
Journal of Artificial Intelligence Research 58 (2017) 453-521 Submitted 7/16; published 3/17

New Canonical Representations by Augmenting OBDDs
with Conjunctive Decomposition

Yong Lai laiy@jlu.edu.cn
College of Computer Science and Technology,
Jilin University, Changchun, 130012, P.R. China

Dayou Liu dyliu@jlu.edu.cn
Key Laboratory of Symbolic Computation and Knowledge Engineering
of Ministry of Education, Changchun, 130012, P.R. China

Minghao Yin ymh@nenu.edu.cn

College of Computer Science and Information Technology,

Northeast Normal University, Changchun, 130117, P. R. China

Abstract

We identify two families of canonical knowledge compilation languages. Both families
augment ROBDD with conjunctive decomposition bounded by an integer i ranging from
0 to ∞. In the former, the decomposition is finest and the decision respects a chain C
of variables, while both the decomposition and decision of the latter respect a tree T of
variables. In particular, these two families cover three existing languages ROBDD, ROBDD
with as many implied literals as possible, and AND/OR BDD. We demonstrate that each
language in the first family is complete, while each one in the second family is incomplete
with expressivity that does not decrease with incremental i. We also demonstrate that
the succinctness does not decrease from the i-th language in the second family to the i-th
language in the first family, and then to the (i+ 1)-th language in the first family. For the
operating efficiency, on the one hand, we show that the two families of languages support a
rich class of tractable logical operations, and particularly the tractability of each language
in the second family is not less than that of ROBDD; and on the other hand, we introduce
a new time efficiency criterion called rapidity which reflects the idea that exponential
operations may be preferable if the language can be exponentially more succinct, and we
demonstrate that the rapidity of each operation does not decrease from the i-th language
in the second family to the i-th language in the first family, and then to the (i + 1)-th
language in the first family. Furthermore, we develop a compiler for the last language in
the first family (i = ∞). Empirical results show that the compiler significantly advances
the compiling efficiency of canonical representations. In fact, its compiling efficiency is
comparable with that of the state-of-the-art compilers of non-canonical representations.
We also provide a compiler for the i-th language in the first family by translating the last
language in the first family into the i-th language (i <∞). Empirical results show that we
can sometimes use the i-th language instead of the last language without any obvious loss
of space efficiency.

1. Introduction

Knowledge compilation (KC) is a key approach for dealing with the computational in-
tractability in propositional reasoning (Selman & Kautz, 1996; Darwiche & Marquis, 2002;
Cadoli & Donini, 1997). From a theoretical perspective, a core task in the KC field is to

c©2017 AI Access Foundation. All rights reserved.

Lai, Liu, & Yin

identify target languages and evaluate them according to their properties. This paper fo-
cuses on four key properties: the expressivity of the language, the canonicity of the results
of compiling knowledge bases into the language, the space efficiency of storing the compiled
results, and the time efficiency of operating on the compiled results. Darwiche and Mar-
quis (2002) proposed a KC map to characterize space-time efficiency by succinctness and
tractability, where succinctness refers to the polysize transformation between languages,
and tractability refers to the set of polytime operations a language supports. For a given
application, the KC map argues that one should first locate the necessary operations, and
then choose the most succinct language that supports these operations in polytime. From
a practical perspective, the existence of an efficient compiler is required in order for a lan-
guage to be widely applied, and developing efficient compilers is therefore another key task
of the KC researchers (Darwiche, 2014).

Canonicity, an important property of KC languages, provides equivalence tests with
constant time complexity and plays a critical role in the performance of compiling methods
(Darwiche, 2011; Van den Broeck & Darwiche, 2015). The reduced ordered binary decision
diagram (ROBDD) (Bryant, 1986) over a fixed variable order is one of the most influential
canonical languages in the KC literature. The current success of ROBDD owes much to
two main advantages. First, ROBDD is one of the most tractable target languages that
supports in polytime all query operations and many transformation operations mentioned
in the KC map. Second, researchers have developed many efficient ROBDD compilers (see
e.g., Somenzi, 2002; Lind-Nielsen, 1996; Huang & Darwiche, 2004; Lv, Su, & Xu, 2013)
that facilitate the employment from practical applications.

Despite its current success, ROBDD has a well-known weakness in succinctness, which
reflects the explosion in size for many types of knowledge bases in practice. Determinis-
tic, decomposable negation normal form (d-DNNF) (Darwiche, 2001b) is a strict superset
of ROBDD that has proven influential in probabilistic reasoning applications (Chavira &
Darwiche, 2008). In particular, most efficient compilers (e.g., OBDD compilers) can be
seen as special d-DNNF compilers (Huang & Darwiche, 2007). Although d-DNNF is strict-
ly more succinct than ROBDD, it has no canonicity and less tractability. A recent trend
in the KC field is to identify new canonical representations in d-DNNF that can mitigate
the size explosion problem of ROBDD without sacrificing its main advantages. Mateescu,
Dechter, and Marinescu (2008) identified a canonical representation called AND/OR BD-
D (AOBDD). The sizes of ROBDDs are exponential in pathwidth, while AOBDD has a
tighter bound on size in that it is only exponential in treewidth 1. However, AOBDD is
incomplete for a pseudo tree that is not a chain. Darwiche (2011) proposed a generalization
of ROBDD called sentential decision diagram (SDD). Its complete subset compressed and
trimmed SDD over a fixed vtree V is canonical (denoted by CSDDV), and has a tighter
size bound that is also exponential in treewidth. Compared with ROBDD, CSDDV has less
tractability. Lai, Liu, and Wang (2013) proposed a language called OBDD with implied
literals (OBDD-L) by associating some implied literals with each non-false vertex in OBDD.
OBDD-L has a complete canonical subset called ROBDD with as many implied literals as
possible (ROBDD-L∞), which maintains the two advantages of ROBDD. First, given each
operation ROBDD supports in polytime, ROBDD-L∞ also supports it in polytime in the

1. Given a CNF formula, its pathwidth pw and treewidth w are related by pw = O(w logn) (see e.g.,
Bodlaender, 1998).

454

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

sizes of the equivalent ROBDDs. Second, ROBDD-L∞ has a more efficient compiler for
ROBDD-L∞ than those that exist for ROBDD.

Although the current research on canonical representations has done much to mitigate
the size explosion problem of ROBDD from both theoretical and practical perspectives,
the corresponding compilers cannot yet compile many problems that the state-of-the-art
d-DNNF compiler Dsharp can compile (Muise et al., 2012). Furthermore, the relation-
ships between canonical representations, which are indispensable for choosing appropriate
representations in practical applications, are not well studied. On the one hand, this paper
goes further in mitigating the size explosion problem of ROBDD from both theoretical and
practical aspects, and we identify new canonical representations that maintain the main
advantages of ROBDD. On the other hand, this paper provides a unified perspective to
compare the new representations with some existing canonical languages based on their
theoretical properties, especially considering that the tractability of AOBDD is not well
studied 2.

Decomposability is an important factor behind the strong succinctness and tractabil-
ity of d-DNNF. The ideas of ROBDD-L∞ and AOBDD are to use some special types of
conjunctive decomposability to relax the linear variable ordering of ROBDD, where each
∧-decomposition in ROBDD-L∞ has at most one sub-formula with more than one variable
(bounded by one), and each ∧-decomposition in AOBDD respects some tree of variables.
We generalize these two types of ∧-decompositions to propose bounded ∧-decomposability
parameterized by integer i (∧i-decomposition), and ∧i-decomposition respecting tree T
(∧T ,i-decomposition). We observe that the finest ∧i-decomposition and ∧T ,i-decomposition
are unique. Then we generalize OBDD by introducing ∧-decomposition, and call the re-
sulting language OBDD[∧]. We identify a family of canonical languages in OBDD[∧] called
ROBDD[∧î]C by imposing three constraints: reducedness, the finest ∧i-decomposability,
and ordered decision respecting a chain C. We identify another family of canonical lan-
guages called ROBDD[∧T̂ ,i]T by imposing reducedness, the finest ∧T ,i-decomposability,
and ordered decision respecting T . Previous research experience in the KC community
has demonstrated that reducedness and orderedness are indispensable for canonicity, while
our results show that bounded ∧-decomposability leads to representations with different
space-time efficiency. We demonstrate that these two families of languages cover the three
previous languages ROBDD, AOBDD and ROBDD-L∞, as depicted in Figure 1.

We evaluate the theoretical properties of the two families of canonical languages from
four aspects, and the obtained results corresponding to the structure in Figure 1 provide
an important complement to the current KC map:

(a) We analyze the expressivity and demonstrate that ROBDD[∧î]C is complete while
ROBDD[∧T̂ ,i]T is incomplete. We also demonstrate that if i ≤ j, ROBDD[∧T̂ ,i]T is a

subset of ROBDD[∧T̂ ,j]T (resp. CSDDV); and thus the former is not more expressive
than the latter.

(b) We analyze the succinctness and demonstrate that ROBDD[∧î]C (resp. MODS) is strict-
ly less succinct than ROBDD[∧ĵ]C if i < j. We also demonstrate that ROBDD[∧T̂ ,i]T

2. Mateescu, Dechter, and Marinescu (2008), and Fargier and Marquis (2006) have obtained some tractabil-
ity results of AOBDD, but the results about CD, FO, SFO, ∧C, ∨C, ∨BC and ¬C are not yet studied.
Moreover, our results in this paper show that AOBDD has more tractability when imposing some re-
striction on the tree-structured order of variables.

455

Lai, Liu, & Yin

1
ROBDD[] ROBDD-L¥ »

 ,
ROBDD[] AOBDD

¥
 »

ROBDD[]
i

 ,
ROBDD[]

i
 ,1

ROBDD[]

 ,0
ROBDD[]

0
ROBDD[] ROBDD = ROBDD[]

¥

CSDD

MODS

Figure 1: The relationship between many canonical representations in d-DNNF, where each
formula in MODS is a set of models, T is not a chain, C is a topological order of T , and V
is the vtree corresponding to T

is strictly less succinct than ROBDD[∧î]C if i > 0 and T has an infinite depth, and
ROBDD[∧T̂ ,i]T has the same succinctness as ROBDD[∧î]C otherwise.

(c) We analyze the time efficiency in terms of tractability. We demonstrate that these two
families of languages support a rich class of tractable logical operations. First, these
two families of representations qualify as KC languages because they support polytime
sentential entailment. Second, ROBDD[∧T̂ ,i]T has the same tractability as ROBDD; in

particular, ROBDD[∧T̂ ,i]T even has more tractability than ROBDD when T has a finite

depth. Third, ROBDD[∧î]C (i ≥ 2) maintains the same tractability as ROBDD-L∞,
which is more tractable than d-DNNF.

(d) We also analyze the time efficiency in terms of a new notion called rapidity which re-
flects an increase of at most polynomial multiples of time cost of an operation. We
demonstrate that each ROBDD[∧î]C (resp. ROBDD[∧T̂ ,j]T and MODS) and the equiv-

alent ROBDD[∧ĵ]C (i ≤ j) can be transformed into each other in polytime in the size of

ROBDD[∧î]C (resp. ROBDD[∧T̂ ,j]T and MODS). Then we prove that each operation

on ROBDD[∧î]C (resp. ROBDD[∧T̂ ,j]T and MODS) is at most as rapid as the same

operation on ROBDD[∧ĵ]C . Moreover, we prove that each operation on ROBDD[∧T̂ ,j]T
is as rapid as the operation on ROBDD[∧ĵ]C if T has a finite depth.

The results summarized above allow us to make the following statements, which reflect the
importance of new canonical representations from a theoretical perspective. First, compared
with ROBDD-L∞, ROBDD[∧î]C (i ≥ 2) can further mitigate the size explosion problem
without sacrificing the main advantages of ROBDD. Second, given each operation ROBDD
(resp. ROBDD[∧T̂ ,i]T) supports in polytime, ROBDD[∧î]C also supports it in polytime

in the sizes of the equivalent ROBDDs (resp. ROBDD[∧T̂ ,i]T s); and thus ROBDD (resp.

ROBDD[∧T̂ ,i]T) can serve as an intermediary to perform operations on ROBDD[∧î]C , since

the former is more tractable. Third, ROBDD[∧∞̂]C is a complete language with the best
succinctness and operation rapidity among the two families of languages. Fourth, for a tree
with finite depth, ROBDD[∧T̂ ,i]T is an incomplete language with the best succinctness,
tractability and operation rapidity among the two families of languages.

456

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

For practical purposes, we developed an ROBDD[∧∞̂]C compiler with high efficiency.
Preliminary experimental results indicate that compared with the state-of-the-art compilers
of ROBDD-L∞ and CSDDV , our compiler has at least an order of magnitude improvement
in compiling time for more than 40% of instances. Moreover, ROBDD[∧∞̂]C , ROBDD-L∞
and SDD are three canonical subsets of the non-canonical language d-DNNF, and only our
compiler is comparable to the state-of-the-art d-DNNF compiler Dsharp (Muise et al.,
2012) in both compiling time and resulting sizes (to our knowledge, Dsharp also domi-
nates the compilers of other languages). However, compared with d-DNNF, ROBDD[∧∞̂]C
can support relatively efficient operations; in particular, it has more querying tractability.
Moreover, we show that ROBDD[∧∞̂]C can be efficiently transformed into ROBDD[∧î]C .
In particular, the methods that first compile knowledge bases into ROBDD[∧∞̂]C and then
convert the results into ROBDD[∧1̂]C and ROBDD[∧0̂]C provide more efficient compilers
for ROBDD-L∞ and ROBDD, respectively, than the existing ones. We also compare the
space efficiency of ROBDD[∧î]C with that of ROBDD[∧∞̂]C from an experimental angle.
Our results reveal that we can use ROBDD[∧2̂]C or ROBDD[∧3̂]C instead of ROBDD[∧∞̂]C ,
in some types of applications without obvious loss of space efficiency.

The remainder of this paper is organized as follows. Section 2 provides some technical
and notational preliminaries. Section 3 introduces several types of ∧-decompositions. Sec-
tion 4 defines OBDD[∧] and its subsets, and then analyze the relationships between previous
languages and subsets of OBDD[∧]. Sections 5–6 analyze the canonicity, expressivity and
succinctness of ROBDD[∧î]C and ROBDD[∧T̂ ,i]T . Section 7 presents a set of tractable oper-

ation algorithms, evaluates the tractability of ROBDD[∧î]C and ROBDD[∧T̂ ,i]T , introduces

the notion of rapidity, and describes rapidity results for ROBDD[∧î]C and ROBDD[∧T̂ ,i]T .
Section 8 reports the preliminary experimental results. Finally, Section 9 presents related
work and Section 10 closes with some concluding remarks. All proofs appear in an appendix.

2. Preliminaries

This paper uses x to denote a propositional or Boolean variable, PV = {x1, . . . , xn, . . .}
to denote a countably infinite set of variables, and X to denote a subset of PV . In order
to simplify notations, we sometimes assimilate a singleton set with its unique element.
A formula is constructed from constants true, false and variables in PV using negation
operator ¬ and conjunction operator ∧. Given a formula ϕ, we use V ars(ϕ) to denote the
set of variables appearing in ϕ.

An assignment ω over variable set X is a mapping from X to {true, false}, and the set
of all assignments over X is denoted by 2X . Given any formula ϕ and assignment ω over
a superset of V ars(ϕ), ω satisfies ϕ (denoted by ω |= ϕ) iff one of the following conditions
holds: ϕ = true; ϕ = x and ω(x) = true; ϕ = ¬ψ and ω 6|= ψ; or ϕ = ψ ∧ ψ′, ω |= ψ and
ω |= ψ′. A model of ϕ is an assignment over V ars(ϕ) that satisfies ϕ. The set of models
of ϕ is denoted by Ω(ϕ). A formula is satisfiable or consistent if it has at least one model,
and it is unsatisfiable or inconsistent otherwise. A formula over X is valid if every ω ∈ 2X

satisfies it. Given two formulas ϕ and ψ, ϕ entails ψ (denoted by ϕ |= ψ) iff for each model
ω over V ars(ϕ)∪ V ars(ψ), ω |= ϕ implies ω |= ψ; ϕ is equivalent to ψ (denoted by ϕ ≡ ψ)
iff ϕ and ψ imply each other; and ϕ and ψ are distinct iff ϕ 6≡ ψ.

457

Lai, Liu, & Yin

Given a formula ϕ and a variable x ∈ V ars(ϕ), we say that ϕ depends on x if ϕ∧¬x 6≡
ϕ ∧ x, where x is called an essential variable. We say that a formula without any essential
variable is trivial, and a formula with some inessential variables is redundant. Given any
formula ϕ and the set X of essential variables, we can obtain an equivalent formula without
any inessential variable by replacing each variable in V ars(ϕ)\X with true, and we denote
the resulting formula by bϕc.

2.1 Variable Orders

In this paper, we assume that PV is associated with some strict (partial) order ≺ which
is well-founded and has a dummy least element x0. That is, x0 does not appear in any
formula and is less than all other variables over ≺; and every nonempty variable set X has a
greatest lower bound glb≺(X), where ≺ can be omitted in an explicit context. In particular,
we assume each variable x satisfies x ≺ glb(∅). Hereafter we abbreviate glb(V ars(ϕ)) as
glb(ϕ), and write x ≺ X for ∀x′ ∈ X.x ≺ x′.

We mainly focus on the tree-structured orders which are defined as the ancestor-descendant
relationships on trees of variables. Hereafter we use V (T) and V (G) to denote the respective
sets of vertices in a tree T and a graph G. Given a tree T over variables, we denote its depth
by dep(T), and the corresponding tree-structured order by ≺T . For a variable x ∈ V (T),
we denote its children in T by ChT (x), and the subtree rooted at x by Tx. Hereafter we
assume that for each set X of two variables, glb(X) is already known. Therefore, for each
set X of variables, glb(X) can be computed in O(|X|). Given two variables x ≺T x′, there
exists exactly one path from x to x′ (denoted by x x′), and we denote the child variable of
x on this path by chT (x x′). We also assume that for each pair x and x′, chT (x x′) is
already known. Figure 2a–2c depicts three trees C, T and T ′ over PV , respectively. Clearly,
C is a chain with ≺T ⊂≺C and ≺T ′⊂≺C , glb≺T ({x2, x3}) = x1, and chT ′(x1 x4) = x2.

x1

x2

x3

x4

x5

x6

x7

(a)

x1

x2 x3

x5x4

x6 x7

(b)

x1

x2

x3

x5

x6 x7x4

(c)

x1

x2

x4

x6

x3

x5

x7

(d)

Figure 2: Three trees and a vtree over PV , where (a) is a chain and (d) is the vtree

Vtree is another way of organizing variables, which is adopted in some related work
(see e.g., Darwiche, 2011). Each vtree is a full binary tree whose leaves are in one-to-one
correspondence with the variables. It is obvious that each tree over variable set can be
transformed into a vtree. For example, the tree in Figure 2b can be transformed into the
vtree in Figure 2d.

458

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

2.2 Other Logical Operations

It is well known that ¬ and ∧ are complete for any propositional theory. Here we introduce
some other logical operations that are defined using ¬ and ∧. Note that the first two
operators, as well as ∧, can easily extend to multi-parameter cases.

• Disjunction operator: ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ).
• Equality operator: ϕ↔ ψ = (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ).
• Decision operator: ϕ �x ψ = (¬x ∧ ϕ) ∨ (x ∧ ψ).
• Conditioning operator: The conditioning of formula ϕ on assignment ω, denoted by ϕ|ω,

is a formula obtained by replacing each x in ϕ with true (resp. false) if x = true ∈ ω
(resp. x = false ∈ ω).
• Forgetting operator: Let ϕ be a formula and X be a variable set. The forgetting of X

from ϕ, denoted by ∃X.ϕ, is a formula that does not mention any variable in X and for
every formula ψ that does not mention any variable in X, we have ϕ |= ψ precisely when
∃X.ϕ |= ψ.

2.3 Specific Types of Formulas

We next present some specific types of formulas used as background knowledge or related
work in the rest of the paper:

• A literal is either a variable x or its negation ¬x. Given a literal l, its negation ¬l is ¬x
if l is x, and ¬l is x otherwise. A clause δ (resp. term γ) is a set of literals representing
their disjunction (resp. conjunction).
• A formula in conjunctive normal form (CNF) is a set of clauses representing their con-

junction, and a formula in disjunctive normal form (DNF) is a set of terms representing
their disjunction. MODS is a subset of DNF where each disjunct of every formula ϕ is a
model of ϕ. Hereafter, we assume that each variable in MODS is essential, and MODS
is therefore canonical.
• An implicate (resp. implicant) of a formula ϕ is an invalid clause δ (resp. a consistent

term γ) satisfying ϕ |= δ (resp. γ |= ϕ). Among all the implicates (resp. implicants)
of ϕ, the prime implicates (resp. implicants) are the minimal sets, and we use PI(ϕ)
(resp. IP (ϕ)) to denote the set of prime implicates (resp. implicants). We say that a
partition {Ψ1, · · · ,Ψm} of PI(ϕ) (resp. IP (ϕ)) is disjoint if V ars(Ψi) ∩ V ars(Ψj) = ∅
for 1 ≤ i 6= j ≤ m.
• A binary decision diagram (BDD) (Bryant, 1986) is a rooted DAG. Each internal vertex
v has two children that are called low child lo(v) and high child hi(v), and connected by
dashed and solid arcs, respectively. Each vertex v is labeled with a symbol sym(v). If v is
a leaf, sym(v) = ⊥ or >, and v represents false or true. Otherwise, sym(v) is a variable,
and v represents a formula ϑ(v) = ϑ(lo(v)) �sym(v) ϑ(hi(v)). A BDD is ordered (OBDD)
over a chain C if each internal vertex v and its parent u have sym(u) ≺C sym(v). An
OBDD is reduced (ROBDD) if no two vertices are identical (i.e., having the same symbol
and children) and no �-vertex has two identical children.
• OBDD with implied literals (OBDD-L) (Lai, Liu, & Wang, 2013) is a generalization

of OBDD in which implied literals are associated with each non-false vertex. Each
leaf vertex v in OBDD-L is 〈⊥〉 or 〈L(v)〉, and each internal vertex v is denoted by
〈sym(v), lo(v), hi(v), L(v)〉, where L(v) represents a consistent term. Each internal ver-

459

Lai, Liu, & Yin

tex v represents a formula ϑ(v) = [ϑ(lo(v))�sym(v)ϑ(hi(v))]∧
∧
l ∈ L(v), and each implied

literal is a unit implicant of ϑ(v) whose variable appears in neither ϑ(lo(v)) nor ϑ(hi(v)),
and is less than the variables of other unit implicants. An OBDD-L has as many as
possible implied literals (OBDD-L∞) if for any internal vertex v, L(v) includes all u-
nit implicants. An OBDD-L∞ is reduced (ROBDD-L∞) if no two distinct vertices have
identical variables, children and implied literals, and no vertex has two identical children.
• AND/OR Multi-Valued Decision Diagram (AOMDD) (Mateescu, Dechter, & Marinescu,

2008) is a generalization of ROBDD representing graphical models. Here we focus on the
binary version of unweighted AOMDD called AOBDD. Let T be a tree over some variable
set (called a pseudo tree by Mateescu, Dechter, & Marinescu, 2008). A meta-node u can
be either: (1) a leaf node 〈⊥〉 or 〈>〉; or (2) an internal node which is a combination
of a �-vertex and its two ∧-children. In an internal meta-node with a �-vertex labeled
by x, each ∧-vertex v is ∧T -decomposable and satisfies x ≺T glb(v). Two meta-nodes
are independent if they are from two disjoint subtrees of T . Each AOBDD is a set of
DAGs consisting of meta-nodes satisfying that any two roots are independent, and each
DAG has neither a meta-node with two identical ∧-vertices nor a meta-node identical
with another meta-node.
• A formula in negation normal form (NNF) is constructed from false, true and literals

using only conjoining and disjoining operators. An NNF formula can be represented as a
rooted, directed acyclic graph (DAG) where each leaf vertex is labeled with false, true
or literal; and each internal vertex is labeled with ∧ or ∨ and can have arbitrarily many
children.
• An NNF formula ϕ is decomposable (DNNF) if for each conjunction in ϕ, the conjuncts do

not share variables. A DNNF formula ϕ is deterministic (d-DNNF) if any two children u
and v of a ∨-vertex satisfy ϑ(u)∧ϑ(v) |= false. A d-DNNF formula is called a Decision-
DNNF (Oztok & Darwiche, 2014) if each ∨-vertex has exactly two ∧-children representing
formulas ¬x∧ϕ and x∧ϕ′, respectively; that is, each ∨-vertex is equivalent to a �-vertex
labeled by x.
• A sentential decision diagram over some vtree V (SDDV) (Darwiche, 2011) is a special

d-DNNF formula. Each ∨-vertex in SDDV takes the form (ϕ1 ∧ψ1)∨ · · · ∨ (ϕn ∧ψn), and
satisfies the following conditions: ϕi 6≡ false, ϕi ∧ ϕj ≡ false (i 6= j), and

∨
1≤i≤n ϕi ≡

true; and there exists some vertex in T with two children v and w such that each variable
of ϕi is in Tv and each variable of ψi is in Tw. An SDDV is compressed iff ψi 6≡ ψj when
i 6= j; and it is trimmed iff it does not take the form (ϕ ∧ true) ∨ (¬ϕ ∧ false), and
each ϕi 6= true. Compressed and trimmed SDD is canonical (denoted by CSDDV). A
Decision-CSDDV (Oztok & Darwiche, 2015) is an CSDDV where each ∨-vertex takes the
form (ϕ1 ∧ ψ1) ∨ (ϕ2 ∧ ψ2) and satisfies one of the following conditions: ϕ1 and ϕ2 are
literals; ψ1 is a constant; or ψ1 ≡ ¬ψ2.

3. Definitions and Properties of ∧-Decompositions

In this section, we define several types of ∧-decompositions and point out some proper-
ties that will be used in subsequent sections. Note that some types of ∧-decompositions
mentioned in this paper have been presented in previous work in explicit or implicit forms.

460

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

3.1 Definition and Properties of ∧-Decomposition

The notion of ∧-decomposition is well known among KC researchers; in fact, it was used to
define decomposable NNF (Darwiche, 2001a). We present its definition as follows:

Definition 1 (∧-decomposition). Given a formula ϕ, a formula set Ψ is its ∧-decomposition,
iff ϕ ≡

∧
ψ∈Ψ ψ and {V ars(ψ) : ψ ∈ Ψ} partitions V ars(ϕ).

Given a ∧-decomposition Ψ of ϕ, each ψ ∈ Ψ is a factor ; Ψ is strict iff |Ψ| > 1; Ψ is
finer than another ∧-decomposition Ψ′ of ϕ iff {V ars(ψ) : ψ ∈ Ψ} is a finer partition of
V ars(ϕ) than {V ars(ψ) : ψ ∈ Ψ′}; Ψ is equivalent to Ψ′, iff for each ψ ∈ Ψ, there exists
some ψ′ ∈ Ψ′ such that ψ ≡ ψ′ and V ars(ψ) = V ars(ψ′); and one sub-decomposition of Ψ
is a subset of Ψ.

Example 1. Ψ1 = {x2 ∨ ¬x2, x3 ↔ x5, x4 ↔ x6}, Ψ2 = {x2 ∨ ¬x2, (x3 ↔ x5) ∧ (x4 ↔ x6)}
and Ψ3 = {(x2 ∨ ¬x2) ∧ (x4 ↔ x6), x3 ↔ x5} are three ∧-decompositions of ϕ = (x2 ∨
¬x2)∧ [(x3∧x5)∨ (¬x3∧¬x5)]∧ (x4 ↔ x6), where Ψ1 is strictly finer than both Ψ2 and Ψ3.
Ψ4 = {xk+0·n ↔ · · · ↔ xk+i·n : 1 ≤ k ≤ n} is a ∧-decomposition of the following formula:∧

1≤k≤n
xk+0·n ↔ · · · ↔ xk+i·n (1)

We will use Equation (1) several more times throughout this paper. For notational
convenience, ∅ is defined as the unique ∧-decomposition of true. For a non-constant for-
mula ϕ, {ϕ} is obviously a ∧-decomposition of ϕ, and we call it a unit ∧-decomposition.
Given a ∧-decomposition Ψ of a consistent formula, we define the function: bΨc = {bψc :
ψ is a non-trivial factor in Ψ}. In Example 1, bΨ1c = {x3 ↔ x5, x4 ↔ x6}. Then we can
make the following observations:

Observation 1. Given a consistent formula ϕ and its ∧-decomposition Ψ = {ψ1, . . . , ψm},
(a) bΨc is a ∧-decomposition of bϕc;
(b) If each factor in Ψ is invalid, PI(ϕ) = PI(ψ1)∪· · ·∪PI(ψm) and IP (ϕ) = {γ1∧· · ·∧γm :

γi ∈ IP (ψi)}; and
(c) Ψ is equivalent to another ∧-decomposition Ψ′ of ϕ, iff both Ψ is finer than Ψ′ and Ψ′

is finer than Ψ.

According to the above observations, we know that partitioning PI(ϕ) into disjoint
subsets yields a ∧-decomposition, and the finest disjoint partition corresponds to the finest
∧-decomposition.

Proposition 1. Let ϕ be an irredundant consistent formula, and let {Ψ1, . . . ,Ψm} be the
minimum disjoint partition of PI(ϕ). {

∧
δ∈Ψi

δ : 1 ≤ i ≤ m} is the unique finest ∧-
decomposition of ϕ from the viewpoint of equivalence.

It is a well known fact in the field of logic synthesis that each irredundant consistent
formula has a unique finest ∧-decomposition (Bertacco, 2003). For a consistent formula ϕ,
it is obvious that bϕc is irredundant, and next we will show that the finest ∧-decomposition
of ϕ can be constructed from the finest ∧-decomposition of bϕc. First, we define an auxiliary
function as follows:

dΨeX = Ψ ∪
⋃
x∈X
{x ∨ ¬x},

461

Lai, Liu, & Yin

where Ψ is a formula set and X is a set of variables not appearing in Ψ. Then we have the
following property:

Proposition 2. Let ϕ be a consistent formula with the set X of essential variables, and
let Ψ be the finest ∧-decomposition of bϕc. dΨeX is the unique finest ∧-decomposition of ϕ
from the viewpoint of equivalence, where X = V ars(ϕ) \ V ars(bϕc). Each ∧-decomposition
Ψ′ of ϕ is equivalent to {

∧
ψ∈dΨeX and V ars(ψ)⊆V ars(ψ′) ψ : ψ′ ∈ Ψ′}.

The reader can verify that in Example 1, Ψ1 is the finest ∧-decomposition of ϕ. By
the above proposition we know that for a consistent formula, we can use its finest ∧-
decomposition to construct any other ∧-decomposition of this formula.

3.2 Definition and Property of Bounded ∧-Decomposition

We now introduce a special type of ∧-decomposition called bounded ∧-decomposition:

Definition 2 (∧i-decomposition). A ∧-decomposition Ψ is bounded by an integer 0 ≤ i ≤
∞ (∧i-decomposition) iff there exists at most one ψ ∈ Ψ with |V ars(ψ)| > i.

Lai, Liu, and Wang (2013) implicitly discussed ∧1-decomposition, because each vertex in
BDD with implied literals can be seen as a ∧1-decomposition. Ψ1, Ψ2, Ψ3 and Ψ4 in Exam-
ple 1 are ∧2-decomposition, ∧1-decomposition, ∧1-decomposition and ∧i+1-decomposition,
respectively. Obviously, each ∧-decomposition is a ∧∞-decomposition; each nonempty ∧0-
decomposition is a unit decomposition; and each ∧i-decomposition is a ∧j-decomposition if
i ≤ j. According to Proposition 2, we can obtain the finest ∧i-decomposition by conjoining
the factors with more than i variables in the finest ∧-decomposition:

Proposition 3. Let ϕ be a consistent formula, let Ψ be the finest ∧-decomposition of ϕ,
and let i be an integer. From the viewpoint of equivalence, {

∧
ψ∈Ψ and |V ars(ψ)|>i ψ} ∪ {ψ ∈

Ψ : |V ars(ψ)| ≤ i} is the unique finest ∧i-decomposition of ϕ.

Given a consistent formula, the finest ∧i-decomposition is hereafter denoted by ∧î-
decomposition. It is obvious that each finest ∧-decomposition is a ∧∞̂-decomposition. Re-
turning to Example 1, the reader can verify that Ψ2 is the ∧1̂-decomposition of ϕ, and it
can be obtained from Ψ1 through the method described in Proposition 3. From the above
proposition, we can draw the following two conclusions, which will be used in the rest of
the paper:

Corollary 1. Given two integers i ≤ j, a consistent formula ϕ, and a ∧-decomposition Ψ
of ϕ, we have the following facts:

(a) If Ψ is the ∧ĵ-decomposition of ϕ, then {
∧
ψ∈Ψ and |V ars(ψ)|>i ψ}∪{ψ ∈ Ψ : |V ars(ψ)| ≤

i} is the ∧î-decomposition of ϕ; and
(b) Ψ is finer than the ∧î-decomposition iff each factor in Ψ is not strictly ∧i-decomposable,

and Ψ is the ∧î-decomposition iff Ψ is bounded by i and each factor in Ψ is not strictly
∧i-decomposable.

462

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

3.3 Definition and Properties of Tree-Structured ∧-Decomposition

Next we introduce a new type of ∧-decomposition respecting some tree-structure:

Definition 3 (∧T -decomposition). A ∧-decomposition Ψ respects a tree T over variables
(∧T -decomposition), iff any two factors ψ,ψ′ ∈ Ψ satisfy that glb(ψ) and glb(ψ′) are incom-
parable over ≺T .

It can be easily proven that any two factors in ∧T -decomposition are from two disjoint
subtrees T and that for a strictly ∧T -decomposable formula ϕ, then glb(ϕ) 6∈ V ars(ϕ).
Note that ∧T -decomposition was implicitly mentioned by Mateescu, Dechter, and Marinescu
(2008), where each AND-vertex can be seen as a ∧T -decomposition. Returning to Example
1, Ψ3 is a ∧T -decomposition over the tree T in Figure 2b, while neither Ψ1 nor Ψ2 is ∧T -
decomposition. Next a ∧T -decomposition bounded by i is denoted by a ∧T ,i-decomposition.
It is obvious that each ∧T -decomposition is a ∧T ,∞-decomposition. We can also obtain
the finest ∧T -decomposition from the ∧∞̂-decomposition, by a slightly more complicated
method:

Proposition 4. Let T be a tree over variables, let Ψ be a ∧∞̂-decomposition, let G be a
graph over Ψ with the set of arcs {(ψ,ψ′), (ψ′, ψ) : glb(ψ) �T glb(ψ′)}, let G1, . . . ,Gm be
the strongly connected components of G, and for 1 ≤ k ≤ m, let ϕk =

∧
ψ∈V (Gk) ψ. Then,

{ϕ1, . . . , ϕm} is the unique finest ∧T -decomposition from the viewpoint of equivalence.

Hereafter the finest ∧T -decomposition is denoted by ∧T̂ -decomposition, and a ∧T̂ -
decomposition bounded by integer i is denoted by ∧T̂ ,i-decomposition. Consider Example
1 again. Let ψ1 = x2 ∨ ¬x2, ψ2 = x3 ↔ x5 and ψ3 = x4 ↔ x6. Given the tree T in
Figure 2b, we know that glb(ψ1) �T glb(ψ3), glb(ψ1) and glb(ψ2) are incomparable over
�T , and glb(ψ2) and glb(ψ3) are incomparable over �T . Then the reader can verify that
Ψ3 is the ∧T̂ -decomposition of ϕ, which can be obtained from Ψ1 by the method described
in Proposition 4. Obviously, each ∧T̂ -decomposition is a ∧T̂ ,∞-decomposition. However, if
i < ∞, there exist some class of formulas that do not have any ∧T̂ ,i-decomposition. We
state this fact and another useful fact as follows:

Corollary 2. (a) Let T be a tree over variables, let Ψ be the ∧î-decomposition of a consis-
tent formula ϕ, let G be a graph over Ψ with the set of arcs {(ψ,ψ′), (ψ′, ψ) : glb(ψ) �T
glb(ψ′)}, let G1, . . . ,Gm be the strongly connected components of G, and for 1 ≤ k ≤ m,
let ϕk =

∧
ψ∈V (Gk) ψ. Then, {ϕ1, . . . , ϕm} is the ∧T̂ ,i-decomposition if it is bounded by

i and ϕk (1 ≤ k ≤ m) is not strictly ∧T -decomposable, and the ∧T̂ ,i-decomposition of
ϕ does not exist otherwise; and

(b) A ∧T -decomposition is a ∧T̂ -decomposition iff each factor is not strictly ∧T -decomposable.

4. BDD[∧] and Its Subsets

In this section, we first provide formal definitions for binary decision diagram with con-
junctive decomposition (BDD[∧]) and some of its subsets, including ROBDD[∧î]C and
ROBDD[∧T̂ ,i]T . We then provide some auxiliary functions and notations that will be used

throughout the rest of the paper. The definition of BDD[∧] is presented as follows:

463

Lai, Liu, & Yin

Definition 4 (BDD[∧]). A BDD[∧] is a rooted DAG. Each vertex v is labeled with a symbol
sym(v). If v is a leaf, sym(v) = ⊥ or >; otherwise, sym(v) is a variable (in which case v is
called a decision vertex) or operator ∧ (called a decomposition vertex). Each internal vertex
v has a set of children Ch(v). For a decision vertex, Ch(v) = {lo(v), hi(v)}, where lo(v)
and hi(v) are called low and high children, and are connected by dashed and solid arcs,
respectively; for a decomposition vertex, {ϑ(w) : w ∈ Ch(v)} is a strict ∧-decomposition of
ϑ(v). Each vertex represents a formula defined as follows:

ϑ(v) =

false sym(v) = ⊥;

true sym(v) = >;∧
w∈Ch(v) ϑ(w) sym(v) = ∧;

ϑ(lo(v)) �sym(v) ϑ(hi(v)) otherwise.

(2)

The formula represented by the BDD[∧] is defined as the one represented by its root.

Given two vertices, if they are leaf vertices with the same symbol, or they are internal
vertices with the same symbol and children, then we say that they are identical with each
other; otherwise, we say that they are distinct. Following the tradition in the BDD litera-
ture, we record all BDD[∧] vertices in a hash table called vertex-table. Hereafter we denote a
leaf vertex by 〈⊥〉 or 〈>〉, a ∧-decomposition vertex (∧-vertex for short) by 〈sym(v), Ch(v)〉,
and a decision vertex (�-vertex for short) by 〈sym(v), lo(v), hi(v)〉. We sometimes abuse
〈∧, ∅〉 to denote 〈>〉; 〈x〉 to denote 〈x, 〈⊥〉, 〈>〉〉; 〈¬x〉 to denote 〈x, 〈>〉, 〈⊥〉〉; 〈∧, {w}〉 to
denote w; 〈∧, {〈>〉} ∪ V 〉 to denote 〈∧, V 〉; and 〈∧, {〈⊥〉} ∪ V 〉 to denote 〈⊥〉. Given a
BDD[∧] G, its size |G| is defined as the number of its arcs. Given a BDD[∧] vertex u and a
partial order ≺ over variables, we denote the BDD[∧] rooted at u by Gu, denote the set of
variables appearing in Gu by V ars(u), and abbreviate glb≺(V ars(u)) as glb≺(u). We then
state two observations about BDD[∧], which will be used to analyze the time complexities
of some algorithms:

Observation 2. Given a BDD[∧] rooted at u,
(a) We can compute the variable sets for all subgraphs rooted at vertices in Gu in time

O(|V ars(u)| · |V (Gu)|); and
(b) Whether Gu has more than i variables can be determined in O(1), and thus if sym(u) =
∧, whether u is a ∧i-decomposition can be determined in O(|Ch(u)|).
Next we define some constraints on BDD[∧], which allow us to generate subsets of

BDD[∧] by restricting combinations of these constraints:

Definition 5 (constraints on BDD[∧]). Given an integer i, a partial order ≺ over variables,
and a tree T over variables,
• A BDD[∧] is ordered over ≺ (OBDD[∧]≺) iff each �-vertex u and its �-descendant v

satisfy sym(u) ≺ sym(v);
• A BDD[∧] is reduced (RBDD[∧]) iff no two vertices are identical and no �-vertex has two

identical children;
• A BDD[∧] is ∧i-decomposable (BDD[∧i]) iff each ∧-vertex is a ∧i-decomposition;
• A BDD[∧] is ∧î-decomposable (BDD[∧î]) iff each ∧-vertex is a ∧î-decomposition and the
∧î-decomposition of each �-vertex v is {ϑ(v)};

464

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

• A BDD[∧] is ∧T -decomposable (BDD[∧T]) iff each ∧-vertex is a ∧T -decomposition; and
• A BDD[∧] is ∧T̂ -decomposable (BDD[∧T̂]) iff each ∧-vertex is a ∧T̂ -decomposition and

the ∧T̂ -decomposition of each �-vertex v is {ϑ(v)}.

In the subsequent sections, we focus on OBDD[∧]≺ where ≺ is a tree-structured order:
the ancestor-descendant relationship ≺T on a tree T and particularly ≺C over a chain C.
Unless otherwise stated, we hereafter assume that C and T always satisfy ≺T ⊂≺C (that
is, T is not a chain and C is a topological order of T), and we sometimes use C and T to
denote ≺C and ≺T , respectively. We mainly focus on the subsets of OBDD[∧]≺ described
in Table 1. Note that ROBDD[∧î]C does not require that the children of ∧-vertex agree
with ≺C . In the remaining sections, we will analyze the canonicity, expressivity, and space-
time efficiency of ROBDD[∧î]C and ROBDD[∧T̂ ,i]T . For convenience, we will also use

OBDD[∧i]C , OBDD[∧T]T and ROBDD[∧T̂]T in some algorithms.

Subsets Descriptions

OBDD[∧i]C Ordered binary decision diagram over ≺C with conjunctive
decompositions bounded by i

ROBDD[∧î]C Reduced ordered binary decision diagram over ≺C with finest
conjunctive decompositions bounded by i

OBDD[∧T]T Ordered binary decision diagram over ≺T with tree-
structured conjunctive decompositions bounded by i

ROBDD[∧T̂]T Reduced ordered binary decision diagram over ≺T with finest
conjunctive decompositions

ROBDD[∧T̂ ,i]T Reduced ordered binary decision diagram over ≺T with finest
tree-structured conjunctive decompositions bounded by i

Table 1: Subsets of BDD[∧] highlighted in the remainder of this paper, where i is
an integer, and C and T are, respectively, a chain and a tree over variables

Example 2. Figures 3a and 3b depict, respectively, an ROBDD[∧1̂]C and an ROBDD[∧2̂]C
representing Equation (1) with n = i = 2, where C is depicted in Figure 2a. Note that for
simplicity, we sometimes draw multiple copies of vertices in this paper, denoted by dashed
boxes or circles, but they represent the same vertex. Figure 3a is not an OBDD[∧1]C since
vertex u2 is not bounded by one. For the general form of Equation (1), the number of
vertices labelled with x1+n in the corresponding ROBDD[∧ĵ]C (j < i) is equal to 2n, while

the number of vertices in the corresponding ROBDD[∧î]C will be (2i + 5)n. That is, the
size of ROBDD[∧ĵ]C representing Equation (1) is exponential in n, while the size of the

corresponding ROBDD[∧î]C is only linear in n. Figure 3a is also an ROBDD[∧T̂ ,2]T , where
T is depicted in Figure 2b.

Next we provide some facts about OBDD[∧]≺ that will be used in the rest of the paper:

Observation 3. (a) Each OBDD[∧i]C is an OBDD[∧j]C if i ≤ j;
(b) Each ROBDD[∧T̂ ,i]T is an OBDD[∧i]C ;
(c) Given an ROBDD[∧T̂]T vertex u, glb(u) ∈ V ars(u) iff glb(u) = sym(u);

465

Lai, Liu, & Yin

x1

x2 x3

x5 x5

u2

x6 x6

x4

⊥ ⊤

x4

x3

⊥ ⊤

u1

u3

u6u4 u5

u7

u8 u9

u10

u11

u12

(a)

x2

x1

x3

x2

x5 x5

⊥ ⊤ x6 x6

x4

⊥ ⊤

x4

x3 x3 x3

v1

v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v15v12 v13 v14

v11 v16

(b)

Figure 3: An ROBDD[∧2̂]C (a) and an ROBDD[∧1̂]C (b), where C is depicted in Figure 2a

(d) The number of vertices in a non-trivial ROBDD[∧î]C (resp. ROBDD[∧T̂]T) is not more
than three times of the number of its �-vertices; and

(e) Given an ROBDD[∧T]T , if there does not exist any ∧-vertex with ∧-child, it is an
ROBDD[∧T̂]T .

Some subsets in OBDD[∧]≺ are closely related to other languages presented previously
in the literature, including d-DNNF and its subsets. Here we simply discuss the con-
nections between them, in order to facilitate the theoretical comparisons in the following
three sections. We will elaborate the relationships between them in Section 9. First, since
each Decision-DNNF can be seen as a free BDD (Gergov & Meinel, 1994) augmented by
∧-decomposition, each OBDD[∧]≺ is a strict subset of Decision-DNNF, and thus a strict
subset of d-DNNF. For each ∨-vertex v in Decision-CSDDV , it is obvious that ϕ1 ≡ ¬ϕ2.
Therefore, if ϕ1 and ϕ2 are literals, then v is equivalent to a decision vertex; otherwise, v
is equivalent to ϕ2 ∧ ψ2, ϕ1 ∨ ψ2, or ϕ1 ↔ ψ1. Note that a tree over variables can be seen
as a vtree, and ROBDD[∧T̂]T can therefore be seen as a subset of Decision-CSDDV . We
now discuss the relationship between our languages and three previous canonical languages
ROBDD, ROBDD-L∞ and AOBDD:

Theorem 1. Given a chain C and a tree T over PV ,

(a) Each ROBDD over C is an ROBDD[∧0̂]C, and vice versa;
(b) Each OBDD-L over C can be transformed into OBDD[∧1]C in linear time, and the

mutual transformation between an ROBDD-L∞ over C and the equivalent ROBDD[∧1̂]C
can be done in linear time; and

(c) The mutual transformation between an AOBDD over T and the equivalent
ROBDD[∧T̂ ,∞]T can be done in linear time.

Figure 4 depicts an ROBDD-L∞ over chain C in Figure 2a and an AOBDD over tree
T in Figure 2b, where the ROBDD-L∞ is equivalent to the ROBDD[∧1̂]C in Figure 3b and
the AOBDD is equivalent to the ROBDD[∧T̂]T in Figure 3a. According the above theorem,
we will know that our analysis in the following three sections can indirectly reveal the
relationship between our new languages and the three previous ones ROBDD, ROBDD-L∞
and AOBDD to some extent.

466

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

3,x Æ

4 5,{ }x x

6{ }x 6{ }x

4 5,{ }x x 4 5,{ }x x4 5,{ }x x

3,x Æ 3,x Æ 3,x Æ

1,Æx

2 ,x Æ2 ,x Æ

(a)

x2

x4 x4

x6 x6

⊤⊥

x3

x3 x3

x5 x5

⊤⊥

(b)

Figure 4: An ROBDD-L∞ (a) over chain in Figure 2a, and an AOBDD (b) over tree in
Figure 2b, where each meta-node is depicted by a dash box

4.1 Some Auxiliary Functions and Notations

This subsection introduces some auxiliary functions and notations that will be used in the
rest of the paper. The first function is called Make, which can push an OBDD[∧]≺ vertex
into vertex-table. In the function, we use Line 1 to guarantee that u does not have two
identical children, and use Line 2 to guarantee that u is not identical with any vertex
already in vertex-table. We recursively push the children of u into vertex-table on Line
3, and then push u into vertex-table on Line 4. It is obvious that this function has the
following properties:

Function Make(u)

Input: a �-vertex u in OBDD[∧]≺
Output: an ROBDD[∧]≺ vertex representing ϑ(u)

1 if u is a �-vertex with lo(u) = hi(u) then return Make(lo(u))
2 if there exists another u′ in vertex-table with u = u′ then return u′

3 Ch(u)← {Make(v) : v ∈ Ch(u)}
4 Allocate a position in vertex-table to u
5 return u

Observation 4. Given an OBDD[∧]≺ vertex u,
(a) If all vertices in Gu are pushed into vertex-table by calling Make, then Gu is reduced.
(b) A single calling (not considering recursive callings) of Make(u) terminates in time O(1)

if sym(u) ∈ PV , and in time O(|Ch(u)|) otherwise.

The second function is called Merge, and it is used to guarantee that a ∧-decomposition
is finest: Given a ∧-vertex u, we replace Ch(u) by (Ch(u) \ V) ∪

⋃
v∈V Ch(v), where

V = {v ∈ Ch(u) : sym(v) = ∧}; that is, while there exists some ∧-child v ∈ Ch(u), we
repeat replacing v in Ch(u) with all its children. According to Corollaries 1b and 2b, we
can observe the following facts:

467

Lai, Liu, & Yin

Observation 5. Given a ∧-vertex u in BDD[∧], Merge(u) terminates in time O(|V ars(u)|),
and we know that:

(a) If Gu is ∧i-decomposable, the BDD[∧] rooted at Merge(u) is ∧i-decomposable;
(b) If Gu is ∧i-decomposable and Gv is ∧î-decomposable for each v ∈ Ch(u), the BDD[∧]

rooted at Merge(u) is ∧î-decomposable;
(c) If Gu is ∧T -decomposable, the BDD[∧] rooted at Merge(u) is ∧T -decomposable; and
(d) If Gu is ∧T -decomposable and Gv is ∧T̂ -decomposable for each v ∈ Ch(u), the BDD[∧]

rooted at Merge(u) is ∧T̂ -decomposable.

According to Observations 3e, 4 and 5, we can immediately draw the following conclu-
sion:

Proposition 5. An OBDD[∧T]T rooted at u can be transformed into ROBDD[∧T̂]T in
O(|V ars(u)| · |V (Gu)|) by calling Make for each vertex and calling Merge for each ∧-vertex
in a bottom-up fashion.

The third function, which is used to remove some children from a ∧-vertex, is defined
as follows:

u \ V =

〈>〉 Ch(u) = V ;

v ∃v.Ch(u) \ V = {v};
〈∧, Ch(u) \ V 〉 otherwise.

where u is a ∧-vertex and V is a subset of its children.

Observation 6. Given a ∧-vertex u and a subset of its children V , u \ V can be done in
time O(|Ch(u)|), and we know that if Gu is ∧i-decomposable (resp. ∧î-decomposable, ∧T -
decomposable and ∧T̂ -decomposable), the BDD[∧] rooted at u\V is ∧i-decomposable (resp.
∧î-decomposable, ∧T -decomposable and ∧T̂ -decomposable):

We close this subsection by introducing two auxiliary notions that will be used in some
operation algorithms for ROBDD[∧T̂ ,i]T . First, we use Chx(v) to denote the subset of

Ch(v) whose variables stem from x; that is, Chx(v) = {w ∈ Ch(v) : x �T glb(w)}. Then
we can present the two notions as follows:

Definition 6 (meta-child and meta-vertex). Let v be a ∧-vertex in an ROBDD[∧T̂]T G.
A meta-child of v on variable x ∈ ChT (glb(v)) is defined as mchx(v) = 〈sym(v), Chx(v)〉.
A meta-vertex 3 of G is either a vertex in G or a meta-child of some meta-vertex.

According to the above definition, for the tree T in Figure 2c and an ROBDD[∧T̂]T
vertex v = 〈∧, {〈x3〉, 〈x4〉, 〈x5〉}〉, Chx2(v) = {〈x3〉, 〈x4〉}, mchx2(v) = 〈∧, {〈x3〉, 〈x4〉}〉, and
Gv has 7 meta-vertices.

Observation 7. Given an ROBDD[∧T̂]T rooted at u, the number of distinct meta-vertices
is not more than |Gu| − |V (Gu)|+ 2.

3. Meta-vertex is a different notion from meta-node in AOBDD.

468

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

5. Canonicity and Expressivity of ROBDD[∧î]C and ROBDD[∧T̂ ,i]T
In this section, we show that ROBDD[∧î]C is canonical and complete, while ROBDD[∧T̂ ,i]T
is canonical and incomplete. We then compare the expressivity of ROBDD[∧T̂ ,i]T with that

of ROBDD[∧T̂ ,j]T .

We first discuss the canonicity and completeness of ROBDD[∧î]C . The canonicity can
be understood by the uniqueness of ∧î-decomposition in Proposition 3 and the fact that
for two equivalent vertices 〈x, v, w〉 and 〈x, v′, w′〉, we have ϑ(v) ≡ ϑ(v′) and ϑ(w) ≡ ϑ(w′).
The completeness can be understood from a recursive perspective. Let ϕ be a non-trivial
formula. If bϕc has a strict ∧î-decomposition Ψ, then 〈∧, {v : ∃ψ ∈ Ψ.ψ ≡ ϑ(v)}〉 represents
ϕ. Otherwise, we denote glb(bϕc) by x and assume that v and w represent ϕ|x=false and
ϕ|x=true, respectively. Since x ∈ V ars(bϕc), 〈x, v, w〉 represents ϕ.

Theorem 2. Fixing integer 0 ≤ i ≤ ∞ and chain C over PV , there is exactly one
ROBDD[∧î]C representing a given formula.

Turning to ROBDD[∧T̂]T , its canonicity can be understood in a fashion similar to that
of ROBDD[∧î]C . However, the completeness of ROBDD[∧T̂]T no longer holds, according
to the following observation:

Observation 8. There is no ROBDD[∧T]T to represent an irredundant formula ϕ that is
not strictly ∧T -decomposable and satisfies glb(ϕ) 6∈ V ars(ϕ).

The above observation can be understood as follows: since ϕ is irredundant, it cannot
be represented by a leaf vertex; since ϕ is not strictly ∧T -decomposable, it cannot be
represented by a ∧-vertex; and since glb(ϕ) 6∈ V ars(ϕ), it cannot be represented by a �-
vertex according to Observation 3c. Let T be a tree that is not a chain. Then there exist
two incomparable variables x and x′ over ≺T . It is obvious that ϕ = x↔ x′ is not strictly
∧T -decomposable and ϕ satisfies glb(ϕ) 6∈ V ars(ϕ); and therefore there is no ROBDD[∧î]T
to represent ϕ. This leads to the following conclusion:

Theorem 3. Fixing tree T over PV , there is at most one ROBDD[∧T̂]T to represent a
given formula, and ROBDD[∧T̂]T is incomplete when T is not a chain.

According to the canonicity of ROBDD[∧î]C (resp. ROBDD[∧T̂]T), if C (resp. T) has a
finite number of variables, then ROBDD[∧î]C (resp. ROBDD[∧T̂]T) has a finite number of
formulas. Since it is not interesting to discuss the theoretical properties (e.g., succinctness
and tractability) of a language with only finite formulas, we hereafter assume that C (resp.
T) is over an infinite number of variables.

Due to the incompleteness of ROBDD[∧T̂]T , we compare the expressivity between
ROBDD[∧T̂ ,i]T (0 ≤ i ≤ ∞). Let L1 and L2 be two languages. We say that L1 is at

most as expressive as L2 (denoted by L1 ≤e L2) iff for each formula in L1, there exist-
s an equivalent formula in L2. First we introduce a notion that is closely related to the
expressivity of ROBDD[∧T̂ ,i]T :

Definition 7 (decomposition cardinality). Given a tree T and a variable set X in which
any two variables are incomparable over ≺T , we define decomposition cardinality of T on X
(denoted by dc(T , X)) as 0 if X is a singleton, and as the second highest number of vertices

469

Lai, Liu, & Yin

in the subtrees rooted at variables in X otherwise.4 We define the decomposition cardinality
of T (denoted by dc(T)) as the minimum decomposition cardinality on all nonempty sets
in which any two variables are incomparable over ≺T .

It is obvious that the decomposition cardinality of each chain is 0. Consider the trees T
and T ′ in Figure 2b and 2c, respectively. The reader can verify that dc(T ′, {x3, x4, x5}) = 1,
dc(T) =∞ and dc(T ′) = 2. We next present a fact about decomposition cardinality, from
which we conclude the expressivity relation between ROBDD[∧T̂ ,i]T and ROBDD[∧T̂ ,j]T :

Observation 9. Given a tree T over variables, each ROBDD[∧T̂]T is an ROBDD[∧T̂ ,dc(T)
]T ,

and there exists some formula that can be represented by ROBDD[∧T̂ ,j]T but not by

ROBDD[∧T̂ ,i]T if 0 ≤ i < j ≤ dc(T).

Theorem 4. Given a tree T over variables and two integers i and j, ROBDD[∧T̂ ,i]T ≤e
ROBDD[∧T̂ ,j]T iff i ≤ j or dc(T) ≤ j.

Let V be a vtree corresponding to T . Since ROBDD[∧T̂ ,i]T is a subset of Decision-

CSDDV , which in turn is a subset of CSDDV , ROBDD[∧T̂ ,i]T ≤e Decision-CSDDV ≤e
CSDDV ; in particular, ROBDD[∧T̂ ,i]T <e Decision-CSDDV if T is not a chain, because
there exists some binary clause that can be expressed in Decision-CSDDV but not in
ROBDD[∧T̂ ,i]T . Theorems 2–3 indicate that when moving along each solid arc in Fig-
ure 1, the expressivity of language is invariant, and that when moving along each vertical
arc in Figure 1, the expressivity of language increases. Theorem 4 indicates that when
moving along each dashed arc at the bottom of Figure 1, the expressivity of language does
not decrease; in particular, the expressivity of language increases if dc(T) =∞. Note that
the incompleteness of ROBDD[∧T̂ ,i]T does not prevent this languages from being used in
practical applications. On the one hand, some practical applications do not require com-
plete languages; for example, Horn theory is an influential incomplete language in the AI
literature. On the other hand, for a practical knowledge base, we can choose an appropriate
tree T such that this knowledge base can be represented in ROBDD[∧T̂ ,i]T (in the worst

case, we can choose a chain, and then ROBDD[∧T̂ ,i]T is equivalent to ROBDD), just like

choosing appropriate vtrees (Oztok & Darwiche, 2015) to compile knowledge bases into
Decision-SDD (this language is also incomplete for many vtrees). In particular, we mention
that each naive Bayes model can be compiled into ROBDD[∧T̂ ,2d]T in polysize using en-

coding ENC1 proposed by Chavira and Darwiche (2008), where d is the second maximum
size of domain of each feature.

6. Succinctness of ROBDD[∧î]C and ROBDD[∧T̂ ,i]T
In this section, we first analyze the succinctness relationship between ROBDD[∧î]C and
ROBDD[∧ĵ]C , we then analyze the succinctness relationship between ROBDD[∧î]C and

ROBDD[∧T̂ ,i]T , and we last discuss the succinctness relationship between these two families
of languages and some existing languages. Note that the standard definition of succinctness
in the KC map only applies to complete languages. Here we need to handle the case of

4. If there are two subtrees having the most variables, we define the second highest number of variables of
the subtrees as the maximum number.

470

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

incomplete languages. Therefore, we next extend the standard definition of succinctness to
some extent; specifically, we only compare the sizes of formulas that can be represented in
both languages:

Definition 8 (succinctness). Let L1 and L2 be two languages. L1 is at most as succinct as
L2 (L1 ≤s L2) 5, iff there exists a polynomial p such that for every sentence ϕ1 ∈ L1 that
can be represented in L2, there exists an equivalent sentence ϕ2 ∈ L2 where |ϕ2| ≤ p(|ϕ1|).
Here, |ϕ1| and |ϕ2| are the sizes of ϕ1 and ϕ2, respectively. L1 is strictly less succinct than
L2 (L1 <s L2) iff L1 ≤s L2 and L1 6≥s L2. L1 is as succinct as L2 (L1 =s L2) iff L1 ≤s L2

and L1 ≥s L2.

Definition 8 immediately leads to the conclusion that ROBDD[∧T̂ ,i]T =s ROBDD[∧T̂ ,j]T .
Obviously, succinctness relation is conditionally transitive: if L1 ≤e L2 ≤e L3, then L1 ≤s L2

and L2 ≤s L3 imply L1 ≤s L3. Moreover, if L1 ⊆ L2 ≤e L3, then L1 6≤e L3 implies L2 6≤e L3.
The last two facts will be used in the second subsection.

6.1 Succinctness Relationship Between ROBDD[∧î]C and ROBDD[∧ĵ]C

We first present an algorithm called Decompose (in Algorithm 1), which can transform
an OBDD[∧i]C into the equivalent ROBDD[∧î]C . With this algorithm, we can show that
ROBDD[∧î]C ≤s ROBDD[∧ĵ]C if i ≤ j. Then with some counter-examples, we can obtain

the exact succinctness relationship between ROBDD[∧î]C and ROBDD[∧ĵ]C .
The input of Decompose is an OBDD[∧i]C vertex u. Here we use a global non-negative

integer i, a global chain C over PV , and the implicit global vertex-table. A hash table H is
used to store previously computed outputs of the algorithms, in order to avoid repetitively
processing any vertices. If u is a leaf vertex, the algorithm simply returns u itself (Line
2). Otherwise, we first recursively call Decompose for each child of u (Line 4). If u is
a ∧-vertex, we call Merge to get the ∧î-decomposition, and then call Make to insert u
into vertex-table (Line 12). Otherwise, we know that u is a �-vertex. If ϑ(u) is strictly
∧i-decomposable, then u must satisfy one of the three conditions on Lines 7–9:

Observation 10. Let u be a �-vertex in OBDD[∧i]C with two distinct ROBDD[∧î]C children.
ϑ(u) is strictly ∧i-decomposable only if one of the following conditions holds: a) 〈⊥〉 ∈ Ch(u)
and |V ars(u)| > 1; b) one child is a factor of the other child; or c) both children are ∧-
vertices with some shared factors.

We call three functions called ExtractLeaf, ExtractPart and ExtractShare to handle the
cases on Lines 7–9 in Decompose, respectively. The input parameters of these functions are
�-vertices with distinct children already in ROBDD[∧î]C . We use these three functions to
obtain an ROBDD[∧î]C vertex that is equivalent to their input. The main idea of the three
functions is to extract possible common factors. For ExtractLeaf(u), if i = 0, it is obvious
that u is not strictly ∧i-decomposable, and otherwise we further decompose it on Line 2 or
3. Figure 5a–5b provides two examples to show how ExtractLeaf works. ExtractLeaf has
the following properties:

5. Darwiche and Marquis (2002) used “L1 ≤ L2” to denote that “L1 is at least as succinct as L2”. Here we
use a different notation “L1 ≤s L2” to denote that “the succinctness of L1 is not stronger than that of
L2”.

471

Lai, Liu, & Yin

Algorithm 1: Decompose(u)

Input: an OBDD[∧i]C vertex u
Output: the ROBDD[∧î]C vertex representing ϑ(u)

1 if H(u) 6= nil then return H(u)
2 if u is a leaf vertex then H(u)← u
3 else
4 Ch(u)← {Decompose(v) : v ∈ Ch(u)}
5 if u is a �-vertex then
6 if lo(u) = hi(u) then H(u)← lo(u)
7 else if 〈⊥〉 ∈ Ch(u) and |V ars(u)| > 1 then H(u)← ExtractLeaf(u)
8 else if one child of u is a factor of the other then H(u)← ExtractPart(u)
9 else if sym(lo(u)) = sym(hi(u)) = ∧ and Ch(lo(u)) ∩ Ch(hi(u)) 6= ∅ then

10 H(u)← ExtractShare(u)
11 else H(u)← Make(u)

12 else H(u)← Make(Merge(u))

13 end
14 return H(u)

Observation 11. Let u be a �-vertex in OBDD[∧i]C with two ROBDD[∧î]C children sat-
isfying that 〈⊥〉 ∈ Ch(u) and |V ars(u)| > 1. ExtractLeaf(u) will return the equivalent
ROBDD[∧î]C vertex in O(|V ars(u)|), and it will introduce at most two new vertices into
vertex-table and add at most two arcs to the resulting DAG.

Function ExtractLeaf(u)

Input: a �-vertex u in OBDD[∧i]C , where 〈⊥〉 ∈ Ch(u) and |V ars(u)| > 1
Output: the ROBDD[∧î]C vertex representing ϑ(u)

1 if i = 0 then return u
2 if lo(u) = 〈⊥〉 then u′ ← 〈∧, {〈sym(u)〉, hi(u)}〉
3 else u′ ← 〈∧, {〈¬sym(u)〉, lo(u)}〉 // hi(u) = 〈>〉
4 return Make(Merge(u′))

x

⊥ x

u

v
x

u
v

x

⊥ ⊤
(a)

x

⊥

u
v

u

x

⊥ ⊤w
w w w

(b)

x u

x

u
v

x

⊤x w
w

(c)

x u u

www
x

w
w

w

v

(d)

Figure 5: Four examples to show how functions ExtractLeaf, ExtractPart and ExtractShare
work, where we assume that Gu′ is bounded by i

For ExtractPart(u), it is obvious that u is strictly ∧-decomposable, we try to ∧i-
decompose it on Lines 2–3 or 5–6 by extracting the shared factor lo(u) or hi(u). If the
result is ∧i-decomposable, it is ∧î-decomposable by Corollary 1b, and otherwise u itself is ∧î-

472

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

decomposable. Figure 5c provides an example to show how ExtractPart works. ExtractPart
has the following properties:

Observation 12. Let u be a �-vertex in OBDD[∧i]C with two ROBDD[∧î]C children satisfying
that one child is a factor of the other child. ExtractPart(u) will return the equivalent
ROBDD[∧î]C vertex in O(|V ars(u)|), and it will introduce at most three new vertices into
vertex-table and add at most one arc to the resulting DAG.

Function ExtractPart(u)

Input: a �-vertex u in OBDD[∧i]C , where one vertex in Ch(u) is a ∧-vertex in
ROBDD[∧î]C , and the other is a child of the former

Output: the ROBDD[∧î]C vertex representing ϑ(u)
1 if lo(u) ∈ Ch(hi(u)) then
2 v ← 〈sym(u), 〈>〉, hi(u) \ {lo(u)}〉
3 u′ ← 〈∧, {lo(u), v}〉
4 else // hi(u) ∈ Ch(lo(u))
5 v ← 〈sym(u), lo(u) \ {hi(u)}, 〈>〉〉
6 u′ ← 〈∧, {hi(u), v}〉
7 end
8 if u′ is a ∧i-vertex then return Make(u′)
9 else return u

For ExtractShare(u), it is obvious that u is strictly ∧-decomposable, we try to ∧i-
decompose it. First, we compute the shared factors on Line 1. It is obvious that there
exists at most one factor with more than i variables. If u′ on Line 4 is not bounded by i and
|V | > 1, we can ∧i-decompose it by only extracting the factors with at most i variables.
Figure 5d provides an example to show how ExtractShare works. ExtractShare has the
following properties:

Observation 13. Let u be a �-vertex in OBDD[∧i]C with two ROBDD[∧î]C children satisfying
that both children are ∧-vertices with some shared factors. ExtractShare(u) will return the
equivalent ROBDD[∧î]C vertex in O(|V ars(u)|), and it will introduce at most three new
vertices into vertex-table and add at most one arc to the resulting DAG.

According to Observations 10–13 and the fact that each calling of Merge introduces at
most one new vertex and adds two arcs, it is easy to prove that Algorithm Decompose has
the following properties:

Proposition 6. Given each OBDD[∧i]C rooted at u, the output of Decompose(u) is an
ROBDD[∧î]C vertex equivalent to ϑ(u), the number of vertices in the ROBDD[∧î]C rooted
at Decompose(u) is not more than 4 · |V (Gu)|, and the size of ROBDD[∧î]C is not more
than 2 · |Gu|. The time complexity of Decompose is bounded by O(|V ars(u)| · |V (Gu)|).

Given any chain C and integer i, the algorithm Decompose immediately provides a com-
pilation algorithm for ROBDD[∧î]C ; that is, first generate the equivalent ROBDD[∧0̂]C (re-
sp. ROBDD[∧1̂]C and ROBDD[∧T̂ ,i]T), and then transform the result into the ROBDD[∧î]C ,
where ROBDD[∧0̂]C (resp. ROBDD[∧1̂]C and ROBDD[∧T̂ ,i]T) can be generated by any

473

Lai, Liu, & Yin

Function ExtractShare(u)

Input: a �-vertex u in OBDD[∧i]C , where both lo(u) and hi(u) are ROBDD[∧î]C
vertices, sym(lo(u)) = sym(hi(u)) = ∧, and Ch(lo(u)) ∩ Ch(hi(u)) 6= ∅

Output: the ROBDD[∧î]C vertex representing ϑ(u)
1 V ← Ch(lo(u)) ∩ Ch(hi(u))
2 v ← 〈sym(u), lo(u) \ V, hi(u) \ V 〉
3 u′ ← 〈∧, V ∪ {v}〉
4 if u′ is a ∧i-vertex then return Make(u′)
5 else if |V | > 1 then
6 V ← {w ∈ V : |V ars(Gw)| ≤ i}
7 v ← 〈sym(u), lo(u) \ V, hi(u) \ V 〉
8 return Make(〈∧, V ∪ {v}〉)
9 else return u

ROBDD (resp. ROBDD-L∞ and AOBDD) compilation algorithm according to Theorem
1. Therefore, Decompose verifies the existence of ROBDD[∧î]C for any formula. Lai, Liu,
and Wang (2013) proposed an algorithm called L2Inf that can transform each OBDD-L into
ROBDD-L∞. Roughly speaking, L2Inf is a special case of Decompose that transforms
OBDD[∧1]C into ROBDD[∧1̂]C .

It is known that given a CNF formula with n variables and treewidth w, there exists
an AOBDD over some tree T whose size is bounded by O(n2w) (Mateescu, Dechter, &
Marinescu, 2008). Since each AOBDD over T can be seen as an OBDD[∧]C , we can also
have the same size bound of ROBDD[∧∞̂]C according to Proposition 6:

Corollary 3. For each CNF formula with n variables and treewidth w, there exists some
chain C over PV such that the corresponding ROBDD[∧∞̂]C has a size O(n2w).

Next we will show that there exists some class of formulas such that ROBDD[∧î]C is
exponentially more space-efficient than ROBDD[∧ĵ]C (i > j). Therefore, we need some

method to estimate the size of ROBDD[∧î]C . In the ROBDD community, Sieling and
Wegener’s bound (Sieling & Wegener, 1993) is typically used for estimating ROBDD size.
Specifically speaking, given a chain C over PV , a variable x, a variable set X = {x′ : x′ ≺C
x}, and a formula ϕ with m distinct sub-formulas that are obtained by conditioning ϕ on all
assignments over X and depend on x, the ROBDD over C representing ϕ contains exactly
m vertices labeled by x. Here we generalize Sieling and Wegener’s bound to estimate the
sizes of ROBDD[∧î]C and ROBDD[∧T̂ ,i]T :

Proposition 7. Let ϕ be a formula, let x be a variable in V ars(ϕ), let X be the set
of variables in V ars(ϕ) less than glb(ϕ) over chain C (resp. tree T), and let Ψ be {ψ :
∃ω ∈ 2X .ψ is a factor of the ∧î -decomposition (resp. ∧T̂ -decomposition) of bϕ|ωc}. In
the corresponding ROBDD[∧î]C (resp. ROBDD[∧T̂ ,i]T if it exists), the number of vertices
labeled by x is equal to the number of distinct factors in Ψ with the appearance of x.

According to Proposition 7 and Observation 3d, we can show that if i > j, Equation
(1) can be represented by an ROBDD[∧î]C in linear size, but the size of the equivalent

474

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

ROBDD[∧ĵ]C is exponential in n, where C is depicted in Figure 2a. For a general chain C, we
arrive at a similar conclusion by simply substituting the kth variable in C for xk in Equation
(1). Therefore, together with Proposition 6, we can state the following succinctness results:

Theorem 5. Given a chain C over variables and two integers i and j, ROBDD[∧î]C ≤s
ROBDD[∧ĵ]C iff i ≤ j.

The above theorem indicates that when moving along each solid arc in Figure 1, the
succinctness of language increases. In particular, ROBDD[∧î]C (i ≥ 2) is strictly more
succinct than two previous languages ROBDD and ROBDD-L∞ over C by Theorem 1.
That is, ROBDD[∧î]C can further mitigate the size explosion problem of ROBDD from a
theoretical perspective.

6.2 Succinctness Relationship Between ROBDD[∧T̂ ,i]T and ROBDD[∧î]C

In this subsection, we analyze the succinctness relationship between ROBDD[∧T̂ ,i]T and

ROBDD[∧î]C . The case i = 0 is immediate from the fact ROBDD[∧T̂ ,0]T ⊆ ROBDD[∧0̂]C .

In order to obtain the succinctness results between ROBDD[∧T̂ ,i]T and ROBDD[∧î]C (i >

0), we also need to state the following fact:

Observation 14. Given a non-trivial formula ϕ that can be represented in ROBDD[∧T̂]T
rooted at u, |V (Gu)| ≤ 3 · |V ars(ϕ)| · 2dep(T). Therefore, if dep(T) < ∞, then for each
language L, ROBDD[∧T̂]T ≥s L.

It is obvious that ROBDD[∧T̂ ,i]T ≤s ROBDD[∧î]C since each ROBDD[∧T̂ ,i]T is an

OBDD[∧i]C . Moreover, given a tree T with an infinite path C′, it is obvious ROBDD[∧0̂]C′

⊆ ROBDD[∧T̂ ,i]T . According to Theorem 5, we know that ROBDD[∧0̂]C′ 6≤s ROBDD[∧î]C′
when i > 0. Since ROBDD[∧î]C′ ⊆ ROBDD[∧î]C , we immediately know ROBDD[∧0̂]C′ 6≤s
ROBDD[∧î]C . Then since ROBDD[∧0̂]C′ ⊆ ROBDD[∧T̂ ,i]T , we know ROBDD[∧T̂ ,i]T 6≤s
ROBDD[∧î]C . According to Observation 14 and the above facts, we can state the following
succinctness results:

Theorem 6. ROBDD[∧T̂ ,i]T =s ROBDD[∧î]C if i = 0 or dep(T) <∞, and ROBDD[∧T̂ ,i]T
<s ROBDD[∧î]C otherwise.

The above theorem indicates that when moving along each dashed-dotted arc in Figure
1, the succinctness of language does not decrease. Moreover, we can manage the space
efficiency of ROBDD[∧T̂ ,i]T by managing the depth of tree.

6.3 Succinctness Relationship Between Subsets in OBDD[∧]≺ and Existing
Languages

We now discuss the succinctness relationship between the two families of canonical subsets
in OBDD[∧]≺ and some existing languages. First, the succinctness relationship between
ROBDD[∧î]C (resp. ROBDD[∧T̂ ,i]T) and the ones in {ROBDD, ROBDD-L∞, AOBDD} is

immediate from Theorems 1, 5 and 6. Second, ROBDD[∧î]C is strictly less succinct than
Decision-DNNF and d-DNNF. According to Proposition 7, the negation of Equation (1)
corresponds to an ROBDD[∧î]C (C in Figure 2a) with an exponential size, while the same

475

Lai, Liu, & Yin

formula can be represented by a Decision-DNNF formula with a linear size. Therefore,
we know that ROBDD[∧î]C <s Decision-DNNF and then ROBDD[∧î]C <s d-DNNF. This
suggests that there is still plenty of room to mitigate the size explosion problem further.
To some extent, this example also reflects that the space efficiency of ROBDD[∧î]C , as
well as that of ROBDD[∧T̂ ,i]T , is highly dependent on the condition whether we can ob-
tain adequate strict ∧-decompositions after assigning some variables in practical knowledge
bases. Third, the succinctness relationship between ROBDD[∧î]C (i ≥ 1) and CSDDV is
incomparable. The reader can verify that if the variables denoting the shifting distance are
less than the other variables, some class of circular bit-shift functions can be represented
in ROBDD[∧î]C in polysize. However, circular bit-shift functions cannot be represented in
CSDDV in polysize (Pipatsrisawat, 2010). Finally, it is known that ROBDD >s MOD-
S (Darwiche & Marquis, 2002), and we also know that ROBDD[∧T̂]T >s MODS if some
variable in T has an infinite number of disjoint subtrees each of which has at least two
vertices.

7. Operating Efficiency of ROBDD[∧î]C and ROBDD[∧T̂ ,i]T
We now analyze the time efficiency of operating ROBDD[∧î]C and ROBDD[∧T̂ ,i]T . First,

we present some tractable algorithms for ROBDD[∧î]C and ROBDD[∧T̂ ,i]T . Then, we
evaluate the tractability with respect to the criteria proposed by Darwiche and Marquis
(2002). Finally, we propose a new notion called rapidity to describe the operating efficiency,
and we provide the rapidity results for ROBDD[∧î]C and ROBDD[∧T̂ ,i]T .

Each operation can be seen as a relation between inputs and outputs. All operations
are performed on formula sequences in language L, including the set of all unary sequences
on L (denoted by L itself), the set of all binary sequences on L (denoted by L × L), and
the set of all sequences on L (denoted by L∗). These formula sequences are referred to as
the primary input information of operations. The remaining input information is called
supplementary input information; particularly, {nil} is used for convenience to denote no
supplementary information. Each query operation outputs some piece of information of the
corresponding formula sequence, and each transformation operation outputs an element
in {nil} ∪ L, where nil is used to handle cases in which the transformation operations of
incomplete languages fail for some formulas. We can write an operation as a set of triples
with the form (ϕ1, . . . , ϕn, α, β), where ϕ1, . . . , ϕn represent the primary information, α
represents the supplementary information, and β represents the output information. Now
we are ready to introduce the operations mentioned in the KC map (Darwiche & Marquis,
2002):

Definition 9 (query operations). Given a language L, we focus on the following query
operations:
• Consistency (resp. validity) check: CO (resp. V A) on L is a relation between L× {nil}

and {false, true} such that for every formula ϕ ∈ L, (ϕ, nil, true) ∈ CO (resp. V A) iff ϕ
is consistent (resp. valid), and (ϕ, nil, false) ∈ CO (resp. V A) iff ϕ is inconsistent (resp.
invalid);
• Clausal entailment check: Let LC be the set of clauses. CE on L is a relation between

L × LC and {false, true} such that for every formula ϕ ∈ L and every clause δ ∈ LC ,
(ϕ, δ, true) ∈ CE iff ϕ |= δ holds, and (ϕ, δ, false) ∈ CE iff ϕ 6|= δ holds;

476

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

• Implicant check: Let LT be the set of terms. IM on L is a relation between L× LT and
{false, true} such that for every formula ϕ ∈ L and every term γ ∈ LT , (ϕ, γ, true) ∈ IM
iff γ |= ϕ holds, and (ϕ, γ, false) ∈ IM iff γ 6|= ϕ holds;
• Equivalence (resp. sentential entailment) check: EQ (resp. SE) on L is a relation

between L×L×{nil} and {false, true} such that for every pair of formulas ϕ and ϕ′ in L,
(ϕ,ϕ′, nil, true) ∈ EQ (resp. SE) iff ϕ ≡ ϕ′ (resp. ϕ |= ϕ′) holds, and (ϕ,ϕ′, nil, false) ∈
EQ (resp. SE) iff ϕ 6≡ ϕ′ (resp. ϕ 6|= ϕ′) holds;
• Model counting (resp. enumeration): Let P(Ωall) be the powerset of the set of all as-

signments. CT (resp. ME) on L is a relation between L × {nil} and N (resp. P(Ωall))
such that for every formula ϕ ∈ L and every natural number n (resp. every set of models
Ω), (ϕ, nil, n) ∈ CT (resp. (ϕ, nil,Ω) ∈ME) iff n (resp. Ω) is the number (resp. set) of
models of ϕ.

Definition 10 (transformation operations). Given a language L, we focus on the following
transformation operations:

• Conditioning: Let Ωall be the set of all assignments. CD on L is a relation between
L × Ωall and {nil} ∪ L such that for every pair of formulas ϕ and ϕ′ in L and every
assignment ω, (ϕ, ω, ϕ′) iff ϕ|ω ≡ ϕ′, and (ϕ, ω, nil) iff ϕ|ω cannot be represented in L.
• Forgetting: Let P(PV) be the power set over PV . FO on L is a relation between

L × P(PV) and {nil} ∪ L such that for every pair of formulas ϕ and ϕ′ in L and every
variable set X, (ϕ,X,ϕ′) iff ∃X.ϕ ≡ ϕ′, and (ϕ,X, nil) iff ∃X.ϕ cannot be represented in
L.
• Singleton forgetting: SFO on L is a relation between L × PV and {nil} ∪ L such that

for every pair of formulas ϕ and ϕ′ in L and every variable x, (ϕ, x, ϕ′) iff ∃x.ϕ ≡ ϕ′, and
(ϕ, x, nil) iff ∃x.ϕ cannot be represented in L.
• Conjunction (resp. disjunction): ∧C (resp. ∨C) on L is a relation between L∗×{nil} and
{nil}∪L such that for every finite set of formulas ϕ1, . . . , ϕn+1 in L, (ϕ1, . . . , ϕn, nil, ϕn+1)
∈ ∧C (resp. ∨C) iff ϕ1∧· · ·∧ϕn ≡ ϕn+1 (resp. ϕ1∨· · ·∨ϕn ≡ ϕn+1), and (ϕ1, . . . , ϕn, nil,
nil) ∈ ∧C (resp. ∨C) iff ϕ1 ∧ · · · ∧ ϕn (resp. ϕ1 ∨ · · · ∨ ϕn) cannot be represented in L.
• Bounded conjunction (resp. disjunction): ∧BC (resp. ∨BC) on L is a relation between

L × L × {nil} and {nil} ∪ L such that for any three formulas ϕ1, ϕ2 and ϕ3 in L,
(ϕ1, ϕ2, nil, ϕ3) ∈ ∧BC (resp. ∨BC) iff ϕ1 ∧ ϕ2 ≡ ϕ3 (resp. ϕ1 ∨ ϕ2 ≡ ϕ3), and
(ϕ1, ϕ2, nil, nil) ∈ ∧BC (resp. ∨BC) iff ϕ1 ∧ϕ2 (resp. ϕ1 ∨ϕ2) cannot be represented in
L.
• Negation: ¬C on L is a relation between L×{nil} and {nil}∪L such that for every pair

of formulas ϕ and ϕ′ in L, (ϕ, nil, ϕ′) ∈ ¬C iff ¬ϕ ≡ ϕ′, and (ϕ, nil, nil) iff ¬ϕ cannot be
represented in L.

Given an operation OP on language L (denoted by OP (L)), its domain is the set
{(ϕ1, . . . , ϕn, α) : ∃β ∈ Γ.(ϕ1, . . . , ϕn, α, β) ∈ Γ}. We say that an algorithm Alg performs
OP (L) iff the following two conditions hold: its set of inputs is equal to the domain of L; and
for every input (ϕ1, . . . , ϕn, α), if Alg outputs β 6= nil (the current input is called valid),
then (ϕ1, . . . , ϕn, α, β) ∈ OP (L), and if Alg reports failure, then (ϕ1, . . . , ϕn, α, nil) ∈
OP (L).

477

Lai, Liu, & Yin

7.1 Tractable Operation Algorithms for OBDD[∧]≺ and Its Subsets

In this subsection we discuss the tractable algorithms for OBDD[∧]≺ and its subsets. Since
ROBDD[∧î]C (resp. ROBDD[∧T̂ ,i]T) is a subset of d-DNNF, we can immediately use the
tractable algorithms performing CT and ME on d-DNNF to perform the corresponding
operations on ROBDD[∧î]C (resp. ROBDD[∧T̂ ,i]T). Since ROBDD[∧T̂]T is equivalent
to AOBDD, we can immediately use the binary unweighted version of apply algorithm
proposed by Mateescu, Dechter, and Marinescu (2008) to perform ∧BC on ROBDD[∧T̂]T .
We present three algorithms to perform CD on ROBDD[∧î]C , CD on ROBDD[∧T̂]T , SE
on ROBDD[∧T̂]T and ∨BC on ROBDD[∧T̂]T . For CO, V A and EQ on ROBDD[∧î]C and
ROBDD[∧T̂]T , since each vertex has exactly one copy in vertex-table, we can perform these
three types of queries in O(1). For CE (resp. IM), we can perform it by first calling the
CD algorithm and then calling the CO (resp. V A) algorithm on the result of the first step.
These algorithms can facilitate the development of software systems in which ROBDD[∧î]C
or ROBDD[∧T̂ ,i]T is adopted; on the other hand, they immediately reveal some of the
tractability results that will be discussed in the next subsection. Note that in the following
algorithms, we will employ the dynamic programming technique to improve their efficiency;
that is, we will use hash tables to store the vertices that have already been processed.

7.1.1 Conditioning

We now discuss the conditioning operation, which permits reasoning under some partial
observations in the real world. We present an operation algorithm called Condition (in
Algorithm 2), which performs the conditioning of an OBDD[∧]≺ on an assignment. With
some additional steps, we can then use this algorithm to perform CD on ROBDD[∧î]C
and ROBDD[∧T̂ ,i]T . Our algorithm is similar to the conditioning algorithm for d-DNNF,

but we need to show that the operating results are in OBDD[∧]≺. This algorithm has the
following property:

Proposition 8. Condition can perform CD on OBDD[∧]≺, Condition(u, ω) terminates
in O(|Gu|+ |ω|), and the size of its output is not greater than |Gu|.

Algorithm 2: Condition(u, ω)

Input: an OBDD[∧]≺ vertex u, and an assignment ω
Output: an OBDD[∧]≺ vertex representing ϑ(u)|ω

1 if H(u) 6= nil then return H(u)
2 else if u is a leaf vertex then return H(u)← u
3 else if sym(u) = false ∈ ω then H(u)← Condition(lo(u), ω)
4 else if sym(u) = true ∈ ω then H(u)← Condition(hi(u), ω)
5 else H(u)← 〈sym(u), {Condition(v, ω) : v ∈ Ch(u)}〉
6 H(u)← Make(H(u))
7 return H(u)

Given an ROBDD[∧î]C , the conditioning operation can be performed by first calling
Condition to obtain an OBDD[∧i]C and then calling Decompose to transform the re-
sulting OBDD[∧i]C into ROBDD[∧î]C . Given an ROBDD[∧T̂]T , the conditioning operation

478

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

can be performed by the following steps: first, call Condition to obtain an OBDD[∧T]T ;
second, transform the resulting OBDD[∧T]T into ROBDD[∧T̂]T according to Proposition
5. Therefore, we can draw the following conclusion:

Corollary 4. CD on ROBDD[∧î]C and ROBDD[∧T̂]T can be respectively performed in
time O(|V ars(u)| · |V (Gu)|+ |ω|) and O(|Gu|+ |ω|).

Now we present another algorithm called ConditionMin in Algorithm 3 which is tai-
lored for a special type of conditioning. In detail, we condition ROBDD[∧î]C on a unit
assignment whose variable is the minimum variable in the ROBDD[∧î]C . This operation
will be used in Subsection 7.3. Algorithm ConditionMin has the following property:

Proposition 9. Given each internal ROBDD[∧î]C vertex u and each Boolean constant b,
ConditionMin(u) outputs the ROBDD[∧î]C vertex representing ϑ(u)|glb(u)=b, the size of
ROBDD[∧î]C rooted at the output is less than |Gu|, and the time complexity of Condition-
Min is bounded by O(|V ars(u)|).

Algorithm 3: ConditionMin(u, b)

Input: an internal vertex u in ROBDD[∧î]C , and a Boolean value b
Output: the ROBDD[∧î]C vertex representing ϑ(u)|glb(u)=b

1 if u is a �-vertex then
2 if b = false then return lo(u)
3 else return hi(u)

4 else
5 Search the child v ∈ Ch(u) with the appearance of glb(u)
6 if b = false then w ← lo(v)
7 else w ← hi(v)
8 if sym(w) = ∧ then Ch(u)← Ch(u) \ {v} ∪ Ch(w)
9 else Ch(u)← Ch(u) \ {v} ∪ {w}

10 return Make(u)

11 end

7.1.2 Sentential Entailment of ROBDD[∧T̂]T

Now we turn to another tractable querying operation which checks sentential entailment
relation between two ROBDD[∧T̂]T s. We first present an observation to show that this
problem can be solved recursively by case analysis:

Observation 15. Given two internal vertices u and v in ROBDD[∧T̂]T , they fulfill at least
one of the following cases:
(a) glb(u) and glb(v) are incomparable over ≺T : ϑ(u) 6|= ϑ(v);
(b) sym(v) = ∧: ϑ(u) |= ϑ(v) iff ∀w ∈ Ch(v).ϑ(u) |= ϑ(w);
(c) sym(v) ∈ PV and sym(v) ≺T V ars(u): ϑ(u) |= ϑ(v) iff ∀w ∈ Ch(v).ϑ(u) |= ϑ(w);
(d) sym(u) = sym(v) ∈ PV : ϑ(u) |= ϑ(v) iff ϑ(lo(u)) |= ϑ(lo(v)) and ϑ(hi(u)) |= ϑ(hi(v));
(e) sym(u) ∈ PV and sym(u) ≺T V ars(v): ϑ(u) |= ϑ(v) iff ϑ(lo(u)) |= ϑ(v) and ϑ(hi(u)) |=

ϑ(v); and

479

Lai, Liu, & Yin

(f) sym(u) = ∧ and glb(u) ≺T glb(v): ϑ(u) |= ϑ(v) iff ϑ(mchx(u)) |= ϑ(v), where x =
chT (glb(u) glb(v)).

Based on the above observation, we present the sentential entailment algorithm called
EntailTree (in Algorithm 4) for ROBDD[∧T̂]T s. For each single calling of Entail-
Tree(w,w′), w is a meta-vertex in Gu, and w′ is a vertex in Gv. Therefore, the number
of single callings is not more than |Gu| · |V (Gv)| according to Observation 7. We can use
a preprocessing routine to compute all greatest lower bounds for meta-vertices of Gu and
vertices of Gv in O(|V ars(u)| · |Gu|) and in O(|Gv|), respectively. Then it is easy to see that
given two ROBDD[∧T̂]T s rooted at u and v, each single calling of EntailTree can be
done in O(|V ars(u)|+ |V ars(v)|). Therefore, we can draw the following conclusion:

Proposition 10. EntailTree can perform SE on ROBDD[∧T̂]T , and EntailTree(u,
v) terminates in O((|V ars(u)|+ |V ars(v)|) · |Gu| · |V (Gv)|).

According to Proposition 5, each OBDD[∧T]T rooted at v can be converted into the
equivalent ROBDD[∧T̂]T in O(|V ars(v)| · |V (Gv)|), and thus the sentential entailment be-
tween two OBDD[∧T]T s can be checked within the same time complexity.

Algorithm 4: EntailTree(u, v)

Input: two ROBDD[∧T̂]T vertices u and v over tree T
Output: answer whether ϑ(u) |= ϑ(v)

1 if H(v) 6= nil then return H(v)
2 else if u = ⊥ or v = > then H(u, v)← true
3 else if u = > or v = ⊥ then H(u, v)← false
4 else if glb(u) and glb(v) are incomparable then H(u, v)← false
5 else if sym(v) = ∧ then H(u, v)←

∧
w∈Ch(v) EntailTree(u,w)

6 else if sym(v) ≺T V ars(u) then
H(u, v)← EntailTree(u, lo(v)) ∧EntailTree(u, hi(v))

7 else if sym(u) = sym(v) then
H(u, v)← EntailTree(lo(u), lo(v)) ∧EntailTree(hi(u), hi(v))

8 else if sym(u) = ∧ and glb(u) ≺T glb(v) then
9 x← chT (glb(u) glb(v))

10 H(u, v)← EntailTree(mchx(u), v)

11 else H(u, v)← EntailTree(lo(u), v) ∧EntailTree(hi(u), v)
12 return H(u, v)

Example 3. We show how EntailTree checks the entailment relation between two
ROBDD[∧T̂]T s as depicted in Figure 6. We first call EntailTree(u1, v1) and the con-
dition on Line 7 is satisfied. Then we recursively call EntailTree(u2, v2) and Entail-
Tree(u3, v3). In the process of calling EntailTree(u2, v2), the condition on Line 5 is
satisfied and then we recursively call EntailTree(u2, v4) and EntailTree(u2, v5). In the
process of calling EntailTree(u2, v4), the condition on Line 8 is satisfied and then the
output is just the output of recursively calling EntailTree(u4, v4). In the process of call-
ing EntailTree(u4, v4), the condition on Line 7 is satisfied and then we recursively call
EntailTree(〈⊥〉, v6) and EntailTree(u7, v7). Both recursive calls return true, and thus

480

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

x1

x2 x6

x4v2

x3

⊥ ⊤

x3 ⊥ ⊤

v1

v3

v4 v5

v6 v7

x1

x2

x5

x6 x6

u2

⊥ ⊤

x3 ⊥ ⊤

u1

u3

u4 u5 u6

u7

?=

Figure 6: Example of running algorithm EntailTree on two ROBDD[∧T̂]T s, where T is
depicted in Figure 2c

EntailTree(u2, v4) returns true. The process of calling EntailTree(u2, v5) is similar to
that of calling EntailTree(u2, v4), and the output is true. Therefore, EntailTree(u2, v2)
returns true. In the process of calling EntailTree(u3, v3), the condition on Line 4 is sat-
isfied, and then false is returned. Finally, we know the left ROBDD[∧T̂]T does not entail
the right one.

7.1.3 Bounded Disjunction of ROBDD[∧T̂]T

Now we discuss the bounded disjoining algorithm for ROBDD[∧T̂]T . Note that due to the
incompleteness of ROBDD[∧T̂]T , we cannot perform ∨BC using only ∧BC and ¬C; that
is, ϕ∨ψ = ¬(¬ϕ∧¬ψ). For example, x2 ∧x3, x2 ∧¬x3 and (x2 ∧x3)∨ (x2 ∧¬x3) ≡ x2 can
be represented in ROBDD[∧T̂]T (T is depicted in Figure 2b), but neither ¬(x2 ∧ x3) nor
¬(x2 ∧ ¬x3) can be represented in ROBDD[∧T̂]T . We first point out two cases where the
disjunction of two vertices in ROBDD[∧T̂]T cannot be represented in ROBDD[∧T̂]T . For
notational convenience, given two ∧-vertices u and v in ROBDD[∧T̂]T with glb(u) = glb(v),
and given a variable x ∈ ChT (glb(u)), we call (mchx(u),mchx(v)) a meta-pair between u
and v; in particular, we call it a different meta-pair if mchx(u) 6= mchx(v). For example,
〈〈¬x5〉, 〈x5〉〉 is the only different meta-pair between 〈∧, {〈x2〉, 〈¬x5〉}〉 and 〈∧, {〈x2〉, 〈x5〉}〉.
Observation 16. Let u and v be two internal vertices in ROBDD[∧T̂]T satisfying the follow-
ing conditions: a) sym(u) = ∧ and glb(u) ≺T glb(v); and b) ϑ(u) 6|= ϑ(v) and ϑ(v) 6|= ϑ(u).
We know that ϑ(u) ∨ ϑ(v) cannot be represented in ROBDD[∧T̂]T .

Observation 17. Let u and v be two ∧-vertices in ROBDD[∧T̂]T satisfying the following
conditions: a) glb(u) = glb(v); and b) ϑ(u) 6|= ϑ(v) and ϑ(v) 6|= ϑ(u). We know that
ϑ(u) ∨ ϑ(v) cannot be represented in ROBDD[∧T̂]T , if there exist more than one different
meta-pair between u and v.

Given three ROBDD[∧T̂]T (T depicted in Figure 2c) vertices u = 〈∧, {〈x2〉, 〈x5〉}〉,
v = 〈¬x2〉 and v′ = 〈∧, {〈¬x2〉, 〈¬x5〉}〉, we know that ϑ(u) ∨ ϑ(v) and ϑ(u) ∨ ϑ(v′) cannot
be represented in ROBDD[∧T̂]T according to Observations 16 and 17, respectively. Now we
are ready to propose a polytime disjoining algorithm called DisjoinTree (in Algorithm 5).
The cases in which either u or v is a leaf vertex are implicitly mentioned on Lines 2–3. The
cases processed on Lines 4–12 are similar to the steps of disjoining two ROBDDs. Otherwise,
according to Observations 16–17, ϑ(u) ∨ ϑ(v) can be represented in ROBDD[∧T̂]T only if
there exists exactly one different meta-pair between u and v. Then the corresponding cases
are processed on Lines 13–18.

481

Lai, Liu, & Yin

For each single calling of DisjoinTree(w, w′), w and w′ are meta-vertices in Gu and Gv,
respectively. Therefore, we can use the algorithm EntailTree to compute the entailment
relation between the meta-vertices of Gu and Gv in the preprocessing stage. By using hash
table, the number of single callings of EntailTree is not more than |Gu| · |Gv|, and thus
the calling time is bounded by O((|V ars(u)|+ |V ars(v)|) · |Gu| · |Gv|). When the entailment
relation on Lines 2–3 is already known, each single calling of DisjoinTree can be done
in O(|V ars(u)| + |V ars(v)|). According to the fact that the number of single callings of
DisjoinTree is not greater than |Gu| · |Gv|, we can draw the following conclusion:

Proposition 11. DisjoinTree can perform ∨BC on ROBDD[∧T̂]T , and DisjoinTree(u,
v) terminates in O((|V ars(u)|+ |V ars(v)|) · |Gu| · |Gv|).

Algorithm 5: DisjoinTree(u, v)

Input: two ROBDD[∧T̂]T s rooted at u and v
Output: the ROBDD[∧T̂]T representing ϑ(u) ∨ ϑ(v) if it exists, and report failure

otherwise
1 if H(u, v) 6= nil then return H(u, v)
2 else if u |= v then H(u, v)← v
3 else if v |= u then H(u, v)← u
4 else if u is a �-vertex and sym(u) ≺T V ars(v) then
5 u1 ← DisjoinTree(lo(u), v); u2 ← DisjoinTree(hi(u), v)
6 H(u, v)← 〈sym(u), u1, u2〉
7 else if v is a �-vertex and sym(v) ≺T V ars(u) then
8 v1 ← DisjoinTree(u, lo(v)); v2 ← DisjoinTree(u, hi(v))
9 H(u, v)← 〈sym(v), v1, v2〉

10 else if sym(u) = sym(v) 6= ∧ then
11 v1 ← DisjoinTree(lo(u), lo(v)); v2 ← DisjoinTree(hi(u), hi(v))
12 H(u, v)← 〈sym(u), v1, v2〉
13 else if sym(u) = sym(v) = ∧ and glb(u) = glb(v) then
14 if there is exactly one different meta-pair (w,w′) between u and v then
15 H(u, v)← 〈∧, (Ch(u) \ {w}) ∪ {DisjoinTree(w,w′)}〉
16 H(u, v)← Merge(H(u, v))

17 else report failure

18 else report failure
19 H(u, v)← Make(H(u, v))
20 return H(u, v)

Example 4. We show that how DisjoinTree disjoins two ROBDD[∧T̂]T s as depicted in
Figure 7. We first call DisjoinTree(u1, v1) and the condition on Line 10 is satisfied.
Then we recursively call DisjoinTree(u2, v2) and DisjoinTree(u3, v3) on Line 11. In the
process of calling DisjoinTree(u2, v2), the condition on Line 13 is satisfied and we can
confirm that there is exactly one different meta-pair (u5, v5) between u2 and v2. Disjoin-
Tree(u5, v5) outputs 〈>〉, and thus DisjoinTree(u2, v2) outputs w2 = u4 = v4. In the

482

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

x1

x2 x5

x6
v2

⊥ ⊤

⊥ ⊤

v1

v3

v4

v5

x1

x2

x5

x5 x6

u2

⊥ ⊤ ⊥ ⊤

u1

u3

u4

u5 u6

=

x1

x2 x6

⊥ ⊤ ⊥ ⊤

1 1 1w u v=

2 2 2w u v= 3 3 3w u v=

Figure 7: Example of running algorithm DisjoinTree on two ROBDD[∧T̂]T s, where T is
depicted in Figure 2c

process of calling DisjoinTree(u3, v3), we know u3 |= v3 (i.e., the condition on Line 2 is
satisfied) and thus w3 = v3 is returned. Finally, the output of DisjoinTree(u1, v1) is w1.

7.2 Tractability Evaluation

We examine the tractability of ROBDD[∧î]C and ROBDD[∧T̂ ,i]T with respect to the criteria

proposed by Darwiche and Marquis (2002). That is, for an operation OP 6= ME, we say
that L satisfies OP iff there exists some polytime algorithm performing OP ; and for ME,
we say that L satisfies ME iff there exists some algorithm performing ME(L) in polytime
in the size of input and the number of models. Before we discuss the tractability results,
we present the following conclusion, which will be used to prove some negative results of
tractability:

Proposition 12. Given any two ROBDD[∧î]Cs (i ≥ 1) rooted at u and v, the problem of
deciding whether ϑ(u) |= ϑ(v) holds or not is co-NP-complete.

Table 2 summarizes both query-related and transformation-related tractability results
of ROBDD[∧î]C and ROBDD[∧T̂ ,i]T . The tractability results of MODS, d-DNNF, Decision-

DNNF 6, SDDV and CSDDV (Darwiche & Marquis, 2002; Darwiche, 2011; Van den Broeck
& Darwiche, 2015) are also shown for comparison. We explain the results briefly here and
include the detailed proof in the appendix. The results of ROBDD[∧0̂]C are known previ-
ously since it is equivalent to ROBDD over C. The other positive results can be understood
from three aspects: a) the polytime operating algorithms in Subsection 7.1; b) the fact
that if an ROBDD[∧T̂ ,i]T has some ∧-vertex, then its negation cannot be represented in

ROBDD[∧T̂ ,i]T , and otherwise we can employ the negation algorithm for ROBDD[∧0̂]C
to perform the negation; and c) the fact that m ROBDD[∧T̂]T s (dep(T) < ∞) can be

conjoined in O(m · |X|2 · 2dep(T)) because the size of each ROBDD[∧T̂]T over X is not

more than |X| · 2dep(T). The negative result of ROBDD[∧î]C (i > 0) on SE immediately
follows from Proposition 12, which implies many other negative results. The negative re-
sult of ROBDD[∧î]C (i > 0) on ¬C occurs because performing negation on some class of
ROBDD[∧î]Cs will introduce an exponential number of new vertices. The negative results
of ROBDD[∧i]T̂ on ∨C and FO are due to the facts that there exists some x with infinite
descendants X and that each term on X can be represented in ROBDD[∧i]T̂ in a linear size.
Finally, the negative result of ROBDD[∧î]C (dep(T) = ∞) on ∧C is due to the following
facts: there is an infinite path C′ in T , and each clause on V (C′) can be represented in
ROBDD[∧î]C in a linear size.

6. The tractability results of Decision-DNNF can be proved in a similar fashion to those of d-DNNF.

483

Lai, Liu, & Yin

L CO VA CE IM EQ SE CT ME

ROBDD[∧0̂]C
√ √ √ √ √ √ √ √

ROBDD[∧î]C (i > 0)
√ √ √ √ √

◦
√ √

ROBDD[∧T̂ ,i]T
√ √ √ √ √ √ √ √

CSDDV/Decision-CSDDV
√ √ √ √ √ √ √ √

MODS
√ √ √ √ √ √ √ √

SDDV
√ √ √ √ √ √ √ √

d-DNNF/Decision-DNNF
√ √ √ √

? ◦
√ √

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

ROBDD[∧0̂]C
√

•
√

•
√

•
√ √

ROBDD[∧î]C (i > 0)
√

◦ ◦ ◦ ◦ ◦ ◦ ◦

ROBDD[∧T̂ ,i]T (dep(T) <∞)
√

◦
√ √ √

◦
√ √

ROBDD[∧T̂ ,i]T (dep(T) =∞)
√

◦
√

◦
√

◦
√ √

CSDDV • • • • • • •
√

Decision-CSDDV • ◦ ? ◦ ? ◦ ?
√

MODS
√ √ √

•
√

• • •

SDDV
√

•
√

•
√

•
√ √

d-DNNF/Decision-DNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ?

Table 2: Polytime queries and transformations of ROBDD[∧î]C , ROBDD[∧T̂ ,i]T , Decision-

CSDDV , CSDDV , Decision-DNNF, and d-DNNF, where C, T , and V are over PV ,
√

means
“satisfies”, • means “does not satisfy”, and ◦ means “does not satisfy unless P = NP”

Theorem 7. The results in Table 2 hold.

According to the results in Table 2, we know that ROBDD[∧î]C (i ≥ 2) is as tractable
as ROBDD-L∞. In other words, compared with ROBDD-L∞ over C, ROBDD[∧î]C in-
deed improves the succinctness under the premise of maintaining the same tractability.
Moreover, we know that ROBDD[∧T̂ ,i]T is at least as tractable as ROBDD; in particular,

ROBDD[∧T̂ ,i]T even has more tractability than ROBDD if dep(T) <∞. Therefore, on the
basis of meeting the expressivity requirement, users may improve the time efficiency of oper-
ations on ROBDD[∧T̂ ,i]T by compressing the depth of T . We also know that ROBDD[∧î]C
is more tractable than d-DNNF (resp. Decision-DNNF) since the latter does not support
EQ. Finally, the tractability of ROBDD[∧î]C (i > 0) is incomparable with that of CSDDV ,
because ROBDD[∧î]C supports CD but not SE or ¬C, while CSDDV supports SE and
¬C but not CD. However, ROBDD[∧T̂ ,i]T is more tractable than Decision-CSDDV and
CSDDV , because CSDDV does not support CD, SFO, ∨BC or ∧BC, and it is unknown
whether or not Decision-CSDDV supports SFO (resp. ∨BC and ∧BC). We emphasize that
some tractability results of ROBDD[∧T̂ ,∞]T (i.e., AOBDD over T) have been obtained by

484

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

Mateescu, Dechter, and Marinescu (2008), and Fargier and Marquis (2006), but the results
about CD, FO, SFO, ∧C, ∨C, ∨BC and ¬C are first reported in this paper.

7.3 New Perspective on Time Efficiency

Due to distinct succinctness, it can sometimes be insufficient to compare the time efficiency
of two languages solely by comparing their tractability. We use an example to illustrate
this problem. Consider an operation OP , and two languages L and L′ such that L does
not satisfy OP but L′ satisfy OP. Assume that the number of basic arithmetic operations
involved in performing OP on (ϕ1, . . . , ϕn, α) (resp. (ϕ′1, . . . , ϕ

′
n, α)) be 2m (resp. n), where

ϕi ∈ L (resp. ϕ′i ∈ L′), and m = |α| +
∑

1≤i≤n |ϕi| (resp. n = |α| +
∑

1≤i≤n |ϕ′i|). Then,
performing OP on (ϕ1, . . . , ϕn, α) can be exponentially (in m) more time-consuming than
performing OP on (ϕ′1, . . . , ϕ

′
n, α) when n = 2m

2
. To overcome this problem, we define

a new notion to compare time efficiency from a different perspective, supplementing the
concept of tractability:

Definition 11 (rapidity). An operation OP on a canonical language L1 is at most as
rapid as OP on another canonical language L2 (L1 ≤OPr L2), iff for each algorithm Alg
performing OP on L1, there exists some polynomial p and some algorithm Alg′ performing
OP on L2 such that for every valid input (ϕ1, . . . , ϕn, α) of OP on L1 and every valid input
(ϕ′1, . . . , ϕ

′
n, α) of OP on L2 satisfying ϕi ≡ ϕ′i (1 ≤ i ≤ n), Alg′(ϕ′1, . . . , ϕ

′
n, α) can be done

in time p(t+ |ϕ1|+ · · ·+ |ϕn|+ |α|), where α is any element of supplementary information
and t is the running time of Alg(ϕ1, . . . , ϕn, α).

According to the above definition, we immediately have that ROBDD[∧T̂ ,i]T =OP
r

ROBDD[∧T̂ ,j]T . Note that rapidity relation is also conditionally transitive: If L1 ≤e L2 ≤e
L3, then L1 ≤OPr L2 and L2 ≤OPr L3 imply L1 ≤OPr L3. Because ROBDD is strictly
more succinct than MODS and satisfies ME, each ROBDD can be transformed into the
equivalent MODS formula ϕ in polytime in |ϕ|. Therefore, for each operation OP , MODS
≤OPr ROBDD. This conclusion explains to some extent why practical applications prefer
ROBDD to MODS. Similarly, OP on MODS is at most as rapid as OP on ROBDD[∧î]C
(resp. ROBDD[∧T̂ ,i]T).

Assume that an operation OP satisfies L1 ≤OPr L2. Let (ϕ1, . . . , ϕn, α) be a valid
input of OP on L1 and (ϕ′1, . . . , ϕ

′
n, α) be a valid input of OP on L2, where ϕi ≡ ϕ′i for

1 ≤ i ≤ n. We know the time cost of performing OP on (ϕ′1, . . . , ϕ
′
n, α) increases at most

polynomial times in |α| +
∑

1≤i≤n |ϕi| than that of performing OP on (ϕ1, . . . , ϕn, α). In
particular, if performing OP on (ϕ1, . . . , ϕn, α) can be done in polytime, then performing
OP on (ϕ′1, . . . , ϕ

′
n, α) can also be done in polytime in |α| +

∑
1≤i≤n |ϕi|. Therefore, for

applications needing canonical languages, we suggest that users choose a language by the
following steps rather than by the traditional viewpoint of the KC map: first, identify the
set L of canonical languages meeting the expressivity requirement; second, identify the
set OP of necessary operations and identify the subset L′ of L meeting the tractability
requirement; third, add each language L ∈ L satisfying ∃L′ ∈ L′∀OP ∈ OP.L′ ≤OPr L to
L′; and finally, choose one of the most succinct languages in L′.

Before we present the results of rapidity, we propose two algorithms called Convert-
Down and ConvertTree (in Algorithms 6–7) to transform ROBDD[∧ĵ]C and ROBDD[∧î]C

485

Lai, Liu, & Yin

into ROBDD[∧î]C and ROBDD[∧T̂ ,i]T (i ≤ j), respectively. We will show that Convert-
Down and ConvertTree terminate in polytime in the sizes of outputs. Then, we will
use these two algorithms to prove some rapidity results.

Algorithm 6: ConvertDown(u)

Input: an ROBDD[∧ĵ]C rooted at u

Output: the ROBDD[∧î]C representing ϑ(u), where i ≤ j
1 if H(u) 6= nil then return H(u)
2 if u is a leaf then H(u)← u
3 else if u is a �-vertex then
4 ConvertDown(lo(v)); ConvertDown(hi(v))
5 H(u)← 〈sym(u), H(lo(u)), H(hi(u))〉
6 else
7 V ← {v ∈ Ch(u) : |V ars(v)| > i}
8 if V = ∅ then H(u)← u
9 else if V = {v} then H(u)← 〈∧, (Ch(u) \ {v}) ∪ {ConvertDown(v)}〉

10 else
11 v1 ← ConvertDown(ConditionMin(〈∧, V 〉, false))
12 v2 ← ConvertDown(ConditionMin(〈∧, V 〉, true))
13 v′ ← 〈min{sym(v) : v ∈ V }, v1, v2〉
14 H(u)← 〈sym(u), (Ch(u) \ V) ∪ {v′}〉
15 end

16 end
17 return H(u)

We first explain the algorithm ConvertDown. Here we use the method described in
Corollary 1a to obtain the ∧î-decomposition from a ∧ĵ-decomposition. Due to the canonicity

of ROBDD[∧ĵ]C , each single calling of ConvertDown will create at least one vertex in the

resulting ROBDD[∧î]C . Therefore, the number of single callings of ConvertDown is not
greater than the number of vertices in the resulting ROBDD[∧î]C . According to Proposition
9, each single calling of ConvertDown(w) terminates in O(|V ars(w)|) = O(|V ars(v)|),
where v is the output. Therefore, we can draw the following conclusion:

Proposition 13. Given an ROBDD[∧ĵ]C, ConvertDown can transform it into the equiv-

alent ROBDD[∧î]C (i ≤ j) in O(|V ars(v)| · |V (Gv)|), where v is the root of ROBDD[∧î]C.

Example 5. We show how ConvertDown transforms the ROBDD[∧2̂]C in Figure 3a into
the ROBDD[∧1̂]C in Figure 3b. We first call ConvertDown(u1). Then we recursively
call ConvertDown(u2) and ConvertDown(u3) on Line 4. The process of calling the
latter is similar to the process of calling the former. In the process of calling Convert-
Down(u2), because both children of u2 have more than one variable, V after running Line
7 is equal to {u4, u5}. ConditionMin(〈∧, V 〉, false) and ConditionMin(〈∧, V 〉, true) on
Lines 11–12 return w1 = 〈∧, {u7, u5}〉 and w2 = 〈∧, {u8, u5}〉, respectively. Then we recur-
sively call ConvertDown(w1) and ConvertDown(w2) on Lines 11–12. In the process
of calling ConvertDown(w1), since both sub-graphs rooted at u7 and u5 have more than

486

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

Algorithm 7: ConvertTree(u)

Input: an ROBDD[∧î]C rooted at u
Output: the equivalent ROBDD[∧T̂ ,i]T if it exists, and failure otherwise

1 if H(u) 6= nil then return H(u)
2 if u is a leaf then H(u)← u
3 else if u is a �-vertex then
4 if glb≺T (u) 6= sym(u) then report failure
5 ConvertTree(lo(v)); ConvertTree(hi(v))
6 H(u)← 〈sym(u), H(lo(u)), H(hi(u))〉
7 else
8 G ← 〈Ch(u), {(v, w), (w, v) : glb≺T (v) ≺T glb≺T (w)}〉
9 Let G1, . . . ,Gm be the strongly connected components of G

10 for each 1 ≤ k ≤ m do
11 vk ← 〈∧, V (Gk)〉
12 if |V (Gk)| > 1 then
13 if glb≺T (vk) 6∈ V ars(vk) then report failure
14 v1 ← ConvertTree(ConditionMin(vk, false))
15 v2 ← ConvertTree(ConditionMin(vk, true))
16 uk ← 〈glb≺T (vk), v1, v2〉
17 else uk ← ConvertTree(vk)

18 end
19 H(u)← 〈∧, {u1, . . . , um}〉
20 if H(u) is not bounded by i then report failure

21 end
22 return H(u)

one variable, V after running Line 7 is equal to {u7, u5}. ConditionMin(〈∧, V 〉, false)
and ConditionMin(〈∧, V 〉, true) on Lines 11–12 return w3 = 〈∧, {u7, u9}〉 and w4 =
〈∧, {u7, u10}〉, respectively. Then we recursively call ConvertDown(w3) and Convert-
Down(w4) on Lines 11–12. In the process of calling ConvertDown(w3), V after run-
ning Line 7 is equal to {u7}, and ConvertDown(u7) returns v14. Therefore, Convert-
Down(w3) returns v8 on Line 9 (actually, the output is returned on Line 17, but we omit
the last step here for the sake of simplicity). Similarly, ConvertDown(w4) returns v9.
Then we get back to the process of calling ConvertDown(w1), and this calling returns v4

on Line 14. Similarly, ConvertDown(w2) returns v5. Then we get back to the process of
calling ConvertDown(u2), and this calling returns v2 on Line 14. Similarly, Convert-
Down(u3) returns v3. Finally, we get back to the process of calling ConvertDown(u1),
and this calling returns v1 on Line 5.

We now explain the algorithm ConvertTree. If u is a �-vertex, then ϑ(u) is not strict-
ly ∧T̂ ,i-decomposable by Corollary 2a; therefore, ϑ(u) can be represented in ROBDD[∧T̂ ,i]T
only when glb≺T (u) = sym(u) by Observation 3c. Otherwise, we use the method described
in Corollary 2a to obtain a ∧T̂ ,i-decomposition from ∧î-decomposition. Due to the canonic-

ity of ROBDD[∧î]C , each single calling of ConvertDown will create at least one vertex in

487

Lai, Liu, & Yin

the resulting ROBDD[∧T̂ ,i]T . Therefore, the number of single callings of ConvertTree

is not greater than the number of vertices in the resulting ROBDD[∧T̂ ,i]T . For each single

calling of ConvertTree(w), Lines 8–9 can be done in O(|V ars(w)|2). Therefore, each
single calling of ConvertTree(w) can be done in O(|V ars(w)|2). Then, we can draw the
following conclusion:

Proposition 14. Given an ROBDD[∧î]C, ConvertTree can transform it into the e-
quivalent ROBDD[∧T̂ ,i]T in O(|V ars(v)|2 · |V (Gv)|) if it exists, where v is the root of

ROBDD[∧T̂ ,i]T .

We emphasize that the time complexity in Propositions 13–14 is polynomial in the size
of output (not input), and thus it does not violate the NP-hardness of SE on ROBDD[∧î]C
(i > 0). ConvertDown (resp. ConvertTree), together with Decompose, provides new
methods to perform queries and transformations on ROBDD[∧ĵ]C (resp. ROBDD[∧î]C).
First, we call ConvertDown (resp. ConvertTree) to transform ROBDD[∧ĵ]Cs (resp.

ROBDD[∧î]Cs) into ROBDD[∧î]Cs (resp. ROBDD[∧T̂ ,i]T s). Next, we answer the query
using the outputs of the first step, or we perform the transformation on the outputs of
the first step and then transform the result into ROBDD[∧ĵ]C (resp. ROBDD[∧î]C) by
Decompose. We emphasize that according to the above process, knowledge bases can
be compiled into ROBDD[∧î]C by calling the conjoining algorithm for ROBDD[∧0̂]C (resp.
ROBDD[∧T̂ ,i]T) and Decompose, which provides some basis for developing a bottom-up

compiler for ROBDD[∧î]C , since ROBDD[∧0̂]C (resp. ROBDD[∧T̂ ,i]T) supports ∧BC. Since

the time complexities of Decompose and ConvertDown (resp. ConvertTree) are
polynomial in the sizes of ROBDD[∧î]Cs (resp. ROBDD[∧T̂ ,i]T s) and the rapidity relation

is conditionally transitive, we know ROBDD[∧T̂ ,i]T ≤
OP
r ROBDD[∧î]C ≤

OP
r ROBDD[∧ĵ]C .

Moreover, if dep(T) < ∞, we can show that each ROBDD[∧T̂ ,i]T can be transformed into

ROBDD[∧î]C in polytime in the size of output, and thus ROBDD[∧T̂ ,i]T ≥
OP
r ROBDD[∧î]C .

We can show that for OP ∈ {CD,∧BC,∨BC,SFO} and i > j, there exists some class of
ROBDD[∧ĵ]Cs satisfying the following two conditions: a) the number of new vertices result-

ing from performing OP on each ROBDD[∧ĵ]C is exponential in the sizes of the equivalent

ROBDD[∧î]C ; and b) we can tailor an algorithm performing OP on the class of equivalen-
t ROBDD[∧î]Cs in polytime. Therefore, we know that ROBDD[∧î]C 6≤

OP
r ROBDD[∧ĵ]C ,

which implies similar negative rapidity results on operations FO, ∧C and ∨C. We can
obtain the same negative rapidity results between ROBDD[∧T̂ ,i]T and ROBDD[∧î]C in a

similar fashion when i > 0 and dep(T) = ∞. Now we are ready to present the rapidity
results:

Theorem 8. Given two integers i and j, a chain C and a tree T over variables, and an
operation OP , we can draw the following conclusions:

(a) ROBDD[∧î]C ≤
OP
r ROBDD[∧ĵ]C if i ≤ j, and for OP ∈ {CD, FO, SFO,∧C,∧BC,

∨BC,∨C}, ROBDD[∧î]C ≤
OP
r ROBDD[∧ĵ]C iff i ≤ j;

(b) If i = 0 or dep(T) <∞, ROBDD[∧T̂ ,i]T =OP
r ROBDD[∧î]C. Otherwise, ROBDD[∧T̂ ,i]T

≤OPr ROBDD[∧î]C; and particularly for OP ∈ {CD, FO, SFO,∧C,∧BC,∨BC,∨C},
ROBDD[∧î]C <

OP
r ROBDD[∧î]C.

488

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

From the above theorem, we can observe four interesting facts. First, when moving
along each solid arc or dashed-dotted arc in Figure 1, the rapidity on any operation does
not decrease, and particularly the rapidity on some operations increases. Second, for a
tree with finite depth, ROBDD[∧T̂ ,i]T has the best succinctness, tractability and operation

rapidity among the two families of languages; that is, ROBDD[∧T̂ ,i]T is the best choice if it

can meet the expressivity requirements of some specific application, and ROBDD[∧T̂ ,i]T can
be an option for approximate reasoning even if it cannot meet the expressivity requirements.
Third, according to Proposition 12, the problem of deciding the entailment relation between
two ROBDD[∧î]Cs (i ≥ 1) is co-NP-complete. According to Theorem 8, however, the
rapidity of SE on ROBDD[∧î]C does not decrease with incremental i. If we can prove the
increasing is strict, then we can partition the co-NP-complete problems from some angle.
We leave as an open question whether the rapidity of SE on ROBDD[∧î]C increases with
incremental i. Fourth, the last interesting observation is as follows:

Corollary 5. Given each operation OP on ROBDD[∧ĵ]C (resp. ROBDD[∧T̂ ,i]T) that can

be performed in polytime, OP on ROBDD[∧î]C (i ≥ j) can also be performed in polytime in
the sizes of the equivalent ROBDD[∧ĵ]Cs (resp. ROBDD[∧T̂ ,i]T s).

It was mentioned that for OP ∈ {SE, SFO,∧BC,∨BC}, OP (ROBDD[∧0̂]C) can be
performed in polytime but OP (ROBDD[∧î]C) (i > 0) cannot be performed in polytime
unless P = NP. Therefore, if we only consider the tractability of OP , it may create the illu-
sion that the time efficiency of performing OP (ROBDD[∧î]C) is pessimistically lower than
that of performing OP (ROBDD[∧0̂]C). Actually, Corollary 5 shows that OP (ROBDD[∧î]C)
can also be performed in polytime in the sizes of equivalent ROBDD[∧0̂]Cs. In particular,
for OP ∈ {SFO,∧BC,∨BC}, there exists some class of ROBDD[∧î]Cs such that perform-
ing OP on them is exponentially more efficient than performing OP on the equivalent
ROBDD[∧0̂]Cs according to Theorem 8. In summary, according to this new perspective, an
application requiring OP prefers ROBDD[∧î]C to ROBDD[∧0̂]C .

8. Preliminary Experimental Results

In this section, we report some preliminary experimental results of ROBDD[∧î]C (0 ≤ i ≤
∞), on the one hand, to show some strength and potential of the new languages, and on
the other hand, to verify several succinctness results from an experimental point of view.
We developed an ROBDD[∧∞̂]C compiler, and then we can compile a knowledge base into
ROBDD[∧î]C (0 ≤ i < ∞) by first employing the compiler to generate an ROBDD[∧∞̂]C
and then employing ConvertDown to transform the result into ROBDD[∧î]C . We first
compare our ROBDD[∧∞̂]C compiler with previous ROBDD-L∞, CSDDV and d-DNNF
compilers, and then analyze the space efficiency trend of ROBDD[∧î]C with incremental i.
We do not compare the space efficiency of ROBDD[∧î]C with that of ROBDD[∧T̂ ,i]T , due

to the incompleteness of ROBDD[∧T̂ ,i]T and the fact that ROBDD[∧T̂ ,i]T is a subset of
CSDDV .

The framework of our compiler is based on an exhaustive DPLL trace (depicted in
Algorithm 8; Figure 8 is an example of running this algorithm), just like the frameworks
of many other top-down compilers (Huang & Darwiche, 2007). The compiler exploited
some technologies that have proven efficient in other compilers (Darwiche, 2004; Huang

489

Lai, Liu, & Yin

& Darwiche, 2007; Muise et al., 2012), such as non-chronological backtracking, dynamic
decomposition, implicit binary constraint propagation, and component caching. Like the
ROBDD-L∞ compiler developed by Lai, Liu, and Wang (2013), our compiler employs a SAT
solver to compute the implied literals of sub-formulas to accelerate decomposing. However,
because the employment of SAT engine is normally time-consuming, we use a new heuristic
function during the preprocessing stage to estimate whether calling the SAT solver would
have positive effects, and then we decide whether the SAT solver should be called in the
compilation stage based on the estimated result. In our experiments, the chain C was
generated by the minfill heuristic.

Algorithm 8: Compile(ϕ, C)
Input: a CNF formula ϕ and a chain C over PV
Output: an OBDD[∧]C representing ϕ

1 if H(ϕ) 6= nil then return H(u)
2 ∧1-Decompose ϕ into {l1, . . . , lm, ϕ′}, and let v represent l1 ∧ · · · ∧ lm
3 if ϕ′ is false then return 〈⊥〉
4 if ϕ′ is true then return v
5 Decompose ϕ′ into {ψ1, . . . , ψn}
6 if n = 1 then
7 w1 ← Compile(ϕ′|glb(ϕ′)=false, C); w2 ← Compile(ϕ′|glb(ϕ′)=true, C)
8 return 〈∧, {v} ∪ 〈glb(ϕ′), w1, w2〉〉
9 else return 〈∧, {v} ∪ {Compile(ψi, C) : 1 ≤ i ≤ n}〉

x1

x3x2

x4

⊥⊤

1 2 1 3 4

1 3 4 1 5 6

() ()

() ()

x x x x x

x x x x x x

2 3 4()x x x

3 4x x x5

x6

⊥⊤

5 6x x

3 4 5 6() ()x x x x

Figure 8: Example on how Compile runs, where C is depicted in Figure 2a. After x1 is
assigned true, we decompose the resulting formula into two parts, and detect that x3 ∨ x4

has been compiled; and thus we reuse the previous result

8.1 Comparison with Previous Compilers

We compare our ROBDD[∧∞̂]C compiler with three compilers of two canonical languages
ROBDD-L∞ and CSDDV and a non-canonical language d-DNNF. The three canonical lan-
guages can be seen as subsets of d-DNNF. The state-of-the-art ROBDD-L∞, CSDDV , and
d-DNNF compilers were reported by Lai, Liu, and Wang (2013), Oztok and Darwiche
(2015), and Muise et al. (2012), where the latter two are called miniC2D and Dsharp,
respectively. Since the ROBDD-L∞ compiler can only run in 32-bit systems, we conducted

490

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

experiments to compare ROBDD[∧∞̂]C with the ROBDD-L∞ and d-DNNF compilers on a
computer with a 32-bit two-core 2.99GHz CPU and 3.4GB RAM. Since miniC2D can only
run in 64-bit systems, we conducted experiments to compare the ROBDD[∧∞̂]C compiler
with miniC2D on a computer with a 64-bit four-core 3.6GHz CPU and 8GB RAM. Indi-
vidual runs were limited to a one-hour time-out. The ROBDD-L∞ compiler does not use
any variable order heuristic to guide compilation. We employed a preprocessing program
to make it use the minfill heuristic. We also set miniC2D to use the minfill heuristic to
guide compilation. Our experimental results, as well as some previous results (see e.g.,
Muise et al., 2012), show that this heuristic can improve efficiency in most instances. The
four compilers were tested on eight domains of benchmarks, including Bejing, blocksworld,
emptyroom, grid, flat200, inductive-inference (II for short), iscas89 and sortnet, 7 and then
we compared their compiling time and output sizes.

Table 3 shows the overall performance of the four compilers over the eight domains.
Here we also report the results of another efficient d-DNNF compiler called c2d (Darwiche,
2004), which was run under the directives “-reduce” and “-dt-method 4” (Muise et al., 2012;
Lai, Liu, & Wang, 2013). We have marked in boldface all numbers where the correspond-
ing compiler performs best. Note that the ROBDD[∧∞̂]C compiler happened to succeed
in the same set of instances on both computers in our experiments. The experimental re-
sults show that the ROBDD[∧∞̂]C compiler outperformed both the ROBDD-L∞ compiler
and miniC2D on three domains; and it succeeded in 18 (resp. 30 and 5) instances more
than the ROBDD-L∞ compiler (resp. miniC2D and c2d). The ROBDD[∧∞̂]C compiler
and Dsharp outperformed each other on two domains. However, Dsharp succeeded in six
more instances than the ROBDD[∧∞̂]C compiler, since the latter was relatively inefficient in
sortnet. The reason behind the inefficiency of ROBDD[∧∞̂]C compiler in sortnet is that the
minfill heuristic has a negative effect on this domain. Specifically, the ROBDD[∧∞̂]C com-
piler succeeded in all instances in sortnet when we used the natural variable order depicted
in Figure 2a. We mention that by employing the ROBDD[∧∞̂]C compiler and Convert-
Down, we can compile 214 instances into ROBDD[∧1̂]C under the given conditions. In
other words, our ROBDD[∧∞̂]C compiler indirectly provides a more efficient ROBDD-L∞
compiler. We can also compile 159 instances into ROBDD[∧0̂]C (i.e., ROBDD) in a similar
fashion. To our knowledge, this is the first report of many of these instances being compiled
into ROBDD.

Figure 9 analyzes the detailed compiling time and resulting size performance between
our ROBDD[∧∞̂]C compilers and the three other compilers for each instance across the
eight domains. For convenience of comparison, we excluded the instances which are too
trivial for both compilers of ROBDD[∧∞̂]C and L, where L ∈ {ROBDD-L∞, CSDDV , d-
DNNF}; these are the cases in which both the compiling time of ROBDD[∧∞̂]C and that
of L are less than 0.1s, or both resulting sizes are smaller than 100. Note that compared
with ROBDD[∧1̂]C , ROBDD-L∞ can compress a ∧1-vertex and its children into one vertex,
which normally makes that an ROBDD-L∞ has less arcs than the equivalent ROBDD[∧1̂]C .

7. Bejing, blocksworld, flat200 and II come from SATLIB (http://people.cs.ubc.ca/h̃oos/SATLIB/benchm
.html); emptyroom, grid and sortnet are CNF formulas (https://bitbucket.org/haz/dsharp/downloads)
converted from conformant planning problems described in a standard application of d-DNNF (Palacios
et al., 2005); and iscas89 incorporates CNF formulas converted from the circuits iscas89 by iscas2cnf
(http://vlsicad.eecs.umich.edu/BK/Slots/cache/sat.inesc.pt/˜jpms/scripts/).

491

Lai, Liu, & Yin

domain (#) ROBDD[∧∞̂]C ROBDD-L∞ CSDDV
d-DNNF

c2d Dsharp

Bejing (16) 6 5 4 4 5

blocksworld (7) 7 7 6 6 7

emptyroom (28) 28 28 28 28 28

flat200 (100) 100 100 100 100 100

grid (33) 31 16 11 27 33

II (41) 15 14 9 13 13

iscas89 (35) 24 23 24 24 24

sortnet (12) 5 5 4 9 12

total (261) 216 198 186 211 222

Table 3: Comparative compiling performance between ROBDD[∧∞̂]C , ROBDD-L∞,
CSDDV and d-DNNF, where each cell below language L refers to the number of instances
compiled successfully into L under the given conditions

However, ROBDD[∧∞̂]C can also compress all unit factors in each ∧-decomposition to re-
duce the number of arcs. To improve comparability, we use the size of ROBDD[∧1̂]C to
indicate the size of ROBDD-L∞. We drew four lines ×0.1,×0.5,×2 and ×10 (for the sake
of readability, we also drew another line ×1 here). According to the ratio of the ordinate
to the abscissa, these four lines partition the area of each sub-figure into five parts (0, 0.1],
(0.1, 0.5], (0.5, 2), [2, 10) and [10,∞). Given two compilers of L and ROBDD[∧∞̂]C , the
compiling time (resulting size) of each instance falling into (0, 0.1], (0.1, 0.5], (0.5, 2), [2, 10)
and [10,∞) indicates, respectively, that on this instance, the L compiler is an order-of-
magnitude more efficient than the ROBDD[∧∞̂]C compiler, the L compiler is at least twice
but at most ten times as efficient as the ROBDD[∧∞̂]C compiler, the L compiler is almost
as efficient as the ROBDD[∧∞̂]C compiler, the ROBDD[∧∞̂]C compiler is at least twice but
at most ten times as efficient as the L compiler, and the ROBDD[∧∞̂]C compiler is an
order-of-magnitude more efficient than the L compiler.

The experimental results in Figure 9 show that our ROBDD[∧∞̂]C compiler is signif-
icantly more time-efficient than the compilers of ROBDD-L∞ and CSDDV . In fact, for
42.9% and 46.7% of non-trivial instances, the ROBDD[∧∞̂]C compiler is at least an order-
of-magnitude more time-efficient than the ROBDD-L∞ compiler and the CSDDV compiler,
respectively. ROBDD[∧∞̂]C is also significantly more space-efficient than both ROBDD-L∞
and CSDDV . Choi and Darwiche (2013) demonstrated that the size of an CSDDV can be
reduced by reordering the corresponding v-tree. Similarly, improving the space efficiency of
ROBDD[∧∞̂]C by reordering the corresponding chain is a future direction of research. Figure
9 also shows that from both aspects of compiling time and resulting sizes, the performance
of the ROBDD[∧∞̂]C compiler is comparable with that of Dsharp.

492

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

ROBDD[∧∞̂]C

R
O
B
D
D
-L

∞

(a) compiling time: ROBDD[∧∞̂]C vs. ROBDD-L∞

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

ROBDD[∧∞̂]C

R
O
B
D
D
-L

∞

(b) resulting size: ROBDD[∧∞̂]C vs. ROBDD-L∞

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

ROBDD[∧∞̂]C

C
S
D
D

V

(c) compiling time: ROBDD[∧∞̂]C vs. CSDDV

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

ROBDD[∧∞̂]C

C
S
D
D

V

(c) resulting size: ROBDD[∧∞̂]C vs. CSDDV

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

ROBDD[∧∞̂]C

d−
D

N
N

F

(e) compiling time: ROBDD[∧∞̂]C vs. d-DNNF

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

ROBDD[∧∞̂]C

d−
D

N
N

F

(f) resulting size: ROBDD[∧∞̂]C vs. d-DNNF

Figure 9: Compiling time and resulting sizes comparison of all non-trivial instances using
ROBDD-L∞, CSDDV , d-DNNF and ROBDD[∧∞̂]C compilers, where (a)–(f) are six scatter
plots of compiling time (in seconds) or resulting size for each instance using one previous
compiler (y-axis) or our ROBDD[∧∞̂]C compiler (x-axis)

493

Lai, Liu, & Yin

Since ROBDD[∧∞̂]C is a subset of d-DNNF, our compiler is naturally a d-DNNF compil-
er. This naturally raises the question of under what circumstances our compiler has better
space-time performance than the state-of-art d-DNNF compiler mentioned previously. Note
that all instances in each domain originate from the same type of applications, and thus
here we simply use the domain name as the classification criterion for analysis. It is also
worth mentioning that the treewidth of an instance is an important parameter to measure
compiling difficulty, but we did not catch obvious pattern that the treewidth can reflect the
difference between the efficiency of our compiler and that of Dsharp. We further analyze
the detailed performance of these two compilers for each domain of instances in Figure 10.
The experimental results show that for blocksworld, flat200 and II, the ROBDD[∧∞̂]C com-
piler had better time-performance than the d-DNNF compiler, while for emptyroom, grid,
iscas89 and sortnet, the latter had better time-performance than the former. In terms of
space efficiency, the ROBDD[∧∞̂]C compiler outperforms the d-DNNF compiler on Bejing,
grid, flat200, II and iscas89, while the latter outperformed the former only on blocksworld
and sortnet. In other words, the ROBDD[∧∞̂]C compiler is slightly more space-efficient
than Dsharp.

Figure 10: Detailed compiling time and resulting size performance of ROBDD[∧∞̂]C and d-
DNNF compilers for instances in eight domains. The category (c, c′) refers to the percentage
of instances in each domain such that the ratios of compiling time (resp. resulting sizes) of
d-DNNF to compiling time (resp. resulting sizes) of ROBDD[∧∞̂]C are within (c, c′). The
categories (c, c′] and [c, c′) have similar meanings.

8.2 Comparing Sizes of Different ROBDD[∧î]C
We compared the sizes between ROBDD[∧î]C (1 ≤ i ≤ 7) and ROBDD[∧∞̂]C to analyze
the space efficiency trend of ROBDD[∧î]C with incremental i. Note that we did not cover
the case i = 0, due to two-fold reasons: a) Lai, Liu, and Wang (2013) has showed that
the compilation results of ROBDD-L∞ are significantly smaller than those of ROBDD; and
b) after being compiled into ROBDD[∧∞̂]C , there are only two instances that cannot be

494

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

transformed into ROBDD[∧1̂]C by employing ConvertDown, but there are 57 instances
that cannot be transformed into ROBDD[∧0̂]C . The comparison between ROBDD[∧1̂]C and
ROBDD[∧∞̂]C is shown in Figure 9b, and the comparison between ROBDD[∧î]C (2 ≤ i ≤ 7)
and ROBDD[∧∞̂]C is shown in Figure 11. The experimental results reveal three interesting
patterns: a) the space efficiency of ROBDD[∧∞̂]C is not worse than that of ROBDD[∧î]C
(1 ≤ i ≤ 7); b) with incremental i, the space efficiency of ROBDD[∧î]C increases for
each instance (that is, each point has a trend to converge on line ×1 from Figure 11a to
Figure 11e; see e.g., the points corresponding to flat200-6, s641 and s753); and c) there are
many instances such that the corresponding ROBDD[∧î]Cs have almost the same sizes as
the corresponding ROBDD[∧∞̂]Cs (actually, ROBDD[∧∞̂]C is obviously more space-efficient
than ROBDD[∧7̂]C only on three instances). Note that the first two observations accord with
the succinctness results from Section 6.1, and that the last observation does not contradict
with the succinctness results, since the strictly more succinctness is due to some special
theoretical patterns but these patterns do not always work in practice.

According to the first two observations mentioned in the last paragraph, we know that
ROBDD[∧∞̂]C has the best space efficiency in practice. However, the third observation
indicates that we can sometimes use ROBDD[∧î]C (1 ≤ i ≤ 7) instead in some types of
applications. Consequently, we can simplify the development of compiler by abandoning
or simplifying some complicated techniques (e.g., dynamically decomposing 8 on Line 5 in
Algorithm 8) that were customized for our ROBDD[∧∞̂]C compiler, because they add extra
compilation time but have little positive effect on knowledge bases generated in these appli-
cations. This raises the question of what instances are appropriate for using ROBDD[∧î]C
instead of ROBDD[∧∞̂]C . Figure 12 shows that for the domains Bejing, blocksworld, emp-
tyroom, grid, II and sortnet, we can use ROBDD[∧3̂]C instead of ROBDD[∧∞̂]C without
obvious loss of space efficiency, and that when grid is excluded, we can even use ROBDD[∧2̂]C
instead. This observation is particularly important for the application in which partial com-
pilations are adopted (e.g., importance sampling for model counting (Gogate & Dechter,
2011, 2012)), since the ∧î-decomposition (i ≤ 3) of a CNF formula can be computed in
cubic time with SAT solver as an oracle.

9. Related Work

This study is closely related to previous studies of three canonical languages that also
augment BDD with certain types of decompositions.

First, Mateescu, Dechter, and Marinescu (2008) proposed a relaxation of ROBDD
called AOMDD by adding tree-structured ∧-decomposition and ranking �-vertices on the
same tree-structured order. They designed the apply algorithm to conjoin two AOMDDs.
The only difference between the binary case of unweighted AOMDD (i.e., AOBDD) and
ROBDD[∧T̂ ,∞]T is that two �-vertices in AOBDD are not connected directly, but via an in-
termediate ∧-vertex with a unique child. We have shown that for an AOBDD, if we remove
all ∧-vertices with only one child, the result is an ROBDD[∧T̂ ,∞]T . Therefore, AOBDD

over T is strictly both less succinct and less expressive than ROBDD[∧∞̂]C with ≺T ⊂≺C .

8. For example, if we only need to detect ∧1-decomposition, then we do can discard dynamically decom-
posing in Algorithm 8; and if we only need to detect ∧2-decomposition by dynamically decomposing,
then we do not need to separate two variables appearing in the same clause with more than two literals.

495

Lai, Liu, & Yin

102 103 104 105 106 107 108 109
102

103

104

105

106

107

108

109

ROBDD[∧
∞̂
]C

R
O
B
D
D
[∧

2̂
] C

(a) resulting sizes: ROBDD[∧
∞̂
]C vs. ROBDD[∧̂

2
]C

102 103 104 105 106 107 108 109
102

103

104

105

106

107

108

109

ROBDD[∧
∞̂
]C

R
O
B
D
D
[∧

3̂
] C

(b) resulting sizes: ROBDD[∧
∞̂
]C vs. ROBDD[∧̂

3
]C

102 103 104 105 106 107 108 109
102

103

104

105

106

107

108

109

ROBDD[∧
∞̂
]C

R
O
B
D
D
[∧

4̂
] C

(c) resulting sizes: ROBDD[∧
∞̂
]C vs. ROBDD[∧̂

4
]C

102 103 104 105 106 107 108 109
102

103

104

105

106

107

108

109

ROBDD[∧
∞̂
]C

R
O
B
D
D
[∧

5̂
] C

(d) resulting sizes: ROBDD[∧
∞̂
]C vs. ROBDD[∧̂

5
]C

102 103 104 105 106 107 108 109
102

103

104

105

106

107

108

109

ROBDD[∧
∞̂
]C

R
O
B
D
D
[∧

6̂
] C

(e) resulting sizes: ROBDD[∧
∞̂
]C vs. ROBDD[∧̂

6
]C

102 103 104 105 106 107 108 109
102

103

104

105

106

107

108

109

ROBDD[∧
∞̂
]C

R
O
B
D
D
[∧

7̂
] C

(f) resulting sizes: ROBDD[∧
∞̂
]C vs. ROBDD[∧̂

7
]C

Figure 11: Trend analysis on space efficiency of ROBDD[∧î]C (2 ≤ i ≤ 7) on all non-
trivial instances, where (a)–(f) are six scatter plots of ROBDD[∧î]C (2 ≤ i ≤ 7) size (y-
axis) and ROBDD[∧∞̂]C size (x-axis) for each instance, and the hollow box, plus sign and
multiplication sign correspond to flat200-6, s641 and s753, respectively

496

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

Figure 12: Detailed resulting size performance between ROBDD[∧î]C (i = 2 or 3) and
ROBDD[∧∞̂]C for instances in eight domains, where each category (0.5, 2) (resp. [2, 10)
and [10,∞)) refers to the percentage of instances in each domain such that the ratios of
ROBDD[∧î]C sizes to ROBDD[∧∞̂]C sizes are in (0.5, 2) (resp. [2, 10) and [10,∞))

We have also shown that each operation on AOBDD over T is at most as rapid as the
operation on ROBDD[∧∞̂]C .

Second, Lai, Liu, and Wang (2013) proposed a language called OBDD with implied
literals (OBDD-L) by associating each non-false vertex in OBDD with a set of implied
literals, and then obtained a canonical subset called ROBDD-L∞ by imposing reducedness
and requiring that every internal vertex have as many as possible implied literals. They
designed an algorithm called L2Inf that can transform OBDD-L into ROBDD-L∞ in poly-
time in the size of input, and another algorithm called Inf2ROBDD that can transform
ROBDD-L∞ into ROBDD in polytime in the size of output. We have shown that OBDD-L
over C can be seen as a subset of OBDD[∧1]C and ROBDD-L∞ over C is equivalent to
ROBDD[∧1̂]C . Therefore, L2Inf and Inf2ROBDD are two special cases of Decompose and
ConvertDown, respectively. Our experimental results have shown that the compiler of
ROBDD[∧∞̂]C is significantly more efficient than that of ROBDD-L∞.

Last, Bertacco and Damiani (1996) added the finest negatively-disjunctive-decomposition
into ROBDD to propose a representation called Multi-Level Decomposition Diagram (MLD-
D). For completeness, ¬-vertices are sometimes admitted. If we introduce both conjunctive
and disjunctive decompositions into ROBDD, then the resulting language is equivalent to
MLDD. However, on the one hand, Bertacco and Damiani (1996) paid little theoretical
attention to the space-time efficiency of MLDD; and on the other hand, they did not devel-
op any compiler to fulfill the promise of better compiling efficiency resulting from stronger
succinctness. In addition, our empirical results show that there are little disjunctive decom-
position in practical benchmarks.

This study is also related to CSDDV (Darwiche, 2011). Actually, each ROBDD[∧T̂]T
can be seen as a Decision-CSDDV , and can be transformed into an CSDDV in linear time,
while there exists some class of CSDDVs that cannot be represented in ROBDD[∧T̂]T .

497

Lai, Liu, & Yin

That is, ROBDD[∧T̂]T can be seen as a strict subset of CSDDV , which allows us to un-
derstand the canonicity, incompleteness and tractability of ROBDD[∧T̂]T from the angle
of CSDDV . However, according to the results obtained by Van den Broeck and Darwiche
(2015), CSDDV does not satisfy CD, SFO, ∨BC or ∧BC, but ROBDD[∧T̂]T does satisfy
them; furthermore, to our knowledge, it is still unknown whether Decision-CSDDV satis-
fies SFO, ∨BC or ∧BC. Moreover, our ROBDD[∧∞̂]C compiler is obviously more efficient
than the state-of-the-art CSDDV compiler. Finally, the succinctness relationship between
ROBDD[∧î]C (i > 0) and CSDDV is incomparable, and thus a future direction of gener-
alizing this work is to exploit the bounded ∧-decomposition to relax the v-tree-structured
order of CSDDV , which may help identify more succinct canonical representations.

Finally, we discuss the relationship between OBDD[∧]≺ and four non-canonical lan-
guages:

• The first two are d-DNNF and Decision-DNNF mentioned previously. OBDD[∧]≺ is a
strict subset of Decision-DNNF, which is a strict subset of d-DNNF. Both Decision-DNNF
and d-DNNF are strictly more succinct than ROBDD[∧î]C , but are slightly less tractable
since they do not support EQ. For the rapidity of operation, given each operation
ROBDD supports in polytime, ROBDD[∧î]C can also support it in time polynomial in
the sizes of the equivalent ROBDDs; neither Decision-DNNF nor d-DNNF possesses this
property. From a practical perspective, the efficiency of our ROBDD[∧∞̂]C is comparable
with that of the state-of-the-art d-DNNF compilers.
• The third one is called AND-OBDD (Wegener, 2000) which introduces conjunctive-

nondeterministic nodes into OBDD. That is, AND-OBDD augments OBDD with ∧-
vertices which are not restricted to representing ∧-decompositions. Therefore, OBDD[∧]≺
is a strict subset of AND-OBDD over ≺. AND-OBDD is a highly succinct language (e.g.,
each CNF formula can be represented in AND-OBDD in a linear size) at the cost of low
tractability; in particular, it does not qualify as a target compilation language since CE
is not satisfied.
• The last one is called ordered decomposable decision graph (Fargier & Marquis, 2006).

Each ordered decomposable decision graph over order ≺ (O-DDG≺) is a Decision-DNNF
such that for each ∨-vertex (¬x∧ϕ)∨ (x∧ψ) and its ∨-descendant (¬x′ ∧ϕ′)∨ (x′ ∧ψ′),
x ≺ x′. That is, O-DDG≺ and OBDD[∧]≺ are identical with each other. In particular,
a strongly ordered DDG (SO-DDG) requires that for every pair of variables x ≺ x′

appearing in the O-DDG, each ∨-vertex (¬x′ ∧ ϕ′) ∨ (x′ ∧ ψ′) have some ∨-ancestor
(¬x ∧ ϕ) ∨ (x ∧ ψ). It is obvious that each OBDD[∧T]T can be seen as SO-DDG≺T .
However, on the one hand, Fargier and Marquis (2006) did not explore the canonical
subsets of O-DDG≺, and on the other hand, they did not study whether SO-DDG≺
supports SE and the transformation tractability mentioned in the KC map. Moreover,
Fargier and Marquis (2006) did not provide any compiling method for O-DDG≺ or its
subsets.

10. Conclusions

In this paper, we proposed two families of canonical representations ROBDD[∧î]C and
ROBDD[∧T̂ ,i]T . We analyzed their theoretical properties in terms of the existing crite-
ria of expressivity, succinctness and tractability, as well as the new criterion rapidity. These

498

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

results provide an important complement to the existing KC map. We also developed an
efficient ROBDD[∧∞̂]C compiler, which significantly advances the state-of-the-art of compil-
ing efficiency of canonical representations, and has a compiling efficiency even comparable
with that of Dsharp.

Some specific languages in the two families seem slightly more attractive than the others.
First, ROBDD[∧0̂]C , ROBDD[∧1̂]C and ROBDD[∧T̂ ,∞]T cover the three existing languages

ROBDD, ROBDD-L∞ and AOBDD in the literature, respectively. Second, ROBDD[∧∞̂]C
is the most interesting complete language, because it has the best succinctness and rapidi-
ty. Third, ROBDD[∧2̂]C and ROBDD[∧3̂]C can sometimes be used instead of ROBDD[∧∞̂]C
without obvious loss of space efficiency, resulting in both the simplification of compiler de-
velopment and possible improvements in compiling efficiency. Fourth, ROBDD[∧T̂ ,2]T ,

ROBDD[∧T̂ ,3]T and ROBDD[∧T̂ ,∞]T are interesting due to their high tractability, which

allows them to serve as intermediaries to perform operations on ROBDD[∧2̂]C , ROBDD[∧3̂]C
and ROBDD[∧∞̂]C , respectively. Fifth, ROBDD[∧T̂ ,i]T (dep(T) <∞) has the best succinct-
ness, tractability and operational rapidity among the two families of languages; therefore,
ROBDD[∧T̂ ,i]T is the best choice if it can meet the expressivity requirements of a specific
application, and it can be an option for approximate reasoning otherwise.

The notion of rapidity sheds new light on identifying more succinct canonical represen-
tations without the worry of losing the tractability of KC languages. We believe that there
is still plenty of room to identify canonical languages in d-DNNF that are more succinct
than the existing ones. Intrinsically, ROBDD[∧î]C and ROBDD[∧T̂ ,i]T can be seen as da-
ta structures that relax the linear orderedness of ROBDD to some extent. Therefore, a
future direction of generalizing this work is to exploit ∧i-decomposition to relax the vtree-
structured order of CSDDV , which has the potential to identify new canonical languages
with more succinctness than both ROBDD[∧î]C and CSDDV .

Acknowledgements

We are grateful to the anonymous reviewers who suggested many improvements. We would
also thank Umut Oztok for providing useful information about their SDD compiler, and Bo
Yang for valuable discussions on the paper. This research was supported by the Nation-
al Natural Science Foundation of China under grants 61402195, 61133011, 61370156 and
61503074, the China Postdoctoral Science Foundation under grant 2014M561292, and the
Program for New Century Excellent Talents in University under grant NCET-13-0724.

Appendix A. Proofs

In this appendix, we present proofs for those non-obvious properties mentioned previously.

A.1 Proof of Observation 1

For the first observation, it is obvious that
∧
ψ∈bΨc ψ ≡

∧
ψ∈Ψ ψ ≡ ϕ ≡ bϕc. For 1 ≤ i ≤ m,

ψi depends on a variable iff ϕ depends on it. Since each ψ ∈ bΨc is non-trivial and does
not share any variable with other formulas in Ψ, we know bΨc is a ∧-decomposition of bϕc.

For the second observation, we first prove PI(ϕ) = PI(ψ1) ∪ · · · ∪ PI(ψm):

499

Lai, Liu, & Yin

• For 1 ≤ k ≤ m, we show that each δ ∈ PI(ψk) is a prime implicate of ϕ. If there exists
some δ′ ∈ PI(ϕ) such that δ′ |= δ, we know ψk |= δ′ since δ′ does not share any variable
with other factors in Ψ. Obviously, there exists some δ′′ ∈ PI(ψk) such that δ′′ |= δ′ |= δ,
which implies that δ′′ = δ′ = δ. Therefore, δ ∈ PI(ϕ).
• For each δ ∈ PI(ϕ), we show that there exists some 1 ≤ i ≤ m such that δ ∈ PI(ψi).

Obviously, there exists some 1 ≤ i ≤ m such that ψi |= δ, and otherwise ϕ 6|= δ. Therefore,
there exists some δ′ ∈ PI(ψi) ⊆ PI(ϕ) such that δ′ |= δ. That is, δ = δ′ ∈ PI(ψi).

We next prove IP (ϕ) = {γ1 ∧ · · · ∧ γm : γi ∈ IP (ψi)}. Obviously, γ |= ϕ iff for each
1 ≤ i ≤ m, γ |= ψi (that is, there exists some γ′′ ∈ IP (ψi) such that γ |= γ′′). Therefore,
for each γ ∈ IP (ϕ), there exists some γ′ ∈ {γ1 ∧ · · · ∧ γm : γi ∈ IP (ψi)} such that γ′ |= γ
and γ′ |= ϕ, and thus γ′ = γ. That is, γ ∈ {γ1 ∧ · · · ∧ γm : γi ∈ IP (ψi)}. For each
γ ∈ {γ1 ∧ · · · ∧ γm : γi ∈ IP (ψi)}, γ |= ϕ and γ does not entail another γ′ ∈ {γ1 ∧ · · · ∧ γm :
γi ∈ IP (ψi)}. Therefore, we have γ ∈ IP (ϕ).

For the last observation, the direction from left to right is obvious. For the converse
direction, we know that for each ψ ∈ Ψ, there exists exactly one factor ψ′ ∈ Ψ′ such
that V ars(ψ) = V ars(ψ′). According to the second observation, if PI(ψ) 6⊆ PI(ψ′), then
for each implicate δ ∈ PI(ψ) \ PI(ψ′), there exists another factor ψ′′ ∈ Ψ′ such that
δ ∈ PI(ψ′′); that is, ψ′ and ψ′′ shares some variable, which is impossible. Therefore, we
know that PI(ψ) ⊆ PI(ψ′). Similarly, we know that PI(ψ′) ⊆ PI(ψ). Therefore, ψ ≡ ψ′.
Then we know that Ψ is equivalent to Ψ′.

A.2 Proof of Proposition 1

We first show that from the viewpoint of equivalence, there exists a one-to-one correspon-
dence between the ∧-decompositions of ϕ and the disjoint partitions of PI(ϕ). Obviously, for
a disjoint partition {Ψ1, . . . ,Ψm} of PI(ϕ), {

∧
δ∈Ψi

δ : 1 ≤ i ≤ m} is a ∧-decomposition of
ϕ. In addition, according to Observation 1b, we can obtain a disjoint partition {Ψ1, . . . ,Ψm}
of PI(ϕ) from each ∧-decomposition of ϕ. Therefore, we only need to prove the existence
of the finest disjoint partition of PI(ϕ). We prove it by contradiction.

Assume that PI(ϕ) has two different finest disjoint partitions {Ψ1, . . . ,Ψm} and {Ψ′1, . . . ,
Ψ′n}. We know that there exists some 1 ≤ i ≤ m such that Ψi 6⊆ Ψ′j for each 1 ≤ j ≤ n.
{Ψi ∩Ψ′j : 1 ≤ j ≤ n,Ψi ∩Ψ′j 6= ∅} is a disjoint partition of Ψi. Therefore, {Ψ1, . . . ,Ψm} is
not a finest disjoint partition since {Ψ1, . . . ,Ψi−1} ∪ {Ψi+1, . . . ,Ψm} ∪ {Ψi ∩ Ψ′j : 1 ≤ j ≤
n,Ψi ∩Ψ′j 6= ∅} is finer than it.

A.3 Proof of Proposition 2

For the first conclusion, it is obvious that dΨeX is ∧-decomposition of ϕ, and we just need
to show that dΨeX is finer than each ∧-decomposition Ψ′ of ϕ. According to Observation
1a, we have that bΨ′c is a ∧-decomposition of bϕc. We denote dbΨ′ceX by Ψ′′, and show
that dΨeX is finer than Ψ′ by the following two steps:

• dΨeX is finer than Ψ′′: The fact that Ψ is the finest ∧-decomposition of bϕc implies that
Ψ is finer than bΨ′c. Obviously, dΨeX \ Ψ is equal to Ψ′′ \ bΨ′c. Therefore, we know
dΨeX is finer than Ψ′′.
• Ψ′′ is finer than Ψ′: We just need to show that for each ψ ∈ Ψ′′, there exists some ψ′ ∈ Ψ′

such that V ars(ψ) ⊆ V ars(ψ′). If |V ars(ψ)| = 1, it is obvious that there exists some

500

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

ψ′ ∈ Ψ′ such that V ars(ψ) ⊆ V ars(ψ′). Otherwise, there exists some ψ′ ∈ Ψ′ such that
ψ = bψ′c; that is, V ars(ψ) ⊆ V ars(ψ′).

Next we prove the second conclusion. We denote {
∧
ψ∈dΨeX and V ars(ψ)⊆V ars(ψ′) ψ : ψ′ ∈

Ψ′} by Ψ′′. Since dΨeX is the finest ∧-decomposition of ϕ, we know the following two facts:
for each ψ ∈ dΨeX , there exists exactly one ψ′ ∈ Ψ′ such that V ars(ψ) ⊆ V ars(ψ′), which
implies that Ψ′′ is finer than Ψ′; and for each ψ′ ∈ Ψ′ and x ∈ V ars(ψ′), there exists exactly
one ψ ∈ dΨeX such that x ∈ V ars(ψ) ⊆ V ars(ψ′), which implies that Ψ′ is finer than Ψ′′.
According to Observation 1c, Ψ′ and Ψ′′ are equivalent to each other.

A.4 Proof of Proposition 3

From the viewpoint of equivalence, if there does not exist any factor ψ ∈ Ψ such that
|V ars(ψ)| > i, then Ψ is the finest ∧i-decomposition, since each ∧i-decomposition is not
finer than the finest ∧-decomposition. We next assume there exists some factor in Ψ
with more than i variables. If i = 0, the conclusion is obvious. Otherwise, we denote
{
∧
ψ∈Ψ and |V ars(ψ)|>i ψ} ∪ {ψ ∈ Ψ : |V ars(ψ)| ≤ i} by Ψ′. It is obvious that Ψ′ is a ∧i-

decomposition. According to Observation 1c, we show by contradiction that Ψ′ is finer than
every ∧i-decomposition Ψ′′ of ϕ. We know Ψ′ is the unique finest ∧i-decomposition since the
fineness-relation is partially ordered. We assume that there exists some ∧i-decomposition
Ψ′′ of ϕ such that Ψ′ is not finer than Ψ′′. Therefore, there exists some formula ψ′ ∈ Ψ′

such that each ψ′′ ∈ Ψ′′ satisfies V ars(ψ′) 6⊆ V ars(ψ′′). According to Observation 1b
and Proposition 2, ψ′ is strictly ∧-decomposable respecting {V ars(ψ′′) : ψ′′ ∈ Ψ′′}. S-
ince {V ars(ψ′′) : ψ′′ ∈ Ψ′′} has at most one element with more than i variables, ψ′ has
a strict ∧i-decomposition Ψ′′′. If V ars(ψ′) ≤ i, we know ψ′ ∈ Ψ. Therefore, Ψ is not
finer than (Ψ′ \ {ψ′}) ∪ Ψ′′′, which contradicts with the condition that Ψ is the finest
∧-decomposition. Otherwise, we know ψ′ =

∧
ψ∈Ψ and |V ars(ψ)|>i ψ. Since each factor in

{ψ ∈ Ψ : |V ars(ψ)| > i} has more than i variables, {ψ ∈ Ψ : |V ars(ψ)| > i} is not finer
than Ψ′′′. That is, Ψ is not finer than (Ψ′ \{ψ′})∪Ψ′′′, which contradicts with the condition
that Ψ is the finest ∧-decomposition.

A.5 Proof of Corollary 1

By Proposition 3, the process of constructing the ∧î-decomposition from ∧∞̂-decomposition
is equivalent to the process of first constructing the ∧ĵ-decomposition from ∧∞̂-decomposition
and then constructing the ∧ĵ-decomposition from ∧î-decomposition. Then we immediately
have the first conclusion of this corollary. For the second conclusion, we denote the ∧î-
decomposition by Ψ′. For the first part of this conclusion, if Ψ is not finer than Ψ′, there
exists some factor ψ ∈ Ψ such that the variables in V ars(ψ) appear in at least two factors
in Ψ′. Since Ψ′ is bounded by i, we know ψ is strictly ∧i-decomposable. On the contrary, if
there exists some factor ψ ∈ Ψ is strictly ∧i-decomposable, then the variables in V ars(ψ)
appears in at least two factors in Ψ′; that is, Ψ is not finer than Ψ′. The second part in
the second conclusion is immediate from the first part in the second conclusion and the
uniqueness of ∧î-decomposition.

501

Lai, Liu, & Yin

A.6 Proof of Proposition 4

We first present a lemma which will be used in the following proof:

Lemma 1. Given a tree T over PV , and three variable sets X, X ′ and X ′′ with X ′′ ⊆ X ′,
if glb(X) and glb(X ′) are incomparable over ≺T , then glb(X) and glb(X ′′) are incomparable
over ≺T .

Proof. It is obvious that glb(X ′) �T glb(X ′′). We assume that glb(X) and glb(X ′′) are
comparable over ≺T . If glb(X ′′) �T glb(X), then glb(X ′) �T glb(X), which contradicts
with the condition of lemma. Otherwise, glb(X) ≺T glb(X ′′). It is obvious that both glb(X)
and glb(X ′) appear on the path from the root to glb(X ′′). Therefore, glb(X) and glb(X ′)
are comparable over ≺T , which contradicts with the condition of lemma.

We then prove this proposition by contradiction. For notational convenience, we here
assume that two equivalent factors are identical with each other. Assume that there exist
another ∧T -decomposition Ψ′ such that {ϕ1, . . . , ϕm} is not finer than Ψ′. Then there exists
some factor ψ ∈ Ψ′ and some formula ϕk (1 ≤ k ≤ m) satisfying that V ars(ϕk) 6⊆ V ars(ψ)
and ϕk shares some variable with ψ. We denote the ∧∞̂-decompositions of ψ and ϕk by
Ψ1 and Ψ2, respectively. It is obvious Ψ2 \ Ψ1 is nonempty. For each ψ1 ∈ Ψ2 \ Ψ1, there
exists some factor ψ′ ∈ Ψ′ such that ψ1 is a factor of ψ′. It is obvious that ψ′ and ψ are two
different factors in Ψ′. Therefore, glb(ψ) and glb(ψ′) are incomparable over ≺T . According
to Lemma 1, glb(ψ) and glb(ψ1) are incomparable. Then for each factor ψ2 ∈ Ψ2 ∩ Ψ1,
since V ars(ψ2) ⊆ V ars(ψ), glb(ψ2) and glb(ψ1) are incomparable over ≺T by Lemma 1.
Therefore, Gk is not a strongly connected subgraph (note that Gk is actually a free tree),
which contradicts with the condition in the proposition.

A.7 Proof of Corollary 2

The second conclusion can be demonstrated in a similar proof to that of Corollary 1b. Next
we focus on the first conclusion. If {ϕ1, . . . , ϕm} is bounded by i and ϕk (1 ≤ k ≤ m)
is not strictly ∧T -decomposable, {ϕ1, . . . , ϕm} is the ∧T̂ ,i-decomposition according to the

uniqueness of ∧T̂ -decomposition. Next we prove that if the ∧T̂ -decomposition Ψ′ of ϕ is
bounded by i, then {ϕ1, . . . , ϕm} is bounded by i and ϕk (1 ≤ k ≤ m) is not strictly
∧T -decomposable; that is, if {ϕ1, . . . , ϕm} is not bounded by i or ϕk (1 ≤ k ≤ m) is
strictly ∧T -decomposable, the ∧T̂ ,i-decomposition does not exist. It is obvious that the

∧∞̂-decomposition Ψ′′ is finer than Ψ, and Ψ is finer than Ψ′. For each ψ ∈ Ψ′ with at
most i variables, glb(ψ) is incomparable with the greatest lower bounds of other formulas
in Ψ′ \ {ψ}, and the ∧∞̂-decomposition of ψ can be seen as a subset of Ψ. According
to Proposition 4, the method of generating Ψ′ from Ψ′′ is similar to that of generating
{ϕ1, . . . , ϕm} from Ψ. Therefore, ψ can be seen as an element in {ϕ1, . . . , ϕm}. That is,
each factor in Ψ′ with at most i variables appears in {ϕ1, . . . , ϕm}. Since Ψ′ has at most
one factor with more than i variables, we know Ψ′ is equivalent to {ϕ1, . . . , ϕm}. That is,
{ϕ1, . . . , ϕm} is bounded by i and ϕk (1 ≤ k ≤ m) is not strictly ∧T -decomposable.

502

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

A.8 Proof of Observation 2

• For the first conclusion, it is obvious that we can recursively compute V ars(u) as follows:

V ars(u) =

∅ sym(u) = ⊥ or >;⋃
v∈Ch(u) V ars(v) sym(u) = ∧;

{sym(u)} ∪ V ars(lo(u)) ∪ V ars(hi(u)) otherwise.

Because the subgraphs rooted at different children of a ∧-vertex do not share any variable,⋃
v∈Ch(u) V ars(v) can be computed in O(|V ars(Gu)|) when we have known V ars(v) for

each v ∈ Ch(u). Therefore, we can compute the variable sets for all vertices in Gu in time
O(|V ars(u)| · |V (Gu)|) with the use of dynamic programming.
• For the second conclusion, the case i = ∞ is obvious. Next we assume i < ∞. We

can determine whether Gu has more than i variables by traversing Gu, and we show that
the number of traversed vertices is O(1). When traversing a ∧-vertex with more than
i children, we can cease traversing and answer “no” since each child introduces at least
one new variable into V ars(u). When the length of a traversing path is greater than i,
we can cease traversing and answer “no” because each vertex on the path introduces at
least one variable not appearing in the subgraph rooted at its child on the path. That is,
we need to traverse at most (ii − 1)/(i− 1) vertices. Therefore, if sym(u) = ∧, whether
u is bounded by integer i can be determined in O(|Ch(u)|).

A.9 Proof of Observation 3

• The first conclusion is immediate from the fact that each ∧i-decomposition is a ∧j-
decomposition. The second one is immediate from the fact that x ≺T x′ implies x ≺C x′.
• For the third conclusion, if glb(u) ∈ V ars(u), then u is not a ∧-vertex, which implies
glb(u) = sym(u) according to the ordered decision; and if glb(u) = sym(u), it is obvious
glb(u) ∈ V ars(Gu).
• For the fourth conclusion, we only explain the case of ROBDD[∧î]C , and the case of

ROBDD[∧T̂]T is similar. If the root is a �-vertex, each ∧-vertex is a child of some �-
vertex and there is at least one �-vertex without ∧-child. Therefore, we immediately have
the conclusion. Otherwise, the root is a ∧-vertex. Each ∧-vertex which is not the root is
a child of some �-vertex, and there are at least two �-vertices without ∧-child. Therefore,
we immediately have the conclusion.
• For the last conclusion, we prove it by induction on the number of vertices. Let u be the

root of ROBDD[∧T]T . The case |V (Gu)| = 1 is obvious. We assume that this conclusion
holds for |V (Gu)| ≤ m. For the case |V (Gu)| = m+1, we proceed by case analysis. Given a
�-vertex v ∈ V (Gu), it is easy to see that ϑ(v) is not strictly ∧T -decomposable. Therefore,
Gu is an ROBDD[∧T̂]T by the induction hypothesis. Otherwise, u is a ∧-vertex and each
child of u is a �-vertex. Since each child of u represents a formula that is not strictly
∧T -decomposable, {ϑ(v) : v ∈ Ch(u)} is the ∧T̂ -decomposition of ϑ(u) by Corallory 2b.
Then Gu is an ROBDD[∧T̂]T by the induction hypothesis.

503

Lai, Liu, & Yin

A.10 Proof of Observation 5

Let V be the vertices in Gu whose ancestors are ∧-vertices; that is, for each path (v1, . . . , vm)
from the root to some vertex in V , sym(vk) = ∧ (1 ≤ k < m). The induced subgraph over
V is a tree T whose leaves are �-vertices. Since any two subgraphs rooted at two leaves
in T do not share variables, the number of leaves is not more than |V ars(u)|. Therefore,
|V (T)| ≤ 2 · |V ars(u)| − 1. Since Merge(u) does process the vertices in V , we immediately
have the conclusion about time complexity. Next prove the itemized facts:

For the first fact, we assume that v is a ∧-child of Gu. We denote the result of removing
v from Ch(u) and then adding all children of v to Ch(u) by u′. If Gv has at most i variables,
then each child w of v satisfies that Gw has less than i variables, and thus u′ corresponds to
a ∧i-decomposition. Otherwise, Gv has more than i variables, and there exists at most one
child w ∈ Ch(v) satisfying that Gw has more than i variables. Since each child v′ 6= v of u
satisfies that Gv′ has at most i variables, u′ corresponds to a ∧i-decomposition. Therefore,
Merge(u) is ∧i-decomposable.

For the second fact, we know that Merge(u) corresponds to a ∧i-decomposition by
the first fact. It is obvious that each child of the output of Merge(u) is not strictly ∧i-
decomposable. According to Corollary 1b, we know that Merge(u) is ∧î-decomposable.

For the third fact, we assume that v is a ∧-child of Gu. We denote the result of removing
v from Ch(u) and then adding all children of v to Ch(u) by u′. For each child v′ ∈ Ch(u)
with v 6= v′, each child w of v satisfies that glb(w) and glb(v′) are incomparable over ≺T
by Lemma 1. Therefore, u′ corresponds to a ∧T -decomposition. That is, Merge(u) is
∧T -decomposable.

For the fourth fact, we know that Merge(u) corresponds to a ∧T -decomposition by
the third fact. It is obvious that each child of the output of Merge(u) is not strictly ∧T -
decomposable. According to Corollary 2b, we know that Merge(u) is ∧T̂ -decomposable.

A.11 Proof of Observation 6

The time complexity is obvious. The cases for ∧i-decomposability and ∧î-decomposability
are obvious. For the two other cases, it is obvious that the DAGs rooted at the rest
children are ∧î-decomposable (resp. ∧T̂ -decomposable). According to Corollary 1b (resp.
2b), we immediately know that the BDD[∧] rooted at u \ V is ∧î-decomposable (resp.
∧T̂ -decomposable).

A.12 Proof of Observation 7

The case when u is a leaf is obvious. Next we assume u is an internal vertex. Let V be the
set of internal vertices of Gu and U be the set of internal meta-vertices of Gu. Obviously,
|V | ≤ |V (Gu)| − 2. For convenience, we say that w is a meta-descendant of v ∈ V if it is a
meta-child of v or a meta-child of meta-descendant of v. It is easy to see that w ∈ U \ V is
a meta-descendant of some ∧-vertex v ∈ V . In the next paragraph, we show that given a
∧-vertex v ∈ V , the number of meta-descendants in U \V of v is not more than |Ch(v)|−2.
Therefore, |U | = |U \ V |+ |V | ≤

∑
v∈V |Ch(v)| − 2 + 1 = |Gu| − |V | ≤ |Gu| − |V (Gu)|+ 2.

Let W be the set of v and its meta-descendants, and let G be a graph over W with edge
set {(w,w′) : w′ is a meta-child of w}. Obviously, G is a tree such that v is its root, the set

504

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

of its leaves is exactly Ch(v), and each internal vertex has at least two children. Therefore,
the number of internal vertices in G is not more than |Ch(v)| − 1. That is, the number of
meta-descendants of v in U \ V is not more than |Ch(v)| − 2.

A.13 Proof of Theorem 1

First we introduce two auxiliary functions. The first one, called L2V (L), transforms a set
of literals into the set of roots of the equivalent BDD[∧]s; that is, L2V (L) = {〈l〉 : l ∈ L}.
The second one, called V 2L, is the inverse function of L2V .

The proof is organized respectively corresponding to the items in the proposition:

(a) The first conclusion is immediate from the facts that no decomposition vertex appears
in OBDD[∧0]C and each set with one single formula is a ∧0̂-decomposition.

(b) Each non-false vertex v can be seen as a ∧1-decomposition, since L(v) represents a
consistent term and does not have any variable appearing in the subgraphs. We define
two functions f and g to perform the transformations as follows, where the former is
from OBDD-L (resp. ROBDD-L∞) to OBDD[∧1]C (resp. ROBDD[∧1̂]C) and the latter
is from ROBDD[∧1̂]C to ROBDD-L∞.

f(u) =

〈⊥〉 u = 〈⊥〉;
〈>〉 u = 〈∅〉;
〈∧, L2V (L(u))〉 u = 〈L(u)〉;
〈∧, {〈sym(u), f(lo(u)), f(hi(u))〉} ∪ L2V (L(u))〉 u is an internal vertex.

g(u) =

〈⊥〉 u = 〈⊥〉
〈∅〉 u = 〈>〉;
〈sym(u), g(lo(u)), g(hi(u)), ∅〉 sym(u) ∈ PV ;

〈V 2L(Ch(u))〉 sym(u) = ∧ and ∀v ∈ Ch(u).|V ars(u)| = 1;

〈sym(v), g(lo(v)), g(hi(v)),

V 2L(Ch(u) \ {v})〉
sym(u) = ∧ and ∃v ∈ Ch(u).|V ars(v)| > 1.

It is obvious that by use of dynamic programming, the transformations can be done in
linear time.

(c) We can transform each AOBDD over T into ROBDD[∧T̂]T by the following steps: i) If
there exists more than one DAG, we create a new ∧-vertex whose children are exactly
the roots of all DAGs; and ii) for each ∧-vertex v with only one child w and each parent
u, we replace the arc (u, v) with (u,w) and delete v. It is easy to see that the resulting
DAG is an equivalent ROBDD[∧T]T and each ∧-vertex in it does not have any ∧-child.
According to Observation 3e, the resulting DAG is an ROBDD[∧T̂]T . Conversely,
each ROBDD[∧T̂]T can be transformed into AOBDD by the following steps: i) If the
ROBDD[∧T̂]T is rooted at a ∧-vertex u, we decompose it into several parts rooted at
vertices in Ch(u); and ii) for each �-vertex v with a �-child w, we introduce a new vertex
w′ = 〈∧, {w}〉 and replace the arc (v, w) by (v, w′). It is easy to see the following facts:
i) each �-vertex and its children can be seen as a meta-node; ii) any two roots of the
parts are independent; and iii) the resulting DAG does not have redundant meta-node

505

Lai, Liu, & Yin

and two identical meta-nodes. That is, the resulting DAG is an AOBDD over T . By
use of dynamic programming, the mutual transformations can be done in linear time.

A.14 Proof of Theorem 2

The case i = 0 is immediate from the fact that ROBDD[∧0̂]C is equivalent to ROBDD.
In the following proof, we assume i > 0. For the existence of ROBDD[∧î]C , we can only
consider the irredundant formulas. We prove the existence by induction on the number of
variables. When |V ars(ϕ)| = 0, it is obvious that either 〈⊥〉 or 〈>〉 represents it. Assume
that when |V ars(ϕ)| ≤ n, there exists some equivalent ROBDD[∧î]C rooted at u such that
V ars(u) ⊆ V ars(ϕ). For the case where |V ars(ϕ)| = n+ 1, we proceed by case analysis:

• ϕ is strictly ∧i-decomposable: Assume that {ψ1, . . . , ψm} is the ∧î-decomposition of ϕ.
According to the induction hypothesis, we assume that each factor ψk is represented
by an ROBDD[∧î]C rooted at vk, where V ars(vk) = V ars(ψk). Since each ψi is not
strictly ∧i-decomposable, vi is a �-vertex and thus u = 〈∧, {v1, . . . , vm}〉 represents ϕ with
V ars(u) ⊆ V ars(ϕ). After removing the duplicate leaf vertices, Gu is an ROBDD[∧î]C .
• Otherwise: Let x be glb(ϕ). We have ϕ|x=false 6≡ ϕ|x=true since ϕ depends on x. Ac-

cording to the induction hypothesis, we assume that ROBDD[∧î]C vertices v and w rep-
resent bϕ|x=falsec and bϕ|x=truec, respectively, and we have that V ars(u) ⊆ V ars(ϕ),
x ≺C V ars(v) and x ≺C V ars(w). It is obvious that v 6= w. Therefore, u = 〈x, v, w〉
represents ϕ. After removing the duplicate vertices, Gu is an ROBDD[∧î]C .
For the uniqueness, it is easy to prove by induction on the size of V ars(ϕ) that each

trivial formula can only be represented by 〈⊥〉 or 〈>〉. Next we only analyze the non-trivial
cases. Assume that when |V ars(ϕ)| ≤ n, there exists only one equivalent ROBDD[∧î]C
rooted at v such that V ars(v) = V ars(bϕc). For the case where |V ars(ϕ)| ≤ n + 1,
ϕ cannot be represented by both �-vertex and ∧-vertex in ROBDD[∧î]C because of the
uniqueness of the ∧î-decomposition, and then we proceed by case analysis:

• ϕ is represented by two ∧-vertices u and v: For each w ∈ Ch(u) or w ∈ Ch(v),
V ars(bϑ(w)c) ⊂ V ars(bϕc) and each variable in ϑ(w) is essential, according to the induc-
tion hypothesis. That is, V ars(u) = V ars(v) = V ars(bϕc). Since each child of ∧-vertex
represents a non-trivial formula, both {ϑ(w) : w ∈ Ch(u)} and {ϑ(w) : w ∈ Ch(v)} are
the ∧î-decomposition of bϕc by Proposition 3. Then we know Ch(u) = Ch(v) according
to the induction hypothesis. That is, u is identical with v.
• ϕ is represented by two �-vertices u and v: If sym(u) = sym(v), it is easy to see that
u is identical with v by the induction hypothesis. Otherwise, sym(u) ≺C sym(v) or
sym(u) �C sym(v). Without loss of generality, we assume sym(u) ≺C sym(v), and we
have sym(u) 6∈ V ars(v). Therefore, ϑ(lo(u)) ≡ ϕ|sym(u)=false ≡ ϑ(v) ≡ ϕ|sym(u)=true ≡
ϑ(hi(u)). By the induction hypothesis, lo(u) is identical with hi(u), which contradicts
with the fact that a �-vertex in ROBDD[∧î]C must have two distinct children.

A.15 Proofs of Observation 8 and Theorem 3

For convenience, we prove the observation and proposition together. Obviously, we can
show the following conclusion by a proof similar to the one we prove the uniqueness of
ROBDD[∧î]C : there are at most one ROBDD[∧T̂]T vertex v to represent a given formula
ϕ, and v satisfies V ars(v) = V ars(bϕc). That is, we have the canonicity of ROBDD[∧T̂]T .

506

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

For Observation 8, since ϕ is irredundant, it cannot be represented by a leaf vertex; s-
ince ϕ is not strictly ∧T -decomposable, it cannot be represented by a ∧-vertex; and since
glb(ϕ) 6∈ V ars(ϕ), it cannot be represented by a �-vertex according to Observation 3c.
That is, ϕ cannot be represented in ROBDD[∧T̂]T . In particular, if T is not a chain,
there exist two incomparable variables x and x′ over ≺T , and thus ϕ = x ↔ x′ is not
strictly ∧-decomposable and satisfies glb(ϕ) 6∈ V ars(ϕ); that is, ϕ cannot be represented in
ROBDD[∧T̂]T .

A.16 Proof of Observation 9

The first conclusion is immediate from the fact that each ∧-decomposition is bounded by
dc(T). For the second conclusion, it is obvious that there exist two incomparable variables x
and x′ such that |V (Tx)| ≥ dc(T) and |V (Tx′)| ≥ dc(T). Therefore, there exist two variable
sets X and X ′ from V (Tx) \ {x} and V (Tx′) \ {x′}, respectively, with j − 1 variables. We
know neither ϕ = x ↔

∧
x′′∈X x

′′ nor ϕ′ = x′ ↔
∧
x′′∈X′ x′′ is strictly ∧-decomposable.

The reader can verify that both ϕ and ϕ′ can be represented in ROBDD[∧T̂ ,j]T , and we

assume that v and v′, respectively, represent them. By Corollary 1b, ϕ ∧ ϕ′ is strictly
∧T ,j-decomposable, and u = 〈∧, {v, v′}〉 is the ROBDD[∧T̂]T vertex representing ϕ∧ϕ′. It
is obvious that u is ∧j-decomposable but not ∧i-decomposable.

A.17 Proof of Theorem 4

We first prove the direction from right to left. For i′ = min{i, dc(T)}, each ROBDD[∧T̂ ,i]T
is ∧i′-decomposable according to Observation 9. Therefore, each ROBDD[∧T̂ ,i]T is an

ROBDD[∧T̂ ,j]T if i′ ≤ j. That is, ROBDD[∧T̂ ,i]T ≤e ROBDD[∧T̂ ,j]T if i ≤ j or dc(T) ≤ j.
We then prove the direction from left to right. If i > j and dc(T) > j, then we have
dc(T) ≥ i′ > j and i ≥ i′. By Observation 9, there exists some ROBDD[∧i′]T̂ which is an
ROBDD[∧T̂ ,i]T but not an ROBDD[∧T̂ ,j]T . That is, ROBDD[∧T̂ ,i]T 6≤e ROBDD[∧T̂ ,j]T if

i > j and dc(T) > j.

A.18 Proof of Observation 10

It is obvious that ϑ(u) is irredundant and |V ars(u)| > 1. lo(u) and hi(u) represen-
t ϑ(u)|sym(u)=false and ϑ(u)|sym(u)=true, respectively. Let Ψ be the ∧î-decomposition of
ϑ(u), and we assume that sym(u) appears in ψ ∈ Ψ and ψ′ is another factor in Ψ. By
Corollary 1b, each factor in Ψ is not strictly ∧i-decomposable. If ψ|sym(u)=false ≡ false
(resp. ψ|sym(u)=true ≡ false), it is obvious that 〈⊥〉 ∈ Ch(u) and |V ars(u)| > 1. Otherwise,
we have the following cases:

• Ψ = {ψ,ψ′} and ψ|sym(u)=false ≡ true: It is obvious that ψ|sym(u)=true is non-trivial and
ϕ|sym(u)=false = ψ′. Therefore, {ψ|sym(u)=true, ψ

′} is a ∧i-decomposition of ϕ|sym(u)=true.
Then we know ϕ|sym(u)=false = ψ′ is a factor of the ∧î-decomposition of ϕ|sym(u)=true.
That is, lo(u) is a child of hi(u).
• Ψ = {ψ,ψ′} and ψ|sym(u)=true ≡ true: It is similar to the first item.
• Otherwise, it is obvious that ψ|sym(u)=false (resp. ψ|sym(u)=true) is non-trivial, and thus
ψ′ is a factor of the ∧î-decomposition of ϕ|sym(u)=false (resp. ϕ|sym(u)=true). That is,
both children of u are ∧-vertices with some shared factors.

507

Lai, Liu, & Yin

A.19 Proof of Observation 11

The case i = 0 is immediate from the fact that there is not any ∧-vertex in ROBDD[∧0̂]C .
Otherwise, we have two similar cases (Lines 2–3), and we only explain the first one due to
the duality. According to Equation (2),

ϑ(u) ≡ (¬sym(u) ∧ false) ∨ (sym(u) ∧ ϑ(hi(u))) ≡ sym(u) ∧ ϑ(hi(u)).

Therefore, {sym(u), ϑ(hi(u))} is a ∧-decomposition of ϑ(u). Obviously, 〈sym(u)〉 is the
ROBDD[∧î]C vertex which represents sym(u). Since hi(u) is ∧î-decomposable, we know by
Observation 5 that Merge(u′) is the ROBDD[∧î]C vertex representing ϑ(u). According to
Observations 4–5, the time complexity of Make and Merge is O(|Ch(lo(u))|+|Ch(hi(u))|) =
O(|V ars(u))|. Therefore, we immediately have the time complexity of ExtractLeaf. The
step on Line 2 will introduce at most two vertices (i.e., 〈sym(u)〉 and u′), and Merge(u)
on Line 4 will replace u′ with another new vertex if u′ has a ∧-vertex. That is, each single
calling of ExtractLeaf(u) will introduce at most two vertices. The step on Line 2 will add
at most four new arcs and reduce two old arcs, and Merge(u) on Line 4 will not add new
arc. That is, each single calling of ExtractLeaf(u) will add at most two arcs.

A.20 Proof of Observation 12

In ExtractPart, we have two similar cases (Lines 2–3 and 5–6), and we only explain the first
one due to the duality. According to Equation (2),

ϑ(u) ≡ [¬sym(u) ∧ ϑ(lo(u))] ∨ [sym(u) ∧ ϑ(lo(u)) ∧ ϑ(hi(u) \ {lo(u)})]
≡ ϑ(lo(u)) ∧ [¬sym(u) ∨ ϑ(hi(u) \ {lo(u)})].

It is obvious that neither ϑ(lo(u)) nor ¬sym(u)∨ϑ(hi(u)\{lo(u)}) is strictly ∧i-decomposable.
According to Corollary 1b, {ϑ(lo(u)),¬sym(u) ∨ ϑ(hi(u) \ {lo(u)})} is finer than the ∧î-
decomposition of ϑ(u). Therefore, if u′ on Line 8 is a ∧i-vertex, it is a ∧î-vertex; and other-
wise, ϑ(u) is not strictly ∧i-decomposable, which implies that u is a vertex in ROBDD[∧î]C .
The time complexity of ExtractPart is obvious. The step on Line 2 will introduce at most
two vertices, and the step on Line 3 will introduce at most one vertex on Line 3. That is,
each single calling of Merge(u) will introduce at most three vertices. The steps on Lines
2–3 will add at most four new arcs and reduce three old arcs. That is, each single calling
of ExtractPart(u) will add at most one arc.

A.21 Proof of Observation 13

According to Equation (2), we can show the output is equivalent to the input as follows:

ϑ(u) ≡ [¬sym(u) ∧ ϑ(lo(u) \ V) ∧
∧
v∈V

ϑ(v)] ∨ [sym(u) ∧ ϑ(hi(u) \ V) ∧
∧
v∈V

ϑ(v)]

≡
[
[¬sym(u) ∧ ϑ(lo(u) \ V)] ∨ [sym(u) ∧ ϑ(hi(u) \ V)]

]
∧
∧
v∈V

ϑ(v).

According to Observation 6, Ψ = {[¬sym(u)∧ϑ(lo(u)\V)]∨[sym(u)∧ϑ(hi(u)\V)]}∪{ϑ(v) :
v ∈ V } is a ∧-decomposition of ϑ(u). Each factor in this decomposition is not strictly ∧i-
decomposable, and thus Ψ is finer than the ∧î-decomposition of ϑ(u) by Corollary 1b. That

508

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

is, u′ on Line 4 is a ∧î-vertex if u′ on Line 4 is a ∧i-vertex. Otherwise, there exist exactly
two factors in Ψ with more than i variables. If |V | = 1, we know ϑ(u) is not strictly
∧i-decomposable, which implies that u is a vertex in ROBDD[∧î]C . Otherwise, we can
get the ∧î-decomposition of ϑ(u) by conjoining the two factors by Corollary 1b. The time
complexity of ExtractPart is obvious. The reader can verify that this function will introduce
at most two vertices on Line 2 or 7, and introduce at most one vertex on Line 3 or 8. That
is, each single calling of Merge(u) will introduce at most three vertices. The reader can
verify that this function will add at most |V | + 1 new arcs and reduce 2 · |V | old arcs on
Lines 2 or 7. That is, each single calling of ExtractShare(u) will add at most one arc.

A.22 Proof of Proposition 7

We only prove the case of ROBDD[∧î]C by induction on the size of V ars(ϕ), and the proof
for the case of ROBDD[∧T̂]T is similar. The case |V ars(ϕ)| ≤ 1 is obvious. We assume
that the conclusion holds when |V ars(ϕ)| ≤ n. For the case |V ars(ϕ)| = n+ 1, we proceed
by case analysis:

• ϕ is strictly ∧i-decomposable: We denote the factor in the ∧î-decomposition of ϕ with
the appearance of x by ψ, and the ∧î-decomposition of bψ|ωc by Ψ′. It is obvious that
each factor of the ∧î-decomposition of bϕ|ωc with the appearance of x is a factor of Ψ′

with the appearance of x, and vice versa. Let Ψ′′ = {ψ′ : ∃ω ∈ 2X .ψ′ is a factor of the ∧î
-decomposition of bψ|ωc}. Let u (resp. v) be the ROBDD[∧î]C vertex representing ϕ
(resp. ψ). According to the induction hypothesis, the number of vertices in Gv labeled by
x is equal to the number of distinct factors in Ψ′′ with the appearance of x. Since each
vertex labeled by x in Gu is exactly a vertex labeled by x in Gv, we immediately have the
conclusion.
• Otherwise, ϕ is not strictly ∧i-decomposable: If x = glb(ϕ), the conclusion is obvi-

ous. Otherwise, we know glb(ϕ) ≺C x. Let Ψ1 = {ψ : ∃ω ∈ 2X .glb(ϕ) = false ∈
ω and ψ is a factor of the ∧î -decomposition of bϕ|ωc}, and Ψ2 = {ψ : ∃ω ∈ 2X .glb(ϕ) =
true ∈ ω and ψ is a factor of the ∧î -decomposition of bϕ|ωc}. It is obvious that each
factor of Ψ with the appearance of x is a factor of Ψ1 or Ψ2 with the appearance of x,
and vice versa. Let u (resp. v and w) be the ROBDD[∧î]C vertex representing ϕ (resp.
ϕ|glb(ϕ)=false and ϕ|glb(ϕ)=true). According to the induction hypothesis, the number of
vertices labeled by x in Gv (resp. Gw) is equal to the number of factors in Ψ1 (resp. Ψ2)
with the appearance of x. According the canonicity of ROBDD[∧î]C , the set of vertices
labeled by x in Gu is the union of two sets of vertices labeled by x: the ones in Gv, and
the ones in Gw. Then we immediately have the conclusion.

A.23 Proof of Observation 14

The conclusion in the second sentence is immediate from the one in the first sentence,
and next we prove the first one. For each variable x ∈ V ars(ϕ), let X be the set of
variables on the path from glb≺T (ϕ) to the parent of x in tree T , and let Φ be set of
distinct formulas obtained by conditioning ϕ on assignments over X. It is obvious that |X|
is not more than |dep(T)|, and thus |Φ| is not more than 2dep(T). According to Proposition
7 and the uniqueness of ∧T̂ -decomposition, the number of vertices labeled by x is not

509

Lai, Liu, & Yin

more than 2dep(T). Therefore, if ϕ can be represented in ROBDD[∧T̂]T , then the resulting

ROBDD[∧T̂]T has at most 3 · |V ars(ϕ)| · 2dep(T) vertices by Observation 3d.

A.24 Proof of Proposition 8

The soundness of Algorithm Condition can be easily proven by induction on the number
of vertices in Gv. We can record the assignment as a vector, and thus a single calling of
Condition(u) terminates in O(|Ch(u)|). That is, the time complexity of Condition is
O(|Gu| + |ω|). Each single calling of Condition generates at most one new vertex (not
considering the vertices generated by the sub-calling of Condition), and the number of
arcs from the new vertex is not more than the number of arcs from the input. Therefore,
the size of output of Condition(u, ω) is not greater than |Gu|.

A.25 Proof of Proposition 9

It is easy to see that ConditionMin(u, b) is equivalent to Condition(u, glb(u) = b) for
ROBDD[∧î]C . Therefore, we immediately know the output of ConditionMin(u, b) is an
OBDD[∧]≺ vertex representing ϑ(u)|glb(u)=b. Since each vertex in Ch(u) \ {v} is labeled by
a variable, Lines 8–9 in the algorithm mean that we replace v in Ch(u) with w and then
call Merge(u). Therefore, the new u is an ROBDD[∧î]C vertex by Observation 5. The size
of ROBDD[∧î]C rooted at the output is less than |Gu| since the vertex labeled by glb(u) is
removed. It is also easy to see the time complexity of ConditionMin.

A.26 Proof of Observation 15

We first show that u and v satisfy at least one of the five conditions. If neither the first
condition nor the second one is satisfied, we know that sym(v) ∈ PV , and sym(v) �T glb(u)
or sym(v) �T glb(u). If sym(v) �T glb(u), we know sym(v) = sym(u) or sym(v) ≺T
V ars(u); that is, either the third condition or the fourth one is satisfied. Otherwise, either
the fifth condition or the sixth one is satisfied.

Next we show the soundness of each item. The first five items are easy to see. For the last
item, if ϑ(mchx(u)) |= ϑ(v), we know ϑ(u) |= ϑ(mchx(u)) |= ϑ(v). If ϑ(mchx(u)) 6|= ϑ(v),
there exists some model ω over V ars(mchx(u)) ∪ V ars(v) such that ω |= ϑ(mchx(u)) and
ω 6|= ϑ(v). Since each subgraph rooted at some vertex in Ch(u) \ Chx(u) does not share
any variable with Gv. We can extend ω to get another model ω′ over V ars(u) ∪ V ars(v)
such that ω′ |= ϑ(u) and ω′ 6|= ϑ(v). That is, ϑ(u) 6|= ϑ(v).

A.27 Proof of Proposition 10

We first present a lemma that will be used when we analyze the time complexities of
Algorithms EntailTree, DisjoinTree and ConvertTree:

Lemma 2. Given an OBDD[∧]≺ G and a tree T with ≺T ⊆≺, we can compute all greatest
lower bounds of the formulas represented by its vertices over ≺T in O(|G|).

Proof. Since we know the greatest lower bounds of any two variables over ≺T , we can
recursively compute all greatest lower bounds of the formulas represented by its vertices.
That is, if u is a �-vertex with two constant children, glb(u) = sym(u); if u is a �-vertex

510

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

with only one non-constant child v, glb(u) = glb({sym(u), glb(v)}); if u is a �-vertex with
two non-constant children v and w, glb(u) = glb({sym(u), glb(v), glb(w)}); and if u is a
∧-vertex, glb(u) = glb({glb(v) : v ∈ Ch(u)}). Moreover, glb(X) = glb({x, glb(X \ {x})})
if |X| > 2 and x ∈ X. Therefore, we can obtain the lemma with the use of dynamic
programming.

According to Observation 15, the soundness of Algorithm EntailTree can be easily
proven by induction on the sum of |Gu| and |V (Gv)|. For each single calling of Entail-
Tree(w,w′), w is a meta-vertex in Gu, and w′ is a vertex in Gv. Therefore, the number of
single calling is not more than |Gu| · |V (Gv)| by Observation 7. According to Lemma 2, all
greatest lower bounds for vertices in Gv can be computed in O(|Gv|) in the preprocessing
stage. We can also show in a similar fashion that all greatest lower bounds for meta-vertices
in Gu can be computed in O(|V ars(u)|·|Gu|) in the preprocessing stage. In addition, for each
pair of variables x and x′, we have assumed that chT (x x′) is already known. Therefore,
it is easy to see that given two ROBDD[∧T̂]T s rooted at w and w′, each single calling of
EntailTree can be done in O(|V ars(w)| + |V ars(w′)|). That is, the time complexity of
EntailTree is O((|V ars(u)|+ |V ars(v)|) · |Gu| · |V (Gv)|).

A.28 Proof of Observation 16

We first present a lemma that will be used in this proof and the proof of Observation 17:

Lemma 3. A consistent formula ϕ is strictly ∧T -decomposable, iff for any variable x ∈
ChT (glb(ϕ)) and any two assignments ω and ω′ over V (Tx) such that both ϕ|ω and ϕ|ω′ are
consistent, we have ϕ|ω ≡ ϕ|ω′.

Proof. We first prove the direction from left to right. We assume that the ∧T̂ -decomposition
Ψ of ϕ is strict. For each variable x ∈ ChT (glb(ϕ)), let Ψ′ = {ψ ∈ Ψ : x �T glb(ψ)}. It is
obvious that if ω |=

∧
ψ∈Ψ′ ψ, then ϕ|ω ≡

∧
ψ∈Ψ\Ψ′ ψ, and otherwise ϕ|ω ≡ false. We have

the similar conclusion for ω′. Therefore, if ϕ|ω and ϕ|ω′ are consistent, then ϕ|ω ≡ ϕ|ω′ .
We then prove the direction from right to left by induction on the size of V ars(ϕ). The

case |V ars(ϕ)| = 2 is obvious. We assume that the direction from right to left holds for
|V ars(ϕ)| ≤ m. Next we analyze the case |V ars(ϕ)| = m + 1. Let x be a variable in
ChT (glb(ϕ)) such that there exists some variable x′ ∈ V ars(ϕ) with x �T x′. Let Ω be the
set of assignments over V (Tx)∩V ars(ϕ) such that the conditioning of ϕ on each assignment
is consistent. Given two assignments ω, ω′ ∈ Ω, we have ϕ|ω ≡ ϕ|ω′ . Let ϕ′ be the formula
whose variable set is V (Tx) ∩ V ars(ϕ) and whose model set is Ω. That is, Ψ = {ϕ|ω, ϕ′}
is a ∧-decomposition of ϕ. If ϕ|ω satisfies the condition that there exists some child x′′ of
glb(ϕ) in T such that all variables are from V (Tx′′), then Ψ is a strict ∧T -decomposition of
ϕ. Otherwise, it is obvious that ϕ|ω satisfies the right condition of the conclusion; that is,
for any child x′′ of glb(ϕ|ω) in T and any two assignments ω1 and ω2 over V (Tx′′) satisfying
that if both ϕ|ω∪ω1 and ϕ|ω∪ω2 are consistent, we have ϕ|ω∪ω1 ≡ ϕ′|ω∪ω2 . Therefore, ϕ|ω
has some strict ∧T -decomposition Ψ′ by the induction hypothesis. That is, Ψ′ ∪ {ϕ′} is a
strict ∧T -decomposition of ϕ.

We denote ϑ(u)∨ ϑ(v) by ϕ and the ∧T̂ -decomposition of ϑ(u) by Ψ. Then we proceed
by case analysis:

511

Lai, Liu, & Yin

• ϑ(u) and ϑ(v) do not share any variables: According to the dual case of Observation
1b, ϕ is not strictly ∧-decomposable. It is obvious glb(ϕ) = glb(u) ≺T glb(v). Since
glb(u) 6∈ V ars(u) and there is not any inessential variable in ϕ, we have glb(ϕ) 6∈ V ars(ϕ).
Therefore, ϕ cannot be represented in ROBDD[∧T̂]T by Observation 8.
• Otherwise, let x be chT (glb(u) glb(v)), and it is obvious that Chx(u) ⊂ Ch(u):

We denote mchx(u) and u \ Chx(u) by w and u′, respectively. Obviously, there exist
assignments ω1 and ω2 over V ars(u′) such that ω1 |= ϑ(u′) and ω2 6|= ϑ(u′). We also know
ϑ(w) 6|= ϑ(v), and otherwise ϑ(u) |= ϑ(v). Then we have that ϕ|ω1 ≡ ϑ(w) ∨ ϑ(v) is not
equivalent to ϕ|ω2 ≡ ϑ(v). Since ϑ(w)∨ϑ(v) and ϑ(v) are consistent, we have that bϕc is
not strictly ∧T -decomposable by Lemma 3, and also have that ϕ depends on some variable
x′ ∈ V ars(u′). Moreover, there exist assignments ω3 and ω4 over V ars(w)∪V ars(v) such
that ω3 |= ϑ(w), ω3 6|= ϑ(v) and ω4 |= ϑ(v). Therefore, ϕ|ω3 ≡ ϑ(u′) is not equivalent
to ϕ|ω4 ≡ true, which implies that ϕ depends some variable x′′ ∈ V ars(w) ∪ V ars(v).
Since glb(bϕc) �T glb({x′, x′′}) = glb(u), we know glb(bϕc) 6∈ V ars(ϕ), which implies
that glb(bϕc) 6∈ V ars(bϕc). Therefore, ϕ cannot be represented in ROBDD[∧T̂]T by
Observation 8.

A.29 Proof of Observation 17

We denote ϑ(u) ∨ ϑ(v) by ϕ. Then we show that if there exist two different meta-pairs
between u and v, ϕ cannot be represented in ROBDD[∧T̂]T . According to Observation 8,
we only need to show that bϕc is not strictly ∧T -decomposable and glb(bϕc) 6∈ V ars(bϕc).
For the second assertion, we only need to show that there exist two variables x′ and x′′ in
bϕc with glb({x′, x′′}) = glb(u), because glb(bϕc) �T glb({x, x′}) and glb(u) ≺T V ars(ϕ).
We proceed with case analysis:

• There exists some different meta-pair (w, 〈>〉) between u and v: We denote u\{w} by u′.
We have ϑ(u′) 6|= ϑ(v), and otherwise ϑ(u) |= ϑ(v). There exist two assignments ω1 and
ω2 over V ars(w) such that ω1 |= ϑ(w) and ω2 6|= ϑ(w). We have that ϕ|ω1 ≡ ϑ(u′)∨ϑ(v) is
not equivalent to ϕ|ω2 ≡ ϑ(v), and otherwise ϑ(u′) |= ϑ(v). Since both ϕ|ω1 and ϕ|ω2 are
consistent, we have that bϕc is not strictly ∧T -decomposable according to Lemma 3, and
also have that ϕ depends on some variable x′ ∈ V ars(w). Moreover, since ϑ(u′) 6|= ϑ(v),
there exist two assignments ω3 and ω4 over V ars(u′) ∪ V ars(v) such that ω3 |= ϑ(u′),
ω3 6|= ϑ(v) and ω4 |= ϑ(v). Since ϕ|ω3 ≡ ϑ(w) is not equivalent to ϕ|ω2 ≡ true, ϕ depends
some variable x′′ ∈ V ars(u′) ∪ V ars(v). Therefore, glb({x′, x′′}) = glb(u).
• There exists some different meta-pair (〈>〉, w) between u and v: It is similar to the last

case.
• Otherwise, we assume that (w,w′) is some different meta-pair of two internal vertices

between u and v: If w (resp. w′) is a ∧-vertex, we denote Ch(w) (resp. Ch(w′)) by W
(resp. W ′), and otherwise we denote {w} (resp. {w′}) by W (resp. W ′). Then we denote
u \W and v \W ′ by u′ and v′, respectively. It is obvious ϑ(u′) 6≡ ϑ(v′) since there exists
another different meta-pair between u and v. We proceed with case analysis:

– ϑ(w) |= ϑ(w′): Obviously, there exist assignments ω1 and ω2 over V ars(w) ∪
V ars(w′) such that ω1 |= ϑ(w), ω2 6|= ϑ(w) and ω2 |= ϑ(w′). We also know ϑ(u′) 6|=
ϑ(v′), and otherwise ϑ(u) |= ϑ(v). We have that ϕ|ω1 ≡ ϑ(u′) ∨ ϑ(v′) is not equiva-
lent to ϕ|ω2 ≡ ϑ(v′). Therefore, we have that bϕc is not strictly ∧T -decomposable

512

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

by Lemma 3, and that ϕ depends on some variable x ∈ V ars(w) ∪ V ars(w′).
Moreover, there exist assignments ω3 and ω4 over V ars(u′) ∪ V ars(v′) such that
ω3 |= ϑ(u′), ω3 6|= ϑ(v′) and ω4 |= ϑ(v′). Therefore, ϕ|ω3 ≡ ϑ(w) is not equivalent
to ϕ|ω4 ≡ ϑ(w′). That is, ϕ depends on some variable x′ ∈ V ars(u′) ∪ V ars(v′).
Therefore, glb({x, x′}) = glb(u).

– ϑ(w′) |= ϑ(w): It is similar to the case ϑ(w) |= ϑ(w′).
– Otherwise, ϑ(w) 6|= ϑ(w′) and ϑ(w′) 6|= ϑ(w): Obviously, there exist assignments ω1

and ω2 over V ars(w) ∪ V ars(w′) such that ω1 |= ϑ(w), ω1 6|= ϑ(w′), ω2 6|= ϑ(w) and
ω2 |= ϑ(w′). We have that ϕ|ω1 ≡ ϑ(u′) is not equivalent to ϕ|ω2 ≡ ϑ(v′). Therefore,
we have that bϕc is not strictly ∧T -decomposable by Lemma 3, and that ϕ depends
on some variable x ∈ V ars(w) ∪ V ars(w′). Since ϑ(u′) 6≡ ϑ(v′), there exists some
assignment ω3 over V ars(u′) ∪ V ars(v′) such that ω3 |= ϑ(u′) and ω3 6|= ϑ(v′), or
there exists some assignment ω3 over V ars(ϕ′1)∪V ars(ϕ′2) such that ω3 6|= ϑ(u′) and
ω3 |= ϑ(v′); and these two cases are dual to each other. Without loss of generality,
we only analyze the first case. Obviously, there exists some assignments ω4 over
V ars(u′)∪ V ars(v′) such that ω4 |= ϑ(v′). Therefore, ϕ|ω3 ≡ ϑ(w) is not equivalent
to ϕ|ω4 |= ϑ(w′). That is, ϕ depends on some variable x′ ∈ V ars(u′) ∪ V ars(v′).
Therefore, glb({x, x′}) = glb(u).

A.30 Proof of Proposition 11

We first prove the soundness of Algorithm DisjoinTree by induction on the sum of |V (Gu)|
and |V (Gv)|. For the case where either u or v is a leaf vertex, it is implicitly mentioned on
Lines 2–3 and thus is obvious. We assume that for the case where |V (Gu)| + |V (Gv)| ≤ n,
the algorithm returns the ROBDD[∧T̂]T vertex representing ϑ(u)∨ ϑ(v) iff ϑ(u)∨ ϑ(v) can
be represented in ROBDD[∧T̂]T . For the case where |V (Gu)|+ |V (Gv)| = n+ 1, we proceed
by case analysis:

• The condition on Line 2 or 3 is satisfied: This case is obvious.
• The condition on Line 4, 7 or 10 is satisfied: We first show that if the algorithm does not

report failure, its output is the ROBDD[∧T̂]T vertex representing ϑ(u) ∨ ϑ(v):
– The condition on Line 4 is satisfied: By the induction hypothesis, u1 (resp. u2) on

Line 5 is an ROBDD[∧T̂]T vertex equivalent to ϑ(lo(u))∨ϑ(v) (resp. ϑ(hi(u))∨ϑ(v)).
Therefore, 〈sym(u), u1, u2〉 is an OBDD[∧T]T vertex equivalent to ϑ(u) ∨ ϑ(v) ≡
[¬sym(u) ∧ (ϑ(lo(u)) ∨ ϑ(v))] ∨ [sym(u) ∧ (ϑ(hi(u)) ∨ ϑ(v))]. By Proposition 5, the
result is an ROBDD[∧T̂]T after Line 19.

– The condition on Line 7 is satisfied: This case can be proven in a similar fashion to
that of the case where the condition on Line 4 is satisfied.

– The condition on Line 10 is satisfied: By the induction hypothesis, u1 (resp. u2) on
Line 11 is an ROBDD[∧T̂]T vertex equivalent to ϑ(lo(u))∧ϑ(lo(v)) (resp. ϑ(hi(u))∧
ϑ(hi(v))). Therefore, 〈sym(u), u1, u2〉 is an OBDD[∧T]T vertex equivalent to ϑ(u)∨
ϑ(v) ≡ [¬sym(u) ∧ (ϑ(lo(u)) ∨ ϑ(lo(v)))] ∨ [sym(u) ∧ (ϑ(hi(u)) ∨ ϑ(hi(v)))]. By
Proposition 5, the result is an ROBDD[∧T̂]T after Line 19.

According to Corollary 4, given any two formulas ϕ and ϕ′ and assignment ω, if ϕ∨ϕ′ can
be represented in ROBDD[∧T̂]T , then (ϕ∨ϕ′)|ω can also be represented in ROBDD[∧T̂]T .

513

Lai, Liu, & Yin

According to the induction hypothesis, if the algorithm reports failure, ϑ(u)∨ϑ(v) cannot
be represented in ROBDD[∧T̂]T .
• The conditions on Lines 13–14 are satisfied: Let u and v be two ∧-vertices such that
glb(u) = glb(v) and there is exactly one different meta-pair (w,w′) between u and v.
{ϑ(w′′) : w′′ ∈ Ch(u) and w′′ 6= w}∪{ϑ(w)∨ϑ(w′)} is a ∧T -decomposition of ϑ(u)∨ϑ(v).
That is, ϑ(u) ∨ ϑ(v) can be represented in ROBDD[∧T̂]T , iff ϑ(w) ∨ ϑ(w′) can also
be represented in ROBDD[∧T̂]T . Then we immediately have the conclusion from the
induction hypothesis.
• Otherwise: According to Observations 16–17, ϑ(u) ∨ ϑ(v) cannot be represented in

ROBDD[∧T̂]T .
We then analyze the time complexity. For each single calling of DisjoinTree(w, w′),

w and w′ are meta-vertices in Gu and Gv, respectively. We know that the number of single
callings of DisjoinTree is not more than |Gu| · |Gv| by Observation 7. In addition, we
need to compute the entailment relation between meta-vertices of Gu and Gv. We can use
the algorithm EntailTree to do this in the preprocessing stage. By use of hash table,
it is obvious that we only call EntailTree at most once for each pair of meta-vertices
respectively in Gu and Gv, and thus the number of single callings of EntailTree is not
more than |Gu| · |Gv|; that is, the calling time is bounded by O((|V ars(u)| + |V ars(v)|) ·
|Gu| · |Gv|). When the entailment relation on Lines 2–3 is already known, each single calling
of DisjoinTree can be done in O(|V ars(u)|+ |V ars(v)|). Therefore, the time complexity
of DisjoinTree is O((|V ars(u)|+ |V ars(v)|) · |Gu| · |Gv|).

A.31 Proof of Proposition 12

Membership is immediate from the fact that the problem of deciding the entailment relation
of two propositional formulas is in co-NP. The hardness is proved by taking advantage of
the idea that was used to prove the complexity of deciding the entailment relation of two
free BDDs by Fortune, Hopcroft, and Schmidt (1978). That is, we reduce the problem
of deciding the entailment relation of two ROBDD[∧î]Cs into 3UNSAT. For each 3-CNF
formula

ϕ = (l1,1 ∨ l1,2 ∨ l1,3) ∧ · · · ∧ (lm,1 ∨ lm,2 ∨ lm,3),

we prove that it is unsatisfiable iff an ROBDD[∧î]C entails another one, where the sizes of
ROBDD[∧î]Cs are polynomial in |ϕ|. For notational simplicity, we assume that C is depicted
in Figure 2a and x1, . . . , xn are the variables in V ars(ϕ). For other chains and variables,
we can proceed in a similar fashion only with some substitutions of variables. We introduce
a new variable xk,c (1 ≤ k ≤ m, 1 ≤ c ≤ 3) for each lk,c. Let x−j,1, . . . , x

−
j,aj

and x+
j,1, . . . , x

+
j,bj

be the variables in sets {xk,c : lk,c = ¬xj} and {xk,c : lk,c = xj}, respectively. The reader
can verify that ϕ is satisfiable iff the conjunction of the following two formulas is satisfiable:

ϕ1 = (x1,1 ∨ x1,2 ∨ x1,3) ∧ · · · ∧ (xm,1 ∨ xm,2 ∨ xm,3),

ϕ2 =
∧

1≤j≤n

 ∧
1≤k≤aj

xj ↔ ¬x−j,ak

 ∧
 ∧

1≤k≤bj

xj ↔ x+
j,bk

 .
That is, ϕ is unsatisfiable iff ϕ2 |= ¬ϕ1, where ¬ϕ1 and ϕ2 are equivalent to the two
ROBDD[∧î]Cs in Figure 5a and 5b, respectively.

514

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

x1,2

x1,3

x1,1

x2,2

x2,3

x2,1 xm-1,1

⊤⊤⊤

xm-1,2

xm-1,3

⊥

xm,1

⊤

xm,2

xm,3

(a)

x1

x2

⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

11,ax
11,bx

1,1x
1,1x

1,1x
11,ax

11,bx
1,1x

xn

⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

, nn bx
,1nx

, nn ax
,1nx

, nn bx
,1nx

, nn ax
,1nx

(b)

Figure 5: Two ROBDD[∧î]Cs (i > 0), where C is depicted in Figure 2a

A.32 Proof of Theorem 7

The tractability results of ROBDD[∧0̂]C is known previously since it is equivalent to ROBDD
over C. From the polytime operation algorithms in Subsection 7.2, we can immediately ob-
tain many positive results. The negative result of ROBDD[∧î]C (i > 0) on SE immediately
follows from Proposition 12, which implies that ROBDD[∧î]C does not satisfy ∧BC (resp.
∧C, ∨BC, ∨C, SFO and FO) unless P = NP, because by performing the latter operation
and CT , we can indirectly perform SE. Next we explain the remaining results:

515

Lai, Liu, & Yin

• ROBDD[∧T̂ ,i]T satisfies ¬C: We next prove by induction that given an ROBDD[∧T̂ ,i]T
rooted at u with some ∧-vertex, ¬ϑ(u) cannot be represented in ROBDD[∧T̂ ,i]T ; in

other words, for each ROBDD[∧T̂ ,i]T without any ∧-vertex, we can employ the negation

algorithm for ROBDD[∧0̂]C to perform its negation. The case sym(u) = ⊥ or> is obvious.
We assume the assertion holds for V (Gu) ≤ n. Next we analyze the case V (Gu) = n+ 1.
If sym(u) = ∧, the assertion is obvious by Observation 8, since ¬ϑ(u) is not strictly
∧-decomposable and glb(u) /∈ V ars(u). Otherwise, without loss of generality, we assume
that there exists some ∧-vertex v in Glo(u). If ¬ϑ(u) can be represented in ROBDD[∧T̂ ,i]T ,

then ¬ϑ(lo(u)) can be represented in ROBDD[∧T̂ ,i]T according to Algorithm 2, which
contradicts with the induction hypothesis.
• ROBDD[∧T̂ ,i]T (dep(T) <∞) satisfies ∧C: By Observation 14, the number of vertices in

each ROBDD[∧T̂]T over X is not more than 3 · |X| ·2dep(T) +1. Therefore, conjoining two

ROBDD[∧T̂ ,i]T s can be done in O(|X|3 · 4dep(T)). For m ROBDD[∧T̂]T s, we can conjoin

them by m− 1 callings of binary conjoining in O(m · |X|3 · 4dep(T)).
• ROBDD[∧î]C (i > 0) does not satisfy ¬C: For notational simplicity, we assume that C is

depicted in Figure 2a. For other chains, we can proceed in a similar fashion only with
variable substitutions. The ROBDD[∧î]C G representing ϕ has a linear size. However,
after conditioning ¬ϕ on any two different assignments on x1, . . . , xn will obtain two
distinct sub-formulas which are not strictly ∧-decomposable. Therefore, the ROBDD[∧î]C
representing ¬ϕ has an exponential size by Proposition 7.
• ROBDD[∧î]C (dep(T) = ∞) satisfies none of ∧C, ∨C and FO unless P = NP: Let C′

be an infinite path in T . The problem of deciding the consistency of a CNF formula
over V (C′) is NP-complete. It is obvious that each clause on V (C′) can be represented
in ROBDD[∧T̂ ,i]T . If ROBDD[∧T̂ ,i]T satisfies ∧C, a CNF formula over V (C′) can be

transformed into ROBDD[∧T̂ ,i]T in polytime, which implies that the consistency of CNF

formulas over V (C′) can be checked in polytime (i.e., P = NP). ∨C is a dual case of ∧C,
and for ROBDD[∧T̂ ,i]T , ∨C is satisfied if FO is satisfied.

• ROBDD[∧î]C (dep(T) < ∞) satisfies neither ∨C nor FO unless P = NP: Since PV is
infinite, there exists some x in T that has an infinite number of children. We assume that
the children of variable x in T are X = {xk1 , . . . , xkn , . . .}. Therefore, the problem of
deciding validity of DNF over X is co-NP-complete. Given a DNF formula ϕ = γ1∨ · · · ∨
γm, each term γj on X can be represented by ROBDD[∧î]C Gj . Therefore, if ROBDD[∧î]C
(dep(T) <∞) satisfies ∨C, then we can decide the validity of ϕ by determining whether
the disjunction of G1, . . . ,Gm is 〈>〉. Finally, ROBDD[∧î]C (dep(T) <∞) satisfies ∨C iff
it satisfies FO.

A.33 Proof of Proposition 13

We prove the soundness by induction on the size of V (Gu), where u is the input. The
basic case |V (Gu)| = 1 is obvious. We assume that when |V (Gu)| ≤ n, the output u′ of
ConvertDown(u) is the equivalent ROBDD[∧î]C vertex with V ars(u) = V ars(u′). For
the case |V (Gu)| = n+ 1, we proceed with case analysis:

• sym(u) ∈ PV : According to the induction hypothesis, it is easy to show ϑ(u′) ≡ ϑ(u)
and V ars(u) = V ars(u′). Since ϑ(u) is not strictly ∧j-decomposable, ϑ(u′) is not strictly

516

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

∧i-decomposable. Since sym(u) ≺C V ars(u), we have sym(u′) ≺C V ars(u′). Therefore,
u′ is an ROBDD[∧î]C vertex.
• sym(u) = ∧: It is obvious that the vertices in ROBDD[∧ĵ]C with at most i variable

are already ROBDD[∧î]C vertices. Therefore, if the condition on Line 8 is satisfied, u
is already an ROBDD[∧î]C vertex. Otherwise, if the condition on Line 9 is satisfied,
the result of ConvertDown(v) is obviously a �-vertex, and thus u′ is in ROBDD[∧î]C
according to the induction hypothesis. Otherwise, according to Corollary 1a, {ϑ(v) : v ∈
Ch(u) \ V } ∪ {ϑ(〈∧, V 〉)} is the ∧î-decomposition of ϑ(u). Let x be min{sym(v) : v ∈
V }. According to the soundness of ConditionMin and the induction hypothesis, v1

and v2 are the ROBDD[∧î]C vertices representing ϑ(〈∧, V 〉)|x=false and ϑ(〈∧, V 〉)|x=true,
respectively. That is, 〈x, v1, v2〉 represents ϑ(〈∧, V 〉). Since ϑ(〈∧, V 〉) is not strictly ∧i-
decomposable and x is the minimum variable, the output 〈x, v1, v2〉 is in ROBDD[∧î]C .
Therefore, u′ is an ROBDD[∧î]C vertex representing ϑ(u).

It is obvious that each single calling of ConvertDown terminates in O(|V ars(u)|) by
Proposition 9. Since each variable in the input is also in the output, each single calling
of ConvertDown terminates in O(|V ars(v)|), where v is the output. It is obvious that
each single calling of ConvertDown will generate at least one new ROBDD[∧î]C vertex
into vertex-table. Therefore, the number of single callings of ConvertDown is not more
than |V (Gv)|, and then the time complexity of ConvertDown is bounded by O(|V ars(v)| ·
|V (Gv)|).

A.34 Proof of Proposition 14

If ConvertTree(u) does not report failure, it is easy to show that its output is the
equivalent ROBDD[∧T̂ ,i]T vertex, using a proof similar to the one in Subsection E.10. We

next prove by induction that if ConvertTree(u) reports failure, then ϑ(u) cannot be
represented in ROBDD[∧T̂ ,i]T . The basic case |V (Gu)| = 1 is obvious. We assume that

when |V (Gu)| ≤ n, the assertion holds. For the case |V (Gu)| = n+ 1, we proceed with case
analysis:

• sym(u) ∈ PV : According to Corollary 2a, ϑ(u) is not strictly ∧T -decomposable. Since
sym(u) ≺C V ars(u), for each x ∈ V ars(u), x 6≺T sym(u). That is, glb≺T (u) ∈ V ars(u)
iff glb≺T (u) = sym(u). Therefore, if glb≺T (u) 6= sym(u), ϑ(u) cannot be represented
in ROBDD[∧T̂ ,i]T by Observation 8. Otherwise, by the induction hypothesis, ϑ(lo(u))

(resp. ϑ(hi(u))) can be represented in ROBDD[∧T̂ ,i]T iff ConvertTree(lo(u)) (resp.

ConvertTree(hi(u))) does not report failure. According to Algorithm 2, if ϑ(u) can
be represented in ROBDD[∧T̂ ,i]T , then both ϑ(lo(u)) and ϑ(hi(u)) can be represented

in ROBDD[∧T̂ ,i]T . That is, if ConvertTree(u) reports failure, then ϑ(u) cannot be

represented in ROBDD[∧T̂ ,i]T .

• sym(u) = ∧: Given a ∧-vertex v and its children W , it is obvious that there exists
some assignment ω such that ϑ(v)|ω ≡ 〈∧,W 〉. That is, if ϑ(v) can be represented in
ROBDD[∧T̂ ,i]T , then ϑ(〈∧,W 〉) can also be represented in ROBDD[∧T̂ ,i]T by Algorithm

2. For the case glb≺T (vk) 6∈ V ars(vk), if ϑ(u) can be represented in ROBDD[∧T̂ ,i]T , then

ϑ(vk) is strictly ∧T -decomposable, which contradicts with Corollary 2a. In other words,
for the case glb≺T (vk) 6∈ V ars(vk), ϑ(vk) cannot be represented in ROBDD[∧T̂ ,i]T . For

517

Lai, Liu, & Yin

the case where the recursive calling on Line 14, 15 or 17 reports failure, ϑ(vk) cannot be
represented in ROBDD[∧T̂ ,i]T by the the induction hypothesis, and thus ϑ(u) cannot be

represented in ROBDD[∧T̂ ,i]T . According to Corollary 2a, for the case where u′ on Line

21 is not bounded by i, ϑ(u) also cannot be represented in ROBDD[∧T̂ ,i]T .

According to Lemma 2, we can compute all greatest lower bounds of all vertices in Gu
over≺T in the preprocessing stage in time O(|V ars(u)|·|V (Gu)|). When we call Condition-
Min on Line 14 or 15, we can only compute the greatest lower bounds for the new vertices in
vertex-table, and thus the time is bounded in O(|V ars(u)|). It is obvious that Lines 8–9 can
be computed in O(|V ars(u)|2). Therefore, each single calling of ConvertTree terminates
in O(|V ars(u)|2). Since each variable in the input is also in the output, each single call-
ing of ConvertDown terminates in O(|V ars(v)|2), where v is the output. Because each
single calling of ConvertDown will generate at least one new ROBDD[∧T̂ ,i]T vertex into

vertex-table, the time complexity of ConvertDown is bounded by O(|V ars(v)|2 · |V (Gv)|).

A.35 Proof of Theorem 8

All positive rapidity results were explained in Section 7.3, except that ROBDD[∧T̂ ,i]T ≥
OP
r

ROBDD[∧î]C when i = 0 or dep(T) < ∞. The case i = 0 is immediate from the fac-
t ROBDD[∧T̂ ,0]T ⊆ ROBDD[∧0̂]C . We next explain that each ROBDD[∧T̂ ,i]T can be

transformed into ROBDD[∧î]C in polytime in the size of output, and then ROBDD[∧T̂ ,i]T
≥OPr ROBDD[∧î]C when dep(T) < ∞. Each ROBDD[∧T̂ ,i]T can be transformed into

ROBDD[∧î]C by Decompose. According to the canonicity of ROBDD[∧T̂ ,i]T , each single

calling of Decompose will generate at least one new ROBDD[∧î]C vertex into vertex-table.
Since ROBDD[∧T̂ ,i]T =s ROBDD[∧î]C , the number of single callings of Decompose is
polynomial in the size of output. Therefore, Decompose terminates in polytime in the size
of output.

We next explain the negative rapidity results. For notational simplicity, we assume that
C is depicted in Figure 2a. For other chains, we can proceed in a similar fashion with some
substitutions of variables.

• ROBDD[∧î]C 6≤
CD
r ROBDD[∧ĵ]C : We consider the ROBDD[∧î]C G and ROBDD[∧ĵ]C G

′

representing Equation (1). Let ω be {xn+0·n = true, . . . , xn+i·n = true} and G′′ be the
result of conditioning G′ on ω. According to Proposition 7, the number of vertices in G′′
is exponential in |G|. The reader can verify that more than half of the vertices in G′′ do
not appear in G′. That is, the number of new vertices in G′′ is exponential in |G|, and
thus the time of conditioning G′ on ω is at least exponential in |G|. However, the time of
conditioning G on ω is polynomial in |G| according to Corollary 4.
• ROBDD[∧î]C 6≤

∧BC
r ROBDD[∧ĵ]C and ROBDD[∧î]C 6≤

∧C
r ROBDD[∧ĵ]C : It is well known

that the conjunction of
∧

1≤k≤n−1 xk+0·n ↔ · · · ↔ xk+i·n and xn+0·n ↔ · · · ↔ xn+i·n
is equivalent to Equation (1). We denote the two ROBDD[∧î]Cs (resp. ROBDD[∧ĵ]Cs)
representing the above two formulas by G1 and G2 (resp. G3 and G4). It is easy to design
an algorithm to perform ∧BC or ∧C on ROBDD[∧î]C which can particularly conjoin G1

and G2 in polytime (we just need to detect whether the inputs are G1 and G2, and then
immediately generate the ROBDD[∧î]C corresponding to Equation (1) if so). However,
the conjunction of G3 and G4 will generate the ROBDD[∧ĵ]C representing Equation (1)

518

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

with an exponential (in |G1| and |G2|) number of new vertices; that is, for G3 and G4, the
running time of each algorithm to perform ∧BC or ∧C on ROBDD[∧ĵ]C is exponential
in the sizes of G1 and G2.
• ROBDD[∧î]C 6≤

∨BC
r ROBDD[∧ĵ]C and ROBDD[∧î]C 6≤

∨C
r ROBDD[∧ĵ]C : It is well known

that the disjunction of the following two formulas is equivalent to Equation (1):

xn+0·n ∧ (xn+1·n ↔ · · · ↔ xn+i·n) ∧
∧

1≤k≤n−1

xk+0·n ↔ · · · ↔ xk+i·n

and
¬xn+0·n ∧ ¬(xn+1·n ↔ · · · ↔ xn+i·n) ∧

∧
1≤k≤n−1

xk+0·n ↔ · · · ↔ xk+i·n

Therefore, we can prove these two cases by proofs similar to those of ROBDD[∧î]C 6≤
∧BC
r

ROBDD[∧ĵ]C and ROBDD[∧î]C 6≤
∧C
r ROBDD[∧ĵ]C .

• ROBDD[∧î]C 6≤
SFO
r ROBDD[∧ĵ]C and ROBDD[∧î]C 6≤

FO
r ROBDD[∧ĵ]C : It is well known

that forgetting the following formula on x0 is equivalent to Equation (1):[
[¬x0 ∧ xn+0·n ∧ (xn+1·n ↔ · · · ↔ xn+i·n)] ∨ [x0 ∧ ¬xn+0·n ∧ ¬(xn+1·n ↔ · · · ↔ xn+i·n)]

]
∧

∧
1≤k≤n−1

xk+0·n ↔ · · · ↔ xk+i·n

Therefore, we can prove these two cases by proofs similar to those of ROBDD[∧î]C 6≤
∧BC
r

ROBDD[∧ĵ]C and ROBDD[∧î]C 6≤
∧C
r ROBDD[∧ĵ]C .

For the third conclusion, since dep(T) = ∞, there exists some infinite path C′ in T .
We substitute the kth variable in C′ for each xk in the counterexamples in the proof of
the second conclusion. Then we can show by proofs similar to the ones in the second
paragraph that for i > 0 and OP ∈ {CD,FO, SFO,∧C,∧BC,∨BC,∨C}, ROBDD[∧î]C′
6≤OPr ROBDD[∧0̂]C′ . Because each ROBDD[∧î]C′ is an ROBDD[∧î]C and each ROBDD[∧0̂]C′

is an ROBDD[∧T̂ ,j]T , we know that ROBDD[∧î]C 6≤
OP
r ROBDD[∧T̂ ,j]T .

References

Bertacco, V. (2003). Achieving Scalable Hardware Verification with Symbolic Simulation.
Ph.D. thesis, Stanford University.

Bertacco, V., & Damiani, M. (1996). Boolean function representation based on disjoint-
support decompositions. In Proceedings of the 14th International Conference on Com-
puter Design (ICCD’96), VLSI in Computers and Processors, October 7-9, 1996,
Austin, TX, USA, pp. 27–32.

Bodlaender, H. L. (1998). A partial k -arboretum of graphs with bounded treewidth. The-
oretical Computer Science, 209 (1-2), 1–45.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35 (8), 677–691.

Cadoli, M., & Donini, F. M. (1997). A survey on knowledge compilation. AI Communica-
tions, 10, 137–150.

519

Lai, Liu, & Yin

Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model counting.
Artificial Intelligence, 172 (6–7), 772–799.

Choi, A., & Darwiche, A. (2013). Dynamic minimization of sentential decision diagrams.
In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI), pp.
187–194.

Darwiche, A. (2001a). Decomposable negation normal form. Journal of the ACM, 48 (4),
608–647.

Darwiche, A. (2001b). On the tractability of counting theory models and its application
to truth maintenance and belief revision. Journal of Applied Non-Classical Logics,
11 (1–2), 11–34.

Darwiche, A. (2004). New advances in compiling cnf into decomposable negation normal for-
m. In Proceedings of the 16th European Conference on Artificial Intelligence (ECAI),
pp. 328–332.

Darwiche, A. (2011). SDD: A new canonical representation of propositional knowledge bases.
In Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI), pp. 819–826.

Darwiche, A. (2014). Tractable knowledge representation formalisms. In Bordeaux, L.,
Hamadi, Y., & Kohli, P. (Eds.), Tractability: Practical Approaches to Hard Problems,
pp. 141–172. Cambridge University Press.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial
Intelligence Research, 17, 229–264.

Fargier, H., & Marquis, P. (2006). On the use of partially ordered decision graphs in
knowledge compilation and quantified Boolean formulae. In Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI), pp. 42–47.

Fortune, S., Hopcroft, J. E., & Schmidt, E. M. (1978). The complexity of equivalence
and containment for free single variable program schemes. In Proceedings of the 5th
Colloquium on Automata, Languages and Programming, pp. 227–240.

Gergov, J., & Meinel, C. (1994). Efficient analysis and manipulation of OBDDs can be
extended to FBDDs. IEEE Transactions on Computers, 43 (10), 1197–1209.

Gogate, V., & Dechter, R. (2011). SampleSearch: Importance sampling in presence of
determinism. Artificial Intelligence, 175, 694–729.

Gogate, V., & Dechter, R. (2012). Importance sampling-based estimation over and/or search
spaces for graphical models. Artificial Intelligence, 184-185, 38–77.

Huang, J., & Darwiche, A. (2004). Using DPLL for efficient OBDD construction. In Proceed-
ings of the 7th International Conference on Theory and Applications of Satisfiability
Testing (SAT), pp. 157–172.

Huang, J., & Darwiche, A. (2007). The language of search. Journal of Artificial Intelligence
Research, 29, 191–219.

Lai, Y., Liu, D., & Wang, S. (2013). Reduced ordered binary decision diagram with implied
literals: A new knowledge compilation approach. Knowledge and Information Systems,
35 (3), 665–712.

520

New Canonical Representations by Augmenting OBDDs with ∧-Decomposition

Lind-Nielsen, J. (1996). BuDDy - a binary decision diagram package. Available from
http://buddy.sourceforge.net.

Lv, G., Su, K., & Xu, Y. (2013). CacBDD: A BDD package with dynamic cache man-
agement. In Proceedings of the 25th International Conference on Computer Aided
Verification (CAV), pp. 229–234.

Mateescu, R., Dechter, R., & Marinescu, R. (2008). AND/OR Multi-Valued Decision Dia-
grams (AOMDDs) for Graphical Models. Journal of Artificial Intelligence Research,
33, 465–519.

Muise, C. J., McIlraith, S. A., Beck, J. C., & Hsu, E. I. (2012). Dsharp: Fast d-DNNF
compilation with sharpSAT. In Proceedings of the 25th Canadian Conference on
Artificial Intelligence, pp. 356–361.

Oztok, U., & Darwiche, A. (2014). On compiling CNF into Decision-DNNF. In Proceed-
ings of the 20th International Conference on Principles and Practice of Constraint
Programming (CP), pp. 42–57.

Oztok, U., & Darwiche, A. (2015). A top-down compiler for sentential decision diagrams.
In Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 3141–3148.

Palacios, H., Darwiche, A., Bonet, B., & Geffner, H. (2005). Pruning conformant plans
by counting models on compiled d-DNNF representations. In Proceedings of the 15th
International Conference on Automated Planning and Scheduling (ICAPS), pp. 141–
150.

Pipatsrisawat, T. (2010). Reasoning with Propositional Knowledge: Frameworks for Boolean
Satisfiability and Knowledge Compilation. Ph.D. thesis, University of California, Los
Angeles.

Selman, B., & Kautz, H. (1996). Knowledge compilation and theory approximation. Journal
of the ACM, 43, 193–224.

Sieling, D., & Wegener, I. (1993). NC-algorithms for operations on binary decision diagrams.
Parallel Processing Letters, 3, 3–12.

Somenzi, F. (2002). CUDD: CU decision diagram package release 2.5.0. Available from
ftp://vlsi.colorado.edu/pub/.

Van den Broeck, G., & Darwiche, A. (2015). On the role of canonicity in knowledge compi-
lation. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI),
pp. 1641–1648.

Wegener, I. (2000). Branching Programs and Binary Decision Diagrams. SIAM.

521

