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Abstract

Given a set of items of unknown utility, we need to select one with a utility as high
as possible (“the selection problem”). Measurements (possibly noisy) of item values prior
to selection are allowed, at a known cost. The goal is to optimize the overall sequential
decision process of measurements and selection.

Value of information (VOI) is a well-known scheme for selecting measurements, but the
intractability of the problem typically leads to using myopic VOI estimates. Other schemes
have also been proposed, some with approximation guarantees, based on submodularity
criteria. However, it was observed that the VOI is not submodular in general. In this
paper we examine theoretical properties of VOI for the selection problem, and identify
cases of submodularity and supermodularity. We suggest how to use these properties to
compute approximately optimal measurement batch policies, with an example based on a
“wine selection problem”.

1. Introduction

Decision-making under uncertainty is a domain with numerous important applications.
Since these problems are intractable in general, special cases are of interest. In this paper,
we examine the selection problem: given a set of items of unknown utility (but drawn
from a known distribution), we need to select an item with as high a utility as possible.
Measurements (possibly noisy) of item values prior to selection are allowed, at a known cost.
The problem is to optimize the overall decision process of measurement and selection. Even
with the severe restrictions imposed by the above setting, this decision problem is intractable
(Tolpin & Shimony, 2012; Radovilsky, Shattah, & Shimony, 2006; Radovilsky & Shimony,
2008); and yet it is important to be able to solve, at least approximately, as it has numerous
potential applications. This paper analyzes cases where the value of information (VOI) is
submodular, which is a sufficient condition for achieving good approximate solutions to the
selection problem with appropriate greedy algorithms.

Settings where the selection problem is applicable are in meta-reasoning, i.e. considering
which time-consuming deliberation steps to perform before selecting an action (Russell &
Wefald, 1991b, 1991a; Hay, Russell, Tolpin, & Shimony, 2012), as well as settings where the
items to be selected are physical objects. Examples of the latter type are: oil exploration,
locating a point of high temperature using a limited number of measurements (Krause &
Guestrin, 2009), performing costly measurements in order to find the best time to hit a
target when the system is modeled using a stochastic system estimator, such as a Kalman
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filter, and a good set of parameters for setting up an industrial imaging system (Tolpin
& Shimony, 2012). The selection problem can also be seen as a special case of Bayesian
optimization, and can be used to select (from a large batch of candidates) experiments to
be performed (Azimi, Fern, & Fern, 2016).

In most of the above applications the item values are naturally represented as being
dependent. A potential application used in this paper as a running example (see Section 3)
is selecting one from a set of wine cases that have uncertain qualities. Similar applications
are selecting a batch of applicants with unrelated backgrounds to interview (from a larger
set of job applicants) before making a hiring decision, and selecting a set of apartments
from disparate locations to visit (among the available listings) before making a rental or
purchasing decision. In the latter type of problems, the item distributions are either truly
independent, or independent in a practical sense: it is not possible or worthwhile to obtain
statistics beyond individual marginal distributions. (Note that such independence assump-
tions may be unjustified with job applicants that have a similar background, or apartments
in the same building.) In fact, in meta-reasoning in search, an equivalent independence
assumption called “subtree independence” is commonly made (Russell & Wefald, 1991b),
even though it does not truly hold in the underlying search domains. Likewise, for oil
exploration one could make such an independence assumption as a reasonable first-order
approximation if one is considering as items a set of disjoint oil fields that are not physically
near each other.

The selection problem is also called a Bayesian ranking and selection problem (Raiffa &
Schlaifer, 2000; Frazier, 2012; Swisher, Jacobson, & Yücesan, 2003), where in some works
the measurements are assumed to be noisy samples of the utility value of the items (Frazier,
2012). A widely adopted scheme for selecting measurements (also called sensing actions in
some contexts, or deliberation steps in the context of meta-reasoning) is based on value
of information (VOI) (Russell & Wefald, 1991b, 1991a). Optimizing value of information
is intractable in general, thus both researchers and practitioners often use various forms
of myopic VOI estimates (Russell & Wefald, 1991b, 1991a; Hay et al., 2012) coupled with
greedy search. The properties of VOI have been of interest to the research community for
quite a while (Raiffa & Schlaifer, 2000).

Nonconcavity in the value of information, a notion akin to non-submodularity in a
continuous setting, was examined in several papers (Radner & Stiglitz, 1984; Lara & Gilotte,
2007; Chadeand & Schlee, 2001). Submodularity is an important property, because in cases
where the VOI is submodular, simple, greedy algorithms result in provably near-optimal
policies (Krause & Guestrin, 2009, 2011; Papachristoudis & Fisher III, 2012). However, the
VOI is not submodular in general (Radner & Stiglitz, 1984; Lara & Gilotte, 2007; Chadeand
& Schlee, 2001; Krause & Guestrin, 2009), and in particular submodularity does not hold
in the selection problem (Tolpin & Shimony, 2012), even in a very limited case involving
only two items. Other types of approximate solutions for the batch version of the selection
problem exist (Reches, Gal, & Kraus, 2013), with theoretical bounds on the approximation
error not based on submodularity. The latter paper also proved that the selection problem
is NP-hard.

Specifically, the selection problem analyzed in this paper is as follows (see Section 2 for
the formal definition). We have a set of items I, each of which has some unknown value (or
utility). The utility of each item is a random variable, and the joint distribution over the
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utilities of the items is known. It is possible to perform measurements on an item, thereby
obtaining information about its utility. Measurements have a cost, specified by a known
cost function C, which is usually an additive cost function. After performing measurements,
the decision-maker selects one item. We assume a risk-neutral decision-maker, and thus
the decision maker always selects an item that has the highest expected utility given the
observations. The problem is to find a policy of performing measurements such that the
utility of the selected item minus the cost of measurements has a maximum expected value.
In some settings (Tolpin & Shimony, 2012; Azimi et al., 2016), a measurement budget is
also specified, and a policy is considered valid only if this budget is not exceeded. Some
budgeted applications (Azimi et al., 2016) optimize just the expected value of the selection
(not factoring in the measurement costs), but subject to the measurement budget constraint.
Another common constraint is requiring that only a measured item may be selected, in which
case submodularity holds under quite general conditions (Azimi et al., 2016); see Section 2
for a discussion on how their results relate to this paper. The latter constraint is natural
for risk-averse decision makers, e.g. in the above hiring decision application, we may not
wish to take the risk of hiring anyone we have not interviewed.

There are two common selection problem settings: batch, and online (also called se-
quential, or conditional). In the online setting, the decision-maker performs some measure-
ments, then based on the resulting observations can decide on whether or not to perform
additional measurements, etc. A policy in this case is essentially a conditional plan. In
the batch setting, the decision-maker decides on a set (batch) of measurements to perform.
The measurements are done essentially “in parallel”, in the sense that the decision-maker
does not get to perform additional measurements after receiving observations from previous
ones. Given the observed results, the decision-maker then needs to make the final selection
of an item. In this paper we consider only the batch setting.

In the batch setting, the value of information is the expected value of the best item
given the observations, minus the expected value of the best item according to the initial
(prior) distribution. That is, before receiving the information, there is some item that has
the best expected value, which we call the “current best” item α. For simplicity we assume
that this item is unique. After receiving the observations O, some other item β(O) may
have the highest expected value. The expected value of the difference uβ(O) − uα is the
value of information (VOI). Note that both the identity of the resulting best item β and its
utility depend on O. In the batch setting with perfect observations, the distribution over
the observed values is equal to the utility distribution of the respective item, and a set of
measurments is fully specified by a set of items to be measured. Thus finding an optimal
policy can be done by finding a set of measurements S to perform that has the highest
expected VOI minus cost (also called the net VOI). In this paper, we consider mostly the
case of perfect observations, i.e. where as a result of performing a measurement on an
item, its precise utility value becomes known. In general, measurements can generate noisy
(imperfect) observations. We briefly point out the cases where our results can be extended
beyond perfect observations.

The theoretical results in this paper (Section 2) are as follows: the expected value of
perfect information in the batch setting is neither submodular nor supermodular, in general.
However, submodularity holds in the following cases:
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• Theorem 1: the item utilities are jointly independent, and the utility of the currently
best item α is known.

• Theorem 3: the utility of α is known, and there are only at most two additional items
(may be dependent).

• Theorem 4: the item utilities are jointly independent, the utility of α is sufficiently
high (condition C1), and the decision maker is constrained to always measure α.

Theorem 1 is important because even this simple setting leads to an NP-hard selection
problem (Theorem 2). We also show by providing simple discrete-valued counterexamples
where attempting to generalize these theorems fails. Theorem 3 cannot be generalized
to more items, as a counterexample with three items (in addition to α) is presented. In
Theorem 4, violating condition C1 makes the theorem break, even with two items (in
addition to α). Finally, we capitalize on the submodularity results (Theorems 1 and 4) by
suggesting a simple “compound” greedy scheme in Section 3 for near-optimal solution of
the selection problem, and compare its performance to the standard greedy algorithms on
a wine quality dataset.

2. Main Results

We begin by formally defining the perfect information batch selection problem.

Definition 1 (perfect information batch selection setting). Let I = {I0, I1, ..., In} be a set
of n+1 items with uncertain utility, represented by r.v.s X0, ..., Xn. We assume w.l.o.g. that
the current best item α is item I0. For a cost Ci we can measure Ii, obtaining a (perfect)
observation of the utility of this item. We select a subset S ⊆ I to be measured as a batch,
for a total cost of

∑
Ii∈S Ci, after which we observe the results O (the true utilities of the

items in S), and select a final item If (O) that has the highest expected utility given the
observations.

The optimization version of the perfect information batch selection problem is: under
the perfect information batch selection setting, find the set that achieves:

max
S∈I

(ES [If (O)]−
∑
Ii∈S

Ci) (1)

where the subscript of E indicates the set of random variables over which the expectation
is performed, and O are the observations due to measuring the items in S. Optionally, in
the budget limited version of the selection problem, we are given a budget limit C and need
to optimize S under the additional constraint:∑

Ii∈S
Ci ≤ C (2)

In order to simplify some of the proofs below, we make the additional assumption that
the decision maker always picks item α if its expected utility is at least as high as that of all
other items, given the past observations. That is, “among equals, prefer item α”. Denoting
the expected value of Xi by µi, note that by construction µα ≥ µi for all i > 0. For a set
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of items S ⊆ I, denote the expected value of information of a (perfect) observation of the
utility of all these items by V PI(S), defined as the expected value ES [If (O)] − µα (with
expectation taken over all possible observations on S). Denote by pi the PDF of random
variable Xi.

Example 1. Consider a wine selection problem with quality distributions similar to Figure
2. Suppose that one wine case α that we wish to purchase has a known quality of uα = 8.
We have been offered two additional options, one with a quality distribution X1 uniformly
distributed in {5, 6, 7, 8, 9}, i.e. µ1 = 7, the other (X2) with quality in {4, 10}, again uni-
formly distributed, so µ2 = 7. Suppose that our utility scale is linear in the quality, that
all wines cases cost the same (or that cost has already been factored in negatively into the
quality). Since the wines are not known to be related, we assume that the quality distribu-
tions are independent. Testing some of the wine cases is possible (at a known cost, though
we ignore such costs at present), thereby revealing their true quality. Note that if we test no
wines, then we should rationally pick the α wine for a quality of 8. If we choose to test wine
case 2 prior to the purchase, then with probability 0.5 its quality is revealed as 10, and we
purchase it, thereby gaining 2. Otherwise, stick with α, and gain nothing. On the average
we gain 1, so V PI({X2}) = 1.

2.1 Batch VOI when the Utility of the Currently Best Item is Known

Theorem 1. For a perfect information batch selection setting with independent item utility
distributions, where the utility uα of the currently best item α is known, the value of perfect
information V PI(S) is a submodular set function.

Proof: Due to independence, an item that has not been measured will never be selected
(except for α). Measured item Ii will be selected if its utility is observed to be greater
than uα and the rest of the observed items. (For conciseness, we use M(S) to denote
max({ui|Ii ∈ S}), and M(XS) to denote the respective random variable max({Xi|Ii ∈ S}).)
Therefore, the VPI of observing (the utility of) a set of items S that does not include α is:

V PI(S) =

∫
M(S)>uα

(M(S)− uα)
∏
Ii∈S

pi(ui)dui

=

∫
(max(M(S), uα))− uα)

∏
Ii∈S

pi(ui)dui = ES [max(M(XS), uα))]−uα (3)

Now write down the difference in VPI between S ∪ {I} and S, for some item I 6∈ S using
Equation 3:

V PI(S ∪ {I})− V PI(S) = (ES∪{I}[max(M(XS∪{I}), uα)]− uα)

−(ES [max(M(XS), uα)]− uα)

= ES∪{I}[max(M(XS), XI , uα)−max(M(XS), uα)]

= ES∪{I}[max(XI −max(M(XS), uα), 0)]
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Consider the difference in VPI for set S′ = S ∪ {J} for some item J 6= I, J 6∈ S. We have:

V PI(S′ ∪ {I})− V PI(S′) = ES′
∪{I}[max(XI −max(M(XS′), uα), 0)]

= ES∪{I,J}[max(XI −max(M(XS), XJ , uα), 0)]

≤ ES∪{I,J}[max(XI −max(M(XS), uα)), 0)]

= ES∪{I}[max(XI −max(M(XS), uα)), 0)]

= V PI(S ∪ {I})− V PI(S)

Where the inequality follows due to removing a term from the (negated) maximization. We
have obtained that for all sets S that do not include α, the difference in VPI is non-increasing
as S (setwise) increases. Therefore, V PI(S) is a submodular function of S. �

Corollary 1. Theorem 1 also holds given only a distribution over uα, if there is no way to
obtain additional information about uα. That is because an optimal (risk neutral) decision
maker would have to act as if uα = µα.

A similar argument leads to a generalization to noisy observations: although Theorem 1
is stated in terms of perfect information, this is not an inherent limitation. Consider a more
general setting where measurements are noisy, but the value of each item can be measured
only once. In this setting, one can simply use the expected posterior value instead of the
actual value when making the decision, and our results still apply. However, in settings
where the measurement types on an item are allowed to vary (e.g. allow a choice between
one and two conditionally independent measurements, or a choice of measurements that
reveal different features of an item), it is well known that submodularity does not hold
(Frazier & Powell, 2010; Tolpin & Shimony, 2012).

Observe that Theorem 1 is relevant to additional settings. First, consider the special
case where uα = 0. In this case, action α can be re-cast as making no selection at all, and
the conditions of the theorem hold if all items have a non-positive prior expected value.
This is actually reasonable when items with uncertain value are being sold to our decision-
making agent, as the seller wishes to gain from the sale, and presumably would not wish to
sell an item for less than its expected value.

Another setting in which Theorem 1 applies is if the agent is not allowed to select an item
unless its value has been measured or was known previously. In this setting the requirement
that uα is greater than the expectation of all the rest of the items can be dropped, and the
results can be made significantly more general (Azimi et al., 2016), as shown in Lemma 1
in the latter paper. The lemma states that the expectation of the maximum of a set of
random variables is monotonic non-decreasing and submodular, and does not even require
that the variables be independent. Lemma 1 can thus also be used to prove our Theorem
1. It is interesting to note that in order to apply their Lemma 1, perfect observations were
required (Azimi et al., 2016). However, unlike our Theorem 1, the lemma cannot be easily
applied if we relax the perfect information limitation, as that would lead to an apparent
contradiction due to dependencies, as discussed in Section 2.1.2.
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2.1.1 Complexity of the Selection Problem

The batch measurement selection problem was shown to be NP-hard (Reches et al., 2013),
in a setting where multiple noisy measurements per item are allowed. We show that the
problem gives rise to an NP-hard decision problem even if the observations are perfect.

Definition 2 (perfect information budget-limited batch selection decision problem (PBSP)).
In the perfect information batch selection setting from Definition 1, is there a subset S ⊆ I
which has a total measurement cost not greater than C, and such that the expected utility
of the final item If selected after observing the utility of the items in S, is at least U?

Theorem 2. The PBSP is NP-hard.

The proof appears in Appendix A, by reduction from Knapsack to a PBSP restricted to
the case where uα is known to be 0, and where the unknown item utility distributions are
independent over {−1, 1}. It follows immediately from these restrictions that the perfect
information budget-limited batch selection decision problem remains NP-hard under the
conditions of Theorem 1. Note, however, that if we also restrict the measurement costs
in PBSP to be all equal, a greedy algorithm would deliver an optimal subset, and thus a
trivial polynomial time solution to the PBSP. Whether the PBSP with equal costs but with
arbitrary independent discrete distributions is NP-hard is an open problem.

2.1.2 VPI in the Presence of Dependencies

We now consider the perfect information batch selection setting, without the independence
assumption. With dependencies the amount of information obtained by additional observa-
tions, having already made some observations, is ususally reduced. Intuition would suggest
that the same would therefore occur for the VPI as well. Indeed, for n = 2 the VPI is still
subadditive. For example, the wine selection problem in example 1 with the same marginal
distributions, but where X1 and X2 are dependent, falls under this case.

Theorem 3. For a batch selection setting with 3 items, where the utility of the currently
best item α is known, the value of perfect information is subadditive, i.e. V PI({1}) +
V PI({2}) ≥ V PI({1, 2}).

Proof: Note that, unlike the independent case, when observing only one item it is
actually possible to select either the other, unobserved item, or α. This results in:

V PI({1}) =

∫
max(u1,µ2|1(u1))>uα

(max(u1, µ2|1(u1))− uα)p1(u1)du1

where µ2|1(u1) is the expected utility of item 2 given that the item 1 was observed to have
utility u1, defined as:

µ2|1(u1) =

∫
u2

p2(u2|u1)u2du2

the V PI for item 2 is defined symmetrically, exchanging the roles of items 1 and 2 in these
equations.
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The value of information for observing both item 1 and item 2 (followed by selecting
the best of them or α, whichever has maximal utility) is:

V PI({1, 2}) =

∫ ∫
max(u1,u2)>uα

(max(u1, u2)− uα)p1,2(u1, u2)du1du2 (4)

Separating out the domain we can write:

V PI({1, 2}) =

∫
u1>uα

∫
u2≤u1

(u1−uα)p1,2(u1, u2)du1du2+

∫
u2>uα

∫
u1<u2

(u2−uα)p1,2(u1, u2)du1du2

Denote the first integral by J1 and the second by J2, for convenience. We now rewrite
V PI({1}) as a sum over the regions:

V PI({1}) =

∫
u1>uα

(max(u1, µ2|1(u1))−uα)p1(u1)du1+

∫
{u1|u1≤uα∧µ2|1(u1)>uα}

(µ2|1(u1)−uα)p1(u1)du1

Now, dropping the µ2|1(u1) from the maximization in the first integral and noting that the
second integral is non-negative, we get:

V PI({1}) ≥
∫
u1>uα

(u1 − uα)p1(u1)du1

=

∫
u1>uα

∫
u2≤u1
(u1 − uα)p1,2(u1, u2)du1du2 +

∫
u1>uα

∫
u2>u1

(u1 − uα)p1,2(u1, u2)du1du2

= J1 +

∫
u1>uα

∫
u2>u1

(u1 − uα)p1,2(u1, u2)du1du2 ≥ J1

Likewise we show that V PI({2}) ≥ J2, and thus V PI({1}) + V PI({2}) ≥ V PI({1, 2}). �
Unfortunately, this submodularity result has no practical use, as it does not generalize

to n ≥ 3, as is evident from the following counterexample. Let uα = 10, and we have
3 additional items with utility distributed as binary variables, with values {L,H}. The
dependency is “parity”, that is, exactly an even number of the items have value H, and
the rest have value L. The distribution over the 4 possible legal configurations is uniform,
i.e. each has probability 0.25. The utility values are: u1L = u2L = 5, and u1H = u2H = 13,
so that µ1 = µ2 = 9 < uα. For the 3rd item, we have: u3L = 0, and u3H = 18, so that
µ3 = 9 < uα.

Note that the marginal distribution over each of the items is uniform, and remains
uniform given the observation of one other item, i.e. the variables are pairwise independent.
The individual VPIs are therefore:

V PI({1}) = 0.5× 0 + 0.5× (13− 10) = 1.5

and due to symmetry we also have V PI({2}) = 1.5. Having observed both items 1 and 2,
the utility of item 3 is known with certainty, and it is selected if known to have value H.
Therefore we have:

V PI({1, 2}) = 0.25×(0 + (18−10) + (18−10) + (13−10)) = 4.75 > V PI({1}) + V PI({2})
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Finally, note that Lemma 1 in the work of Azimi et. al. (2016) does not require
independence, and can be used to show that VOI of perfect measurements is submodular
if we do not allow the agent to select an unmeasured item. The above counterexample
shows that the applicability of Lemma 1 cannot easily be extended to allow imprecise
measurements. Allow a very noisy measurement for item 3, e.g. P (ObserveHIGH|u3 =
H) = 0.51, P (ObserveHIGH|u3 = L) = 0.49. The VOI values change only slightly, but
now the requirement that only measured items can be selected is met. However, as shown
above, the value of information is not submodular.

2.2 Batch VOI when the Utility of the Currently Best Item is Unknown

Consider now that we are given a distribution over uα, but unlike corollary 1, additional
information about uα can be obtained. For simplicity, consider just the case with 2 items.
In the well-known case exhibited in figure 1, we can see that it is not possible, by observing
only one item, to make an optimally behaving agent change the choice from α to β. So the
individual V PI are zero. But since there is some non-zero probability that uα is less than
uβ, observing both items it is possible that β will be selected to increase the utility, therefore
we have V PI({α, β}) > 0. In this case the value of perfect information is supermodular,
but does this hold in general for 2 items?

probability

µ µ

α
β

β α
utility

Figure 1: Utility distributions with supermodular VPI

Consider the distributions: uα is evenly distributed: P (uα=0) = P (uα=10) = 0.5, and
uβ is distributed as P (uβ = 1) = 0.7, P (uβ = 11) = 0.3. We get (µα = 5) > (µβ = 4). The
individual values of perfect information are:

V PI({α}) = 0.5× 0 + 0.5× (4− 0) = 2

V PI({β}) = 0.7× 0 + 0.3× (11− 5) = 1.8

For observing both items, we get:

V PI({α, β}) = 0.5×0.3×(11−10) + 0.5×0.3×(11−0) + 0.5×0.7×(1−0) + 0.5×0.7×0

= 2.15 < V PI({α}) + V PI({β})

This example is discouraging, since we have neither submodularity nor supermodularity.
An interesting question is about the VPI among sets of observations that must include an
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observation of the currently best item. In general, the VPI of such sets is neither submodular
nor supermodular, as shown by the following counterexample.

We have 3 items, with distributions as follows. Current best item α, distributed: P (uα =
20) = P (uα = 0) = 0.5. Second best item β, distributed: P (uβ = 9) = P (uβ = 5) = 0.5,
and third item γ, distributed P (uγ = 6) = P (uγ = 2) = 0.5. This gives us: µα = 10, µβ = 7
and µγ = 4. If we observe only item α, if it has a low value we pick item β so we have:

V PI({α}) = P (uα = 0)× (µβ − 0) = 3.5

If we also observe item β, this makes no difference as any possible utility value for item β
is still higher than µγ . Likewise, observing α and γ, we still select α if uα = 20 and β if
uα = 0. Therefore we have:

V PI({α, β}) = V PI({α, γ}) = V PI({α}) = 3.5

However, the value of observing all items is higher, since item γ may be better:

V PI({α, β, γ}) = P (uα= 0)×[P (uβ= 9)×9+P (uβ= 5)×(P (uγ = 6)×6+P (uγ = 4)×5)]

= 0.5× [0.5× 9 + 0.5× 5.5]

= 3.625 > V PI({α, β}) + V PI({α, γ})− V PI({α})

which clearly violates submodularity for sets containing observations of item α.
However, if uα is always sufficiently high, i.e. if every possible value of uα is no less than

µβ, submodularity does hold among such sets. In general, denote:

Condition C 1. P (uα < µi) = 0 for all items i other than α.

Example 2. Consider the same wine selection problem instance as in example 1, except
that the quality of the α wine case is no longer known to be 8: instead its quality is uniformly
distributed among {7, 8, 9}. With the qualities X1 and X2 being independent and distributed
as in example 1, this example obeys condition C1.

Formally, denote by V PIα(S) the value of information of perfectly observing the utility
of all items in S, as well as that of α. (This is equivalent to V PI(S ∪ {α}), but we wish to
emphasize that this is a function of S not including α, hence the above notational variant.)

Theorem 4. For a batch selection setting with jointly independent items where condition
C1 holds, the value of perfect information V PIα(S) is a submodular set function of S.

Proof: Note that this theorem is a strict generalization of the corollary of Theorem
1, as condition C1 always holds trivially if α is the current best item and uα is known.
Condition C1 ensures that after the observations of items in S, the optimal policy must
select either one of these observed items, or α. (This is not necessarily the case if C1 is
violated.) Therefore the VPI here can be obtained in a manner similar to Equation 3, with
integration over uα:

V PIα(S) =

∫
uα

∫
M(S)>uα

(M(S)− uα)pα(uα)duα
∏
Ii∈S

pi(ui)dui

= ES∪{α}[max(M(XS), uα))− uα] (5)
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Similar to the proof of Theorem 1, write down the difference in V PIα between S ∪ {I}
and S, for some item I 6∈ S using Equation 5:

V PIα(S ∪ {I})− V PIα(S) = ES∪{I,α}[max(M(XS∪{I}), uα))− uα]

− ES∪{α}[max(M(XS), uα))− uα]

= ES∪{I,α}[max(M(XS), XI , uα)−max(M(XS), uα)]

= ES∪{I,α}[max(XI −max(M(XS), uα), 0)]

Consider the difference in VPI for set S′ = S ∪ {J} for some item J 6= I, J 6∈ S. We have:

V PIα(S′ ∪ {I})− V PIα(S′) = ES′
∪{I,α}[max(XI −max(M(XS′), uα), 0)]

= ES∪{I,J,α}[max(XI −max(M(XS), XJ , uα), 0)]

≤ ES∪{I,J,α}[max(XI −max(M(XS), uα)), 0)]

= ES∪{I,α}[max(XI −max(M(XS), uα)), 0)]

= V PIα(S ∪ {I})− V PIα(S)

Therefore, V PIα(S) is a submodular set function of S. �

3. Application of Results

A typical application of submodularity is in algorithms that compute near-optimal policies
for selection in the perfect information batch selection setting. Consider for example a
batch setting selection problem where the measurement cost function C is supermodular
(or additive, as a special case common in applications). As a result, the optimal solution
to the (batch setting) selection problem is to measure a set of items S that maximizes
V PI(S) − C(S) (the net VPI), followed by selecting the item with the best expectation
given the observations.

If we know the utility of item α, then V PI(S)−C(S) is submodular due to Theorem 1.
We can thus use a standard greedy algorithm that starts with an empty candidate set S,
and repeatedly adds to S items that have the highest net gain (best (marginal) V PI minus
cost), until no item has a positive net gain. We call this method the (additive) greedy
algorithm. According to a fundamental result by Nemhauser et. al. (1978), the greedy
algorithm already guarantees an expected utility that is close to optimal for monotone
submodular functions. The quality of the greedy algorithm in practice is usually much
better than the guaranteed bounds, and a similar tendency can be seen in the example
wine selection application below. The quality of the results seems to occur due to the fact
that submodularity is a guarantee against “premature stopping” in the greedy algorithms1;
deviations from optimality resulting from picking non-optimal items early-on seem much
less problematic in practice than indicated by the worst case in theory (a factor of 1− 1/e
from optimal for the monotonic case, worse for non-monotonic which is the case here).

As cases where uα is known may be rare, it is possible to use a similar scheme if uα is
not known, but the distributions obey condition C1. In this case, run the greedy algorithm

1. “Premature stopping” is a term used to mean that although there is a set of items with a combined VOI
greater than its measurement cost, the (greedy) algorithm decides not to measure any additional items
because their individual VOI is too low. See example 3 in Section 3.1.
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twice: once for sets that do not contain measurements of item α, and once for sets that
do contain such measurements; compare the expected value of both resulting measurement
sets, and return the better of the two. We call this method the compound greedy
algorithm. Again, Theorems 1 and 4 imply that the functions we optimize in both cases
are submodular, thus the greedy algorithms return sets that are near-optimal.

3.1 Example Setting: Wine Selection

We examine an example application for the perfect information batch selection setting, and
solve a selection problem on a typical set of items. A comparison of algorithm performance
on such a dataset indicates the type of results one can observe with greedy optimization
algorithms for the selection problem.

Definition 3 (Wine selection problem). Given a set of wine types I = {I0, ..., In}, each
wine has an unknown quality, but a quality distribution is known for each type. In addition,
for a known cost Ci, we can purchase and send a bottle of each wine type to a sommelier
for analysis and quality determination (or taste it ourselves, for the few people who actually
understand wine quality, though clearly not the authors of this paper). Which subset S of
the wines (if any) needs to be sent to the sommelier in order to maximize the expected utility
of testing and final decision? (That is, maximize the expected quality of the final selection,
minus the sum of costs Ci of wines in S, i.e. the net VPI).

The setting for the tests was based on the UCI white wine quality dataset (Cortez, 2009;
Cortez, Cerdeira, Almeida, Matos, & Reis, 2009). The dataset contains over 1000 wines,
with 11 feature values for each wine, such as pH, alcohol level, etc. The target attribute
value (quality) is based on evaluations made by wine experts, and ranges from 1 (very bad)
to 10 (excellent).

Figure 2: Wine quality distributions

Using this dataset, we constructed for each wine a quality distribution based on the
quality distribution of all wines in the data set that had the same feature values. This
distribution was adjusted by applying Kernel density estimation (KDE) using a Gaussian
kernel and a rule of thumb (Silverman, 1986) that increases the kernel width as a function
of the variance. This resulted in the wine quality distributions depicted in Figure 2, a
distribution scatter plot where darker color indicates higher probability. Each value on the
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X axis indicates a specific wine type, with wines sorted by expected quality value. The wine
quality distributions are assumed to be independent.

Using the above distribution, the following experiments were conducted. Each exper-
iment was on a set I of n + 1 randomly picked wines from the dataset, where n was an
experimental parameter, and for each wine a random cost Ci was drawn uniformly between
0.01 to 0.1 (assumed to be on the same scale as quality values). The wine with the best
expected value from I is the α wine, the prior best. We then used 4 different methods to
find the measurement policy (i.e. batch of wines to be tested).

1. Exhaustive: Every possible subset S of I (both with and without the alpha wine)
was examined. The S which maximized the net VPI was returned. S here is the
optimal (batch) measurement policy.

2. Greedy (additive) approach. The wines are kept sorted according to their myopic
expected net VPI w.r.t. the current batch. A batch S is incrementally constructed,
starting from the empty set: every iteration, the best candidate wine from I − S is
added to S, as long as the net myopic VPI for adding this wine is positive.

3. Greedy (rate) approach. This greedy method is the same as the additive greedy
approach, except that the wines are kept sorted according to their expected VPI
divided by cost of the measurement. Once this value drops below 1 for all remaining
wines, the algorithm returns the current batch. This approach is the same as in the
paper by Azimi et. al. (2016), modified to the wine selection problem.

4. Compound greedy approach: Run the greedy (additive) algorithm twice: once for
sets that do not contain the α wine, and once for sets that do contain α. Compare
the expected net VPI of both resulting measurement sets, and return the better of
the two.

For each of the following cases, we varied n, the number of items, from 1 to 20:

1. Known uα, created by setting the value of uα to its mean in each randomly picked
item set. Here compound greedy is the same as simple greedy, so is not shown.

2. uα unknown, but condition C1 holds (generated by random sampling of sets, rejecting
sets where C1 did not hold).

3. Instances where condition C1 does not hold (and obviously unknown uα).

The net VPI, averaged over 5 random item sets for each item set size, is shown in Figure 3.
Both standard greedy algorithms averaged 0.99 of the optimal net VPI, while compound

greedy averaged slightly better at 0.993, all considerably better than the theoretical bound.
It is interesting to observe that the greedy algorithms performed well even in many cases
where the theorems do not guarantee submodularity, such as the cases where condition C1
did not hold (Figure 3 upper right). In some cases rate greedy performed better than both
of the other methods, but a rate-based version of compound greedy (not shown) dominates
rate-greedy. In extreme cases (which did not occur in the above runs) the net VPI is 0 for
both rate and additive greedy, even though considerable net VPI is achievable. This occurs
due to the “premature stopping” phenomenon caused by non-diminishing returns.
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Figure 3: Comparison of net VPI for various item set sizes

Example 3. Consider the case where condition C1 holds as in Example 2, with quality
distribution of the α wine being uniform among {7, 8, 9}, but in addition the best possible
quality in all the other items is no better than the E(Xα) value, such as when the only other
choice is X1 distributed uniformly among {6, 7, 8}. In this case the VPI of every singleton
set is 0, similar to the situation depicted in Figure 1, whereas measuring both wines results
in a gain of 1 with probability 1

9 , and thus V PIα({X1}) = 1
9 . This will cause the rate and

additive greedy algorithms to incorrectly return an empty set of items to be measured. The
compound greedy algrithm avoids exactly this pitfall.

We now turn to the issue of computation time. All the above algorithms require evalua-
tion of the VPI of a batch, which can itself be non-trivial. An initial naive implementation
caused even the greedy algorithms to time out on sets of 20 wines. This sub-problem can be
handled in the general case by approximating the VPI (i.e. expectation of the maximum)
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of each batch by sampling (Azimi et al., 2016). In the wine selection problem, however, we
have independent discrete random variables with greatly overlapping domains, so we can
cheaply compute the distribution of the maximum, and from there evaluate the expectation
of the maximum exactly.
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Figure 4: Algorithm runtime comparison: time vs. item set size

Runtimes for the algorithms appear in Figure 4, performed on an Intel(R) Core(TM)
i7-4700HQ 2.40GHz with 8 GB RAM running Microsoft windows 8.1 x64, using multiple-
thread implementations. The software was implemented in C# with optimizations. Clearly,
the exhaustive method delivers the best net VPI, but its runtime is prohibitive for large
sets of wines.

Both the additive and rate greedy were the fastest, with compound greedy roughly a
constant factor slower. In fact, despite the improved VPI computation, this part still dom-
inates the runtime, and adding caching of computations of random variable maximizations
resulted in the compound greedy algorithm being only a few percent slower than the other
greedy algorithms (not shown). Therefore, although the improvement due to the compound
greedy algorithm appears small, it comes essentially for free and is thus worthwhile. The
greedy algorithms appear to be scalable: an experimental run with n = 100 wines resulted
in runtimes of approximately 200 seconds for each of the greedy algorithms (including com-
pound greedy, with caching).

As differences in performance were more pronounced for the larger set sizes, we tried
more instances with n = 20, which is the largest for which we could obtain the optimal
results in reasonable time. The results are shown as a cumulative average plot (Figure
5). While the value of information for all greedy algorithms is still close to the optimal
value, the compound greedy algorithm again is slighly better, averaging 0.99 of the optimal
net VPI, while the additive and rate greedy averaged roughly 0.98 of the optimal net VPI.
The compound-greedy algorithm showed an improvement over the simple greedy algorithms
whether or not condition C1 held.
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Figure 5: Comparison of net VPI for item set size 20

4. Conclusion

We have examined cases where the batch value of perfect information is submodular in the
selection problem, mostly in the case where the item utility distributions are independent.
We have shown that a resulting optimization problem is NP-hard, even in such restricted
cases. Nevertheless, greedy optimization algorithms seem to achieve good results in practice.
The theoretical results suggest that greedy algorithms should be supplemented by examining
sets that include the currently best item, even if its individual VPI is zero, and this is
supported by empirical evidence.

We suggest that deviations from submodularity indicate points where the greedy and
myopic optimization schemes can be improved w.r.t. net VPI, at relatively little compu-
tational cost. As such, the simple method suggested in this paper complements the idea
of “blinkered VOI” (Hay et al., 2012). Our motivation for this work comes from meta-
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reasoning in search, where the information is gathered by search actions, and solving a
selection problem is a first step that suggests a way to proceed at the first level in the
search tree. Generalization of these methods to selecting computations at deeper levels of
the search tree is a non-trivial issue for future work.
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Appendix A

Proof (of Theorem 2): By reduction from the Knapsack problem (Garey & Johnson, 1979);
see problem number [MP9]. We re-stated the problem below for convenience.

Definition 4 (Knapsack problem). Given a set of items S = {s1, ..., sn}, each with a
positive integer weight wi and a positive integer value vi, a weight limit W and a target
value V , is there a subset S ∈ S such that the total weight of S is at most W , and the total
value of the elements of S is at least V ?

We assume w.l.o.g. that vi < V for all items, as items that violate this solve the
Knapsack problem trivially.

In reducing Knapsack to PBSP, each item in I (except for a special item sα) in the
selection problem will stand for the respective element in the Knapsack problem. As this
is a simple one-to-one mapping, for the sake of simplicity we therefore abuse the notation
and treat the non-sα items as if they actually were the respective elements from S in
the Knapsack problem. The distributions of values and costs are defined as follows: let
H = max

1≤i≤n
{vi}, and ε = 1

2H2n3 . Then let C = W , U = ε(V − 1
2), and let the distributions

and measurement costs be as follows:

• For Xα we have uα = 0 with probability 1. The cost Cα is irrelevant (because the
exact value of uα is already known) and can be taken to be 0.

• For every other item, we have a binary-valued distribution: P (Xi = 1) = εvi, and
P (Xi = −1) = 1− (εvi). The measurement cost of these items is given by Ci = wi.

Note that indeed the current best item is sα, because εvi <
1
2 for all 1 ≤ i ≤ n. Therefore,

each item si becomes better than sα if and only if si is observed to have a positive utility.
We now show that a subset S ⊆ S solves the Knapsack problem if and only if S solves the
PBSP. Let m = |S| ≤ n, and in order to simplify the notation below, we assume w.l.o.g.
that S = {s1, s2, ..., sm}.
(⇒) Let S be a solution to the Knapsack problem. We have

∑m
i=1wi ≤ W = C, so S

satisfies the budget constraint in the PBSP. Denote the probability that at least one of the
items in S has value 1 by P (S). Since by construction the expected utility for a set of
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measurements S is exactly P (S), it is sufficient to show that P (S) ≥ U . Since the value
distributions are jointly independent, we have:

P (S) =
m∑
i=1

P (Xi = 1)
i−1∏
j=1

(1− P (Xj = 1)) =
m∑
i=1

εvi

i−1∏
j=1

(1− εvj)

Re-arranging P (S) into sums according to powers of ε, we get:

P (S) =

m∑
i=1

εi(−1)(i+1)
∑

{N⊆[1..m]∧|N |=i}

∏
k∈N

vk ≥ ε
m∑
j=1

vj −
bm/2c∑
i′=1

ε2i′
∑

{N⊆[1..m]∧|N |=2i′}

∏
k∈N

vk

where the inequality is due to dropping all the terms for odd i (which are positive), except
for i = 1. Now, for each i′, the number of elements in N is clearly

(
m
2i′

)
, which is bounded

by m2i′ , and thus by n2i′ . Since by definition we also have vk ≤ H for all k, we get:

P (S) ≥ ε
m∑
j=1

vj −
bm/2c∑
i′=1

(εHn)2i′

= ε
m∑
j=1

vj −
bm/2c∑
i′=1

(
1

2H2n3
Hn)2i′ = ε

m∑
j=1

vj −
bm/2c∑
i′=1

(
1

2Hn2
)2i′

> ε

m∑
j=1

vj −
n

4H2n4
= ε

m∑
j=1

vj −
1

4H2n3
= ε

m∑
j=1

vj −
ε

2

= ε(V − 1

2
) = U

where the last equality follows from S being a solution to the Knapsack problem. Therefore,
S is a solution to the PBSP.

(⇐) Let S be a solution to the PBSP. and thus
∑m

1=1Ci ≤ C = W , so S obeys the
weight limitation of the Knapsack problem. It is thus sufficient to show that

∑m
i=1 vi ≥ V .

As above, we have:

P (S) =

m∑
i=1

εi(−1)(i+1)
∑

{N⊆[1..m]∧|N |=i}

∏
k∈N

vk ≤ ε
m∑
j=1

vj +

dm/2e−1∑
i′=1

ε2i′+1
∑

{N⊆[1..m]∧|N |=2i′+1}

∏
k∈N

vk

where the inequality is due to dropping all the terms for even i (which are negative). Now,
for each i′, the number of elements in N is clearly

(
m

2i′+1

)
, which is bounded by m2i′+1, and

thus by n2i′+1. Since by definition we also have vk ≤ H for all k, we get:
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P (S) ≤ ε

m∑
j=1

vj +

dm/2e−1∑
i′=1

(εHn)2i′+1

= ε
m∑
j=1

vj +

dm/2e−1∑
i′=1

(
1

2H2n3
Hn)2i′+1 = ε

m∑
j=1

vj +

dm/2e−1∑
i′=1

(
1

2Hn2
)2i′+1

< ε
m∑
j=1

vj +
n

8H3n6
= ε

m∑
j=1

vj +
1

8H3n5

< ε
m∑
j=1

vj +
1

8H2n3
= ε

m∑
j=1

vj +
ε

4
= ε(

m∑
j=1

vj +
1

4
)

Since S is a solution to PBSP, we have P (S) ≥ U = ε(V − 1
2), and thus V ≤

∑m
j=1 vj+ 3

4 .
As both V and

∑m
j=1 vj are positive integers, we also have

∑m
j=1 vj ≥ V . Therefore, S is a

solution to the Knapsack problem. �

References

Azimi, J., Fern, X., & Fern, A. (2016). Budgeted optimization with constrained experiments.
Journal of Artif. Intell. Research, 56, 119–152.

Chadeand, H., & Schlee, E. E. (2001). Another look at the Radner–Stiglitz nonconcavity
in the value of information. Journal of Economic Theory, 107, 421–452.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling wine pref-
erences by data mining from physicochemical properties. Decision Support Systems,
47 (4), 547–553.

Cortez, P. (2009). Wine Quality Data Set. https://archive.ics.uci.edu/ml/datasets/
Wine+Quality. [Online; UCI Machine Learning Repository].

Frazier, P. I. (2012). Optimization via simulation with Bayesian statistics and dynamic pro-
gramming. In Rose, O., & Uhrmacher, A. M. (Eds.), Winter Simulation Conference,
WSC ’12, Berlin, Germany, December 9-12, 2012, pp. 7:1–7:16. WSC.

Frazier, P. I., & Powell, W. B. (2010). Paradoxes in learning and the marginal value of
information. Decision Analysis, 7 (4), 378–403.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability, A Guide to the Theory
of NP-completeness, p. 190. W. H. Freeman and Co.

Hay, N., Russell, S. J., Tolpin, D., & Shimony, S. E. (2012). Selecting computations: The-
ory and applications. In de Freitas, N., & Murphy, K. P. (Eds.), Proceedings of the
Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, Catalina Island,
CA, USA, August 14-18, 2012, pp. 346–355. AUAI Press.

Krause, A., & Guestrin, C. (2009). Optimal value of information in graphical models. J.
Artif. Intell. Res. (JAIR), 35, 557–591.

795



Shperberg & Shimony

Krause, A., & Guestrin, C. (2011). Submodularity and its applications in optimized infor-
mation gathering. ACM TIST, 2 (4), 32.

Lara, M. D., & Gilotte, L. (2007). A tight sufficient condition for Radner–Stiglitz noncon-
cavity in the value of information. Journal of Economic Theory, 131 (1), 696–708.

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for
maximizing submodular set functions - I. Mathematical Programming, 14 (1), 265–294.

Papachristoudis, G., & Fisher III, J. W. (2012). Theoretical guarantees on penalized infor-
mation gathering. In Statistical Signal Processing Workshop (SSP), pp. 301–304.

Radner, R., & Stiglitz, J. E. (1984). A nonconcavity in the value of information. Bayesian
Models in Economic Theory, 5, 33–52.

Radovilsky, Y., Shattah, G., & Shimony, S. E. (2006). Efficient deterministic approximation
algorithms for non-myopic value of information in graphical models. In Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan,
October 8-11, 2006, pp. 2559–2564. IEEE.

Radovilsky, Y., & Shimony, S. E. (2008). Observation subset selection as local compilation
of performance profiles. In McAllester, D. A., & Myllymäki, P. (Eds.), UAI 2008,
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