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Abstract

We describe a constraint-based automated planner named Transition Constraints for
Parallel Planning (TCPP). TCPP constructs its constraint model from a redefined version
of the domain transition graphs (DTG) of a given planning problem. TCPP encodes state
transitions in the redefined DTGs by using table constraints with cells containing don’t
cares or wild cards. TCPP uses Minion the constraint solver to solve the constraint model
and returns a parallel plan. We empirically compare TCPP with the other state-of-the-
art constraint-based parallel planner PaP2. PaP2 encodes action successions in the finite
state automata (FSA) as table constraints with cells containing sets of values. PaP2 uses
SICStus Prolog as its constraint solver. We also improve PaP2 by using don’t cares and
mutex constraints. Our experiments on a number of standard classical planning benchmark
domains demonstrate TCPP’s efficiency over the original PaP2 running on SICStus Prolog
and our reconstructed and enhanced versions of PaP2 running on Minion.

1. Introduction

The use of inference-based pruning techniques and path heuristic-based choice guidances are
key to solve a combinatorial optimisation problem efficiently (Hooker, 2005). Automated
planning is a combinatorial optimisation problem that has achieved significant progress
over the last decade. However, the progress has been achieved mostly through the use of
effective but cheap relaxation-based path heuristics within the traditional informed search
frameworks. Overall, inferences are somewhat neglected within the heuristic search for
planning. Constraint satisfaction problems (CSP) are another kind of combinatorial op-
timisation problems where inference-based pruning techniques play pivotal role in their
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solution techniques. Path heuristics are in general not developed in CSP because path to
the solution is not of concern. In this paper, we take the approach of using CSP techniques
to solve planning problems and describe our recently developed constraint-based planner.

Constraint-based planners translate a given planning problem into a series of constraint
satisfaction problems. The translated problems are then solved by using a typical CSP
solver. These planners attempt to take the advantage of enhanced propagation machiner-
ies and better pruning mechanisms available for typical CSPs. Overall, constraint-based
planners do not yet obtain the performance level of the state-of-the-art heuristic search
planners. In a constraint satisfaction problem, the constraint model, the search algorithm
and the selection heuristics interact with each other (Beacham, Chen, Sillito, & Van Beek,
2001) and their choices should not be made independently. In planning, a problem model
is already given in the form of a domain description using a planning language such as
the planning domain definition language (PDDL) (McDermott, Ghallab, Howe, Knoblock,
Ram, Veloso, Weld, & Wilkins, 1998). However, there could be various ways in which
to model a given planning problem as CSPs and then exactly which CSP solver is to use
to solve the constraint model. To improve constraint-based planning, in this paper, we
investigate this direction and describe our constraint-based planner.

Considerably little work has been done in solving planning problems by using CSP tech-
niques. Constraint models for planning problems have been designed for temporal planning
by Ghallab and Laruelle (1994). Later, manually designed constraint models were used in
classical planning (van Beek & Chen, 1999). Planners GP-CSP (Do & Kambhampati, 2001)
and CSP-plan (Lopez & Bacchus, 2003) translate the so called planning graph structures
(Blum & Furst, 1997) into CSPs with a view to generating parallel plans. These planners
mostly use constraints with logical formulas; which follows the propositional nature of the
PDDL language (McDermott et al., 1998). Constraints for planning problems are later rep-
resented extensionally by table constraints and are constructed from the multi-valued SAS+

representation, which is a member of the Simplified Action Structure family (Bäckström &
Nebel, 1995). The extensional representation has showed a great improvement in the effi-
ciency, which has later been further improved by inclusion of symmetry breaking, singleton
arc consistency, and no-good learning (Barták & Toropila, 2009a, 2009b). Few constraint-
based planners are based on time lines (Cesta & Fratini, 2008; Verfaillie, Pralet, & Lemâıtre,
2010). The planner developed by Gregory, Long, and Fox (2010) uses dominance constraints,
and another one developed by Judge and Long (2011) applies goal and variable/value heuris-
tics and uses meta-CSP variables. Barták (2011a, 2011b) used the finite state automata
(FSA) which are similar to domain transition graphs (DTG) (Helmert, 2006) to build the
constraint model.

In this paper, we describe a constraint-based automated planner named Transition Con-
straints for Parallel Planning (TCPP)1. TCPP constructs its constraint model from a rede-
fined version of DTGs of a given planning problem. In the redefined DTGs, loops are used
to model no-ops at the vertexes. Moreover, a don’t care value is used in the redefined DTGs
for each variable that is not in the preconditions of an action but is in the effects of the same
action. The use of DTGs is to exploit the structural information of the SAS+ formalism
and is inspired by a similar use by the SAT-based planner SASE (Huang, Chen, & Zhang,

1. A preliminary report of this work has been published in the Proceedings of the Twenty-Ninth National
Conference on Artificial intelligence (AAAI) (Ghanbari Ghooshchi, Namazi, Newton, & Sattar, 2015)
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2010). TCPP encodes state transitions in the DTGs by using table constraints with cells
containing don’t cares or wild cards. Table constraints are efficient when the number of valid
assignments is small with respect to the total number of assignments. However, we addi-
tionally and more importantly use don’t cares or wild cards in table cells to allow a compact
representation for many constraints that would otherwise need consideration of all possible
combinations of certain column values. To ensure parallel actions in a plan are not conflict-
ing with each other, TCPP encode parallelism constraints by using parallelism variables.
TCPP optionally also use negative table constraints to encode mutex constraints. TCPP
uses Minion the constraint solver (Gent, Jefferson, & Miguel, 2006) to solve the constraint
model and returns the parallel plan. Minion can efficiently handle table constraints with
don’t cares through algorithms for short support enabled arc consistency propagations. This
combination improves the efficiency of our planner over the state-of-the-art constraint-based
planner PaP2 (Barták, 2011b) on a set of standard classical benchmark domains.

Constraint-based planner PaP2 encodes the action successions in FSA as table con-
straints with cells containing sets of values and uses SICStus Prolog as its constraint solver.
The FSA are similar to the original DTGs but additionally there are loops for no-ops in
the FSA. FSA are different from our redefined DTGs, which additionally might have don’t
care vertexes. Moreover, there are differences in the labelling of the edges in the FSA and
our redefined DTGs. Nevertheless, action successions in FSA are pairs of actions such that
in the FSA, the latter action follows the former action satisfying their causal dependency.
Besides using the original PaP2, we also have reconstructed it to obtain a version PaPR
that runs on Minion and thus allows us to observe the effect of different constraint mod-
els running on the same solver platform. While in TCPP, we use table constraints with
don’t cares to encode state transitions in DTGs, in this paper, we attempt to do the same
to encode PaP2 model. Moreover, we optionally use mutex constraints. These results in
an enhanced version of PaPR. On the same benchmark domains as mentioned before, the
enhanced PaPR demonstrates its efficiency over PaP2. Overall, Minion as a CSP solver
along with its table constraints allowing don’t cares are empirically found to be effective in
exploiting both the state transitions and actions successions in the DTGs.

The rest of the paper is organised as follows: Section 2 gives an overview of classical
planning, DTGs, CSPs, and constraint-based planners; Section 3 outlines the architecture
of our constraint-based planner TCPP; Section 4 discusses DTG-based planning model;
Section 5 describes our encoding of planning problems into CSPs by using table constraints
with don’t cares and decoding of CSP solutions back to plans; Section 6 presents our recon-
structed planner that models PaP2-style action successions from DTGs; Section 7 presents
our experimental results and analyses; and finally, Section 8 presents the conclusions.

2. Preliminary Knowledge

We give an overview of classical planning and domain transition graphs. We also give
an overview of constraint satisfaction problems and constraint-based planning. While we
explain the preliminary concepts using somewhat detailed examples, an experienced reader
could just go through the definitions to know our notations.

907



Ghanbari, Namazi, Newton, & Sattar

2.1 Classical Planning

Given an initial state and a desired goal state, the planning problem is to find a sequence
of actions, called a plan, that transforms the initial state into the goal state. In planning,
actions are responsible for changing the world and are described by their preconditions and
effects. Preconditions specify the conditions the world needs to have before applying an
action and effects specify the changes that an action makes to the world.

To illustrate a planning problem, we use a simplified driverlog domain (see Figure 1
top). In this domain, we have drivers and trucks, but no packages. We thus restrict this
domain only to the transportation of drivers by trucks. A driver can change his location by
walking or by driving a truck. There are roads (solid lines) for driving trucks and footpaths
(dotted lines) for drivers to walk. In Figure 1, there are four locations A, B, C, and D. In the
initial state, the driver d is at location D and the truck t is at location C. In the goal state,
both the driver and the truck are at location B. To get to the goal state from the initial
state, the driver needs to execute a plan that comprises walking to location C, embarking
on the truck, driving it from location C to location B, and debarking from the truck.

The most common language used in describing planning problems is PDDL (McDermott
et al., 1998). In this paper, we use the STRIPS-style planning (Fikes & Nilsson, 1971)
described by PDDL2.1 (Fox & Long, 2003). The PDDL representation of the driverlog
problem is shown in bottom-left of Figure 1. Below we provide our formal definition of
a classical planning task. In this definition, we consider each operator in PDDL to be
grounded or instantiated, thus we only reason about actions. Table 2.1 lists the actions in
the driverlog domain described in Figure 1. Throughout the paper, these actions will be
referred to by their identification numbers written before them.

1 embark-truck(d,t,A) 4 debark-truck(d,t,A) 7 drive-truck(d,t,A,B) 11 driver-walk(d,A,D)
2 embark-truck(d,t,B) 5 debark-truck(d,t,B) 8 drive-truck(d,t,B,A) 12 driver-walk(d,D,A)
3 embark-truck(d,t,C) 6 debark-truck(d,t,C) 9 drive-truck(d,t,B,C) 13 driver-walk(d,D,C)

10 drive-truck(d,t,C,B) 14 driver-walk(d,C,D)

Table 1: Actions i.e. the instantiated or grounded operators in the driverlog domain. The
action identification numbers are used henceforth to refer to these actions.

Now, we formally define the classical planning tasks, that are supported by our planner.

Definition 1 (Classical Planning Task). A classical planning task P = 〈V, I,G,A〉 com-
prises a set of logical atoms V, an initial state I ⊆ V, a set of goals G ⊆ V, and a set of
actions A. Each action α in A is represented by 〈pre, add, del〉, where pre ⊆ V is the set of
preconditions of action α, add ⊆ V is the add set of action α, and del ⊆ V is the delete set
of action α. Given the current state s ⊆ V, an action α is applicable on the state s if the
preconditions are satisfied i.e. pre ⊆ s and resultant state s′ produced by the application of
α on the state s is denoted by s′ = app(s, α) = (s \ del) ∪ add.

An alternative to PDDL is to use the SAS+ formalism (Bäckström & Nebel, 1995). The
SAS+ formalism has become popular after being used in Fast Downward planner (Helmert,
2006). In the SAS+ formalism, planning problems are represented by multi-valued state
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AC B C

Dd

t d t
driver-walk(d,D,C)

embark-truck(d,t,C)
drive-truck(d,t,C,B)

debark-truck(d,t,B)

Initial State Goal State

Plan

PDDL Description

Predicates:

at(o, l), empty(t), road(x, y),
path(x, y), driving(d, t)

Operators:

embark-truck(d, t, l)
preconds:

at(t, l), at(d, l), empty(t)
effects:
¬at(d, l), ¬empty(t),
driving(d, t)

debark-truck(d, t, l)
preconds:

at(t, l), driving(d, t)
effects:

at(d, l), empty(t),
¬driving(d, t)

drive-truck(d, t, l, l′)
preconds:

at(t, l), driving(d, t),
road(l, l′)

effects:
¬ at(t, l), at(t, l′)

driver-walk(d, l, l′)
preconds:

at(d, l), path(l, l′)
effects:
¬ at(d, l), at(d, l′)

SAS+ Description

Variables:

d-loc {A, B, C, D, t} // driver location
t-loc {A, B, C} // truck location
t-occ {false, true} // truck occupied

Operators:

embark-truck(d, t, l)
preconds:

t-loc = l, d-loc = l,
t-occ = false

effects:
d-loc = t, t-occ = true

debark-truck(d, t, l)
preconds:

t-loc = l, d-loc = t
effects:

d-loc = l, t-occ = false

drive-truck(d, t, l, l′)
preconds:

t-loc = l, d-loc = t
effects:

t-loc = l′

driver-walk(d, l, l′)
preconds:

d-loc = l
effects:

d-loc = l′

SAS+ actions are grounded,
although shown parameterised

Figure 1: A driverlog problem instance: initial state (top-left), goal-state(top-right), a plan
(top-middle), representation in PDDL (bottom-left) and SAS+ (bottom-right).

variables. Moreover, mutually exclusive predicates do not appear in the state descrip-
tion. Furthermore, extracting structural information such as DTGs (Helmert, 2006) is also
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straightforward. The SAS+ representation of our driverlog example is also shown in Fig-
ure 1 (bottom-right). In this representation of the problem, we have two state variables
d-loc and t-loc for locations of the driver and the truck respectively, and a state variable
t-occ to denote whether the truck is occupied by a driver. The domain for each of the
variables is shown in the figure as well. Note that operators are all instantiated or grounded
in SAS+ (i.e. they are actions) although in the figure, they are shown as parameterised.
Since action prototypes in SAS+ are the same as in PDDL, Table 2.1 lists the SAS+ actions
in the driverlog domain as well as the PDDL actions. We use a translator that comes with
the Fast Downward planner (Helmert, 2006) to translate a given PDDL planning task into
a SAS+ planning task. Below we provide a formal definition of a multi-valued planning
task (Helmert, 2006).

Definition 2 (Multi-Valued Planning Task). A multi-valued planning task P = 〈V, I,G,A〉
comprises a set of multi-valued state variables V, an initial state I, a set of goals G, and
a set of actions A. Each state variable v ∈ V can be assigned a value k (denoted by v = k)
from its finite domain D(v). An assignment s is a set {(v = k) : v ∈ V ∧ k ∈ D(v)}
denoting which variables are assigned which values; no variable is assigned twice in an
assignment. We use v ⇐ s to denote v appears or is assigned a value in assignment s.
We also use s(v) to denote the value assigned to v by s when v ⇐ s. A partial assignment
assigns values to a subset of variables in V while a complete assignment assigns a value
to each variable. The initial state I is a complete assignment while the set of goals G
is a partial assignment. Each action α ∈ A has two partial assignments pα and eα that
respectively denote the preconditions and the effects of α. Given the current state s, which
is a complete assignment, an action α is applicable on the state s if s(v) = pα(v) whenever
v ⇐ pα. The resultant state s′ produced by the application of α on the state s is denoted by
s′ = app(s, α) where s′(v) = eα(v) whenever v ⇐ eα; otherwise s′(v) = s(v) when v 6⇐ eα.
For any action α, if v ⇐ pα and v ⇐ eα then pα(v) 6= eα(v), otherwise only v ⇐ pα should
hold, not v ⇐ eα.

So far for both classical and multi-valued planning, we have provided the definitions of
the preconditions of an action α being applicable on a state s. For both types of planning, we
also have provided the definitions of the effects of the action α in terms of the computation
of app(s, α) to produce the resultant state s′ from a given state s where the preconditions
of α hold. Below we partition the variables involved in an action based on whether they
appear only in the preconditions or only in the effects or in both.

Definition 3 (Appearance Partitioning). Given an action α, we define the following mu-
tually disjoint sets of variables that appear in the preconditions and/or effects of α:

1. PnotE(α) = {v|v ⇐ pα ∧ v 6⇐ eα}: The set of variables that appear only in the
preconditions pα but not in the effects eα of action α.

2. EnotP(α) = {v|v ⇐ eα ∧ v 6⇐ pα}: The set of variables that appear only in the effects
eα but not in the preconditions pα of action α.

3. PandE(α) : {v|v ⇐ pα ∧ v ⇐ eα}: The set of variables that appear both in the
preconditions pα and in the effects eα of action α.
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Below we define a sequential, and a parallel plan. These definitions are the same as those
of the sequential plan and ∀-Step parallel plan defined by Rintanen, Heljanko, and Niemelä
(2006).

Definition 4 (Action Sequence). The result of application of a sequence 〈α1, . . . , αn〉 of n
actions is defined by app(s, 〈α1, . . . , αn〉) = app(app(s, 〈α1, . . . , αn−1〉), αn) where as a basis
app(s, 〈α〉) = app(s, α) and app(s, α) is defined either in Definition 1 or in Definition 2.

Definition 5 (Sequential Plan). A sequential plan Σ = 〈α1, . . . , αn〉 of plan length n for a
(classical or multi-valued) planning problem P is a sequence of actions such that there is a
sequence of states 〈s0, s1, . . . , sn〉 for which (i) s0 = I, (ii) ∀τ∈[1,n]app(sτ−1, ατ ) = sτ , and
(iii) G ⊆ sn for a classical planning task P or G(v) = sn(v) for each variable v ⇐ G of a
multi-valued planning task P.

Definition 6 (Action Serialisability). A set of actions A is serialisable if for each permu-
tation ~A = 〈α1, . . . , α|A|〉 of the actions in A, app(s, ~A) produces the same resulting state s′

from a given state s. For a serialisable set of actions A, we define app(s,A) = app(s, ~A)
where ~A is an arbitrary permutation of the actions in A.

Definition 7 (Parallel Plan). A parallel plan Π = 〈A1, . . . , Am〉 of makespan m for a
(classical or multi-valued) planning problem P is a sequence of sets of serialisable actions
Aτ such that there exists a sequence of states 〈s0, s1, . . . , sm〉 for which (i) s0 = I, (ii)
for all τ ∈ [1,m] app(sτ−1, A

τ ) = sτ , and (iii) G ⊆ sm for a classical planning task P
or G(v) = sm(v) for each variable v ⇐ G of a multi-valued planning task P. Assuming
arbitrary permutations 〈ατ1 , . . . ατ|Aτ |〉 of the actions in Aτ , for a parallel plan Π, we have

a serialised plan ~Π = 〈α1
1, . . . , α

1
|A1|, . . . , α

τ
1 , . . . , α

τ
|Aτ |, α

τ+1
1 , . . . , ατ+1

|Aτ+1|, . . . , α
m
1 , . . . , α

m
|Am|〉.

A serialised plan is thus a sequential plan of length n = |A1|+ . . .+ |Am|.

Henceforth, we discuss multi-valued planning tasks and parallel plans as defined above.

2.2 Domain Transition Graphs

From the SAS+ representation of a planning problem, a domain transition graph (Helmert,
2006) can be extracted for every state variable to show how these variables can change
their values. Below we provide the formal definition of a domain transition graph but only
considering the multi-valued planning task formally described above.

Definition 8 (Domain Transition Graph). Assume P = 〈V, I,G,A〉 be a multi-valued
planning task. The domain transition graph DTG(v) of v ∈ V is an edge-labelled directed
graph with the vertexes D(v) and the following edges:

1. For each action α ∈ A, there will be an edge 〈k, k′〉 originated at k and terminated at
k′ with label ρ = pα \ {(v = k)}, if v ∈ PandE(α), and pα(v) = k and eα(v) = k′.

2. For each action α ∈ A, there will be an edge 〈k, k′〉 originated at each k ∈ (D(v)\{k′})
and terminated at k′ with label ρ = pα, if v ∈ EnotP(α) and eα(v) = k′.
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A
B

C
ρ4 ρ3

ρ6ρ1
t

ρ5ρ2

D

DTG of d-loc
ρ1: t-loc = A, t-occ = ⊥
ρ2: t-loc = B, t-occ = ⊥
ρ3: t-loc = C, t-occ = ⊥
ρ4: t-loc = A
ρ5: t-loc = B
ρ6: t-loc = C

⊥ >
ρ1

ρ2

ρ3

ρ4

ρ5
ρ6

DTG of t-occ
ρ1: d-loc = A, t-loc = A
ρ2: d-loc = B, t-loc = B
ρ3: d-loc = C, t-loc = C
ρ4: d-loc = t, t-loc = A
ρ5: d-loc = t, t-loc = B
ρ6: d-loc = t, t-loc = C

A B C
ρ ρ

ρρ
DTG of t-loc
ρ: d-loc = t

Figure 2: Domain transition graphs for the driverlog problem in Figure 1. The labels ρjs on
the edges are the conditions listed at the right column of the respective DTG at
the left column. Any occurrence of the transition needs the condition ρj written
on it to hold before the transition. Boolean values are true > and false ⊥.

DTGs for the example in Figure 1 are shown in Figure 2. In the DTG of variable d-loc,
we have an edge from A to t labelled with ρ1 which is for action embark-truck(d, t, A). This
action changes the value of d-loc from A to t. Since variables t-loc and t-occ appear in the
preconditions of this action, they all appear on the condition ρ1 of the corresponding edge
meaning that to change the value of d-loc, these variables should have values A and ⊥ (false)
respectively. Similarly, all edges in the same DTG and other DTGs could be explained.

2.3 Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) has a number of variables each having its domain
of values. One has to find one value for each variable from its domain such that a given
number of constraints are all satisfied. To illustrate a CSP problem, consider 3 variables
x1, x2, and x3 that all take their values from domain {0, 1, 2}. We have three constraints:
x1 +x2 +x3 < 3, x1 ≤ x2 and x2 +2x3 ≥ 3. Clearly, values 0, 1, 1 when assigned to variables
x1, x2, x3 respectively solve the problem. Below we formally define CSPs.

Definition 9 (Constraint Satisfaction Problem). A constraint satisfaction problem P =
〈X,C〉 comprises a set of variables X and a set of constraints C. Each variable x ∈ X can
be assigned a value ν (denoted by x = ν) from its finite domain D(x). An assignment σ
is a set {(x = ν) : x ∈ X ∧ ν ∈ D(x)} denoting which variables are assigned which values;
no variable is assigned twice in an assignment. A partial assignment assigns values to a
subset of variables in X while a complete assignment assigns a value to each variable. Each
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constraint c ∈ C is defined on a set X(c) ⊆ X of variables called the scope of c and specifies
the combinations of allowed values of the variables in X(c). A solution to a given P is a
complete assignment such that all the constraints in C are satisfied. If there exists at least
one solution for a given P , we say P is satisfiable, otherwise it is unsatisfiable.

In our constraint model for planning, we use an extensional constraint representation
called (positive) table constraints. The table constraints for the CSP described above are
shown in Figure 3. Look at the table for the constraint x1+x2+x3 < 3. Each row of the table
is an assignment of values to the variables x1, x2, and x3 from the domains of the respective
variables such that the inequality constraint is satisfied. Similar statements hold for other
constraints and their corresponding table constraints. As we will see later, due to various
consistency checking and related constraint propagation, certain values could be deleted from
a variable’s domain because those values do not lead to a solution. Consequently, certain
rows are also deleted from the positive table constraints. Besides positive table constraints,
we also use negative table constraints in our constraint modelling for planning. The columns
of a negative table constraint are the variables in X(c) of a constraint c and the rows list
the assignment of values to the variables such that the constraint is not satisfied. While
one uses some rows from a positive table to satisfy the constraint, one takes into account
all rows of a negative table to avoid the constraint being not satisfied.

An example CSP:

x1 + x2 + x3 < 3
x1 ≤ x2

x2 + 2x3 ≥ 3

x1 + x2 + x3 < 3

x1 x2 x3

0 0 0

0 0 1

0 0 2

0 1 0

0 1 1

0 2 0

1 0 0

1 0 1

1 1 0

2 0 0

x1 ≤ x2

x1 x2

0 0

0 1

0 2

1 1

1 2

2 2

x2 + 2x3 ≥ 3

x2 x3

0 2

1 1

1 2

2 1

2 2

Figure 3: Table constraints for a CSP example

Definition 10 (Table Constraints). Given a constraint c ∈ C, a (positive) table constraint
T in its rows lists the allowed combinations of values of the variables in X(c) while a
negative table constraint T̃ lists the forbidden combinations. The tables have a column for
each variable in X(c). If t is a row in T , then t[x] denotes the value of variable x in that
row. Each row t in a positive table is called a support for value t[x] of the variable x.

We briefly explain generalised arc consistency for table constraints. In Figure 3, consider
the table constraint for x1 +x2 +x3 < 3. For every variable in this constraint and for every
value in the variable’s domain, we have a row in the table. For example, rows 1–6 are the
supports for x1 = 0, rows 7–9 are the supports for x1 = 1, and row 10 is the support for
x1 = 2. Also, rows 1-3 and rows 7, 8, 10 are the supports for x2 = 0, rows 4, 5, 9 are the
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supports for x2 = 1 and row 6 is the support for x2 = 2. Similarly, we have supports for all
values of variable x3. Because of this property, x1 + x2 + x3 < 3 is called generalised arc
consistent. We see that constraint x1 ≤ x2 is also generalised arc-consistent but this is not
the case for constraint x2 +2x3 ≥ 3. In constraint x2 +2x3 ≥ 3, we do not have any support
for x3 = 0 because we do not have any row having value 0 for variable x3. If we maintain
arc-consistency, we should delete this value from the domain of variable x3. The current
domain of variable x3 is now {1, 2}. We need to delete all rows of other tables having value
0 for variable x3. New tables are represented in Figure 4.

x1 + x2 + x3 < 3
x1 ≤ x2

x2 + 2x3 ≥ 3

x1 + x2 + x3 < 3

x1 x2 x3

0 0 1

0 0 2

0 1 1

1 0 1

x1 ≤ x2

x1 x2

0 0

0 1

0 2

1 1

1 2

2 2

x2 + 2x3 ≥ 3

x2 x3

0 2

1 1

1 2

2 1

2 2

Figure 4: Table constraints after first stage of maintaining generalised arc-consistency

The new tables still are not arc-consistent and we need to follow the same procedure.
Looking at the first table, we see that there are no supports for x1 = 2 and x2 = 2. There-
fore, value 2 should be deleted from the domains of variables x1 and x2 and consequently all
tables should be updated. The final tables are shown in Figure 5. Note that the domains of
the variables x1, x2, and x3 are now {0, 1}, {0, 1} and {1, 2} respectively and these tables
are all generalised arc-consistent with respect to the new domains.

x1 + x2 + x3 < 3
x1 ≤ x2

x2 + 2x3 ≥ 3

x1 + x2 + x3 < 3

x1 x2 x3

0 0 1

0 0 2

0 1 1

1 0 1

x1 ≤ x2

x1 x2

0 0

0 1

1 1

x2 + 2x3 ≥ 3

x2 x3

0 2

1 1

1 2

Figure 5: Final table constraints after maintaining generalised arc-consistency

We define generalised and singleton arc consistency for table constraints below.

Definition 11 (Arc-Consistency). Value ν for variable x, denoted by x = ν, is generalised
arc-consistent if for every constraint c such that x ∈ X(c), there exists a row t with t[x] = ν
in the table constraint for c. Any value ν that is not generalised arc-consistent could be
removed from x’s domain to obtain its current domain. This removes rows t with t[x] = ν
from tables and in a cascaded fashion, could remove values of other variables in t from their
domains. A table constraint is generalised arc consistent if for every variable x ∈ X(c)
and for every value ν in x’s current domain, there exists a support for x = ν, that is
there is a row t with t[x] = ν. A CSP is generalised arc-consistent if all of its constraints
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are generalised arc-consistent. Value ν for variable x, denoted by x = ν, is singleton arc-
consistent if after assigning the value ν to variable x, the CSP can be made generalised
arc-consistent. A CSP is singleton arc-consistent if for each variable x and for each value ν
in its current domain, x = ν is singleton arc-consistent (Rossi, Van Beek, & Walsh, 2006).

We briefly explain singleton arc-consistency. In our example in Figure 5, x1 = 1 is not
singleton arc-consistent because if we set value 1 to the variable x1, our first constraint
imposes that variable x2 should take value 0. This is because the last row of the table is
the only row with value 1 for variable x1 and in this row, we have x2 = 0. However, with
this assignment, we will not have any support in the middle table in Figure 5 meaning the
constraint x1 ≤ x2 could not be satisfied if x1 = 1 and x2 = 0. So to maintain singleton
arc-consistency, we need to remove value 1 from the domain of variable x1 and continue
this process until for each x and for each ν, x = ν is singleton arc-consistent.

Many algorithms have been developed to maintain generalised arc-consistency during
search. These algorithms prune domains and reduce the branching factor of the search. One
of the algorithms for maintaining generalised arc-consistency is STR2+, optimised Simple
Tabular Reduction algorithm (Lecoutre, 2011). This algorithm dynamically maintains the
table of supports while applying the generalised arc-consistency. Since the table constraints
we use in our model contain don’t care values, we use an extension of this algorithm named
Short-STR2 (Jefferson & Nightingale, 2013). In short-STR2, there can be short supports
in the tables meaning that some values of the variables in a row can be missing.

2.4 Constraint-Based Planners

One of the approaches developed for planning is based on translation of the given planning
problem into a different formalism such as satisfiability (SAT) or CSP and then solving it
using respective solvers. One key issue with this approach is that to be able to transform the
problem to SAT or CSP, we need to know the makespan in advance. Since in planning the
makespan is not known beforehand, a fixed bound n is therefore imposed on the makespan
(also called horizon) and the problem of finding a plan of makespan n is translated to a
SAT/CSP problem. If the translated problem does not have any solution, the bound is
increased and this process continues until a solution is found. Then, the plan is extracted
from the solution to the translated SAT/CSP problem.

CSP-based planners can be categorised into two groups depending on the type of the plan
they generate: those generating sequential plans (Barták & Toropila, 2008; Gregory et al.,
2010; Judge & Long, 2011) and those generating partial order (Vidal & Geffner, 2006) and
parallel plans (Barták, 2011a, 2011b; Do & Kambhampati, 2001; Lopez & Bacchus, 2003).
In sequential plans, each time only one action can take place while in parallel plans several
actions can take place simultaneously if they don’t conflict with each other. In partial-order
planning, only a partial-order is defined between actions. A sequential plan can be generated
by totally ordering the actions in partial-order plans or parallel plans. In partial-order and
parallel planning, symmetry checking is avoided while this is not the case in sequential
planning. By performing symmetry checking, we try to find the plans that remain the same
after changing the order of their actions. This process is very time-consuming. Recent
CSP-based planners compute parallel plans.
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CSP techniques were applied in temporal planning by Ghallab and Laruelle (1994).
Later, manually designed constraint models were used in classical planning (van Beek &
Chen, 1999). While this planner is a sequential planner, the other planners GP-CSP (Do
& Kambhampati, 2001) and CSP-plan (Lopez & Bacchus, 2003) transform the planning
graphs (Blum & Furst, 1997) into CSPs such that they can deal with parallel plans. In the
dynamic CSP model in GP-CSP (Do & Kambhampati, 2001), variables are used to represent
the propositions at each layer of the planning graph. The domain of these variables are the
actions supporting these propositions. To encode the relationships between propositions,
action mutex, fact mutex and subgoal mutex constraints are used. The constraint model
in CSP-plan (Lopez & Bacchus, 2003) tries to transform the planning graph in a different
manner by using variables to represent the facts and actions at each layer. Transitions are
logical formulas between variables that encode the initial state, the goals, preconditions and
effects, and frame axioms. Most of the above mentioned planners use Boolean variables to
encode the planning problem as CSP. Another constraint model that uses logical formulas
with different types of constraints is proposed by Ghallab, Nau, and Traverso (2004).

Using a multi-valued representation of a planning task, one normally has fewer variables
with larger domains where domain filtering normally pays off. Based on this representation,
Barták and Toropila (2008) reformulated the constraint models and summarised the set of
logical formulas from original models in table constraints that extensionally list the valid
tuples for the constraints. By exploiting table constraints, more inconsistencies are filtered
out than could be done by using the original models and the time needed for constraint
propagation is also reduced significantly. Later, these ideas are improved by using lifting,
symmetry breaking, singleton arc consistency and nogood learning techniques (Barták &
Toropila, 2009a, 2009b). Also, Gregory et al. (2010) used dominance constraints for further
inference and Judge and Long (2011) proposed a goal-centric heuristic for variable/value
selection to guide the search towards a solution.

Similar to domain transition graphs (Helmert, 2006), which are based on the multi-
valued representation of planning domains, Barták (2011a) considered an automaton for
each state variable. By synchronising the state transitions in all automata, the CSP model
supports parallel planning. In the proposed model, CSP variables are considered for state
variables and actions at each time step and constraints are used for encoding the edges in
each automaton and also for synchronising the transitions of different automata. Later,
Barták (2011b) proposed a slightly different encoding of automata in which, rather than
encoding state variables and actions responsible of changing them, only the actions are
encoded as CSP variables and state variables are omitted completely.

To summarise the state of the art of constraint-based planning, planner PaP2 (Barták,
2011b) is faster than PaP (Barták, 2011a) and SeP (Barták & Toropila, 2009b). SeP per-
forms better than GP-CSP (Do & Kambhampati, 2001) and CSP-plan (Lopez & Bacchus,
2003). Constance (Gregory et al., 2010) is a sequential planner that performs better than
CPT (Vidal & Geffner, 2006) and SeP but is much worse than PaP2 (Ghanbari Ghooshchi
et al., 2015).
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3. Our Planner Architecture

Based on the DTGs extracted from the SAS+ representation of the planning problem, we
have developed a new constraint model for parallel planning. In our model, we directly
encode the DTGs of the problem into table constraints and use a general-purpose CSP
solver to solve the corresponding constraint satisfaction problem. In contrast to the state
of the art constraint-based planners, we do not have any CSP-variables for actions taking
place at each time and we can extract the final plan by taking into account the transitions
on the DTGs of state variables. The overall approach of our planner is shown in Figure 6.

PDDL

Translator Preprocessor Encoder Solver Decode

Increase Plan Length

If Unsatisfiable

SAS+ CSP SolutionDTG Plan

Figure 6: Architecture of our constraint-based planner

3.1 Translation

The input to the translator part is the PDDL representation of the given classical planning
problem. PDDL is the standard language to describe planning problems and is used as
a common language in the international planning competitions. Our planner supports
the STRIPS-style classical planning described by PDDL2.1 (Fox & Long, 2003). We use
the translator used in Fast Downward (Helmert, 2006) to translate the PDDL description
into SAS+ formalism with multi-valued variables and corresponding instantiated actions.
The classical and multi-valued planning tasks are formally defined in Definitions 1 and
2. Nevertheless, the PDDL to SAS+ translator, along with the SAS+ representation, also
produces the mutex-groups. The mutex groups are sets of variable-value pairs that cannot
occur at the same time. In our driverlog example, we have a mutex-group {d-loc = t, t-
occ = ⊥}, which denotes that when the variable d-loc takes the value t, the variable t-occ
can not take the value false and vice versa. A mutex-group that involves only one variable
could actually be ignored because such a mutual exclusion condition is already captured by
the characteristics of a multi-valued variable. Henceforth, by mutex groups, we will mean
mutex-groups that involve more than one variable.

3.2 Preprocessing

After translation, the multi-valued representation of the planning problem is preprocessed
to extract the DTGs for all state variables. This is done by using our own extractor program
which is similar to the one in Fast Downward planner (Helmert, 2006). In our DTGs, we
use don’t cares × or wild cards to denote a value that actually could be any value in the
domain of the respective variable. Moreover, our DTGs also have self-loops as edges to
denote no-ops. Further details on these are described later.
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3.3 Encoding

In this step, imposing a fixed bound on the makespan, our DTGs are used to encode the
problem of finding a plan of makespan n as a CSP problem. A CSP solver is then used to
solve the encoded problem and if it is not successful in solving it, the makespan is increased
and the same process is repeated until a plan is found or a given time limit exceeds. To find
the first makespan to start with, for those state variables that occur in the goals, we look
in their DTGs for the shortest path from their values in the initial state to their values in
the given goals. We select the maximum path length as the first makespan to start with.
Further details on our encoding are explained later in the paper.

3.4 Solving

As mentioned before, we use the CSP solver named Minion (Gent et al., 2006) to solve the
CSP problem generated by the encoder. Minion is a general-purpose constraint solver that
supports table constraints with don’t care values. The solver also has a special constraint
propagation technique named shortSTR2 for this kind of tables. Minion has a complete
search algorithm that guarantees finding a solution if it exists. This is critical for our
approach because before increasing the makespan, we need to be sure that no plan with a
smaller makespan exists and therefore we have to try a larger makespan.

3.5 Decoding

When the solver finds a solution for the encoded CSP, we can extract the final plan from the
values of the CSP variables. To do this, we need to check the values of the state variables
at times τ and τ + 1. If a state variable changes its value, the actions responsible for this
change can be extracted from the edges of the corresponding DTG. For example, if the
value of a state variable v changes from k to k′, we need to look at the edges from vertex k
or don’t-care to vertex k′ in the DTG of the variable v. If the value of a state variable does
not change, still we need to check the edges from don’t-care to its value at time τ . There
may be more than one edge with different actions on them, but we need the actions with
preconditions satisfied at time τ and effects matching at time τ + 1. Since there may be
more than one action at each time step of a plan, our planner allows parallel plans. Later,
we will describe the decoding procedure further.

4. DTG-Based Planning

To formulate our constraint modelling for planning, we redefine the DTGs. The redefined
DTGs are similar to the FSA in PaP (Barták, 2011a) in that both have loops for no-ops.
However, unlike FSA, our redefined DTGs could have a vertex × that represents don’t care
value for the respective state variable. This don’t care vertex is also new in our DTGs when
compared to the original DTGs (Helmert, 2006). For an action α, if v ∈ EnotP(α) then in
the original DTGs, there is an edge from each of the other vertex k 6= k′ to the vertex k′

where k′ = eα(v). In our redefined DTGs, we simplify this by using a vertex with value × to
denote a don’t care value and draw an edge from this × vertex to the vertex k′. Moreover,
our labelling of the edges are conceptually more detailed than that in the original DTGs.
In the label, we show the action, the other preconditions and other effects as well. For an
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efficient implementation, the information in the labels is however extracted from the actions
as needed. In the FSA, the edge labels are just the respective actions.

Definition 12 (Domain Transition Graph Redefined). Assume P = 〈V, I,G,A〉 be a multi-
valued planning task. The redefined domain transition graph DTG(v) of v ∈ V is an edge-
labelled directed graph with the vertexes D(v) ∪ {×}, where × denotes a don’t care or wild
card meaning it represents any value in v’s domain. The edges that are in the redefined
DTG(v) are described below. Note that if the degree of the don’t care vertex × is zero
after all the following edges are created, for the efficiency of implementation, the don’t care
vertex, deeming unnecessary, is removed from the redefined DTG.

1. For each action α ∈ A, there is an edge 〈pα(v), eα(v)〉 from pα(v) to eα(v) with label
〈α, ρ, ε), if v ∈ PandE(α). Here, ρ = (pα \{(v = pα(v))}) and ε = (eα \{(v = eα(v))}).

2. For each action α ∈ A, there is an edge 〈×, eα(v)〉 from don’t care vertex × to vertex
eα(v) with label 〈α, ρ, ε〉, if v ∈ EnotP(α). Here, ρ = pα and ε = (eα \ {(v = eα(v))}).

3. For each value k ∈ D(v), there will be a loop 〈k, k〉 from vertex k to vertex k to
represent a no-op with label (α, φ, φ) where for each loop, α is a distinct no-op action
with preconditions {(v = k)} and no effects, and φ is an empty assignment.

⊥ >
ρ1

ρ2

ρ3

ρ4

ρ5
ρ6

× ⊥ >〈6, ρ6, ε6〉 〈3, ρ3, ε3〉
〈2, ρ2, ε2〉
〈1, ρ1, ε1〉

〈5, ρ5, ε5〉
〈4, ρ4, ε4〉

〈−1, φ, φ〉 〈−2, φ, φ〉

ρ1: d-loc = A, t-loc = A ε1: d-loc = t
ρ2: d-loc = B, t-loc = B ε2: d-loc = t
ρ3: d-loc = C, t-loc = C ε3: d-loc = t
ρ4: d-loc = t, t-loc = A ε4: d-loc = A
ρ5: d-loc = t, t-loc = B ε5: d-loc = B
ρ6: d-loc = t, t-loc = C ε6: d-loc = C

Figure 7: Original and redefined domain transition graphs for variable t-occ in the driverlog
problem in Figure 1. Top-Left: original DTG as per Definition 8 and defined by
Helmert (2006); Top-Right: our redefined DTG. Positive numbers on the edges
in our DTG denote the action identification numbers in Table 2.1. The ρjs on
the edges of both DTGs are the conditions on other variables to hold before the
transitions, and the εjs on the edges in our DTG are the effects of the transitions
on other variables. Boolean values: true is > and false is ⊥; and don’t care is ×.
Loops at nodes are no-ops and each one is given a distinct negative identification
number.

The original and the redefined domain transition graphs for variable t-occ in the driverlog
problem in Figure 1 are shown in Figure 7. Action numbers 4, 5, 6 (debark-trucks) in
Table 2.1 have an effect t-occ = false, but no precondition on t-occ. So in our redefined
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A
B

C

〈3, ρ3 , ε3〉

〈6, ρ6 , ε6〉t

〈5, ρ5, ε5〉〈2, ρ2, ε2
)

D
〈14
, φ
, φ
〉

〈13
, φ
, φ
〉〈11, φ, φ〉〈12, φ, φ〉

〈1, ρ
1
, ε1
〉

〈4, ρ4
, ε4
〉

〈−2, φ, φ〉
〈−5, φ, φ〉

〈−1, φ, φ〉

〈−
4,
φ,
φ〉

〈−3,
φ, φ
〉

DTG of d-loc

ρ1: t-loc = A, t-occ = ⊥ ε1: t-occ = >
ρ2: t-loc = B, t-occ = ⊥ ε2: t-occ = >
ρ3: t-loc = C, t-occ = ⊥ ε3: t-occ = >
ρ4: t-loc = A ε4: t-occ = ⊥
ρ5: t-loc = B ε5: t-occ = ⊥
ρ6: t-loc = C ε6: t-occ = ⊥

A B C

(7, ρ, φ) (9, ρ, φ)

(8, ρ, φ) (10, ρ, φ)

〈−3, φ, φ〉〈−1, φ, φ〉 〈−2, φ, φ〉

DTG of t-loc

ρ: d-loc = t

Figure 8: Redefined domain transition graphs for variables d-loc and t-loc of the driverlog
problem in Figure 1. The ρjs in the labels of the edges are the conditions listed
at the right column of the respective DTGs at the left column. Any occurrence
of the transition needs the respective condition on other variables to hold before
the transition. The εjs in the labels are the effects of the transitions on other
variables. Boolean values are true > and false ⊥; and don’t care is ×.

DTG, there is an edge from × to ⊥ for each of the debark-truck actions at locations A, B,
and C. This is just an example to show how the don’t care is represented in our DTGs.
Since t-occ is just a boolean variable, the usefulness of don’t care might not yet be clear.
We need an actual multi-valued variable to see clearer distinctions. In Figure 8, we show
the redefined DTGs for variables d-loc and t-loc, which we will use later to encode our table
constraints.

Algorithm 1 Construction of Redefined DTGs

//Add vertexes to DTGs
foreach variable v ∈ V

foreach value k ∈ D(v)
add vertex k to DTG(v)

add vertex × to DTG(v)

//Add edges to DTGs
foreach action α ∈ A

foreach variable v ∈ PandE(α)
add edge 〈pα(v), eα(v)〉 to DTG(v)

foreach variable v ∈ EnotP(α)
add edge 〈×, eα(v)〉 to DTG(v)

//Delete useless don’t cares
foreach variable v ∈ V

if no edge from vertex ×
remove × from DTG(v)

Algorithm 1 describes the procedure to construct the redefined DTGs in Definition 12.
For each variable v ∈ V, we have a DTG with vertexes for each k ∈ D(v) ∪ {×}. Then, for
each action α ∈ A, we look at the preconditions and effects of α. If a variable v appears
in both preconditions and effects of α, then we add an edge 〈pα(v), eα(v)〉 to DTG(v).
If a variable v appears only in the effects but not in the preconditions, then we add an
edge 〈×, eα(v)〉 to DTG(v). There is no edge for the variables that appear only in the
preconditions. The edge labels could be computed as defined in Definition 12, but we
compute them later whenever needed. The don’t care vertex is removed from a DTG if it
has no incident edges.
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Lemma 1 (DTG Computation). Computation of the DTGs as per Algorithm 1 requires

O(|V|(D̂+1)+|A|V̂a+|V|) time and O(|V|(D̂+1)+|A|V̂a) memory, where D̂ is the maximum

domain size of a variable in V and V̂a is the maximum number of variables that appear in
the preconditions and effects of an action (i.e. the maximum parameter size of an operator).

Proof. The proof is straightforward from the pseudocode in Algorithm 1. Adding vertexes
needs O(|V|(D̂ + 1)) time and space, adding edges needs O(|A|V̂a) time and space and
deleting useless don’t care vertexes needs O(|V|) time.

Algorithm 2 A Non-Deterministic Search for Parallel Planning

func performSearch(P,m) returns Π
P = 〈V, I,G,A〉: multi-valued plan prob
m: makespan level to search the plan for

foreach v ∈ V, curr(v) = I(v)//curr val
Π = 〈A1, . . . , Am〉 //initially all Aτ = φ
foreach time step τ = 1 to m step 1
Aτ = selectParallelActions(V)
if Aτ = φ then return failure
foreach action α ∈ Aτ//update vars

if v ⇐ eα then curr(v) = eα(v)
if ∃v⇐Gcurr(v) 6= G(v), return failure
else return success and parallel plan Π

func selectParallelActions(V)
E: set of edges comprising at least one from

each DTG(v). Edges chosen from the same
DTG(v) must originate from vertex curr(v)
or from the don’t care vertex × (if any),
terminate in the same vertex, and satisfy
conditions ρ on the edge labels 〈α, ρ, ε〉

if no two edges in E have actions α, α′ in
their labels such that α, α′ have any
parallel conflicts in their preconditions
or in effects//E be constructed carefully

return the set of actions in the edges in E
else return an empty set of actions

In Algorithm 2, we show a non-deterministic search algorithm that finds a parallel plan
of a given makespan m. This algorithm just conceptually shows how a search for planning
can be performed on the DTG-based planning formulation. In Function performSearch, each
state variable is first assigned a value specified in the initial state of the planning problem.
This actually represents the initial state in the DTG of the variable. Initially, the parallel
plan achieved so far has no actions in any time step. Next, in a loop for each time step, we
call Function selectParallelActions to non-deterministically select a set of actions that will
run in parallel. In Function selectParallelActions, at least one edge is selected from DTG(v)
for each v ∈ V. Edges chosen from the same DTG(v) must originate from vertex curr(v) or
from the don’t care vertex × (if any), terminate in the same vertex to produce a valid state
within the DTG, and satisfy conditions ρ on the edge label 〈α, ρ, ε〉. Each such selected
edge gives an action but these actions must not have any parallel conflicts between each
other in terms of the semantic of the parallel plan defined in Definition 7. Exactly when
two actions can be in parallel conflict is discussed below in details. After a set of parallel
actions is selected, based on the destination vertex of the related edges, the current state
of the DTGs are updated in Function performSearch. At the end of time step τ , if the goal
conditions are met, we have a parallel plan; otherwise the search is said to have failed. Since
selected actions could be no-ops, we might have to omit them from the final plan returned (if
any). Notice that Function selectParallelActions at any time step can select a set of parallel
actions in many different ways, a deterministic implementation of Algorithm 2 would need
to explore all these possible branches before deciding search failure.
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Since in a parallel plan, several actions can take place at the same time step, for plan
validity, we need to ensure that no two actions take place in parallel where the resultant
state is invalid. In a valid state, each state variable can have only one value. Two actions
have parallel conflicts if there is a shared variable in their preconditions and effects, and the
values are conflicting. The formal definition of parallel conflicts of two actions is given below.
The definition uses the three disjoint partitions PnotE(α), EnotP(α), and PandE(α) of the
variables based on whether they appear only in the preconditions, or only in the effects, or
in both of the preconditions and effects of an action α. Considering these partitions, we can
have nine different combinations for two actions that share a variable. Because of possible
symmetries, these nine combinations could however be covered by only six cases. Note that
actions not sharing a variable have no parallel conflicts between them.

Definition 13 (Parallel Conflict). Two actions α 6= α′ have a parallel conflict, denoted by
α⊗ α′ if and only if any of the following six conditions hold.

1. ∃v ∈ [PnotE(α) ∩ PnotE(α′)] such that pα(v) 6= pα′(v).

2. ∃v ∈ [PnotE(α) ∩ EnotP(α′)] such that pα(v) 6= eα′(v) or
∃v ∈ [EnotP(α) ∩ PnotE(α′)] such that eα(v) 6= pα′(v).

3. ∃v ∈ [PnotE(α) ∩ PandE(α′)] or ∃v ∈ [PandE(α) ∩ PnotE(α′)].

4. ∃v ∈ [EnotP(α) ∩ EnotP(α′)] such that eα(v) 6= eα′(v).

5. ∃v ∈ [EnotP(α) ∩ PandE(α′)] or ∃v ∈ [PandE(α) ∩ EnotP(α′)].

6. ∃v ∈ [PandE(α) ∩ PandE(α′)].

The following lemma establishes the connection between serialisability of a set of actions
and the existence of a parallel conflict between any two actions in the set.

Lemma 2 (Serialisability Conditions). A set of actions A is serialisable meaning each
permutation ~A = 〈α1, . . . , αn〉 of the actions in A produces the same state s′ from a given
state s if and only if the following two conditions hold:

1. Each action α ∈ A is applicable on state s.

2. No two actions α, α′ exist in A where α⊗ α′

Proof. For the only if part, assume A is serialisable. As per Definition 6, s′ = app(s,A) =
app(s, ~A) for any arbitrary permutation ~A. This means any action α ∈ A is applicable on
s, since any action can be the first action of a permutation. This proves the first assertion.
To prove the second assertion by contradiction, assume α, α′ ∈ A are two actions such that
α⊗ α′. For this, we show A is not serialisable in any of the six cases in Definition 13.

1. ∃v ∈ [PnotE(α) ∩ PnotE(α′)] such that pα(v) 6= pα′(v). Since a single state s cannot
satisfy both pα(v) and pα′(v), only one of α or α′ is applicable on s but not both.
This clearly contradicts the only if part of the first assertion of this lemma.

2. ∃v ∈ [PnotE(α)∩EnotP(α′)] such that pα(v) 6= eα′(v). This means α cannot be applied
after α′, contradicting our assumption that A is serialisable.
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3. ∃v ∈ [PnotE(α) ∩ PandE(α′)]. If pα(v) 6= pα′(v), using the same argument as in Case
1, we show contradiction here. On the contrary, if pα(v) = pα′(v) then, because of
pα′(v) 6= eα′(v) as is specified in Definition 2, pα(v) 6= eα′(v). Now using the same
argument as in Case 2, we show contradiction in this situation.

4. ∃v ∈ [EnotP(α) ∩ EnotP(α′)] such that eα(v) 6= eα′(v). In this case s′(v) will be eα(v)
if α is after α′ and eα′(v) if α′ is after α. This means s′(v) depends on the ordering
of the actions, contradicting our assumption that A is serialisable.

5. ∃v ∈ [EnotP(α) ∩ PandE(α′)]. If eα(v) 6= eα′(v), using the same argument as in Case
4, we show contradiction here. On the contrary, if eα(v) = eα′(v) then, because of
pα′(v) 6= eα′(v) as is specified in Definition 2, eα(v) 6= pα′(v). Now using the same
argument as in Case 2, we show contradiction in this situation.

6. ∃v ∈ [PandE(α) ∩ PandE(α′)]. If eα(v) 6= eα′(v), using the same argument as in Case
4, we show contradiction here. On the contrary, if eα(v) = eα′(v) then, because of
pα(v) 6= eα(v) as is specified in Definition 2, pα(v) 6= eα′(v). Now using the same
argument as in Case 2, we show contradiction in this situation.

For the if part, assume the two conditions hold. So no two actions α, α′ are in parallel
conflict i.e. α ⊗ α′. This means no action destroys applicability preconditions of another
action. This also means every ordering of any two actions produces consistent effects. The
resulting state will therefore be the same. Therefore A is serialisable.

The following lemma shows when a sequence of sets of actions is a parallel plan.

Lemma 3 (Parallel Planning). Let Π = 〈A1, . . . , . . . , Am〉 be a sequence of sets of actions
from a multi-valued planning task P = 〈V, I,G,A〉. Π is a parallel plan for P as per
Definition 7 if and only if there exists a sequence of states 〈s0, s1, . . . , sm〉 such that (i)
s0 = I, (ii) for all τ ∈ [1,m], app(sτ−1, A

τ ) = sτ , (iii) for all τ ∈ [1,m], there exist no two
actions α, α′ ∈ Aτ such that α⊗ α′, and (iv) G(v) = sm(v) for each variable v ⇐ G.

Proof. The proof is very straightforward. Conditions (i), (ii), and (iv) are obvious from
conditions (i), (ii), and (iii) in the definition of a parallel plan in Definition 7. Condition
(iii) comes from the property (ii) of Lemma 2, which is proved to satisfy the necessary and
sufficient conditions of serialisability.

The lemma below addresses the soundness and completeness of running Algorithm 2 for
a given makespan level. It also addresses the optimality of running Algorithm 2 for a series
of makespan levels starting from 1 up to m when a plan is found.

Lemma 4 (Search Properties). Running Algorithm 2 for makespan 0, 1, . . . ,m returns a
correct and makespan-optimal parallel plan for a given multi-valued planning task P =
〈V, I,G,A〉, if and only if a parallel plan exists within the given makespan limit m.

Proof. Algorithm 2 is correct for a given m because it starts by initialising the current state
of the DTG(v) for each state variable v. In each iteration, it changes the state of each DTG(v)
or remains at the same state, but as per the definition of parallel conflicts in Definition 13
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avoids conflicting actions at each iteration. Lemma 2 proves that actions obtained from the
selected transitions are serialisable and so the sequence of sets of actions returned at the end
when the goal conditions are satisfied is indeed a valid parallel plan. Putting altogether,
Lemma 3 proves the soundness of the approach for a given m. Algorithm 2 is complete
for a given m because Function selectParallelActions non-deterministically select a set of
non-conflicting actions at each time step. In terms of determinism, this means all possible
search branches are explored. One could argue that at one time step, actions selected could
all be no-ops or loops and this could happen at each time step. This is true in some search
branches, but in other branches–remember all search branches are explored–this is not the
case. So if there exists a parallel plan within the given makespan, it will definitely be found
in some branch, although the returned plan might not be makespan optimal. Nevertheless,
this proves the completeness of Algorithm 2 for a given makespan m. Now if we start from
makespan value 0 and every time increase it by 1 until a given limit, a plan will be found
if exists within the limit. This proves the overall completeness mentioned in the lemma.
The soundness of running Algorithm 2 a number of times also comes from soundness of
the individual runs. For optimality of the series of runs, we argue that a higher makespan
level is tried only if a plan is not found by running Algorithm 2 with a lower makespan
level. Because of the completeness of the algorithm at each run, if there is a plan at a lower
makespan level, it must have been found earlier. This proves the optimality of the series
run of Algorithm 2 with progressively larger makespan.

5. Our TCPP Planner

Given Lemma 4, we obtain a deterministic implementation of the Algorithm 2 via constraint
satisfaction techniques. For this, we develop a constraint model to capture a DTG-based
parallel planning problem. We use a CSP solver to perform complete search within a given
makespan. Lastly, if a CSP solution is found, we decode it to get a parallel plan.

5.1 Encoding DTGs into CSP

The encoder described in Algorithm 3 takes as input the DTGs extracted from the multi-
valued representation of the planning problem and also the makespan m and outputs a CSP,
modelling the problem of finding the plan with this makespan. In the CSP model, there is a
CSP variable vτ for each state variable v and timestep τ ∈ [0,m]. Each of these (m+ 1)|V|
CSP variables will have the same domain as the state variable v has. Transitions in the
DTGs are encoded as transition table constraints. To ensure action serialisability at each
time step, we also need parallelism constraints, which are implemented through parallelism
variables. For each variable v we may have a parallelism variable pτv for timestep τ ∈ [0,m).
So there could be at most m|V| parallelism variables and therefore at most (2m+1)|V| CSP
variables in our model. Moreover, for better efficiency of our planner, optionally we also
use the mutex-groups that are produced by the PDDL to SAS+ translator.

5.2 Initial State and Goal Constraints

To encode the initial state and the goals of the planning problem, we need to add constraints
specifying the values of state variables at time 0 and m. Since the initial state is fully
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Algorithm 3 DTGs To CSP Encoding

1 Planing Problem P = 〈V, I,G,A〉, makespan m
2 //variables: v, v′, values: k, k′, actions: α, α′

3 foreach (v, k) ∈ I, Add constraint eq(v0, k)
4 foreach (v, k) ∈ G, Add constraint eq(vm, k)
5 for timestep τ = 0 to m− 1 do
6 foreach v ∈ V, Add transition constraint tc(vτ )
7 foreach pair α, α′ ∈ A such that α⊗ α′
8 Add parallelism variables and their values to the
9 transition constraints of the shared variables

10 // the mutex constraints below are optional
11 for timestep τ = 0 to m do
12 foreach pair {v = k, v′ = k′} in mutex groups
13 Add a mutex constraint mc(v, k, v′, k′, τ)

specified, we need |V| equality constraints that specify the values of each CSP variable v0

for a state variable v ∈ V. For the goals, we only have the values for some of the state
variables vms and we need constraints to specify their values at time m. These constraints
are added to the constraint model by Lines 3 and 4 of Algorithm 3.

5.3 Our State Transition Constraints

To encode the state transitions in the DTGs of the state variables extracted from the multi-
valued representation of the planning problem, we have transition constraints in our model
(Line 6 in Algorithm 3). These constraints specify on what conditions the values of the state
variables can change between time steps τ and τ+1. The edges in the DTG of each variable
are responsible for the changes of values between consecutive time steps. This change is
caused by actions. Since actions have some conditions that appear on the edges, the change
can only occur if these conditions are met. Therefore, we need a constraint that specifies
the values that other variables should take to let this change happen. The variables on
the corresponding edge are the only variables whose values should be specified. There may
be other variables on the other edges of the graph that are considered don’t care for this
transition. Inspired by the use of table constraints in PaP2 (Barták, 2011b), we have used
this kind of table constraints to represent transitions.

5.3.1 DriverLog Example

We explain how we encode the state transitions in the redefined DTG’s in Figures 7 and 8 to
transition constraints shown in Figure 9. Suppose we want to encode the DTG of variable
d-loc to a transition constraint. First of all, we need to specify the variables involved in this
constraint; these are the columns of the table. Variables of the table are those variables
occurring on all edges of the graph. Therefore, we need to look at each edge and the
corresponding action. All the state variables in the preconditions and effects of that action
are included as CSP variables in the constraint table both for time τ and τ + 1. For the
DTG of d-loc, the state variables are t-loc and t-occ. We also need the state variable of the
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DTG itself that is d-loc. These variable should be considered at time τ and τ + 1. So we
have 6 columns in the table: d-locτ , d-locτ+1, t-locτ , t-locτ+1, t-occτ , and t-occτ+1.

The next step in encoding the DTG as a constraint table is defining the rows of the table.
Each edge of the graph is responsible for the change of the value of d-loc and would become
a row in the table specifying a valid assignment of values to the variables of the table. We
have 10 non-loop edges in the DTG of d-loc so we will have 10 rows in the table for the state
transitions. The edge from A to t labelled with 〈1, ρ1, ε1〉 denotes the action embark-truck.
Due to this edge, the value of d-loc can change from A to t at time τ if truck t is at location
A and is not occupied. After the action is executed the value of d-loc changes to truck t
and the truck is now occupied. The location of truck must not change. We, therefore, have
the first row in the table with values 〈A, t, A, A, ⊥, >〉 for columns 〈d-locτ , d-locτ+1, t-locτ ,
t-locτ+1, t-occτ , t-occτ+1〉 respectively. The second row corresponds to the edge from t to A
for action debark-truck. Since t-occ is not a precondition of the corresponding action, notice
that the value of t-occτ is ×. Rows 3 to 6 are for the other edges of the graph from B to t, t
to B, C to t, and t to C respectively. Now consider the edge from C to D. The corresponding
action is driver-walk and driver can change his location by walking from C to D. There is
no condition on this edge and this means that variables t-loc and t-occ can take any values
at time τ and τ + 1; so their values are considered don’t cares in Row 7. Rows 8 to 10 are
for the other driver-walk actions in the remaining edges of the graph. Lastly, the driver can
stay at the same location between successive time steps. For all the loops in the DTG, we
therefore have rows 11-15 with d-loc having the same values at time τ and τ + 1 and the
other variables having don’t cares as their values.

5.3.2 Transition Encoding Procedure

The detailed procedure that encodes a DTG to a table constraint is represented in Algo-
rithm 4. For a state variable v with DTG(v), the table T τ at time τ has columns vτ , vτ+1,
v̄τ s, v̄τ+1s, where v̄s are variables appearing on all edges of DTG(v) (Line 3). Each transi-
tion constraint is therefore an l-ary constraint where l = 2(l′ + 1) and l′ is the number of
variables appearing on the edges of DTG(v). Next, we extract the rows of the table for each
edge in DTG(v) (Line 4). Suppose 〈k, k′〉 is an edge in DTG(v) and tr is the corresponding
row to be added to the table. With respect to the edge, row tr will have appropriate values
in the relevant columns and don’t cares × in the irrelevant columns. Because of edge 〈k, k′〉,
clearly, vτ is k and vτ+1 is k′; note k could be × in the DTG(v) (Line 5-7). We then consider
every variable v̄ that appears on the ρ and ε components of the edge label 〈α, ρ, ε〉. There
could be three possible cases depending on whether a variable appears either in ρ or in ε
or in both. In an edge label, α is the action responsible for the transition. Lines 9-11 in
Algorithm 4 cover the following three cases:

1. v̄ only in ρ: In this case, v̄ remains the same at times τ and τ + 1 ensuring that
during the execution of α, v̄’s value does not change by any other action.

2. v̄ in ρ and ε both: In this case v̄ changes the value between times τ and τ + 1. So
the value at time τ is ρ(v̄) and at time τ + 1 is ε(v̄). Note ρ(v̄) and ε(v̄) are values
assigned to v̄ by the assignments ρ and ε respectively.
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TC for d-loc

d-loc t-loc t-occ

τ τ + 1 τ τ + 1 τ τ + 1

A t A A ⊥ >
t A A A × ⊥
B t B B ⊥ >
t B B B × ⊥
C t C C ⊥ >
t C C C × ⊥
C D × × × ×
D C × × × ×
A D × × × ×
D A × × × ×
A A × × × ×
B B × × × ×
C C × × × ×
D D × × × ×
t t × × × ×

TC for t-occ

t-occ d-loc t-loc

τ τ + 1 τ τ + 1 τ τ + 1

⊥ > A t A A

⊥ > B t B B

⊥ > C t C C

× ⊥ t A A A

× ⊥ t B B B

× ⊥ t C C C

⊥ ⊥ × × × ×
> > × × × ×

TC for t-loc

t-loc d-loc

τ τ + 1 τ τ + 1

A B t t

B A t t

B C t t

C B t t

A A × ×
B B × ×
C C × ×

Figure 9: Encoding transitions in DTGs in Figures 7 and 8 using table constraints. In the
figure, Driver: d; Truck: t; Locations: A, B, C, D; Boolean: true >, false ⊥; loc:
location; occ: occupied; TC: transition constraint; ×: don’t care; τ : time step.

3. v̄ only in ε: In this case, we need to specify the value of v̄ only at time τ + 1, which
is ε(v̄). At time τ , the value of v̄ is don’t care ×, since v̄ 6⇐ ρ.

Algorithm 4 Transition constraint tc(vτ ) using a table

1 DTG(v): DTG for the state variable v, T τ : table for transitions of CSP variable vτ

2 V = {v} ∪ {v̄ : v̄ ⇐ ρ ∨ v̄ ⇐ ε where 〈α, ρ, ε〉 is the label of an edge in DTG(v)}
3 foreach v̄ ∈ V , table T τ has two columns v̄τ and v̄τ+1, for two time steps
4 foreach edge 〈k, k′〉 in DTG(v) // k, k′ are values of v, k may equal to k′

5 tr: a new row in T τ where each column has initially don’t care ×
6 // Modify tr in the following ways to capture the transition
7 tr[vτ ] = k, tr[vτ+1] = k′ // note k could be a don’t care ×
8 Assume 〈α, ρ, ε〉 is the label of the edge 〈k, k′〉 in the DTG(v)
9 foreach variable v̄ ∈ V with (v̄ ⇐ ρ ∧ v̄ 6⇐ ε), tr[v̄τ ] = tr[v̄τ+1] = ρ(v̄)

10 foreach variable v̄ ∈ V with (v̄ ⇐ ρ ∧ v̄ ⇐ ε), tr[v̄τ ] = ρ(v̄), tr[v̄τ+1] = ε(v̄)
11 foreach variable v̄ ∈ V with (v̄ 6⇐ ρ ∧ v̄ ⇐ ε), tr[v̄τ+1] = ε(v̄)
12 Add columns for parallelism variables and set their values in rows (see Section 5.4)

To summarise, we have m|V| transition constraints for a planning problem where V is
the set of multi-valued state variables and m is the current makespan. The number of rows
in the table constraint for a DTG is the number of edges (both loops and non-loops) in
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the DTG. However, the number of columns of the table totally depends on the planning
problem. When the number of variables on the edges of the DTG is huge, we have a table
with a large number of columns. This is the case when the operators responsible for changing
the values of a state variable have many preconditions on the values of other variables. Note
that depending on the parallel conflicts between actions, in some of the tables, we may also
have columns for parallelism variables. The values of the parallelism variables capture the
parallelism constraints needed to avoid the parallel conflicts. This is discussed in details
later. Nevertheless, the number of don’t care values in the rows depends on the number of
shared variables on the edges of the graph. If the edges share the same set of variables,
we will have actual values for these variables in the rows of the table corresponding to
the edges. However, if each edge has a separate set of variables on it, the values of these
variables will be don’t care for the rows of the table corresponding to the other edges. To
illustrate this, we use a simple example from the blocks world domain.

PDDL representation

Predicates:
clear(x), ontable(x),
empty, holding(x),
on(x, y)

Actions:
pick-up(x)

preconds: empty, clear(x),
ontable(x)

effects: ¬clear(x), ¬ontable(x),
¬empty, holding(x)

put-down(x)
preconds: holding(x)
effects: ¬holding(x), clear(x),

empty, ontable(x)
stack(x, y)

preconds: holding(x), clear(y)
effects: ¬holding(x), ¬clear(y),

clear(x), on(x, y), empty
unstack(x, y)

preconds: empty, on(x, y),
clear(x)

effects: ¬clear(x), ¬on(x, y),
¬empty, holding(x), clear(y)

SAS+ representation

Variables:
A-top: {C, NC}, B-top: {C, NC}, //clear?
hand: {E, NE} //empty?
A-loc {H, onB, onT}, B-loc {H, onA, onT}

Operators:
pick-up(x)

preconds: x-top = C, hand = E,
x-loc = onT

Effects: x-top = NC, hand = NE,
x-loc = H

put-down(x)
preconds: x-loc = H

effects: x-top = C,
hand = E, x-loc = onT

stack(x, y)
preconds: y-top = C, x-loc = H
effects: x-top = C, y-top = NC,

hand = E, x-loc = ony
unstack(x, y)

preconds: x-top = C, hand = E,
x-loc = ony

effects: x-top = NC, y-top = C,
hand = NE, x-loc = H

Figure 10: The blocks world domain in PDDL and SAS+

5.3.3 Blocks World Example

In the blocks world example in Figure 10, we have two blocks A and B. The blocks are on the
table in the initial state and we want to put block A on block B in the final state. The PDDL
representation shows the five predicates clear, ontable, empty, holding, and on. The four
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actions in this domain are pick-up, put-down, stack, and unstack. The SAS+ representation
of this problem has 5 state variables: A-top, B-top, hand, A-loc, and B-loc. Variables A-top
and B-top specify if the respective blocks have their top clear or not. Variable hand specifies
if hand is empty or not. Variables A-loc and B-loc denote the locations of blocks A and B.
A block could be at location onT denoting the block is on table or at location onx meaning
on another block x (A or B in this case), or at hand denoted by H. Thus, the domains of
these five variables A-top, B-top, hand, A-loc, and B-loc are {C, NC}, {C, NC}, {E, NE}, {H,
onB, onT}, and {H, onA, onT} respectively.

Actions in the Blocks World Domain

1 pick-up(A) 2 put-down(A) 3 stack(A,B) 4 unstack(A,B)
5 pick-up(B) 6 put-down(B) 7 stack(B,A) 8 unstack(B,A)

onT H onB

〈1, ρ1, ε1〉 〈3, ρ3, ε3〉

〈2, ρ2, ε2〉 〈4, ρ4, ε4〉
〈−3, φ, φ〉〈−1, φ, φ〉 〈−2, φ, φ〉

DTG of A-loc

ρ1: A-top = C, hand = E

ρ2: φ

ρ3: B-top = C

ρ4: A-top = C, hand = E

ε1: A-top = NC, hand = NE

ε2: A-top = C, hand = E

ε3: A-top = C, B-top = NC, hand = E

ε4: A-top = NC, B-top = C, hand = NE

DTG of hand × E NE
〈6, ρ6, ε6〉 〈5, ρ5, ε5〉〈3, ρ3, ε3〉 〈4, ρ4, ε4〉

〈−2, φ, φ〉〈−1, φ, φ〉

〈2, ρ2, ε2〉

〈7, ρ7, ε7〉

〈1, ρ1, ε1〉

〈8, ρ8, ε8〉

ρ1: A-top = C, A-loc = onT

ρ2: A-loc = H

ρ3: B-top = C, A-loc = H

ρ4: A-top = C, A-loc = onB

ρ5: B-top = C, B-loc = onT

ρ6: B-loc = H

ρ7: A-top = C, B-loc = H

ρ8: B-top = C, B-loc = onA

ε1: A-top = NC, A-loc = H

ε2: A-top = C, A-loc = onT

ε3: A-top = C, B-top = NC, A-loc = onB

ε4: A-top = NC, B-top = C, A-loc = H

ε5: B-top = NC, B-loc = H

ε6: B-top = C, B-loc = onT

ε7: A-top = NC, B-top = C, B-loc = onA

ε8: A-top = C, B-top = NC, B-loc = H

Figure 11: Top: actions in the example blocks world problem. Bottom: DTGs for two
sample variables for an example from the blocks world domain. The positive
numbers on the edges are the action identifiers from the table at the top and
the negative numbers are distinct identifiers for the no-op actions.

We only depict the DTGs of variables hand and A-loc in Figure 11. In the DTG for
hand, the edge labelled with 〈2, ρ2, ε2〉 is for action put-down(A). We have the variable A-loc
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in preconditions ρ2 and it needs to take the value H. After put-down(A) is executed, the
effects will be A-top = C, A-loc = onT, which are in ε2. Similarly, other edges in DTG(hand)
and all edges in DTG(A-loc) could be constructed by using Algorithm 1.

TC for hand
hand A-top B-top A-loc B-loc
τ τ + 1 τ τ + 1 τ τ + 1 τ τ + 1 τ τ + 1

× E × C × × H onT × ×
× E × × × C × × H onT
× E × C C NC H onB × ×
× E C NC × C × × H onA
E NE C NC × × onT H × ×
E NE × × C NC × × onT H
E NE C NC × C onB H × ×
E NE × C C NC × × onA H
E E × × × × × × × ×

NE NE × × × × × × × ×

TC for A-loc
A-loc A-top B-top hand
τ τ + 1 τ τ + 1 τ τ + 1 τ τ + 1

onT H C NC × × E NE
H onT × C × × × E
H onB × C C NC × E

onB H C NC × C E NE
H H × × × × × ×

onB onB × × × × × ×
onT onT × × × × × ×

Figure 12: Encoding state transitions in DTGs in Figure 11 using table constraints.

The transition constraints for the two DTGs are in Figure 12. To encode the DTG
of hand as a table constraint, we have included all the state variables on the edges of the
graph at time τ and τ + 1. The first row of the table is for edge from × to E labelled with
〈2, ρ2, ε2〉 which is for action put-down(A). As you can see, the variable A-top is not among
the preconditions but it is in the effects with value C. So we set values × and C for variables
A-top at time τ and τ+1. The value of A-loc changes from H to onT by action put-down(A).
The value for other variables are considered don’t cares. The other rows are extracted in
a similar manner. We can see from the tables, there are comparatively a large number of
don’t care values in these tables. Considering the conditions on the edges of the DTGs, it is
obvious that they share a small number of variables. This is in contrast with our previous
example from driverlog domain where the variables of the conditions on edges were almost
the same. That is why we had a small number of don’t care values in those tables.

5.4 Handling Parallelism Conflicts

As described already, the transition constraints encode the possible changes of values of
the state variables. Since many variables can change their values at the same time step,
we can have several actions taking place at the same time. To prevent actions that have
parallel conflicts among them from happening at the same time, in our model (Lines 7–9 of
Algorithm 3), we add parallelism variables to the corresponding transition table constraints.
These parallelism variables and their values are to capture the conditions in Definition 13
and thus to implement the parallelism constraints required to prevent parallel conflicts. If
we have conflicting actions in the transition table constraint of a state variable, we will
consider a parallelism variable for that table constraint. This variable will take different
values in the corresponding rows of conflicting actions. These parallelism variables having
different values in the rows for conflicting actions, prevent them from happening at the
same time.
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5.4.1 Examples of Conflicting Actions

Figure 13 shows two actions α and α′ such that α⊗ α′ as per Condition 6 in Definition 13.
To make it clearer, α and α′ conflict because both actions have v3 in their effects as well
as in their preconditions. These actions correspond to different rows in the transition table
constraint of v3. To prevent these actions from happening at the same time we add an extra
parallelism variable pτv3 to the table. This variable will have different values k and k′ in the
rows for actions α and α′. Note that actions α and α′ will also appear in the transition
table constraints of v4 and v5 respectively. To synchronise the transitions across different
tables, we must add this parallelism variable pτv3 to the transition table constraints of v4 and
v5. This variable will have value k in the corresponding row for action α in transition table
constraints of v4 and will have value k′ in the corresponding row for action α′ in transition
table constraint of v5. Note that because of conflicting actions in other transition table
constraints, further parallelism variables may also be added to this table.

action α
preconds:
v1 = 1, v3 = 2

effects:
v3 = 3, v4 = 4

action α′

preconds:
v2 = 5, v3 = 2, v5 = 6

effects:
v3 = 3, v5 = 7

action α′′

preconds:
v1 = 1, v2 = 5, v3 = 2, v5 = 6

effects:
v3 = 3, v4 = 4, v5 = 7

Transition Table tc(v3)

vτ1 vτ+1
1 vτ3 vτ+1

3 vτ4 vτ+1
4 vτ2 vτ+1

2 vτ5 vτ+1
5 . . . pτv3

...

1 1 2 3 × 4 × × × × × k
...

× × 2 3 × × 5 5 6 7 × k′

...

1 1 2 3 × 4 5 5 6 7 × k′′

...

Figure 13: Adding parallelism variables for three conflicting actions

Now suppose we have another action α′′ (shown in Figure 13), whose preconditions are
the union of preconditions of α and α′, and the effects are the union of effects of α and α′.
For this action we will have another row in the table and since this action is conflicting with
α and α′ based on the same condition 6 in Definition 13, we will have a separate value k′′

for the parallelism variable in this row. Now it is obvious that any of these actions can be
selected to be included in the plan and preventing α and α′ from happening at the same
time does not prevent α′′.

5.4.2 Parallelism Variables

We now formally describe how our model prevents actions having parallel conflicts from
happening at the same time. From the six types of condition in Definition 13, some condi-
tions are prevented automatically in our model. For the others, we add parallelism variables

931



Ghanbari, Namazi, Newton, & Sattar

to transition tables and assign appropriate row values to them to prevent the corresponding
actions from happening at the same time.

Lemma 5 (Parallelism Constraints). Given the transition constraints constructed by Al-
gorithm 4, we need constraints only for the Conditions 5 and 6 of Definition 13 to avoid
selection of actions that have parallel conflicts. Other conditions are implicitly enforced.

Proof. We analyze one after another each condition of Definition 13 below.

1. ∃v ∈ [PnotE(α) ∩ PnotE(α′)] such that pα(v) 6= pα′(v). For α, vτ = pα(v) but for α′,
vτ = pα′(v). However, vτ can take only one value at one time. So this condition can
never happen and we do not need any constraint for this case

2. ∃v ∈ [PnotE(α) ∩ EnotP(α′)] such that pα(v) 6= eα′(v). For α, vτ+1 = vτ = pα(v) but
vτ+1 = eα′(v) for α′. Clearly, this is not possible as vτ+1 can take only one value at
one time. So we do not need any constraint for this case.

3. ∃v ∈ [PnotE(α) ∩ PandE(α′)]. For α, vτ = vτ+1 = pα(v) and for α′, vτ = pα′(v),
vτ+1 = eα′(v). Since pα′(v) 6= eα′(v), pα(v) cannot be equal to both of them at the
same time. So we do not need any constraint for this case.

4. ∃v ∈ [EnotP(α)∩EnotP(α′)] such that eα(v) 6= eα′(v). For α, vτ+1 = eα(v) but for α′,
vτ+1 = eα′(v). However, vτ+1 can take only one value at one time. So this condition
can never happen and we do not need any constraint for this case.

5. ∃v ∈ [EnotP(α) ∩ PandE(α′)]. For α, vτ+1 = eα(v) and for α′, vτ = pα′(v) and
vτ+1 = eα′(v) where pα′(v) 6= eα′(v). If eα(v) 6= eα′(v), we do not need any constraint
because vτ+1 cannot take two values at one time. However, if eα(v) = eα′(v), we have
to implement a parallelism constraint by adding a parallelism variable and along with
its appropriate values in the corresponding rows of the transition table constraint.

6. ∃v ∈ [PandE(α) ∩ PandE(α′)]. For α, vτ = pα(v) and vτ+1 = eα(v) where pα(v) 6=
eα(v). For α′, vτ = pα′(v) and vτ+1 = eα′(v) where pα′(v) 6= eα′(v). If pα(v) 6=
pα′(v), we do not need any constraint because vτ cannot take two values at one time.
Similarly, if eα(v) 6= eα′(v), we do not need any constraint because vτ+1 cannot take
two values at one time. However, if pα(v) = pα′(v) and eα(v) = eα′(v) then we have
to implement a parallelism constraint by adding a parallelism variable and along with
its appropriate values in the corresponding rows of the transition table constraint.

We therefore need parallelism constraints only for Conditions 5 and 6, and still partially.

In order to identify the actions that could have parallel conflicts among them due to the
parts of conditions 5 and 6 of Lemma 5, we define two sets of actions below.

Definition 14. Given a state variable v and two values k, k′ from its domain D(v), we
define the following two sets of actions:

PandE(v, k, k′): a set of actions {α|v ∈ PandE(α) ∧ pα(v) = k ∧ eα(v) = k′} where each
action has (v = k) in its precondition and (v = k′) in its effects. These actions are on

932



Encoding Domain Transitions for Constraint-Based Planning

the edges between any two vertexes k 6= k′ in DTG(v) of the state variable v, where
k, k′ are not the don’t care. As per Condition 6 of Lemma 5, any two actions in this
set have parallel conflict with each other.

EnotP(v, k′): a set of actions {α|v ∈ EnotP(α)∧eα(v) = k′} where each action has (v = k′)
in its effects. Clearly, these actions are on the edges from the don’t care vertex × (if
any) to the vertex k′ in DTG(v) of the state variable v. No two actions in this set
have parallel conflict with each other.

As per Condition 5 of Lemma 5, any α ∈ EnotP(v, k′) and any α′ ∈ PandE(v, k, k′) have
parallel conflict between each other.

Given the two sets of actions as defined above, below we define a parallel conflict graph
that represents the parallel conflicts between these actions.

Definition 15 (Parallel Conflict Graph). Given a variable v and two values k, k′ ∈ D(v),
the parallel conflict graph PCG(v, k, k′) has the set of vertexes PandE(v, k, k′)∪EnotP(v, k′)
and a set of edges {〈α, α′〉|α ∈ PandE(v, k, k′) ∧ α′ ∈ (PandE(v, k, k′) ∪ EnotP(v, k′))}.

0 0

1
2

3
4

• Thin circles: actions EnotP(v, k′)

• Thick circles: actions PandE(v, k, k′)

• Vertex Labels: Colours assigned by a
graph colouring algorithm

• Thick circles all are in a clique.

• Each thin circle is the centre of a star.

Figure 14: A typical parallel conflict graph and a possible colouring of its vertexes.

In order to avoid actions having parallel conflict from happening at the same time, we
add to the transition table constraint tc(v) a parallelism variable pτv that will take different
values for each two actions in parallel conflict. Assigning these values is essentially equivalent
to solving the graph colouring problem on the parallel conflict graph. We, therefore, need
to assign different labels to each two neighbouring vertexes in the parallel conflict graph.
From the characteristics of this type of graph, as are shown in Figure 14, it is obvious that
we will have |PandE(v, k, k′)|+1 labels. All the vertexes in EnotP(v, k′) could get (and does
get in our implementation) the same label 0 and the vertexes in PandE(v, k, k′) could be
labelled by sequential numbers from 1 to |PandE(v, k, k′)| in any permutation order.

We now need to find a way to assign a unique label for each action that appears in the
edges of a given DTG(v). Note that an action α ∈ PandE(v, k, k′) can appear only in one
parallel conflict graph PCG(v, k, k′) over all pairs of values k 6= k′. However, for a given
value k′, an action α′ ∈ EnotP(v, k′) could appear in all parallel conflict graphs PCG(v, k, k′)
for k 6= k′. In order to get a unique label for such action α across all parallel conflict graphs
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PCG(v, k, k′) for k 6= k′, we assign a predefined label 0 (without loss of generality) to any
action α′ ∈ EnotP(v, k′). Only the actions in PandE(v, k, k′) for any k 6= k′ could actually
be labelled by a graph colouring algorithm. Note that the non-zero labels used in one
conflict graph could be used again in another conflict graph as well. This is because for any
k 6= k̄ or k′ 6= k̄′, actions in PandE(v, k, k′) due to value conflicts can not be selected at the
same time as the actions in PandE(v, k̄, k̄′) get selected. A no-op action on an edge from
k′ to k′ can happen in parallel with any action in EnotP(v, k′), but not with any action in
PandE(v, k, k′). No two no-op actions can happen at the same time. So all no-op actions
in the DTG(v) could get a predefined label 0. We thus have a unique label Lv(α) for each
α in DTG(v). The unique label Lv(α) will be used as the value of column pτv and row α in
the table constraint tc(v) of the state variable v.

Algorithm 5 Adding Parallelism Variables to Transition Constraints

proc ParallelismVariables()
foreach v ∈ V

foreach k ∈ D(v), Lv(α) = 0, where α is on the loop 〈k, k〉 in DTG(v)
foreach k, k′ ∈ D(v) : k 6= k′

o = {α|v ∈ EnotP(α) ∧ eα(v) = k′} // EnotP(v, k′)

o′ = {α|v ∈ PandE(α) ∧ pα(v) = k, eα(v) = k′} // PandE(v, k, k′)
G = GenerateGraph(o, o′)
Assign Lv(α) = 0 for all α ∈ o
NumLabels = LabelGraph(G)
if (NumLabels == 0) continue;
add column pτv to tc(v) with value 0 in all rows (if not added before)
foreach α in o ∪ o′

tr = corresponding row of α in tc(v)
if (α ∈ o) tr[pτv ] = Lv(α)
foreach v′ ∈ PandE(α) ∪ EnotP(α) // means in effects, no matter in preconds

add column pτv to tc(v′) with value 0 in all rows (if not added before)
tr′ = corresponding row of α in tc(v′)
tr′[pτv ] = Lv(α)

func GenerateGraph(o, o′)
G= empty graph
foreach α in o

Add vα to G
foreach α in o′

Add vα to G
foreach α ∈ o′

foreach α′ ∈ o
if ¬ ElsePrevented(α, α′)

add edge (vα, vα′) to G
foreach α′ ∈ o′

if ¬ ElsePrevented(α, α′)
add edge (vα, vα′) to G

return G

func ElsePrevented(α, α′) returns bool
foreach v ⇐ pα foreach v′ ⇐ pα′

if v = v′ ∧ pα(v) 6= pα′(v′)
then return true

//uncomment below if mutexes used
//if v 6= v′ ∧mutex{v = pα(v), v′ = pα′(v′)}

// then return true
foreach v ⇐ eα and foreach v′ ⇐ eα′

if v = v′ ∧ (eα(v) 6= eα′(v′) ∨ Lv(α) 6= Lv′(α
′))

then return true
//uncomment below if mutexes used
//if v 6= v′ ∧mutex{v = eα(v), v′ = eα′(v′)}

// then return true
return false
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In Algorithm 5, we implement the addition of the parallelism variables to the transition
table constraints and assigning the row values to the parallelism variables as well. In Proce-
dure ParallelismVariables, for each state variable v, and for each pair of values k 6= k′ of v, we
create a parallel conflict graph by calling Procedure GenerateGraph. The no-ops appearing
in the loops of the DTG(v) are assigned label 0. Also, the actions in o = EnotP(v, k′) get
label 0. Procedure LabelGraph assigns labels to the actions in o′ = PandE(v, k, k′). Having
the labels, we just add a parallelism variable pτv to the transition table initialising values
at all rows with 0. Then, for each action α ∈ o′, we consider Lv(α) as the value of the
parallelism variable in the corresponding row. Besides this, to synchronise the transitions
in all transition tables, we also add this parallelism variable and its value to the transition
tables of all other variables appearing in the effects of this action. These transition tables
are the only tables that this action will appear in them as a row.

Although the above addresses the parallelism constraint implementation issue, we how-
ever, do some optimisation during generation of the parallel conflict graphs by Proce-
dure GenerateGraph. When we make an attempt to add an edge between two conflicting
actions α and α′, we check whether these actions have an automatically prevented con-
flict on some other variable. If so, we do not need any edge for this case. This checking
is performed in Function ElsePrevented. Doing this, we can reduce the number of labels
needed. Since theses labels will be the values of the parallelism variable that will be added
to the transition table, the domain size of the parallelism variable will be smaller by this
optimisation. Given this optimisation in the parallel conflict graph, a straightforward graph
colouring as described before might not be very good. However, solving a graph colouring
problem optimally is in general very hard. So we use the well-known greedy algorithm
Welsh-Powell for colouring the graph (Welsh & Powell, 1967).

We now formally prove that the labels generated for the parallelism variables by Algo-
rithm 5 correctly capture the constraints identified by Lemma 5.

Lemma 6. Selection of actions that have parallel conflicts as per Lemma 5 will be avoided
if and only if we have parallelism variable labels generated by Algorithm 5.

Proof. For the if part, we prove Conditions 5 and 6 of Lemma 5 separately. In Condi-
tion 5, we need to avoid selection of conflicting actions α and α′ where ∃v ∈ [EnotP(α) ∩
PandE(α′)] and eα(v) = eα′(v). According to Algorithm 5, the parallelism variable v will
get label 0 when α ∈ EnotP(v, eα(v)) and will get a label different from 0 for action
α′ ∈ PandE(v, pα′(v), eα′(v)). Therefore, these actions can not be selected at the same
time. In Condition 6, we need to avoid selection of conflicting actions α and α′ where
∃v ∈ [PandE(α) ∩ PandE(α′)], pα(v) = pα′(v) and eα(v) = eα′(v). Since both actions α and
α′ are in PandE(v, pα(v), eα(v)), according to Algorithm 5, the parallelism variable v will
get different labels unless these actions are otherwise prevented from being selected simul-
taneously because of differences in values in another state variable or even in a parallelism
variable. Therefore, these actions α and α′ can not be selected at the same time.

For the only if part, we prove the contraposition. According to Condition 5 of Lemma 5,
for actions α and α′ where ∃v ∈ [EnotP(α) ∩ PandE(α′)] and eα(v) = eα′(v), if we do not
use a parallelism variable or we use one but with the same label, then rows corresponding
to both actions could be selected at the same time from the respective table and thus a
parallel conflict will occur. A similar argument could be made for Condition 6 of Lemma 5.
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To summarise, after all the transition constraints are constructed, to prevent conflicting
actions from happening at the same time, parallelism variables will be added to the transi-
tion tables. Therefore, in addition to the (m+ 1)|V| CSP variables we mentioned before we
may have m|Vp| CSP variables for parallelism variables where Vp is the set of parallelism
variables. |Vp| will be at most equal to |V| but it is practically much smaller than that.

5.5 Mutex Constraints

During translation from PDDL to SAS+, the translator (Helmert, 2006), along with the
SAS+ representation, also produces the mutex-groups. The mutex-groups are sets of variable-
value pairs that cannot occur at the same time. Mutexes are produced as part of the iden-
tification of monotonicity invariant candidates (Helmert, 2009). In our driverlog example,
we have a mutex-group {(d-loc = t), (t-occ = ⊥)}, which denotes that when the variable
d-loc takes the value t, the variable t-occ cannot take the value false and vice versa. In
blocks world example, we have a mutex-group {(A-top = C), (A-loc = H), (B-loc = onA)}.
These three variable-value pairs are mutually exclusive. To ensure that no pair from these
mutex-group occurs at the same time, we use mutex constraints, which are 2-ary negative
table constraints. A mutex-group that involves only one variable could actually be ignored
because such a mutual exclusion condition is already captured by the characteristics of a
multi-valued variable. By mutex-groups, we therefore mainly mean mutex-groups that in-
volve more than one variable. To summarise, for each mutex pair {(v = k), (v̄ = k̄)} in
mutex-groups, we add a negative mutex table mc(v, k, v̄, k̄, τ) with columns vτ , v̄τ and a row
with column values k, k̄. Figure 15 represents the negative mutex tables for the above
mutex-group from the blocks world domain. Note that these tables do not necessarily have
just one row. We may have other mutex groups that insert other rows for these tables. For
instance, we have two other mutex-groups in our example from the blocks world {(B-top =
C), (A-loc = onB), (B-loc = H)} and {(hand = E), (A-loc = H), (B-loc = H)} that insert
two other rows 〈onB, H〉 and 〈H, H〉 to the mutex table for A-locτ and B-locτ .

A-topτ A-locτ

C H

A-topτ B-locτ

C onA

A-locτ B-locτ

H onA

Figure 15: Mutex constraints for a sample mutex group from blocks world domain.

Note that mutex-groups are used optionally in our model. When used they could lead
to more efficient search performance. Also note that when mutex-groups are used, we can
reduce the domain size of parallelism variables. A mutex group could subsume a parallel
conflict and thus the respective edge could be removed from a parallel conflict graph. This
might result in a better graph colouring of the parallel conflict graph in terms of the number
of colours used. Refer to the commented lines in Function ElsePrevented in Algorithm 5;
the commented pseudocode lines are to be uncommented to obtain this effect.
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5.6 Decoding CSP Solutions to Plans

After encoding a planning problem of a given makespan as a CSP, we solve the CSP using
a CSP solver. If the problem is satisfiable, the CSP solver will output the solution as a
complete assignment to the variable vτ s and pτvs. We then need to extract the final plan
from the assignment. Algorithm 6 describes the procedure. At each time step, if the value
of v is changed from k at time step τ to k′ at time step τ + 1, we need to check the actions
on the labels of the edges from k to k′ along with edges from don’t-care to k′ in the DTG of
v. If the value of v is the same value k′ at time steps τ and τ + 1, we only need to check the
actions on the labels of the edges from don’t-care (note that every value can be considered
as don’t-care) to k′ in the DTG of v. From these sets of actions, those whose preconditions
are satisfied at τ and whose effects are satisfied at τ + 1 are the actions that are responsible
for the change. Note that we can not have two actions changing the value of v from k to
k′, because we are preventing them from happening at the same time by using parallelism
variables pvs. So if we have more than one candidate action that changes the value of v
from k to k′, and the preconditions and effects are satisfied, we can easily select one of them
based on the value of parallelism variable pv in the transition table of v. However, we may
have more than one action changing the value of v from don’t-care to k′. Since these actions
are not conflicting with each other, if their preconditions and effects are satisfied and the
values of relevant parallelism variables match with the corresponding transition table cell
values, we select all of them.

Algorithm 6 Decoding CSP Solution to Plan

input m: makespan value when the CSP solution is found
input {(vτ = k)} for each τ ∈ [0,m] and for each state variable v: CSP solution
input {(pτ = l)} for each τ ∈ [0,m) and for each parallelism variable pv: CSP solution
output: parallel plan Π = 〈A1, . . . , Am〉//Aτ actions at τ
foreach time step τ = 1 to m // number of action layers

foreach v at time steps vτ−1 and vτ

if vτ−1 and vτ have different values
foreach edge 〈vτ−1, vτ 〉 with label 〈α, ρ, ε〉 in DTG(v)

if ∀(v̄ ⇐ ρ)[ρ(v̄) = v̄τ−1] and ∀(v̄ ⇐ ε)[ε(v̄) = v̄τ ] and pτ−1
v = Lv(α)

add α to Aτ ; break // only one such action exists
// in the following, don’t care × could be equal or not equal to vτ

foreach edge 〈×, vτ 〉 with label 〈α, ρ, ε〉 in DTG(v)

if ∀(v̄ ⇐ ρ)[ρ(v̄) = v̄τ−1] and ∀(v̄ ⇐ ε)[ε(v̄) = v̄τ ] and ∀(v̄ ⇐ ρ ∪ ε)pτ−1
v̄ = Lv̄(α)

add α to Aτ // we allow all such actions, some may be redundant

Lemma 7 (CSP to Plan). There could be more than one parallel plans for each CSP solution
returned. However, we generate just one plan, which may include redundant actions.

Proof. The proof is straightforward from Algorithm 6. For a given v, when we extract
actions that are on the edges from the don’t care vertex to a value k′, we include all actions
that satisfy the preconditions and effects. By selecting all of those actions, we might include
some redundant actions in our plan. For example, the redundancy may arise when one such
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action’s preconditions and effects are respectively subsets of those of another such action.
Redundant actions may also come when an action changes the values of variables, and those
variables and the values are neither required as preconditions of any latter action in the
plan nor are specified in the goal condition. However, we do not have any concern about
this, since our objective is to produce plans of optimal makespan and not of optimal plan
length. Of course a post-processing step could eliminate the redundant actions if a shorter
plan is desired. Thus, multiple plans are possible from the same CSP solution.

5.7 Correctness and Complexities

We prove the correctness of our encoding and decoding algorithms showing how they cor-
respond to the DTG-based planning formulation. In Lemma 4, we already have shown the
soundness, completeness and optimality of the DTG-based planning formulation.

Lemma 8 (TCPP Model). There exists a parallel plan of a given makespan if and only if
the CSP model constructed by Algorithm 3 along with Algorithms 4 and 5 is satisfiable. A
parallel plan can be correctly decoded from the CSP solution by using Algorithm 6.

Proof. For the if part, assume a CSP solution is found and we will show that a parallel plan
exists. To show the existence, we rather generate such a parallel plan; which also proves the
last part of the lemma. Given a CSP solution to our model, we have values of all vτ s and all
pτvs. From the changes of a variable v from vτ to vτ+1, we can easily identify corresponding
actions from the corresponding DTG of v and using pτvs we can also identify which of
the conflicting actions is actually to be extracted. Algorithm 6 exactly finds these actions
and generates a sequence of sets of actions Π = 〈A1, . . . , . . . , Am〉. Although Algorithm 6
does not extract the no-ops, we can optionally include them in the sets of actions as well.
Now, if the CSP solver does return a solution, the solution certainly satisfies the initial
state and the goal constraints. From the values of vτ s and vτ+1s, we can easily get a
sequence of states 〈s0, s1, . . . , sm〉. Each transition table implements application of each
action appearing on the edges of a DTG. So all transition tables at all timestep together
implement app(sτ−1, A

τ ) = sτ . Lastly, no two actions α⊗α′ are in a set of actions Aτ since
values assigned to the parallelism variables inherently prevented this. As per Lemma 3, the
generated sequence of sets of actions Π is therefore a parallel plan.

For the only if part, assume a parallel plan exists and for this, we will show that we
have a satisfiable CSP model. Let Π = 〈A1, . . . , . . . , Am〉 be such a parallel plan for the
multi-valued planning task P = 〈V, I,G,A〉. As per Lemma 3, we therefore have a sequence
of states 〈s0, s1, . . . , sm〉 such that (i) s0 = I, (ii) for all τ ∈ [1,m], app(sτ−1, A

τ ) = sτ ,
(iii) for all τ ∈ [1,m], there exist no two actions α, α′ ∈ Aτ such that α ⊗ α′, and (iv)
G(v) = sm(v) for each variable v ⇐ G. In our CSP model, for each state variable v ∈ V and
for each time step 0 ≤ τ ≤ m, we have a CSP variable vτ , which has the same domain as
the state variable v has. Thus, a set of variables {vτ : v ∈ V} represents a state sτ for any
given τ ∈ [0,m]. Now considering the assignment of values to vτ s and pτvs where vτ = sτ (v)
and pτv =Lα(v), our initial state and goal constraints are satisfied trivially. Our transition
table constraint for each v and so vτ contains rows for all edges in DTG(v) (including loops)
and so for the actions (including no-ops) appearing on the edges. The rows in the table
using other v̄τ s and v̄τ+1s completely describe all the actions in the DTGs. Thus, for a
given set of actions Aτ at time step τ , since Aτ contains at least one action from each DTG
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(may include no-ops), we must be able to find some rows in all the table constraints and
thus all the table constraints will be satisfiable. Note that when an action is selected from
a transition table constraint as a row, it will be selected from all other tables in which it
appears. In all rows in different tables corresponding to this action, the value of common
parallelism variables will be the same so all these table constraints are satisfied. All these
prove that our CSP model is satisfiable. A complete CSP search is therefore able to find a
CSP solution.

We also analyse the theoretical time complexity of our encoding and decoding procedures
although these are practically negligible compared to the search times.

Lemma 9 (Encoding Complexity). Transition and mutex constraints are all constructed
once and used for each time step. In Algorithm 3, construction of

1. all initial state and goal constraints need O(|V|) time and space.

2. all transition constraints by using Algorithm 4 require O(Ê2|V|V̂a) time and space;

3. adding parallelism variables to transition constraints by using Algorithm 5 requires
O(|V|Ê2 + M̂V̂m) time and O(|V|V̂pÊ) space;

4. all mutex constraints require O(M̂V̂m
2
) time and space;

where

Ê is the maximum number of edges in a DTG;

V̂a is the maximum number of variables appearing in the preconditions and the effects of
an action (i.e. the maximum parameter size of an operator);

V̂p is the maximum number of parallelism variables;

M̂ is the number of mutex-groups; and

V̂m is the maximum number of variable-value pairs in a mutex-group.

Proof. We analyse the algorithms to find the time and space complexities.

1. Initial states are fully specified while the goals could be partially specified.

2. In Algorithm 4, the maximum number of columns possible in a table is 2ÊV̂a. This
is because there are maximum Ê edges in a DTG and each edge on its label has an
action that has at most Va variable in its preconditions and effects. The maximum
number of rows possible in a table is Ê. Lines 2-3 in Algorithm 4 take O(ÊV̂a) time
(i.e. the number of columns). Moreover, the loop in Line 4 runs O(|Ê|) times, each

iteration taking O(ÊV̂a) time to fill in the table row. There are |V| state variables
and we need a table for each variable’s DTG.
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3. In Algorithm 5, the first loop in Procedure PrallelismConstraints needs |V| time. Func-
tion GenerateGraph considers each pair of edges from k to k′ and from don’t-care to k′

so its complexity is quadratic in number of edges. Therefore, generating conflicting
graphs for all values in the DTG in the worst case is O(Ê2). Also the complex-
ity of Function LabelGraph which uses Welsh-Powell colouring algorithm is linear in
the number of vertexes. Since the vertexes of the conflicting graphs are actions or
edges of DTG, the worst case complexity of labelling all conflicting graphs in a DTG

is O(Ê). Function ElsePrevented needs V̂a
2

time for the two-level nested loops and

O(M̂V̂m) to construct a look-up table and O(M̂) time to determine whether two given
variable-value pairs are mutex in the lookup table. The look-up table comprises for
each variable-value pair a list of mutex-groups where the pair appears. Lastly, assign-
ing labels to the parallelism variable in rows needs Ê time. There are V̂p parallelism
variables which may appear in the worst case in all transition tables and each table
has at most Ê rows. So we need O(|V|V̂pÊ) space.

4. We need O(M̂V̂m
2
) time and space to construct the mutex constraint tables, each of

them has 2 columns and 1 row.

Given the same number (|V|) of CSP variables at each time step, we need to refer to
the three types of table in each of the m time steps when m is the given makespan.

Lemma 10 (Decoding Complexity). The time taken to decode a CSP solution to a plan

is O(m|V|ÊmV̂a) where m is the given makespan, V is the set of state variables, Êm is

the maximum number of edges (multi-edge) between two vertexes in a DTG, and V̂a is the
maximum number of variables appearing in the preconditions and effects of an action.

Proof. The proof is straightforward from the loops in Algorithm 6. For each makespan
and for each state variable, we select an edge among Êm edges between corresponding
vertexes and selecting them needs checking V̂a state variables and at most V̂a parallelism
variables.

6. PaP2 Reconstruction

To compare our constraint model with PaP2’s model, we reconstruct PaP2 and name it
PaPR. To encode the DTG-based planning formulation as CSP, we need to encode the
relationships between the state variables and the actions at consecutive time steps. In
our TCPP model, we ignore the actions and our transition constraints directly encode the
relationships between the state variables in two consecutive time steps by using the state
transitions in the DTGs. Moreover, we use parallelism variables to specify which action
pairs cannot be in parallel with each other in the same time step. In the PaP2 model
(Barták, 2011b), the main constraints, we refer to them by action succession constraints,
encode the relationships between actions at two consecutive time steps ignoring the state
variables connected by them. The relationships between actions and their preconditions
and effects are encoded by another type of constraints named synchronisation constraints.
Nevertheless, we also significantly enhance PaPR by using don’t cares instead of sets and
also using mutex-groups.
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6.1 Constructing FSA

In PaP2 (Barták, 2011b), the action succession constraints are actually encoded by using
FSA generated from a multi-valued representation of the problem. These FSA are similar
to the DTGs and they represent how the state variables change their values. The difference
is that unlike DTG’s in which there are conditions on the edges, in these automata only
actions are represented on the edges. When an action changes the value of a variable from
k to k′, it occurs on the edge from vertex k to vertex k′. Also, if a state variable is only
on the effects of an action, that action occurs on edges from all values to the value in the
effect. The other difference is that in the FSA, there are loops for every vertex in the graph
denoting the no-ops for each value of the state variable. We provide the formal definition
of FSA in Definition 16 and also show FSA for the driverlog example in Figure 16.

Definition 16 (Finite State Automaton). Assume P = 〈V, I,G,A〉 be a multi-valued plan-
ning task. The finite state automaton FSA(v) of v ∈ V is an edge-labelled directed graph
with the vertexes D(v) and the following edges:

1. For each action α ∈ A, there will be an edge 〈k, k′〉 from k to k′ with label α, if
v ∈ PandE(α), and pα(v) = k and eα(v) = k′.

2. For each action α ∈ A, there will be an edge 〈k, k′〉 from each k ∈ (D(v) \ {k′}) to k′

with label α, if v ∈ EnotP(α) and eα(v) = k′.

3. For each value k ∈ D(v), there will be a loop 〈k, k〉 from vertex k to vertex k to
represent a no-op with label α where for each loop, α is a distinct no-op action with
preconditions {(v = k)} and no effects.

A
B

C

3
6t

52

D
14

1311
12

1

4

−2

−5

−1

−4
−3

A B C
7 9

8 10
−3−1 −2

⊥ >
1

2

3

4

5
6−1 −2

Figure 16: FSA for the driverlog problem in Figure 1. Left: FSA for state variable d-
loc, Right-Top: FSA for state variable t-loc, and Right-Bottom: FSA for state
variable t-occ. In the labels of the edges, the positive numbers are the action
identification numbers from Table 2.1 and the negative numbers are distinct
identifiers for no-ops or loops. Boolean values are true > and false ⊥.

6.2 Encoding FSA into CSP

In PaP2, for each state variable v at time τ , a CSP variable vτ is considered. The domain
of vτ comprises all the actions occurring on the edges of FSA(v). These actions include the
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no-ops as well. The FSA are encoded with four kinds of constraint: initial constraints, goal
constraints, action succession constraints, and synchronisation constraints. In the original
PaP2, auxiliary constraints are used to specify that at each time step, at least one non-
loop action should be selected; we do the same in PaPR, our reconstructed version of
PaP2. Although not used in the original PaP2, in our enhanced version of PaPR, wherever
possible, we use don’t cares instead of sets and also optionally use constraints encoding
mutex-groups produced by the PDDL-to-SAS+ translator. Algorithm 7 describes PaPR’s
encoding procedure.

Algorithm 7 FSA To CSP Encoding

1 Planing Problem P = 〈V, I,G,A〉, makespan m
2 //variables: v, v′, values: k, k′

3 foreach (v, k) ∈ I, Add constraint ic(v1, k)
4 foreach (v, k) ∈ G, Add constraint gc(vm, k)
5 for timestep τ = 1 to m do
6 foreach state variable v ∈ V
7 // asc below is added up to τ = m− 1
8 Add action succession constraint asc(vτ , vτ+1)
9 Add synchronisation constraint sc(vτ )

10 Add auxiliary constraint
∨
v∈V(vτ ≥ 0)//non-loop

11 //mutex constraints below are optional for enhancement
12 foreach pair {v = k, v′ = k′} in mutex groups
13 Add a mutex constraint mc(v, k, v′, k′, τ)

6.3 Initial State and Goal Constraints

To encode the initial state and the goals of the planning problem, PaP2 needs to add
constraints restricting the actions to be selected at time 1 and m. Since the initial state
is fully specified, we need |V| table constraints listing the actions that are allowed in each
variable’s FSA at time 1. These actions are on the outgoing edges of the vertex representing
the initial value of the variable. For the goals, we only have the values for some of the state
variables. So we need at most |V| table constraints listing actions that are relevant for the
goals at time m. These actions are on the incoming edges of the vertex representing the
value of the variable in a goal.

6.4 Action Succession Constraints

The action succession constraints are represented by binary constraints between CSP vari-
ables for a state variable in two consecutive time steps and list all the action pairs that can
occur consecutively in the automaton. These constraints are easily constructed from the
automata of the state variables by examining all pairs of consecutive edges possible in the
automata. Note that actions are in the labels of the edges in a FSA. Nevertheless, action
α can be followed by another action α′ if for all v ∈ V, (v ⇐ eα ∧ v ⇐ pα′) logically implies
eα(v) = pα′(v) i.e. preconditions of α′ are compatible with the effects of α. Algorithm 8
constructs the table for the action succession constraint between variables vτ and vτ+1. For

942



Encoding Domain Transitions for Constraint-Based Planning

a given FSA, all actions α′ that can follow a given action α are however stored as a set in
the same cell of the table to obtain a compact representation.

Algorithm 8 Action Succession Constraint asc(vτ , vτ+1) using a table

1 T τ : action succession constraint table for vτ , vτ+1

2 Columns of T τ are vτ and vτ+1 to hold actions
3 foreach edge 〈k, k′〉 in FSA(v) with label α
4 tr: a new row in table T τ

5 E: all edges outgoing from k′

6 foreach edge 〈k′, k′′〉 ∈ E with label α′

7 //in the line below if α cannot be followed by α′

8 if ∃(v ∈ V)[v ⇐ eα ∧ v ⇐ pα′ ∧ eα(v) 6= pα′(v)]
9 E = E \ {〈k′, k′′〉}

10 tr[vτ ] = α, tr[vτ+1] = {α′|α′ is on an edge in E}

Figure 17 shows the action succession constraints obtained for the FSA in Figure 16 for
the driverlog example. In the first row of the table for d-loc in Figure 17, we see action 1
can be followed by actions -1, 4, 5, 6. Verify these from the FSA of d-loc in Figure 16 and
the action names in Table 2.1. Also, verify other rows and tables in a similar way.

ASC for d-loc

d-loc d-loc

τ τ + 1

1 {-1,4,5,6}
2 {-1,4,5,6}
3 {-1,4,5,6}
4 {-2,1,11}
5 {-3,2}
6 {-4,3,14}

11 {-5,12,13}
12 {-2,1,11}
13 {-4,3,14}
14 {-5,12,13}
-1 {-1,4,5,6}
-2 {-2,1,11}
-3 {-3,2}
-4 {-4,3,14}
-5 {-5,12,13}

ASC for t-occ

t-occ t-occ

τ τ + 1

1 {-2,4,5,6}
2 {-2,4,5,6}
3 {-2,4,5,6}
4 {-1,1}
5 {-1,2}
6 {-1,3}
-1 {-1,1,2,3}
-2 {-2,4,5,6}

ASC for t-loc

t-loc t-loc

τ τ + 1

7 {-2,8,9}
8 {-1,7}
9 {-3,10}

10 {-2,8,9}
-1 {-1,7}
-2 {-2,8,9}
-3 {-3,10}

Figure 17: Action succession constraints from the FSA in Figure 16 for driverlog example.

6.5 Synchronisation Constraints

The synchronisation constraints ensure that if an action changes several state variables then
the same action must be selected in each of the respective FSA. Also, if a variable appears
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only in the preconditions of an action, we need to be sure that a no-op action is selected in
the corresponding FSA. A synchronisation constraint is considered for each state variable v
and for each time step τ and is encoded as a table. For all variables v, this constraint will
have a column vτ . Each edge in the FSA corresponds to one row in the table.

Algorithm 9 Synchronisation Constraint sc(vτ ) using a table

1 T τ : synchronisation table for variable vτ

2 D(v): the domain of the state variable v
3 foreach v̄ ∈ V, table T τ has a column v̄τ

4 foreach edge in FSA(v) with label α
5 tr: a new row in T τ , each column v̄τ

6 has initially value D(v̄), but tr[vτ ] = α
7 foreach v̄ ∈ V with v̄ ⇐ pα ∧ v̄ 6⇐ eα
8 tr[v̄]= the no-op at vertex pα(v̄) in FSA(v̄)
9 foreach v̄ ∈ V with v̄ ⇐ eα, tr[v̄] = α

10 delete all columns vτ with all cells having values D(v)
11 merge rows into one if they differ only in one column

Algorithm 9 describes the procedure used to construct the synchronisation constraint
tables. Let α be one of the edges of the FSA of variable v. Then, in the corresponding row
in the synchronisation table for v, the value of v and all variables occurring in effects of this
action will have value α. Variables just in the preconditions of α will have the corresponding
no-op as their values. All the other columns can have any values from their domains. At
the end, some columns from the synchronisation table could be removed, particularly those
whose corresponding variable can take any value from its domain.

SC for d-loc

d-loc t-loc t-occ

τ τ τ

1 -1 1

2 -2 2

3 -3 3

4 -1 4

5 -2 5

6 -3 6

S4 S2 S3

SC for t-occ

t-occ d-loc t-loc

τ τ τ

1 1 -1

2 2 -2

3 3 -3

4 4 -1

5 5 -2

6 6 -3

S5 S1 S2

SC for t-loc

t-loc d-loc

τ τ

7 -1

8 -1

9 -1

10 -1

S6 S1

Figure 18: Synchronisation constraints from the FSA in Figure 16 for driverlog example. In
the tables, S1 = {−5, . . . ,−1, 1, . . . , 6, 11, . . . , 14}, S2 = {−3,−2,−1, 7, . . . , 10}
, S3 = {−1,−2, 1, . . . , 6}, S4 = {−5, . . . ,−1, 11, . . . , 14}, S5 = {−1,−2}, and
S6 = {−1,−2,−3} are sets used as cell values.

Figure 18 shows the tables for the synchronisation constraints obtained from the FSA
in Figure 16 for the driverlog example. Look at the first row of the table for d-loc. When
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action 1 embark-truck (see Table 2.1) takes place at location A, both d-loc and t-occ change
their values but t-loc does not. The negative number in t-loc indicates the corresponding
no-op action in the FSA of t-loc, while positive numbers in d-loc and t-occ denote the action
1 in the both variables’ FSA. Other rows in the table and other tables could be explained
in the same way. Notice that certain cells have a set of values such as S1, S2 and S3. PaP2
uses sets to encode them, but these sets are actually the entire domains of the corresponding
variables. So one can replace them with don’t cares ×. We do that in PaPR to get a variant
and to see the effect on the search performance.

6.6 Mutex Constraints

For each mutex pair {(v = k), (v̄ = k̄)} in mutex-groups, a negative mutex table mc(v, k, v̄, k̄, τ)
with columns vτ , v̄τ is added. The rows in this table will be the pairs of actions α, ᾱ where α
is on the label of an incoming edge of vertex k in FSA(v) and ᾱ is on the label of an incoming
edge of vertex k̄ in FSA(v̄). The table also has the rows for action pairs α, ᾱ where α is on
the label of an outgoing edge of vertex k in FSA(v) and ᾱ is on the label of an outgoing
edge of vertex k̄ in the FSA(v̄). However, for outgoing edges, we need to exclude those edges
that correspond to actions having that state variable only in their effects. Therefore, we
only consider pairs of actions α, ᾱ where v ∈ PandE(α) and v̄ ∈ PandE(ᾱ). Algorithm 10
describes the procedure to construct such a negative table. Note that to reduce the numbers
of these negative tables, mutex tables having the same columns are merged into one table.

Algorithm 10 Mutex Constraint mc(v, k, v̄, k̄, τ) using a negative table

1 T τ : mutex constraint table with columns vτ and v̄τ

2 for all edges 〈k′, k〉 in FSA(v) with label α
3 for all edges 〈k̄′, k̄〉 in FSA(v̄) with label ᾱ
4 tr: a new row in T τ with tr[vτ ] = α, tr[v̄τ ] = ᾱ
5 for all edges 〈k, k′〉 in FSA(v) with label α
6 for all edges 〈k̄, k̄′〉 in FSA(v̄) with label ᾱ
7 if v ∈ PandE(α) and v̄ ∈ PandE(ᾱ)
8 tr: a new row in T τ with tr[vτ ] = α, tr[v̄τ ] = ᾱ

6.7 Decoding CSP Solutions to Plans

In PaP2 model, the CSP solution returned is itself the parallel plan. This is because in the
CSP solution, the value of each variable is an action, although we have to ignore the no-ops,
if any. We have a CSP variable for each state variable and for each time step τ ∈ [1,m]. So
the decoding step has only the cost of removing the no-ops.

6.8 Reconstructed PaP2 on Minion

In PaP2 implementation, the table constraints allow sets of values in their cells and the
SICStus Prolog solver that has been used supports this kind of table constraints. However,
as we have seen in some of the synchronisation constraint tables, the sets could be replaced
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by don’t cares. In PaPR, we use only sets and then sets plus don’t cares to compare the
performances with the difference in the encodings. The other difference between our PaPR
and PaP2 is in the auxiliary constraints. In PaP2, these constraints are modelled by “greater
than zero” constraints. Since the no-ops have values less than zero, the constraints are that
maximum of the values for CSP variables at each time step should be greater than or equal to
zero; which enforces that at least one positive value (not no-op i.e. a regular action) should
be selected for each time step. While using Minion, we could not model this constraint this
way and we used or-constraint to model it. For each time step, we use an or-constraint
that enforces at least one of the CSP variables for actions should take positive value i.e. a
regular action is selected. Other than the difference in the auxiliary constraints, in terms of
the constraints used and their table constraint forms, PaPR constraint model very closely
matches with the PaP2 constraint model. While running PaPR, we use different variable
selection heuristics and constraint propagation techniques to compare performances of the
resulting variants.

6.9 Correctness and Complexities

Our modification to PaP2 model (Barták, 2011b) is to use don’t cares instead of sets when-
ever possible, and optionally use mutex constraints to improve the performance. Below
we provide the theoretical time and memory complexity of our PaPR encoding method,
although the times are practically negligible compared to the search times.

Lemma 11 (Encoding Complexity). Action succession, synchronisation, auxiliary, and
mutex constraints are all constructed once and used for each time step. In Algorithm 7,
construction of

1. all initial state and goals require O(|V|Êd) time and space.

2. all action succession constraints by using Algorithm 8 require O(ÊÊdV̂a
2|V|) time and

O(ÊÊd|V|) space;

3. all synchronisation constraints by using Algorithm 9 require O(Ê|V|2) time and space;

4. all auxiliary constraints require O(|V|) time, no space as given in analytical form.

5. all mutex constraints require O(M̂V̂m
2
Êd

2
) time and space;

where

Ê is the maximum number of edges in an FSA;

Êd is the maximum degree of a vertex in an FSA.

V̂a is the maximum number of variables appearing in the preconditions and the effects of
an action (i.e. the maximum parameter size of an operator);

M̂ is the number of mutex-groups; and

V̂m is the maximum number of variable-value pair in a mutex-group.
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Proof. We analyse the algorithms to find the time and space complexities.

1. For each (v = k) in I (or G), we list all the actions in outgoing (or incoming) edges
from vertex k of FSA(v).

2. Line 3 in Algorithm 8 runs O(Ê) times, Line 6 runs O(Êd) times, and Line 8 needs

O(V̂a
2
) time. The number of columns in an action succession constraint table is 2

while the number of rows is Ê. However, each table cell can have at most Êd numbers
as a set. We need an action succession constraint for each state variable.

3. In Algorithm 9, a synchronisation table has |V| columns and Ê rows. Computing each
row needs O(|V|) time.

4. For auxiliary constraints, we need to write an analytical formula involving each vari-
able vτ in the same time step.

5. For each pair {(v = k), (v′ = k′)}, we have a table with 2 columns and Êd
2

rows.

Given the same number (|V|) of CSP variables at each time step, we need to refer the
four types of constraint in each of the m time steps when m is the given makespan.

7. Experimental Results

We ran all experiments reported in this paper on the same high performance computing
cluster Gowonda at Griffith University. Each node of the cluster is equipped with Intel Xeon
CPU E5-2670 processors @2.60 GHz, FDR 4x InfiniBand Interconnect, having system peak
performance 18949.2 Gflops. We ran experiments with 4GB memory limit and 60 minute
timeout. Our time measurement starts from the input PDDL to the output plans.

As our benchmark planning domains, we use 21 classical planning domains from inter-
national planning competitions. These domains are airport, blocks, driverlog, freecell, grid,
gripper, logistics00, logistics98, miconic, mprime, mystery, pathway, psr-small, pipes-no-
tankage, pipes-tankage, rovers, satellite, storage, tpp, and zenotravel. Among these, only
in 9 domains namely airport, blocks, depot, driverlog, freecell, grid, gripper, pipes-tankage,
and storage, the PDDL-to-SAS+ translator produces mutex-groups. There are in total 786
problem instances in all 21 domains and we use them to evaluate the planners. However, in
the charts, we will mainly use the problem instances that are solved by at least one planner
in the respective charts. Problem instances that are not solved by any planner in the re-
spective charts are thus ignored. Moreover, problem instances are often sorted in order of
the best solver’s time; the monotonously increasing line in a chart will indicate this. Lastly,
the missing points in the charts mean those problems are not solved by the respective plan-
ners within the timeout. For more meaningful comparison, we emphasise on the number of
problem instances solved, although we will also look at the time performances.

As mentioned in Section 3, we use Minion (Gent et al., 2006) as our constraint solver.
Minion supports several options for variable ordering, but in our experiments we use the
most well-known two: smallest domain first (sdf) and most conflict variable first (conflict).
The sdf heuristic is also known as min-dom heuristic and the conflict heuristic is based on
dom/wdeg (i.e. the ratio of the current domain size to the weighted degree of a variable)
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(Boussemart, Hemery, Lecoutre, & Sais, 2004). Minion uses the lexicographic ordering to
break ties. The other variable ordering heuristics that we do not use for various typical
reasons are the largest domain first, static ordering, random ordering. smallest ratio of
current domain size to initial domain size ordering. For propagation, Minion supports
generalised arc consistency (gac), singleton arc consistency (sac), and a few variants of sac.
In our experiments, we use gac and the basic sac as our constraint propagation strategies.
Unfortunately Minion does not provide any significant value ordering heuristic other than
ascending or descending ordering. In our experiments, we only use the ascending value
ordering. Minion supports don’t cares and sets as cell values in a table constraint. While
only some sets could be replaced by don’t cares, any don’t care could be replaced by a
set. Lastly, given the mutex-groups are produced during the PDDL-to-SAS+ translation,
we either use them or ignore them. Combining all these options, we have experimented
with the 12 versions of TCPP and 12 versions of PaPR along with the original PaP2. In
order to avoid cluttering in the charts and the tables, we will often show results of the best
performing versions only.

• TCPP encoding variants running on Minion with different configurations

1. TCPPx: uses don’t cares (x) only, considered as the base version of TCPP

2. TCPPsm: uses sets (s) and mutex-groups (m), to study the effect of using sets

3. TCPPxm: uses don’t cares (x) and mutex-groups (m), final version of TCPP

• PaPR encoding variants running on Minion with different configurations

1. PaPRs: uses sets (s) only, the reconstructed version which is equivalent to PaP2

2. PaPRsx: uses sets (s), don’t cares (x) where possible, enhancing using don’t cares

3. PaPRsxm: uses sets (s), don’t cares (x) and mutex-groups (m), final PaPR

• Each of TCPP and PaPR variants running on Minion with the following configurations

1. sdf-gac: smallest domain first variable ordering and generalised arc consistency

2. sdf-sac: smallest domain first variable ordering and singleton arc consistency

3. conf-gac: conflict variable ordering and generalised arc consistency

4. conf-sac: conflict variable ordering and singleton arc consistency

• PaP2 on SICStus Prolog with specially developed variable and value ordering

7.1 TCPP Encoding Characteristics

Figure 19 shows the performances of TCPPxm and TCPPsm with all four Minion config-
urations on all 21 domains. TCPPxm appears to be consistently performing better than
TCPPsm. Since TCPPxm uses don’t cares while TCPPsm uses sets, from this, we conclude
that using don’t cares is significantly better than using sets in our constraint model regard-
less of the Minion configuration used. This is because the table constraints with don’t cares
are much more compact than that with the sets. Moreover, checking a cell value to match
with a given value is very efficient with don’t cares than with sets.
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Figure 19: Enhancing TCPP using don’t cares rather than sets

Figure 20 shows the performances of TCPPxm and TCPPx on the problem instances
from the 9 domains where mutex-groups are produced. In the other 12 domains where no
mutex-groups are produced, TCPPxm and TCPPx are actually equivalent and hence not
compared. Nevertheless, for all four Minion configurations, TCPPxm consistently performs
better than TCPPx. Since TCPPxm uses mutex-groups while TCPPx does not, we conclude
that using mutex-groups (along with don’t cares) is significantly better in our constraint
model than not using them. This is because mutex-groups are additional knowledge in the
form of nogoods that help the CSP solver prune the search space. We represent mutex-groups
using very small binary tables. We also reduce the domain size of parallelism variables using
mutex groups (see Algorithm 5 Function ElsePrevented). The optional use of mutex-groups
in our encoding thus brings about more efficiency in TCPPxm than in TCPPx.

Table 2 shows the numbers of problem instances solved by different TCPP versions. For
each given Minion configuration, TCPPxm, our final TCPP version, is the best performing
solver compared to TCPPsm and TCPPx. Among all 12 versions, TCPPxm-conf-sac ap-
pears to be the best, solving 317 instances in total, while the second best TCPPxm-sdf-sac
solves 287 instances and the third best TCPPsm-conf-sac solves 281 instances. Overall,
conf-sac appears to be the most suitable Minion configuration for TCPP encodings. On
the other hand, the sdf-gac configuration appears to be the least suitable. Given a variable
ordering (sdf or conf), the sac constraint propagation appears to be consistently better than
the gac with all three versions TCPPxm, TCPPsm, and TCPPx. On the other hand, given
a propagation strategy (gac or sac), the conf variable ordering appears to be consistently
better than the sdf with all three versions TCPPxm, TCPPsm, and TCPPx.
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Figure 20: Enhancing TCPP using mutex-groups

Encoding Variants → TCPPsm TCPPxm TCPPx Mutex
Solver Config → sdf sdf conf conf sdf sdf conf conf sdf sdf conf conf Groups

Domains #Ins gac sac gac sac gac sac gac sac gac sac gac sac Exist
airport 50 14 15 15 15 21 20 21 21 19 18 21 19 yes
blocks 35 13 29 13 29 14 32 14 32 8 8 8 8 yes
depot 22 2 6 5 9 5 7 6 11 2 2 1 2 yes
driverlog 20 11 14 11 13 12 14 12 13 11 14 11 13 yes
freecell 20 3 3 3 3 3 4 4 4 3 3 4 3 yes
grid 5 1 2 1 2 1 2 2 2 1 1 1 1 yes
gripper 20 1 2 1 2 1 2 2 2 1 1 1 1 yes
logistics00 28 11 19 19 22 12 19 19 24 12 19 19 24 no
logistics98 35 1 6 6 7 1 7 7 9 1 7 7 9 no
miconic 150 31 30 27 27 33 33 29 29 33 33 29 29 no
mprime 35 12 18 20 23 13 20 22 26 13 20 22 26 no
mystery 30 8 13 13 14 10 17 14 17 10 17 14 17 no
pathways 30 5 5 5 5 5 5 5 5 5 5 5 5 no
pipes-no-tankage 50 7 7 7 6 11 8 10 8 11 8 10 8 no
pipes-tankage 50 6 7 7 7 8 8 8 9 8 8 8 8 yes
psr-small 50 21 38 43 42 21 42 43 44 21 42 43 44 no
rovers 40 8 15 17 21 8 16 18 22 8 16 18 22 no
satellite 36 2 3 5 5 2 5 6 7 2 5 6 7 no
storage 30 9 9 9 9 9 9 9 10 9 9 9 9 yes
tpp 30 5 8 8 8 5 8 9 10 5 8 9 10 no
zenotravel 20 8 9 12 12 9 9 12 12 9 9 12 12 no
Total 786 179 258 247 281 204 287 272 317 192 253 258 277

Table 2: Numbers of problem instances solved by TCPP versions
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7.2 Reconstructing PaPR from PaP2

Figure 21 shows the performances of the original PaP2 and our reconstructed version PaPR.
PaP2 runs on SICStus Prolog with customised variable and value ordering heuristics. We
run PaPR on Minion with the four configurations mentioned before. Note that the PaPR
version considered here is PaPRs, which uses sets in the table constraints and does not use
mutex-groups. PaPRs is thus the closest structurally matching reconstructed version.

Figure 21: Reconstructing PaP2 to obtain PaPR that runs on Minion.

Nevertheless, compared to PaP2’s, we see that PaPRs’ performances vary much from one
problem instance to another although a statistically fitted line, if drawn, perhaps would be
similar. To look at this further, in Figure 22, we compare the numbers of problem instances
solved by PaP2 and PaPR when different timeout limits are given. It appears that PaPRs
when run on Minion with conf-gac configuration performs closest to PaP2 (actually slightly
better). Moreover, PaPRs with sdf-gac performs the much worse compared to PaP2.

Figure 22: PaP2 and PaPR with different timeout limits.
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Table 3 shows the numbers of problem instances solved by PaP2 and PaPRs. While
in most domains the numbers of instances solved by PaP2 and PaPRs are very close, the
significant differences are in logistics00 and psr-small. Given the close matching of PaP2’s
constraint model and that of PaPRs, the difference mainly comes from the solvers SICStus
Prolog and Minion. The exact reason behind this depends on the specific details of the
respective solvers.

Encoding Variants → PaP2 PaPRs on Minion
Solver Config → SICStus sdf sdf conf conf

Domains #Ins Prolog gac sac gac sac
airport 50 14 14 12 16 12
blocks 35 13 8 12 10 11
depot 22 3 3 5 4 6
driverlog 20 13 14 13 12 12
freecell 20 3 2 2 3 2
grid 5 1 1 1 1 1
gripper 20 2 2 1 2 2
logistics00 28 15 12 19 22 24
logistics98 35 18 12 9 12 9
miconic 150 34 32 29 25 23
mprime 35 20 18 10 18 14
mystery 30 11 10 11 11 11
pathways 30 2 1 5 5 5
pipes-no-tankage 50 6 3 4 7 5
pipes-tankage 50 6 5 5 5 5
psr-small 50 28 19 42 37 43
rovers 40 11 10 18 16 17
satellite 36 4 3 2 3 5
storage 30 10 9 9 9 8
tpp 30 8 8 10 8 8
zenotravel 20 12 14 12 11 9
Total 786 234 200 231 237 232

Table 3: Numbers of problem instances solved by PaP2 and PaPRs

7.3 Enhancing PaPR with Don’t Cares and Mutexes

Figure 23 shows performances of PaPR when encoded only with sets (PaPRs) and when
certain sets are replaced by don’t cares (PaPRsx). For all four Minion configurations,
PaPRsx appears to be better than PaPRs. This is because the table constraints with don’t
cares are much more compact than that with the sets. Moreover, checking a cell value to
match with a given value is very efficient with don’t cares than with sets.

Figure 24 shows the performances of PaPRsxm and PaPRsx on the problem instances
from the 9 domains where mutex-groups are produced. In the other 12 domains where
no mutex-groups are produced, PaPRsxm and PaPRsx are actually equivalent and hence
not compared. Nevertheless, for all four Minion configurations, PaPRsxm consistently per-
forms better than PaPRsx. Since PaPRsxm uses mutex-groups while PaPRsx does not, we
conclude that using mutex-groups along with don’t cares is significantly better in PaP2 con-
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Figure 23: Enhancing PaPR using don’t cares

straint model than not using them. This is because mutex-groups are additional knowledge
in the form of nogoods that help the CSP solver prune the search space. We represent mutex-
groups using very small binary tables that have pairs of actions having parallel conflicts.
Although synchronisation constraints in a different way enforce selection of non-conflicting
actions, the explicit use of a negative table to list the conflicting actions due to mutexes,
eliminates combinations of actions during search. The optional use of mutex-groups in
PaP2’s encoding thus brings about more efficiency in PaPRsxm than in PaPRsx.

Table 4 shows the numbers of problem instances solved by different PaPR versions. For
each given Minion configuration, PaPRsxm, the final PaPR version, is the best performing
solver compared to PaPRsx and PaPRs. Among all 12 versions, PaPRsxm-conf-sac and
PaPRsxm-conf-gac appear to be the two best, each solving 281 instances in total, while
the second best PaPRsxm-sdf-sac solves 278 instances and the third best PaPRsx-conf-
gac solves 270 instances. Overall, conf-gac/sac appears to be the most suitable Minion
configuration for PaPR encodings. On the other hand, the sdf-gac configuration appears
to be the least suitable. Given a variable ordering sdf, the sac constraint propagation
appears to be consistently better than the gac with all three versions PaPRsxm, PaPRsx,
and PaPRs. In contrast, given a conf variable ordering, the gac constraint propagation
appears to be consistently better than sac. Nevertheless, given a propagation strategy (gac
or sac), the conf variable ordering appears to be consistently better than the sdf with all
three versions PaPRsxm, PaPRsx, and PaPRs.

7.4 Time Performance Comparison

Besides PaP2, we have selected planners from IPC-8 deterministic track to compare our
planners TCPP and PaPR with them. We have selected SymBA*-2, which is the winner
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Figure 24: Enhancing PaPR using mutex-groups.

Encoding Variants → PaPRs PaPRsx PaPRsxm Mutex
Solver Config → sdf sdf conf conf sdf sdf conf conf sdf sdf conf conf Groups

Domains #Ins gac sac gac sac gac sac gac sac gac sac gac sac Exists
airport 50 14 12 16 12 17 16 17 16 17 17 22 18 yes
blocks 35 8 12 10 11 9 13 10 13 18 29 16 30 yes
depot 22 3 5 4 6 4 8 6 8 6 10 6 8 yes
driverlog 20 14 13 12 12 14 13 12 13 14 13 12 12 yes
freecell 20 2 2 3 2 2 3 3 3 3 3 3 3 yes
grid 5 1 1 1 1 1 1 1 1 1 1 1 1 yes
gripper 20 2 1 2 2 2 2 2 2 2 2 2 2 yes
logistics00 28 12 19 22 24 12 19 23 25 12 19 23 25 no
logistics98 35 12 9 12 9 12 11 16 13 12 11 16 13 no
miconic 150 32 29 25 23 34 29 27 24 34 29 27 24 no
mprime 35 18 10 18 14 21 16 24 18 21 16 24 18 no
mystery 30 10 11 11 11 12 14 15 13 12 14 15 13 no
pathways 30 1 5 5 5 1 5 5 5 1 5 5 5 no
pipes-no-tankage 50 3 4 7 5 4 7 11 8 4 7 11 8 no
pipes-tankage 50 5 5 5 5 5 6 9 7 6 6 9 6 yes
psr-small 50 19 42 37 43 19 43 38 44 19 43 38 44 no
rovers 40 10 18 16 17 10 19 16 18 10 19 16 18 no
satellite 36 3 2 3 5 4 3 5 5 4 3 5 5 no
storage 30 9 9 9 8 9 9 9 9 9 9 9 9 yes
tpp 30 8 10 8 8 8 10 9 9 8 10 9 9 no
zenotravel 20 14 12 11 9 15 12 12 10 15 12 12 10 no
Total 786 200 231 237 232 215 259 270 264 228 278 281 281

Table 4: Numbers of problem instances solved by PaPR versions
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of the sequential optimal track. SymBA*-2 is a cost-optimal planner and performs several
symbolic bidirectional A* searches on different state spaces. SymBA*-2 also uses abstrac-
tion heuristics. We have also selected YAHSP3 and Madagascar, which are the first and
second place holder in the agile track of the competition. YAHSP3 is a forward state-space
heuristic search planner, but the version submitted to agile track is not a cost-optimal plan-
ner. The quality of plans generated by this planner are not good when compared to that
of Madagascar or other optimal planners. Madagascar planner is a SAT-based planner.
Since it encodes the planning problem as a SAT problem, we have decided to compare our
approach with it. SAT is often viewed as a Boolean CSP. It is therefore worth observing
the performance difference between SAT-based and CSP-based planners.

Figure 25: The total numbers of problem instances solved by different planners over dif-
ferent timeouts. Left: comparison with international planning competition win-
ners. Right: comparison of only TCPP, PaP2, and PaPR.

Figure 25 shows the total numbers of problem instances solved by different planners in
21 selected benchmark domains. Moreover, Table 5 shows the total number of instances
solved in each domain by different planners over a 60-minute timeout. From the charts and
the table, we observe that YAHSP3 outperforms all other planners with a great margin,
although a large part of the margin comes from its performance in the miconic domain.
Nevertheless, one can easily see the huge differences in the performance of the constraint-
based planners from that of the competition winning planners. Constraint-based planners
need to make huge improvements in order for them to be competitive enough. In this
analysis, we only consider the best performing versions of TCPP and PaPR.

TCPPxm-conf-sac performs significantly better than PaPRsxm-conf-gac/sac which are
much more significantly better than original PaP2 and our reconstructed PaPRs. In 21
domains that we have experimented with, TCPPxm-conf-sac solves the most numbers of

955



Ghanbari, Namazi, Newton, & Sattar

Domains #Ins Mada Yahsp SymBA PaP2 PaPR0 PaPR1 PaPR2 TCPP∗

airport 50 45 45 27 14 16 22 18 21
blocks 35 35 35 33 13 10 16 30 32
depot 22 15 22 7 3 4 6 8 11
driverlog 20 15 20 14 13 12 12 12 13
freecell 20 4 20 5 3 3 3 3 4
grid 5 2 5 2 1 1 1 1 2
gripper 20 3 20 20 2 2 2 2 2
logistics00 28 28 28 20 15 22 23 25 24
logistics98 35 28 34 5 18 12 16 13 9
miconic 150 49 150 111 34 25 27 24 29
mprime 35 31 35 24 20 18 24 18 26
mystery 30 18 17 15 11 11 15 13 17
pathways 30 9 0 5 2 5 5 5 5
pipes-notank 50 26 44 15 6 7 11 8 8
pipes-tank 50 10 40 16 6 5 9 6 9
psr-small 50 50 50 50 28 37 38 44 44
rovers 40 33 40 14 11 16 16 18 22
satellite 36 16 36 11 4 3 5 5 7
storage 30 14 23 15 10 9 9 9 10
tpp 30 28 30 8 8 8 9 9 10
zenotravel 20 15 20 12 12 11 12 10 12
Total 786 474 714 429 234 237 281 281 317

Table 5: Numbers of problem instances solved by state-of-the-art planners. In the table,
Mada is Madagascar, PaPR0 is PaPRs-conf-gac, PaPR1 is PaPRsxm-conf-gac,
PaPR2 is PaPRsxm-conf-sac, TCPP∗ is TCPPxm-conf-sac.

problems in 15 domains while PaPRsxm-conf-gac solves in 5 domains and PaPRsxm-conf-
sac solves in 2 domains. Between PaPRsxm-conf-gac and PaPRsxm-conf-sac, the former
performs much better than the latter with shorter timeouts, but with long timeouts both
perform similar. Between TCPPxm-conf-sac and PaPRsxm-conf-gac, the former appears
to be consistently performing better than the latter. It is interesting to observe these
behaviours since TCPP and PaPR view DTGs from two orthogonally different perspectives:
TCPP views state transitions and PaPR views action successions in the DTGs.

7.5 Plan Length Comparison

In Figure 26, we compare lengths of the plans produced by each planner. We are not op-
timising the plan length, but optimising the makespan, which has implications in terms
of the plan length. While we do not claim any contribution in terms of the plan length
comparison, this part of our analysis is mainly to observe how good are the plan lengths
compared to that from the other planners. Since YASHP in the agile track of the plan-
ning competition only emphasises on speed without looking at the plan length, we exclude
YASHP from our comparison. SymBA*-2 optimises plans over a cost function, but in the
absence of any function, the plan length is optimised. Madagascar is a SAT planner and
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is optimal in makespan. Note that TCPPxm-conf-sac, PaP2, and PaPRsxm-conf-gac all
produces plans having the optimal makespan, but the sequential plan lengths might not be
optimal. Nevertheless, to obtain an overall idea about the plan quality, in Figure 26, we
show the total plan length of the plans produced by the planners over each domain; only
the problem instances that are solved by all three planners are taken into account.

Figure 26: Total plan length for the plans produced by different planners over each domain

We observe that SymBA*-2 produces the shortest plan lengths in all domains. More-
over, PaPRsxm-conf-gac produces plans that are slightly longer than SymBA*-2’s plans.
Furthermore, PaP2’s plans are longer than PaPRsxm-conf-gac’s; TCPPxm-conf-sac’s plans
are longer than PaP2s; and Madagascar’s plans are the longest. Since we use the ascending
value ordering and in PaP2 and PaPRsxm-conf-gac, the values less than zero are set for no-
ops, these planners first try no-ops in the search and that is why the number of real actions
in the final plan in PaP2 and PaPRsxm-conf-gac are less than that in TCPPxm-conf-sac.
The value ordering in this case affects the quality of the plans produced.

7.6 Encoding Statistics

As we have discussed before, in TCPPxm, we have transition constraints while in PaPRsxm,
we have action succession constraints along with synchronisation constraints. Both planners
use table constraints with don’t cares to encode their constraints. In Table 6, we report
the average numbers of DTGs, tables, rows, and columns in the encodings over the prob-
lem instances that are solved by at least one of the two planners TCPPxm-conf-sac and
PaPRsxm-conf-gac.

To summarise Table 6, the numbers of CSP variables in TCPP are one time step more
than that in PaPR (one can say in PaP2) because TCPP’s variables are for states, while,
PaPR’s variables are for transitions. However, this is not an important factor because TCPP
performs good even in the airport domain where the number of DTGs is huge. The domain
sizes of CSP variables in PaPR are much larger than that in TCPP. This significantly affects
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TCPPxm PaPRsxm

Planning # # of Dom pv pv tc neg mc don’t Dom sc asc neg mc don’t
Domains Ins DTG Size Size Dom Rs Cs pCs Ts Rs care% Size Rs Cs Rs Ts Rs care%

airport 26 841 2 2 2 9 54 0.4 304 2 86 9 8 35 9 304 19 81
blocks 32 19 6 0 0 39 30 0 143 4 80 39 34 15 39 143 125 75
depot 12 36 7 0 0 142 54 0 180 7 85 144 139 27 144 180 1356 81
driverlog 14 13 7 0 0 44 9 0 8 1 58 44 38 4 44 8 62 52
freecell 4 34 4 2 15 138 24 2 72 2 80 138 135 12 138 72 405 81
grid 2 20 18 0 0 342 17 0 50 1 75 342 325 8 342 50 146025 74
gripper 2 8 4 0 0 14 9 0 11 2 57 14 11 4 14 11 13 48
logistics00 25 13 8 0 0 21 8 0 0 0 67 22 16 4 22 0 0 61
logistics98 19 40 23 0 0 112 16 0 0 0 91 150 128 8 150 0 0 90
miconic 34 9 3 0 0 4 5 0 0 0 45 10 8 3 10 0 0 33
mprime 27 32 10 15 13 479 24 6.9 0 0 80 459 451 12 459 0 0 80
mystery 17 34 10 15 8 284 19 3.6 0 0 70 284 275 9 284 0 0 70
pathways 5 78 2 15 4 5 7 1.3 0 0 71 5 4 4 5 0 0 72
pipe-notankage 11 140 2 140 10 31 67 35 0 0 88 31 30 35 31 0 0 85
pipe-tankage 9 62 3 39 5 163 60 22 43 4 82 163 161 35 163 43 14320 81
psr-small 45 24 2 1 1 16 13 0.1 0 0 56 16 15 7 16 0 0 48
rover 21 86 3 6 6 16 9 0.7 0 0 54 16 14 5 16 0 0 55
satellite 7 43 2 1 2 5 14 0.2 0 0 67 10 8 7 10 0 0 58
storage 10 17 3 4 2 30 19 2.4 6 1 68 30 28 10 30 6 278 60
tpp 10 32 3 16 1 8 8 1.1 0 0 49 8 7 4 8 0 0 44
zenotravel 15 12 7 0 0 186 6 0 0 0 12 186 179 3 186 0 0 9

Table 6: Different statistics about the TCPP and PaPR encodings. In the table, pv: paralell
variables, tc: transition constraints, mc: mutex constraints, sc: synchronisation
constraints, asc: action succession constraints, neg: negative tables, Ts: #tables,
Rs: #rows, Cs: #columns, pCs: #columns for parallel variables. Tables for mc
and asc have 2 columns. The numbers of DTGs for TCPP is the same as the
numbers of FSA for PaPR

the efficiency of the CSP search. The branching factor in the search depends on the domain
size. Also, the cost of the sac algorithm depends on this factor. The numbers of positive
tables in PaPR are roughly twice of that of TCPP and are proportional to the numbers
of variables in the SAS+ representations. The numbers of rows in the positive tables in
both TCPP’s and PaPR’s models are about the same. The numbers of columns in TCPP’s
transition constraints are about twice the numbers of columns in PaPR’s synchronisation
constraints except in domains pipes-notankage, and pipes-tankage. The number of columns
in PaPR’s action succession constraints is always 2, but each column could have a set of
values. In terms of inspection of certain values in the table, we actually have to examine
each value in the set. This means rather than considering the number of cell in a table,
we need to consider the number of values that are to be checked. Using don’t cares (which
are used in high percentages), the checking is minimised but it does not happen with sets.
Nevertheless, the numbers of tables for mutex-groups are the same for both TCPP and
PaPR models. These tables have 2 columns but the numbers of rows in PaPR are much
more than that in TCPP. Learning of which planner and which configuration works better
in a domain or an instance could be performed using the encoding statistics, However, that
is clearly out of scope of this paper.
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7.7 Performance on Domains

Figures 27 and 28 shows the performance of TCPPxm and PaPRsxm on 14 domains. These
domains are chosen to include examples where TCPP or PaPR or sac or gac is better, and
performance differences are clearly visible.

Figure 27: Time performance of TCPPxm, PaPRsxm on 6 Domains

In the charts, we mainly show the best TCPP and PaPR versions namely TCPPxm
and PaPRsxm respectively. We already have shown these versions significantly outperform
PaP2 and its reconstructed version PaPRs. Moreover, we only show the configurations
where conf variable ordering is used. As we see from our results, and also from the literature
on variable selection heuristics (Balafoutis & Stergiou, 2008), conf appears to be better than
sdf. Nevertheless, it is obvious from the charts that the performance of TCPP is better than
that of PaPR when both use sac. The reason is that the complexity of sac is proportional or
quadratic to the domain size of CSP variables based on the algorithm selected for enforcing
sac (Bessiere, Cardon, Debruyne, & Lecoutre, 2011). As shown in Table 6, PaPR’s encoding
has larger domains than TCPP’s encoding. Overall, we see TCPP outperforms PaPR in
most domains.
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Figure 28: Time performance of TCPPxm, PaPRsxm on 8 Domains

7.8 Effect of Minion Configurations

Table 7 and Figure 29 compare performances of PaPRsxm and TCPPxm versions across
different Minion configurations. Given a propagation strategy (gac or sac), the conf variable
ordering appears to be better than the sdf for both TCPP and PaPR although for PaPR
with sac appears very close; and also in miconic, sdf is rather better. The finding that the
conf variable ordering is in most cases better than the sdf is consistent with the findings in
the CSP research (Balafoutis & Stergiou, 2008).
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Encoding Variants → PaPRsxm TCPPxm
Solver Config → sdf sdf conf conf sdf sdf conf conf

Domains #Ins gac sac gac sac gac sac gac sac
airport 50 17 17 22 18 21 20 21 21
blocks 35 18 29 16 30 14 32 14 32
depot 22 6 10 6 8 5 7 6 11
driverlog 20 14 13 12 12 12 14 12 13
freecell 20 3 3 3 3 3 4 4 4
grid 5 1 1 1 1 1 2 2 2
gripper 20 2 2 2 2 1 2 2 2
logistics00 28 12 19 23 25 12 19 19 24
logistics98 35 12 11 16 13 1 7 7 9
miconic 150 34 29 27 24 33 33 29 29
mprime 35 21 16 24 18 13 20 22 26
mystery 30 12 14 15 13 10 17 14 17
pathways 30 1 5 5 5 5 5 5 5
pipes-no-tankage 50 4 7 11 8 11 8 10 8
pipes-tankage 50 6 6 9 6 8 8 8 9
psr-small 50 19 43 38 44 21 42 43 44
rovers 40 10 19 16 18 8 16 18 22
satellite 36 4 3 5 5 2 5 6 7
storage 30 9 9 9 9 9 9 9 10
tpp 30 8 10 9 9 5 8 9 10
zenotravel 20 15 12 12 10 9 9 12 12
Total 786 228 278 281 281 204 287 272 317

Table 7: Numbers of problem instances solved by PaPRsxm and TCPPxm versions

Figure 29: TCPPxm and PaPRsxm with different timeout limits

For TCPP, given a variable ordering (sdf or conf), the sac constraint propagation appears
to be consistently better than the gac. For PaPR, given a variable ordering sdf, the sac
constraint propagation appears to be consistently better than the gac, but with conf, the
gac is better in the short timeouts and almost the same in long timeouts.

Figure 30 shows the effect of the gac and sac propagation strategies on CSP search for
planning. We show two instances from the airport domain such that the gac strategy is
much faster than the sac strategy. We also show two instances from the blocks domain such
that the sac strategy is much faster than the gac strategy. As we can see, the search nodes
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Makespan Steps → 20 21 22 23 24 25 26 time
TCPPxm-conf airport8 gac 0 9 21 40 299 1377 1457 18.23

sac 0 0 0 0 0 0 11 84.48
PaPR-sxm-conf airport8 gac 0 0 0 9 94 173 30 10.04

sac 0 0 0 0 0 0 10 510.52
TCPPxm-conf airport14 gac 0 9 21 36 291 1551 1634 24.93

sac 0 0 0 0 0 0 14 138.44
PaPR-sxm-conf airport14 gac 0 0 0 9 94 173 32 12.86

sac 0 0 0 0 0 0 12 689.71

Makespan Steps → 14 15 16 17 18 19 20 time
TCPPxm-conf blocks12 gac 959 4363 19250 85344 373311 1685275 2083670 464.49

sac 0 0 0 0 0 0 10 1.1
PaPRsxm-conf blocks12 gac 43 112 916 1921 11773 36064 946 51.147

sac 0 0 0 0 0 0 4 11.27
TCPPxm-conf blocks13 gac 2773 15340 83950 438665 462718 113.92

sac 0 0 0 0 5 1.17
PaPRsxm-conf blocks13 gac 569 2053 10639 37995 13795 86.18

sac 0 0 0 0 3 17.66

Figure 30: The numbers of search nodes visited by the CSP search for planning

visited by sac is often 0 at different makespan level. This indicates sac is mostly used in the
preprocessing step and is able to determine unsolvability without performing search. When
we checked the total running time to solve an instance, we found that most part of the
running time is spent at the last makespan level when the constraint model is satisfiable.

Using sac during search is known to be a very costly operation. However, so far in our
experiments, when we used sac or gac, we used the same in both the preprocessing and the
search phases. Based on the above observation that using sac, we often do not need to search
particularly in the unsatisfiable constraint models, we further ran both TCPPxm-conf and
PaPRsxm-conf with sac in the preprocessing step and gac in the search step.

TCPPxm-conf configs PaPRsxm-conf configs

gac-gac sac-gac sac-sac gac-gac sac-gac sac-sac

272 303 317 281 288 281
configuration: preprocess-search e.g. sac-gac

Table 8: Total numbers of problem instances solved when different combinations of sac and
gac are used in preprocessing and search of TCPPxm-conf and PaPRsxm-conf

Table 8 shows the numbers of problem instances solved when different combinations of
sac and gac are used in the preprocessing and search phases of TCPPxm-conf and PaPR-
sxm-conf. TCPPxm-conf with the sac-gac combination appears to be solving fewer problem
instances than with the sac-sac combination. On the other hand, PaPRsxm-conf with the
sac-gac appears to be solving few more problems than with the sac-sac or the gac-gac
combination.

Figure 31 shows the time performance of TCPPxm-conf and PaPR-sxm-conf when dif-
ferent combinations of sac and gac are used in the preprocessing and search. The problem
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Figure 31: TCPPxm and PaPRsxm with sac and gac in preprocessing and search

instances are from all domains and include instances that are solved by at least one planner
in the respective chart. TCPPxm-conf is slightly better in speed with the sac-gac configura-
tion than with the sac-sac and clearly better than with the gac-gac but solves fewer problem
instances than with the sac-sac. On the other hand PaPRsxm-conf is slightly better with
the sac-gac than with the sac-sac but is worse with the sac-gac than with the gac-gac.

Overall, we observe that when the sac can prune many nodes during the preprocessing
or search, enforcing sac pays off and we can see the improvement in the performance in
domains such as blocks, depot, logistics00 and rovers. In the domains such as airport where
pruning is not considerable compared to the time needed to prune, sac does not pay off and
so in these domains, gac is much more efficient. Moreover, because of the chains of variables
connected through the constraint paths in planning problems, sac can prune many values
from the domains of CSP variables. Since the cost of propagation depends on the domain
size of the variables, sac works better in TCPP than in PaPR. TCPP is better than PaPR
in most domains because of the smaller domains of CSP variables and so reduced branching
factors during search and reduced cost of sac.

7.9 Effect of Graph Colouring

In Algorithm 5, we used a greedy graph colouring algorithm to assign labels to the vertexes
in the conflicting graph. By using this algorithm we indeed reduce the domain size of par-
allelism variables. To see the effect of using this algorithm, we conducted an experiment in
which we did not use any colouring algorithm and just labelled the vertexes with sequential
numbers. Figure 32 shows the effect of the greedy graph colouring algorithm on different
Minion configurations. As we observe, using fewer labels produced by the greedy graph
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colouring algorithm than using just sequential numbers do improve the performance over
all four Minion configurations.

Figure 32: TCPPxm with graph colouring and without graph colouring

8. Conclusions

In this paper, we have described a constraint-based automated planner named Transition
Constraints for Parallel Planning (TCPP). TCPP constructs its constraint model from
domain transition graphs (DTGs) and encodes state transitions in the DTGs by table
constraints allowing don’t cares. We also have reconstructed the existing state-of-the-art
planner PaP2 and have significantly enhanced it to obtain a new planner named PaPR
by using don’t cares and mutex constraints. Both TCPP and PaPR use Minion as their
constraint solver. Our experiments on a number of standard planning benchmark domains
demonstrate TCPP’s efficiency over PaPR and PaP2, and also PaPR’s efficiency over PaP2.
In future, we will explore the effect of path heuristics in variable and value selection for
constraint satisfaction models representing planning problems.

References
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