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Abstract

Games with large branching factors pose a significant challenge for game tree search
algorithms. In this paper, we address this problem with a sampling strategy for Monte Carlo
Tree Search (MCTS) algorithms called näıve sampling, based on a variant of the Multi-
armed Bandit problem called Combinatorial Multi-armed Bandits (CMAB). We analyze
the theoretical properties of several variants of näıve sampling, and empirically compare it
against the other existing strategies in the literature for CMABs. We then evaluate these
strategies in the context of real-time strategy (RTS) games, a genre of computer games
characterized by their very large branching factors. Our results show that as the branching
factor grows, näıve sampling outperforms the other sampling strategies.

1. Introduction

Games with large branching factors pose a significant challenge for game tree search algo-
rithms. So far, Monte Carlo Tree Search (MCTS) algorithms (Browne, Powley, Whitehouse,
Lucas, Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, & Colton, 2012), such as UCT
(Kocsis & Szepesvri, 2006), are the most successful approaches for this problem. The key to
the success of MCTS algorithms is that they sample the search space, rather than exploring
it systematically. However, MCTS algorithms quickly reach their limit when the branch-
ing factor grows. To illustrate this, consider Real-Time Strategy (RTS) games, where each
player controls a collection of units, all of which can be controlled simultaneously, leading to
a combinatorial branching factor. For example, just 10 units with 5 actions each results in a
potential branching factor of 510 ≈ 10 million, beyond what standard MCTS algorithms can
handle. Algorithms that can handle adversarial planning in situations with combinatorial
branching factors would have many applications to problems such as multiagent planning.

Specifically, this paper focuses on scaling up MCTS algorithms to games with combina-
torial branching factors. MCTS algorithms formulate the problem of deciding which parts
of the game tree to explore as a Multi-armed Bandit (MAB) problem (Auer, Cesa-Bianchi,
& Fischer, 2002). In this paper, we will show that by considering a variant of the MAB
problem called the Combinatorial Multi-armed Bandit (CMAB) (Gai, Krishnamachari, &
Jain, 2010; Chen, Wang, & Yuan, 2013; Ontañón, 2013), it is possible to handle the larger
branching factors appearing in RTS games.

Building on our previous work in this area (Ontañón, 2013), where we first introduced
the idea of näıve sampling, the main contributions of this paper are: (1) an analysis of the
different instantiations of the family of näıve sampling strategies, including regret bounds;
(2) an empirical comparison with other existing CMAB sampling strategies in the literature
(LSI, see Shleyfman, Komenda, & Domshlak, 2014; and MLPS, see Gai et al., 2010); (3)

c©2017 AI Access Foundation. All rights reserved.



Ontañón

empirical results using increasingly complex situations, to understand the performance of
these strategies as the problems grow in size (reaching situations with branching factors in
the order of 1022).

We use the µRTS game simulator1 as our application domain, which is a deterministic
and fully-observable RTS game (although it can be configured for partial observability or
non-determinism). Our results indicate that for scenarios with small branching factors,
näıve sampling performs similar to other sampling strategies, but as the branching factor
grows, näıve sampling starts outperforming the other approaches. A snapshot of all the
source code and data necessary to reproduce all the experiments presented in this paper
can be downloaded from the author’s website2.

The remainder of this paper is organized as follows. Section 2 presents some background
on RTS games and MCTS. Section 3 then introduces the CMAB problem. Section 4 intro-
duces and analyzes näıve sampling strategies, after which Section 5 presents other known
sampling strategies for CMABs in the literature. All of these strategies are compared empir-
ically in Section 6. After that, we describe how to integrate them into MCTS in Section 7,
and the strength of the resulting MCTS algorithm is evaluated empirically in the µRTS
simulator in Section 8. The paper closes with related work, conclusions, and directions for
future research.

2. Background

The following two subsections present some background on real-time strategy (RTS) games,
and on Monte Carlo Tree Search in the context of RTS games.

2.1 Real-Time Strategy Games

Real-time Strategy (RTS) games are complex adversarial domains, typically simulating
battles between a large number of military units, that pose a significant challenge to both
human and artificial intelligence (Buro, 2003). Designing AI techniques for RTS games is
challenging because:

• They have huge decision and state spaces: To have a sense of scale, the worst case
branching factor of a typical RTS game, StarCraft, has been estimated to be at least
1050 (Ontañón, Synnaeve, Uriarte, Richoux, Churchill, & Preuss, 2013) when the
player can control all units simultaneously, which is staggering if we compare it with
the branching factors of games like Chess (about 36) and Go (about 180). Moreover,
the state space of StarCraft has been estimated to be at least 101685 (Ontañón et al.,
2013), compared to about 1047(Chinchalkar, 1996) for Chess and 10171(Tromp &
Farnebäck, 2006) for Go.

• They are real-time, which means that: (1) RTS games typically execute at 10 to 50
decision cycles per second, leaving players with just a fraction of a second to decide
the next move; (2) players do not take turns, but can issue actions simultaneously

1. https://github.com/santiontanon/microrts
2. https://sites.google.com/site/santiagoontanonvillar/code/NaiveSampling-journal-2016-

source-code.zip
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(i.e., two players can issue actions at the same instant of time, and to as many units
as they want); and (3) actions are durative, i.e., actions might take more than one
decision cycle to complete.

Some RTS games are also partially observable and non-deterministic, but we will not deal
with these properties in this paper.

In RTS games, players control a collection of individual units that players issue actions
to. Each of these units can only execute one action at a time, but, since there might
be multiple units in a game state, players can issue multiple actions at the same time
(one per unit they control). We will refer to those actions as unit-actions, and use lower
case a to denote them. A player-action α is the set of unit-actions that one player issues
simultaneously at a given time: α = {a1, ..., an}. Thus, without loss of generality, we can
consider that players issue only one player-action per game decision cycle (which will consist
of as many unit-actions as units ready to execute an action in the current decision cycle).
In this way, even if unit-actions are durative, we can see an RTS game as a game where
each player issues exactly one player-action at each decision cycle. The number of possible
player-actions corresponds to the branching factor. Thus, the branching factor in a RTS
game grows exponentially with the number of units each player controls (without loss of
generality, we can assume a special no-op unit-action, to be issued to those units the player
does not want to do anything in the current decision cycle).

To illustrate the size of the branching factor in RTS games, consider the situation from
the µRTS game3 (used in our experiments) shown in Figure 1. Two players, max (shown
in blue) and min (shown in red) control 9 units each. Consider the bottom-most circular
unit in Figure 1 (a worker). This unit can execute 8 actions: stand still, move left or up,
harvest the resource mine to the right, or build a barracks or a base in any of the two free
adjacent cells. In total, player max in Figure 1 can issue 1,008,288 different player-actions,
and player min can issue 1,680,550 different player-actions. Thus, even in relatively simple
scenarios, the branching factor is very large.

Specifically, a two-player deterministic perfect-information RTS game is a tuple G =
(S,A, P, τ, L,W, sinit), where:

• S is the game state space (e.g., in Chess, the set of all possible board configurations).

• A is the finite set of possible player-actions that can be executed in the game.

• P = {max,min} is the set of players.

• τ : S ×A×A→ S is the deterministic transition function, that given a state at time
t, and the actions of the two players, returns the state at time t+ 1.

• L : S ×A× P → {true, false} is a function that given a state, a player-action and a
player, determines whether it is legal to execute the given player-action by the given
player in the given state. We will write actions(s, p) = {α ∈ A|L(s, α, p) = true} to
denote the set of player-actions that player p can execute in state s.

3. For gaining a more intuitive idea of µRTS, a gameplay video can be found here: https://www.youtube.
com/watch?v=Or3IZaRRYIQ
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Figure 1: A screenshot of the µRTS simulator. Square units correspond to “bases” (light
grey, that can produce workers), “barracks” (dark grey, that can produce military
units), and “resources mines” (green, from where workers can extract resources to
produce more units), the circular units correspond to workers (small, dark grey)
and military units (large, yellow or light blue).

• W : S → P ∪ {draw, ongoing} is a function that given a state determines the winner
of the game, if the game is still ongoing, or if it is a draw.

• sinit ∈ S is the initial state.

In order to apply game tree search, an additional evaluation function is typically pro-
vided. The evaluation function predicts how attractive is a given state for a player. We will
assume an evaluation function of the form ρ : S → R, which returns positive numbers for
states that are good for max and negative numbers for states that are good for min.

2.2 Monte Carlo Tree Search in RTS Games

Monte Carlo Tree Search (MCTS) is a family of planning algorithms based on sampling
the decision space rather than exploring it systematically (Browne et al., 2012). MCTS
algorithms maintain a partial game tree. Each node in the tree corresponds to a game state,
and the children of that node correspond to the result of one particular player executing
actions. Additionally, each node stores the number of times it has been explored, and the
average reward obtained when exploring it. Initially, the tree contains a single root node
with the initial state. Then, assuming the existence of a reward function ρ, at each iteration
of the algorithm the following three processes are executed:

• SelectAndExpandNode: Starting from the root node, one of the current node’s children
is chosen following a tree policy, until a node n that was not in the tree before is
reached. The new node n is added to the tree.
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• Simulation: A Monte Carlo simulation (a.k.a. a playout or a rollout) is executed
starting from n using a default policy (e.g., random) to select actions for all the
players until a terminal state or a maximum simulation time is reached. Let r = ρ(s)
be the reward in the state s at the end of the simulation.

• Backup: r is propagated up the tree, starting from the node n, and continuing through
all the ancestors of n in the tree (updating their average reward, and incrementing by
one the number of times they have been explored).

When the computation budget is over, the action that leads to the “best” child of the root
node of the tree is selected as the best action to perform. Here, “best” can be defined as the
one with highest average reward, the most visited one, or some other criteria (depending
on the tree policy).

Different MCTS algorithms typically differ just in the tree policy. In particular, UCT
(Kocsis & Szepesvri, 2006) frames the tree policy as a Multi-armed Bandit (MAB) problem.
MAB problems are a class of sequential decision problems, where at each iteration an agent
needs to choose amongst k actions (called arms), in order to maximize the cumulative
reward obtained by those actions. A MAB problem with k arms is defined by a set of
unknown real reward distributions µ1, ..., µk, associated with each of the k arms. Therefore,
the agent needs to estimate the potential rewards of each action based on past observations,
balancing exploration and exploitation.

UCT uses a specific sampling strategy called UCB1 (Auer et al., 2002) that balances
exploration and exploitation of the different nodes in the tree. It can be shown that, when
the number of iterations executed by UCT approaches infinity, the probability of selecting
a suboptimal action approaches zero (Kocsis & Szepesvri, 2006). However, UCB1 does not
scale well to the domains of interest in this paper, where the branching factor might be
several orders of magnitude larger than the number of samples we can perform.

Previous work has addressed many of the key challenges arising in applying game tree
search to RTS games. For example game tree search algorithms exist that can handle
durative actions (Churchill, Saffidine, & Buro, 2012), or simultaneous moves (Kovarsky &
Buro, 2005; Saffidine, Finnsson, & Buro, 2012). However, the branching factor in RTS
games remains too large for current state-of-the-art techniques.

Many ideas have been explored to improve UCT in domains with large branching factors.
For example, first play urgency (FPU) (Gelly & Wang, 2006) allows the bandit strategy of
UCT (UCB) to exploit nodes early, instead of having to visit all of them before it starts
exploiting. However, FPU still does not address the problem of selecting which of the
unexplored nodes to explore first (which is key in our domains of interest). Another idea is
to try to maximally exploit the information obtained from each simulation, like performed
by AMAF (Gelly & Silver, 2007). However, again, this does not solve the problem of having
a branching factor many orders of magnitude larger than the number of simulations we can
perform. As elaborated in Section 9, three main approaches have been explored to address
this problem: (1) use abstraction to represent the game state or the action space to simplify
the problem (Balla & Fern, 2009; Uriarte & Ontañón, 2014); (2) portfolio approaches that
only consider moves chosen by a predefined portfolio of strategies (Churchill & Buro, 2013;
Chung, Buro, & Schaeffer, 2005); or (3) hierarchical search approaches that aim at pruning
the search space by considering first high-level decisions, which condition the potential
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number of low-level decisions that can be taken (Stanescu, Barriga, & Buro, 2014; Ontañón
& Buro, 2015). This paper studies an alternative idea, namely using combinatorial multi-
armed bandits (CMAB), which have recently been proposed as a solution to address the
combinatorial branching factors arising in RTS games (Ontañón, 2013; Shleyfman et al.,
2014).

3. Combinatorial Multi-armed Bandits

A Combinatorial Multi-armed Bandit (CMAB) is a variation of the MAB problem. We use
the formulation in Ontañón (2013), which is more general than that by Gai et al. (2010) or
that by Chen et al. (2013). Specifically, a CMAB is defined by:

• A set of n variables X = {X1, ..., Xn}, where variable Xi can take Ki different
values Xi = {v1

i , ..., v
Ki
i }, and each of those values is called an arm. Let us call

X = {(v1, ..., vn) ∈ X1 × ... × Xn} to the set of possible value combinations, where
each of these combinations V ∈ X is called a macro-arm.

• An unknown reward distribution µ : X → R over each macro-arm.

• A function L : X → {true, false} that determines which macro-arms are legal.

The problem is to find a legal macro-arm that maximizes the expected reward. Strategies
to address CMABs are designed to iteratively sample the space of possible macro-arms. At
each iteration t, one macro-arm Vt is selected, which results in a given reward µt = µ(Vt).
Strategies must balance exploration and exploitation in order to converge to the best macro-
arm in the shortest number of iterations possible. We will call V best

t to the macro-arm
recommended as the best by the given strategy after iteration t.

The difference between a MAB and a CMAB is that in a MAB there is a single variable,
whereas in a CMAB, there are n variables. A CMAB can be translated to a MAB, by
considering that each possible legal macro-arm is a different arm in the MAB. Moreover,
the possible number of macro-arms in a CMAB grows exponentially with the number of
variables (depending on how many of those macro-arms are legal).

The performance of strategies to address MABs and CMABs is assessed by measuring
the regret, which is the difference between the expected reward of the selected macro-arm,
and the expected reward of an optimal macro-arm. Moreover, regret can be computed in
several different ways (Bubeck, Munos, & Stoltz, 2011), assuming that V ∗ is an optimal
macro-arm, obtaining maximum expected reward µ∗ = E(µ(V ∗)):

• Instantaneous regret: is the difference between µ∗ and the reward obtained by the last
selected macro-arm. After T iterations, the instantaneous regret is computed as:

r′T = µ∗ − µT

• Cumulative regret (referred to as pseudo-regret in some texts, see Bubeck & Cesa-
Bianchi, 2012): is the sum of differences between µ∗ and the reward obtained by the
selected macro-arms at each iteration. After T iterations, the cumulative regret is:

RT =

T∑
t=1

(µ∗ − µt)
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where µt is the reward obtained at iteration t.

• Simple regret: after T iterations, the simple regret is the difference between µ∗ and
the reward obtained by the macro-arm believed to be the best at iteration T :

rT = µ∗ − µ(V best
T )

Thus, instantaneous regret is the difference in reward at a given time t based on the selected
macro-arm, cumulative regret is the sum of all the instantaneous regrets so far, and simple
regret is the instantaneous regret that would be obtained if the arm recommended as the
best at iteration t is chosen.

As pointed out by Bubeck et al. (2011), strategies that minimize cumulative regret, ob-
tain larger simple regrets, and vice-versa. Therefore, it is important to determine which kind
of regret we must minimize in the task we are modeling using MABs or CMABs. As pointed
out by Tolpin and Shimony (2012), and by Shleyfman et al. (2014), bandit strategies applied
to planning in games should minimize simple regret, since the performance of the agent in
the game is based only on the performance of the final action selected, which corresponds
to simple regret. Thus, it might seem that standard approaches to MCTS, such as UCT
which uses UCB1 (Auer et al., 2002) and thus minimize cumulative regret, are minimizing
the wrong measure. However, notice that bandit strategies running in the search nodes of
an MCTS algorithm need to balance two main objectives: (1) identify the best action, and
(2) estimate the reward of the best action. While the first one is achieved by doing pure
exploration (aiming at minimizing simple regret), the later is not. Thus, bandit strategies in
MCTS algorithms need to strike a balance between exploration and exploitation in order to
achieve both objectives. Recently, however, several MCTS algorithms have been designed to
directly minimize simple regret. Examples are BRUE (Feldman & Domshlak, 2014), MCTS
SR+CR (Tolpin & Shimony, 2012), or SHOT (Cazenave, 2015). For simplicity, however, in
our experimental evaluation, we will use a standard MCTS algorithm.

In this paper, we will use CMABs to model the decision process that a player faces in
RTS games. Each of the units in the game state will be modeled with a variable Xi, and
the values that each of these variables can take correspond to the unit-actions that the
corresponding units can execute. Player-actions thus naturally correspond to macro-arms.

4. Näıve Sampling For CMABs

Näıve sampling (NS) is a family of sampling strategies based on assuming that the reward
distribution µ can be approximated as the sum of a set of reward functions µ1, ..., µn, each
of them depending only on the value of one of the variables of the CMAB:

µ(X) ≈
∑
i=1...n

µi(Xi)

We call this the näıve assumption, since it is reminiscent of the conditional independence
assumption of the Näıve Bayes classifier. Thanks to the näıve assumption, we can break
the CMAB problem into a collection of n+ 1 MAB problems.

• Local MABs: For each Xi ∈ X, we define a MAB, MAB i, that only considers Xi.
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• Global MAB: MABg, that considers the whole CMAB problem as a MAB where each
legal macro-arm that has been sampled so far is one of the candidate arms. This
means that in the first iteration, t = 1, the global MAB contains no arms at all.

Intuitively, näıve sampling uses the local MABs to explore different macro-arms that are
likely to result on a high reward, and then uses the global MAB to exploit the macro-arms
that obtained the highest reward so far. Let us first introduce some notation:

• Let T ti (v
k
i ) be the number of times that value vki has been selected for variable Xi up

to iteration t.

• Let µti(v
k
i ) be the marginalized average reward obtained when selecting value vki for

variable Xi up to time t.

• Let T t(vk11 , ..., v
kn
n ) be the number of times that macro-arm (vk11 , ..., v

kn
n ) has been

selected up to time t.

• Let µt(vk11 , ..., v
kn
n ) be the average reward obtained when selecting the macro-arm

(vk11 , ..., v
kn
n ) up to time t.

The NS strategy works as follows. At each iteration t:

• Use a strategy π0 to determine whether to explore (via the local MABs) or exploit
(via the global MAB).

– If explore was selected: a legal macro-arm xt = (xt1, ..., x
t
n) is selected by using a

strategy πl to select a value for each Xi ∈ X independently (i.e., the strategy is
used n times, one per variable). xt is added to the global MAB.

– If exploit was selected: a macro-arm xt is selected by using a strategy πg over
the macro-arms already present in the global MAB.

Intuitively, when exploring, the näıve assumption is used to select values for each vari-
able, assuming that this can be done independently using the estimated µti expected rewards.
At each iteration, the selected macro-arm is added to the global MAB, MABg. Since the
assumption is that the number of iterations T that we can perform is much smaller than N
(the total number of macro-arms), it is expected that almost each time that the strategy
decides to explore, the selected macro-arm is not going to be already in the global MAB.

When exploiting, MABg is used to sample amongst the explored macro-arms, and find
the one with the expected maximum reward. Thus, we can see that the näıve assumption
is used to explore the combinatorial space of possible macro-arms, and then a regular MAB
strategy is used over the global MAB to select the optimal macro-arm. If the strategy πl is
selected such that each arm has a non-zero probability of being selected, then each possible
value combination also has a non-zero probability. Thus, the error in the estimation of µt

constantly decreases. As a consequence, the optimal value combination will eventually have
the highest estimated reward, regardless of whether the reward function violates the näıve
assumption or not. Thus, notice that in order to work well, näıve sampling only requires
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the game domain to satisfy the näıve assumption loosely (i.e., that macro-arms composed
of unit-actions that have individually high reward, also tend to have a high reward).

Moreover, NS is not just one sampling strategy, but a whole family of sampling strategies,
since we still need to decide which sampling strategies to use for π0, πl, and πg. In our
previous work, we studied the performance when all three strategies are ε-greedy strategies
(Ontañón, 2013). Let us now analyze the behavior of NS for different instantiations of
these strategies. The following subsections first present the theoretical regret bounds, and
then an empirical comparison of the performance of these strategies in the µRTS simulator.
Evaluation of the performance of these strategies in the context of game tree search is
presented in Section 8.

4.1 ε-greedy Näıve Sampling

One of the most common MAB sampling strategies is ε-greedy. An ε-greedy strategy with
parameter 0 ≤ ε ≤ 1 selects the arm considered to be the best one so far with probability
1 − ε, and with probability ε it selects one arm at random. If ε is small (e.g., 0.1), this
results on a behavior that selects the arm currently considered the best most of the times,
but keeps exploring all the other arms with a small probability.

We will write NS(ε0,εl,εg) to denote a näıve sampling where π0, πl, and πg are ε-greedy
strategies, with parameters 0 ≤ ε0 ≤ 1 (ε0 probability of selecting explore and 1 − ε0 of
selecting exploit), 0 ≤ εl ≤ 1, and 0 ≤ εg ≤ 1 respectively. Let us now see how the regret of
this strategy grows over time.

Proposition 1. The cumulative regret of NS(ε0,εl,εg) grows linearly as RT = O((1 −
p∗)DT ), where T is the number of iterations, D is the expected difference in expected reward
between an optimal macro-arm and a non-optimal macro-arm, and p∗ ≥ (1− ε0)(1− εg) is
the probability of selecting an optimal arm when T →∞ (proof in Appendix A).

Moreover, if we assume a single optimal arm and we know that the reward function µ
satisfies the näıve assumption, we can be more precise, and get an exact value for p∗:

p∗ = (1− ε0)
[
(1− εg) +

εg
N

]
+ ε0

∏
i=1...n

[
(1− εl) +

εl
Ki

]
Where N is the total number of legal macro-arms.

Proposition 2. The simple regret of NS(ε0,εl,εg) decreases at an exponential rate as rT =

O(De−2d2Tpi), where pi ≥ ε0Πj=1...n
εl
Kj

+ (1− ε0)
εg
N , D is as in Proposition 1, and d is the

minimum difference in reward between an optimal macro-arm and a non-optimal macro-arm
(proof in Appendix A).

So, in summary, näıve sampling has linear cumulative regret (which means that even
after a very long number of iterations, it will still pick suboptimal arms with a fixed proba-
bility) and exponentially decreasing simple regret (which means that the probability of the
arm believed to be the best at the very end of the execution not to be optimal decreases
exponentially with the number of iterations executed). This is expected, since, it inherits
these properties from ε-greedy, which also has linear cumulative regret and exponentially
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decreasing simple regret (see Appendix A). Also notice that as presented here, ε-greedy
näıve sampling is a strict generalization of ε-greedy. If εl = 1.0 and εg = 0.0, ε-greedy näıve
sampling is equivalent to an ε-greedy policy with parameter ε0. Also, although variations
of the ε-greedy strategy are known that have logarithmic cumulative regret (e.g., see Auer
et al., 2002), we will not explore those in this paper.

Moreover, notice the interesting inverse relation between simple regret and cumulative
regret (already noted by Bubeck et al., 2011). According to the previous propositions,
to minimize cumulative regret, we need to make εg and εl as small as possible, and to
minimize simple regret, we need to make εg and εl as large as possible. So, if we were
mostly interested in simple regret in the context of RTS games, this points out that larger
values might result in stronger game play. This is echoed in our experimental results,
where the best performance was achieved with relatively high values for εl (0.4). Notice,
moreover, that setting εl and εg to 1 (as might seem to be suggested by the results of the
propositions), would not work well in practice. The reason is that the proposition results
concern a large computational budget (larger than the number of arms). For a smaller
computational budget (more realistic in practice), large values of εl and εg will just result in
never sampling any arm more than once, leading to a very poor estimate of their rewards,
and thus to low performance. For that reason, our experiments indicate that relatively large
(but not all the way to 1) values of εl achieve the best results.

Thus, the upper bounds in the previous propositions are for a sufficiently large number
of iterations. However, the key problem in CMABs is that we assume that the number
of iterations we can perform is small compared to the number of possible macro-arms.
Therefore, it is interesting to analyze the behavior of these strategies when the number of
iterations is small. For that purpose, Section 6 presents an empirical comparison of the
different strategies presented in this paper.

4.2 Two-Phase Näıve Sampling

Under the assumption that number of iterations we can perform is much smaller than the
total number of macro-arms, T � N , the global MAB will never reach the point of having
all possible macro-arms. Moreover, as pointed out by Shleyfman et al. (2014), it does not
make sense to consider new macro-arms toward the end of the computation budget, since we
are not going to have enough time to obtain accurate estimations of their expected reward.
This motivates sampling strategies which vary their exploration and exploitation trade-offs
over time (e.g., starting with a large probability of exploration, and gradually reducing
it). An example of such strategy for regular MABs is the decreasing ε-greedy sampling
strategy (Auer et al., 2002). In this paper, we will focus on the simplest instantiation
of these strategies: two-phase sampling strategies, which instead of gradually changing
the probability of exploration, they perform a first “exploration” phase to find a set of
candidate macro-arms, and in a second phase they try to find the best macro-arm, only
amongst those explored during the first phase. An example two-phase strategy for CMABs
is LSI (Shleyfman et al., 2014) (described in Section 5.2).

We will write NS(k, ε10, ε
1
l , ε

1
g, ε

2
0, ε

2
l , ε

2
g) to denote a näıve sampling strategy where param-

eters ε10, ε
1
l , ε

1
g are used during the first k sampling iterations, and ε20, ε

2
l , ε

2
g are used during

the rest of the iterations. Following the intuition above, the parameters in the first phase
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should be geared toward exploring (high values for all the parameters) and the ones in the
second phase, should be geared toward exploiting (low values for all the parameters).

If the computation budget T is known ahead of time, k can be set to a fraction r
of the total computation budget (k = rT ). In that case, we will denote the strategy by
NS(rT, ε10, ε

1
l , ε

1
g, ε

2
0, ε

2
l , ε

2
g).

The theoretical analysis of the two-phase näıve sampling strategy is very similar to the
one-phase case, with the exception of one interesting case (when the first phase lasts for a
finite number of iterations k, and ε20 = 0), which is the only case we will consider here (in
all other cases, cumulative regret grows linearly and simple regret decreases exponentially
as in the one-phase case). Let us start by bounding the probability of sampling the optimal
macro-arm at least once during the first phase.

Proposition 3. In a CMAB with n variables, the probability that after t iterations using a
NS(ε0, εl, εg) sampling strategy an optimal macro-arm V ∗ has not been explored at least once,
decreases exponentially as a function of t, and is at most (1−p)tε0, where p =

∏
i=1...n (εl/Ki)

(proof in Appendix A).

This means that in order to maximize the probability of having V ∗ among the explored
macro-arms during the first phase, we want to maximize both ε10 and ε1l . Given Proposi-
tion 3, we can now analyze the behavior when k is a finite number of rounds, and ε20 = 0.

Proposition 4. The cumulative regret of NS(k, ε10, ε
1
l , ε

1
g, ε

2
0, 0, ε

2
g) when k is a constant

grows linearly when T � k:

RT = O (t [(1− εg − qk + εgqk)d+ εgD])

where qk = 1− (1− p)kε10, and p =
∏
i=1...n

(
ε1l /Ki

)
. (proof in Appendix A).

Notice this is worse than the one-phase case in the limit, since it grows faster.

Proposition 5. The simple regret of NS(k, ε10, ε
1
l , ε

1
g, ε

2
0, 0, ε

2
g) when k is a constant and

T � k is lower bounded by (1− qk)d, where qk = 1− (1− p)kε10, and d is difference between
the best non-optimal macro-arm and an optimal macro-arm. (proof in Appendix A).

This means that in the particular case where ε2l = 0 and k is a constant, even after a very
large number of iterations, the probability of selecting a suboptimal arm at the very end
will not approach zero, since it will depend on wether the optimal macro-arm was explored
during the first phase or not.

Moreover, notice that even if in theory, the asymptotic regret bounds seem to be worse
than the one-phase strategy, in practice, a two-phase strategy might work better in some
scenarios, since what matters in practice (and in the specific application domain of RTS
games) is their behavior for small computational budgets (this is evaluated in Section 6.2).

4.3 Näıve Sampling Beyond ε-greedy

An interesting question is whether MAB sampling strategies such as UCB1 (Auer et al.,
2002), commonly used in MCTS algorithms can improve over näıve sampling using ε-greedy.
One problem of UCB1 is that it requires exploring each arm at least once (unless strategies
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like First Play Urgency, FPU, are used, see Gelly & Wang, 2006), which is problematic,
since the number of macro-arms is very large.

Although we do not provide any theoretical results for this strategy, in the experiments
below, we experimented with using UCB1 as the sampling strategy for the global MAB in
regular näıve sampling. We will write NS(ε0, εl, UCB1) to denote this strategy.

5. Other CMAB Sampling Strategies

Two other sampling strategies for CMABs exist in the literature: MLPS (Gai et al., 2010)
and LSI (Shleyfman et al., 2014), which we summarize here. A third algorithm CUCB
(Chen et al., 2013) exists, but it is restricted to the specific case where all the variables
are boolean (choosing a macro-arm corresponds to choosing a subset of the variables in the
CMAB), and thus, we do not include it in our analysis.

5.1 Matching Learning with Polynomial Storage (MLPS)

MLPS (Matching Learning with Polynomial Storage) was presented by Gai et al. (2010)
for the problem of multiuser channel allocation. MLPS works in a very similar way to the
exploration part of näıve sampling. Specifically, MLPS keeps the same T ti (v

k
i ) and µti(v

k
i )

estimates for the values that each variable can take. The main difference with respect to
näıve sampling is in the way the macro-arm is selected at each iteration. MLPS assumes
that all the variables can take the same values (i.e., ∀i, j : Xi = Xj), and thus uses the
Hungarian algorithm (Kuhn, 1955) to find the macro-arm that maximizes the expression:

W t
V (n) =

∑
vki ∈V

µti(v
k
i ) + CM

√
(M + 1)ln t

minvki ∈V T
t
i (v

k
i )

Where M is the number of values a variable can take, and C is the exploration parameter
(in the original paper, Gai et al. set C = 1). In our more general CMAB setting, where
each variable has an arbitrary number of values, and where we have an additional function
L that determines which macro-arms are legal, the Hungarian algorithm cannot be used
directly. Thus, in the experiments presented below, we replaced the Hungarian algorithm
with a greedy approach as follows:

1. Start with an empty macro-arm V .

2. Select a random Xi ∈ X that does not yet have a value.

3. Select the value for Xi which, given the previous selected values, maximizes W t
V (n).

4. Repeat until all variables have a value.

The previous process is repeated a certain number of times (10 in our experiments), and
the iteration that resulted in the highest value is selected. Moreover, we set M in the
equation above to be the number of values of the variable that has the most possible values.
Although this does not ensure selecting the macro-arm that maximizes W t

V (n), it is an
efficient approach, suitable for real-time games. To distinguish this adapted MLPS strategy
from the original MLPS strategy, we will refer to it as MLPSgreedy .
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5.2 Linear Side Information (LSI)

LSI (Shleyfman et al., 2014) is a family of two-phase sampling strategies based on the
following idea: while näıve sampling interleaves exploration and exploitation, LSI splits the
computation budget T = Tg +Te into a first candidate generation phase (with computation
budget Tg) and a second candidate evaluation phase (with computation budget Te). During
candidate generation, LSI first collects side information (analogous to the µti(v

k
i ) estimates

in näıve sampling), and then, using that information, it generates k candidate macro-arms.
During the second phase, LSI uses sequential-halving (Karnin, Koren, & Somekh, 2013) to
determine the best of the k macro-arms. During candidate generation, the computation
budget Tg is divided equally among all the different values of the different variables in the
CMAB. The different LSI strategies differ in the way these Tg samples are used to collect
the side information, and how this side information is used to generate the candidates:

• LSIV : assuming that there is a value for each variable that is special (in the case of
RTS games, the “no action” unit-action), the computation budget of each action is
used by setting the value of all the other variables to this special value. In this way,
LSI obtains an estimate of how much each value of each variable contributes to the
global reward (assuming a linear contribution).

• LSIF : the computation budget for each value is used by setting random values for all
the other variables.

Once the candidate generation computation budget is spent, LSI estimates the expected
contribution of each value of each variable to the overall reward. Using this estimation, two
strategies for generating candidate macro-arms are proposed:

• LSIe (entropy): first, the variables of the CMAB are sorted in decreasing order of
entropy, where entropy of a variable is calculated as the entropy of the set of estimated
rewards for each of the values of the variable. Intuitively a variable with high entropy
is one where the expected reward of its different possible values are very different to
each other, while in a variable with low entropy, the expected reward for all of its
values will be very similar. Using this order, the variables are then sampled one by
one to generate new macro-arms. To sample a value for each variable, the vector of
expected rewards for each value of the variable is normalized, so it forms a probability
distribution, which is used to generate a value for this variable. Notice that sorting
the variables is useful since selecting a value for a variable might prevent selecting
certain values for other variables. Thus, sampling first those variables that have
a high entropy ensures that the variables that have a larger impact on the expected
reward are sampled without having any of their values forbidden by some prior choice.

• LSIu (union): instead of sorting the variables, the union of all the values of all the
variables that still do not have a value is used for sampling the next value to add to
the macro-arm, until the macro-arm is complete (i.e., it has a value for each variable).

Once k candidate macro-arms have been generated, sequential-halving is used to determine
the best one, with the remaining computational budget. In our experiments, we used the
LSIeV , which has been reported to obtain the best results (Shleyfman et al., 2014). For a
more detailed description of LSI, the reader is referred to the work of Shleyfman et al. (2014).
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Figure 2: µRTS situations corresponding to CMAB1 (left) and CMAB3 (right) used in the
experiments presented in this paper. Exact situation definitions can be found in
the source code link provided in the introduction.

6. Empirical Comparison of CMAB Sampling Strategies

In order to illustrate the performance of näıve sampling compared to other sampling strate-
gies for MABs or CMABs this section presents an empirical comparison. For this compari-
son, we employed three CMABs (with an increasing number of macro-arms), corresponding
to three specific situations in µRTS:

• CMAB1: used by Shleyfman et al. (2014) corresponds to the situation shown on the
left-hand side of Figure 2, from the perspective of the blue player (max). It has 12
variables, and a total of 10,368 legal macro-arms.

• CMAB2: which corresponds to the situation depicted in Figure 1 from the perspective
of the blue player (max). CMAB2 has 9 variables (corresponding to the 9 units
controlled by the blue player) and a total of 1,008,288 legal macro-arms.

• CMAB3: corresponds to a larger situation (right-hand side of Figure 2, from the
perspective of the blue player, max). This is a 16 × 16 map, with 110 variables
(although only 50 can take more than 1 value) and 9.28× 1022 legal macro-arms4.

Notice that these numbers of macro-arms are many orders of magnitude larger than the
number of arms typically considered in MABs. We evaluate the following strategies:

• ε-greedy (treating the CMABs as if they were actually MABs): we show results for
ε = 0.25 and ε = 0.5 (we tested values between 0.0 and 1.0 at intervals of 0.125 and
show the ones that obtained the best results). V best

t is selected based on which arm
has been sampled most often at iteration t.

4. The number of macro-arms was calculated with the built-in branching factor calculator of µRTS.
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• UCB1 (Auer et al., 2002) (also considering MABs): given that the number of macro-
arms is larger than the number of samples we can perform, the value of the exploration
parameter C of UCB1 has no effect in this experiment (in fact, using UCB1 when
there are more arms than the number of iterations that can be run is hopeless, but
we included it in our analysis just to set a baseline). However, we set it to C = 0.05,
which achieved the best results when we combine UCB1 with FPU (below). V best

t

is selected based on which arm has been sampled most often at iteration t (ties are
resolved by selecting the arm with the highest expected evaluation so far).

• UCB1-FPU (Gelly & Wang, 2006) (also considering MABs): we set the FPU con-
stant to 0.51, 0.56 and 0.60 for each of the three CMABs used in our evaluation. These
values achieved the best results in our evaluation (in a deployed system we would not
be able to change this value depending on the situation, but we wanted to show the
best that UCB1-FPU can achieve in each scenario), and C = 0.05. V best

t is selected
based on which arm has been sampled most often at iteration t.

• MLPSgreedy (a variation of MLPS, see Gai et al., 2010, as described above): we used
C = 0.005 for this strategy, which achieved the best results in our experiments.

• LSIeV (Shleyfman et al., 2014): the linear side information strategy described above.
We divided the computation budget as Tg = 0.25 × T and Te = 0.75 × T , which
achieved the best results in our experiments.

• NS(ε0,εl,εg): ε-greedy näıve sampling strategy. We used ε0 = 0.8 (emphasizing ex-
ploration), εl = 0.4, and εg = 0 (emphasizing the fact that the global MAB is used for
exploitation), since they achieved the best results in our experiments. V best

t is selected
based on which arm has been sampled most often at iteration t.

In order to compare the strategies, we evaluate the expected reward of the arm that
would be selected as the best at each iteration (V best

t ), i.e., the simple regret. As the reward
function, we use the result of running a Monte Carlo simulation of the game during 100 game
cycles (using a random action selection strategy), and then using an evaluation function to
the resulting game state. As the evaluation function, we used one of the built-in function in
µRTS (SimpleSqrtEvaluationFunction3). Given a state s, this evaluation function (inspired
by the standard LTD2 function, see Churchill et al., 2012) assigns a score to each player
(max and min) by summing the resource cost of each of her units, weighted by the square
root of their health. Then, it produces a normalized evaluation (in the interval [−1, 1]) as:

E(s) = 2∗score(max)
score(min)+score(max) − 1. This is the evaluation function used in all the experiments

reported in this paper.

6.1 Experiment 1: Comparison of CMAB Strategies in CMABs of Increasing
Complexity

Figure 3 shows the average expected reward for a collection of sampling strategies in all
three CMABs when sampling between 100 and up to 10,000 iterations (reward ranges from
-1 to 1). To measure the performance of the best action generated at each point in time,
we compute the average of 200 Monte Carlo simulations of the game during 100 cycles,
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Figure 3: Evolution of the expected reward (vertical axis) of the best arm (V best
t ) as the

computational budget grows (horizontal axis) on three different CMABs. From
left to right: CMAB1 has 10,368 legal macro-arms, CMAB2 has 1,008,288 legal
macro-arms and CMAB3 has about 9.28× 1022.

Table 1: 95% confidence intervals of the results reported in Figure 3 after 10,000 iterations.
We used bold text to highlight the strategies whose intervals overlap with the one
achieving the highest reward.

CMAB1 CMAB2 CMAB3

NS(0.8, 0.4, 0.0) 0.0151 - 0.0184 0.1345 - 0.1379 0.1785 - 0.1796
LSIeV 0.0146 - 0.0178 0.1295 - 0.1334 0.1698 - 0.1708

UCB1-FPU 0.0127 - 0.0155 0.1212 - 0.1250 0.1665 - 0.1676
ε-greedy (ε = 0.25) 0.0137 - 0.0166 0.1127 - 0.1181 0.1665 - 0.1695
ε-greedy (ε = 0.5) 0.0122 - 0.0148 0.1185 - 0.1230 0.1690 - 0.1699

MLPSgreedy 0.0111 - 0.0144 0.1039 - 0.1093 0.1731 - 0.1742
UCB1 -0.0064 - -0.0052 0.0278 - 0.0403 0.1490 - 0.1511

and then apply the same evaluation function described above. The plots are the average
of repeating the experiment 100 times. As can be seen, näıve sampling clearly outperforms
the other strategies, since the bias introduced by the näıve assumption helps in quickly
selecting good player-actions. UCB1 basically did a random selection, since it requires
exploring each action at least once, and there are more than 10,000 legal macro-arms in all
CMABs. UCB1-FPU performed much better, but still significantly below näıve sampling.
In fact, UCB1-FPU performs similar to a simple ε-greedy in CMAB1, better in CMAB2

and significantly worse in CMAB3. MLPSgreedy only performed competitively in the larger
CMAB3, but still far from näıve sampling. LSIeV is the strategy that gets closest to näıve
sampling, being very close in CMAB1; however, in CMAB3, where the number of macro-
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arms is significantly larger, the advantage of näıve sampling is obvious. In order to assess
the statistical significance of the results, Table 1 reports the 95% confidence intervals of the
average expected reward reported in Figure 3 after sampling 10,000 iterations. When the
95% confidence intervals of two strategies do not overlap, we can say that their difference
is statistically significant (p = 0.05). As we can see, the difference in reward between näıve
sampling and the other strategies is statistically significant in CMAB2 and CMAB3, but not
in CMAB1. Specifically, these difference become statistically significant in CMAB2 after
1000 iterations, and in CMAB3 after only 300 iterations. This highlights the advantage of
näıve sampling in larger CMABs.

It is interesting to note that since this evaluation is closely related to simple regret, rather
than cumulative regret, strategies that perform more exploration tend to work better. That
is why, for example, the best performance for ε-greedy in the larger CMAB2 and CMAB3

was achieved with a relatively high ε = 0.5. Also, this evaluation seems to contradict results
reported by Shleyfman et al. (2014), however, notice that Shleyfman et al. used a version of
näıve sampling that determined the best arm as the one with the highest expected reward
so far, rather than selecting the most sampled one so far (as we do here).

Finally, notice that the advantage of näıve sampling seems to increase in larger CMABs
(e.g., CMAB3). This is because näıve sampling exploits the structure in the domain, and if a
value for a given variable is found to obtain a high reward in average, then other macro-arms
that contain such value are likely to be sampled. Thus, it exploits the fact that macro-arms
with similar values might have similar expected rewards. MLPS also exploits this fact, but
since it does not keep a separate global MAB, as näıve sampling does, it cannot pinpoint
which was the exact combination of values that achieved the highest expected reward.

We would like to note that there are existing strategies, such as HOO (Bubeck, Munos,
Stoltz, & Szepesvari, 2008), designed for continuous actions, that can exploit the structure
of the action space, as long as it can be formulated as a topological space. Attempting such
formulation, and comparing with HOO is part of our future work.

6.2 Experiment 2: Variations of Näıve Sampling

In this section we compare a variety of näıve sampling configurations using the same method-
ology used in the previous subsection. We used the following configurations (in all of them
V best
t is selected based on which arm has been sampled most often at iteration t):

• NS(ε0,εl,εg): we employed the same values as before (ε0 = 0.8, εl = 0.4, and εg = 0.0).

• NS(rT, ε10, ε
1
l , ε

1
g, ε

2
0, ε

2
l , ε

2
g): after exploring the space of value combinations at intervals

of 0.1, the values that performed better are:

– r = 0.6, ε10 = 0.8, ε1l = 0.4, ε1g = 0.0, and ε20 = 0.0, ε2l = 0.0, ε2g = 0.0. This means
doing standard näıve sampling for 60% of the computation budget, and then do
pure exploitation during the remaining 40%.

– r = 0.6, ε10 = 0.8, ε1l = 0.4, ε1g = 0.0, and ε20 = 0.0, ε2l = 0.0, ε2g = 0.2. This means
doing standard näıve sampling for 60% of the computation budget, and then do
ε-greedy with ε = 0.2 over the set of macro-arms explored during the first phase.
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Figure 4: Evolution of the expected reward (vertical axis) of the best arm (V best
t ) as the

computational budget grows (horizontal axis) on the same three CMABs as Figure
3, for three variants of näıve sampling.

Table 2: 95% confidence intervals of the results reported in Figure 4 after 5,000 iterations.
Statistically significant differences are only observed in CMAB3, highlighted in
bold.

CMAB1 CMAB2 CMAB3

NS(0.8, 0.4, 0.0) 0.0149 - 0.0173 0.1326 - 0.1357 0.1760 - 0.1775
NS(0.6T, 0.8, 0.4, 0.0, 0.0, 0.0, 0.0) 0.0136 - 0.0159 0.1338 - 0.1374 0.1777 - 0,1785
NS(0.6T, 0.8, 0.4, 0.0, 0.0, 0.0, 0.2) 0.0140 - 0.0163 0.1337 - 0.1373 0.1788 - 0.1796

NS(0.8, 0.4,UCB1) 0.0147 - 0.0170 0.1324 - 0.1363 0.1520 - 0.1543

• NS(ε0, εl, UCB1): we used ε0 = 0.8, εl = 0.4, and UCB1 (with C = 0.005) as the
strategy to sample the global MAB.

Results are shown in Figure 4 in all three CMABs when sampling between 100 and up
to 5,000 iterations, evaluated as in the previous experiment (reward also ranges from -1 to
1). Results show that the relative performance of näıve sampling variants depends on the
specific CMAB. For example, in CMAB1, with a “small” branching factor (10,368), a two-
phase approach seems to perform worse than standard näıve sampling, or UCB-based näıve
sampling (which perform almost identically). In CMAB2, which has a larger branching
factor, the two-phase approach starts to pay off, and performs just slightly better than
the other two approaches. Finally, in CMAB3, with a very large branching factor (about
9.28 × 1022), the two-phase approach clearly outperforms the other two variants (with
the NS(0.6T, 0.8, 0.4, 0.0, 0.0, 0.0, 0.2) outperforming all other approaches). Moreover, it is
interesting to note that in CMAB3, using a UCB1 sampling strategy for the global MAB
does not work, since the branching factor is so large, that the local MABs never select the
same macro-arm twice, and thus, the number of arms in the global MAB is larger than
the number of times UCB1 is called. However, notice that for very small computation
budgets (smaller than 1000), the two-phase approach outperforms standard näıve sampling
in all CMABs (we will get back to this point later in Section 8.4). Table 2 reports the
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95% confidence intervals of the values obtained by these different strategies after 5,000
iterations, showing that differences are only statistically significant in CMAB3, where a two
phase strategy dominates all the others. In fact in CMAB3, the difference in reward of both
two phase strategies with respect to standard näıve sampling is statistically significant as
early as after 100 iterations. In CMAB2 the different is initially statistically significant, but
it stops being so after 600 iterations.

The conclusion is that for very large branching factors, a two-phase approach pays off,
since the last iterations are spent just trying to narrow down, from the set of macro-arms
already sampled, which are the best. When the number of macro-arms is not that large,
this does not appear to yield any benefit with respect to standard näıve sampling.

7. Monte Carlo Search based on CMABs for RTS Games

As mentioned in Section 3, although many authors have argued for the need of Monte
Carlo Tree Search algorithms that use MAB strategies that minimize simple regret instead
of cumulative regret, in this paper we will use two standard Monte Carlo search algorithms
to evaluate the different CMAB strategies in the context of RTS games:

• a Monte Carlo Tree Search (MCTS) approach (since RTS games involve simultaneous
and durative actions, we used the MCTS approach described in our previous work,
see Ontañón, 2013), described below, and

• a plain Monte Carlo (MC) search approach (which was implemented basically by
limiting the depth of the tree in MCTS to 1).

The main difference between MC and MCTS in our context is that the MC approach
does not construct a game tree, as the MCTS approach does. Moreover, some strategies,
such as LSI, require knowing the sampling budget before-hand, and thus cannot be used
in the context of MCTS (since we cannot anticipate the budget for any tree node except
for the root). We used NäıveMCTS (Ontañón, 2013) as our MCTS approach, specifically
designed for RTS games.

The first consideration that NäıveMCTS does is that unit-actions in an RTS game are
durative (they might take several game cycles to complete). For example, in µRTS, a
worker takes 10 cycles to move one square in any of the 4 directions, and 200 cycles to build
a barracks. This means that if a player issues a move action to a worker, no action can
be issued to that worker for another 10 cycles. Thus, there might be cycles in which one
or both players cannot issue any actions, since all the units are busy executing previously
issued actions. The game tree generated by NäıveMCTS takes this into account, using the
same idea as the ABCD (α-β Considering Durations) algorithm (Churchill et al., 2012).

NäıveMCTS is designed for deterministic two-player zero sum games, where one player,
max, attempts to maximize the evaluation function ρ, and the other player, min, attempts
to minimize it. NäıveMCTS differs from other MCTS algorithms in the way nodes are
selected and expanded in the tree (the SelectAndExpandNode procedure in Section 2.2).

The SelectAndExpandNode process for NäıveMCTS is shown in Algorithm 1. The pro-
cess receives a game tree node n0 as the input parameter, and lines 1-5 determine whether
this node n0 is a min or a max node (i.e. whether the children of this node correspond
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Algorithm 1 SelectAndExpandNode(n0)

1: if canMove(max, n0.state) then
2: player = max
3: else
4: player = min
5: end if
6: α = NäıveSampling(n0.state, player)
7: if α ∈ n0.children then
8: return NäıveSelectAndExpandNode(n0.child(α))
9: else

10: n1 = newTreeNode(fastForward(n0.state, α))
11: n0.addChild(n1, α)
12: return n1

13: end if

to moves of player min or of player max). Then, line 6 uses näıve sampling to select one
of the possible player-actions of the selected player in the current state. If the selected
player-action corresponds to a node already in the tree (line 8), then SelectAndExpandNode
is recursively applied from that node (i.e. the algorithm goes down the tree). Otherwise
(lines 10-12), a new node is created by executing the effect of player-action α in the current
game state using the fastForward function. fastForward simulates the evolution of the game
until reaching a decision point (when any of the two players can issue an action, or until a
terminal state has been reached). This new node is then returned as the node from where
to perform the next simulation.

A final consideration is that RTS games are simultaneous-action domains, where more
than one player can issue actions at the same instant of time. Algorithms like minimax
might result in under or overestimating the value of positions, and several solutions have
been proposed (Kovarsky & Buro, 2005; Saffidine et al., 2012). However, we noticed that
this had a very small effect on the practical performance of our algorithm in RTS games,
so we have not incorporated any of these techniques into NäıveMCTS.

8. Experimental Results in the Context of Game Tree Search

The following subsections present three separate experiments aimed at evaluating different
CMAB sampling strategies in the context of Game Tree search.

8.1 Experimental Setup

In order to evaluate the performance of the different CMAB sampling strategies, as before,
we employed µRTS. µRTS games used in this paper are fully observable and deterministic,
but still capture several defining features of full-fledged RTS video games: durative and
simultaneous actions, large branching factors, resource allocation, and real-time combat.

We employed eight different µRTS maps, that result in games of different average branch-
ing factors (Figure 5):
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Figure 5: The eight maps used in our experimental evaluation, the top four maps are 8× 8
cells in size, while the bottom four are 12× 12. For each size, we employed maps
with a varying number of starting bases and workers, resulting in games with
different average branching factors, and average lengths. max always starts at
the top, and min at the bottom; each player start with 5 resources (the number
displayed on each player base); and each resource mine has 20 resources available.

• Four 8x8 maps (8x8-1base, 8x8-2base, 8x8-3base, and 8x8-4base), shown in the
top half of Figure 5. In the simplest of them (8x8-1base), each player starts with
one base and one worker, and near a single resource mine. In the most complex of
them (8x8-4base), each player starts with four bases and four workers, right next to
a row of 7 resource mines.

• Four 12x12 maps (12x12-1base, 12x12-2base, 12x12-3base, and 12x12-4base),
shown in the bottom half of Figure 5, analogous to the 8x8 maps, but where players
start further apart (given the larger dimensions), thus increasing the average length
of a game and allowing a larger maximum number of units in the map.

We performed two experiments to assess the performance of each of the CMAB sampling
strategies described above when used in MC and MCTS in the context of RTS games:

• Branching Factor Analysis: to measure the complexity of the games in each of the
8 maps (and thus compare the results obtained here to those reported in Experiment 1,
see Section 6.1), average game length and branching factor in each map were analyzed.

• Round-Robin Analysis: we selected some of the top performing configurations
from the previous experiment, and we ran a round-robin tournament where each
configuration played against all others in all the different maps.

Games were limited to 3000 cycles, after which the game was considered a draw. More-
over, in the MC and MCTS implementations in µRTS, when the computation budget is set
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Table 3: Median, Average and Maximum branching factor encountered in each of the eight
maps during Experiment 2. ∗ some branching factor calculations timed out, me-
dian/average/max taken of the ones that did not time out.

Branching Game Length
Map Median Average Max Average Cycles Average Decision Cycles

8x8-1base 14.50 1466.35 2.65× 105 428.33 48.93
8x8-2base 84.00 1.87× 106 2.49× 109 474.33 58.93
8x8-3base 106.00 4.53× 105 1.75× 108 380.33 52.10
8x8-4base 342.50 9.52× 105 3.74× 108 267.00 38.60

12x12-1base 30.50 1.23× 106 6.14× 108 972.67 158.17
12x12-2base 112.00 1.56× 1012 2.90× 1015 893.27 151.00
12x12-3base∗ 546.75 1.60× 1015 4.98× 1018 804.00 135.3
12x12-4base∗ 15330.00 1.08× 1017 8.07× 1019 777.80 126.13

to T playouts, this does not mean that each decision is made by running MC or MCTS
for T playouts. Instead, what this means is that each bot has a computation budget of T
playouts per game cycle. Thus, in situations where a bot does not need to issue an action
during a few cycles in a row (e.g., because all of its units are already busy), a bot can launch
an execution of MC or MCTS that spreads over several game cycles (i.e., the bot starts a
search process in the first game cycle, and continues the search during the subsequent game
cycles until it needs to produce an action). The following subsections describe the results
of each of the experiments.

8.2 Experiment 3: Branching Factor Analysis

We recorded the branching factor from the point of view of both players by making an
AI that uses MC search (with a computation budget of 1000 playouts per frame and
NS(0.4,0.33,0) as the CMAB strategy) play five games against each of three of the scripted
AIs that come with µRTS (RandomBiased, LightRush and WorkerRush) in each one
of the 8 maps (a total of 3× 8× 5 = 120 games). The scripted AI always played as player
max, and the MC AI always played as player min. We selected these different scripted AIs,
just to have a variety of games, in order to gather a variety of game states to estimate the
branching factor from.

Table 3 shows the median, average, and maximum branching factors encountered during
this experiment for each of the eight maps. The right-hand side of Table 3 shows the average
game length in terms of both game cycles, and “Decision Cycles” (where a “Decision Cycle”
is a game cycle where there was at least one idle unit for which a player had to produce an
action). We can see that in the simplest map (8x8-1base, used in the past for evaluation
of different CMAB strategies, see Ontañón, 2013 and Shleyfman et al., 2014), branching
factors do not grow very large (the average is 1466.35, with a median of 14.50). However,
as we increase the number of bases, and especially if we use the larger 12x12 maps, the
branching factor grows very rapidly. In the extreme cases of the 12x12-3base and 12x12-
4base maps, some of the branching factors were too large to be computed in a reasonable
amount of time. For example, in the 12x12-4base map, the average branching factor for
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Figure 6: Left: average branching factor over the course of games in each of the 8 maps;
The horizontal axis represents time (in game cycles), and the vertical axis is
the average branching factor. Right: comparison of the number of macro-arms
explored by NS(0.4,0.33,0) with a budget of 1000 playouts as the branching factor
grows. ∗ some branching factor calculations timed out, average taken of the ones
that did not time out.

the states where we could actually compute it (we set a timeout of 2 hours of CPU time
to calculate the branching factor of a game state) was 1.08 × 1017, and median 15330.00
(which means that half of the times the branching factor was larger than 15330.00). In
12x12 maps, the branching factor is smaller than 1000 66.55% of the times, it is between
1000 and one million 19.06% of the times, and it is larger than one million 14.39% of the
times. The left-hand side of Figure 6 shows the average branching factor over time for
each of the 8 maps. We can see that branching factor starts small at the beginning, when
there are few units in the map, and then grows very rapidly. Branching factor tends to
decrease toward the end game, since players destroy each other’s units during the game.
Moreover, the right-hand side of Figure 6 shows the number of macro-arms explored by
NS(0.4,0.33,0) with a budget of 1000 playouts as the branching factor grows. As can
be seen, NS(0.4,0.33,0) flattens out at exploring about 400 macro-arms (corresponding to
ε0 = 0.4). In average, NS(0.4,0.33,0) explored 36.43% of all the possible macro-arms (notice
that even if the percentage of explored macro-arms is nearly 0 for those game states with
large branching factor, 66.55% of those have branching factor smaller than 1000).

Finally, in the Java µRTS implementation of these algorithms, running MC search takes
about 271ms to run 1000 playouts in 8x8 maps, and about 615ms in 12x12 maps on an Intel
Core i7 3.1GHz (the sampling strategy makes little difference, since the main bottleneck is
running the forward model to run the playouts). In an optimized C++ implementation, we
thus estimate that between 200 and 1000 playouts would be feasible to be run on real time
(10 to 24 frames per second) in a commercial RTS game depending on the complexity of
the game state.
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Figure 7: Win ratio of different approaches when doing a round-robin tournament with
different computation budgets: averaged over all maps (left), only the 8x8 maps
(center) and only the 12x12 maps (right).

8.3 Experiment 4: Round-Robin Analysis

We performed a series of round-robin tournaments involving six different AIs:

• MC with ε-greedy (ε = 0.25): Monte Carlo search using ε-greedy as the tree policy.

• MCTS with ε-greedy (ε = 0.25): MCTS using ε-greedy as the tree policy.

• MC with LSIeV (Shleyfman et al., 2014): plain Monte Carlo search using LSIeV .
Notice that LSI cannot be used with MCTS, since it needs to know in advance the
computation budget to be used in a given node of the tree.

• MC with NS(0.4, 0.33, 0.0): Monte Carlo search using näıve sampling, NS(0.4, 0.33,
0.0), as the sampling policy.

• MCTS with NS(0.4, 0.33, 0.0): Monte Carlo Tree Search using NS(0.4, 0.33, 0.0) as
the tree policy.

• UCB1-FPU: Monte Carlo Tress Search using a UCB1 sampling strategy with an
FPU constant set to: FPU = f × ρ(s) + (1 − f), where ρ(s) is the value of the
evaluation function applied to the game state in the current game state, and f = 0.95,
set empirically (intuitively, this basically sets the FPU constant to slightly higher than
the value of the current game state, so that if actions are found early that improve
the evaluation function, those are explored right away).

Notice that we test both ε-greedy and näıve sampling using an MC and a MCTS search
algorithm, in order to separate the performance that comes from the sampling strategy
from the performance that comes from the search algorithm.
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In each round-robin tournament, each AI played 20 games against each other AI (10
times as player max, and 10 times as player min) in each of the 8 maps, resulting in a
total of 2400 games per tournament. We played six such round-robin tournaments, using
a computation budget of 500, 1000, 2000, 3000, 4000 and 5000 playouts per game cycle
respectively.

The left hand side of Figure 7 shows the win ratio (vertical axis) of each of the AIs as
a function of the computational budget used in each of the tournaments (horizontal axis).
“Win ratio” was calculated as the average score that bots got in each game, scoring 1 for
winning, 0.5 for drawing, and 0 for losing the game. The bands around the plots represent
the 95% confidence interval in the win ratio. Thus, when the bands of two plots do not
overlap, their difference is statistically significant with p = 0.05. As can be seen, MC with
ε-greedy won the 500 playouts tournament (but with a difference that is not statistically
significant), MC with NS(0.4, 0.33, 0.0) won the 1000, 2000 and 3000 tournaments (the
1000 and 2000 playout tournaments with a statistically significant difference with respect to
the ε-greedy strategies), and MCTS with NS(0.4, 0.33, 0.0) won the 4000 and 5000 (but
with a difference that is not statistically significant).

Looking at the left-hand side of Figure 7 closely, we can see that except for the extreme
case of budget 500, näıve sampling dominates the tournaments for low computation bud-
gets (1000, 2000), and as the computation budget increases, the other strategies catch up.
The exception is the case of budget 500, where ε-greedy seems to work very well. After
close inspection of the results, we noticed that this could be caused by two separate facts.
First, the exploration constant used by ε-greedy (ε = 0.25) was better suited for this low-
computation budget setting than the higher exploration constants used by näıve sampling
in our experiments. We set all of these values experimentally based on overall performance
across all tournaments. Second, we noticed that the performance gain of näıve sampling
with respect to ε-greedy was smaller when using MCTS than when using MC, and in the
special case of budget 500, MCTS with näıve sampling seems to work very poorly. This
makes us formulate the hypothesis that for very low computation budgets, the estimation
of the rewards of the individual unit-actions made by the local MABs is not reliable, and
thus, it does not help the search process. We will verify this hypothesis in the next section.

Another interesting result we observe from Figure 7 is that MC dominates MCTS for low
computation budgets (all the MC bots are displayed with dashed lines, and the MCTS bots
with solid lines), but as the computation budget increases, MCTS outperforms MC. This
is observed both for ε-greedy and for näıve sampling. We would like to point out, however,
that we set the exploration constants of the sampling strategies based on the performance
of the MC AIs. Thus, it is possible that different exploration constants could make the
MCTS AIs perform better.

Finally, UCB1-FPU performed very poorly in this experiment, as in our previous ex-
periments. Specially in the 12x12 maps. In the 8x8 maps, the performance was closer to
the other policies, since the branching factors were smaller. Although FPU helped UCB1
significantly in our preliminary experiments (without adding an FPU constant, UCB1’s
performance is even lower), we found that finding the correct value for the FPU constant
was not trivial. In the results presented in Figure 3, we fine-tuned this constant for each
individual CMAB. But in real play, the FPU constant needs to be set automatically for
each game situation. A fixed FPU constant seemed not to work, and we employed the
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Figure 8: Win ratio of different approaches when doing a round-robin tournament with
different computation budgets on a complex 12x12 map, where each player starts
with six bases and six workers.

dynamic scheme FPU = f × ρ(s) + (1− f) described above, which worked the best in our
experiments, but still underperforms compared to the other strategies. However, comparing
the results from Figures 3 and 7, we believe there is still room for improvement with better
FPU constant setting procedures.

In order to get better insight into these results, the center and right plots of Figure 7
show these results considering only the 8x8 maps (center) and only the 12x12 maps (right).
Consistent with the results reported earlier in this paper, for the maps with larger branching
factors, näıve sampling performs better. Moreover, we can see that the crossover point
between MC and MCTS occurs later for maps with larger branching factors.

Finally, in order to confirm the advantage of näıve sampling over the other sampling
strategies on larger maps, we performed an additional set of experiments on a more complex
map (12x12 map, where each player started with 6 bases and 6 workers). Results are
shown in Figure 8. Since this figure shows results for only one map, in order to reduce
uncertainty, we made each AI play 40 times against each other, instead of 20 as in the
previous plots. The results show that both näıve sampling AIs consistently achieve higher
win ratios than the other AIs, with the only other AI with comparable (but lower in most
cases) performance being MCTS with ε-greedy. In these experiments, the performance of
MC with ε-greedy degraded quickly compared with the other strategies. Moreover, given
that the results shown in Figure 8 correspond to only one map, we see a larger overlap of
the 95% confidence intervals in the figure, meaning that not all differences are statistically
significant. Moreover UCB1-FPU is not shown since it achieved a win ratio of 0.
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Figure 9: Win ratio of different approaches when doing a round-robin tournament, using
two-phase näıve sampling with low computation budgets averaged over all maps.

In conclusion, we can see that different strategies are better suited for different settings:
when the computational budget is very low, MC seems to outperform MCTS, while as the
computation budget increases this is reversed. Also, for low computational budgets ε-greedy
seems to achieve very good results (the next experiment will look at this more closely), and
as the computation budget increases, näıve sampling dominates (especially for situations
with large branching factors). Finally, as the computation budget increases even further,
then the result from different sampling strategies seems to converge (ε-greedy, LSI and näıve
sampling using MC tend to converge to the same value, and ε-greedy and näıve sampling
using MCTS also tend to converge).

8.4 Experiment 5: Round-Robin with Small Budget

The previous experiment showed that an ε-greedy strategy combined with MC seemed to
work very well for very low computation budgets (500 playouts per decision cycle). Upon
close inspection of the results, we observed that näıve sampling struggled with low compu-
tation budgets, since in the first iterations, the local MABs still do not have meaningful
estimations, and thus cannot guide exploration. In order to verify this hypothesis, we ex-
perimented with two-phase näıve sampling strategies that would spend initially more time
exploring (in order to get a good estimation in the local MABs) and only then start ex-
ploiting. Specifically, we repeated the round robin experiments, focusing on computation
budgets between 100 to 2000, removing the UCB1-FPU bot which did not perform well
in the previous experiment, and using the following versions of näıve sampling:

• NS(0.25T, 1.0, 1.0, 0.0, 0.4, 0.33, 0.0): during the first 25% of the computation budget,
this strategy will basically select macro-arms randomly, and then during the remaining

691



Ontañón

75% of the computation budget, it will run the same parameter configuration of näıve
sampling as used in Experiment 4.

• NS(0.5T, 1.0, 1.0, 0.0, 0.4, 0.33, 0.0): the same, but exploring randomly during the first
50% of the computation budget.

Figure 9 shows the experimental results. The first thing we see is that using 25% of the
computation budget to explore random macro-arms (left-hand side of Figure 9) seems to
work much better than using 50% of the computation budget (right-hand side of Figure 9).
For example, using MC with a two-phase NS strategy achieves a win ratio of over 60% with
computation budgets lower than 500 in the 25% exploration setting. This shows that when
using very low computation budgets with näıve sampling, it is important to dedicate some
amount of the computation budget initially for exploration.

We performed preliminary experiments with larger computation budgets (not reported)
and observed that for higher computation budgets, two-phase strategies either did not seem
to make a difference or performed worse than standard näıve sampling. So, two-phase
sampling seems to only help in cases of low computation budgets.

9. Related Work

Several areas are related to the work presented in this paper: combinatorial multi-armed
bandits (CMABs), AI techniques for RTS games, as well as more general work on multiagent
planning or decentralized sequential decision making. While existing work on CMABs is
covered in Section 5, this section briefly discusses work on the other related areas, as well
as their connection with the work presented in this paper.

Since the first call for research on RTS game AI by Buro (2003), a wide range of AI
techniques have been explored to play RTS games. For example, reinforcement learning
(RL) has been used for controlling individual units (Marthi, Russell, & Latham, 2005;
Jaidee & Muñoz-Avila, 2012), groups of units (Wender & Watson, 2012; Usunier, Synnaeve,
Lin, & Chintala, 2016), and even to make high-level decisions in RTS games (Sharma,
Holmes, Santamaŕıa, Irani, Isbell Jr, & Ram, 2007). The main issue when deploying RL
in RTS games is computational complexity, as the state and action space are very large.
The aforementioned techniques address these problems by either focusing on individual
units, small-scale combat, or by using domain knowledge to abstract the game state in
order to simplify the problem. Although recent approaches are starting to scale up to
larger and larger combat situations (Usunier et al., 2016) by using techniques such as deep
reinforcement learning, they are still far from scaling all the way up to full-game play.

Other machine learning techniques, such as case-based approaches for learning to select
among high-level strategies (Aha, Molineaux, & Ponsen, 2005), or for learning to choose
the right “build-order” (Weber & Mateas, 2009), have also been proposed. In our previous
work, we showed that learning from demonstration (Ontañón, Mishra, Sugandh, & Ram,
2007, 2010), although promising, also struggles to generalize due to the large variety of
situations that can arise in RTS games.

More related to the work presented in this paper, there has also been a significant amount
of work to design game-tree search approaches that can handle RTS games. Early work
used plain Monte Carlo search (Chung et al., 2005), but very soon, work shifted to Monte
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Carlo Tree Search (Balla & Fern, 2009). And, as mentioned in Section 2.2, techniques now
exist that can perform game tree search in domains with durative actions (Churchill et al.,
2012), or simultaneous moves (Kovarsky & Buro, 2005; Saffidine et al., 2012), both features
of RTS games. Moreover, most recent work has focused on addressing the problem of the
large branching factors present in RTS games. While in this paper we focused on a bandit
strategy that can handle the combinatorial branching factor on RTS games, other work to
address this problem can be categorized around four main lines:

• Game state abstractions: the idea is to re-represent the game state, removing some of
the low-level details, in order to make the search space smaller. For example, Balla and
Fern (2009) represented the game state by clustering units into groups, idea which has
been expanded upon in later work (Justesen, Tillman, Togelius, & Risi, 2014; Uriarte
& Ontañón, 2014).

• Portfolio approaches: rather than re-representing the game state, portfolio approaches
reduce the combinatorial branching factor of RTS games by only letting the AI pick
amongst a predefined fixed set of scripts, rather than having to select among all the
possible low-level actions. The first such work was proposed by Chung et al. (2005),
but modern versions of the approach perform either greedy search (Churchill & Buro,
2013) or MCTS (Justesen et al., 2014).

• Hierarchical search: another idea that has been explored recently is that of performing
search at several levels of abstraction, considering high-level decisions first, which
condition the potential number of low-level decisions that can be taken. An example
of this approach is the idea of Adversarial HTN planning (Ontañón & Buro, 2015),
which combines minimax search with HTN planning. Another example is the work
of Stanescu et al. (2014), who perform game tree search at two separate levels of
abstraction, one informing the other.

• Finally, a recent line of work, inspired by the success of AlphaGO (Silver, Huang,
Maddison, Guez, Sifre, van den Driessche, Schrittwieser, Antonoglou, Panneershel-
vam, & Lanctot, 2016) has started to explore the idea of integrating machine learning
into game tree search. For example, Stanescu, Barriga, Hess, and Buro (2016) trained
deep neural networks to automatically learn evaluation functions in µRTS, showing
they could significantly outperform the base evaluation function. Another example is
our previous work (Ontañón, 2016), where we employed a very similar approach to
AlphaGO, but using Bayesian models rather than neural networks, in order to inform
the search in MCTS.

Notice, however, that all four of these lines of work are orthogonal to the work presented
in this paper, and, as a matter of fact, some of these strategies have been explored in
conjunction with näıve sampling.

Another related area is that of multiagent planning (Durfee, 2001; De Weerdt, Ter Mors,
& Witteveen, 2005; Brafman & Domshlak, 2008), which focuses on the problem of auto-
mated planning in domains where there are more than one agent performing actions. Of
particular relevance to the work presented in this paper is the setting where planning is
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centralized and only execution is decentralized. A common framework to model this set-
ting is that of decentralized Markov Decision Processes (DEC-MDPs and DEC-POMDPs)
(Oliehoek & Amato, 2016). A DEC-POMDP is a Partially Observable Markov Decision
Process (POMDP), where there is more than one agent that can act simultaneously, each
of them with their own partial perception of the world. All the agents in a DEC-POMDP
attempt to maximize the same reward function. The particular case where the joint per-
ception of all the agents corresponds to the complete state (i.e., when considering the joint
perception makes the problem fully-observable) is called a DEC-MDP. Algorithms to ad-
dress DEC-MDPs and DEC-POMDPs have been proposed in the literature, from systematic
search, to dynamic programming (Hansen, Bernstein, & Zilberstein, 2004), or approximate
algorithms such as best-response approaches (Nair, Tambe, Yokoo, Pynadath, & Marsella,
2003) (which fix the policy of all agents but one, and iteratively each agent optimizes her
policy with respect of the fixed policy of the others). The specific RTS-games setting we
consider in this paper corresponds to a generalization of DEC-POMDPs, where different
agents have different reward functions called partially observable stochastic games (POSG)
(Hansen et al., 2004) (specifically, in our setting, all the units in an RTS game are di-
vided among the two players, each player having her own reward function). The näıve
assumption made by näıve sampling is also connected to the related idea of factored MDPs,
where agents approximate the global reward function as a linear combination of local value
functions (Guestrin, Koller, & Parr, 2001).

10. Conclusions

Real-time strategy (RTS) games pose a significant challenge to game tree search approaches
due to the very large branching factors they involve. In this paper, we explored the pos-
sibility of modeling RTS game situations as combinatorial multi-armed bandit (CMAB)
problems, and study the theoretical and practical behavior of a new family of sampling
strategies called näıve sampling. We compare these sampling strategies against other sam-
pling strategies in the literature for CMABs in the context of µRTS.

As our results indicate, for situations with small branching factors, näıve sampling
performs similar to other sampling strategies such as LSI or ε-greedy. However, as the
branching factor grows, the performance of other strategies degrades compared to näıve
sampling, especially under tight computation budgets, which is especially relevant for real-
time games (as showed in Section 8.2, computation budgets in the order 1000 playouts per
game cycle are to be expected).

As part of our future work we would like to better understand the behavior of näıve
sampling in the context of MCTS, where the computation budget that can be used in the
inner nodes of the tree is smaller the deeper the node is in the tree. As the results in Ex-
periments 4 and 5 showed, for very low computation budgets, the estimations performed by
the local MABs might not be accurate enough to be reliable, and thus, two-phase strategies
are more appropriate. However, how to decide when to use a two-phase versus a single-
phase strategy is still unclear. Additionally, we are currently looking at sampling strategies
that incorporate prior knowledge of the domain (such as the neural network models used
by AlphaGO, see Silver et al., 2016) into näıve sampling strategies (initial results on this
direction indicate that significant gains can be achieved, see Ontañón, 2016). We would
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also like to investigate better sampling strategies for CMABs by studying the relation of
CMABs with other combinatorial optimization problems, and by studying the relation of
näıve sampling to sampling policies for continuous-valued bandits. Finally, we would like
to apply näıve sampling-based MCTS approaches to address large-scale RTS games such as
StarCraft.

Appendix A.

This section contains proofs to the propositions presented earlier, preceded by the simple
regret analysis of ε-greedy, which will set the basis for some of the proofs.

A.1 Simple Regret Analysis of ε-greedy

Assume a MAB with K arms, i.e., a single variable X that can take values {v1, ..., vK}, and
where µt(vi) is the average reward estimated for arm i at iteration t.

Assume also that the expected difference in expected reward between the optimal arm
and a non-optimal arm is D = Evi∈X−(µ∗ − µ(vi)), where µ∗ is the expected reward of
an optimal arm, and X− = {vi ∈ X |µ(vi) < µ∗} is the set of non-optimal arms; and
that the minimum difference between the optimal arm and a non-optimal arm is at least
d = minvi∈X−(µ∗ − µ(vi)).

Given a suboptimal arm vi and an optimal arm v∗ that have been sampled at least
m times, the probability that µt(vi) ≥ µt(v

∗) can be bounded in the following way. By
Hoeffding’s inequality (Hoeffding, 1963), we know that the probability that the empirical
estimation S of the mean of a variable S differs in more than d from the actual mean E[S]
after having sampled it m times, is bounded by P (E[X] − S ≥ d) ≤ e−2d2m. Now let S
be the difference in observed reward between v∗ and vi. Then the empirical estimate S is
(µt(v

∗) − µt(vi)), and by assumption we know that E[S] = ∆ ≥ d. Thus, by Hoeffding’s
inequality, we know that:

P (∆− (µt(v
∗)− µt(vi)) ≥ ∆) ≤ e−2∆2m ≤ e−2d2m

And thus:

P (µt(vi) ≥ µt(v∗)) = P ((µt(v
∗)− µt(vi) ≤ 0)

= P (d− (µt(v
∗)− µt(vi)) ≥ d)

≤ e−2d2m

Let vbestt be the arm believed to be the best at iteration t (the one with the highest
estimated reward so far), vbest−not be the arm from the set of non-optimal arms X− that at
iteration t has the highest estimated reward so far, and nbestt and nbest−not the number of
times these arms have been sampled respectively. Now, let us assume that there is a single
optimal arm v∗ (which has been sampled n∗t times). Now, notice that if µt(v

best−no
t ) >

µt(v
∗), then vbestt will be vbest−not instead of v∗, and thus the arm believed to be the best at

iteration t is not the optimal one. Therefore, we can estimate the probability of vbestt not
to be the optimal arm as:
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P (µt(v
best−no
t ) ≥ µt(v∗)) = P ((µt(v

∗)− µt(vbest−not )) ≤ 0)

≤ e−2d2min(nbest−not ,n∗t )

≤ e−2d2 ε
K
t

If we lift the assumption that there is a single optimal arm, then the probability of vbestt

not to be optimal is even lower, and thus this bound still applies. Thus, the probability of
choosing the wrong arm after t iterations decreases exponentially. The regret for ε-greedy
is:

• Instantaneous regret:

r′t ≈
(
ε
Kno

K
+ (1− ε)e−2d2 ε

K
t

)
D

where Kno < K is the number of non-optimal arms. Thus, when t → ∞, this tends
to εK

no

K D, which is a constant; and when K is very large (and Kno/K ≈ 1), can be
simplified as εD.

• Cumulative regret: since the instantaneous regret tends to a constant, cumulative
regret is linear Rt = O(tεD)

• Simple regret: the simple regret decreases exponentially:

rt ≈ De−2d2 ε
K
t

Moreover, notice that decreasing ε reduces the instantaneous and cumulative regret but
increases the simple regret. ε = 1, which achieves the highest expected instantaneous and
cumulative regret, achieves the lowest expected simple regret.

A.2 Propositions and Proofs

Proposition 1: The cumulative regret of NS(ε0,εl,εg) grows linearly as RT = O((1−p∗)DT ),
where T is the number of iterations, D is the expected difference in expected reward between
an optimal macro-arm and a non-optimal macro-arm, and p∗ ≥ (1 − ε0)(1 − εg) is the
probability of selecting an optimal macro-arm when T →∞.

Proof: Formally, D = EVi∈X−(µ∗ − µ(Vi)), where X− = {Vi ∈ X |L(Vi) ∧ µ(Vi) < µ∗} is
the set of legal non-optimal macro-arms.

The probability of selecting an optimal macro-arm V ∗ when T →∞ can be calculated as
follows. When T →∞, we can assume that each macro-arm has been sampled enough times
as for V ∗ having higher reward than all the non-optimal macro-arms. Thus, NS(ε0,εl,εg)
would select it in the following circumstances:

• When exploiting, V ∗ will be selected with probability (1−εg)+εg/N if there is a single
optimal macro-arm, and higher if there is more than one optimal macro-arm (where N
is the number of legal macro-arms). Assuming that N is large, this is approximately
(1− εg).

• When exploring, V ∗ will be selected with probability at least
∏
i=1...n((1− εl)+ εl/Ki)

(the probability will be higher if there is more than one optimal macro arm).
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Thus, for large N the probability of selecting an optimal macro-arm V ∗ is at least: p∗ =
ε0 (
∏
i=1...n((1− εl) + εl/Ki))+(1−ε0)(1−εg), from which we know that p∗ ≥ (1−ε0)(1−εg)

(and if the number of variables n is large, εl > 0, and there are few optimal macro-arms,
the inequality will be tight).

Thus, the instantaneous regret of NS(ε0,εl,εg) will be r′T ≈ (1−p∗)D, which implies that
the cumulative regret will be rT = O((1− p∗)DT ). �

Proposition 2: The simple regret of NS(ε0,εl,εg) decreases at an exponential rate as

rT = O(De−2d2Tpi), where pi ≥ ε0Πj=1...n
εl
Kj

+ (1− ε0)
εg
N , D is as in Proposition 1, and d is

the minimum difference between an optimal macro-arm and a non-optimal macro-arm.

Proof. Formally, d = minVi∈X−(µ∗ − µ(Vi)), where X− is as in Proposition 1. Given a
suboptimal macro-arm Vi and an optimal macro-arm V ∗, after a sufficiently large number
of iterations T :

• The probability of selecting Vi is pi ≥ ε0Πj=1...n
εl
Kj

+ (1 − ε0)
εg
N , and thus, we can

expect the arm to have been selected at least nT = Tpi times.

• The probability of selecting an optimal macro-arm V ∗ is p∗ ≥ (1 − ε0)(1 − εg), and
thus, we can expect the arm to have been selected at least n∗T = Tp∗ times.

Now, given V best
t to be the best macro-arm at iteration t, the probability that V best

t is not
an optimal arm is (using Hoeffding’s inequality, see Hoeffding, 1963):

P (µt(V
best
t ) ≥ µt(V ∗)) = P ((µt(V

∗)− µt(V best
t )) ≤ 0)

≤ e−2d2min(nt,n∗t )

Assuming ε0 ≤ 0.5, εg ≤ 0.5 and εl ≤ 0.5, and N � 2, pi is expected to be lower than
p∗, and thus:

P ((µt(V
∗)− µt(V best

t )) ≤ 0) ≤ e−2d2nt

Thus, if the expected difference in expected reward between the optimal arm and a non-
optimal arm is D, after a sufficiently large number of iterations T , the expected simple
regret rT ≈ De−2d2nT .

Proposition 3: In a CMAB with n variables, the probability that after t iterations
using a NS(ε0, εl, εg) sampling strategy an optimal macro-arm V ∗ has not been explored
at least once, decreases exponentially as a function of t, and is at most (1 − p)tε0 , where
p =

∏
i=1...n (εl/Ki).

Proof. The expected number of exploration iterations done after t iterations is m = tε0.
When exploring, the probability that a given value vji is selected for variable Xi at a given

exploration iteration, is at least εl/Ki (it could be higher, if vji happens to be the value
with the highest expected reward so far). Thus, the probability of selecting V ∗ = (v∗1, ..., v

∗
n)

during exploration is at least p =
∏
i=1...n (εl/Ki). Therefore, the probability of not selecting

V ∗ after m exploration iterations is at most (1 − p)m, i.e., it decreases exponentially as a
function of t.
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Proposition 4: The cumulative regret of NS(k, ε10, ε
1
l , ε

1
g, ε

2
0, 0, ε

2
g) when k is a constant

grows linearly when T � k:

RT = O (t [(1− εg − qk + εgqk)d+ εgD])

where qk = 1− (1− p)kε10 , and p =
∏
i=1...n

(
ε1l /Ki

)
.

Proof. Let us use D and d as before (difference between an optimal macro-arm and a random
macro-arm, and difference between the best non-optimal macro-arm and an optimal macro-
arm respectively). Notice that if ε20 = 0, it means that the second stage is just an ε-greedy
strategy with the set of explored macro-arms with parameter εg. Additionally, according

to Proposition 3, with probability at least qk = 1 − (1 − p)kε10 , an optimal macro-arm will
be explored during the first phase.

Therefore, with probability qk, for T � k, an optimal macro-arm will be in the global
MAB. Also, if T � k, the number of times the macro-arms in the global MAB have been
sampled during the first k iterations will be negligible. Thus we can just focus on the second
stage. Therefore, with probability qk we will have a cumulative regret O(tεgD).

On the other hand, with probability (1 − qk), the instantaneous regret will be at least
d (since no optimal macro-arm is in the global MAB, and thus, the difference between
the best macro-arm in the global MAB and an optimal macro-arm is at least d). In this
case, instantaneous regret will converge to a higher constant: r′t ≈ aD + (1 − a)d, where

a =
(
εg
Kno

K + (1− εg)e−2d2
εg
K
t
)

. When t → ∞, and K is large, this converges to: r′t ≈
d+ εg(D − d), which gives a cumulative regret O (t(d+ εg(D − d)))

Thus, the expected cumulative regret of two-phase näıve when k is a constant and ε0l = 0
is (after rearranging):

Rt = O (t [(1− εg − qk + εgqk)d+ εgD])

Proposition 5: The simple regret of NS(k, ε10, ε
1
l , ε

1
g, ε

2
0, 0, ε

2
g) when k is a constant and

T � k is lower bounded by (1− qk)d, where qk = 1− (1− p)kε10 , and d is difference between
the best non-optimal macro-arm and an optimal macro-arm.

Proof. Following a similar line of reasoning as for Proposition 4, with probability qk at least
one optimal macro-arm will be in the global MAB and for T � k we can just focus on the
second stage. Thus, with probability qk, following the ε-greedy analysis presented above,

the simple regret will be approximately De−2d2
εg
K
T .

With probability (1 − qk), however, there will be no optimal macro-arm in the global
MAB. Let d′ be the difference in reward between the best macro-arm in the global MAB
(V +) and the second best, and D′ the average difference in reward between the best macro-
arm in the global MAB and the rest. In this case, the simple regret with respect of not

choosing V + will be approximately D′e−2d′2 εg
K
T . However, since the difference in reward

between V + and an optimal macro arm is at least d, then we need to add d to the actual
simple regret.
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Thus, we have that the simple regret of two-phase näıve when k is a constant and ε0l = 0
is:

rt ≈ qk
(
De−2d2

εg
K
T
)

+ (1− qk)
(
d+D′e−2d′2 εg

K
T
)

Which, when T →∞, converges to: (1− qk)d.
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Ontañón, S., & Buro, M. (2015). Adversarial hierarchical-task network planning for com-
plex real-time games. In Proceedings of the 24th International Joint Conference on
Artificial Intelligence, pp. 1652–1658. AAAI Press.
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