 23 28.3 ± 0.9 30 27 29.3 ± 0.7
mystery-feast(20) 7 6 6.9 6 5 5.9 ± 0.3 8 8 8 ± 0 8 8 8 ± 0

nomystery-fuel(20) 10 10 10.0 10 10 10 ± 0 10 10 10 ± 0 10 10 10 ± 0
parking-movecc(20) 13 14 14.3 13 15 14.4 ± 1.5 20 20 20 ± 0 20 20 20 ± 0

pathways-fuel(30) 5 5 4.1 5 5 4 ± 0 5 5 5 ± 0 5 5 5 ± 0
pipesnt-pushstart(20) 7 8 7.7 8 8 7.8 ± 0.4 9 9 9 ± 0 9 9 9 ± 0

pipesworld-pushend(20) 5 6 5.1 5 5 5 ± 0 7 8 7.1 ± 0.3 7 7 7.7 ± 0.5
psr-small-open(20) 19 19 19.0 19 19 19 ± 0 19 19 19 ± 0 19 19 19 ± 0

rovers-fuel(40) 7 7 7.0 7 7 7 ± 0 8 9 8 ± 0 8 8 8 ± 0
scanalyzer-analyze(20) 8 11 10.1 16 18 15.3 ± 0.9 15 15 15 ± 0 15 15 15 ± 0

sokoban-pushgoal(20) 16 16 16.0 16 16 16 ± 0 17 17 17 ± 0 17 17 17 ± 0
storage-lift(20) 4 4 4.0 4 4 4 ± 0 4 4 4.3 ± 0.5 4 4 4.8 ± 0.4

tidybot-motion(20) 14 14 14.0 14 14 14 ± 0 15 16 16 ± 0 16 16 15.9 ± 0.3
tpp-fuel(30) 8 10 8.7 8 10 8.2 ± 0.4 8 10 9.1 ± 0.3 10 10 10 ± 0

woodworking-cut(20) 20 20 20.0 20 20 20 ± 0 19 20 20 ± 0 19 20 20 ± 0
zenotravel-fuel(20) 7 7 7.0 7 7 7 ± 0 7 7 7 ± 0 7 7 7 ± 0

Table A.7: Coverage results with LMcut for computing f and inadmissible distance-to-go heuris-
tics for tie-breaking, on 620 Zerocost instances. We highlight the best results when the
difference between the maximum and the minimum coverage exceeds 2, over all con-
figurations including Table A.3.
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,ĥ
,fifo]

[f
,ĥ
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Zerocost (620) 308 305 307.3 ± 1.5 307 306 307.8 ± 1.4 336 331 337.9 ± 2.1 337 333 337.6 ± 1.3

airport-fuel(20) 1 1 1 ± 0 1 1 1 ± 0 5 5 5 ± 0 5 5 5 ± 0
blocks-stack(20) 20 20 20 ± 0 20 20 20 ± 0 20 19 19.9 ± 0.3 20 20 19.9 ± 0.3

depot-fuel(22) 6 6 6 ± 0 6 6 6 ± 0 4 4 4 ± 0 4 4 4 ± 0
driverlog-fuel(20) 9 9 9 ± 0 9 9 9 ± 0 9 9 9 ± 0 9 9 9 ± 0
elevators-up(20) 19 19 19 ± 0 19 19 19 ± 0 20 20 20 ± 0 20 20 20 ± 0
floortile-ink(20) 8 8 8 ± 0 8 8 8 ± 0 9 8 8.8 ± 0.4 9 8 8.8 ± 0.4

freecell-move(20) 13 14 12.7 ± 0.7 13 13 12.7 ± 0.7 17 17 17.4 ± 0.5 17 17 17.3 ± 0.7
grid-fuel(5) 2 2 2 ± 0 2 2 2 ± 0 2 2 2 ± 0 2 2 2 ± 0

gripper-move(20) 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0
hiking-fuel(20) 13 13 12.1 ± 0.3 13 13 12.1 ± 0.3 11 11 11 ± 0 11 11 11 ± 0

logistics00-fuel(28) 16 16 16 ± 0 16 16 16 ± 0 16 16 16 ± 0 16 16 16 ± 0
miconic-up(30) 22 22 22 ± 0 22 22 22.1 ± 0.3 30 30 30 ± 0 30 30 30 ± 0

mprime-succumb(35) 21 17 20.4 ± 0.7 21 17 20.4 ± 0.7 28 23 27.4 ± 0.7 28 25 27.7 ± 0.7
mystery-feast(20) 5 5 5 ± 0 5 5 5 ± 0 3 3 3 ± 0 3 3 3 ± 0

nomystery-fuel(20) 16 16 16 ± 0 16 16 16 ± 0 15 15 15 ± 0 15 15 15 ± 0
parking-movecc(20) 2 2 2 ± 0 2 2 2 ± 0 10 10 10.3 ± 1.0 10 10 10.3 ± 1.0

pathways-fuel(30) 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0
pipesnt-pushstart(20) 1 2 1.9 ± 0.8 1 2 1.8 ± 0.7 5 5 5 ± 0 5 5 5 ± 0

pipesworld-pushend(20) 8 7 7.8 ± 0.4 8 8 8 ± 0 5 5 5.4 ± 0.7 5 5 5.6 ± 0.5
psr-small-open(20) 19 19 19 ± 0 19 19 19 ± 0 19 19 19 ± 0 19 19 19 ± 0

rovers-fuel(40) 8 8 8 ± 0 8 8 8 ± 0 8 8 8 ± 0 8 8 8 ± 0
scanalyzer-analyze(20) 15 14 15 ± 0 14 15 15 ± 0 15 16 15.4 ± 0.7 15 15 15.2 ± 0.7

sokoban-pushgoal(20) 17 17 17 ± 0 17 17 17 ± 0 18 18 18.2 ± 0.4 18 18 18 ± 0
storage-lift(20) 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0

tidybot-motion(20) 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0
tpp-fuel(30) 9 10 9.4 ± 0.5 9 10 9.8 ± 0.4 10 11 10.9 ± 0.3 11 11 10.9 ± 0.3

woodworking-cut(20) 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0
zenotravel-fuel(20) 10 10 10 ± 0 10 10 9.9 ± 0.3 9 9 9 ± 0 9 9 8.9 ± 0.3

Table A.8: Coverage results with M&S for computing f and inadmissible distance-to-go heuris-
tics for tie-breaking, on 620 Zerocost instances. We highlight the best results when the
difference between the maximum and the minimum coverage exceeds 2, over all con-
figurations including Table A.4.
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IPC benchmark (1104) 534 534 534 ± 2.1 536 535 534.7 ± 1.5 564 562 563.7 ± 1.4 563 560 561.9 ± 1.4

airport(50) 24 25 23.9 ± 0.6 24 24 23.8 ± 0.4 25 24 24.8 ± 0.4 25 24 24.6 ± 0.5
barman-opt11(20) 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0

blocks(35) 27 27 27 ± 0 27 27 27 ± 0 27 27 27 ± 0 27 27 27 ± 0
cybersec(19) 5 3 5.9 ± 1.2 6 4 5.4 ± 0.7 6 6 5.9 ± 0.8 6 5 5.6 ± 0.7

depot(22) 5 5 5 ± 0 5 5 5 ± 0 6 6 6 ± 0 6 6 6 ± 0
driverlog(20) 12 12 12 ± 0 12 12 12 ± 0 13 13 13 ± 0 13 13 13 ± 0

elevators-opt11(20) 12 12 12 ± 0 12 12 12 ± 0 15 15 14.9 ± 0.3 14 15 14 ± 0
floortile-opt11(20) 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0

freecell(80) 8 8 8 ± 0 8 8 8 ± 0 9 9 9 ± 0 9 9 9 ± 0
grid(5) 1 1 1 ± 0 1 1 1 ± 0 1 1 1 ± 0 1 1 1 ± 0

gripper(20) 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0
hanoi(30) 11 11 11 ± 0 11 11 11 ± 0 12 12 12 ± 0 12 12 11.9 ± 0.3

logistics00(28) 17 17 17 ± 0 17 17 17 ± 0 20 20 20 ± 0 20 20 20 ± 0
miconic(150) 140 140 140 ± 0 140 140 140 ± 0 140 140 140 ± 0 140 140 140 ± 0

mprime(35) 20 21 19.9 ± 0.8 20 21 20 ± 0.7 22 22 22 ± 0 22 22 22 ± 0
mystery(30) 15 15 15 ± 0 15 15 15 ± 0 16 16 16 ± 0 16 16 16 ± 0

nomystery-opt11(20) 13 13 13 ± 0 13 13 13 ± 0 14 14 14 ± 0 14 14 14 ± 0
openstacks-opt11(20) 10 10 10 ± 0 10 10 9.9 ± 0.3 17 17 17 ± 0 17 17 17 ± 0
parcprinter-opt11(20) 13 13 13 ± 0 13 13 13 ± 0 13 13 13 ± 0 13 13 13 ± 0

parking-opt11(20) 1 1 1 ± 0 1 1 1 ± 0 1 1 1 ± 0 1 1 1 ± 0
pathways(30) 5 5 5 ± 0 5 5 5 ± 0 5 5 5 ± 0 5 5 5 ± 0

pegsol-opt11(20) 16 16 16 ± 0 16 16 16 ± 0 17 17 17 ± 0 17 17 17 ± 0
pipesworld-notankage(50) 12 12 12 ± 0 12 12 12 ± 0 13 13 13 ± 0 13 13 13 ± 0

pipesworld-tankage(50) 7 7 7 ± 0 7 7 7 ± 0 8 8 8 ± 0 8 8 8 ± 0
psr-small(50) 48 48 47.9 ± 0.3 48 48 48 ± 0 48 48 48 ± 0 48 48 48 ± 0

rovers(40) 7 7 7 ± 0 7 7 7 ± 0 7 7 7 ± 0 7 7 7 ± 0
scanalyzer-opt11(20) 8 10 8.8 ± 0.4 10 10 10 ± 0 10 10 10 ± 0 10 10 10 ± 0

sokoban-opt11(20) 17 17 17 ± 0 17 17 17 ± 0 19 19 19 ± 0 19 19 19 ± 0
storage(30) 14 14 14 ± 0 14 14 14 ± 0 14 14 14 ± 0 14 14 14 ± 0

tidybot-opt11(20) 10 11 10.3 ± 0.5 11 11 10.6 ± 0.5 11 11 11 ± 0 11 11 11 ± 0
tpp(30) 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0

transport-opt11(20) 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0
visitall-opt11(20) 10 10 10 ± 0 10 10 10 ± 0 10 10 10 ± 0 10 10 10 ± 0

woodworking-opt11(20) 11 8 9.3 ± 1.0 9 9 9 ± 0 10 9 10.1 ± 1.1 10 8 9.9 ± 1.1
zenotravel(20) 11 11 11 ± 0 11 11 11 ± 0 11 11 11 ± 0 11 11 11 ± 0

Table A.9: Coverage results with LMcut for computing f and inadmissible distance-to-go heuris-
tics for tie-breaking, on 1104 standard IPC benchmark instances.
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,ĥ

FF,〈d〉,lifo]

[f
,ĥ
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IPC benchmark (1104) 477 475 470.4 ± 0.9 476 475 470.9 ± 0.9 458 457 457 ± 1.3 457 457 456.8 ± 1.2

airport(50) 7 7 7 ± 0 7 7 7 ± 0 9 9 9 ± 0 9 9 9 ± 0
barman-opt11(20) 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0

blocks(35) 22 21 21 ± 0 21 21 21 ± 0 21 20 20.1 ± 0.3 20 20 20 ± 0
cybersec(19) 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0

depot(22) 5 5 5 ± 0 5 5 5 ± 0 4 4 4 ± 0 4 4 4 ± 0
driverlog(20) 12 12 12 ± 0 12 12 12 ± 0 11 11 11 ± 0 11 11 11 ± 0

elevators-opt11(20) 13 13 12 ± 0 13 13 12 ± 0 10 10 10 ± 0 10 10 10 ± 0
floortile-opt11(20) 6 6 6 ± 0 6 6 6 ± 0 7 7 7 ± 0 7 7 7 ± 0

freecell(80) 15 15 15 ± 0 15 15 15 ± 0 14 14 14 ± 0 14 14 14 ± 0
grid(5) 2 2 2 ± 0 2 2 2 ± 0 2 2 2 ± 0 2 2 2 ± 0

gripper(20) 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0
hanoi(30) 14 14 14 ± 0 14 14 14 ± 0 13 13 13 ± 0 13 13 13 ± 0

logistics00(28) 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0
miconic(150) 72 72 72 ± 0.5 72 72 72 ± 0.5 69 69 69.2 ± 0.4 69 69 69.2 ± 0.4

mprime(35) 19 19 19.3 ± 0.5 20 19 19.3 ± 0.5 21 21 21.1 ± 0.8 21 21 21.2 ± 0.7
mystery(30) 15 15 15 ± 0 15 15 15 ± 0 15 15 15 ± 0 15 15 15 ± 0

nomystery-opt11(20) 18 18 18 ± 0 18 18 18 ± 0 16 16 16 ± 0 16 16 16 ± 0
openstacks-opt11(20) 18 19 18 ± 0 18 19 18 ± 0 18 18 18 ± 0 18 18 17.7 ± 0.5
parcprinter-opt11(20) 10 10 10 ± 0 10 10 10 ± 0 11 11 11 ± 0 11 11 11 ± 0

parking-opt11(20) 1 1 0.6 ± 0.5 1 1 0.8 ± 0.4 0 0 0 ± 0 0 0 0 ± 0
pathways(30) 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0

pegsol-opt11(20) 19 19 19 ± 0 19 19 19 ± 0 17 17 17 ± 0 17 17 17 ± 0
pipesworld-notankage(50) 6 5 5.7 ± 0.7 6 5 5.9 ± 0.8 9 9 8.7 ± 0.5 9 9 8.8 ± 0.4

pipesworld-tankage(50) 12 12 12 ± 0 12 12 12 ± 0 9 9 9 ± 0 9 9 9 ± 0
psr-small(50) 50 50 50 ± 0 50 50 50 ± 0 50 50 50 ± 0 50 50 50 ± 0

rovers(40) 8 8 6 ± 0 7 8 6.1 ± 0.3 6 6 6 ± 0 6 6 6 ± 0
scanalyzer-opt11(20) 10 10 9.9 ± 0.3 10 10 9.8 ± 0.4 7 7 6.8 ± 0.4 7 7 6.8 ± 0.4

sokoban-opt11(20) 18 18 18 ± 0 18 18 18 ± 0 19 19 19 ± 0 19 19 19 ± 0
storage(30) 15 15 15 ± 0 15 15 15 ± 0 14 14 14 ± 0 14 14 14 ± 0

tidybot-opt11(20) 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0
tpp(30) 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0

transport-opt11(20) 7 7 6 ± 0 7 7 6 ± 0 6 6 6 ± 0 6 6 6 ± 0
visitall-opt11(20) 9 9 9 ± 0 9 9 9 ± 0 9 9 9 ± 0 9 9 9 ± 0

woodworking-opt11(20) 8 8 8.1 ± 0.3 8 8 8.1 ± 0.3 7 7 7.1 ± 0.3 7 7 7.1 ± 0.3
zenotravel(20) 12 11 10.9 ± 0.3 12 11 10.9 ± 0.3 10 10 10 ± 0 10 10 10 ± 0

Table A.10: Coverage results with M&S for computing f and inadmissible distance-to-go heuris-
tics for tie-breaking, on 1104 standard IPC benchmark instances.
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