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Abstract
Modeling causal dependencies often demands cycles at a coarse-grained temporal scale.

If Bayesian networks are to be used for modeling uncertainties, cycles are eliminated with
dynamic Bayesian networks, spreading indirect dependencies over time and enforcing an
infinitesimal resolution of time. Without a “causal design,” i.e., without anticipating indirect
influences appropriately in time, we argue that such networks return spurious results. By
identifying activator random variables, we propose activator dynamic Bayesian networks
(ADBNs) which are able to rapidly adapt to contexts under a causal use of time, anticipating
indirect influences on a solid mathematical basis using familiar Bayesian network semantics.
ADBNs are well-defined dynamic probabilistic graphical models allowing one to model
cyclic dependencies from local and causal perspectives while preserving a classical, familiar
calculus and classically known algorithms, without introducing any overhead in modeling or
inference.

1. Introduction

Dynamic Bayesian networks (DBNs) are an extension to Bayesian networks motivated from
two perspectives, on the one hand as a manifestation of cyclic dependencies after a long period
of simulation-time, closely related to Markov models (Murphy, 2002), on the other hand as
a stationary process repeated in fixed timeslices (Glesner & Koller, 1995) over a wall-clock
time to reason about historical and future evolutions of processes. Considering Pearl and
Russell (2003) who emphasize that Bayesian networks should be a direct representation of
the world instead of a reasoning process, Murphy’s and Glesner’s views seem to be conflicting:
a stationary model repeated over a wall-clock time with cyclic dependencies would expand to
infinity already for one timeslice. Therefore, e.g., Jaeger (2001) or Glesner and Koller use a
strict order of dependencies s.t. state variables of time t are only dependent of states at t− 1.
Unfortunately, this means that evidence at a certain time point does not affect states at this
time point, but one slice later. We argue and show that this limits the causal expressiveness
of Bayesian networks.

In the extreme form of a directed dynamic probabilistic graphical model (DPGM), each
random variable is locally and causally seen as dependent on every other random variable of
one timestep. When using DBNs to allow for local specifications and intuitive interpretation of
parameters, i.e., conditional probability distributions, there is no option to causally correctly
leave all dependencies in the same timestep as dependencies would cause cycles. Therefore,
random variables can only be dependent on variables from a previous timestep. However,
we show in this article that models with such bent dependencies are severely at odds with
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causality, as (i) the temporal causality is, simply, represented inaccurately, (ii) no indirect
effects are considered at a particular timestep, enforcing an infinitesimal resolution of time
adjusted to a reasoning process, instead of a time modeled for a world representation, and
(iii) return spurious results under a coarser time granularity. These restrictions severely limit
the usage and expressivity of DBNs.

To circumvent these limitations, basically three options are available. As investigated
by Boutilier, Friedman, Goldszmidt, and Koller (1996), variables might be independent in
certain contexts, which would allow for a causally correct network generation from rules
such as those presented by Glesner and Koller (1995) or by Ngo and Haddawy (1997).
However, rules will often need to be designed with a procedural view, degrading a BN to a
procedural tool in a reasoning process, rather than designing it as a first-class declarative
representation. Further, such rules would inherently be cyclic and might cause additional
problems as stated by Ngo, Haddawy, and Helwig (1995). A second option would be to
heavily restrict a DBN to specialized observation sets, e.g., to “single observations at a time”
as done by Sanghai, Domingos, and Weld (2005), s.t. no indirect causes need to be considered.
Obtaining only single observations during one timeslice again implies that observations are
made at an infinitesimal resolution of time. Finally, a BN could be designed from a reasoning
perspective, where edges solely identify correlation instead of causation, which, however,
leads to an inherently non-local model. Such non-local models become impractical as a
first-class declarative representation, as parameters neither bear any meaning nor provide
any intuitive interpretation for a human.

We overcome the above-mentioned discrepancies and limitations by reconsidering funda-
mental aspects of dynamic Bayesian networks by which we increase the expressiveness of
DBNs while remaining practically useable and locally understandable. The contributions of
this article can, therefore, be summarized as follows. By considering DBNs in which some
random variables show to have an activator nature, we prove that such DBNs, called ADBNs,
are subject to a different acyclicity constraint, which allows an ADBN to rapidly adapt to
contexts, by which such DBNs anticipate all indirect influences on a solid mathematical
basis using familiar Bayesian network semantics, without requiring an infinitesimal resolution
of time. Such ADBNs can be based on cyclic graphs using completely classical random
variables, classical CPDs. This is achieved without introducing any novel calculus, and
without introducing any overhead in exact or approximate inference. This broadens the
expressiveness of DBN modeling so that applications are supported in which causal models
naturally arise and cyclic dependencies emerge through local views on (in)dependencies.
Example applications are automatic learning of causal influences from coarse observation sets
and—as a long-term goal—finding causally correct explanations and relations in knowledge
bases requiring context-aware interpretations and anticipations of causal chains, e.g., DeepQA
(Ferrucci et al., 2010) or the Knowledge Vault (Dong et al., 2014).

1.1 Remainder of this Article

In Section 2 we informally outline an occurring problem when modeling domains from
local perspectives as envisioned in Bayesian network with directed and causally created
dependency relations. We show how Bayesian networks are used for modeling causal
relationships and argue that cyclic dependencies arise naturally in this context. We discuss
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preliminaries on DBNs and context-specific independencies as introduced by Boutilier et al.
(1996) and Haddawy, Helwig, Ngo, and Krieger (1995) in Section 3 and identify an eminent
problem of causality in DBNs that demands cyclic dependencies in every timestep of a
DBN. By considering DBNs in which some random variables show to have an activator
nature, we introduce Activator Dynamic Bayesian Networks (ADBNs) in Section 4. We
show that such DBNs remain well-defined for cyclic dependencies—work that has been
partially published at IJCAI 2015 by Motzek and Möller (2015b) for which theory has
significantly advanced in Sections 5.4, 6 and 7 and that has been substantiated with further
examples, an extended discussion of related work, as well as more detailed explanations
and derivations. We investigate common queries and associated problems in ADBNs such
as filtering and smoothing in Section 5, show that cyclic dependencies are required for
anticipating indirect influences, and show that cycles in ADBNs do not introduce any new
calculus or overhead for solving commonly known problems in DBNs. We substantiate our
claims by providing experimental results for exact inference. Section 6 is dedicated to an
introduction and derivation of an approximate inference techniques for (A)DBNs, which
shows that approximate filtering remains possible and remains possible under a bounded
error over time. In Section 7 we revisit the semantics of Bayesian networks and discuss
models without commitments to structures, where effectively multiple joint distributions
by one (D)PGM are represented. We discuss our results and relations to previous work in
Section 8. Section 9 comes to a conclusion and gives an outlook for future work.

2. Cyclic Dependencies and Causality in Bayesian Networks

Pearl and Russell (2003) emphasize that Bayesian networks should be a direct representation
of the world instead of a reasoning process. Essentially, a Bayesian network is “only” a more
compact representation of a joint probability distribution of random variables. However, we
strongly agree with Pearl and Russell and see a Bayesian network as much more powerful
model, and not just as a reasoning tool for efficiently solving some probabilistic inference
problems; We believe in Bayesian networks as a representation of a domain as it is directly
evident in the real world, where all entities of the domain are represented in the Bayesian
network, such that all questions regarding the domain are formulated as inference problems in
the Bayesian network, which, in turn, immediately provides the answer by its semantics. To
allow for this, directions of edges in a probabilistic graphical model must represent causality
and identify cause→effect relationships, and should not be adjusted to restrictions opposed
by a reasoning framework to simply solve some inference problem. While edge directions
in probabilistic graphical models are irrelevant for the expressivity, i.e., ability to represent
full joint probability distributions, only a causal edge direction allows for a desired intuitive,
directly understandable, and local parametrization of conditional probability distributions
(CPDs) in Bayesian networks. Pearl and Russell introduce local implications of parameters,
i.e., CPDs, in Bayesian networks as their local semantics, to which we accredit the local
understandability and direct, intuitive interpretability of CPDs as well. The product of
those local parameters defines the global semantics of a Bayesian network without the need
of any global normalization factors which allows one to locally and individually interpret
these values. We consider these local semantics of CPDs as a highly valuable property of
probabilistic graphical models, as they exactly allow one to directly represent knowledge
directly obtained from multiple experts from different expertises.
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As mentioned before, Bayesian networks provide desired local semantics, and every
random variable is designed by only considering its parents, i.e., its direct causes, in the
form of a CPD and the local CPD has a unique (local) semantics and neither requires a
consideration of (conditionally) independent random variables nor implications of other
locally defined CPDs. However, Bayesian networks are classically only well-defined for
directed acyclic graphs, but aforementioned local and causal views on dependencies often
lead to cyclic dependencies as the following example shows.

Example 1 (Human interaction and emotions). Cause and effects of human interactions are
often not uniquely identifiable without a further context and play a major role in Winograd
challenges (see, e.g., Levesque, Davis, & Morgenstern, 2012). Seeing a crying person and
hearing a joke being told can have two explanations: (a) a person is crying from laughter,
because the joke was good or (b) a person was told a joke to cheer her up, because she was in
a sad mood, crying and needs comforting. Modeling these relationships with a probabilistic
graphical model, as shown in Figure 1, requires two random variables Joke and Crying to
have a cyclic dependency. An actual causality, i.e., a direction of the edge, is only known in
a further context, e.g., a funeral or a party being observed (Place). The fact that influence
directions depend on contexts are, in fact, a key feature of Winograd challenges (cf. Levesque
et al., 2012).

Cry

JokeComf

Mood

Place

Figure 1: Modeling causal dependencies often requires cyclic dependencies. If one is supposed
to reason over Cry ing, potential influences of Joke or on Joke must be considered.
Without a link between Joke and Cry , the only possible explanation for crying at a
party is that the person is Mood = sad or a person always cries at parties—usually
a wrong assumption. And without a link from Cry to Joke, the only explanation
for a Joke being told at a funeral is the funeral itself—usually a quite macabre
assumption.

Example 1 represents an example for a cyclic dependency created due to local views on
dependencies, and one must conclude that dependencies cannot be modeled causally correctly
with acyclic PGMs. Nevertheless, a well-defined probabilistic graphical model for this domain
domain would allow an artificial intelligence to precisely reason about multiple situations and
decisions, e.g., is it appropriate to tell a joke?, why are people crying?, what is the mood of
present people?, or, what scene is observed? Unfortunately, no straightforward solution in a
Bayesian network formalism exists: Removing both edges of the alleged cyclic dependencies
between Cry and Joke destroys causality, as the essential causes and effect relationships
are removed: Jokes are not told at a funeral, just because of the funeral taking place; jokes
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are told at a funeral to possibly cheer up crying, sad persons. Further, someone (usually)
does not cry at a comedy event because of being at a comedy event; a person is crying at a
comedy event because jokes (which are usually told at comedy events) were good and made
a person cry. One could mimic an intended joint probability distribution by a single edge
between Cry and Joke, e.g., only Cry → Joke, which, however, destroys the local semantics:
The local CPD of Joke must then be designed w.r.t. an intended influence of Joke → Cry ,
i.e., a CPD is not solely designed with respect to causal cause→effect relationships from
direct parents, but also with an inverse “reasoning” view on effect→cause relationships. Note
that, such allegedly cyclic dependencies between two variables need not be evident directly,
but can emerge from a constellation of many random variables in larger models for complex
domains.

By moving away from directed PGMs, one is able to represent the outlined domain as
a completely undirected PGM or as a partially directed PGM. For example, by sacrificing
the identification of causality, the alleged cyclic edges between Joke and Cry could be
represented by one undirected edge associated with a factor for uncertainty. However, such
factors, sometimes called “potentials,” bear no local meaning and are not interpretable.
Moreover, local semantics are lost, as first a global normalization factor on the complete
model enables a certain degree of interpretation.

By sacrificing a Bayesian network as a first-class representation, the joke-cry-domain
could be represented by some reasoning frameworks designed via rules, e.g., Problog by
de Raedt et al. (2007) or earlier work by Glesner and Koller (1995) or by Ngo and Haddawy
(1997). Using such frameworks, one sound Bayesian network could be instantiated “on the
fly” once a context for the value of place is known. However, then rules would be designed
instead of a directly understandable Bayesian network. Furthermore and most importantly,
Place is a random variable itself, and one intends to reason over it as well. Place represents
a context-specific independence as introduced by Boutilier et al. (1996), for which frameworks
such as Bayesian multinets by Geiger and Heckerman (1996) or partition-based models
and contingent Bayesian networks by Milch et al. (2005) could be utilized. However, such
formalisms introduce novel calculi for solving inference problems using novelly introduced
operators. These novel calculi render classically known algorithms and approaches unusable,
affect the intuitive and local understandability of CPDs, and may impact the computational
complexity for solving classical problems. To preserve classically known properties, as well
as algorithms and approaches for inference in Bayesian networks and dynamic Bayesian
networks, we intend to remain a classical calculus solely using classical random variables.
To do so, a naive approach would be to duplicate some random variables in the joke-cry-
domain, forming a similar structure to commonly known dynamic Bayesian networks (DBNs).
The latter origins from a perspective of DBNs to simulate a cyclic-feedback-behavior of
Markov-random-networks by the use of DBNs resolving cycles over time.

In the following we show that cyclic dependencies also directly arise in domains directly
demanding DBNs, such that one is no longer able to naively resolve cycles over time between
two timesteps, as, then, a DBN would expand to infinity already between two timesteps.
Moreover, we show that the limited expressiveness leads to severe problems on the soundness
of inference results. Consequently, we show that the joke-cry domain and similar domains
in DBNs are immediately well-defined DPGMs, called ADBNs, which overcome all of the
above-mentioned issues. Moreover, we show that ADBNs preserve classically known random
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variables, classical graph structures and classical CPDs, without introducing any novel
calculus and without introduction of any overhead for solving commonly known inference
problems in such DBNs.

3. Dynamic Bayesian Networks: Preliminaries

The following definitions, propositions and theorems on dynamic probabilistic graphical
models (DPGMs) and dynamic Bayesian networks (DBNs) follow familiar notations and
definitions. However, painstaking definitions are needed to shed light on marginal details,
which lead to a significant problem of anticipating indirect influences in DBNs and limit the
expressiveness of (D)BNs as we show in the following section.

A DBN is a DPGM that models influences between random variables and between random
variables of consecutive timesteps as a Markov process repeated over time. To do so, a
DPGM models dependencies between random variables where random variables exist in fixed
timeslice and are dependent on random variables from the same or from previous timeslices.
Random variables that depend directly or indirectly on a random variable from a previous
timeslice are stateful, which is why we call them state variables.

Notation 1 (State variables). Let Xt
i be a random variable. Xt

i is the ith state variable
Xi at time t, where time t is represented by the tth discrete timeslice of a model and t
represents some wall-clock time t. Every Xt

i is assignable to a value xi ∈ dom(Xt
i ), where

dom(Xt
i ) = dom(Xi) for all t. Let ~Xt be the vector of all n state variables at time t s.t.

~Xt =
(
Xt

1, . . . , X
t
n

)ᵀ
.

A state variable Xt
i is a random variable that bears a history, i.e., is influenced by some

predecessor Xt−1
j . Let P (Xt

i = xi) (or P (xti) for brevity) denote the probability of state
Xi having xi as a value at time t. If dom(X) = {true, false} we write +xt for the event
Xt = true and ¬xt for Xt = false. If Xt

i is unspecified and not fixed by evidence, P (Xt
i )

denotes the probability distribution of Xt
i w.r.t. all possible values in dom(Xi).

To represent influences and dependencies between state variables, a DPGM is specified
by one initial model and a dependency pattern between variables from consecutive timeslices.
It is assumed that dependencies and influences remain constant, and a modeled pattern is
repeated for multiple timeslices forming an ever expanding model. For the scope of this
article we focus on models where dependencies solely exist between two consecutive timeslices
(Markov-1 assumption).

Definition 1 (Dynamic probabilistic graphical model, DPGM). A DPGM is defined as
a tuple (B0, B→) with B0, an initial PGM representing time t = 0 containing all state
variables X0

i in ~X0, and B→, a consecutively repeated directed graph fragment for defining
state dependencies between Xs

i and Xt
j , with X

s
i ∈ ~Xs, Xt

j ∈ ~Xt, s ≤ t. For every random
variable Xt

i a local CPD over all parents of Xt
i is specified. Repeating B→ for every time

step t > 0 creates the tth timeslice, by which a DPGM (B0, B→) is unfolded into a directed
graph representing a probabilistic graphical model (PGM) B over random variables ~X0:t.
The global semantics of B is defined as the joint probability distribution over all random
variables, i.e., P ( ~X0:t). The global semantics of a DPGM (B0, B→) is then defined as B’s
global semantics. N
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Commonly, in a DPGM one distinguishes between permanently observed and unobservable
variables (sensors and hidden states, respectively). For our work, we consider a fully observable
Markov model containing only observable (but not constantly observed) random variables,
i.e., hidden Markov models with varying observability spaces. Moreover, we will consider
specific forms of DPGMs, namely, dynamic Bayesian networks. The relation of PGMs to
Bayesian networks and of DPGMs to dynamic Bayesian networks is similar:

Proposition 1 (Dynamic Bayesian network, DBN). A DPGM (B0, B→) is called a DBN
and is well-defined, if state dependencies defined in B→ are limited s.t. no cyclic dependencies
are created during unfolding, i.e., B is a directed acyclic graph. This is the case if B→ is a
directed acyclic graph fragment. An unfolded DBN represents a Bayesian network (BN), by
which the global semantics of (B0, B→) is given by the product of all locally defined CPDs
of all timeslices. N

A proof of Proposition 1 is given as follows. With a topological ordering of all random
variables in an unrolled DBN, i.e., firstly ordered temporally, then by the topological ordering
of B0 and B→, the joint probability is given due to Bayes’ chain rule as a product of conditional
probability distributions. Conditional independence assurances specified in B0 and B→ then
reduce all factors of the joint probability to all locally defined CPDs. It is the simplicity of a
(D)BN’s global semantics as the sheer product of all locally defined CPDs that allows CPDs
to define their own local semantics, i.e., to provide local interpretations of probability values
and specifications of (in)dependencies without considering global normalization factors. The
global semantics and local semantics of (D)BNs both account for the eligibility of (D)BNs
as a world-representing first-class declaration as emphasized by Pearl and Russell (2003).
DPGMs, and therefore DBNs, are especially useful for reasoning about evolutions of processes
and performing analyses in retrospect, e.g., weather forecasts, analyzing the current weather
situation, or reconstructing events that lead to a hail storm.

In the following, we revisit roles of indirect influences and dependencies in DBNs to
broaden the representation abilities of (D)BNs while maintaining sound (D)BN semantics. As
mentioned afore, we consider the local semantics of DBNs as a highly valuable property, which
emerges from a causal representation of dependencies in DBNs as elaborated in Section 1.
However, we show that in certain domains, dependencies are not causally representable
anymore in classical DBN formalisms and one loses the ability to anticipate indirect influences.
We show that in such domains, cyclic dependency structures are evident from causal and
local views on dependencies, and that cyclic dependency structures are required in order to
provide an intuitive parametrization of such models and to anticipate all indirect influences.
By reconsidering the roles of dependencies, we show that such DBNs can be based on cyclic
graphs while preserving local semantics, preserving a classical calculus with classical random
variables and preserving classically known algorithms for DBNs without introducing any
external frameworks. To do so, we differentiate between different structural forms of DPGMs
and DBNs.

Notation 2 (Inter- and intra-timeslice dependencies, and diagonal models). For state
dependencies defined in B→ of the form t− 1 ≤ s ≤ t (see Definition 1), one speaks of a first-
order Markov property, which we focus on in this article. For any DPGM with t− 1 ≤ s < t,
i.e., states at time t are only dependent of states at time t− 1, an acyclicity constraint in the
directed graph holds and a DPGM is a well-defined DBN. We call dependencies of the form
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t− 1 ≤ s < t inter-timeslice dependencies. We call DPGMs in which only inter-timeslices
dependencies are defined diagonal models. For a limited set of dependencies of the form
t− 1 ≤ s ≤ t, called intra-timeslice dependencies, a DPGM is a well-defined DBN, as long
as no directed cycles are created.

More often than not, many DBNs are designed as diagonal models (as in Figure 3, gray),
and are introduced due to syntactic constraints on (D)BNs, but stand in conflict with an
actual causality in their domain, as the following examples demonstrate. Such dependencies
exist causally at s = t, but would create directed cycles in one timeslice. Dependencies on
“sibling” states of one timeslice are then “spread over the past” and conflict with causality.
This means that indirect causes among siblings are not anticipated correctly in a particular
state, such that “chain reactions” are not covered appropriately. The following example
introduces a running example used throughout this article.

Example 2 (Regulatory compliance). In a company a corrupt employee deliberately places
fraudulent information, e.g., faked payment sums for bribe money, which divulge throughout
a company until every employee has (unknowingly) committed a compliance violation, i.e.,
has become corrupt, too. In order to trace back a potential source for a detected compliance
violation, to reconstruct sequences of events and to prevent future compliance violations, we
model a probabilistic regulatory-compliance domain using a DBN. If one employee spreads
fraudulent information, we do not say that such an employee is “corrupt,” but in this context
we assume that he is tainted. We speak of taintedness, because saying that an employee is
corrupt implies that he is knowingly manipulating information; being tainted shall represent
that he might distribute fraudulent information indeliberately. The taintedness state of every
employee, Claire, Don and Earl, say, is represented by a state random variable in ~Xt. The
probability P (Xt

i ), encodes the belief in employee Xi being tainted +xti or being integrous
¬xti at time t. We model B0 s.t. it models our prior belief in every employee being a source
of fraudulent information, i.e., B0 is a BN containing all ~X0 as random variables without
any influences; say P (+c0) = 0.5, P (+d0) = 0.6, P (+e0) = 0.7. Being tainted is assumed
to be permanent, such that B→ describes all random variables Xt

i depending on Xt−1
i with

conditional probability P (+xti|+xt−1
i ) = 1.

An employee might influence another employee in his writings or, rather, in his information
state. A tainted employee might therefore (indeliberately) influence his colleague such that
the colleague also falls prey to fraudulent information, i.e., becomes tainted, too. Influences
happen through message exchanges, i.e., only if a message is passed from employee X to Y
at t an influence is exerted. We represent message exchanges by random variables M t

XY as
part of our domain, with +mt

XY indicating that Y receives a message from X at time t.

In the example one now can make observations, e.g., from unheralded compliance checkups,
and trace a potential diffusion of false information throughout our company over time. Say,
Claire influences Don, and if Claire is tainted there is a probability of Don becoming tainted,
too. Further, if Don influences Earl there is a probability that Claire influences Earl indirectly
through Don, i.e., Claire is an indirect cause of Earl becoming tainted. If one is inclined to
model only this dependency of E on D on C, one can correctly represent the domain as in
Figure 2. In this minimal example, indirect influences occur and are correctly anticipated.
However, if more potential influences are supposed to be modeled one is at odds with causality
as the following will show.
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Figure 2: A causally correctly represented world for the minimal case of Example 2 using a
DBN. Messages M t

XY are only possibly sent from Claire to Don and from Don to
Earl. Modeling more possible message exchanges, i.e., influences, leads to Figure 3.

Considering Example 2, we intend to model that all employees can potentially influence
each other, which, however, would lead to a cyclic graph structure in B→ of a DPGM (as
seen in Figure 3, black). In order to obtain a well-defined DBN, one must “bend” some
dependencies to a consecutive/previous timestep in B→ (as done in Figure 3, gray) forming
a diagonal model. This is unavoidable, but is seen as inaccurate from a world representation
point of view, as indirect influences are now anticipated spuriously. Bending an influence to a
consecutive timestep encodes an incubation time and, essentially, models a different process:
Earl is now influenced by Claire through Don from a Claire of the penultimate timepoint. To
approximate the intended meaning, a timeslice must be infinitesimally small to somehow
anticipate all indirect influences and cannot be chosen appropriately for an intended use case,
e.g., to represent a daily acquisition of information.

In fact, a cyclic taintedness domain is directly evident in a cyber security application,
assessing how locally inflicted adverse effects on devices or services (taintedness of employees)
in an ICT network “spread” throughout the network by datatransfers (message transfers,
~b) leading to causal chain of events potentially striking highly critical devices. A source of
such local adverse effects are, e.g., vulnerabilities, which represent a probability that a device
may be threatened by an adversary, i.e., prior belief probabilities in B0, or are, e.g., alarms
raised by intrusion detection systems or antivirus applications at time t representing direct
observations ~zt. Every received data item from such impacted device bears a probability that
data was compromised or exfiltrated leading to a spread of such impacts throughout a network.
If highly critical devices are potentially not operating as intended, a complete company
might fail their business goals, or missions are not accomplishable anymore. Projecting these
local impacts globally onto a higher goal, such as a company or a mission, while considering
all indirect and transitive effects is frequently called a mission impact assessment. Motzek
and Möller (2017) discuss an extension of Motzek et al. (2015) for a probabilistically sound
mission impact assessments extended towards dynamic domains based on cyclic ADBNs. A
cyclic ADBN structure closely resembling the taintedness domain immediately arises. As
observations of datatransfers are acquired from different locations inside a network, imprecise
timestamps must be synchronized, leading to a potentially unknown temporal ordering
of observations, i.e., coarse time slices must be chosen. Moreover, coarser time slices are
beneficial for the computational demands of performing inference. Such dynamic mission
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impact assessments are then used to analyze the current situation, i.e., to raise situational
awareness, and to perform forensic analysis in retrospect to discover chains of events that led
to a potential compromise or impact onto a company. In fact, (A)DBNs are predestined for
such an application: every parameter in a dynamic mission impact model can be validated
and parametrized intuitively, as every parameter is a locally understandable conditional
probability distribution. Without such a parameter-validatability, multiple complete impact
assessments, e.g., observations from sources of impacts to effects on a global business, are
required to train and validate a model from and against ground truth; but the acquisition
of such ground truth quickly becomes impossible, as thousands of such observations with
actual business impacts are required, which would ruin the business per se while acquiring
an initial dataset. Fortunately, when using a validated ADBN, commonly known inference
problems such as filtering and smoothing (cf. Section 5), then provide dynamic mission
impact assessments, which are immediately validated based on the validated parameters. As
an obtained impact assessment is defined to be correct and is a plain conditional probability,
the assessment is directly understandable by every person and does neither require reference
results for comparison, nor a deep understanding of the underlying mathematical principles,
nor any security knowledge background. As motivated by the taintedness domains, non-
infinitesimal, i.e., coarse, timeslices demand cyclic dependency structures, which are, however,
not well-defined in classical DBN formalisms. In the following, we show that bending of
dependencies to a consecutive timestep forming diagonal models leads to severe issues,
delivering highly spurious results. Further, we show that the cyclic dependencies in the
taintedness domain represent a novel, well-defined DPGM which preserves the desired local
semantics without introducing a novel calculus nor any computational overhead for performing
inference.

Remark 1 (Use of diagonal models). Diagonal models can be used to simulate a cyclic
“feedback” relationship by letting a model converge to a stable state after long periods of
time, which is used to simulate hidden Markov models with the use of DBNs, as, e.g.,
done by Murphy (2002) or Ghahramani (2001). However, when seeing each timeslice as a
representation of a fraction of a real “wall-clock” time, as done by, e.g., Glesner and Koller
(1995), Sanghai et al. (2005), Jaeger (2001), and us, a cyclic model would already expand to
infinity during one timeslice, e.g., when going from day 1 (t = 1) to day 2 (t = 2).

In the following we show that without a causal design, i.e., without modeling direct and
indirect causes correctly, spurious results are obtained from such models. We further show
that by allowing cyclic dependency structures, one anticipates indirect influences without any
demands on time granularity in the form of a novel DPGM class, called ADBNs. Moreover,
we show that ADBNs are remarkable similar to DBNs, but without an acyclicity constraint.

Classically, a conditional independency in a Bayesian network is represented by the lack
of an arc between two nodes. Another kind of independence in Bayesian networks, called
context-specific independence (CSI), has been studied by Boutilier et al. (1996) and Ngo
and Haddawy (1997). CSIs represent dependencies in a BN that are only present in specific
contexts and have mainly been used for more efficient inference, e.g., as studied by Poole
and Zhang (2003) (cf. Section 8). We use the notation AXY if a random variable acts as a so
called activator random variable which activates a dependency of random variable Y on X
in a given context.

10
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Figure 3: Two options (black/gray) to represent a world using an (A)DBN for the running
example if every employee (Claire, Don, Earl) can influence every other employee
through messages M t

XY . Syntactic DAG constraints of (D)BNs prevent cyclic
dependencies, and diagonal state dependencies are enforced (indicated with gray
arrows). The diagonal option is considered inaccurate from a world representation
point of view. In the diagonal case, M t

XY represents M t−1 t
XY , i.e. M t

XY affects the
dependency of state Y t on Xt−1.

Definition 2 (Activation / deactivation criteria). Let dom(AXY ) = {true, false} (extensions
to non-boolean domains are straightforward). The deactivation criterion for AXY = false is
defined as

∀x, x′ ∈ dom(X), ∀y ∈ dom(Y ),∀~z ∈ dom(~Z) :

P (y|x,¬aXY , ~z) = P (y|x′,¬aXY , ~z) = P (y|∗,¬aXY , ~z) ,
(1)

where ∗ represents a wildcard and ~Z remaining direct dependencies of Y, i.e., direct parents
of Y. Given ¬aXY , we say that a direct causal dependence of Y on X, i.e., a direct causal
influence of X on Y, is inactive.

The activation criterion describes a situation where Y becomes directly dependent on X,
where the CPD entry for some y ∈ dom(Y ) is not uniquely identified by just +aXY and ~z,
hence

∃x, x′ ∈ dom(X), ∃y ∈ dom(Y ),∃~z ∈ dom(~Z) :

P (y|x, +aXY , ~z) 6= P (y|x′, +aXY , ~z) .
(2)

Given +aXY , we say that the direct causal dependence of Y on X, i.e., the direct causal
influence of X on Y, is active.

If for a random variable AtXY both activation and deactivation criteria are fulfilled by a
local CPD definition of random variable Y , AtXY is called an activator random variable. N

Note that Definition 2 is based on properties of locally defined CPDs of random variables
in a (D)BN, i.e., some random variable of a (D)BN is identified to be an activator random

11
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variable by some specific numerical parameter settings in CPDs. The activation criteria
and deactivation criteria only apply to these local CPDs, and do not apply to the global
semantics of a (D)BN. Table 1 shows an arbitrarily specified CPT in which random variables
show to have an activator nature and follow Definition 2. Note also that activator criteria
can be present in any form of CPDs, as expressed in the following remark.

Remark 2. The (de)activation criterion can be summarized as: a probability is uniquely
identified by active dependencies, and inactive dependencies become irrelevant. This property
is easily confusable with a property of a “noisy-or combination” function (e.g., described by
Henrion, 1988), where “false” dependencies (or as Heckerman and Breese (1996) say: in a
“distinguished” state) are semantically supposed to be irrelevant. Under noisy-or assumptions,
each conditional probability value in a CPD is obtained by a deterministic combination function
of individual probability fragments associated with “true” dependencies. Still, the general
activation and deactivation criteria from Definition 2 are not linked to specific combination
functions and can be present in arbitrarily specified CPDs (cf. Table 1). Nevertheless, the
noisy-or combination function inherently defines activation and deactivation criteria in their
semantics, where only “true dependencies act as potential causes” and a “false dependence
does not cause any harm.” Motzek and Möller (2015a) call such a property an “innocuousness-
property,” and explore its role in ADBNs, as ADBNs actually enable one to (semantically and
syntactically) formalize such a property in CPDs. The difference between the innocuousness
property and the activator criterion is that for the general (de)activation criterion the presence
(the activation) of a dependence is relevant for every value. For innocuousness properties
of CPDs, the presence of a “false” dependence is irrelevant, i.e., the activation is only of
interest for some values of the dependence.

Furthermore, the Example 3 below demonstrates the identification of activator random
variables on the running example of the taintedness domain.

Example 3 (Regulatory compliance continued). In Example 2 we modeled that Claire does
not constantly exert an influence on Don, i.e., only if Claire sends a letter to Don there is an
influence made explicit. In fact, message exchange variables M t

XY from Example 2 act as
activator random variables according to Definition 2.

We observe possible message exchanges from utilized envelopes (possibly found in the trash
bin). On internal envelopes one usually finds indicators for multiple transfers from a coarse
time interval in an imprecise or inaccurate order. For example, a transfer from Don to Earl
and one from Claire to Don might include a transitive influence of Claire on Earl during
the same time interval. We show in the following that it is highly important to cover these
indirect influences and to model indirect causes appropriately.

Example 3 shows that activator random variables naturally exist in domains and do
not necessarily need to be introduced as auxiliary variables. If activator random variables
are present in domains, an (effective) structure of an DPGM is not known in advance and
even changes over time. As effective structures are not known in advance, only general
structures are designable in advance, covering all potential substructures. To correctly cover
all implications of influences, i.e., to consider all direct and indirect causes, generally cyclic
DPGMs are required (as in Figure 3, black).

12
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Table 1: Example for a CPD P (+x|V,W, Y, Z) with arbitrary numbers α—γ. In fact, random
variables V and W are identifiable as activator random variables according to
Definition 2. V represents an AY X and W represents an AZX .

V W Y Z P(+x| . . .)
+v +w +y +z α
+v ¬w +y +z β
+v ¬w +y ¬z β
¬v +w +y +z ε
¬v +w ¬y +z ε
+v +w ¬y +z η
+v +w +y ¬z γ
+v +w ¬y ¬z µ

V W Y Z P(+x| . . .)
+v ¬w ¬y +z ν
+v ¬w ¬y ¬z ν
¬v ¬w +y +z φ
¬v ¬w +y ¬z φ
¬v ¬w ¬y +z φ
¬v ¬w ¬y ¬z φ
¬v +w +y ¬z ψ
¬v +w ¬y ¬z ψ

4. Activator Dynamic Bayesian Networks

A DPGM in which some random variables are identifiable as activator random variables
according to Definition 2 is called an Activator DBN, i.e., random variables in B0 and B→
can syntactically be grouped into two (not necessary disjoint) sets of state variables ~Xt and
activator variables ~At.

Notation 3 (Activator matrices). Let As tij be the activator random variable influencing Xt
j

regarding a dependency on Xs
i . Let As t describe the matrix of all activator random variables

between timeslice s and t s.t.

As t =

A
s t
11 · · · As t1n
...

. . .
...

As tn1 · · · As tnn

 .

Let ~As ti denote the ith column of As t, i.e., ~As ti represents the vector of all activator random
variables relevant for Xt

i regarding an influence by random variables of timeslice s. Let ~As t
denote the corresponding column vector of all entries of As t, i.e.,

~As t =
(
As t11, . . . , A

s t
1n, . . . , A

s t
n1, . . . , A

s t
nn

)ᵀ
.

Let ~A01:tt = 〈 ~A01, ~A11, ~A12, . . . , ~Att〉 denote the vector of all activator random variables
existing in and between timeslices 0 to t. For brevity, we write At for Att (excluding Attkk),
and correspondingly we write Atij, ~A

t
i and ~At. Let ~A1:t = 〈 ~A1, ~A2, . . . , ~At〉 then denote the

vector of all intra-timeslice activator random variables ~At for every timeslice t.

Activator dynamic Bayesian networks are DPGMs and share familiar syntax and semantics
with dynamic Bayesian networks (compare Definition 1 and Proposition 1), but ADBNs are
not bound to DAG constraints like DBNs:

13
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Definition 3 (Activator dynamic Bayesian network, ADBN). An ADBN is syntactically
defined as a tuple (B0, B→) with B0 defining an initial Bayesian network representing time
t = 0 containing all states X0

i ∈ ~X0, and a consecutively repeated activator Bayesian network
fragment B→ consisting of dependencies between state variables Xs

i and Xt
j , t− 1 ≤ s ≤ t,

(Markov-1) and consisting of dependencies between state variables Xt
i and activator random

variables Astji. For every random variable Xt
i , A

st
ij a local CPD over all parents, e.g., as a

CPT is specified, where CPDs of state variables Xt
i follow Definition 2.

By repeating B→ for every time step t > 0, an ADBN (B0, B→) is unfolded into a PGM
defining an ADBN’s global semantics. N

Definition 3 defines ADBNs as a form of DPGM in which some random variables have an
activator nature, i.e., some CPDs of state variables show certain properties that identify other
random variables as activator random variables. Note that these activator random variables
are not introduced externally, but are already part of a domain as shown in the following
examples. The following theorem states in which cases an ADBN is well-defined. The idea is
that two cases may exist: (1) an ADBN is a classical DBN, i.e., acyclic and well-defined by
Proposition 1, or (2) an ADBN is not a classical DBN, i.e., it contains cyclic dependencies,
for which a different well-definedness condition is introduced, which is a modified constraint
of acyclicity.

Theorem 1 (ADBN well-definedness). An ADBN is well-defined, if an ADBN is well-defined
according to Proposition 1, i.e., if it is a well-defined DBN. An ADBN is well-defined for
every instantiation ~a1:t

∗ of ~A1:t, if for all t, ~at∗ satisfies the acyclicity predicate A:

∀x, y, z ∈ ~Xt : A(x, z)t,A(z, y)t → A(x, y)t

¬∃q : A(q, q)t ,
(3)

with an acyclicity predicate A(i, j)t that is defined as

A(i, j)t =

{
false if ¬atij ∈ ~at∗
true if else

.

For every well-defined ADBN, the global semantics, i.e., P ( ~X0:tᵀ , ~A01:ttᵀ), is, equivalently
to DBNs, given as the product of all locally defined CPDs. N

Theorem 1 means that ADBNs are not syntactically bound to DAG structures in B→
and still share familiar DBN semantics providing a local interpretation and specification
of conditional probability distributions without the need for global normalization factors
as, e.g., in conditional random fields. A proof for Theorem 1 is later given in the appendix
by Proof A. Well-definedness is achieved through the novel acyclicity constraint, namely
that not a syntactic graph structure is forced to be acyclic, but rather that an instantiation
of an unrolled DBN is acyclic. This is useful for applications where actual structures are
not known in advance and might change at every timeslice depending on specific contexts.
Such particular situations often arise, if timeslices are not supposed to be infinitesimally
small, and indirect influences must indeed be considered, with cyclic dependency structures
in B→ arising naturally during a design phase. In particular, the novel acyclicity constraint
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of ADBNs is highly beneficial for the running example, as demonstrated in Example 4 after
the following definitions.

The novel acyclicity constraint means that it has to be enforced that only well-defined
instantiations are used for inference. Enforcing the use of only well-defined instantiations
can be ensured by adequate observations or modeling approaches (see later Section 7). We
characterize such well-defined instantiations using the following definition.

Definition 4 (Regular and acyclic instantiations). If an instantiation ~x0:t,~a1:t of ~X0:t, ~A1:t

leads to a well-defined ADBN according to Theorem 1, we say that the instantiation ~x0:t,~a1:t

is regular. Let GtA represent the graph formed by active activators of a full instantiation ~at,
where every active activator +atij ∈ ~at represents an edge from node i to j. If, for every ~ai in
~a1:t, GiA is acyclic, we say that the instantiation ~x0:t,~a1:t is acyclic. N

Under Definition 4 every acyclic instantiation is regular. For the predicate A defined in
Theorem 1 every regular instantiation is also an acyclic instantiation. Note that Motzek and
Möller (2015a) show that A predicates exist for which regular instantiations do not necessarily
need to be acyclic, i.e., not only contexts of activator random variables can ensure regularity
and it need not be the goal to ensure acyclicity, but it is the goal to ensure regularity.

Corresponding to Notation 2 regarding inter- and intra-timeslice models, we distinguish
ADBNs based on the density of their activator matrices:

Notation 4 (Dense, inter- and intra-timeslice ADBNs). An intra-timeslice ADBN (B0, B→)
is an ADBN with non-empty activator matrix At t. A diagonal or inter-timeslice ADBN
(B0, B→) is an ADBN with non-empty At−1 t. An ADBN (B0, B→) is called a dense ADBN,
if at least one activator matrix As t is dense, i.e., there exists a random variable acting as
an activator random variable for every modeled influence. In a dense intra-timeslice model,
cyclic dependencies exist in B→, for which we also speak of cyclic ADBNs.

Note again that activators in an ADBN are classical random variables and are part of a
modeled domain as shown in the following example, i.e., activators are not auxiliary variables.

Example 4 (Inter- and intra-timeslice ADBNs). Based on Example 3 the regulatory compli-
ance domain can be modeled as an ADBN: Message exchange variables have activator nature
and one obtains an ADBN with activators ~At = (M t

CD,M
t
DC ,M

t
DE ,M

t
ED,M

t
CE ,M

t
EC)ᵀ and

state random variables ~Xt = (Ct, Dt, Et)ᵀ.
To model that every employee can potentially influence every other, i.e., can send him a

document, two options are available: (a) a diagonal (dense) inter-timeslice ADBN as shown
in Figure 3 (gray), i.e., a well-defined DBN according to Proposition 1, or (b) a cyclic (dense)
intra-timeslice ADBN as shown in Figure 3 (black), i.e., a well-defined ADBN according to
Theorem 1, if correctly instantiated.

As discussed earlier, this example highlights both design options for the discussed
taintedness domain: one classic solution based on a diagonal ADBN and one using a newly
allowed cyclic ADBN. As a diagonal (dense inter-timeslice) ADBN represents a classic DBN,
we also write (A)DBN in the diagonal case. Note that the diagonal (A)DBN solution is the
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only consequent well-defined classic DBN solution1. However, as discussed earlier, a diagonal
option is seen as inaccurate from a world representation point of view and is subject to a
significant problem with indirect causes as punctuated in the following example.

Example 5 (Diagonal (A)DBN restrictions example). Continuing Example 4, say, one
observes a message transfer from Claire to Don (+m1

CD) and from Don to Earl (+m1
DE), and

one can neglect all other transfers, i.e., ¬m1
DC ,¬m1

ED,¬m1
CE ,¬m1

EC . To fully evaluate all
implications of the observations, one has to anticipate an indirect influence from Claire to
Earl through Don during timeslice 1. But, the diagonal (A)DBN in Figure 3 (gray) does
not encode the domain correctly and leads to spurious results: Earl is only influencable by
Claire through Don from a Claire of the penultimate timepoint, but the observed message
exchanges only let t1-Claire influence t2-Don, and let t1-Don influence t2-Earl. Cf. later
Examples 7 and 8.

Example 5 emphazises that the diagonal (A)DBN option encodes a different domain
where influences between random variables only affect a consecutive timeslice, i.e., diagonal
(A)DBNs represent an incubation time, which implies that a time-granularity must be
adequately small. However, if information is only acquirable at a daily or weekly scale,
incubation times elapse, and one expects consecutive influences to be considered during the
same timeslice, i.e., one expects the anticipation of indirect influences, which cannot be
represented in a classical diagonal (A)DBN. In effect, one is limited to reasoning using only
direct influences in diagonal (A)DBNs as formalized in the following proposition.

Proposition 2 (Diagonal (A)DBN restrictions). Let (B0, B→) be a diagonal inter-timeslice
(A)DBN and let ~a∗1:t be an instantiation of ~A1:t for which holds ∃i, j, k, t : +atij ∈ at∗∧+atjk ∈ at∗.
Then, ~a∗1:t includes an indirect influence and enforces an infinitesimal resolution of timeslices,
where indirect effects do not need to be anticipated. If a resolution of timeslices is not
infinitesimally small, inference results from (B0, B→) under ~a∗1:t will be spurious. Only if
∀t 6= ∃i, j, k, t : +atij ∈ at∗ ∧ atjk ∈ a∗t holds for ~a∗1:t, ~a∗1:t is indirect-free and supported by a
diagonal (A)DBN. N

Proposition 2 shows that diagonal (A)DBNs are severely restricted and may return
spurious results if a time granularity is not chosen appropriately for the model (as it has
been the case in Example 5). If time granularity is not chosen appropriately according to
Proposition 2, inference results may become spurious since evident indirect influences cannot
be anticipated. Effectively, one is only able to reason over instantiations of a diagonal (A)DBN
where the instantiations of activators form a bipartite digraph with uniformly directed edges,
i.e., only direct influences occur. The latter significantly limits the expressiveness and
reasoning abilities of diagonal DBNs. The necessity to adjust the resolution of time to
properties of the chosen framework, instead of adjusting the resolution to the modeled
domain, stands in significant conflict with our intention of maintaining a Bayesian network
as a first-class representation of the world.

1. A limited set of dependencies can be modeled as intra-timeslice dependencies, but it is an arbitrary decision
why some dependencies are modeled as inter- and some are modeled as intra-timeslice dependencies.
Moreover, an arbitrary choice leads to severe parametrization issues as discussed in Section 2.
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Fortunately, Theorem 1 explicitly permits structures of B→ that are forbidden under
classic DBN definitions: cyclic intra-timeslice models, as discussed in Example 4, are indeed
well-defined under some restrictions according to Theorem 1. In the following we show that
restrictions of intra-timeslice models are less strict than restrictions on classic, diagonal
(A)DBN models:

Example 6 (Cyclic (A)DBN restrictions example). Continuing Ex. 5, with the same message
transfer observations, but for a cyclic ADBN option (Figure 3, black): The observations only
allow regular and acyclic instantiations which satisfy Theorem 1 and thus lead to a well-defined
Bayesian network, even though B→ is based on a cyclic graph. Here, all implications of the
observations, namely an indirect influence from Claire to Earl through Don during timeslice 1
is anticipated. As intended, t1-Claire does influence t1-Don of the same timeslice, and t1-Don
influences t1-Earl of the same timeslice. To achieve this constellation in a general setting, B→
must proactively be designed with cycles, as actual dependencies are not known in advance
and change over time.

This example shows that in ADBNs indirect influences are anticipated under a time-
granularity suited to a problem (e.g., days) instead of a time-granularity enforced by a
reasoning framework. Essentially in some sense, ADBNs move an acyclicity constraint for
well-definedness from the design phase of a Bayesian network to an actual instantiation of a
Bayesian network at “runtime.”

To summarize, we have shown that classic DBNs are limited in their expressiveness,
and instantiations of them are limited to indirect-free instantiation sets that do not contain
indirect influences if time granularity is not infinitesimally small. With the identification
of activator properties of random variables in ADBNs, more expressive graph structures
for (A)DBNs are supported, while sharing similar semantics, and with larger sets of regular
instantiations of ADBNs being possible. Later, in Section 8, we quantitatively compare
restrictions on the number of regular instantiations between DBNs and ADBNs.

In fact, every possible Markov-1 DBN can be represented as a dense inter-and-intra
timeslice ADBN as the next proposition states.

Proposition 3 (Completeness). An ADBN can model any joint probability and includes
every possible Markov-1 DBN structure. Let (B∗0 , B

∗
→) be a dense inter- and intra-timeslice

ADBN with a dense inter-timeslice activator matrix At−1 t and a dense intra-timeslice
activator matrix At t. Then, for every Markov-1 DBN (B′0, B

′
→) there exists a minimal set of

instantiations ~a� of (B∗0 , B
∗
→) under which the same effective topological ordering is formed

as defined by (B′0, B
′
→). Therefore, a dense inter-timeslice ADBN represents a superclass of

all possible inter-timeslice DBN structures and a dense intra-timeslice ADBN represents a
superclass of all possible intra-timeslice DBN structures. N

We argue that often DBN models with diagonal state dependencies are used only due to
syntactic constraints on (D)BNs (Proposition 1), but stand in conflict with an actual causality
in their domain. Therefore, we focus in the following on a dense intra-timeslice ADBN, which
covers and represents all possible novelly allowed cases of ADBNs. The following proposition
derives the semantics according to Theorem 1 as the joint probability distribution over all
random variables.
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Proposition 4 (Joint probability distribution of a dense intra-timeslice ADBN). If an
ADBN is well-defined, the joint probability over all random variables is defined as the product
of all locally defined CPDs. Therefore, a dense intra-timeslice ADBN’s semantics is

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X0
1 ) · . . . · P (X0

n) ·
t∏
i=1

P (Xi
1|Xi

2, . . . , X
i
n, A

i
21, . . . , A

i
n1, X

i−1
1 )

· . . . · P (Xi
n|Xi

1, . . . , X
i
n−1, A

i
1n, . . . , A

i
(n−1)n, X

i−1
n ) · P (Ai12) · . . . · P (Ain(n−1))

=
∏

X0
k∈ ~X0

P (X0
k) ·

t∏
i=1

∏
Xi

k∈ ~X i

P (Xi
k| ~Xiᵀ\Xi

k,
~Ai

ᵀ
k , X

i−1
k ) ·

∏
Ai

cv∈ ~Ai

P (Aicv) . (4)

As expected, the joint probability can be defined recursively:

P ( ~X0:tᵀ , ~A1:tᵀ) =

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ) ·
∏

Xt
k∈ ~X t

P (Xt
k| ~Xtᵀ\Xt

k,
~At

ᵀ
k , X

t−1
k ) ·

∏
At

cv∈ ~At

P (Atcv) . N (5)

Naively, every query to an (A)DBN can be answered by marginalization from the defined
joint probability distribution over all random variables from all timeslices, which, however, is
computationally intractable. Therefore, the following sections discuss special types of queries
and derive exact and approximate solutions to associated problems in cyclic (A)DBNs.

5. Common Queries and Associated Answering Problems in ADBNs

A DBN is a temporal probabilistic knowledge base with respect to which queries can be
posed. Common query types are known as filtering, smoothing and most likely explanation
(we adapt the meaning of Murphy, 2002) and define query answering problems w.r.t. the
semantics of the knowledge base. Queries are used to investigate historical information in
retrospect or are used to constantly monitor a specific variable over time, e.g., estimate a
trajectory of a moving object for which position measurement values are noisy.

As explained above, every query is answered by straight marginalization from the full
joint probability distribution (JPD) defined by the unrolled DBN, i.e., from the JPD defined
by a Bayesian network consisting of all timeslices upto timepoint t at once. However, such a
naive approach is only tractable for the very first timeslices and the curse of dimensionality
prevents inference over long periods of time. Still, it is a highly important property of
DBNs that commonly known problems, such as filtering- and smoothing-problems, remain
practically solvable even over long periods of time via commonly known algorithms such
as the forward-backward algorithm. Without restriction of any kind, this property must
be preserved in any novel dynamic probabilistic model, such as the one introduced by
us—ADBNs. Therefore, we prove in this section that inference in ADBNs remains in the
same complexity class as corresponding problems in multiply connected DBNs. In general,
inference problems in multiply-connected (D)BNs are known to be NP-hard as shown by
Cooper (1990). However, focusing on single input parameters of inference problems associated
with DBNs, problems show to be fixed-parameter tractable. This means that algorithms
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exist, e.g., the forward-backward-algorithm, which provide exact solutions to common query
answering problems in a tractable time- and memory-complexity over time, i.e., remain
tractable even for large numbers of consecutive timeslices. In this section we show and prove
that inference in ADBNs does not introduce any overhead for solving commonly known
problems, that solutions, such as the forward-backward-algorithm remain directly applicable
for ADBNs based on cyclic graphs, and that inference in ADBNs remains solvable with the
classical and familiar calculus from (D)BNs without any introduction of novel operators, i.e.,
one preserves classical marginalization from a JPD based on classical random variables with
associated CPDs.

Definition 5 (Query answering language and observations). Let ~Zt ⊆ ~Xt be a set of observed
and ~ζt = ~Xt\~Zt be the corresponding set of unobserved state variables. Let Bt ⊆ At be a
set of observed activators and ~Bt ⊆ ~At be the corresponding column vector representation.
Likewise, let ~βt = ~At\ ~Bt be the column vector of all unobserved activators. Then, observations
of state variables ~z t are instantiation assignments Xt

i = xi ∈ dom(Xt
i ) and observations of

activator random variables ~bt are instantiation assignments Atij = aij ∈ dom(Atij).
Let ~xt ∈ dom( ~Xt) be a full instantiation of ~Xt and let ~at ∈ dom( ~At) be a full instantiation

of ~At. Further, let every instantiation assignment in ~xt, ~zt,~at,~bt uniquely define the value of
its respective random variable in ~Xt or ~At.

Then, a query P (~xk
ᵀ
,~ak

ᵀ |~z 0:tᵀ ,~b1:tᵀ) to a probabilistic knowledge base (B0, B→) is
a request for the respective result of P (~xk

ᵀ
,~ak

ᵀ |~z 0:tᵀ ,~b1:tᵀ), i.e., the probability of a full
instantiation ~xk,~ak at an arbitrary timestep k, given (partial) evidence ~z 0:t,~b1:t until an
arbitrary timestep t. The answer to a query for a probability of an instantiation contradicting
observations, i.e., an observed state variable Xk

i ∈ ~Zk is contradictorily defined by a zkj ∈ ~zk
and xki ∈ ~xk or an observed activator random variable Akij ∈ ~Bt is contradictorily defined by a
bkcv ∈ ~b k and akij ∈ ~ak, is defined to be of probability zero, e.g., P (+c, +d, +e|¬d) = 0. A query
P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) for an uninstantiated set of random variables ~Xkᵀ , ~Akᵀ is a query for
a distribution and is answerable by queries for all possible instantiations of ~Xk, ~Ak. N

As discussed earlier, inference must be based solely on regular instantiations. If observa-
tions are supposed to enforce regularity, we talk about regular or acyclic observations.

Definition 6 (Regular and acyclic observations). An observation is regular/acyclic, if every
instantiation ~x 0:t,~a1:t for which P (~x 0:tᵀ ,~a1:tᵀ |~z 0:tᵀ ,~b1:tᵀ) > 0 holds is regular/acyclic. N

Note that this restriction is never enforced, i.e., it is possible to perform inference in
non-regular ADBNs if observations are not regular. In such a particular situation, obtained
results are not well-defined, but, still, results are obtained. As discussed in Section 8 and by
Motzek and Möller (2015a) this circumstance is highly beneficial, as not only acyclicity is a
regularity constraint, i.e., obtained results might show up to be well-defined after further
research.

Notation 5 (Summation over uninstantiated random variables). Let R be an uninstantiated,
i.e., an unobserved and unqueried, random variable. Then, let

∑
R P (R) denote a summation

over all possible instantiations r of R, r ∈ dom(R), e.g., for a binary R:
∑

R P (R) =

P (+r)+P (¬r). Let ~R denote a column vector of uninstantiated random variables Ri ∈ ~R, 0 ≤
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i ≤ n. Then let
∑

~R P (R0, R1, . . . Rn) denote a nested summation over all uninstantiated
random variables

∑
Ri∈~R, i.e., a summation over all possible instantiation combinations

of all random variables in ~R. For example, for binary ~R = 〈R0, R1〉ᵀ:
∑

~R P (R0, R1) =
P (+r0, +r1) + P (+r0,¬r1) + P (¬r0, +r1) + P (¬r0,¬r1).

Proposition 5 (Answering queries about partial subset of instantiations). All queries about
partial subsets of instantiations ~xkq , ~akq of random variables ~Xk

q ∈ ~Xk and ~Akq ∈ ~Ak are
answerable by marginalization from P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) as

P (~xk
ᵀ
q ,~a

kᵀ
q |~z 0:tᵀ ,~b1:tᵀ) =

∑
~Xk
u

∑
~Ak
u

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) ,

where ~Aku is the vector of unbound (“unqueried”) activator variables ~Aku = ~Ak\ ~Akq and
~Xk
u is the vector of unqueried state variables ~Xk

q = ~Xk\ ~Xk
q . Given the distribution

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ), marginalization is exponential in the dimension of unqueried varia-
bles from timestep k and in the largest domain dom(X+), dom(A++) of unqueried random
variables X+ ∈ ~Xk

u , A++ ∈ ~Aku, i.e., in O(| dom(X+)|| ~Xk
u | · | dom(A++)|| ~Ak

u|). N

5.1 Filtering Queries and Problems

Queries P (~xk
ᵀ
,~ak

ᵀ |~z 0:tᵀ ,~b1:tᵀ) with k = t to a probabilistic knowledge base are commonly
known as filtering queries. Finding answers to queries of the type P (~xt

ᵀ
,~at

ᵀ |~z 0:tᵀ ,~b1:tᵀ) poses
two different filtering problems depending on the availability of previous answers to similar
queries.

Given historical information about a probabilistic process, filtering queries for multiple
timeslices from a broad timerange considering long periods of evidences need to be answered.
To answer these queries efficiently, the offline filtering problem needs to be solved.

Definition 7 (Offline filtering problem). Given a probabilistic knowledge base (B0, B→),
the offline filtering problem is the task of determining the conditional probability of random
variables at all timeslices 0 ≤ j ≤ t given all obtained evidence ~z 0:t,~b1:t so far. This is, to
obtain

P ( ~Xjᵀ , ~Ajᵀ |~z 0:jᵀ ,~b1:jᵀ) , ∀j : 0 ≤ j ≤ t .

We denote a parametrized offline filtering problem as OffFP(B0, B→, ~z 0:t,~b1:t, t), where t
represents the (unary coded) total number of passed timeslices so far. N

The offline filtering problem determines the complete conditional joint probability dis-
tribution P ( ~Xjᵀ , ~Ajᵀ |~z 0:jᵀ ,~b1:jᵀ) at every timestep j, called a filtering distribution, such
that every filtering query for a timeslice j can be answered directly. Further, an answer to
a filtering query about partial instantiations can be derived by marginalization, without
determining the complete filtering distribution again.

If knowledge about a distribution’s evolution over time is required incrementally from
t− 1 to t for every newly obtained evidence, i.e., queries need to be answered temporally
consecutively only for the current timeslice t, one has to solve the online filtering problem.
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Definition 8 (Online filtering problem). Given a probabilistic knowledge base (B0, B→) and
a stored solution to the online filtering problem at t−1, e.g., P ( ~Xt−1ᵀ , ~At−1ᵀ |~z 0:t−1ᵀ ,~b1:t−1ᵀ),
the online filtering problem is the task of determining the conditional probability distribution
of random variables at time t given newly obtained evidence ~z t,~bt. This is, to obtain

P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) ,

conditioned on the stored solution to the online filtering problem at t − 1. We denote a
parametrized online filtering problem as OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t), which includes a
solution to OnlFP(B0, B→, ~z t−2:t−1,~bt−2:t−1, t− 1). N

The following example demonstrates how a filtering query can be used to gain knowledge
about potential infringements in the running example.

Example 7 (Filtering). With Theorem 1 one can actually model cyclic dependencies as
desired in Example 4 and build an ADBN for our example as shown in Figure 3 (black). We
assume a noisy-or combination for every state Xt and an individual probability of influence
of 0.8.

Say, Don and Earl did pass an initial checkup, but Claire did not. At t = 1, one observes
a document transfer from Claire to Don, one is unsure about one from Don to Earl, i.e., MDE

is uninstantiated, and one can neglect all other transfers. As Claire is known to be tainted, one
expects her to influence Earl through Don, analyzable in a filtering query P (E1|~z 0:1ᵀ ,~b1ᵀ),
with ~z 0:1 = (+c0,¬d0,¬e0)ᵀ, and ~b1 = (+m1

CD,¬m1
DC ,¬m1

ED,¬m1
CE ,¬m1

EC)ᵀ. As ~b1 is
regular, one obtains P (E1|~z 0:1ᵀ ,~b1ᵀ) = 〈0.8 · 0.8 · 0.5 = 0.32, 0.68〉 using a cyclic ADBN,
i.e., a cyclic ADBN considers that Earl is possibly influenced by Claire through Don and
there exists a probability of 0.32 that Earl is now tainted. A diagonal DBN cannot anticipate
the indirect influence, because t1-Earl is influenced by a t0-Don that has not received a
document from Claire. Therefore, a diagonal DBN pretends that Earl is not tainted, i.e.,
P (E1|~z 0:1ᵀ ,~b1ᵀ) = 〈0, 1〉 and there is absolutely no possibility that Earl is tainted.

To obtain a correct answer in a diagonal DBN for this situation, one needs observations at
a finer time scale where indirect influences are not evident during one timeslice. For example,
one first has to observe m1

CD, considered in an evaluation of P (E1|~z 0:1ᵀ ,~b1ᵀ), and then
insert a “correcting” “time”-slice t = 1.1, where possibilities of M1

DE are considered during the
evaluation of P (E1.1|~z 0:1.1ᵀ ,~b1:1.1ᵀ). To achieve the result of one ADBN evaluation, one needs
n− 1 “diagonal”-evaluations. Somehow, a reasoning framework would need to map queries to
serialized observations in a diagonal DBN. Introducing obscure “correcting” timeslices in this
manner degrades a BN to a reasoning tool that exists solely for the purpose of solving one
inference problem.

Example 7 demonstrates the importance of considering indirect causes, as otherwise
highly unexpected results are obtained. Moreover, it demonstrates that by the use of cyclic
ADBNs, indirect causes are correctly represented and anticipated, in contrast to approaches
using diagonal DBNs. The correct anticipation of indirect influences is achieved by cyclic
dependencies in an ADBN, which, as stated by the following theorems, do not cause any
overhead in solving associated filtering problems.
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Theorem 2 (Exact solution to the offline filtering problem). Given an offline filtering
problem OffFP(B0, B→, ~z 0:t,~b1:t, t), finding an exact solution is linear in t. Finding an exact
solution is exponential in the maximal dimension of unobserved variables ~ζ∗, ~β∗ in a timestep
0 < ∗ < t, and in the largest domain dom(ζ+), dom(β+) of all random variables ζ+ ∈ ~ζ0:t,
β+ ∈ ~β1:t. Finding an exact solution to the offline filtering problem is exponential in the
dimension of number of random variables | ~Xt|, | ~At| and a respective maximal domain size
dom(X+), dom(A++) of all random variables X+ ∈ ~Xt, A++ ∈ ~At. N

Theorem 2 is proven by showing that an algorithm exists for finding an exact solution
to OffFP(B0, B→, ~z 0:t,~b1:t, t) in time-complexity O(t · |dom(X+)|| ~Xt| · | dom(A++)|| ~At| ·
|dom(ζ+)||~ζ∗|·|dom(β+)||~β∗|) and with space-complexityO(t · | dom(X+)|| ~Xt|·|dom(A++)|| ~At|)
for storing P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) for every timeslice t. The proof is combined with the proof
for the following theorem.

Theorem 3 (Exact solution to the online filtering problem). Given an online filtering
problem OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t), finding an exact solution is constant in t. Finding
an exact solution is exponential in the dimension of unobserved variables from timestep t− 1
and in the largest domain dom(ζ+), dom(β+) of random variables ζ+ ∈ ~ζt−1, β+ ∈ ~βt−1.
Finding an exact solution to the online filtering problem is exponential in the dimension
of number of random variables | ~Xt|, | ~At| and a respective maximal domain size dom(X+),
dom(A++) of all random variables X+ ∈ ~Xt, A++ ∈ ~At. N

These theorems discuss the computational complexity of filtering problems in general
ADBNs, and, most importantly, state that filtering in ADBNs still remains constant over
time, as one is used to for classical DBN filtering problems. Both theorems are proven
in Appendix B whose major result is a commonly known recursive definition of a filtering
equation, given in the following corollary, for solving filtering problems.

Corollary 1 (Filtering equation). Using a recursive definition, an exact solution to a
filtering problem for a consecutive timestep based on one of the current timestep in a dense
intra-timeslice ADBN is given by

P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) = α
∑
~ζt−1

∑
~βt−1

P ( ~Xt−1ᵀ , ~At−1ᵀ |~z 0:t−1ᵀ ,~b1:t−1ᵀ)

·
∏

Xt
i∈ ~Xt

P (Xt
i | ~Xtᵀ\Xt

i , ~A
tᵀ
i , X

t−1
i ) ·

∏
At

ij∈ ~At

P (Atij) . N (6)

This corollary is an excerpt of the proof for Theorems 3 and 2 in Appendix B, showing
that filtering has constant complexity w.r.t. time in dense intra-timeslice ADBNs, i.e., the
most general form of cyclic ADBNs. Moreover, it shows that no novel calculus (in significant
contrast to Milch et al., 2005; Bilmes, 2000; Geiger & Heckerman, 1996) is required to
perform exact inference in dense intra-timeslice ADBNs, despite the fact that ADBNs might
be based on cyclic graphs. Furthermore, note that at no timestep an effective structure is
known in advance and indeed remains unknown, and, still, the general filtering equation does
not even require a postponed analysis of such a structure.
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If one would be constrained to achieve similar results in an acyclic, diagonal (A)DBN, a
serialized observation set with spurious intermediate timeslices had to be generated. Filtering
in such a generated diagonal network would then be n-times slower. Additionally, a generated
order needs to be stored for answering queries. We refrain from a detailed analysis on how
similar results could be achieved in a diagonal (A)DBN by artificially serializing observations;
a diagonal (A)DBN simply represents the wrong model and cyclic ADBNs are immediately
required to provide a local and causal parametrization of such models.

5.2 Prediction

is used to propagate a possible evolution into the future. Essentially, prediction is a filtering
query with an empty observation set. If observations are supposed to enforce regularity, plain
prediction is not possible in our formalism, as a minimal set of observations is needed to
ensure regularity. Nevertheless, one could use a most likely acyclic observation for prediction.
Finding a most likely acyclic observation is a special case of a most likely explanation problem.
Later in Section 7, we introduce a solution based on our formalism with full support for
prediction without requiring specific observations to enforce regularity.

5.3 Smoothing Queries and Problems

Queries P (~xk
ᵀ
,~ak

ᵀ |~z 0:tᵀ ,~b1:tᵀ) with k < t to a probabilistic knowledge base are commonly
known as smoothing queries and are used to obtain knowledge in retrospect. Finding answers
to queries P (~xk

ᵀ
,~ak

ᵀ |~z 0:tᵀ ,~b1:tᵀ), k < t defines two smoothing problems: complete and
fixed-lag smoothing.

Similar to the offline filtering problem, the complete smoothing problem needs to be solved
when answering multiple smoothing queries for different timeslices from broad timerange of
evidences investigated in hindsight.

Definition 9 (Complete smoothing problem). Given a probabilistic knowledge base (B0, B→),
the complete smoothing problem is the task of determining the conditional probability of
random variables at all times 0 ≤ j < t, considering evidence ~z 0:t,~b1:t until time t. This is,
to obtain

P ( ~Xjᵀ , ~Ajᵀ |~z 0:tᵀ ,~b1:tᵀ) , ∀j : 0 ≤ j < t .

We denote a parametrized complete smoothing problem as ComplSP(B0, B→, ~z 0:t,~b1:t, t). N

Solutions to the complete smoothing problem are used to investigate a distribution’s
evolution over time in retrospect, but by considering evidence upto a later timepoint.

Similar to the online filtering problem, the fixed-lag smoothing problem needs to be
solved, if smoothing queries need to be answered temporally consecutively for every newly
obtained evidence.

Definition 10 (Fixed-lag smoothing problem). Given a probabilistic knowledge base
(B0, B→) and a solution to the respective fixed-lag smoothing problem at t− 1, the fixed-lag
smoothing problem at time t is the task of determining the conditional probability distribution
of random variables at a time k = t−∆, considering evidence ~z 0:t,~b1:t until time t. This is,
to obtain

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) .
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We denote a parametrized fixed-lag smoothing problem as FLagSP(B0, B→, ~z t−∆−1:t,
~bt−∆−1:t,∆, t), which includes a solution to FLagSP(B0, B→, ~z t−∆−2:t−1,~bt−∆−2:t−1,∆, t −
1). N

Answers to the fixed-lag smoothing problem are used to track a distribution over time.
Fixed-lag smoothing “lags” ∆ timeslices behind real time, but a trajectory is smoothed out
by a look ahead in time (cf. Russell & Norvig, 2010, p. 571).

The following example explains the application of a smoothing query to the running
example and accentuates the need for cyclic ADBNs in favor of diagonal DBNs. Continuing
Example 7 the example demonstrates that smoothing handles explaining away over multiple
timesteps and respects indirect causes.

Example 8 (Explaining away). We assume that only Don underwent a successful compliance
check at time t = 0, i.e., ~z 0 = (¬d0). For t = 1 the same document transfers as in Example 7
were detected, and for t = 2, a Sunday, all message transfers negligible, i.e., ~β2 = ∅. On that
Sunday irregularities in Earl’s documents were found, i.e., ~z 2 = (+e2).

If one performs a smoothing query for Claire’s initial belief state (t = 0) without con-
sidering evidence from t = 2, an answer is equivalent to the prior belief of Clare, i.e.,
P (C0) = P (C0|~z 0:1ᵀ ,~b1ᵀ) = 〈0.5, 0.5〉, as one has not gained any new information with
the evidence from t = 1. However, with observations from t = 2, one needs to consider
an indirect influence by Claire onto Earl and the belief in Claire being tainted rises to
P (C0|~z 0:2ᵀ ,~b1:2ᵀ) ≈ 〈0.532, 0.468〉, because the observation +e2 tells one indirectly something
about +c0.

The slow increase from P (+c0) = 0.5 to P (+c0|~z 0:2ᵀ ,~b1:2ᵀ) = 0.532 is due to the high prior
belief in Earl manipulating documents of P (+e0) = 0.7 and it is more likely that Earl has been
manipulating documents ever since. If, say, Earl can be relieved from initial incrimination,
i.e., ¬e0, the only explanation for this situation is an indirect cause of Claire being tainted,
and that Claire has influenced Earl through Don at time t = 2, which is correctly handled
as P (+c1, +m1

DE |~z 0:2ᵀ ,~b1:2ᵀ) = 1. One can further update an initial prior belief using a
smoothing query and find that P (+d0) = P (+e0) = 0 but P (+c0) = 1. This means that the
only explanation for the observations made is that Claire has been corrupt from the beginning
(+c0) and that Don has actually sent a message to Earl (+m1

DE), i.e., the possibility of ¬m1
DE

is explained away due to the observations made at times t = 0 . . . 2.

In a diagonal (A)DBN the last example is inexplicable, as indirect influences of t1 (causally)
are first anticipated one step later at t2 (for n = 3). The reason for the inexplicability is
confusing because it is not causal: at t2, the time of incriminating evidence for Earl, one
knows that Earl is only influenced by himself, i.e., only t1-Earl can be the source of his
taintedness. At t1, Earl only receives a document from integrous t0-Don (observation). This
is where the problem lies: t0-Claire should have influenced t0-Don by now, but t0-Claire
influences t1-Don with her message +m1

CD. This means that Earl cannot become tainted and
the observation +e2 is inexplicable. Mathematically one obtains P (+e0|~z 0:2ᵀ ,~b1:2ᵀ) = 0 in a
diagonal DBN, as

P (+e0|~z 0:2ᵀ ,~b1:2ᵀ)

= α ·
∑
C0

P (C0,¬d0,¬e0) ·
∑
C1

P (C1| . . . , C0) ·
∑
D1

P (D1| . . . , C0, . . .)
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·
∑
M1

DE

P (+m1
CD,¬m1

DC ,¬m1
ED,¬m1

CE ,¬m1
EC ,M

1
DE)

·
(
P (+e1|¬m1

CE ,M
1
DE , C

0,¬d0,¬e0) · P (¬e2|¬m2
CE ,¬m2

DE , C
1, D1, +e1)

+ P (¬e1|¬m1
CE ,M

1
DE , C

0,¬d0,¬e0) · P (¬e2|¬m2
CE ,¬m2

DE , C
1, D1,¬e1)

)
· P (¬m2

∗∗) = 0

where both alternatives of E1 are impossible under the given observations, and CPD entries
P (+e2|¬m2

∗E , C
1, D1,¬e1) and P (+e1|M1

DE ,¬m1
CE , C

0,¬d0,¬e0) are uniquely identified to
be 0 by the underlined dependencies. By definition, one obtains P (¬e2| . . . , +e2, . . .) = 0, and,
thus, obtained results from a diagonal DBN stand in conflict with the probability axioms of
Kolmogorov (compare Proposition 2 under which ~b1:2 is not indirect-free). As Example 8
shows, the observation of Example 8 is regular and an intra-timeslice ADBN fully respects
indirect influences while remaining a first-class representation.

Example 8 repeatedly shows that diagonal (A)DBNs are too restricted in their expressivity
to represent the taintedness domain correctly, and it shows that cyclic ADBNs arise naturally
and are required to provide locally and directly understandable CPDs. The following theorems
state that these novelly allowed cycles do not cause any overhead in solving classically known
smoothing problems in dense intra-timeslice ADBNs.

Theorem 4 (Exact solution to the complete smoothing problem). Given a complete smoo-
thing problem ComplSP(B0, B→, ~z 0:t,~b1:t, t), finding an exact solution is linear or quadratic
in t. Finding an exact solution is exponential in the maximal dimension of unobserved
variables ~ζ∗, ~β∗ in a timestep 0 < ∗ ≤ t, and in the largest domain dom(ζ+), dom(β+) of
all random variables ζ+ ∈ ~ζ0:t, β+ ∈ ~β1:t. Finding an exact solution is exponential in the
dimension of number of random variables | ~Xt|, | ~At| and a respective maximal domain size
dom(X+), dom(A++) of all random variables X+ ∈ ~Xt, A++ ∈ ~At. N

Theorem 4 is proven by showing that an algorithm exists that finds an exact solution to
ComplSP(B0, B→, ~z 0:t,~b1:t, t) in time-complexity O(t2 · | dom(X+)|| ~Xt| · | dom(A++)|| ~At| ·
|dom(ζ+)||~ζ∗| · |dom(β+)||~β∗|) and with O(t · | dom(X+)|| ~Xt| · |dom(A++)|| ~At|) space-
complexity for storing all smoothing distributions. The proof is combined with the proof for
the following theorem.

Theorem 5 (Exact solution to the fixed-lag smoothing problem). Given a fixed-lag smoothing
problem FLagSP(B0, B→, ~z t−∆−1:t,~bt−∆−1:t,∆, t), finding an exact solution is constant in
t. Let k = t − ∆ for brevity. Finding an exact solution is exponential in the maximal
dimension of unobserved variables ~ζ∗, ~β∗ in a timestep k − 1 < ∗ ≤ t, and in the largest
domain dom(ζ+), dom(β+) of all random variables ζ+ ∈ ~ζk−1:t, β+ ∈ ~βk−1:t. Finding an
exact solution is exponential in the dimension of number of random variables | ~Xt|, | ~At| and
a respective maximal domain size dom(X+), dom(A++) of all random variables X+ ∈ ~Xt,
A++ ∈ ~At. N

These theorems discuss the computational fixed-parameter complexity of commonly
known smoothing problems in dense intra-timeslice ADBNs. Most importantly, Theorem 4
states that solving the complete smoothing problem has linear complexity over the number of
observed timeslices, as one expects in classical DBNs, and Theorem 5 states that solving the
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fixed-lag smoothing problem has constant complexity over the number of observed timeslices,
as one expects in classical DBNs as well. Both theorems are proven in Appendix C, whose
major result is the following corollary, which shows that the classically known forward-
backward-algorithm still remains applicable.

Corollary 2 (Smoothing equation). The general smoothing equation to obtain a smoothing
distribution at time k, given evidence until time t is defined by

P ( ~Xkᵀ , ~Akᵀ |~z0:tᵀ ,~b1:tᵀ) = P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ) · P (~z k+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ) , (7)

where the first term represents a filtering problem (compare Corollary 1), and the second term
represents a so-called backward-message. Using a recursive definition of the backward-message
one obtains

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) = α · P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ)

·
∑
~ζk+1

∑
~βk+1

∏
Xk+1

i ∈ ~Xk+1

P (Xk+1
i | ~Xk+1ᵀ\Xk+1

i , ~Ak+1ᵀ
i , Xk

i ) ·
∏

Ak+1
ij ∈ ~Ak+1

P (Ak+1
ij )

· P (~z k+2:tᵀ ,~bk+2:tᵀ | ~Xk+1ᵀ , ~Ak+1ᵀ) . N (8)

This corollary is an excerpt of Proof C and shows that smoothing problems are solvable
using a classical calculus without introducing external frameworks or new mathematical
operators. Moreover, using this equation one obtains the commonly known forward-backward-
algorithm: For every k, all P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ) are obtained by solving an offline filtering
problem, which is linear in t. By descendingly solving P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) from k =
t − 1 . . . 0, one iteratively obtains P (~z k+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ) in constant time, and thus
solves each P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) in constant time.

5.4 Experimental Evaluation

Sections 5.1 and 5.3 have shown that no novel calculus must be invented to perform inference
in dense intra-timeslice ADBNs, even with cyclic graphs, and, moreover, the sections have
demonstrated that no computational overhead is introduced to perform inference. We provide
substantiating empirical evidence for the latter results by showing that solving multiple on-
and offline filtering- and smoothing-problems remains tractable even over large periods of
time.2 To do so, we perform multiple experiments, where in every experiment, state variables
in ~Xt, t > 0 are assigned a randomly generated individual CPD following Definition 2.
Further, in every experiment random priors are assigned to random variables ~X0 and ~At.
Every randomly generated probability is taken from the range [0.1, 0.9] to avoid impossible
observations. For every timestep t > 0 we generate random observations ~bt conforming with
Theorem 1. We refrain from observing state variables ~Xt, i.e., ~z t = ∅, in order to achieve
worst-case time complexity.

In every experiment, we consecutively solve the online filtering problem OnlFP(B0, B→,
~z i−1:i,~bi−1:i, i) at every timestep i using the algorithm derived in Proof B, and denote the
computation time per timeslice i in Figure 4. Further, we solve the complete smoothing

2. All experiments are reproducible, for which we supply an experimental framework implementing inference
in dense ADBNs in C available at: http://adbn.motzek.org
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problem ComplSP(B0, B→, ~z 0:i,~b1:i, i) at every timestep i, using the algorithm derived in
Proof C using stored filtering results (Figure 6) and recalculated filtering results (Figure 5)
and denote the computation time per timeslice i.

As ~z t = ∅, one does not acquire any new knowledge about state variables using smoo-
thing, i.e., P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ) is equal to P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ). A Kullback-Leibler-
Divergence of both solutions was measured to be zero (in the range of double precision),
which verifies our implementation in that sense.

Experiments were repeated 139 times for n = 4, i.e., an ADBN consisting of 16 random
variables ~Xt, ~At per timeslice for a timerange of 40. All experimental results validate expected
fixed-parameter tractability of filtering and smoothing problems in ADBNs. Nevertheless, ex-
periments show that for models beyond n = 5, i.e., beyond 25 random variables, approximate
inference techniques are needed, for which the following section provides an introduction and
a demonstration.

6. Approximate Inference Techniques in ADBNs

Finding exact solutions to common problems is only tractable in small toy domains, i.e.,
in domains with very few random variables. Approximate inference techniques have shown
to be a valuable alternative for Bayesian networks and can be divided into two categories:
(i) approximations to the derivation of exact calculations, such as loopy belief propagation
or variational methods, and (ii) stochastic sampling methods on which we focus in this
section. Introductions to sampling methods for general graphical probabilistic models from a
stochastical perspective are provided by Arulampalam, Maskell, Gordon, and Clapp (2002),
Murphy (2012, pp. 823–831), and Doucet and Johansen (2009).

Naive adaptations of approximate inference techniques for BNs towards DBNs, however,
show to be suboptimal, as approximation errors accumulate over time, i.e., only for a few
consecutive timeslices accurate results are obtained. Fortunately, modifications to these
approaches allow for approximate inference in DBNs even for long periods of inference time
under a bounded and constant approximation error. Such a property of an approximation
algorithm, namely, providing a bounded and constant error over time, must be preserved for
any novel DPGM such as ADBNs. Therefore, we show in this section that commonly known
“particle filters”, aka sequential important resampling (SIR) techniques, remain applicable in
ADBNs without any overhead, and provide approximations with constant error over time.
On top of that, an interesting challenge remains: approximate inference techniques for DBNs
are based on the topological ordering of B→. However, a topological ordering of a (dense
intra-timeslice) ADBN is firstly known in a certain instantiation. Therefore, an approximate
inference technique must rapidly adapt to a specific context at every sampling step.

Remark 3 (Approximate inference nomenclature). Sampling based approximate inference
techniques for DBNs are referred to under various names (cf. Russell & Norvig, 2010,
pp. 603ff). In general, every sampling based technique can be classified as a Monte Carlo
simulation. For DBNs, two major sampling based approximations are known as sequential
importance sampling (SIS) and sequential importance resampling (SIR), both are sometimes
referred to as sequential Monte Carlo (SMC) techniques (cf. Arulampalam et al., 2002).
Furthermore, SIS and SIR are often referred to as particle filters (especially by Murphy, 2012,
pp. 823–831 and Doucet, de Freitas, Murphy, & Russell, 2000). We adapt the naming of SIS
and SIR.
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Figure 4: Finding an exact solution to the online filtering problem
OnlFP(B0, B→, ~z i−1:i,~bi−1:i, i) at timestep i (abscissa) is constant (compu-
tation time in ms, ordinate) at every timestep i. (139 evaluations superimposed)
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Figure 5: Finding an exact solution to the complete smoothing problem
ComplSP(B0, B→, ~z 0:i,~b1:i, i) at timestep i (abscissa), without stored filte-
ring results, scales quadratically (computation time in ms, ordinate) with
increasing timesteps, but has constant memory requirements.
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Figure 6: Finding an exact solution to the complete smoothing problem
ComplSP(B0, B→, ~z 0:i,~b1:i, i) at timestep i (abscissa), using stored filtering
results scales linearily (computation time in ms, ordinate) with increasing
timesteps, but has linear memory requirements over time.
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The key idea behind sampling approaches is to estimate a probability distribution, e.g.,
P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ), by a large number of samples, instead of performing exact inference.
This means that a modeled stationary process over time is simulated multiple times, where
every simulation generates a sample S with a specific outcome.

Definition 11 (Sample). Let S =
(
~xt,~at, w

)
denote a sample of random variables ~Xt, ~At at

time t, i.e., an arbitrary instantiation ~xt,~at of ~Xt, ~At. Each sample is assigned a weight w.
A sample S is sometimes called a particle.

Let ~St denote the set of all samples obtained at time t. Let nS = |~St| be the number of
samples per timeslice. Let wS denote the assigned weight w of a sample S. Let St~x,~a denote
a sample with instantiation ~xt,~at and let ~St~x,~a denote the set of all samples S~xt,~at obtained
at time t. We use St~x,~a in favor of a notation for continuous state spaces using the delta
Dirac mass distribution located at ~xt,~at (cf. Murphy, 2012, pp. 823–831; Doucet & Johansen,
2009). N

The key challenge behind approximate inference techniques is to efficiently and correctly
generate these samples for a given (dynamic) probabilistic graphical model and a set of ob-
servations. In the following section we discuss two approaches, namely, sequential importance
sampling (SIS) and sequential importance resampling (SIR).

6.1 SIS and SIR in ADBNs

In order to approximate solutions to filtering and smoothing problems, a distribution of
obtained samples must correspond to the distribution they shall approximate. For classic
Bayesian networks multiple techniques exist to generate stochastically correct samples, namely
“prior sampling,” “rejection sampling,” “likelihood weighting,” and “Gibbs sampling” (cf.,
Russell & Norvig, 2010, pp. 530–535). SIS and SIR represent an adaptation of likelihood
weighting to DBNs. In SIS and SIR samples are sequentially updated at each timestep and
are weighted according to their importance, i.e., their conformity with evidence.

Informally, one can describe SIS for a generic DBN (B0, B→) with state variables ~Xt

as follows: To update a sample St−1, i.e., an arbitrary instantiation of random variables at
t − 1, to an updated sample St, one follows the stochastic model of the DBN: Following
the topological ordering of B→ every random variable Xt

i is (a) observed or (b) unobserved.
In case (a) the instantiation of Xt

i in the updated sample St is fixed to the observed value
xti ∈ ~zt and weighted according to conformity of the current evolution St−1 → St with
the observed evidence P (xti|St−1, St). In case (b) the instantiation of Xt

i is sampled, i.e.,
is randomly instantiated, corresponding to its probability distribution conditioned on the
current evolution, i.e., sampled according to P (Xt

i |St−1, St). St−1 is a full instantiation of
all random variables at t − 1, and St is generated sequentially according to a topological
ordering, therefore P (Xt

i |St−1, St) is a locally defined CPD.
Adapting SIS to a dense intra-timeslice ADBN with variables ~X0:t and A1:t gives an update

procedure as Algorithm 1 that is used in sequential importance (re)sampling techniques as
shown in Algorithm 2. This update procedure requires an effective topological ordering in a
timestep t based on the observed activator random variables in ~bt.
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Notation 6 (Sampling operator ← ). X ← P (X) represents a sampling operation. The
sampling operation instantiates a random variable X randomly to one of its possible values
x ∈ dom(X) according to a given random distribution P of X for all x ∈ dom(X).

Algorithm 1 Evolving a Sample
1 procedure evolve(from St−1 to St, given ~z t, ~bt)
2 for all Atij ∈ ~At do . skip at t=0
3 if atij ∈ ~bt then . is observed
4 w ← w · P (atij)
5 set Atij ← aij in St

6 else
7 set Atij ← P (Atij) in St

8 for all Xt
i ∈ ~Xt following topological ordering induced by ~bt do

9 if xti is observed in ~z t then
10 w ← w · P (xti|~x t,~a ti , xt−1

i )
11 set Xt

i ← xi in St

12 else
13 set Xt

i ← P (Xt
i |~x t,~a ti , xt−1

i ) in St

The analysis of an effective topology is necessary to sample from the correct distribution
and to correctly weight a sample. Although Algorithm 1 uses local CPDs conditioned on
instantiations of ~Xt that are not yet updated, all uninstantiated dependencies are deactive
due to the induced topological ordering of ~bt.

Algorithm 2 Sequential Importance (Re)Sampling (SIS/SIR)
1 begin
2 init ~S with nS S ← (∅, ∅, 1) samples
3 set t← 0
4 loop
5 given ~z t, ~bt . t=0: ~bt = ∅
6 for all samples S ∈ ~S do
7 S ←evolve(S, ~z t,~bt)
8 for all samples S ∈ ~S do
9 wS ← wS∑

S′∈~S
wS′

10 ~S← P (~S) . Only for SIR.
11 next t
12 return ~S
13 end

Algorithms 1 and 2 represent a straightforward adaptation of classically known SIS
and SIR algorithms towards dense intra-timeslice ADBNs. In the following we show that
occurring cycles in an ADBN do not prevent these algorithms from obtaining accurate results
to commonly known filtering problems. Moreover, we show that still a bounded error over
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time is achieved. In order to do so, Algorithm 2 must provide an exact solution to the online
and offline filtering problem, as stated by the following theorem.

Theorem 6 (Exact sampling based solutions to filtering problems). For nS → ∞ and
infinite numerical precision, samples ~St generated by Algorithm 2 (SIS) represent the filtering
distribution P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) with

P (~xt
ᵀ
,~at

ᵀ |~z 0:tᵀ ,~b1:tᵀ) =

∑
S∈~S~xt,~at

wS∑
S∈~S wS

. (9)

Thus, Algorithm 2 solves the offline filtering problem (Definition 7) in linear time-complexity
over time, scales linearly with the number of samples nS and linearly with the number of
random variables | ~Xt| · | ~At|, i.e., it solves OffFP(B0, B→, ~z 0:t,~b1:t, t) in O(t · nS · | ~Xt| · | ~At|)
space- and time-complexity. Initializing Algorithm 2 with samples ~S from a previous solution
~St−1 from t − 1 is an exact solution to the online filtering-problem (Definition 8) with
constant time-complexity over time O(1), i.e., it solves OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t) in
O(nS · | ~Xt| · | ~At|) time and space complexity. N

This theorem shows that for infinite samples, a classical SIS procedure remains applicable
to cyclic ADBNs. Theorem 6 is proven in Appendix D. For finite amounts of samples and
finite numerical precision, SIS and SIR deliver approximate solutions for filtering problems.
However, for finite amounts of samples, SIS techniques suffer from a “degeneracy” problem
(cf., Murphy, 2012, pp. 823–831; Doucet & Johansen, 2009) in DBNs, as well as in ADBNs:
Gradually, a significant amount of samples degrades and carries a very low weight, i.e.,
during sequential updating, sampled instantiations do not fit to evidence at later timepoints.
Therefore, a large amount of samples become practically irrelevant for the approximation
and only few samples left carry a high weight and are highly important. This means that an
approximation error does not remain bounded over time and gradually increases. To overcome
this problem a resampling procedure is introduced in SIR, which resamples nS samples from a
current sample distribution (Alg. 2, Line 10) according to their importance-weights wS—the
reason why some people speak of the “survival of the fittest” in SIR techniques. As a
resampling technique we use stratified resampling as presented by Hol, Schön, and Gustafsson
(2006), which showed to be more accurate and faster than multinomial resampling (cf. Hol
et al., 2006; Massey, 2008). The following proposition states that SIR procedures remain
applicable for cyclic ADBNs also for finite amounts of samples.

Proposition 6 (Approximate sampling based solutions to the online filtering problem). For
finite number of samples nS , finite numerical precision and non-zero probabilities in every
defined CPD, SIR, as in Algorithm 2, provides an approximate solution to the online filtering
problem (cf. Theorem 6) with bounded error over time. SIR scales linearly in computation
time and memory requirements with the number of samples nS and linearly with the number
of random variables per timestep. Thus SIR solves OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t) in time-
complexityO(nS ·| ~Xt|·| ~At|). Further, an approximate solution to OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t)
obtained by using SIR only requires O(nS · | ~Xt| · | ~At|) storage for all samples from which
every filtering distribution can be obtained. Likewise, it provides an approximate so-
lution to the offline filtering problem by solving t online filtering problems, i.e., solves
OffFP(B0, B→, ~z 0:t,~b1:t, t) in O(t · nS · | ~Xt| · | ~At|) space- and time-complexity. N
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Proposition 6 is a derivative of Theorem 6 for the resampling case. The following section
provides substantiating evidence for it through an empirical study of the approximation
accuracy of a classical SIR applied to a cyclic ADBN, which, in summary, delivers highly
accurate approximation results, as expected from SIR.

Moreover, answering queries via a sampling based approximation has significant advan-
tages in computational complexity as well as required storage complexity, as stated by the
following proposition.

Proposition 7 (Filtering query answering from samples). Every filtering query
P (~xt

ᵀ
q ,~a

tᵀ
q |~z 0:tᵀ ,~b 1:tᵀ), where ~xtq,~atq are partial instantiations of random variables ~Xt

q ∈
~Xt, ~Atq ∈ ~At, are directly answerable from the set of samples ~St obtained at time t in O(nS),
by summation over all samples ~S~xt,~at that contain the partial instantiation ~xtq,~a

t
q. This

reduces the space-complexity of the filtering problem to storing nS samples for all timeslices,
i.e., t timeslices for the offline filtering problem, and 1 for the online filtering problem. Further,
this reduces time-complexity of answering a query for any partial instantiation to O(nS). N

As one expects for classical approximation procedures in DBNs, this proposition shows
that a probability distribution has neither to be stored nor to be made explicit to marginalize
out answers to queries in cyclic ADBNs. Therefore, plain linear complexity is obtained,
which permits the use of ADBNs in largely scaled problems, as empirically evaluated in the
following section.

6.2 Experimental Evaluation of Approximate Inference

In the following, we provide substantiating evidence for Proposition 6, by evaluating SIR in
terms of approximation accuracy and performance compared to exact inference. To judge
the accuracy of an approximated result obtained by SIR, the Hellinger distance between
approximated and exactly calculated distribution is used.

Definition 12 (Hellinger distance). Let PR, PS , rankPR = rankPS = N denote two
probability distributions over the same N events p ∈ P . The Hellinger distance H(PR, PS)
between both distributions is defined as (cf. Gibbs & Su, 2002)

H(PR, PS) =
1√
2

√∑
p∈P

(√
PS(p)−

√
PR(p)

)2

The Hellinger distance is symmetric, i.e., H(PR, PS) = H(PS , PR), and is bounded between
0 and 1. N

A Hellinger distance of 0 exists between two distributions that assign the same probability
to common events (no error). A distance of 1 occurs between two distributions, say, PS and
PR, that completely contradict each other, i.e., if every event that is deemed impossible in
PS , is supposed to be possible in PR, and every event possible in PS is deemed impossible
in PR. Naturally, one expects small differences between approximated and exact results,
i.e., low, near 0, Hellinger distances. We refrain from using the more common Kullback-
Leibler-Divergence (KLD), as negligible errors can lead to a KLD of ∞. A single event p
with PR(p) = ε, very small ε > 0, but with PS(p) = 0 leads to KLD(PR, PS) =∞.
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For evaluation we consider the same models as in the previous evaluation of exact inference
discussed in Section 5.4. As an evaluation against exact inference requires exact solutions
of online filtering problems, we keep | ~Xt| = 4 for a detailed evaluation over 250 timesteps
(Figure 7, repeated 25 times) and demonstrate it on | ~Xt| = 5 for only 25 timesteps (Figure 9,
repeated 2 times). For | ~Xt| = 4 one state variable Xt

i is observed per timestep and for
| ~Xt| = 5 two are observed. Observations of state variables lead to the aforementioned
degeneracy problem of SIS, which is clearly evident in Figure 7. Further, Figure 7 shows
over 250 evaluated timesteps of constant error for SIR, which delivers a highly satisfying
approximation accuracy for 10 000 and more samples (Hellinger distance below 0.1). Judging
from Figure 7 it seems that the Hellinger distance of an SIR approximation linearly decreases
with increasing samples. The constant and low Hellinger distance over long periods of time,
evident from Figure 7, shows that SIR indeed delivers an approximate solution to the online
and offline filtering problem for a finite number of samples, scaling linearly with the number
of random variables (Figure 8), as stated by Proposition 6, which we consider empirically
justified.

While an algorithm based on Coroloary 1 finds an exact solution to the online filtering
problem for | ~Xt| = 4 with one observation almost instantly, it takes more than 12 minutes
for | ~Xt| = 5 with one observation and around 6 minutes for two observations per timestep,
as shown in Figure 9 (black). In contrast, an approximate solution with 10 000 000 samples
is found by SIR in 16 seconds per timestep in the same experiment. Exact inference on
| ~Xt| = 6, i.e., 36 random variables in B→ is impossible, as the probability distribution alone
requires 250GB of memory and computation time is expected to be more than 6 days per
timestep. For | ~Xt| = 6 SIR obtained an approximate solutions to the online filtering problem
in 12 seconds using 5 000 000 samples, and in 2 minutes when using 50 000 000 samples,
and only requires storage for all samples. In fact, Figure 8 shows that the SIR algorithms
scales linearly with the number of random variables in an ADBN (evaluated on 10 different
models over 50 timesteps, each) and shows that approximate inference in large ADBNs is
even feasible when considering the absolute runtime of the SIR algorithm.

7. Bayesian Network Semantics Revisited

For a large set of probabilistic graphical models, if not all, it is common to represent exactly
one JPD, and, so far, situations, i.e., contexts from observations, have been discussed for
ADBNs where as much partial structural information (deactive activator observations in ~b)
is evident to ensure the same in an ADBN. This is an intended property, as it allows an
ADBN to remain freely instantiable and does not enforce constraints of regularity. This
property is highly beneficial, since Motzek and Möller (2015a) show that not only acyclicity is
a regularity constraint and all previously derived algorithms and problem discussions remain
applicable for any discovered regularity conditions. Nevertheless, in a particular situation
where insufficient observations can be made, this freedom of ADBNs introduces one drawback:
one is forced to observe at least a minimal set of activators. In this section we show that by
revisiting the semantics of a cyclic ADBN, one is able to remove this constraint completely
s.t. no specific observation sets are enforced, one is allowed to observe every subset, and one
still obtains a well-defined DPGM.
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Figure 7: Stratified Sequential Importance Resampling (SIR) using nS samples solves
OnlFP(B0, B→, ~z i−1:i,~bi−1:i, i) at timestep i (abscissa) with constant and bounded
error (Hellinger distance compared with exact inference, ordinate), whereas Se-
quential Importance Sampling (SIS) has exponential growth of error over time
(semilogarithmic plot). SIR plotted overlain, mean plot for SIS.
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Figure 8: Stratified Sequential Importance Resampling (SIR) using nS samples solves
OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t) (computation time in ms, ordinate) linearly in the
number of random variables (abscissa) N = | ~Xt|+ | ~A| (double logarithmic plot).
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Figure 9: SIR solves OnlFP(B0, B→, ~z i−1:i,~bi−1:i, i) at timestep i (abscissa) magnitudes (se-
milogarithmic plot) faster (solid, left ordinate, computation time in ms) than
an exact algorithm (black) and still achieves satisfying accuracy (dotted, right
ordinate, Hellinger distance).
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Under every regular observation ~b, exactly one topological ordering (under a common
lexicographical ordering) of an equivalent (dynamic) Bayesian network exists, and this
topological ordering holds for all instantiations conforming with evidence, as shown in
Proof A. In such a situation, inference is based on a single well-defined (dynamic) Bayesian
network defining one joint probability distribution. If sufficient structural information are
not evident from observations, multiple structures are represented by an ADBN, each of
which defines a single joint probability distribution. In this section we move away from a
dogma that a (D)BN represents solely one joint probability distribution, and, indeed, an
ADBN is seen as an evolution of (D)BNs towards multi full joint probability distribution
representations. Consequently, we show that cyclic ADBNs are well-defined even if no
observations are provided.

If, in a specific context, Theorem 1 (and extensions) cannot be fulfilled, then an effective
single structure for an equivalent DBN is not known, and an ADBN represents multiple
joint probability distributions for every remaining, well-defined constellation of activator
instantiations in the joint probability distribution. Note that no external constraints or
conditions are given on the JPD by Proposition 4 and a single closed-form formula repre-
sents all possible joint probability distributions of DBNs without a need of a case-by-case
consideration. In particular, we show that a cyclic ADBN is well-defined without introducing
any external framework nor a novel calculus, such as those introduced, e.g., by Milch et al.
(2005) with the λ(·) and comp(·) operators, or those introduced by Bilmes (2000) with the
zt(qt) operators. We revisit (A)DBN semantics such that not only a JPD is represented,
but multiple JPDs. This is significantly different from considering every case separately,
namely every single structure separately, as we consider a distribution over multiple possible
structures, i.e., a distribution over multiple probabilistically overlapping distributions. We
show that Proposition 4 remains universally applicable, i.e., one formula encapsulates all
full joint distributions and, consecutively, every well-defined sub-JPD is given simply by an
adequate subset.

7.1 Bayesian Networks of Bayesian Networks

In a situation in which sufficient structural information is not available, multiple regular
and non-regular instantiations conform with evidence. Under the assumption that every
timestep is regular, one knows that one of all remaining possible regular instantiations must
be effective, over which one is able to specify a prior belief. This means that there exists
a prior random distribution over all possible regular instantiations. Therefore, ADBNs are
generalized towards extended ADBNs (eADBNs) in which no structural information need
to be evident from data or observations. In eADBNs, multiple topological orderings (even
under a common lexicographic ordering) exist, each of them belonging to one well-defined
Bayesian network. Then, an eADBN represents a Bayesian network of Bayesian networks as
depicted in Figure 10, or rather, represents a distribution over multiple well-defined joint
probability distributions. An eADBN shares familiar syntax and semantics with classic
Bayesian networks, without case-by-case analyses of possible structures or introduction of
external constraints. An eADBN is formally defined as follows.
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Definition 13 (Extended ADBN, eADBN). An eADBN is defined as a tuple (B0, B→) just
like an ADBN (Definition 3). Additionally, random variables of a timestep t, i.e., ~Xt, At, are
seen as influenced by one (meta) random variable Ord t. Let each value of Ord t represent
a possible obtainable topological ordering ord ti ∈ dom(Ord t) of random variables at time t
under a common lexicographical ordering. Every topological ordering of random variables
is obtainable by one minimal set of deactive activator instantiations (Proposition 3). Let
~at�i be the minimal set of deactive activator instantiations to obtain a topological ordering
at time t represented by ordti. Then, let every CPD of activators at ∈ ~at�i allocate the full
probability mass at its deactive value, i.e., ∀at ∈ ~at�i : P (¬at|ord ti) = 1. N

In an eADBN, additional random variables are identified (or introduced) to ADBNs and
certain CPDs of activator follow special parameter settings. These special parameter settings
enable one to perform inference in ADBNs without the need of minimal observation sets, as
an eADBN is well-defined without constraints, as stated by the following theorem.

Theorem 7 (eADBN well-definedness). An eADBN is well-defined for every instantiation
~x0:t,~a1:t, ~ord

1:t
of all random variables ~X1:t, A1:t,Ord1:t. Semantics as P ( ~X0:tᵀ , ~A1:tᵀ ,Ord1:tᵀ)

is well-defined and equivalent to DBN semantics given as the product of all locally defined
CPDs. N

Under Theorem 7 an eADBN is well-defined for all observation and instantiations, i.e.,
no minimal observation sets need to be enforced. Therefore, one is able to reason about the
structural identifying context itself, using classic Bayesian network inference as, e.g., shown
in Section 5. Note that although cyclic dependencies are modeled and are not dissolved
by activator contexts, neither external constraints nor global normalization factors need
to be introduced, which still preserves the desired causal and local specifications, and the
desired local interpretation of conditional probability distributions. Note further that not
all possible structures need to be considered separately (e.g., by an external framework),
but the consideration of all possible structure constellations is intrinsically handled by the
semantics of eADBNs, i.e., one joint probability distribution handles all structural “cases.”

Ord1

~X1, ~A1~X0

Ord2

~X2, ~A2

Figure 10: eADBNs are able to represent Bayesian network of Bayesian networks, i.e.,
represent a distribution of multiple well-defined probability distributions. Unlike
ADBNs, eADBNs do not require any contextual, structural information. Specific
parameter settings of P (AtXY |Ord t) allow for familiar Bayesian network syntax
and semantics without requiring case-by-case analyses nor externally invoked
frameworks.
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Proof of Theorem 7 (eADBN well-definedness). For every instantiation ord1:t
i of Ord1:t there

exists an equivalent instantiation ~x0:t,~a1:t of random variables ~X0:t, A1:t that is enforced by
extreme allocations of probability masses in all local conditional probability distributions.
For every equivalent instantiation ~x0:t,~a1:t there exists a topological ordering according
to Theorem 1 and Proof A, and there exists a well-defined joint probability distribution
P ( ~X0:tᵀ , ~A1:tᵀ). Every well-defined joint probability distribution P ( ~X0:tᵀ , ~A1:tᵀ) is seen as an
entry P ( ~X0:tᵀ , ~A1:tᵀ |ord1:t

i ) of a conditional probability distribution P ( ~X0:tᵀ , ~A1:tᵀ |Ord1:t).
With a well-defined distribution over all possible orderings, i.e., P (Ord1:t), a well-defined
Bayesian network B̂ is formed, defined by two random variables “Ord1:t” and “ ~X0:t, A1:t,”
one prior probability distribution P (Ord1:t) and one conditional probability distribution
P ( ~X0:tᵀ , ~A1:tᵀ |Ord1:t) representing the joint probability distribution P ( ~X0:tᵀ , ~A1:tᵀ , ~Ord

1:tᵀ
)

as the product of all locally defined (C)PDs, i.e.,

P ( ~X0:tᵀ , ~A1:tᵀ ,Ord1:tᵀ) = P (Ord1:t) · P ( ~X0:tᵀ , ~A1:tᵀ |Ord1:t) .

Further, for an intra-timeslice dependency structure, B̂ is seen as a dynamic Bayesian network
(B̂0, B̂→) with two random variables per timeslice, as shown in Figure 10, where the global
semantics of (B̂0, B̂→) is then given as

P ( ~X0:tᵀ , ~A1:tᵀ ,Ord1:tᵀ) = P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ ,Ord1:t−1ᵀ)

· P (Ord t) · P ( ~Xtᵀ , ~Atᵀ | ~Xt−1ᵀ , ~At−1ᵀ ,Ord t) ,

and (B̂0, B̂→) is, for all instantiations, a well-defined DBN according to Proposition 1.

Note that all derived approaches for exact inference are not based on certain well-
definedness constraints but are solely based on the full joint probability distribution, which
consists of a classical product of locally defined CPDs. This means that for inference,
a well-definedness theorem is irrelevant and solely serves as a post-condition in order to
ensure that results are correct. This circumstance is highly beneficial, as the presented
well-definedness Theorem 1 only considers acyclicity, whereas Motzek and Möller (2015a)
show that other regularity constraints exist beside acyclicity. As inference does not enforce
any well-definedness, all derived approaches remain applicable. The same holds for eADBNs,
even if cyclic dependencies are not resolved by observations. From an inference perspective,
the only addition is a new random variable Ordt, affecting some, or all, random variables of a
timeslice without causing any cycles. Further, one could define activator random variables for
every dependence of Ordt to obtain a classical intra-timeslice ADBN, for which all derived
approaches remain applicable.

The following example shows how the running example is extended by a meta random
variable, and then supports even an unobserved context of message transfer variables.

Example 9 (Regulatory compliance in eADBNs). So far, at every timestep at least as many
message transfers must be observed to ensure regularity. Namely, at least n2/2 message
transfer variables M t

XY have to be observed to be deactive for obtaining a well-defined ADBN.
With Definition 13 all queries to an eADBN are answerable without any contextual information
about message transfers. Therefore, an eADBN also fully supports predictive queries. We
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demonstrate the parametrization of dom(Ordt) and P (Ordt) and a respective parametrization
of activator random variables as an example for message transfer random variable M t

CD.
In the running example with employees Claire, Don and Earl, one obtains six topological

orderings under a common lexicographical ordering. Namely, one obtains C � D � E,C �
E � D,D � C � E,D � E � C,E � D � C,E � C � D, which resemble the domain of
Ordt, abbreviated as dom(Ordt) = 〈cde, ced, dce, dec, edc, ecd〉. For every value of dom(Ordt)
one is now able to specify a prior belief over every topological ordering as shown in Table 2.
For example, if Claire is a supervisor of Don and Earl, topological orderings starting with
C might be more likely, representing that it is more likely that the supervisor influences her
employees and sends tainted messages to them. As stated by Proposition 3 every topological
ordering can be induced by an instantiation of activator random variables, which are influenced
by Ordt in an eADBN. Considering M t

CD, an adequate parameter setting of P (M t
CD|Ordt)

is given in Table 3, where the topological orderings dce ∈ dom(Ordt) (i.e., D � C � E) and
edc ∈ dom(Ordt) (i.e., E � D � C) must enforce an allocation of full probability mass on
¬mt

CD.

Table 2: Example for a distribution of P (Ordt) for the running example with arbitrary
numbers α—γ with α+ β + χ+ δ + ε+ γ = 1. A numerical example instantiation
is given, resembling that a topological ordering starting with C is more likely, e.g.,
that Claire is a supervisor of Don and Earl. Generation of dom(Ordt) and P (Ordt)
is straightforward and minimally invasive to the running example.

Ordt P(Ordt)

cde α = 0.3
ced β = 0.3
dce χ = 0.1

Ordt P(Ordt)

dec δ = 0.1
edc ε = 0.1
ecd γ = 0.1

Table 3: Example for a CPD of P (M t
CD|Ordt) for the running example with arbitrary

numbers ι—µ. A numerical example instantiation is given based on an extension
of the previous parameter P (+mt

CD) = η = 0.5 and shows that a generation of
P (+mt

CD|Ordt) is straightforward and minimally invasive to the running example.

Ordt P(+mt
CD|Ordt)

cde ι = η
ced κ = η
dce 0

Ordt P(+mt
CD|Ordt)

dec λ = η
edc 0
ecd µ = η

As we have demonstrated in this article, (cyclic) ADBNs naturally arise in domains by
considering direct dependencies from a local point of view. Not always a meta variable Ordt

is immediately part of a domain and Ordt must be introduced to ensure regularity in case
sufficient structural information is not evident from observations. Still, the example shows
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that an introduction is straightforward, and is minimally invasive, as only CPDs of activator
random variables must be modified in a simple schema. If intended, an extension of an
ADBN towards an eADBN can be implemented automatically and an Ordt variable need not
be made explicit if an inference engine is able to distinguish cases of insufficient structural
information. Nevertheless, making Ordt explicit has the benefit that a sufficiency check of
regularity is not required and any Bayesian inference engine is intrinsically able to handle
even a cyclic ADBN.

In an eADBN, activator random variables need not necessarily exist as independent
random variables, as a topological ordering identifying random variable is sufficient. Still, the
following remark shows that it is desirable to maintain individual activator random variables.

Remark 4 (Collapsed activator random variables). If a topological-ordering-identifying
random variable (Ord) is present in a domain, activator random variables Atij can collapse
with Ordt, i.e., Ordt represents each and every Astij . While this leads to a well-defined
A(D)BN, it introduces a significant modeling overhead, as not all activator random variables
are relevant for one Xt

i , i.e., large subsets of dom(Ordt) identify the same parameter in a
local CPD of Xt

i . Only random variables included in the vectors ~Asti , s ≤ t are relevant for
Xt
i . For example, in a dense intra-timeslice ADBN with n state variables, one obtains n!

topological orderings of state variables. If activator random variables are collapsed with Ordt,
then every CPD specification of a state variable Xt

i must consider n! cases of dom(Ordt).
With explicit activator random variables, every CPD specification of a state variable Xt

i must
solely consider 2n−1 cases of dom( ~Ati).

Still, for one cyclic dependency, i.e., two potential topological orderings and two activator
random variables, no overhead is introduced as shown in the following section as a continuation
of Example 1 regarding the Joke-Cry-domain. As mentioned in the beginning, the Joke-Cry
domain, in fact, does represent an eA(D)BN.

7.2 Extended Activator Bayesian Networks

We motivate the identification and exploitation of activator random variables in dynamic BNs,
as they are often associated with cyclic dependencies and—from another perspective—for
reasoning over time. Of course, also static “time-less” Bayesian networks benefit from activator
conditions of random variables in order to model processes where certain dependencies change
depending on other contexts. If roles of causes and effects are context-specific then cyclic
dependencies are needed, which are permitted in activator Bayesian networks, which are
defined as follows.

Definition 14 (Activator Bayesian networks, ABN). Unrolling the first two timeslices of
a cyclic ADBN yields in a classic BN with cyclic dependencies and activators, which is
defined as an ABN. A cyclic ABN represents a static Bayesian network in which local
structures are not known in advance and dependent on specific contexts. This is beneficial
for Bayesian networks in which roles of cause and effects are not uniquely identifiable, and
in which dependencies are sensitive to a context. An ABN’s semantics is well-defined by
the unrolled ADBN’s semantics as defined in Theorem 1 or in Theorem 7. For the case
that a topological-ordering-identifying random variable is present in an ABN, i.e., an ABN’s
semantics is well-defined under Theorem 7, we speak of an extended ABN (eABN). N
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Context-specific influence directions are often found in human emotions caused by mutual
interaction and are required to model a causally correct knowledge base for an artificial
intelligence as the introductory Example 1 shows. In fact, the Joke-Cry domain from
Example 1 represents an example for an extended ADBN (Definition 13) as well as an
eABN (Definition 14). The following example shortly repeats the domain and demonstrates
the modeling approach as an eABN.

Cry

JokeComf

Mood

Place

Figure 11: Modeling causal dependencies often requires cyclic dependencies. If one is sup-
posed to reason over Cry ing, potential influences of Joke or on Joke must be
considered. Without a link between Joke and Cry , the only possible explanation
for crying at a party is that the person is Mood = sad or a person always cries at
parties—usually a wrong assumption. And without a link from Cry to Joke, the
only explanation for a Joke being told at a funeral is the funeral itself—usually a
quite macabre assumption. Repeated Figure 1 from Page 4.

Example 10 (Extended activator Bayesian network). To repeat, people might start crying
from laughter because of hearing a (very) good joke. However, assuming only this causal
direction at, e.g., a funeral, is a macabre assumption—the reasons why jokes are possibly told
at a funeral are to possibly cheer up sad and crying people. As discussed in the caption of
Figure 11 only modeling one causal direction is not an option.

A cyclic dependency between both random variables Cry and Joke in Figure 11 is causally
required in order to capture a true causality between both random variables, whose direction is
only identifiable in a context of another random variable Place. Considering Figure 11 as an
extended eABN, Place represents meta-random variable Ord. In fact, in this example Ord is
not a meta-variable, but is part of the domain: Seeing the domain of Place as cry − worthy
places like a funeral or wedding, and usually happy places like a festival party or comedyclub,
directly represents all possible topological orderings of the graph. Note that activators ACry Joke

and AJoke Cry are collapsed with Place in this example.
By modeling the domain as an eABN, one includes all desired influences and dependencies

as seen from a world-representation point of view: One can cry from happiness and from
hearing very good jokes in the surroundings of happy, comfortable places, but people tell jokes
to warm-up a chilling atmosphere among crying, sad people at darker places. Naturally, the
cyclic eABN, as shown in Figure 11, also covers that at a happy place, a mood is usually
happy, from which it is less likely to cry and it is more likely that a good joke was told. With
an eABN all possible relationships are included in one general model, and it is well-defined
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even if the context of Place is unobserved, i.e., no single causality is identifiable. As all
potential models are intrinsically represented by one eABN, one is able to reason about
Place—the structural identifying context—as well, and, effectively, inference is based on all
possible models at the same time.

In this example, two full joint probability distributions are modeled and embedded over
which a distribution (P (Place)) is modeled. The semantics of this eADBN is a distribution
based on the prior random distribution of Place over a full joint probability distribution over
all random variables Place, Cry, Joke, Mood .

This example not only shows that activators exist naturally in domains, but also de-
monstrates that topological ordering identifying random variables occur from local, causal
modeling approaches, as well. As shown in previous sections, Example 10 represents a
well-defined probabilistic graphical model, neither requiring external reasoning frameworks
to handle every specific context of Place separately, nor requiring global normalization
factors due to cyclic graph structures. We have shown that (i) various algorithms for exact
and approximate inference and learning of A(D)BNs follow familiar schemes and (ii) the
identification of activator random variables does not introduce any significant overhead.
Further, this section clarifies that not even restrictions on instantiations or observations are
enforced on A(D)BNs by adequate modeling techniques. Considering all of above, we feel
confident to say that (dynamic) Bayesian networks can be based on cyclic graphs.

8. Discussion and Related Work

Using an ADBN has the benefit of anticipating indirect causes per timestep in an over-the-
time evolving process and allows for modeling cyclic dependencies from a local point of view.
Still, some random variables need to be identified as activator random variables, on which
minimal observation sets are enforced (Theorem 1: any acyclic constellation of probably
active activators is allowed) or require extended modeling approaches (see Definition 13).
However, we come from a point of view where activators exist naturally in the modeled
domain, and, in fact, Proposition 2 shows that classic (diagonal) DBNs are significantly
restricted as well. We conclude that cyclic, as well as, diagonal ADBNs are only usable for
certain instantiations of all random variables. To emphasize that the restrictions on cyclic
ADBNs are far smaller than the identified restrictions on diagonal ADBNs, we explicitly
compare the numbers of allowed instantiations in cyclic (Theorem 1) and diagonal ADBNs
(Proposition 2) per timestep. Note that any cyclic instantiation prohibited in a cyclic ADBN
includes the necessity to anticipate indirect influences, i.e., is prohibited in diagonal DBNs
as well.

Proposition 8 (Number of indirection-free instantiations in diagonal ADBNs). Proposition 2
enforces that instantiations (~x0:t,~a1:t) of ( ~X0:t, ~A1:t) of a dense diagonal (A)DBN cannot
contain two possibly active activator instantiations at∗i, a

t
i∗ to obtain an intended joint

probability P (~x0:tᵀ ,~a1:tᵀ) result. Thus, the set of active activators in an instantiation ~at must
form a uniformly directed bipartite graph, where isolated nodes belong to a fixed group. For
n = | ~Xt| state variables, the number of these bipartite digraphs is given in Sequence A001831
by Sloane (2015). For every allowed activator constellation ~at, 2n ~Xt-instantiations are
possible. The total number N /

n of regular instantiations of a joint probability in a dense
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inter-timeslice (A)DBN with n state variables is therefore

N /
n = 2n ·

n∑
k=0

(
n

k

)
·
(

2k − 1
)n−k

N

Proposition 9 (Number of regular instantiations in cyclic ADBNs). Theorem 1 enforces
that instantiations (~x0:t,~a1:t) of ( ~X0:t, ~A1:t) do not contain a cycle w.r.t. active activators to
obtain a well-defined joint probability P (~x0:tᵀ ,~a1:tᵀ) result. Thus, the set of active activators
in an instantiation ~at must form a directed acyclic graph (DAG), where every active activator
atij ∈ ~at represents an edge from a node i to j in the DAG. The number of DAGs for n = | ~Xt|
nodes is given in Sequence A003024 by Sloane (2015). For every allowed activator constellation
~at, 2n ~Xt-instantiations are possible. The total number NOn of regular instantiations of a
joint probability in a dense intra-timeslice DBN with n state variables is therefore

NOn = 2n ·A003024n N

Figure 12 shows both curves of Proposition 8 and Proposition 9. Even in a logarithmic
plot, a cyclic ADBN has an exponential advantage in favor of a classic diagonal (A)DBN
when considering the number of allowed instantiations per timestep.

2 4 6 8 10 12 14 16 18 20 22 24
100

1050

10100

Number of allowed instantiations of ( ~Xt, ~At) over n = | ~Xt|

Figure 12: Cyclic ADBNs (NOn, solid, Proposition 9) clearly outperform classic diagonal
DBNs (N /

n, dashed, Proposition 8) in the number of allowed instantiations of
( ~Xt, ~At). (semi-logarithmic plot) per timestep.

The need to anticipate indirect influences originates from coarse observation timesteps,
where indirect influences must be anticipated to explain observations. While we motivate
coarse timesteps from an unavailability of observations at a finer time-scale, the choice of
coarser timesteps is also motivated by computational feasibility. Not being bound to the
finest available observation granularity relaxes the rate of needed time-updates and motivates
Asynchronous DBNs by Pfeffer and Tai (2005) using Nodelman, Shelton, and Koller’s (2002)
Continuous-Time-BNs (CTBNs). Asynchronous DBNs allow for a distributed, decentralized
update of nodes in a DBN, instead of enforcing a synchronized update of all nodes in a DBN
at the smallest given update frequency. Still, Asynchronous DBNs and CTBNs run into the
same problem given in Proposition 2 of anticipating indirect influences during one timestep,
if observations are not known at a near continuous time granularity. Our work considers
dynamic Bayesian networks as a stationary process over time, where random variables and
dependencies between them represent a causal influence, and a time represents an actual
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flow of time. We consider random variables with discrete domains and consider all random
variables to be potentially observable. We pointed out causal discrepancies in DBNs, if
timeslices are not infinitesimal small. The same view on dynamic Bayesian networks is taken
by Sanghai et al. (2005) in their work on relational DBNs and by Jaeger (2001) in his work on
recursive relation probabilistic models. Both works follow the intention of Pearl and Russell
(2003) to model causal relationships instead of reasoning processes, and even extend DBNs
to relational domains. Both, Jaeger and Sanghai et al., consider timesteps at an infinitesimal
small time granularity, under which only single events occur per timestep, by which both
circumnavigate the problem of anticipating indirect influences under an acyclicity constraint
of relations. Nevertheless, it remains an interesting future work to integrate an ADBN’s
adapting structure per timestep into relational domains.

Throughout this article, cyclic ADBNs are compared with diagonal ADBN and it is shown
that transforming cyclic ADBNs to diagonal ADBNs by following a naive “resolving cycles
over time”-approach delivers highly spurious results. As discussed in Section 4 another form of
diagonal inter-timeslice ADBNs exists: a hybrid model consisting of inter- and intra-timeslice
dependencies, where as much intra-timeslice dependencies are modeled as possible without
creating cyclces, and remaining dependencies are bent to a consecutive timestep. We refrained
from discussing this form of a model throughout this article, as it is a completely arbitrary
decision why some dependencies are modeled as inter- and some are modeled as intra-timeslice
dependencies. Nevertheless, from a reasoning perspective, a desired influence between every
random variable is present in each timeslice. However, these influences are then modeled
from a completely acausal perspective as dependencies then represent cause→effect as well
as effect→cause relationships at the same time. Due to this acausality and inconsequence,
the parametrization of hybrid models becomes practically impossible for a human, and
parameters, i.e., CPDs, do not provide any local or intuitive interpretation. Such hybrid
acausal models then require a spurious inverse-reasoning mechanism over the complete model
for specification and interpretation. Hence, we believe that such hybrid models may only be
of use in black-box approaches, where an underlying model is learned by a framework but not
intended to be interpreted by a human. Motzek (2016) introduces a learning approach for
ADBNs while considering activator constraints and their semantic implications on learning
of ADBNs and DBNs. Noteworthy, Motzek (2016) shows that a modification of an EM
approach remains applicable towards learning cyclic ADBNs without introducing an external
structure-analysis nor overhead, and remains applicable even if activator instantiations are
missing from data, i.e., even if activators are uninstantiated, which affects the underlying
structure, which, in turn, is required for restoring these missing instantiations. Further, they
compare the inference accuracy of learned models for various forms of cyclic, diagonal and
hybrid ADBNs. In fact, they show that learned cyclic ADBNs deliver highly accurate results,
but that neither fully diagonal (i.e., dense inter-timeslice) nor hybrid (i.e., mixture of intra-
and inter-timeslice) models are learnable that provide any accurate inference results.

In essence, ADBNs change their structure at every timestep depending on instantiations of
activators. DBNs with changing structure over time are also the main focus of non-stationary
DBNs by Robinson and Hartemink (2008) and of time-varying DBNs by Song, Kolar, and Xing
(2009). However, Robinson and Hartemink and Song et al. take a fundamentally different
perspective on changing structures, where changing structures represent an evolutionary
change of a structure over time during a long evolutionary process and structures are slowly

43



Motzek & Möller

modified by a set of possible actions. ADBNs can rapidly change over time, namely at every
timestep depending on a specific context.In fact, ADBNs succeed non-stationary DBNs in
their expressiveness by capturing all possible structures in one ADBN where the context,
i.e., At and Ordt, specifies a needed substructure for each evolutionary step. By discretizing
the evolution of a structure in a non-stationary DBN into discrete epochs with constant
structure, i.e., one introduces a new epoch after every structure modification, one obtains
a random variable Epocht depending on Epocht−1 (resembling the evolutionary character),
which immediately represents an Ordt and an implied activator constellation in an eADBN
(compare Definition 13). Therefore, every non-stationary DBN is representable as an eADBN
in well-defined and classical DBN syntax and semantics.

Fundamental to our work is the introduction of activator random variables, which exploit
context-specific independencies in Bayesian networks. The presence of context-specific
independencies and their advantages for easier specifications and representations of local
parameters have notably been described by Boutilier et al. (1996). Poole and Zhang (2003)
extend work by Boutilier et al. in order to exploit context-specific independencies for
more efficient exact reasoning in (dynamic) Bayesian networks by considering effective
independencies in instantiated structures. Notwithstanding, their work was fundamental for
our work, but the authors solely focused on performance optimization, whereas we focus
on increasing expressiveness of DBNs for anticipating indirect influences correctly by rapid
adaptations to (even unknown) contexts.

Dynamic Bayesian networks in which actual dependencies depend on a specific context
of random variables are a main focus of Dynamic Bayesian Multinets (DBMs) by Bilmes
(2000) and represent a form of dynamic Bayesian networks similar to our work. However, in
a DBM a value of a single externally introduced variable (Q) steers a structure of a network
by introducing a new syntax using so-called dependency functions. Encoding every possible
structure in one variable introduces a significant overhead in specifications and veers away
from a world-representing declaration. In ADBNs multiple activator variables are part of
a domain and, thus, do not introduce a modeling overhead. Further, activator random
variables adhere all properties of classic random variables neither introducing a new syntax
nor a new semantics. On top of that, in an ADBN a higher degree of expressiveness is
achieved, as activators can be left unobserved, representing that part of a specific structure
is left unknown. Nevertheless, any DBM is transformable into an ADBN, but not vice versa,
as DBMs explicitly do not support proactively designed cyclic dependencies and run into
problems involving indirect influences as discussed in Proprosition 2.

A further consideration of roles and implications of context-specific independencies in
probabilistic graphical models (PGMs) is done by Milch et al. (2005) focusing on an increased
expressiveness of PGMs by the framework of (infinite) contingent Bayesian networks (CBNs).
In CBNs edges are labeled with instantiations of some random variables, if the edge, i.e.,
dependency, is subject to a context-specific change. This edge-labeling follows a similar
motivation as activator random variables do, and, similarly, an ADBN-activator-random-
variable-instantiation AXY = +axy can be seen as such an edge label in CBNs. Most notably,
Milch et al. identify that certain domains cannot be modeled as one acyclic PGM and cyclic
dependencies are required as we have motivated as well by the taintedness domain. However,
Milch et al., similarly to Geiger and Heckerman (1996), introduce a novel calculus for their
context-specific PGMs, which stands in a significant contrast to ADBNs. In ADBNs no novel
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calculus is required, no external “outerloop” is required, and all random variables, CPDs,
and the JPD as the product of all locally defined CPDs are business as usual. Moreover,
CBNs make acyclicity constraints explicit by exclusive edge-labels, i.e., it is impossible to
instantiate a (unrolled) cyclic CBN, whereas, in the ADBN formalism, a cyclic ADBN may
be instantiated/unrolled, as regularity constraints are never enforced or required to become
explicit. As Motzek and Möller (2015a) show, this circumstance is highly beneficial, as
not only acyclicity is a regularity constraint. Furthermore, an explicit representation of all
regularity constraints of an edge would introduce a significantly high modeling overhead
of the taintedness domain in a CBN, where multiple context-specific cycles exist, as all
potential instantiation-combinations for forming a directed-acyclic-graph would need to be
made explicit along each edge, which cannot provide an intuitive and local design of such
models. Moreover, we have shown that classical algorithms such as the forward-backward
algorithm remain applicable for solving filtering or smoothing problems in ADBNs without
any significant modification. While CBNs may be able to represent ADBNs to some extent,
it remains unclear whether the novelly introduced CBN calculus still allows these algorithms
to persist and remain applicable.

Our proof that an ADBN template B→ can be based on a cyclic graph under certain
conditions is based on an equivalence of an unrolled dynamic Bayesian network whose
instantiations are equivalent to instantiations of an acyclic dynamic Bayesian network, and
allows that ADBNs are designed with cyclic structures proactively, as they are first resolvable
in an instantiation and, in fact, represents more structures with which observations are
explainable. Sets of equivalent classes of graphs are also considered by Acid and de Campos
(2003) for more efficient structure learning in Bayesian networks. Learning ADBNs represents
a novel research area of Bayesian network learning, as a structure is not known in advance
and can only be designed, i.e., learned, proactively. Nevertheless, data as, e.g., created by
process as in the running example, are inexplicable, i.e., unlearnable without an equivalent
ADBN. As Proposition 3 shows, a dense inter-timeslice ADBN contains all possible inter-
timeslice ADBNs and equivalent structures must be considered during ADBN learning. As
an ADBN structure does not only change slowly over time, and, namely, requires a rapid
context-specific structure change at every timestep, learning approaches as presented by
Robinson and Hartemink (2010) for non-stationary DBNs are not immediately applicable.

A view on DBNs as, e.g., taken by us, is significantly more expressive than viewing DBNs
as an unrolled hidden Markov model, where specific variables must be constantly observed
and a view over “time” is used to resolve cycles, instead of representing a wall-clock time.
Notwithstanding, if cyclic models are intended to be designed, one could switch to chain
graphs as described by Drton (2009) or general Markov networks. However, by switching
to (partially) undirected models one loses the direct and intuitive interpretation of locally
specified conditional probability distributions by introducing a burden of computing non-local
normalization quotients. In cyclic (e)ADBNs, all desired local semantics are preserved without
introducing any computational or modeling overhead. On top of that, an undirected model
inherently models a different domain as undirected edges imply symmetric influences, whereas
in an ADBN we can specify asymmetric influence strengths. Further, a cyclic Markov network
models a steady state influence domain, where influences let random variables converge to a
stable state. The latter is an application of a diagonal DBN, where a cyclic directed graphical
model is unfolded into a diagonal DBN and is simulated over a long timeperiod to obtain
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aforesaid stable state. Note that, the “misuse” of time to simulate this cyclic behavior is
exactly the problem that motivated this article and leads to the problem of being unable to
anticipate indirect influences in one timestep of a DBN, if time is supposed to represent an
actual wall-clock time, as envisioned in ADBNs. Nevertheless, as Proposition 3 shows, an
ADBN can model any DBN and can therefore also be used to simulate feedback loops, i.e.,
cyclic dependencies that do not resolve to be acyclic.

Recent advances in probabilistic logic languages by Fierens et al. (2015) and de Raedt et al.
(2007) allow for encoding and simulating (dynamic) Bayesian networks using probabilistic
rules. Often probabilistic logic languages are not subject to acyclicity constraints as a
reasoning process is not based on Bayesian inference, but are reduced to other commonly
known computational problems. This means that similar answers to inference queries in
ADBNs are obtainable in, e.g., works by de Raedt et al. by adequate specifications of
probabilistic rules, but rules for reasoning are designed instead of representing a causal
process as a DBN.

We have discussed the complexity of problems over time and have shown that in an ADBN
one obtains the same, and even simpler (see Example 7) complexities as in classic DBNs.
However, like in any other DBN, the complexity in terms of number of random variables of
query problems demands approximate inference techniques. We have shown that approximate
inference techniques renders finding answers to inference problems in ADBNs tractable, even
in large-scale domains. The discussed sequential importance sampling approach requires
that at every timestep an effective topological ordering is made explicitly, i.e., a topological
ordering must be obtained from made observations. Performing a topological sorting does
not represent a bottleneck and the requirement does not come as a surprise, as sequential
importance sampling is an adaptation of likelihood weighting, which does require a topological
ordering similar to prior and rejection sampling (cf., Russell & Norvig, 2010, pp. 530–535).
Considering that Gibbs sampling is an approximate inference approach for Bayesian network
that is not based on a topological ordering and is only based local conditional independencies,
an adaption of Gibbs sampling towards approximate inference in dynamic (activator) Bayesian
networks is a promising research field for future work. Moreover, the combination of exact
and approximate inference in ADBNs represent a highly interesting future research area: If
substructures are formed for which exact inference remains tractable, exact inference can be
combined with approximate inference for the remainder of the network. As shown by Doucet
et al. (2000) in the form of Rao-Blackwellised Particle Filtering (RBPF) such approaches
deliver more accurate inference results than, e.g., a classical SIR procedure. While in classical
DBNs a structure remains constant and a “tractable substructure” is known in advance,
adapting RBPF to ADBNs motivates a new form of RBPF: substructural-adaptive RBPF.

Notwithstanding, it is possible that an observation is not regular in a particular situation,
if, e.g., a time granularity is chosen too coarse or too few observations are acquired. Still,
Theorem 1 now represents a direct indicator for potentially spurious results, and Section 7
has introduced a solution to insufficient structural context information. In a situation where
a context is actually observed to be cyclic, i.e., too many active activators are observed, an
action to ensure well-definedness is needed, but is beyond the scope of this article. Such an
action would be, for example, to move small subsets of observations to a neighboring timestep
or to find a most likely, but minimally invasive alternative observation that conforms to
Theorem 1.
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9. Conclusion

We have shown that indirect causes in dynamic Bayesian networks cause conflicts in represen-
ting causality by which highly spurious results are returned. These conflicts arise from using
a modeled dimension, i.e., time as a wall-clock time, for assuring syntactic requirements.
By identifying activator criteria of random variables in (dynamic) Bayesian networks, we
introduce ADBNs and are able to move acyclicity constraints from a design phase to a later
operation phase. Without the need of external reasoning frameworks, degrading a Bayesian
network to a reasoning process, we obtained a solid mathematical basis sound to Bayesian
networks with a causally correct anticipation of indirect causes in dynamic Bayesian networks.
ADBNs provide the ability to intrinsically let a DBN adapt to observed contexts, where a
DBN’s structure is not known in advance and changes over time while maintaining a Bayesian
network as a world-representing first-class declaration. Most importantly, we show that
ADBNs are able to be based on cyclic graphs while remaining in a classical calculus with
classical random variables and classical CPDs preserving desired local semantics, without
introducing neither new procedural inference approaches, nor any new calculus operators.

Future work is dedicated to integrate new and varying acyclicity constraints when
considering properties of local CPDs as done by Motzek and Möller (2015a) into new
approximate inference techniques and extensions of ADBNs towards intrinsic representations
of relational domains in a classical (A)DBN formalism.

Appendix A. Proof of Well-Definedness

We prove Theorem 1 of the well-definedness of a (cyclic) ADBN by showing that Proposi-
tion 4, i.e., the joint probability over all random variables of a dense intra-timeslice ADBN,
corresponds to a joint probability of a well-defined DBN (according to Proposition 1) under
Theorem 1. This is a proof based on one special ADBN, but Proposition 3 states that a
dense intra-timeslice ADBN includes all possible intra-timeslice dependencies and thus the
following proof is a proof for Theorem 1. An ADBN can include inter-timeslice dependencies,
but these are subject to the well-definedness Proposition 1 (see Theorem 1) and the following
proof is equivalent.

Notation 7 (Vector probability operands). For brevity, we define a probability of a vector
containing random variables as a shorthand notation for a product of probabilities. Let ~X,
~Z, | ~X| = |~Z| be column vectors of random variables. Let PΓ( ~X|Y, ~Z) denote the product of
probabilities P (Xi|Y,Zi) where Xi and Zi are taken row-wise from ~X and ~Z, except rows
identified in the exclusion-set Γ. Scalars Y are repeated in every row. Formally,

PΓ( ~X|Y, ~Z) =
∏
i

P (Xi|Y, Zi) i ∈ {1 ≤ i ≤ | ~X|}\Γ

Respectively, we apply this notation to (conditional) probabilities with n-ary dependencies
and without dependencies, i.e., prior random variables.

Notation 8 (Lexicographic order). Let ≺ be a lexicographic term order, such that Xt−1
∗ ≺ Xt

∗,
Xt
i ≺ Xt

i+1, and A
t−1
∗∗ ≺ At∗∗, Ati∗ ≺ At(i+1)∗, A

t
ij ≺ Ati(j+1), and A

t
∗∗ ≺ Xt

∗, Xt−1
∗ ≺ At∗∗.

We rewrite Proposition 4 using Notation 7 as:
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Proposition 10 (Shorthand joint probability distribution notation). From Proposition 4, a
dense intra-timeslice ADBN’s semantics is

P ( ~X0:tᵀ , ~A1:tᵀ) =
∏

X0
k∈ ~X0

P (X0
k) ·

t∏
i=1

∏
Xi

k∈ ~X i

P (Xi
k| ~Xiᵀ\Xi

k,
~Ai

ᵀ
k , X

i−1
k ) ·

∏
Ai

cv∈ ~Ai

P (Aicv) ,

written for brevity using Notation 7 as

P ( ~X0:tᵀ , ~A1:tᵀ) = P( ~X0) ·
t∏
i=1

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) . N

The shorthand allows for shorter notation of products where some indexes of a product
need to be excluded.

Proof of Theorem 1 (ADBN well-definedness). We show that the joint probability distribu-
tion stated in Proposition 4 is indeed well-defined for every instantiation of ( ~X0:t, ~A1:t), if
for all t the instantiation ~at of ~At follows Eq. 3 by Theorem 1. We show this by reversing
conditional independency assumptions in the semantic joint probability and that one obtains
a topological ordering of a syntactical graph structure, i.e., a syntactically cyclic graph
structure B→ is semantically a DAG for which Bayesian network semantics defines the same
joint probability distribution as defined under restrictions in Theorem 1. B0 can be written
as

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X0
1 ) · . . . · P (X0

n) · γ = P (X0
1 , . . . , X

0
n) · γ = P ( ~X0ᵀ) · γ ,

with

γ =
t∏
i=1

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) .

Consecutively, one is able to roll up the joint distribution according to Bayes’ chain rule.
Considering an extreme case of a set of activators corresponding to Eq. 3, it is straightforward
that in any instantiation following Eq. 3 it must always hold that ∃X1

E1 : ∀iA1
i(E1) = false,

such that due to Eq. 1, the set of activators and previous states uniquely identify the CPD
entry of P (X1

E1| . . .) and X1
E1 becomes independent of all other ~X1, such that the joint

probability can be written as

P ( ~X0:tᵀ , ~A1:tᵀ) = P ( ~X0ᵀ) · P (X1
E1|∗, ~A1ᵀ

E1, X
0
E1) ·P{E1}( ~X

1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0) ·P( ~A1)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) . (10)

By reversingX1
E1’s conditional independence assumption, i.e., one reverses “if X is independent

of Z then P (X|Y, Z) = P (X|Y )” and enriches P (X|Y ) with conditionally independent
random variable(s) Z to P (X|Y, Z), one obtains

P ( ~X0:tᵀ , ~A1:tᵀ) = P ( ~X0ᵀ) · P (X1
E1|∗, ~A1ᵀ , ~X0ᵀ) ·P( ~A1) ·P{E1}( ~X

1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) .
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Hence, with

P( ~At) = P (At12) · . . . · P (At1n) · . . . · P (Atn1) · . . . · P (Atn(n−1))

= P (At12, . . . , A
t
1n, . . . , A

t
n1, . . . , A

t
n(n−1)) = P ( ~Atᵀ) ,

one can combine P ( ~X0ᵀ) with P ( ~A1ᵀ) to P ( ~A1ᵀ , ~X0ᵀ) s.t. the probability distribution of the
first eliminated state variable X1

E1 can be combined as P (X1
E1|∗, ~A1ᵀ , ~X0ᵀ) · P ( ~A1ᵀ , ~X0ᵀ) =

P (X1
E1,

~A1ᵀ , ~X0ᵀ), and one obtains

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
E1, ~A1ᵀ , ~X0ᵀ)

·P{E1}( ~X
1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0) ·

t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) .

Consecutively, there ∃X1
E2 : ∀ {i\E1}A1

i(E2) = false in every regular instantiation s.t.

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
E1, ~A1ᵀ , ~X0ᵀ) · P (X1

E2|∗, X1
E1, ∗, ~A1ᵀ

E2, X
0
E2)

·P{E1,E2}( ~X
1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0) ·

t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) ,

for which one reverses the conditional independency again and obtain

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
E1,

~A1ᵀ , ~X0ᵀ) · P (X1
E2|∗, X1

E1, ∗, ~A1ᵀ , ~X0ᵀ)

·P{E1,E2}( ~X
1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0) ·

t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) ,

which, according to Bayes’ chain rule, can be written as

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
E2, X

1
E1,

~A1ᵀ , ~X0ᵀ)

·P{E1,E2}( ~X
1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0) ·

t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) .

Consecutively repeating this process for every remaining XEi where the ith elimination
variable is maximally dependent on the previous (i− 1) eliminated variables, one, henceforth,
approaches the elimination of X1

En, which is dependent on up to every other ~X1, which are
all eliminated variables up to now, i.e.,

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
E(n−1), . . . , X

1
E1,

~A1ᵀ , ~X0ᵀ)

· P (X1
En|X1

E(n−1), . . . , X
1
E1,

~A1ᵀ
En, X

0
En) ·

t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) ,
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for which one reverses the conditional independency again and combines the joint probability
finally to

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
En, X

1
E(n−1), . . . , X

1
E1, ~A1ᵀ , ~X0ᵀ)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) .

Indeed, one already obtains a topological ordering > for the first two timeslices of
X1
En > X1

E(n−1) > . . . > X1
E1 >

~A1ᵀ > ~X0ᵀ .
Following this procedure for the remaining t > 1, one finally obtains

P ( ~X0:tᵀ , ~A1:tᵀ) = P (Xt
E(n−1), . . . , X

t
E1,

~Atᵀ , . . . , X1
En, . . . , X

1
E1, ~A1ᵀ , ~X0ᵀ)

· P (Xt
En|Xt

E(n−1), . . . , X
1
E1, A

1ᵀ
En, X

t−1
En ) .

With a final reverse conditional independence assumption,

P ( ~X0:tᵀ , ~A1:tᵀ) = P (Xt
E(n−1), . . . , X

t
E1, ~At

ᵀ
, . . . , X1

En, . . . , X
1
E1, ~A1ᵀ , ~X0ᵀ)

· P (Xt
En|Xt

E(n−1), . . . , X
t
E1,

~Atᵀ , . . . , X1
En, . . . , X

1
E1,

~A1ᵀ , ~X0ᵀ) ,

one obtains a complete topological ordering and a full joint probability over all random
variables of

P ( ~X0:tᵀ , ~A1:tᵀ) = P (Xt
En, X

t
E(n−1), . . . , X

t
E1,

~Atᵀ , . . . , X1
En, . . . , X

1
E1, ~A1ᵀ , ~X0ᵀ) . (11)

One, thus, obtains a complete topological ordering that syntactically defines an equivalent
Bayesian network (unrolled dynamic Bayesian network) (B0, B

′
→) with the same random vari-

ables ~X0:t, ~A1:t, i.e., defines the same full joint probability distribution P (Xt
En, X

t
E(n−1), . . . ,

Xt
E1,

~Atᵀ , . . . , X1
En, . . . , X

1
E1,

~A1ᵀ , ~X0ᵀ). Therefore, the product of all locally defined CPDs,
in fact, is the semantics of a dense intra-timeslice ADBN, despite being based on a cyclic
graph and does not require any global normalization factors.

Appendix B. Proof of Filtering Equation

We prove both Theorems 2 and 3 by showing that an algorithm exists which solves each pro-
blem, and which has the acclaimed computational complexity. Theorem 2 is proven by showing
that an algorithm exists that finds an exact solution to OffFP(B0, B→, ~z 0:t,~b1:t, t) in time-
complexity O(t · |dom(X+)|| ~Xt| · |dom(A++)|| ~At| · |dom(ζ+)||~ζ∗| · |dom(β+)||~β∗|) and with
space-complexity O(t · | dom(X+)|| ~Xt| · |dom(A++)|| ~At|) for storing P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ)
for every timeslice t. We prove Theorem 2 by reducing it to multiple online filtering problems.

Theorem 3 is proven by showing that an algorithm algorithm exists that finds an
exact solution with time-complexity O(|dom(X+)|| ~Xt| · |dom(A++)|| ~At| · | dom(ζt−1

+ )||~ζt−1| ·
|dom(βt−1

+ )||~βt−1|) and space-complexity O(|dom(X+)|| ~Xt| · |dom(A++)|| ~At|). We prove
Theorem 3 by deriving the general filtering equation from the joint probability distribution
equation, which, seen as an algorithm, has the acclaimed time- and space-complexity for
both filtering problems.
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Proof of Theorems 2 and 3 (filtering). With a normalization factor α, filtering is generally
defined from the joint probability as

P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) = α ·
∑
~ζ0:t−1

∑
~β1:t−1

P ( ~X0:tᵀ , ~A1:tᵀ) , (12)

where all values of variables ~Xt, ~At are defined by the query and variables ~X0:t−1, ~A1:t−1 are
defined by either observations in the sets ~z 0:t−1,~b1:t−1 or through summation over unobserved
variables in ~ζ 0:t−1, ~β1:t−1.

Using the recursive definition of the joint probability in Equation 5, one obtains

P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ)

= α
∑
~ζ0:t−1

∑
~β1:t−1

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ) ·
∏

Xt
i∈ ~Xt

P (Xt
i | ~Xtᵀ\Xt

i ,
~At

ᵀ
i , X

t−1
i ) ·

∏
At

ij∈ ~At

P (Atij)

= α
∑
~ζt−1

∑
~βt−1

∑
~ζ0:t−2

∑
~β1:t−2

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ)

·
∏

Xt
i∈ ~Xt

P (Xt
i | ~Xtᵀ\Xt

i , ~A
tᵀ
i , X

t−1
i ) ·

∏
At

ij∈ ~At

P (Atij)

= α
∑
~ζt−1

∑
~βt−1

∏
Xt

i∈ ~Xt

P (Xt
i | ~Xtᵀ\Xt

i , ~A
tᵀ
i , X

t−1
i ) ·

∏
At

ij∈ ~At

P (Atij)

·
∑
~ζ0:t−2

∑
~β1:t−2

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ)

= α
∑
~ζt−1

∑
~βt−1

∏
Xt

i∈ ~Xt

P (Xt
i | ~Xtᵀ\Xt

i ,
~At

ᵀ
i , X

t−1
i ) ·

∏
At

ij∈ ~At

P (Atij)

· P ( ~Xt−1ᵀ , ~At−1ᵀ |~z0:t−1ᵀ ,~b1:t−1ᵀ) .

One obtains the general filtering equation as

P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) = α
∑
~ζt−1

∑
~βt−1

P ( ~Xt−1ᵀ , ~At−1ᵀ |~z 0:t−1ᵀ ,~b1:t−1ᵀ)

·
∏

Xt
i∈ ~Xt

P (Xt
i | ~Xtᵀ\Xt

i ,
~At

ᵀ
i , X

t−1
i ) ·

∏
At

ij∈ ~At

P (Atij) . (13)

The general filtering equation reuses a previously stored filtering results from t−1. Evaluating
P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) by Equation 13 for all instantiations of ~Xt, ~At, using a stored solution
to all P ( ~Xt−1ᵀ , ~At−1ᵀ |~z 0:t−1ᵀ ,~b1:t−1ᵀ), is an algorithm that gives an exact solution to the
online filtering problem OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t). For a fixed B0, B→ and a fixed
number and domain size of unobserved variables per timeslice in ~z t−1:t,~bt−1:t the algorithm
has constant time- and space-complexity O(1).

Iteratively evaluating Equation 13 for all instantiations of ~Xi, ~Ai, ∀i : 0 ≤ i ≤ t, is an algo-
rithm that gives an exact solution to the offline filtering problem OffFP(B0, B→, ~z 0:t,~b1:t, t).
For a fixed B0, B→ and a fixed number and domain size of unobserved variables per timeslice
in ~z 1:t,~b1:t the algorithm has linear time- and space-complexity O(t).
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To obtain a complete distribution, both algorithms require exponentially many evaluations
in the dimension of all possible instantiations of random variables per timeslice. Every
incremental evaluation is exponential in the number and domain size of unobserved variables
from the previous timeslice.

Appendix C. Proof of Smoothing Equation

We prove both Theorems 4 and 5 by showing that an algorithm exists which solves each
problem, and which has the acclaimed computational complexity. Theorem 4 is proven by
showing that an algorithm exists that finds an exact solution to ComplSP(B0, B→, ~z 0:t,~b1:t, t)

in time-complexity O(t2 · | dom(X+)|| ~Xt| · | dom(A++)|| ~At| · | dom(ζ+)||~ζ∗| · | dom(β+)||~β∗|)
and with O(t · |dom(X+)|| ~Xt| · |dom(A++)|| ~At|) space-complexity for storing all smoothing
distributions. Theorem 5 is proven by showing that an algorithm exists that finds an exact
solution to FLagSP(B0, B→, ~z k−1:t,~bk−1:t,∆, t) with time-complexity O(∆ · |dom(X+)|| ~Xt| ·
|dom(A++)|| ~At| · |dom(ζ+)||~ζ∗| · |dom(β+)||~β∗|) and O(|dom(X+)|| ~Xt| · |dom(A++)|| ~At|)
space-complexity for storing a smoothing distribution of timeslice k

Proof of Theorems 5 and 4 (smoothing). The general smoothing equation is obtained by
straight marginalization from the joint probability as

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) = α ·
∑
~ζ0:k−1

∑
~β1:k−1

∑
~ζk+1:t

∑
~βk+1:t

P ( ~X0:tᵀ , ~A1:tᵀ) .

Using Equation 5 one obtains

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) = α ·
∑
~ζ0:k−1

∑
~β1:k−1

∑
~ζk+1:t

∑
~βk+1:t

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ)

·
∏

Xt
i∈ ~Xt

P (Xt
i | ~Xtᵀ\Xt

i ,
~At

ᵀ
i , X

t−1
i ) ·

∏
At

ij∈ ~At

P (Atij) . (14)

We define an intermediate joint probability as

P ( ~Xk:tᵀ , ~Ak:tᵀ) =
∏

Xk
i ∈ ~Xk

P (Xk
i | ~Xkᵀ\Xk

i ,
~Ak

ᵀ
i , X

k−1
i )

·
∏

Ak
ij∈ ~Ak

P (Akij) · P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ) ,

which is a term T k−1:t depending on variables from time k − 1 until t. One can therefore
split the recursive definition of the joint probability and obtain

P ( ~Xkᵀ , ~Akᵀ |~z0:tᵀ ,~b1:tᵀ)

= α ·
∑
~ζ0:k−1

∑
~β1:k−1

∑
~ζk+1:t

∑
~βk+1:t

P ( ~X0:kᵀ , ~A1:kᵀ) · P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)

= α ·
∑
~ζ0:k−1

∑
~β1:k−1

P ( ~X0:kᵀ , ~A1:kᵀ) ·
∑
~ζk+1:t

∑
~βk+1:t

P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)
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= α ·

 ∑
~ζ0:k−1

∑
~β1:k−1

P ( ~X0:kᵀ , ~A1:kᵀ)

 ·
∑
~ζk+1:t

∑
~βk+1:t

P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)

 . (15)

One finds a previous (stored) filtering problem in the first sum-product, known as a “forward
message,” and a new latter sum-product commonly known in smoothing equations as a
“backward-message.” Using an adequate recursive definition for the latter term, one obtains
the so-called forward-backward algorithm. The commonly known “sensor model” is, due to
in-timeslice dependencies, included in the forward, as well as backward message.

The latter sum-product term from k + 1 to t corresponds to P (~zk+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ)
from a probabilistically point of view, but essentially is a just a term T k:t over variables
from time k to t. The splitting into two disjoint products is possible, because all variables
from time k are query variables, i.e., are constant in a query. Without determining a full
joint probability, a backward message is not derivable in multiply connected BNs. In fact,
the probabilistic view also derives from Bayes’ theorem and a first-order Markov assumption,
but we rely on straight calculus here, as intra-timeslice dependencies pose various pitfalls
here. The term is obtained as

P (~zk+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ)

= α ·
∑
~ζk+1:t

∑
~βk+1:t

P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)

= α ·
∑
~ζk+1:t

∑
~βk+1:t

∏
Xk+1

i ∈ ~Xk+1

P (Xk+1
i | ~Xk+1ᵀ\Xk+1

i , ~Ak+1ᵀ
i , Xk

i ) ·
∏

Ak+1
ij ∈ ~Ak+1

P (Ak+1
ij )

·P ( ~Xk+2:tᵀ , ~Ak+2:tᵀ)

= α ·
∑
~ζk+1

∑
~βk+1

∏
Xk+1

i ∈ ~Xk+1

P (Xk+1
i | ~Xk+1ᵀ\Xk+1

i , ~Ak+1ᵀ
i , Xk

i ) ·
∏

Ak+1
ij ∈ ~Ak+1

P (Ak+1
ij )

·
∑
~ζk+2:t

∑
~βk+2:t

P ( ~Xk+2:tᵀ , ~Ak+2:tᵀ) , (16)

in which one finds the backward message as the latter term. Using a recursive definition, one
obtains the backward message as

P (~zk+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ)

= α ·
∑
~ζk+1

∑
~βk+1

∏
Xk+1

i ∈ ~Xk+1

P (Xk+1
i | ~Xk+1ᵀ\Xk+1

i , ~Ak+1ᵀ
i , Xk

i )

·
∏

Ak+1
ij ∈ ~Ak+1

P (Ak+1
ij ) · P (~zk+2:tᵀ ,~bk+2:tᵀ | ~Xk+1ᵀ , ~Ak+1ᵀ) . (17)

Finally, by combining Equation 15 and 17, one obtains the general smoothing equation as

P ( ~Xkᵀ , ~Akᵀ |~z0:tᵀ ,~b1:tᵀ) = P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ) · P (~z k+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ) . (18)

With the recursive definition of the backward message, Eq. 17, this yields
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P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) = α · P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ)

·
∑
~ζk+1

∑
~βk+1

∏
Xk+1

i ∈ ~Xk+1

P (Xk+1
i | ~Xk+1ᵀ\Xk+1

i , ~Ak+1ᵀ
i , Xk

i ) ·
∏

Ak+1
ij ∈ ~Ak+1

P (Ak+1
ij )

· P (~z k+2:tᵀ ,~bk+2:tᵀ | ~Xk+1ᵀ , ~Ak+1ᵀ) . (19)

Evaluating the general smoothing Equation 18 for all instantiations of ~Xk, ~Ak decremen-
tally for descending k = t−1 . . . 0 is an algorithm that gives an exact solution to the complete
smoothing problem ComplSP(B0, B→, ~z 0:t,~b1:t, t). During the decremental evaluation the
backward message is stored: an intermediate result P (~z k+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ) (the bac-
kward message) obtained during an evaluation of P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) at time k is needed
in an upcoming (but temporally backward) evaluation of P ( ~Xk−1ᵀ , ~Ak−1ᵀ |~z 0:tᵀ ,~b1:tᵀ) at time
k − 1. Thus, obtaining the last term of Equation 19 is constant in t for every evaluation.
The first term P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ) of the general smoothing equation poses a filtering
problem, for which a solution is found in O(1) in a storage from a solution to an offline
filtering problem OffFP(B0, B→, ~z 0:t,~b1:t, t), which is found in O(t) by the previously derived
algorithm in Proof B. If memory is scarce, P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ) is obtained in O(k) for
every k by solving all OnlFP(B0, B→, ~z i−1:i,~bi−1:i, i), 0 ≤ i ≤ k. Thus, for a fixed B0, B→
and a fixed number and domain size of unobserved variables per timeslice in ~z 1:t,~b1:t the
algorithm has linear time-complexity O(t) and linear space-complexity O(2 · t) or quadratic
time-complexity O(t2), but halved space-complexity O(t). For every evaluation at time k,
the backward message “moves one down” from k + 1 to k and the forward message “ripples
up” from 0 to k (or is obtained from a storage). For special DPGMs, a forward message can
also be “moved one down” by using an inverse matrix calculation. With this picture in mind,
the forward-backward-algorithm is sometimes seen as a “dance” between messages.

Evaluating the general smoothing Equation 18 for all instantiations of ~Xk, ~Ak for k =
t − ∆ is an algorithm that gives an exact solution to the fixed lag smoothing problem
FLagSP(B0, B→, ~z t−∆−1:t,~bt−∆−1:t,∆, t). For a fixed B0, B→ and a fixed number and domain
size of unobserved variables per timeslice in ~z t−∆−1:t,~bt−∆−1:t, the algorithm obtains the
first term as a solution to an online filtering problem in O(1) and the latter term in O(∆)
using the recursive definition.

To obtain a complete distribution, both algorithms require exponentially many evaluations
in the dimension of all possible instantiations of random variables per timeslice. Every
incremental evaluation is exponential in the number and domain size of unobserved variables
from the previous and consecutive timeslice.

Appendix D. Proof of Approximation Procedure

Correctness of Algorithm 2 (SIS). We prove that for nS →∞, Theorem 6 provides an exact
answer to a filtering query P (~xt,~at|~z 0:tᵀ ,~b1:tᵀ) for the SIS case of Algorithm 2 in a dense
intra-timeslice ADBN.

Notation 9 (Nostalgic sample). Let S =
(
~x 0:t−1,~a1:t−1, ~xt,~at, w

)
denote a sample of all

random variables from time 0 to time t. This means that sample S carries its complete
history ~x0:t−1,~a1:t−1 that ends in an end-sample S =

(
~x t,~a t, w

)
. Respectively, let St

~x0:t,~a1:t

denote a sample with evolution sequence ~x 0:t,~a 1:t and let ~St
~x 0:t,~a 1:t denote the set of all

samples St
~x 0:t,~a 1:t obtained at time t.
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Using Notation 9, Eq. 9 is written as

P (~xt
ᵀ
,~at

ᵀ |~z 0:tᵀ ,~b 1:tᵀ) ≈

∑
~ζ0:t−1

∑
~β1:t−1

∑
S∈~St

~x0:t,~a1:t
wS∑

S∈~St wS
,

i.e., to sum over all samples S~xt,~at , one now sums over all possible histories leading to such
samples. As some instantiations are fixed by evidence in ~z 0:t,~b1:t, the summation over all
unobserved variables leads to all possible evolution sequences. Following Algorithm 1 it is
evident that the weight wS of a nostalgic sample S is uniquely determined by its evolution
instantiation ~x0:t,~a1:t, i.e., all samples in ~St

~x0:t,~a1:t carry the weight

w~x0:t,~a1:t =
t∏

k=0

∏
Ak

ij∈~bk
P (Akij) ·

∏
Xk

i ∈~z k

P (Xk
i | ~Xkᵀ\Xk

i , A
kᵀ
i , X

k−1
i ) . (20)

Note that a weight wS of a sample S~St
~x,~a

is not uniquely determined by its instantiation

~xt,~at. Let N t
~x0:t,~a1:t = |~St

~x0:t,~a1:t | be the number of nostalgic samples at time t with evolution
sequence ~x0:t,~a1:t. Then

P (~xt
ᵀ
,~at

ᵀ |~z 0:tᵀ ,~b1:tᵀ) ≈ α
∑
~ζ0:t−1

∑
~β1:t−1

N t
~x0:t,~a1:t · w~x0:t,~a1:t , (21)

with a normalization factor α =
∑

S∈~St wS . For nS → ∞, the number of a sample S,
N t

S, equals their existence probability P (S). Algorithm 1 generates a nostalgic sample
S =

(
~x0:t,~a1:t, w

)
with probability

P (S) =
t∏

k=0

∏
Ak

ij∈~βk

P (Akij) ·
∏

Xk
i ∈~ζ k

P (Xk
i | ~Xkᵀ\Xk

i , A
kᵀ
i , X

k−1
i ) . (22)

For brevity, let Eq. 20 and Eq. 22 ignore the special case of t = 0. By combining Equations 20–
22, one obtains

P (~xt
ᵀ
,~at

ᵀ |~z 0:tᵀ ,~b1:tᵀ) = α
∑
~ζ0:t−1

∑
~β1:t−1

t∏
k=0

∏
Ak

ij∈~βk

P (Akij)

·
∏

Xk
i ∈~ζ k

P (Xk
i | ~Xkᵀ\Xk

i , A
kᵀ
i , X

k−1
i ) ·

t∏
k=0

∏
Ak

ij∈~bk
P (Akij) ·

∏
Xk

i ∈~z k

P (Xk
i | ~Xkᵀ\Xk

i , A
kᵀ
i , X

k−1
i ) ,

as ~Z0:t ∩ ~ζ 0:t = ~X0:t and ~B1:t ∩ ~β1:t = ~A1:t this is

P (~xt
ᵀ
,~at

ᵀ |~z 0:tᵀ ,~b1:tᵀ) = α
∑
~ζ0:t−1

∑
~β1:t−1

t∏
k=0

∏
Ak

ij∈ ~Ak

P (Akij) ·
∏

Xk
i ∈ ~X k

P (Xk
i | ~Xkᵀ\Xk

i , A
kᵀ
i , X

k−1
i )

(23)
which corresponds to the exact solution for the filtering problem in Eq. 12 with the complete
unrolled joint probability from Eq. 4.
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