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Abstract
Bike Sharing Systems (BSSs) are widely adopted in major cities of the world due to concerns associated

with extensive private vehicle usage, namely, increased carbon emissions, traffic congestion and usage of non-
renewable resources. In a BSS, base stations are strategically placed throughout a city and each station is
stocked with a pre-determined number of bikes at the beginning of the day. Customers hire the bikes from one
station and return them at another station. Due to unpredictable movements of customers hiring bikes, there is
either congestion (more than required) or starvation (fewer than required) of bikes at base stations. Existing
data has shown that congestion/starvation is a common phenomenon that leads to a large number of unsatisfied
customers resulting in a significant loss in customer demand. In order to tackle this problem, we propose an
optimisation formulation to reposition bikes using vehicles while also considering the routes for vehicles and
future expected demand. Furthermore, we contribute two approaches that rely on decomposability in the
problem (bike repositioning and vehicle routing) and aggregation of base stations to reduce the computation
time significantly. Finally, we demonstrate the utility of our approach by comparing against two benchmark
approaches on two real-world data sets of bike sharing systems. These approaches are evaluated using a
simulation where the movements of customers are generated from real-world data sets.

1. Introduction
Bike Sharing Systems (BSSs) offer attractive alternatives to private transportation particularly in alleviat-
ing concerns associated with increased carbon emissions, traffic congestion and usage of non-renewable
resources. BSSs have the ability to provide healthier living and greener environments while delivering fast
movements for customers. A few examples of BSSs are Capital Bikeshare in Washington DC, Hubway in
Boston, Bixi in Montreal, Vélib’ in Paris, Wuhan and Hangzhou Public Bicycle in China, etc.

Bike sharing systems are currently adopted in 1,139 cities with a fleet of over 1,445,000 bicycles. In
addition, there are 357 cities where BSSs are either in the planning stage or under construction (Meddin &
DeMaio, 2016). Figure (1) provides a quick view of the bike sharing systems around the world. In a typical
bike sharing system, a set of base stations is strategically placed throughout the city. At the beginning of the
day, each station is stocked with a pre-determined number of bikes. Users can hire and return bikes from any
designated station, each of which has a finite number of docks. Many bike sharing operators use vehicles
(e.g., trucks) to reposition bikes at the end of the work day so as to return to a pre-determined configuration.
In addition, several bike sharing operators (e.g., Capital Bikeshare in Washington DC, Hubway in Boston)
reposition the bikes during the day using myopic and adhoc methods.

c©2017 AI Access Foundation. All rights reserved.
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Figure 1: Visualisation of the BSSs worldwide (Meddin & DeMaio, 2016).

Due to the individualistic movements of customers according to their personal needs, there is often con-
gestion (more than required) or starvation (fewer than required) of bikes at base stations. Figure (2) provides
the number of instances1 when stations were empty or full throughout various months in 2013-2014 for Cap-
ital Bikeshare. A full station can be considered as being indicative of congestion and an empty station can
be considered as being indicative of starvation. At a minimum, there were approximately 100 cases of empty
stations and 100 cases of full stations per day. At a maximum, there were approximately 750 cases of empty
stations and 330 cases of full stations per day. Moreover, in around 40% of instances, the stations were empty
or full for more than 30 minutes. In order to tackle this problem, we employ dynamic repositioning of bikes
during the day to better match demand with supply. Dynamic repositioning refers to considering movements
of bikes by customers (which are usually significant and not negligible) during the repositioning period (Shu,
Chou, Liu, Teo, & Wang, 2013). On the other hand, static repositioning refers to ignoring movements of
bikes by customers during the rebalancing process (Chemla, Meunier, & Wolfler Calvo, 2013).
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Figure 2: Number of empty and full instances of stations in Capital Bikeshare.

1. The data is taken from Capital Bikeshare [http://cabidashboard.ddot.dc.gov/cabidashboard/#Home].
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As demonstrated by Fricker and Gast (2016) and our experimental results, starvation/congestion can
result in a significant loss in customer demand. Such loss in demand can have two undesirable outcomes:
(1) loss in revenue, and (2) increase in carbon emissions, as people can resort to fuel burning modes of
transport. Moreover, some operators (e.g., Vélib’ in Paris) are even penalised by the local government for
loss in customer demand (Schuijbroek, Hampshire, & Van Hoeve, 2017). So, there is a practical need to
minimise the lost demand and our approach is to dynamically reposition bikes with the help of vehicles while
considering future expected demand extracted from past data. Furthermore, to ensure that the minimisation
in demand loss is commercially viable, we consider an objective that is a trade-off between minimising lost
demand (alternatively maximising profit) and minimising cost incurred by vehicles.

We refer to the joint problem of bike repositioning and vehicle routing as the Dynamic Repositioning and
Routing Problem (DRRP). The DRRP with minor modifications can be used to represent the problem of repo-
sitioning empty cars in car sharing systems (e.g., Car2go, Zipcar) (Kek, Cheu, Meng, & Fung, 2009; Barth,
Todd, & Xue, 2004), empty vehicles in Personal Rapid Transit (Lees-Miller, Hammersley, & Wilson, 2010)
and idle ambulances in emergency response (Yue, Marla, & Krishnan, 2012; Saisubramanian, Varakantham,
& Chuin, 2015; Ghosh & Varakantham, 2016). For example, in the case of car sharing, there is a need to
continuously reposition cars to different parking spaces during the day to match with the pattern of demand.

Given the benefits of BSSs and the challenges of setting up such systems to operate efficiently, there have
been a wide spectrum of research papers addressing the problem of lost demand and other issues pertinent
to it. We have referred to these papers in Section 2. Some of the major differences between this paper and
existing research are as follows: (1) we generate routing and repositioning decisions for multiple time steps
(e.g., multiple periods during an entire day) using expected demand for bikes at each base station and at each
time step, and (2) we employ novel approaches based on decomposition and abstraction to provide scalable
solutions to DRRPs for large scale BSSs.

Due to a trivial reduction from the existing Static Bicycle Repositioning Problem (SBRP) which is NP-
Hard (Schuijbroek et al., 2017), the DRRP is at least NP-Hard. Therefore, we focus on developing principled
approximation methods. Our key contributions are as follows:

1. A mixed integer linear program (MILP) formulation to maximise profit for the BSS that considers the
trade-off between:

• maximising served demand, and
• minimising cost incurred by vehicles.

2. A dual decomposition mechanism to decompose the MILP into two components – one which computes
a repositioning solution for bikes and one which computes a routing solution for vehicles.

3. An abstraction mechanism that clusters the base stations in proximity to reduce the size of the problem
and further speed up the solution process.

4. Extensive computational results using a simulation based on the real-world data sets of two bike sharing
systems, namely, Capital Bikeshare (Washington, DC) and Hubway (Boston, MA), which demonstrate
that our techniques can significantly reduce lost demand and improve operational efficiency of BSSs.

We describe the relevant work in Section 2 and the Dynamic Repositioning and Routing Problem (DRRP)
model in Section 3. We then explain the learning of the DRRP model from a given data set in Section 3.1 and
the approach for solving the resulting DRRP model in Sections 4, 5 and 6. Experimental setup and results to
verify the utility of our approach are described in Sections 7 and 8 respectively. Finally, we conclude with
a detailed discussion on resolving issues involved in taking our approach to a real bike sharing system in
Section 9.

2. Related Work
Given the practical benefits of bike sharing systems, they have been studied extensively in the literature. In
a recent survey, Laporte, Meunier, and Wolfler Calvo (2015) summarise the leading contributions in shared
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transportation systems in terms of strategic planning (e.g., location of stations and sizes of fleet) and oper-
ational planning (e.g., vehicle repositioning). To situate these contributions in the context of this paper, we
summarise along four threads and also compactly show them in Table (1). These four threads are described
in the first four subsections of this section. Furthermore, the broad problem we are considering is one of
sequential decision making in the presence of uncertainty. This problem is considered extensively in the
Artificial Intelligence (AI) literature through Markov decision processes (MDPs) and its variants, stochas-
tic network design in sustainability applications, and others. Thus, in the last subsection, we summarise
other research relevant to our methodological contributions, i.e., decomposition and abstraction in sequential
decision making under uncertainty.

Paper(s) Online /
Offline

Static (S)/
Dynamic (D) Routing Repositioning Multi-step matching

Schuijbroek et al.
(2017) Online S 3 3 7

Raviv and Kolka
(2013); Raviv et al.
(2013)

Offline S 3 7 7

Raidl et al. (2013) Offline S 3 7 7

Shu et al. (2010,
2013) Offline D 7 3 3

Chemla et al. (2013) Offline S 3 7 7

Contardo et al.
(2012) Online D 3 3 7

Nair et al. (2013);
Nair and
Miller-Hooks (2011)

Online D 7 3 7

O’Mahony and
Shmoys (2015) Offline D 3 7 7

Pfrommer et al.
(2014); Singla et al.
(2015)

Online D 7 3 7

Our approach
(DRRP) Offline D 3 3 3

Table 1: Summary of the related literature.

2.1 Designing a BSS

The first thread of research focuses on how to design a BSS. Kumar and Bierlaire (2012) provide a linear
regression model to learn the correlation between station locations and customer’s locations. They use cus-
tomer demographics and personal information to identify the best locations for the placement of base stations.
Martinez, Caetano, Eiró, and Cruz (2012) provide an MILP formulation to optimally locate the stations, and
solve it using a branch and bound algorithm. Lin and Yang (2011) and Lin, Yang, and Chang (2013) propose
a decision support model to design a BSS. In addition, they provide a model that incorporates the service
level requirements of BSS by employing constraints from the inventory management literature.

The focus in this thread of research is on strategic planning and hence is complementary to the focus in
this paper, which is on operational planning (day-to-day operations).
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2.2 Static Repositioning

The second thread of research focuses on the rebalancing problem in static case where the movements of bikes
during the repositioning period are negligible. Specifically, it focuses on the problem of finding routes for a
fixed set of vehicles to reposition bikes at the end of the day or when the movements of bikes by customers
are insignificant to achieve the desired configuration of bikes across the base stations. This problem is also
known as the Static Bicycle Repositioning Problem (SBRP).

Benchimol, Benchimol, Chappert, De La Taille, Laroche, Meunier, and Robinet (2011) present an ap-
proximate solution (inspired by the solution of C-delivery TSP) to solve the static rebalancing and routing
problem with a single vehicle. In a similar direction, Chemla et al. (2013) solve the static rebalancing problem
for a single vehicle by employing a branch and cut algorithm that can solve a large scale problem with more
than a hundred stations. However, in the presence of multiple vehicles, these solution approaches are not very
effective as the routing solution of the first vehicle controls the routing solution of other vehicles and it affects
the overall solution quality. Raviv and Kolka (2013) and Raviv, Tzur, and Forma (2013) address this concern
and provide scalable exact and approximate solution approaches by introducing a set of MILP formulations
to solve the SBRP with multiple vehicles. By employing an objective function that penalises unavailability
of bikes or empty docks, they find solutions for the vehicles to reposition the bikes in a static manner. Raidl,
Hu, Rainer-Harbach, and Papazek (2013), Di Gaspero, Rendl, and Urli (2013), and Di Gaspero, Rendl, and
Urli (2016) propose approximate solutions for solving the SBRP using variable neighbourhood search based
heuristics. Erdoğan, Laporte, and Wolfler Calvo (2014) present an integer programming formulation to solve
the SBRP with demand intervals for a single vehicle. This is an empirically harder problem than the SBRP
and they provide a Benders decomposition scheme for solving the problem efficiently. Unfortunately these
solutions are not suitable for solving the DRRPs, as the movements of bikes during the planning period make
the static solutions irrelevant2.

Schuijbroek et al. (2017) propose a scalable approximate solution for the SBRP. They cluster base stations
using a maximum spanning star (MAXSPS) approximation and allocate one vehicle to each of the clusters so
that the service level requirements are satisfied. In addition, they represent this problem as a clustered vehicle
routing problem (Battarra, Erdoğan, & Vigo, 2014). They assume that the movements of bikes by customers
during the repositioning period are negligible. However, an online version of their approach can easily be
employed to solve the dynamic repositioning problem using a rolling horizon framework that generates a
routing and repositioning solution for each time step. In fact, we provide a comparison of our approach
against their approach, which can be considered as a representative of the adhoc and myopic heuristic, in
the experimental results section. As demonstrated in our experimental results, such a myopic repositioning
solution can significantly falter as it does not consider the future demand surges.

Our approach differs from approaches mentioned in this section, as we consider the repositioning of bikes
in the presence of bike movements by customers during the rebalancing period. Such bike movements can
make planned static repositioning irrelevant when customers return the required number of bikes to a station
or counterproductive when vehicles pick up bikes from a station where customers need bikes. In addition, a
static solution typically cannot adequately capture the surges in customer demand even if they are predictable.

2.3 Dynamic Repositioning

Since service level requirements in a BSS change over time due to involuntary movements of customers,
static solutions can significantly falter when employed for performing operational planning in BSS. Thus, the
third thread of research focuses on dynamically repositioning bikes based on the assessment of demand.

Pfrommer, Warrington, Schildbach, and Morari (2014) provide a myopic repositioning and routing solu-
tion for individual vehicles based on the assessment of demand for the next 30 minutes. In case of multiple
vehicles, they employ a greedy approach, where the solutions for the vehicles are determined sequentially
one at a time. Furthermore, an additional incentive is given to the customers if they return their bikes to the
neighbouring starving station rather than submitting it to their original destination station. Along a similar

2. Static solutions can either pick up bikes from a station where there is demand or add bikes to a station where there is no demand, as
they do not consider the current context of bike inventory in conjunction with past patterns of demand.
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direction, Singla, Santoni, Bartók, Mukerji, Meenen, and Krause (2015) propose a pricing mechanism that
dynamically calculates the incentive values for each neighbouring station and offers the corresponding incen-
tive amounts to the users through a mobile application. Contardo, Morency, and Rousseau (2012) propose a
dynamic repositioning model to deal with the loss in customer demand in rush hours. They provide a myopic
repositioning solution by considering the current demand that was recently observed before the reposition-
ing decisions are made. Furthermore, they employ Dantzig-Wolfe and Benders decomposition techniques to
speed up the solving process. However, due to the complex structure of the problem, there was a significant
gap between their solution and its lower bound. In addition, due to the fact that these myopic solutions do not
capture the future expected demand for multiple time steps in the planning phase, they usually provide poor
quality solutions when the demand is dynamic (as observed in both our data sets).

Shu, Chou, Liu, Teo, and Wang (2010) and Shu et al. (2013) overcome this issue by considering the future
expected demand for the entire planning horizon. They predict the stochastic demand from user trip data of
Singapore metro system using a Poisson distribution. They provide an optimisation model that suggests a set
of locations for the stations and propose a dynamic repositioning model to minimise the number of unsatisfied
customers. However, they assume that repositioning of bikes from one station to another is always possible
without considering the routing of vehicles.

Our approach differs from this thread of research as we consider the dynamic repositioning of bikes in
conjunction with the routing of all the vehicles. In addition, we also consider multi-step expected demand
that can account for demand surges at later time steps.

2.4 Demand Prediction and Analysis

The fourth thread of research which is complementary to the research presented in this paper is on demand
prediction and analysis. Borgnat, Abry, Flandrin, and Rouquier (2009) and Borgnat, Abry, Flandrin, Ro-
bardet, Rouquier, and Fleury (2011) propose the idea of predicting temporal user demand from the past data
and providing forecasted information to users. Froehlich, Neumann, and Oliver (2008) and Lathia, Ahmed,
and Capra (2012) predict the user demand in terms of available bikes or normalised available bikes in a sta-
tion at a certain time period. O’Mahony and Shmoys (2015) predict the service level requirements for each
station in rush hours by analysing the data of Citibike in New York City. Furthermore, they provide an opti-
misation model to minimise the maximum imbalance such that users are not too far from bikes or available
docks. Specifically, all the above mentioned papers provide data-driven analysis of the system-wide demand
in BSSs.

In contrast to the data-driven analysis of the demand, Nair and Miller-Hooks (2011) and Nair, Miller-
Hooks, Hampshire, and Bušić (2013) provide a theoretical analysis of the service level of a BSS using dual-
bounded joint-chance constraints. They predict the near future demand for a short period and ensure that
the system-wide demand is served with a certain probability. While these insights are practical and useful
in demand prediction, they are not applicable for large systems. Leurent (2012) represents the bike sharing
system as a dual Markovian waiting system to predict the actual demand. In contrast, we assume that the users
are impatient and leave the system if they encounter an empty station. Raviv et al. (2013) and Schuijbroek
et al. (2017) represent a BSS as a queueing network with Markov assumptions. The pickup or drop-off of
bikes by the users are represented as random variables with a known probability distribution. While these
assumptions hold for one step or short term planning, it becomes intractable for multi-step or long-term
planning due to the time-varying nature of the demand and the inter-dependency between the pickup and
drop-off rates between stations at consecutive time steps.

Given its wide ranging applicability and accuracy, Poisson distributions have been extensively used in the
literature to represent random arrival processes. It has also been used regularly to represent customer arrivals
at base stations in BSSs (George & Xia, 2011; Shu et al., 2010, 2013). Due to its simplicity and accuracy in
representing customer arrival processes, we also represent the demand arrival process at each of the stations
at each time step as a Poisson distribution.
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2.5 Abstraction and Decomposition in Sequential Decision Making Problems under Uncertainty

This last thread of research is relevant to our two main methodological contributions, namely, abstraction and
dual decomposition. Both these general methods have been applied in various types of sequential decision
making problems in the literature. Our work is focused on multi-step matching of demand and supply, which
has similarities with well-studied models in sequential decision making. Since we consider optimising a
reward, the relevant sequential decision making model would be Markov decision process (MDP).

In fact, by considering every possible match of supply and demand as a potential state and modifications
to each state as actions, we can represent a DRRP as an MDP. The corresponding MDP can be represented
using following tuple 〈S,A, P,R〉 :

• The state space, S of the MDP needs to incorporate all the possible combinations of inventory levels of
the stations. Furthermore, to capture the physical limitations of vehicle routes and the number of bikes
they can pick up or drop off from their origin station, the possible inventory levels and locations of the
vehicles need to be incorporated through the state representation.

• Any changes in the inventory state of the stations by the vehicles can be represented through the action
space, A of the MDP.

• The transition probabilities, P can be represented as the prior probabilities of moving bikes by the
customers at a given state, according to the expected customer demand.

• The reward,R can be represented as a function of a given state at a time step and the expected customer
demand at that time step.

However, since the number of possible matches grows exponentially with the number of stations, bikes and
vehicles, the number of possible matches is extremely large3. Thus, it would be difficult to even specify
the problem. Even if we are able to specify the problem, abstraction of state space for the MDP of a corre-
sponding DRRP will automatically abstract the action space. As outlined in the next two paragraphs, existing
abstraction techniques only consider state abstraction where action space remains the same, so they cannot
be employed to solve the large scale MDP representations of DRRPs.

State abstraction has been widely adopted in Artificial Intelligence (Giunchiglia & Walsh, 1992) and Op-
erations Research (Rogers, Plante, Wong, & Evans, 1991). Spatio-temporal abstraction (Sutton, Precup, &
Singh, 1999; Mahadevan, 2002) is studied heavily in reinforcement learning (RL) literature, which is also
a sequential decision making problem under uncertainty. Furthermore, abstracting time periods is widely
used in the inventory routing problem (IRP) literature in order to simultaneously take into account the in-
ventory planning and vehicle routing constraints (e.g., see Coelho, Cordeau, & Laporte, 2013; Papageorgiou,
Nemhauser, Sokol, Cheon, & Keha, 2014).

Li, Walsh, and Littman (2006) propose five methods to perform state aggregation in MDPs while preserv-
ing the useful information that is critical for solving the complete problem. However, they assume that the
action set does not change after abstraction, so the actions and policies of the original MDP and the abstract
MDP are comparable. On the contrary, both the actions and states (when the DRRP is represented as an MDP)
would change in our case, as the actions correspond to moving vehicles to a base station and the number of
base stations changes with abstraction. Therefore, the insights of lossless abstraction are not applicable in our
case. Given the extremely large scale, we have to abstract at the level of state features and not at the level of
individual states, so that is another differentiating factor from the work by Li et al. (2006). Abstracting a rele-
vant set of features for state abstraction has been employed in both the offline (Sturtevant & White, 2006) and
online (Geramifard, Doshi, Redding, Roy, & How, 2011) settings for solving MDP and RL problems. These
approaches focus on function approximation based on abstract state features and assume that the action space
remains the same after abstraction. However, in our case, the abstraction of state features will also alter the
action space. Due to this reason, these existing approaches cannot be directly applied for solving the DRRP.

3. For Capital Bikeshare, we have 300 stations, each with a capacity of 20 and 5 vehicles, each with a capacity of 20, so there would
be approximately 20300 × 205 × 3005 states and (300× 20)5 actions.
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Furthermore, these existing approaches are suitable for problems with either low dimensional state space or
with binary features. However, an MDP corresponding to a DRRP will have a large feature set and each
feature can have a large number of values. As a consequence, the existing approaches will not be scalable for
solving the DRRP.

Abstraction employed in this paper is similar to the work of Knoblock (1993). Specifically, their method
(Knoblock, 1991) consists of three steps: (1) identify the abstract problem from the original problem, (2)
solve the abstract problem, and (3) use the solution from the abstract problem to determine the solution
for the original problem. The abstraction mechanism we employ in this paper to group the base stations
is inspired by the recent work of Lu and Boutilier (2015). They use an abstraction technique to solve the
multi-campaign, multi-channel marketing optimisation problem (MMMOP) by dynamically segmenting the
customer population into a number of groups and use the solution of the abstract problem to guide the global
solution. In a similar way, we group the nearby base stations into an abstract station because the customers
using those stations have similar movement dynamics in aggregation and nearby stations have similar patterns
of imbalance as shown in Section 6.

Dual decomposition has been employed in the literature to speed up the solution of sequential decision
making problems. Dean and Lin (1995) use a decomposition technique to solve large scale MDPs. They
decompose the original problem into a number of subproblems which are solved independently and finally
combine the solutions to determine the solution of the original problem. Furmston and Barber (2011) employ
Lagrangian dual decomposition to decompose a stationary policy finite-horizon MDP into a series of uncon-
strained MDPs that can be solved easily and use these solutions to guide the solution of the master problem in
an iterative fashion. Recently, dual decomposition techniques have been employed successfully for solving
sequential decision making problems such as factored MDPs (Guestrin & Gordon, 2002), spatial conserva-
tion planning (Kumar, Wu, & Zilberstein, 2012) and contact center planning (Kumar, Singh, Gupta, & Parija,
2014) problems. In this paper, we adopt a dual decomposition framework to exploit the weak dependency
between two critical components of the problem, namely, repositioning of bikes and routing of vehicles.

3. Model: DRRP
We now formally describe the generic model, Dynamic Repositioning and Routing Problem (DRRP), that
can be used to represent problems like the ones arising in BSSs. We employ the following tuple:〈

S,V,C#,C∗,d#,0,d∗,0, {σ0
v},F,R,P

〉
• S represents the set of base stations, where each station s ∈ S has a fixed capacity (the number of

docks) denoted by C#
s .

• V represents the set of vehicles that can be employed to reposition bikes and each vehicle v ∈ V has a
fixed capacity (e.g., the number of slots for bikes) denoted by C∗v .

• Initial distribution of bikes at base station s is given by d#,0
s . The number of bikes present in a vehicle

v at the beginning of the day is given by d∗,0v .

• σ0
v,s is set to 1 if vehicle v is stationed at station s initially. For ease of notation, we use the generic
σt
v,s and set it to 0, if t > 0.

• F t,k
s,s′ represents the number of customers at time step t going out from station s and wanting to reach

station s′ at time step t+ k.

• Rt,k
s,s′ represents the revenue obtained if a bike is hired at time step t from station s and is returned at

station s′ after k time steps. In a general case, the revenue depends only on the duration k, but we use
the notation to represent a generic model4. We further note that this revenue parameter can also be used

4. Such a generic model can for instance be used to capture higher price of hiring bikes in central business districts.
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to represent the monetary value of the social and environmental benefits associated with the usage of
bike.

• Ps,s′ represents the routing cost for any vehicle to travel from station s to s′ which depends on the dis-
tance between the two stations and the fuel cost. This cost parameter is then multiplied by a predefined
factor to incorporate other relevant operating costs.

The goal is to maximise the overall profit. It should be noted that we do not directly minimise the lost demand
because that can result in a significant cost of the routing of vehicles. This profit measure provides a trade-off
between minimising lost demand and reducing routing cost of vehicles. The DRRP can be considered as a
generalisation of the static bicycle repositioning problem (SBRP) (Schuijbroek et al., 2017). The SBRP in
turn can be reduced from the 1-PDTSP problem, which is a known NP-Hard problem (Hernández-Pérez &
Salazar-González, 2004). Due to this relation, it can be shown that the DRRP is at least NP-Hard.

3.1 Populating DRRP from Data of Bike Sharing Systems

The details of the data items provided by the bike sharing data sets (of two real BSSs), which we use in this
paper are mentioned in Table (2).

Data Item Definition

D1 The identification numbers, locations, capacities of base stations and the number of
bikes present at each base station at the beginning of the day.

D2 Total number of vehicles available for repositioning and capacities of those vehicles.
D3 Customer trip history records.
D4 Revenues associated with successful customer bookings.

Table 2: Definition of the data items provided in real-world data sets.

From these data items, we populate the DRRP tuple
〈
S,V,C#,C∗,d#,0,d∗,0, {σ0

v},F,R,P
〉

as follows:

• Set of base stations, S and their capacities, C# are obtained from data item D1.

• Set of vehicles, V and their capacities, C∗ are obtained from data item D2.

• d#,0 is obtained from data item D1 and d∗,0 is set to 0 for all vehicles (i.e., vehicles start out empty at
the beginning of the day).

• We set the starting positions of vehicles, {σ0
v} randomly. Note that we have experimented with different

starting configurations, but they do not have a major impact on the results. This is primarily because
the positions of vehicles were changed based on the decisions to accommodate the flows of demands
after the first time step.

• The demand and transition model, F is constructed by aggregating the customer trips for each time step
over the data in D3. We aggregate the demand for each day of the week, i.e., there is a separate demand
model for Mondays, Tuesdays, etc.

• Revenue model, R is constructed from the data item D45.

• Cost model, P is computed based on fuel costs in the location of the bike sharing system in conjunction
with distances between base stations that are obtained from the data item D1.

In Figure (3), we provide an example to better explain the DRRP.

5. Typically, the first 30 minutes for subscription rides is free and after that an additional charge is applied. In our model, to ensure
consistency, we can represent revenue for first 30 minutes as the subscription fee divided by the average number of rides.
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Example 3.1 For ease of explanation, we take 3 base stations and the movements of bikes between stations
are shown over 3 time steps. An oval represents a base station at a time step. The leftmost oval at the top
is base station 1 at time step 1, the oval in the middle column at the top is base station 1 at time step 2 and
so on. The number inside the oval represents the number of bikes present in the station at that time step.
The number in the square box on top of each oval represents the actual demand in that station at that time
step. The number on each arc shows the actual flow of bikes on that arc. The blue ellipse on the top of an
oval represents the lost demand at that station due to unavailability of bikes. For this specific example, the
total loss in demand is 4 as shown in Figure (3a). However, if we reposition the idle bikes efficiently with the
help of a vehicle (in Figure (3b), the routes for the vehicle are shown using a dotted line and the reposition
numbers are shown within the circle associated with each dotted line), then there is no lost demand.
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Figure 3: An example to explain the need for dynamic repositioning: (a) without repositioning (lost demand
= 4), (b) with repositioning (dotted line represents the repositioning solution, lost demand = 0).

4. Optimisation Model for Solving DRRP
In this section, we provide an optimisation model for a given DRRP. Specifically, we provide a mixed integer
linear program (MILP) that computes a profit maximising repositioning and routing solution. For ease of
understanding, the decision and intermediate variables employed in the formulation are described in Table (3).

Category Variable Definition

Decision
y+,t
s,v The number of bikes picked from station s by vehicle v at time step t.
y−,ts,v The number of bikes dropped at station s by vehicle v at time step t.
zts,s′,v Set to 1 if vehicle v moves from station s to s′ at time step t.

Intermediate xt,ks,s′
The number of bikes moving from station s at time step t to s′ at t+k
by the customers.

d#,t
s The number of bikes present in station s at time step t.
d∗,tv The number of bikes present in vehicle v at time step t.

Table 3: Decision and intermediate variables.

The MILP for solving the DRRP is presented compactly in Table (4). Intuitively, the constraints in the
optimisation model ensure that: the flows of bikes in and out of the base stations and vehicles are preserved
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max
y+,y−,z

∑
t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ −

∑
t,v,s,s′

Ps,s′ · zts,s′,v (1)

s.t. d#,t
s +

∑
k,ŝ

xt−k,k
ŝ,s −

∑
k,s′

xt,ks,s′ +
∑
v

(
y−,t
s,v − y+,t

s,v

)
= d#,t+1

s , ∀t, s (2)

xt,ks,s′ ≤ d
#,t
s ·

F t,k
s,s′∑

k,ŝ F
t,k
s,ŝ

, ∀t, k, s, s′ (3)

d∗,tv +
∑
s∈S

(
y+,t
s,v − y−,t

s,v

)
= d∗,t+1

v , ∀t, v (4)

∑
s′∈S

zts,s′,v −
∑
s′∈S

zt−1
s′,s,v = σt

v,s, ∀t, s, v (5)

∑
s′∈S,v∈V

zts,s′,v ≤ 1, ∀t, s (6)

y+,t
s,v + y−,t

s,v ≤ C∗v ·
∑
i∈S

zts,i,v, ∀t, s, v (7)

0≤ xt,ks,s′≤ F
t,k
s,s′ , 0≤ d

#,t
s ≤ C#

s , 0≤ y+,t
s,v , y

−,t
s,v ≤ C∗v , 0≤ d∗,tv ≤ C∗v (8)

zts,s′,v ∈ {0, 1} (9)

Table 4: SOLVEDRRP()

(constraints (2) and (4)), the flows of vehicles in and out of the base stations are preserved (constraints (5) and
(6)), and capacities of base stations and vehicles are not violated (constraints (7) and (8)). More importantly,
these constraints ensure that the flows of bikes between stations follow the flows of bikes observed in the
demand and transition model, F. More specific details of the constraints employed in SOLVEDRRP() of
Table (4) are as follows:

Objective: To represent the trade-off between lost demand (or alternatively the revenue from customer trips)
and the cost of using vehicles, we employ the dollar value of both quantities and combine them into the
overall profit. This objective is represented in Expression (1) of the MILP in SOLVEDRRP().

Flows of bikes in and out of stations are preserved: Constraints (2) enforce this flow preservation. Intuitively,
in these constraints, we ensure that the number of bikes at a base station at a time step (d#,t+1

s ) is equivalent
to the sum of the number of bikes at the same base station in the previous time step (d#,t

s ) and the net number
of bikes coming into the station during that time step

(∑
k,ŝ x

t−k,k
ŝ,s −

∑
k,s′ x

t,k
s,s′ +

∑
v

(
y−,ts,v − y+,t

s,v

))
.

Flows of bikes between any two stations follow the transition dynamics observed in the data: As a
subset of arrival demand can be served if the number of bikes present in a station is less than the arrival
demand, constraints (3) ensure that the flows of bikes between station s and s′ should be less than the product
of the number of bikes present in the source station s (i.e., d#,t

s ) and the transition probability that a bike will
move from s to s′ according to expected customer demand (i.e., F t,k

s,s′/
∑

k,ŝ F
t,k
s,ŝ ).

Flows of bikes in and out of vehicles are preserved: Constraints (4) enforce this flow preservation.
Intuitively, in these constraints, we ensure that the number of bikes in a vehicle at a time step (d∗,t+1

v ) is
equivalent to the sum of the number of bikes in the vehicle at the previous time step (d∗,tv ) and the net number
of bikes coming into the vehicle during that time step

(∑
s∈S

(
y+,t
s,v − y−,ts,v

))
.
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Flows of vehicles in and out of stations are preserved: Constraints (5) enforce this flow preservation.
Intuitively, in these constraints, we ensure that the number of vehicles going out of a station (

∑
s′∈S z

t
s,s′,v)

is equivalent to the sum of the number of vehicles coming into the station (
∑

s′∈S z
t−1
s′,s,v) and the number of

vehicles that were present at that station6 (σt
v,s).

A maximum of one vehicle can be present in one station at any time step: Due to limited space avail-
ability near base stations and to avoid a synchronisation issue in pickup or drop-off events by multiple
vehicles from the same station at the same time step, constraints (6) ensure that at any time step, the
maximum number of vehicles at a station (

∑
s′∈S z

t
s,s′,v) is 1.

Vehicles can only pick up or drop off bikes at a station if they are present at that station: Constraints (7)
enforce that the number of bikes picked up or dropped off from a station at each time step by each vehicle is
bounded by whether the station is visited by the vehicle at that time step or not.

Station and vehicle capacities are not exceeded when repositioning bikes: Constraints (8) ensure that
the number of bikes at a station s does not exceed the number of available docks at that station (C#

s ).
Similarly, these constraints also enforce that the number of bikes picked up or dropped off by a vehicle v in
aggregate does not exceed the capacity of the vehicle (C∗v ).

The size of the above described model grows exponentially as the number of stations increases. To
tackle this problem, we describe two mechanisms, namely, dual decomposition and abstraction to improve
the scalability of the optimisation model delineated in Table (4).

5. Dual Decomposition Approach for Solving the DRRP
We now provide a decomposition approach to exploit the minimal dependency that exists in the MILP of
SOLVEDRRP() between the routing problem (how to move vehicles between base stations to pick up or drop
off bikes) and the repositioning problem (how many bikes to pick up and drop off from each station). The
following observation highlights this minimal dependency:

Observation 1 In the MILP of Table (4):

• y+ and y− variables capture the solution for the repositioning problem.

• z variables capture the solution for the routing problem.

These sets of variables only interact due to constraints (7). In all other constraints of the original model, the
routing and repositioning variables are completely independent.

In order to exploit observation (1), we use the well-known Lagrangian dual decomposition (LDD) (Fisher,
1985; Gordon, Varakantham, Yeoh, Lau, Aravamudhan, & Cheng, 2012) technique. While this is a general
purpose approach, its scalability, usability and utility depend significantly on the following characteristics of
the model:

1. Identifying the right constraints to be dualized: This step is crucial to ensure that the resulting subprob-
lems are easy to solve and the resulting bound derived from the dual solution is tight during the LDD
process. If the right constraints are not dualized, then the underlying Lagrangian based optimisation
may not be decomposable or it may take significantly more time than the original MILP to find the
desired solution.

2. Extraction of a primal solution from an infeasible dual solution: The primal extraction process is im-
portant to derive a valid bound (heuristic solution) during the LDD process. In many cases, the solution

6. This second term is greater than zero for the first time step only and for rest of the time steps it is set to zero.
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obtained by solving the decomposed dual slaves can be infeasible with respect to the original formula-
tion and hence, the overall approach can potentially lead to slower convergence and poor solutions.

Algorithm 1 : SolveLDD(drrp)

Initialize: α0, it← 0
repeat
o1, x, y−, y+ ← SOLVEREDEPLOY(αit, drrp)
o2, z← SOLVEROUTING(αit, drrp)
αit+1
s,t,v ←

[
αit
s,t,v + γ · (y+,t

s,v + y−,ts,v − C∗v ·
∑

i z
t
s,i,v)

]
+

p, xp, y
−
p , y

+
p ← EXTRACTPRIMAL (Z, drrp)

it← it+ 1
until

[
p− (o1 + o2)

]
≤ δ

return p, xp, y
+
p , y

−
p , z

The pseudo code for the LDD is provided in Algorithm (1). We first decompose the original problem
into a master problem and two slaves (SOLVEREDEPLOY() and SOLVEROUTING()). As highlighted in ob-
servation (1), only constraints (7) contain a dependency between routing and repositioning variables. Thus,
we dualize constraints (7) using the dual variables, αs,t,v and obtain the Lagrangian function (expressed as a
minimisation problem as shown by Fisher, 1985) as follows:

L(α) = min
z,y+,y−

[
−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
t,v,s,s′

Ps,s′ · zts,s′,v +
∑
s,t,v

αs,t,v · (y+,t
s,v + y−,t

s,v − C∗v ·
∑
i

zts,i,v)
]

(10)

= min
y+,y−

[
−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
s,t,v

αs,t,v ·
(
y+,t
s,v + y−,t

s,v

)]
+min

z

[ ∑
t,v,s,s′

zts,s′,v · (Ps,s′ − C∗v · αs,t,v)
]

(11)

In Equation (11), the first two terms correspond to the repositioning problem and the last term corresponds
to the routing problem. The two subproblems corresponding to the repositioning and routing problems are
given in Table (5) and Table (6), respectively.

min
y+,y−

−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
s,t,v

αs,t,v · (y+,t
s,v + y−,t

s,v )

s.t. Constraints (2), (3), (4) & (8) hold

Table 5: SOLVEREDEPLOY()

From Equation (11), given an α, the dual value corresponding to the original problem is obtained by
adding up the objective function values from the two slaves, which yields a valid lower bound with respect to
the original problem. It should be noted that the decomposition is only for L(α). Next, we have to solve the
following optimisation problem at the master in order to reduce violations of the dualized constraints:

max
α≥0

L(α) (12)

This master optimisation problem is solved iteratively using a sub-gradient descent method applied on the
dual variables α:

αk+1
s,t,v =

[
αk
s,t,v + γ · (y+,t

s,v + y−,t
s,v − C∗v ·

∑
i

zts,i,v)
]
+

(13)

where the []+ notation indicates that the value must be equal or greater than zero. This is because we have
dualized a “less than or equal to” constraint and a value of less than zero indicates that there is no violation of
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min
z

∑
t,v,s,s′

zts,s′,v · (Ps,s′ − C∗v · αs,t,v)

s.t. Constraints (5), (6) & (9) hold

Table 6: SOLVEROUTING()

the constraint. γ is a step-size parameter that is set using the standard strategy presented by Bertsekas (1999)
(refer to section 6.3.1). The value within parenthesis () in Equation (13) is the sub-gradient and is computed
from the solutions of the two slaves.

The algorithm terminates when the difference between the primal objective (defined as p in Algorithm 1)
and the dual objective (the sum of the slave’s objectives o1, o2) is less than a pre-determined threshold value
δ. In order to compute the optimality gap7, we need the best primal solution in conjunction with the dual
solution. Therefore, it is important to obtain a primal solution after each iteration from the solutions of the
slaves. In our case, however, the aggregate solution obtained from slaves may not always be feasible with
respect to the original problem in Table (4).

Observation 2 The infeasibility in the dual solution arises because the routes of the vehicles (obtained by
solving the routing slave) may not be consistent with the repositioning plan of bikes (obtained by solving the
repositioning slave). However, the solution for the routing slave is always feasible and can be fixed to obtain
a feasible primal solution with respect to the original problem.

Let, Zt
s,v =

∑
s′ z

t
s,s′,v . We extract the primal solution by solving the optimisation formulation provided in

Table (7). Essentially, we solve the repositioning slave with an additional set of constraints (14), which ensure
that repositioning in a station is possible if a vehicle is present there. More specifically, constraints (14) are
equivalent to constraints (7) where we use the solution values of the routing slave (z) as the input. Thus, Ex-
tractPrimal() satisfies all the constraints of Table (4) and produces a feasible solution to the original problem.
Finally, we subtract the routing cost from the objective value to get the correct primal value.

max
y+,y−

∑
t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′

s.t. Constraints (2), (3), (4), (8) hold and

y+,t
s,v + y−,t

s,v ≤ C∗v · Zt
s,v, ∀t, s, v (14)

Table 7: EXTRACTPRIMAL()

Proposition 1 (Fisher, 1985) : The error in the solution quality obtained by the Lagrangian dual decom-
position method in Algorithm (1) is bounded by the difference between the primal objective, p and the dual
objective, (o1 + o2).

6. Abstraction Approach for Solving DRRP
Even after applying the LDD, we can only solve problems with at most 60 base stations, 38 time steps and 5
vehicles within a threshold time of 12 hours. However, in most of the cities, the number of base stations is

7. The gap between dual and primal solution which is known as duality gap, is the measurement of solution quality derived from the
LDD. We reach an optimal solution if the duality gap becomes zero.
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higher. In this section, we provide an abstraction mechanism to further speed up the solution process. We first
provide two observations from the real data that assist with deciding on the method to abstract base stations:

• Figure (4) provides heat maps of empty stations8 during various times of the day for Capital Bikeshare.
Figure (4a) and (4b) show the heat maps of empty stations in the morning peak hours. Similarly, Figure
(4c) and (4d) show the heat maps of empty stations during the evening peak hours. All the heat maps
indicate that the stations near to each other exhibit similar behaviour.

• Base stations are relatively close to each other. For instance, in case of the Capital Bikeshare, there are
5-6 base stations within 2 blocks (up to 0.4 miles or 0.64 kilometers) in the center of the city.

(a) (b)

(c) (d)

Figure 4: Heat maps for empty stations (data set: Capital Bikeshare): (a) morning peak (7AM - 9AM), (b)
morning peak (9AM - 11AM), (c) evening peak (4PM - 6PM), (d) evening peak (6PM - 8PM).

From the above observations, since nearby stations exhibit similar behaviour and are also close enough
to be covered by a carrier vehicle with minimal travel, we exploit the geographical proximity based clus-
tering method to obtain abstract stations. Specifically, we employ relative distances between stations while

8. A station is considered empty if there are no bikes in the station for more than 2 minutes. For a specific time of a specific day
(Monday, Tuesday, etc.), we use the trip history data and count the number of times each station became empty over a reasonably
long duration (a year). Red corresponds to stations that became empty frequently, green corresponds to stations that became empty
moderately and purple is for stations that rarely became empty.
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clustering stations into abstract stations. We follow the following three steps typically employed in abstrac-
tion and introduced by Knoblock (1991): (1) create an instance of the DRRP with abstract stations, each of
which is a group (obtained from clustering) of the original base stations, (2) solve the abstract DRRP using
the LDD and obtain the routing and repositioning solution over abstract stations, and (3) derive the routing
and repositioning solution for the original DRRP from the routing and repositioning solution of the abstract
DRRP.

6.1 Create Abstract DRRP

The first step in this approach is to generate the abstract DRRP,
〈
S̃,V, C̃#

,C∗, d̃
#,0

,d∗,0, {σ̃0
v}, F̃, R̃, P̃

〉
from the original DRRP. Everything related to vehicles in the abstract DRRP remains the same as in the
original DRRP. In practice, revenue, Rt,k

s,s′ depends on the time step, t and the number of time steps, k for
which the bike is hired and does not rely on the source or destination station. Hence, we can assume that
the revenue model remains the same for the original and abstract DRRPs. We outline below how the other
elements of the abstract DRRP tuple are computed from the original DRRP:

• Stations in the abstract DRRP, S̃: Grouping of stations S into abstract stations can either be done by
an expert or computed by a clustering approach9 (e.g., k-means clustering). Thus, each abstract station
s̃ ∈ S̃ is a set of original base stations.

• Capacity of an abstract station: C#
s̃ =

∑
s∈s̃ C

#
s . The capacity of an abstract station s̃ is the sum of

capacities of all the stations s ∈ s̃.

• Initial distribution of bikes at the abstract station: d#,0
s̃ =

∑
s∈s̃ d

#,0
s . The initial distribution of bikes

of an abstract station s̃ is the sum of the initial distributions of all the stations s ∈ s̃.

• Initial distribution of vehicle: σ0
v,s̃ = 1, if ∃s ∈ s̃, σ0

v,s = 1. The vehicle v is initially located in
abstract station s̃ if its original location (i.e., station s) belongs to the abstract station s̃.

• Flows of bikes in the abstract DRRP: F t,k
s̃,s̃′ =

∑
{s∈s̃,s′∈s̃′} F

t,k
s,s′ . The flows of bikes from an abstract

station s̃ to s̃′ are calculated as the sum of the flows of all the bikes taken by the customers from any
station s ∈ s̃ to a station s′ ∈ s̃′ in the original DRRP.

• Routing cost for the vehicles in the abstract DRRP: Ps̃,s̃′ = max{s∈s̃,s′∈s̃′} Ps,s′ . We consider a con-
servative option of taking the worst case penalty. Specifically, we take the maximum routing cost for
traveling between any pair of stations s ∈ s̃ and s′ ∈ s̃′.

6.2 Solve the Abstract DRRP

In the second step, we use the LDD approach from Section 5 to solve the abstract DRRP. There are two
possible assumptions we can make about the movements of vehicles in an abstract station: (1) a vehicle can
visit all stations of an abstract station in a single time step, and (2) a vehicle can visit one station within an
abstract station in a single time step.

6.2.1 VEHICLE CAN VISIT ALL STATIONS OF AN ABSTRACT STATION IN A SINGLE TIME STEP

As a vehicle can visit all the stations of an abstract station within one time step, we need to ensure that at most
one vehicle is present in an abstract station in each time step to avoid the inconsistency in pickup or drop-off
events by different vehicles. Therefore, the optimisation model for solving the abstract DRRP is equivalent
to the one shown in Table (4) and we directly use the LDD approach from Section 5 to efficiently solve the
abstract DRRP.

9. The grouping of base stations can be done in various ways and the results may vary for different problem instances. Clustering
base stations according to geographical proximity is one option and the experimental results show that it provides a reasonable
improvement over the two benchmark approaches.
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min
z̃

∑
t,v,s̃,s̃′

Ps̃,s̃′ · z̃ts̃,s̃′,v −
∑
s̃,t,v

αs̃,t,v · C∗v ·
∑
i

z̃ts̃,i,v

s.t. Constraints (5) & (9) hold∑
j∈S̃,v∈V

z̃ts̃,j,v ≤ |s̃|, ∀t, s̃ (15)

Table 8: SOLVEABSTRACTROUTING()

6.2.2 VEHICLE CAN VISIT ONE STATION WITHIN AN ABSTRACT STATION IN A SINGLE TIME STEP

As the abstract stations contain multiple base stations, we need to modify constraints (6) to allow multiple
vehicles in an abstract station. Table (8) provides the modified version of the routing slave to solve the abstract
DRRP, where constraints (5) & (9) are defined over z̃. The modified set of constraints (15) ensure that at any
time step maximum |s̃| vehicles can visit an abstract station s̃. However, the repositioning slave and master
function remain unchanged. There are two key outputs from the LDD algorithm: (1) repositioning solution, ỹ
for moving bikes between abstract stations, and (2) routing solution, z̃ for moving vehicles between abstract
stations at different time steps.

6.3 Deriving Solutions for the Original DRRP

In the third step, we retrieve the solution for the original DRRP from the abstract DRRP solution.

6.3.1 VEHICLE CAN VISIT ALL STATIONS OF AN ABSTRACT STATION IN A SINGLE TIME STEP

As we are abstracting the base stations based on their relative distance, all the base stations within an abstract
station are located nearby (less than a few kilometers in our data sets). So, in reality it is possible for a
vehicle to visit all the base stations of an abstract station within one time step. The mechanisms to retrieve
the repositioning and routing solutions for the original DRRP from the abstract DRRP solution are outlined
below.

Repositioning solution for the original DRRP: Based on a fixed routing solution, z̃ for the abstract DRRP,
we retrieve the repositioning solution for the original DRRP. Specifically, we fix the locations where vehicles
will be present at different time steps and remove all constraints which are only related to vehicle routing
(since the routing solution is fixed) in the optimisation model of Table (4). Solving this optimisation model
yields a repositioning solution for the original DRRP. Formally, from the abstract DRRP solution z̃, we obtain
constants Z as follows:

Zt
s =

{
1, if s ∈ s̃ ∧

∑
v,s̃′ z̃

t
s̃,s̃′,v = 1

0, otherwise

The final optimisation model to obtain the repositioning solution for the original DRRP is shown in Table (9).
The key differentiating constraints that have not been used earlier are constraints (20). These constraints
ensure that the total number of bikes picked up or dropped off from all base stations in an abstract station is
equal to the number of bikes picked up or dropped off from the abstract station according to the repositioning
solution of the abstract DRRP.

Routing solution for the original DRRP: Given the routing solution for the abstract DRRP (also referred
to as the abstract routing solution), the vehicle assigned to each abstract station at a time step is fixed. From
this abstract routing solution, our goal is to find the routing solution for all the stations within each abstract
station at each time step. This routing solution must be consistent with the repositioning solution computed
for the original DRRP. We use Y (instead of y) to represent the final repositioning solution.
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max
y+,y−

∑
t,s,s,s′

Rt,k
s,s′ · x

t,k
s,s′ (16)

s.t. d#,t
s +

∑
k,ŝ

xt−k,k
ŝ,s −

∑
k,s′

xt,ks,s′ + y−,t
s − y+,t

s = d#,t+1
s , ∀t, s (17)

xt,ks,s′ ≤ d
#,t
s ·

F t,k
s,s′∑

k,ŝ F
t,k
s,ŝ

, ∀t, k, s, s′ (18)

y+,t
s + y−,t

s ≤ C∗v · Zt
s, ∀t, s (19)∑

s∈s̃|
∑

s̃′ z̃
t
s̃,s̃′,v=1

[y+,t
s − y−,t

s ] = d∗,t+1
v − d∗,tv , ∀t, s̃ (20)

0 ≤ xt,ks,s′ ≤ F
t,k
s,s′ , y

+,t
s , y−,t

s ≤ C∗v , d#,t
s ≤ C#

s (21)

Table 9: GETSTATIONREDEPLOY(Z,d∗)

For each vehicle, we compute the routing solution for the original DRRP incrementally by starting at
the first time step and from the starting abstract station. We identify the route to be taken between all the
base stations within this starting abstract station. Then, we move to the abstract station for the next time step
recommended by the abstract routing solution and so on.

For each vehicle, the first step in computing the routing solution for stations within an abstract station is
to identify the starting station10. We consider the starting station for non-starting abstract stations as the one
that is nearest to the station from where the vehicle has exited in the previous time step. An advantage of this
incremental method is that it minimises the routing cost for transition between abstract stations.

Once the starting station is obtained and the repositioning solution Y is known, we employ the optimisa-
tion model in Table (10) to find an intra-abstract station routing solution. We compute the best route within
the stations of an abstract station s̃, while visiting each base station once and satisfying the repositioning
numbers from each station, Y.

min
z

∑
t,s,s′

Ps,s′ · zts,s′,v (22)

s.t. d̂∗,t +
∑
s

(Y +
s − Y −s ) ·

∑
s′

zts,s′,v = d̂∗,t+1, ∀t ∈ T̂ (23)

∑
t,s′

zts,s′,v = 1, ∀s ∈ s̃|(Y +
s + Y −s ) > 0 (24)

∑
s′

zts,s′,v −
∑
ŝ

zt−1
ŝ,s,v = σt

v,s, ∀t ∈ T̂ , s ∈ s̃ (25)

0 ≤ d̂∗,t ≤ C∗v , zts,s′,v ∈ {0, 1} (26)

Table 10: GETINTRAROUTING(s̃, v,Y)

The objective delineated in Expression (22) is to minimise the routing cost of the vehicle and the con-
straints are defined as follows:

10. Since the position of every vehicle is known at first time step in the original DRRP tuple, we have the starting station for the starting
abstract station.
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• Flows of bikes in and out of a vehicle are preserved: Constraints (23) enforce this by ensuring that the
number of bikes in the vehicle at time step t + 1 is equal to the sum of the number of bikes present in
the vehicle at time step t plus the net number of bikes picked up from a station s at that time step. Note
that, the time index t here is used to represent the sequence of moves for the vehicle between the base
stations within an abstract station.

• Each station is visited only once: Constraints (24) restrict that each base station where a repositioning
is required (i.e., Y +

s /Y
−
s > 0) is visited only once.

• Flow conservation of each vehicle at a station: Constraints (25) ensure that the flow in to a station s
(i.e.,

∑
s′ z

t−1
s′,s,v) is equal to the flow out from that station at time step t (i.e.,

∑
s′ z

t
s,s′,v). σ0 represents

the initial location of the vehicle and it is used to ensure that the vehicle moves appropriately out of the
initial location.

• Capacity of the vehicle is not exceeded during repositioning: Constraints (26) ensure that the number
of bikes picked up or dropped off by a vehicle in aggregate does not exceed the capacity of the vehicle
(C∗v ).

Example 6.1 Figure (5) provides a handcrafted toy example to illustrate the abstraction method where a
vehicle can cover all stations within an abstract station in one time step. Solid dots represent the base
stations and big circles represent the abstract stations. We considered a problem with 13 base stations and
grouped them into three abstract stations (with 5 stations in abstract station 1 and 4 stations each in abstract
stations 2 and 3). Initial location of a vehicle is indicated with a circle over the solid dot. Figure (5a) depicts
the optimal abstract station level routing solution (by solving the LDD based global MILP on the abstract
DRRP) for the vehicle. Figure (5b) depicts the base station level routing solution within the abstract station 1
at the initial time step. It also shows the route from the exit station of abstract station 1 to its nearest station in
abstract station 2. By this incremental process, we find the base station level routing solution for the vehicle.
Figure (5c), (5d) depict the base station level routing solution within abstract station 2 and 3 respectively.

T=1 T=3T=2

Abstract Station 1 Abstract Station 2 Abstract Station 3

(a)

T=1 T=3T=2

Abstract Station 1 Abstract Station 2 Abstract Station 3

(b)
T=1 T=3T=2

Abstract Station 1 Abstract Station 2 Abstract Station 3

(c)

T=1 T=3T=2

Abstract Station 1 Abstract Station 2 Abstract Station 3

(d)

Figure 5: Routing solution in the abstract DRRP: (a) abstract station level routing solution, (b) routing so-
lution within abstract station 1, (c) routing solution within abstract station 2, and (d) routing solution within
abstract station 3.
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6.3.2 VEHICLE CAN VISIT ONE STATION WITHIN AN ABSTRACT STATION IN A SINGLE TIME STEP

Table (11) provides the optimisation model to compute a feasible solution for the original DRRP with the
assumption that a vehicle can only travel to one station in each time step. We solve the global MILP Solve-
DRRP() for the original DRRP provided in Table (4) with an additional set of constraints (27) to ensure that
a vehicle can only be present in a base station at any time step if the station belongs to the abstract station
where the vehicle is located in the abstract DRRP solution. Specifically, the decision variable zts,s′,v can only
be 1 if s ∈ s̃, s′ ∈ s̃′ and z̃ts̃,s̃′,v = 1. In the MILP of RetrieveDRRP(), we set the decision variables zts,s′,v to
0 if s ∈ s̃, s′ ∈ s̃′ and z̃ts̃,s̃′,v = 0. Thus, RetrieveDRRP() becomes easier to solve than SolveDRRP().

max
y+,y−,z

∑
t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ −

∑
t,v,s,s′

Ps,s′ · zts,s′,v

s.t. Constraints (2)- (9) hold and∑
s∈s̃,s′∈s̃′

zts,s′,v = z̃ts̃,s̃′,v, ∀s̃, s̃′, t, v (27)

Table 11: RETRIEVEDRRP()

6.4 Reasons for Improvement in Scalability

The scale of the optimisation models used for solving the abstract DRRP and deriving an original DRRP
solution from the abstract DRRP solution are reduced in comparison to the original optimisation model.
Hence, this abstraction method is able to substantially speed up the solution process. Specifically, here are
the reasons for reduction in runtime of the optimisation models:

• Reduction in the number of variables and constraints: The number of variables and constraints in
the optimisation model are significantly reduced. For instance, for a 300 station problem in the original
optimisation model of Table (4), there would be 90000 binary decision variables, z for each time step.
On the other hand, for an abstract DRRP with 50 abstract stations, there would only be 2500 z variables
for each time step.

• Relaxation: Another important reason for significant improvement in scalability is that the optimisa-
tion models for computing routing and repositioning solution for the abstract DRRP are the relaxations
of the optimisation model for the original DRRP. This is because constraints in the optimisation models
for the abstract DRRP are obtained by aggregating the constraints that are present in the optimisation
model for the original DRRP.

7. Experimental Setup
In this section, we describe the real and synthetic data sets that are used in the computational experiments, the
benchmark approaches that are implemented for the computational comparisons, and the simulation model
used to compute the comparison metrics.

Since our goal is to avoid people from going back to using private vehicles due to unavailability of bikes,
the key comparison metric is the total amount of lost demand. To ensure that the amount of lost demand is
reduced at no extra fuel cost to the operators, we also consider the total profit as a metric. The runtime is
primarily employed to measure scalability and whether we are able to get a high quality solution within a
reasonable amount of time.

406



DYNAMIC REPOSITIONING IN BIKE SHARING SYSTEM

7.1 Real and Synthetic Data Sets

We employ data sets of two leading bike sharing systems in US11, namely, Capital Bikeshare (Washington,
DC) and Hubway (Boston, MA), and the synthetic data sets are derived from these real-world data sets. The
data items contained in the bike sharing data sets are previously mentioned in Table (2). In addition to the data
items provided in the data sets, we collect data about the cost of fuel for vehicles12 from authentic sources.
It should be noted that we consider a significant overestimation of the costs to ensure our results are not too
sensitive to these values. These elements of real-world data sets and the data collected from the authentic
sources are used to populate the DRRP model.

As for the synthetic data sets, they are generated from the two real-world data sets as follows: (1) we take
a subset of the stations from the real-world data sets, (2) customer demand, station capacity, geographical
location of stations and initial distribution are drawn from the real-world data for the selected stations, and
(3) we take the same revenue and cost model discussed earlier from the real-world data sets.

7.2 Approaches

We employ the commercial linear optimisation solver CPLEX to solve linear programs and mixed integer
linear programs. We refer to the optimisation model of Table (4) as MILP. The dual decomposition method
for solving the MILP that is described in Section 5 is referred as LDD (Lagrangian dual decomposition).
Finally, we refer to the abstraction approach described in Section 6 as Abstraction. The overall approach
(LDD+Abstraction) is referred to as dynamic.

The first approach that is used as a benchmark for performance comparison is the static repositioning
approach (referred to as static in the graphs). This refers to the approach adopted by some of the bike sharing
systems where bikes are repositioned only at the end of the day. We compare our approach with this current
practice of not repositioning bikes during the day.

Through interactions with bike sharing operators, we understand that they typically employ myopic
heuristics to reposition idle bikes. They detect the congestion or starvation of bikes in a station using sensors
installed at the stations and reposition the bikes from base stations using myopic heuristics. To the best of
our knowledge, we are not aware of any research paper that formally presents heuristics to solve the DRRP
online. The method that can be employed online to reposition bikes can be adapted from the algorithm pro-
vided by Schuijbroek et al. (2017). This approach can be executed online with the assumption of negligible
movements of bikes by customers (refer to Appendix A for the details of the approach and the changes made
to ensure fair comparison). This approach is referred to as online.

7.3 Simulation Model

Similar to the work of Shu et al. (2013), we also evaluate the performance of relevant approaches by using
a simulation that is based on the past data. There are two key aspects of the simulation that are important
to note, namely, the impact of repositioning on transition dynamics of customers and the actual demand for
bikes.

7.3.1 IMPACT OF REPOSITIONING ON TRANSITION DYNAMICS OF CUSTOMERS

Repositioning changes the number of bikes available in stations at different time steps in comparison to
the observed data denoted by F. However, a reasonable assumption used for any configuration is that the
aggregated transition probabilities between stations that are observed in the data remain the same. This
assumption is also employed in previous work of Shu et al. (2013).

11. The data is taken from Capital Bikeshare [http://capitalbikeshare.com/system-data] and Hubway BSS
[http://hubwaydatachallenge.org/trip-history-data].

12. The mileage results in Table 2 of Fishman, Washington, and Haworth (2014) show that carrier vehicles in BSS consume 1 litre
of diesel for traveling approximately 12 kilometers. http://www.globalpetrolprices.com/diesel prices/#USA shows that the price of
diesel in January, 2017 is 0.67 USD per litre, but we overestimate it as 1.5 USD to include other operational costs.
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The customer demand observed in the data, F t,k
s,s′ , denotes the number of bikes booked from station s at

time step t and reached station s′ at time step t + k. Based on the customer demand observed in the data
set, this simulation generalises customer movements for a given number of bikes, d#,t

s present in a station s
at time step t13. Specifically, the actual movements of customers at each station are determined based on the
following two cases: (1) if the total arrival demand at a station is less than the number of bikes present in the
station, then all the customers are served, and (2) if total arrival demand at a station is higher than the number

of bikes present at the station, then the actual flow (denoted as xt,ks,s′ ) depends on the ratio
F t,k

s,s′∑
s̃,k F t,k

s,s̃

, i.e.,

xt,ks,s′ =

 F t,k
s,s′ if

∑
k,s̃ F

t,k
s,s̃ ≤ d#,t

s
F t,k

s,s′∑
k,s̃ F t,k

s,s̃

· d#,t
s Otherwise

 . (28)

We calculate the number of bikes present in a station at time step t + 1 (see Equation 29) as the sum of the
number of bikes left out in the station at time step t and the net incoming bikes in that time step.

d#,t+1
s = d#,t

s +
[∑

k,s̃

xt−k,ks̃,s −
∑
k,s′

xt,ks,s′

]
. (29)

7.3.2 ACTUAL DEMAND

We only know the satisfied demand from existing data sets. Specifically, when a base station becomes empty,
the unobserved lost demand is not captured in the data sets.

Previous works in inventory management have represented and verified the random arrival of customer
demand following a Poisson process. More importantly, earlier works in bike sharing (Kabra, Belavina, &
Girotra, 2015; Shu et al., 2013; George & Xia, 2011) have also represented the random arrival of customers
at each station and at each time step using a Poisson distribution and assumed that customers choose their
destination station with a certain probability. In a similar vein, we also represent the arrival of customers at a
base station in a time step using a Poisson distribution. Since we can only know about the satisfied demand
from the data sets, the mean of the Poisson distribution is the average served demand (outgoing flow) in that
time step. If f t,ks,s′ denotes the average number of bikes booked from station s at time step t and reached station
s′ at time step t+ k, then the total outgoing flow from station s at time step t is given by Ot

s =
∑

s′,k f
t,k
s,s′ .

Formally, a demand scenario at station s at time step t (denoted by Dt
s) is generated from a Poisson

distribution with a mean of Ot
s (i.e., Dt

s = Poisson(Ot
s)). Finally, the flow from station s to s′ at time step t

is calculated as the product between outgoing flow from station s and the probability of moving from s to s′

at time step t ( i.e., F t,k
s,s = Dt

s ·
ft,k

s,s′∑
k,s′ f

t,k

s,s′
).

7.4 Evaluation Methodology

We employ the following two general steps to evaluate our approach:

1. We compute repositioning and routing solution based on the DRRP tuple that is populated from the
training data set.

2. The computed solutions are then evaluated on a simulation using the test data set. That is to say,
transitions in the simulation follow the aggregate transition dynamics observed in testing data set where
the demand scenarios are generated from Poisson distribution. The evaluation is then aggregated over
these generated demand scenarios.

In cases where we do not have sufficient data, we calculate a solution based on the entire data set and we
evaluate our solution on various samples from the Poisson distribution with the mean computed from that
data set.
13. Note that since we are repositioning bikes, the actual number of bikes at stations will not be the same as the one observed in data.
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For the online benchmark approach of Schuijbroek et al. (2017), the next time step solution for moving
vehicles and bikes (recommended by the repositioning strategy) is executed using the current positions of
bikes and vehicles in the simulation based on the test data set.

For the static method, we employ the simulation to compute the flows of bikes in each time step when no
repositioning is done and use that flow information to calculate the expected profit and lost demand. Given
the aggregated flow F and the actual flow x, the revenue is computed as

∑
t,k,s,s′

[
Rt,k

s,s′ · x
t,k
s,s′

]
, while the lost

demand is computed as
∑

t,k,s,s′

[
F t,k
s,s′ − x

t,k
s,s′

]
.

8. Experimental Results
In this section, we verify the following claims14:

1. In terms of scalability, the LDD improves over the MILP and the use of Abstraction on top of the LDD
further improves the performance. In terms of solution quality, both the LDD and Abstraction obtain
near optimal solutions.

2. Our dynamic approach (LDD + Abstraction of MILP) improves upon the two benchmark approaches
(static and online) in terms of lost demand and profit.

3. Our approach remains robust with respect to changes in other input parameters such as the number of
vehicles and the unit cost for routing.

8.1 Utility of LDD and Abstraction

To validate the claim that the LDD and Abstraction both improve the original MILP, we provide three sets of
results. As the MILP with and without the LDD can only solve small problem instances, we provide these
results on the synthetic data sets generated from the Capital Bikeshare data set.

Runtime performance: First, we compare the runtime performance of the LDD (SOLVELDD()) with the
global MILP (SOLVEDRRP()) in Figure (6a). The X-axis denotes the scale of the problem where we varied
the number of stations from 5 to 50. The Y-axis denotes the total time taken to solve the problem in seconds
on a logarithmic scale. Except on small instances (e.g., 5-10 stations), the LDD outperforms the global MILP
with respect to runtime. More specifically, the global MILP was unable to finish within a cut-off time of 6
hours for any problem with more than 20 stations, while the LDD was able to obtain near optimal solutions
on problems with 50 stations in less than an hour.

Duality gap: In the second set of results, we demonstrate the convergence of the LDD to near optimal
solutions. The LDD achieves an optimal solution if the duality gap, i.e., the gap between primal and dual
solutions, becomes zero. Figure (6b) shows that the duality gap for the instance with 20 stations is only
1%. Figure (6c) and (6d) depict the duality gap for the real-world data set of Hubway (with 95 base stations
and grouped into 25 abstract stations) and of Capital Bikeshare (with 305 base stations and grouped into 50
abstract stations), respectively. For these larger problems we are able to obtain a solution with the duality gap
of less than 0.5%.

Effect of abstraction: Finally, we demonstrate the performance of the abstraction method in comparison
with the optimal solution of an instance with 30 base stations. We grouped these 30 base stations into 8
abstract stations. Then we run the LDD based optimisation on both the base station and abstraction station
problems. Table (12) shows the effect of the abstraction approach on the generated profit and runtime based
on five random scenarios of customer demand. With abstraction, while there is only a reduction of less than
0.3% in profit on average from the optimal solution, it gives a significant computational gain.

14. All the linear optimisation models were solved using IBM ILOG CPLEX Optimisation Studio V12.5 incorporated within python
code on a 3.2 GHz Intel Core i5 machine.

409



GHOSH, VARAKANTHAM, ADULYASAK & JAILLET

 1

 10

 100

 1000

 10000

 100000

 5  10  15  20  25  30  35  40  45  50

R
un

tim
e 

(s
ec

)

#Station

Global MIP
Using LDD

(a)

 1180

 1200

 1220

 1240

 1260

 0  50  100  150  200  250  300  350  400

Pr
ofi

t

#Iteration

Primal
Dual

Optimal

(b)

 6400

 6450

 6500

 6550

 6600

 6650

 6700

 0  20  40  60  80  100  120

Pr
ofi

t

#Iteration

Primal
Dual

(c)

 22800

 23000

 23200

 23400

 23600

 23800

 0  50  100  150  200  250  300  350

Pr
ofi

t

#Iteration

Primal
Dual

(d)

Figure 6: (a) Runtime comparison between the global MILP and LDD, (b) duality gap in the synthetic data
set with 20 stations, (c) duality gap in the Hubway data set, (d) duality gap in the Capital Bikeshare data set.

With abstraction Without abstraction

Instance Profit Runtime
(sec) Profit Runtime

(sec)
Profit loss for
abstraction

1 23580 51 23640 3840 0.25%
2 23627 106 23678 3540 0.21%
3 23610 57 23727 3120 0.5%
4 23613 49 23645 3150 0.13%
5 23519 45 23590 3119 0.30%

Average 23590 62 23656 3354 0.27%

Table 12: Effect of abstraction.

The key reason behind this negligible loss of demand when using the abstraction technique is the specific
demand patterns observed in the real-world data sets. As shown in the heat maps of Figure (4), the stations
that become empty in a particular time period are typically close to each other and hence can be rebalanced
within a time step. Since our abstraction is based on geographical proximity, it is ideally suited to handle
such situations.

However, the solution quality of our geographical proximity based abstraction mechanism deteriorates
if most of the abstract stations become empty at the same time. To demonstrate this situation, we generate
artificial demand scenarios where we readjust demand and have high demand for one random station in each
abstract station. Table (13) demonstrates the performance of our abstraction approach in comparison with the
optimal solution. Even in this small example scenario (with 30 stations) for these artificially crafted demand
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instances, we observe a higher reduction (more than 3.2% on average) in the profit due to the abstraction in
comparison with the case where we consider the real-world demand (Table 12).

With abstraction Without abstraction

Instance Profit Runtime
(sec) Profit Runtime

(sec)
Profit loss for
abstraction

1 11730 21 12092 2918 2.99%
2 11958 46 12314 3201 2.89%
3 11759 24 12114 3050 2.93%
4 11530 36 12060 1641 4.39%
5 11658 31 11997 1467 2.83%

Average 11727 32 12115 2455 3.21%

Table 13: Effect of abstraction on artificially crafted demand.

In this paper we show that our geographical proximity based abstraction mechanism significantly outper-
forms the existing benchmark approaches due to the specific demand patterns observed in both the real-world
data sets of our study. However, our solution approaches are complementary to any abstraction mechanism
that can be used to group base stations to reduce the size of the DRRP.

8.2 Comparison against Benchmarks

In this section, we provide the following key comparison results of our approach (dynamic) with the two
benchmarks (static and online):

1. Results with respect to profit and lost demand

2. Sensitivity results over different demand scenarios generated from a Poisson distribution

3. Sensitivity results with respect to additional unknown demand

4. Sensitivity results with respect to additional known demand

8.2.1 RESULTS WITH RESPECT TO PROFIT AND LOST DEMAND

We first provide the average results on the Hubway and Capital Bikeshare data sets for the static, online
and our dynamic approach. As indicated earlier, our key performance evaluation metric is the lost demand.
However, we also provide the performance comparison with respect to the overall profit to show that we can
reduce the lost demand without incurring extra cost to the operators. Hubway system consists of 95 active
stations and Capital Bikeshare system consists of 305 active stations. In our approach, we employ k-means
clustering to generate 25 and 50 abstract stations, respectively. Stations within an abstract station are typically
within a kilometer of each other for both data sets. For fairness in comparison, we allow a vehicle to visit
multiple stations in one time step for the online approach. This is because vehicles are allowed to visit all
the stations within an abstract station in one time step in our approach. In fact, we provide a reasonable
advantage for the online approach by allowing it to visit 5 stations (anywhere in the city) within one time
step15. Based on the information obtained from Schuijbroek et al. (2017), we employ 5 vehicles for the
experiments on Capital Bikeshare data set and 3 vehicles for the experiments on Hubway data set. We show
the results during the peak period and also for the entire day16. See Appendix B for the detailed results on
these data sets.

15. This allows for an average distance travelled in one time step with the online heuristic as 17.8 kilometers as opposed to 13.8
kilometers with our approach. Even with this advantage, we demonstrate that our approach performs better.

16. The planning horizon for our approach is 38 time steps (30 minute intervals during the working hours from 5AM-12AM) for the
entire day and 14 time steps for the peak period (30 minute intervals during the morning working hours from 5AM-12PM).
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Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over online

heuristic
Gain over static

repositioning
Gain over online

heuristic

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction
Hubway 3.47% 45.80% 3.02% 41.17% 9.16% 46.21% 7.15% 44.75%
Capital
Bikeshare 2.14% 22.33% 1.4% 9.9% 4.52% 26.38% 0.96% 5.11%

Table 14: Profit and lost demand comparison (Hubway and Capital Bikeshare data sets).

Table (14) shows the average percentage gain in profit and reduction in lost demand with our approach in
comparison to the benchmark approaches on the two real-world data sets. The performance gain in compari-
son with static repositioning is computed as follows:

Profit gain =
Profit using dynamic repositioning− Profit using static repositioning

Profit using static repositioning

Lost Demand gain =
Lost demand using static repositioning− Lost demand using dynamic repositioning

Lost demand using static repositioning

Based on the aggregate results, our approach (LDD + Abstraction) is always able to outperform both the static
and online repositioning solutions with respect to both the profit gain and lost demand. Over the entire day,
our approach reduces the lost demand in the Hubway data set by at least 45.80% and 41.17% in comparison
to the static and online approaches, respectively. For the Capital Bikeshare data set, we improve by 22.33%
and 9.9% in comparison to the static and online approaches, respectively. Similar results (slightly inferior)
were obtained when we considered only the peak hour as the planning period.
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Figure 7: Correlation of demand and supply: (a) static repositioning, (b) repositioning using online heuristic,
and (c) dynamic repositioning.

Lastly, to visualise the effect of repositioning, we draw the correlation between the actual demand and the
served demand over the entire planning horizon. Figure (7) shows the correlation between the actual demand
and the demand served by following the three approaches. Each point in the graphs corresponds to the values
of an actual demand and its corresponding served demand for all time steps and in all stations in the Hubway
data set. Therefore, it is better if more points are closer to the identity line (x = y). As can be noted, our
approach has significantly more points closer to the identity line than the two benchmarks and therefore, is
able to better match the supply of bikes with the demand for bikes.
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Figure 8: Sensitivity analysis (data set: Capital Bikeshare, 4 quarters of 2013): (a) profit comparison, and (b)
lost demand comparison.

8.2.2 SENSITIVITY RESULTS OVER DIFFERENT DEMAND SCENARIOS GENERATED FROM POISSON
DISTRIBUTION

We now demonstrate the sensitivity of our approach with respect to different demand scenarios. We cre-
ated ten demand scenarios for each of the weekdays from the underlying Poisson distribution with satisfied
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demand as the mean (refer to Section 7.3.2 for details). For each demand scenario, we calculate the profit
and lost demand for the benchmark approaches and our approach. Figure (8) shows the mean along with
error bars for profit and lost demand for the four quarters of 2013 of the Capital Bikeshare data set. The key
observations are as follows:

• Our approach (dynamic) is able to provide significantly better results with respect to reduction in lost
demand than the two benchmarks on almost all the cases.

• The only cases where the online approach performs better than our approach with respect to lost de-
mand is in quarters 1 and 4 (where the demand was significantly lower than in quarters 2 and 3) and
specifically on weekends. On weekends, there is higher variance and inconsistency in demand, so our
solution computed using the average demand is unable to adapt as well as the online approach.

• In terms of profit, while the difference is small, our approach is always better than the two benchmarks.

Therefore, even considering the variance, our approach provides a significant reduction in lost demand
compared to the two benchmarks.

8.2.3 SENSITIVITY RESULTS WITH RESPECT TO ADDITIONAL UNKNOWN DEMAND

For each day of the week, we evaluate our solution when demand scenarios are modified to include artificial
demand. We generate our solution by considering the mean of the historical trip data that does not consider
the additional artificial demand. This artificial demand is added to a station in a time step, if that station was
observed to be empty at that time interval in the data. Specifically, if a station s is observed to be empty at
time step t on one day, then α% of the mean served demand, F t

s is added to that station. The destination
station and booking period for the newly generated demand are chosen based on the distribution observed in
the historical data.

Gain over static repositioning Gain over online heuristic

α% Profit gain Lost demand
reduction Profit gain Lost demand

reduction
10 1.54% 23.86% 0.95% 15.73%
20 1.55% 23.78% 0.95% 15.06%
30 1.54% 23.45% 0.82% 13.97%
40 1.54% 22.78% 0.75% 12.77%
50 1.53% 22.34% 0.73% 11.89%
60 1.42% 20.81% 0.55% 9.83%
70 1.32% 19.97% 0.46% 8.73%
80 1.27% 18.76% 0.42% 7.78%
90 1.3% 18.37% 0.37% 6.75%

100 1.26% 16.54% 0.28% 4.8%

Table 15: Sensitivity analysis with respect to unknown increase in mean demand (data set: Capital Bikeshare).

In Table (15), we provide the comparison results between our approach, static repositioning and online
heuristic for one of the weekdays where we vary α from 10% to 100%. The most important result is that
even at 100% increase in demand at the empty stations, our dynamic approach performs better by at least 5%
in terms of reducing lost demand. Furthermore, the drop in performance as unknown demand increases is
gradual.
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8.2.4 SENSITIVITY RESULTS WITH RESPECT TO ADDITIONAL KNOWN DEMAND

Predicting unobserved lost demand is a challenging issue in many real-world planning problems including
retail planning. Many heuristic methods are mentioned in the literature (Kök & Fisher, 2007; Musalem, Oli-
vares, Bradlow, Terwiesch, & Corsten, 2010; Vulcano, Van Ryzin, & Ratliff, 2012) to predict the unobserved
lost demand. Our repositioning approach is not dependent on the method employed to predict mean demand.
So, we can always complement our approach with the best approach from the literature for predicting the
mean demand.

We could also apply simple heuristics to learn demand values over time. We can consider small incre-
ments in mean demand for those stations and time steps when they become empty. For example, if station X
typically becomes empty (say observed over a month) at a time step, we then consider the mean demand for
station X as 102% of the realised demand at that time step. Over time, if we still observe that the station be-
comes empty at that time step, then we consider a mean demand that is further 2% over the realised demand.
Such an approach over time will converge to the actual demand.

Furthermore, some bike sharing systems (e.g., Bixi in Montreal) are considering an operational enhance-
ment that will further alleviate the problem of identifying the actual demand. In this enhancement, if cus-
tomers encounter an empty or congested station, there is a provision for them to enter this information in the
system that is installed at each of the base stations (assuming there is an incentive for riders to provide their
information). With this minor operational enhancement, the accuracy of actual demand will increase signifi-
cantly and most importantly for this paper, our approach will benefit from higher accuracy on predicting the
exact demand values.

Gain over static repositioning Gain over online heuristic

α% Profit gain Lost demand
reduction Profit gain Lost demand

reduction
10 1.66% 29.69% 1.74% 27.44%
20 1.63% 30.09% 1.78% 28.94%
30 1.67% 28.24% 1.48% 22.75%
40 2.20% 34.26% 1.40% 23.33%
50 1.56% 24.57% 0.96% 16.38%
60 2.03% 32.32% 1.15% 22.03%
70 2.28% 32.61% 1.64% 25.41%
80 1.63% 25.61% 0.82% 16.64%
90 1.92% 27.64% 0.26% 11.52%

100 2.02% 22.78% 0.28% 7.30%

Table 16: Sensitivity analysis with respect to known increase in mean demand (data set: Capital Bikeshare).

In order to demonstrate generality, we now provide a detailed comparison between our solution, static
repositioning and online heuristic by assuming that the extra demand is known a priori using one of the
methods provided in the previous paragraphs. We employ the same mechanism to introduce extra artificial
demand using α parameter as described in Section 8.2.3. However, since the demand is known beforehand,
it is taken into consideration in our approach as well as in the online heuristic to compute repositioning and
routing strategies. In Table (16), we provide the comparison results with respect to profit and lost demand
while α is varied from 10% to 100%. As clearly shown in Table (16), our approach provides better results for
all values of α in comparison to the static and online approaches.
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8.3 Performance Comparisons with Changes in Parameters

The performance of the repositioning solution is reliant upon input parameters such as the number of vehicles,
unit cost for routing and duration of each time step. In this section, we describe the effect of those input
parameters on key performance metrics such as profit earned by the operator and the lost demand.

Effect of the number of vehicles: To understand the effect of the number of vehicles we compare the
performance of the three approaches (static, online and dynamic) with different numbers of carrier vehicles.
Figure (9) shows the analysis of profit and lost demand on a synthetic data set with 20 stations. Figure (9a)
shows that the profit obtained by using our approach increases monotonically as we increase the number of
vehicles. Although the profit gain of our approach in comparison to the online approach fluctuates due to
the myopic nature of the online heuristic, the gain is always positive. Figure (9b) shows a similar pattern in
the performance with respect to lost demand. Lost demand reduces monotonically for our approach as the
number of vehicles is increased and the gain in reducing lost demand for our approach over both the static
and the online approach is always positive.
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Figure 9: Effect of the number of vehicles on (a) profit, and (b) lost demand.

Effect of routing cost: Routing cost, P is an important parameter in our optimisation model. While some
bike sharing operators outsource the repositioning tasks to other agencies that charge a certain amount for
moving individual bikes, most BSS operators use their own vehicles and the cost of repositioning is equivalent
to the routing cost for the vehicles. In this section, we provide a sensitivity analysis with respect to the
fuel price (i.e., dollar cost per 12 kilometers of routing which is the average mileage of vehicles as shown
by Fishman et al., 2014) on a synthetic data set with 20 stations. Figure (10) plots the profit and lost demand
when we vary the unit fuel cost from 1 dollar to 4 dollars on the X-axis. As expected, Figure (10a) shows that
the profit earned by the operator decreases as we increase the unit cost of routing. Furthermore, Figure (10b)
depicts that the lost demand increases by a small amount if the unit cost for routing is increased.

Effect of duration of time step: We now provide an analysis on the profit and lost demand, when the
duration of time step is varied. Figure (11) plots the performance metrics when we vary the duration of time
step from 15 minutes to one hour on the X-axis. Figure (11a) shows that the profit for the operator reduces
monotonically as we increase the duration of time step. Increasing the duration of time step entails vehicles
can visit and rebalance a fewer number of base stations and therefore, produces lower profit for the operator.
Figure (11b) shows that the lost demand increases significantly if we increase the duration of time step. Most
importantly, performance gain of our approach over the static repositioning and online heuristic increases
monotonically as we reduce the duration of time step. This can be attributed to our dynamic approach
making better use of the extra repositioning opportunities (due to shorter duration) and promptly react to
future demand changes.

On the other hand, reducing the duration of time step notably increases the runtime. For example, the
runtime of the problems with 15 minutes of time step is approximately 2 hours while the problems with
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Figure 10: Effect of routing cost on (a) profit, and (b) lost demand.
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Figure 11: Effect of the duration of time step on (a) profit, and (b) lost demand.

30 minutes of time step are solved within 30 minutes. So, there is a clear trade-off between utility and
runtime in deciding the right duration of time step. Although the performance in terms of profit and lost
demand decreases by a small amount for 30 minutes of time step (over 15 minutes of time step), it provides a
significant computational gain and is particularly helpful when solving large problems. Therefore, we choose
30 minute as the default setting for the duration of time step.

9. Model Extensions and Supplementary Analysis
In this section, we discuss ways of relaxing some of the assumptions made in the generic formulation of
Table (4). We further provide a discussion on potential extensions.

9.1 Accounting for Physical Limitations in Vehicle Movement

In the MILP of Table (4) we assume that a vehicle can travel between any pair of stations within one time
step without considering their relative distance. For the two data sets we considered, the average distance
between any two stations is approximately 2 miles for Hubway and 5 miles for Capital Bikeshare17, so our
assumption of being able to travel within 30 minutes is reasonable and conservative (that accounts for the

17. The maximum distance between any two stations was 18 miles and 90th percentile of the distances between any two stations are
within 10 miles for both the data sets. So, even in the worst case any two stations could be covered within 30 minutes. Furthermore,
our solutions (rather any good solution) would not recommend a carrier vehicle to travel the maximum distance to shift the bikes.
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time to load and unload bikes). However, in other settings, it may not be the case and there might be multiple
time steps needed to cover certain stations.

In this segment, we provide a minor update to the previous formulation which is able to account for
physical limitations in vehicle movement. We introduce a new set, Bt̂s to capture the physical reachability of
stations in a certain number of time steps. Specifically, Bt̂s denotes the set of stations which can be reached
within t̂ time steps from station s. The modified optimisation model is provided in Table (17). Amongst the
constraints that consider vehicle movements in the original formulation of Table (4), the ones that must be
modified due to physical limitations of vehicle movements are the vehicle flow conservation constraints (5).
Essentially, the change in updated constraints (30) reflects the fact that we only need to consider vehicle
transitions from stations that are reachable in a given number of time steps (and not others).

max
y+,y−,z

∑
t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ −

∑
t,v,s,s′

Ps,s′ · zts,s′,v

s.t. Constraints (2)- (4) hold∑
k∈S

zts,k,v −
∑
t̂

∑
k∈Bt̂

s

zt−t̂k,s,v = σt
v,s, ∀s, t, v (30)

Constraints (6)- (9) hold

Table 17: RESTRICTEDDRRP()

Accounting for physical limitations potentially entails finer division of time steps and hence the number
of time steps increases. However, the number of transitions between stations at any one time step is reduced.
Therefore, as we show below, accounting for physical limitations does not have a significant effect on the
scalability of our approach. Since the inherent assumption of reachability is different, we primarily compare
the runtimes in Table (18) to verify the claim on scalability.

Runtime with physical limitations Runtime without physical limitations
Mon 5120 4880
Tue 5183 3951
Wed 4136 4966
Thu 5245 4980
Fri 5127 3992

Average 4962 4554

Table 18: Effect of physical limitations in vehicle movements on runtime (in seconds).

We consider the Hubway data set to run the scalability experiments. When considering physical limita-
tions, we assume that all the stations can be reached within 3 time steps at the maximum and the number of
stations reachable in one time step from any given station is decided based on their relative distance. When
considering no physical limitations, we assume that all stations are reachable from any other station in one
time step. We observe that the approach considering physical limitations usually takes longer, however, the
difference is not significant and consistent. On average the approach considering physical limitations takes
10% more time to find a solution.

Another simple mechanism that can be adopted to deal with physical limitations without making changes
to our approach is based on clustering of stations. We can cluster stations that can all be reached in one time
step into one zone and assign a set of vehicles to that zone. This way, we can apply our method directly to
each zone.
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A minor modification to the MILP of Table (17) can be used to represent vehicles taking different times
to move between stations at different times of the day. For instance, during peak hours, a vehicle might take
longer to move between stations in the city. To model such scenario, we need to replace the set B t̂

s with set
B t̂

t,s which contains all the stations that can be reached within t̂ time steps if a vehicle starts from station s
at time step t. The only modification required in the optimisation model is in the constraints (30). This is to
compute the inflow of vehicles at station s at time step t by considering all the stations from where a vehicle
should take t̂ time steps to reach station s if it has started its journey at time step t − t̂ (i.e., all the elements
of the set B t̂

t−t̂,s).

9.2 Different Time Scales for Vehicle and Bike Movements

min
y+,y−,z

−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
t̂,v,s,s′

Ps,s′ · zt̂s,s′,v (31)

s.t. d#,t
s +

∑
k,ŝ

xt−k,k
ŝ,s −

∑
k,s′

xt,ks,s′ +

m.(t+1)∑
t̂=m.(t)

∑
v

(y−,t̂
s,v − y+,t̂

s,v ) = d#,t+1
s , ∀t, s (32)

xt,ks,s′ ≤ d
#,t
s ·

F t,k
s,s′∑

k,ŝ F
t,k
s,ŝ

, ∀t, k, s, s′ (33)

d∗,t̂v +
∑
s∈S

[(y+,t̂
s,v − y−,t̂

s,v )] = d∗,t̂+1
v , ∀t̂, v (34)

∑
k∈S

zt̂s,k,v −
∑
k∈S

zt̂−1
k,s,v = σt̂

v,s, ∀t̂, s, v (35)

∑
j∈S,v∈V

zt̂s,j,v ≤ 1, ∀t̂, s (36)

y+,t̂
s,v + y−,t̂

s,v ≤ C∗v ·
∑
i

zt̂s,i,v, ∀t̂, s, v (37)

0 ≤ xt,ks,s′ ≤ F
t,k
s,s′ , 0 ≤ d

#,t
s ≤ C#

s , 0 ≤ y+,t̂
s,v , y

−,t̂
s,v ≤ C∗v , 0 ≤ d∗,t̂v ≤ C∗v (38)

zt̂i,j,v ∈ {0, 1} (39)

Table 19: SOLVEDRRPDIFFTIMESCALES()

Our original formulation in Table (4) assumes that the time scale for customer movements of bikes and
vehicle movements is the same. In practice, a vehicle can reposition bikes from multiple stations in each
time step. Therefore, we now provide a general formulation in Table (19), where the bikes and vehicles are
operating on different time scales. Except for the two different time scales where a vehicle is assumed to
travel m stations at each time step (i.e., t = m · t̂), the structure of the formulation is similar to the one in
Table (4). Therefore, the enhancements provided with respect to decomposition and abstraction are applicable
in similar ways. We further note that the opposite case where the time scale of the movements of bikes is
smaller than the one for the vehicles can basically be solved by our original formulation by aggregating the
customer incoming and outgoing flows of bikes over the vehicle time scale. This is due to the fact that no
rebalancing can be made during that interval.

9.3 Approximate Customer Flow Dynamics in Solution Computation

Since we maximise profit, we can identify boundary cases where bikes are not rented at certain time steps
even though demand is present. Such cases can arise in our solution to save bikes for a later time step when it
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is possible to get higher profit. However, they do not appear in our evaluation because we have a data-driven
approach where we evaluate on a test data set (that is different from training data set). Therefore, accounting
for real dynamics in training data set is not always necessary. Additionally, accounting for exact dynamics
increases the computational complexity of the solution approach significantly. In our experimental results,
we show that even with approximate dynamics, we are able to provide significant improvements over current
practice.

To capture real dynamics, we would have to introduce new set of constraints (refer to constraints (40))
that ensure total outflow of bikes from station s at time step t should be equal to the minimum of total arrival
demand and the number of bikes present at source station. But constraints (40) are quadratic in nature and
our MILP becomes a higher order conic program.∑

k,s′

xt,ks,s′ = min(d#,t
s ,

∑
k,s′

F t,k
s,s′), ∀t, s (40)

Apart from being quadratic, as mentioned by Shu et al. (2013), constraints (40) can only be the sufficient
condition to handle the real dynamic of BSSs if stations have unlimited bike docking capacity. Because of
these difficulties, we focus on representing bike flow dynamics approximately in our optimisation model.

9.4 Offline Solution, Online Execution

Note that when executing the repositioning solution computed offline, the operator may find that the state of
the system is different from what it was assumed to be, so the plan may not be feasible. Furthermore, this
infeasibility reflects on other stations as well. For instance, the number of bikes left in the vehicle is smaller
or larger than planned. We employ online modifications to deal with such situations at execution time: (1)
the number of bike pickup at any time step is set as the minimum value between the number of empty slots
in vehicle, the number of bikes present in the station and the number of planned pickup, and (2) the number
of drop-offs at any time step is set as the minimum value between the number of bikes in the vehicle, the
number of empty docks in the station and the number of planned drop-off at that time step.

As demonstrated in the sensitivity analysis results, even with such modifications to solution at execution
time, our solutions are still able to provide non-trivial improvements in terms of lost demand and profit over
the benchmark approaches. This is because the pattern of demand is consistent when compared over similar
days (i.e., Monday pattern with another Mondays) and does not have a huge variance except on weekends.
Due to this reason, there is no cascade effect when we make local changes to our solution.

9.5 Objective

The objective employed in SOLVEDRRP() represents a trade-off between two objectives, namely, maximis-
ing serviced demand and minimising routing cost. We combine these two objectives based on their dollar
value. Specifically, we use a revenue model derived from the model employed by the real system to calculate
the dollar value of serviced demand and a cost model derived from prevailing fuel costs to calculate the dollar
value of routing cost. It should be noted that this is just one way of combining the two components and there
can be other ways of combining the two components. In this paper, we focus on this one combination of
the two objectives. As shown in the experimental results, this way of combining the two components signifi-
cantly improves the serviced demand and also the combined profit of the two components. In the future, we
plan on exploring the Pareto-front of these two objectives.

9.6 Labor Cost

There are two levels of decision making involved in long-term and large facility investments such as bike
sharing systems:

• Strategic level: capital and labor decisions, i.e., how many vehicles, bikes, etc. to buy and how many
permanent employees to hire?
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• Operational level: day-to-day decisions associated with routing of vehicles and repositioning of bikes,
i.e., how many bikes to reposition, from where and how?

Strategic level decisions consider long-term profits and typically do not change on a daily basis. Operational
level decisions change on a daily basis and are the key focus of this paper. We provide a quick example to
demonstrate that long term reasoning (and not day-to-day reasoning) with respect to labor costs is a better
option. The US Department of Labor18 provides hourly and yearly salaries for drivers operating light trucks or
other delivery services in US. If we consider that a driver is hired for 6 hours (the time required to reposition
bikes at the end of the day), the median cost would be 84. However, if the operator hired a driver for a
year, the median salary for one day is just 80 (=29170/365). A similar result based on real statistics is
available for capital costs (e.g., vehicles). This example entails that dynamic repositioning throughout the
day or repositioning at the end of day would have similar labor costs. Also, since labor/capital costs would be
constant in the optimisation model of Table (4), they would not alter the results corresponding to lost demand.
We also have a buffer on the fuel cost to account for any other costs pertaining to day-to-day operations.

9.7 Operational Enhancement to Our Abstraction Approach

Recent bike sharing systems (e.g., Citibike in New York City) have introduced the concept of bike-trailers
(O’Mahony & Shmoys, 2015) that can reposition a small number of bikes to nearby stations. This operational
enhancement can significantly improve the performance of our geographical proximity based abstraction
scheme. As the bike-trailers are only used to match the need of nearby producer and consumer stations, they
can be used effectively to balance all the base stations within an abstract station. Essentially, larger vehicles
are used to rebalance the system at the level of abstract stations while bike-trailers can be used to rebalance
within each abstract station.

10. Conclusion
We consider the problem of dynamically repositioning bikes to improve their availability and to reduce the
usage of private vehicles. The general insight that we introduce in this paper is that, while performing repo-
sitioning, it is useful to consider demand surges and dips during the day. To that end, we use a mixed integer
linear programming approach that employs Lagrangian dual decomposition and abstraction mechanisms to
provide: (1) a near optimal solution for the dynamic repositioning of idle bikes in conjunction with the rout-
ing solution for vehicles during the day, and (2) a scalable solution for the real-world large scale bike sharing
systems. The empirical results on multiple real and synthetic data sets show that our dynamic repositioning
approach is not only able to achieve the original goal of reducing lost demand, but is also able to improve
profit for the bike sharing system. In future, this work can be extended with a robust optimisation technique
which can account for all the realisations of different demand scenarios.
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Appendix A. Online Approach Based on the Model of Schuijbroek et al. (2017)
In this section, we provide the details of the model used by Schuijbroek et al. (2017) and also how we have
adapted the model to solve the problem in our study. The primary goal of Schuijbroek et al. (2017) is to

18. http://www.bls.gov/oes/current/oes533033.htm provides the information of labor cost in US.
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minimise the operational cost for the routing of vehicles such that the whole system can be balanced. The
key aspects of their approach are as follows:

• Customer movements at the time of rebalancing operation are negligible.

• Vehicles can visit all the stations to rebalance the whole system within the rebalancing period.

• Each vehicle is assigned to a group of base stations. The entire system is divided into a set of cluster
(the number of clusters is equals to the number of vehicles), each of which is allocated with a vehicle.
Thus, a vehicle is only responsible for the repositioning of bikes within a particular cluster and it can
visit all the base stations of that cluster within the rebalancing period.

With minor changes we are able to adapt their approach to the dynamic repositioning context. Intuitively, we
make changes corresponding to the first two points above and leave the rest of the approach as it is:

• Because of the dynamism and significant customer movements during the rebalancing period, the de-
mand model assumed by Schuijbroek et al. (2017) is not valid in our context. Because of the different
demand model assumptions, their approach to compute the inventory level is not applicable for solv-
ing the DRRP. However, we figure out the best inventory levels (number of required bikes at stations)
through experimentation. More specific details will be mentioned later.

• Since the assumption of visiting all stations to rebalance in one time step is not reasonable, we set
a maximum number of stations that can be rebalanced in one time step. Specifically, we set it to 5
stations (any 5 stations can be visited in one time step) and this corresponds to an average distance
travelled by a vehicle in one time step to be approximately 3.4 kilometers (which is slightly above the
distance travelled with our approach which is around 2.6 kilometers).

min Ĥ (41)

s.t.
∑
v∈V

zi,v = 1, ∀i ∈ {S \ S+} (42)

∑
v∈V

zi,v ≤ 1, ∀i ∈ S+ (43)

q0v +
∑
i∈S

s0i zi,v ≥
∑
i∈S

smin
i zi,v, ∀v ∈ V (44)

− (C∗v − q0v) +
∑
i∈S

s0i zi,v ≤
∑
i∈S

smax
i zi,v, ∀v ∈ V (45)

ĥv ≥
∑
j∈S

di,j(zi,v + zj,v − 1), ∀s ∈ S, v ∈ V (46)

ĥv ≥ Ĥ, ∀v ∈ V (47)

zi,v ∈ {0, 1}, ĥv ≥ 0, Ĥ ≥ 0 (48)

Table 20: MAXSPS-BASED-CLUSTERING(s0, drrp)

We now describe the details of the online heuristic approach. To generate the cluster of stations for each
vehicle, a maximum spanning star (MAXSPS) based approximation technique is employed. The idea is to
minimise the maximum expected routing cost Ĥ (delineated in Expression 41) such that the service level
requirement for each station can be satisfied. An optimisation problem (described in Table 20) is solved to
discover the cluster of stations for each vehicle. Let, zi,v be a binary decision variable that is set to 1 if
station i ∈ S is assigned to the cluster of vehicle v ∈ V . Let, S+ denotes the set of self-sufficient stations
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and ĥv denotes the routing cost for vehicle v. Constraints (42)-(43) ensure that insufficient stations (S \ S+)
must be visited by vehicles while sufficient stations can be visited if required. Constraints (44)-(45) ensure
that each cluster contains enough bikes such that service level requirement can be satisfied for each station.
Constraints (46) estimate the lower bound on the routing cost for the resulting assignment and constraints (47)
enforce that the objective value of makespan is equivalent to maxv ĥv .

minH + w
(∑

i

δ+i +
∑
i

δ−i
)

(49)

s.t. s0i +
∑
t,v

(y−,t
i,v − y

+,t
i,v ) ≥ smin

i − δ+i , ∀i (50)

s0i +
∑
t,v

(y−,t
i,v − y

+,t
i,v ) ≤ smax

i + δ−i , ∀i (51)

∑
j

zti,j,v −
∑
j

zt−1
j,i,v = σt

v,i, ∀i, t, v (52)

∑
t,j /∈Gv

zti,j,v = 0, ∀i, v (53)

y+,t
i,v + y−,t

i,v ≤ C
∗
v ·
∑
j

zti,j,v, ∀i, t, v (54)

d∗,tv +
∑
i

(y+,t
i,v − y

−,t
i,v ) = d∗,t+1

v , ∀t, v (55)

H ≥
∑
i,j,t

Pi,j · zti,j,v, ∀v (56)

s0i +
∑
t,v

(y−,t
i,v − y

+,t
i,v ) ≥ 0, ∀i (57)

s0i +
∑
t,v

(y−,t
i,v − y

+,t
i,v ) ≤ C#

i , ∀i (58)

0 ≤ y+,t
i,v , y

−,t
i,v ≤ C

∗
v , 0 ≤ d∗,tv ≤ C∗v , H, δ+i , δ

−
i ≥ 0, zti,j,v ∈ {0, 1} (59)

Table 21: SOLVEONLINE(s0, drrp)

Table (21) provides the MILP formulation for the online heuristic approach that is used in each time step
to generate a repositioning solution. As a vehicle can visit multiple stations within one time step, the time
indicators are used in SOLVEONLINE() to represent the sequence of moves of all the vehicles. The objective
function (49) is to minimise the maximum routing cost for all the vehicles. As a vehicle cannot visit all the
stations within the rebalancing period, we add additional slack variables δ+, δ− in the objective to ensure that
maximum number of stations are balanced. w represents the unit penalty for deviating from the minimum and
maximum number of bikes required at each station and we set it to 1 in our experiments. As the goal of the
MILP is to minimise the routing cost as well as the expected lost demand, the approach is comparable to our
approach. s0i is the initial distribution of bikes at station i in that time step. smin

i , smax
i represent the lower

and upper bounds, respectively, on the number of bikes required at station i. Let, F t
i is the expected demand

at station i in the time step t, then smin
i , smax

i are determined as (1− ε)F t
i and (1+ ε)F t

i , respectively, where
ε is the tolerance level19. A vehicle v is allocated to the cluster Gv .

Constraints (50) ensure that each station has at least the minimum required bikes after the repositioning.
As all the stations cannot be balanced within one time step, the slack variable δ+ is added in these constraints
to avoid the infeasibility of the MILP. Constraints (51) ensure that the number of bikes at each station does not
exceed the maximum required number of bikes after the repositioning and the slack variable δ− is added to

19. We take the value of ε as 10% in the experiment.
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Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over online

heuristic
Gain over static

repositioning
Gain over online

heuristic

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction
Mon 2.47% 24.53% 2.41% 22.86% 8.08% 43.56% 7.15% 37.41%
Tue 3.62% 35.15% 4.32% 36.87% 13.01% 55.79% 11.17% 52.27%
Wed 3.17% 30.13% 3.20% 29.22% 12.30% 53.76% 9.43% 48.05%
Thu 4.03% 36.93% 3.92% 35.89% 13.32% 52.56% 9.26% 45.16%
Fri 5.63% 50.00% 5.08% 47.06% 16.15% 67.78% 12.22% 61.33%
Sat 2.20% 69.89% 1.18% 58.21% 0.70% 25.00% 0.63% 35.71%
Sun 3.15% 74.00% 1.00% 58.06% 0.53% 25.00% 0.21% 33.33%

Mean 3.47% 45.80% 3.02% 41.17% 9.16% 46.21% 7.15% 44.75%

Table 22: Profit and lost demand comparison (data set: Hubway, 3rd quarter of 2012).

these constraints to avoid the above mentioned difficulties. Constraints (52) enforce that the flows of vehicles
in and out of stations are preserved. Constraints (53) ensure that vehicle v can only visit stations within the
cluster Gv . Constraints (54) ensure that the flows of bikes in and out of vehicles are preserved at the time of
repositioning. Constraints (55) enforce that a vehicle can only pick up or drop off bikes at a station if it is
present at that station. Constraints (56) ensure that the variable H in the objective is greater than the routing
cost for each vehicle or alternatively assure that we minimise the maximum routing cost of the vehicles.
Constraints (57)-(58) ensure that the station capacity is not exceeded while repositioning the bikes. Lastly,
constraints (59) enforce that the vehicle capacity is not exceeded when repositioning bikes.

In each time step, given the distribution of bikes, we find the repositioning solution by solving the MILP
provided in Table (21). After the repositioning, we update the number of bikes in each station and simulate
the flows of bikes according to customer demand. Once we determine the flows of bikes, we can compute the
distribution of bikes in each station for the next time step and this information is used to execute the MILP of
Table (21) for the next time step. The process iterates until we reach the last time step.

Appendix B. Experimental Results
In this section, we present the detailed experimental results corresponding to the average results provided in
Section 8.2.1. Specifically, we provide quarterly results of the percentage gain in profit and the percentage
reduction in lost demand in comparison with the two benchmarks (static repositioning and online heuristic
approach) for the Hubway and Capital Bikeshare data sets.

We begin with the results on the real-world data set of Hubway. Hubway BSS comprises with 95 base
stations and we group them into 25 abstract stations. We employ 3 vehicles (courtesy: Schuijbroek et al.,
2017) for this experiment. We only have the proper trip history data for third quarter of 2012, from which we
compute the average demand for individual weekdays.

Table (22) provides the comparison results (on profit and lost demand) between our approach and the
two benchmark approaches. Our approach is able to gain 3.5% in profit on average while the lost demand is
reduced by an average of 45% over the practice of no repositioning during the day. In comparison with online
heuristic, our approach is able to reduce the lost demand by an average of 41%, while the profit is increased
by 3% on average. In the peak hours, our approach reduces the lost demand by an average of 46% and 44%
over the static repositioning and online heuristic approach respectively.

We consider the trip history data of four quarters of 2013 for Capital Bikeshare and for each quarter
we have done the same set of experiments. Table (23) shows that for the first quarter of data, our dynamic
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approach is able to outperform static repositioning during the peak time as well as during the day, with respect
to both the profit gain and the reduction in lost demand. We reduce the lost demand by an average of 20%, a
significant improvement over the static repositioning. As expected, for all of these instances, the percentage
gain in profit in the peak hours is much higher because most of the lost demand occur in the peak hours.
Although the online heuristic performs well in the peak hours, it fails to provide a good quality solution
when we consider a long planning horizon (38 time step). In case of long planning horizon, our approach
outperforms the online heuristic for all the weekdays both in terms of profit gain and lost demand reduction.

Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over online

heuristic
Gain over static

repositioning
Gain over online

heuristic

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction
Mon 1.92% 20.61% 0.51% 5.43% 5.01% 29.07% -0.74% -2.81%
Tue 2.14% 19.82% -0.18% -0.46% 4.58% 23.08% -4.31% -20.19%
Wed 3.11% 24.59% -0.11% 2.97% 8.89% 34.75% 0.39% 5.38%
Thu 3.55% 28.62% 5.28% 22.92% 7.17% 31.03% 2.18% 12.16%
Fri 3.34% 28.31% 3.39% 15.26% 7.56% 31.69% 2.51% 9.42%
Sat 0.04% 12.06% -1.74% -19.86% -0.34% 12.15% -2.5% -10.59%
Sun 0.18% 9.44% 0.07% -0.39% -1.46% 3.33% 0.61% 13.86%

Mean 2.04% 20.49% 1.03% 3.70% 4.49% 23.59% -0.27% 1.03%

Table 23: Profit and lost demand comparison (data set: Capital Bikeshare, 1st quarter of 2013).

Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over online

heuristic
Gain over static

repositioning
Gain over online

heuristic

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction
Mon 2.51% 27.1% 1.83% 18.76% 5.13% 32.84% 1.3% 9.57%
Tue 3.02% 26.44% 1.48% 15.33% 6.79% 28.72% 1.89% 8.84%
Wed 2.67% 22.09% 1.88% 14.31% 5.19% 21.83% 0.93% 3.46%
Thu 3.98% 32.45% 2.98% 24.02% 9.4% 38.19% 5.72% 24.51%
Fri 2.62% 30.76% 2.24% 22.75% 4.25% 27.41% 0.02% 0%
Sat 1.09% 16.52% -0.23% -3.72% 1.95% 28.08% -0.93% -8.96%
Sun 1.88% 25.65% 1.11% 10.96% 3.72% 40.2% 3.1% 20.78%

Mean 2.54% 25.86% 1.61% 14.63% 5.20% 31.04% 1.72% 8.31%

Table 24: Profit and lost demand comparison (data set: Capital Bikeshare, 2nd quarter of 2013).

Table (24) shows the percentage gain in profit and the percentage reduction in lost demand in comparison
with the two benchmarks for the second quarter. Our approach is able to reduce the lost demand in all the
cases by at least 16%, while the profit is improved by an average of 2.5% over the static repositioning. Our
approach always almost outperforms the online heuristic also. We are able to reduce the lost demand by an
average of 10%, while the profit is improved by an average of 1.5% in comparison with the online heuristic.
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Table (25) shows the comparison with the two benchmarks for the third quarter. It is the busiest quarter
in the year. For this quarter, our approach is able to reduce the lost demand by an average of 20%, while
the profit is improved by an average of 3% over the static repositioning. Our approach also always performs
better than the online heuristic for this quarter. Our approach is able to reduce the lost demand by an average
of 13%, while the profit is improved by an average of 2% over the online heuristic. Moreover, these results
show the strength of our approach in the presence of high customer demand.

Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over online

heuristic
Gain over static

repositioning
Gain over online

heuristic

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction
Mon 2.22% 20.81% 1.17% 9.62% 5.72% 27.11% 2.66% 10.2%
Tue 3.29% 25.79% 2.49% 18.01% 7.13% 29.45% 0.91% 5.79%
Wed 3.62% 28.06% 2.86% 21.29% 8.37% 34.59% 4.6% 21.43%
Thu 3.09% 30.58% 2.46% 23.05% 7.31% 35.89% 4% 21.1%
Fri 1.98% 26.69% 1.18% 13.45% 3.85% 26.43% 1.02% 2.97%
Sat 2.52% 31.18% 1.87% 17.25% 4.5% 49% 2.27% 21.12%
Sun 1.58% 26.95% 0.7% 8.54% 4.07% 40.38% 1.82% 14.59%

Mean 2.61% 27.15% 1.82% 15.89% 5.85% 34.69% 2.47% 13.89%

Table 25: Profit and lost demand comparison (data set: Capital Bikeshare, 3rd quarter of 2013).

Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over online

heuristic
Gain over static

repositioning
Gain over online

heuristic

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction

Profit
gain

Lost
demand

reduction
Mon 1.58% 15.82% 1.46% 12.86% 3.11% 19.32% 1.52% 9.09%
Tue 0.75% 12.96% 1.09% 3.75% 2.73% 19.4% 0.3% 2.14%
Wed 3.3% 25.53% 3.53% 23.38% 6.82% 29.37% 3.96% 17.12%
Thu 1.67% 16.48% 0.58% 3.99% 4.36% 22.49% -1.27% -5.97%
Fri 0.88% 15.98% 0.73% 1.85% 2.18% 19.28% -1.92% -6.08%
Sat 1.19% 12.48% 0.31% -8.07% 0.26% 6.71% -0.93% -18.8%
Sun 0.29% 11.51% -0.4% -0.62% -1.62% -3.15% -2.12% -16.96%

Mean 1.38% 15.82% 1.04% 5.31% 2.55% 16.20% -0.07% -2.78%

Table 26: Profit and lost demand comparison (data set: Capital Bikeshare, 4th quarter of 2013).

Table (26) shows the percentage gain in profit and the percentage reduction in lost demand in comparison
with the two benchmarks for the last quarter. For this data set, our approach reduces the lost demand by at
least 12% over the static repositioning, while in comparison with the online heuristic our approach reduces
the lost demand by an average of 5%. For all of these quarters, the percentage gain in profit in the peak hours
is almost double because most of the lost demand occur during this period.
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