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Abstract

Conventionally, the questions on a test are assumed to be kept secret from test takers
until the test. However, for tests that are taken on a large scale, particularly asynchronously,
this is very hard to achieve. For example, TOEFL iBT and driver’s license test questions
are easily found online. This also appears likely to become an issue for Massive Open Online
Courses (MOOCs, as offered for example by Coursera, Udacity, and edX). Specifically, the
test result may not reflect the true ability of a test taker if questions are leaked beforehand.

In this paper, we take the loss of confidentiality as a fact. Even so, not all hope is lost
as the test taker can memorize only a limited set of questions’ answers, and the tester can
randomize which questions to let appear on the test. We model this as a Stackelberg game,
where the tester commits to a mixed strategy and the follower responds. Informally, the
goal of the tester is to best reveal the true ability of a test taker, while the test taker tries to
maximize the test result (pass probability or score). We provide an exponential-size linear
program formulation that computes the optimal test strategy, prove several NP-hardness
results on computing optimal test strategies in general, and give efficient algorithms for
special cases (scored tests and single-question tests). Experiments are also provided for
those proposed algorithms to show their scalability and the increase of the tester’s utility
relative to that of the uniform-at-random strategy. The increase is quite significant when
questions have some correlation—for example, when a test taker who can solve a harder
question can always solve easier questions.

1. Introduction

Massive Open Online Courses (MOOCs) have emerged quite spectacularly and there is much
speculation about how their role in society will develop (for recent discussions, see Cooper
& Sahami, 2013; Hew & Cheung, 2014; Reich et al., 2015). In particular, the issue of how
the students’ accomplishments can be efficiently validated and certified is often discussed.
One approach that is now used is to allow students to take a proctored exam in a testing
center. A potential vulnerability of this approach is that the questions used on a test may
be leaked, online or otherwise. Certainly, this is already the case for other tests that are
taken asynchronously by many people, such as the TOEFL iBT and driver’s license tests.
A similar issue occurs for interview questions, particularly those with a “puzzle” flavor. A
natural approach to addressing this is to generate enough questions so that a test taker
would be unable to memorize them all, and then to select from these questions randomly
on each instantiation of the test.

However, sampling test questions uniformly at random may be suboptimal for several
reasons. Some questions may be more effective than others at identifying test takers that
do not know the material; should these be used more often? Also, it may not be optimal to
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consider questions in isolation; it is likely better to use two questions that test very different
parts of the material than ones that are quite similar. At the same time, choosing the test
questions deterministically is obviously fatally flawed, as this makes it easy to memorize the
questions. Instead, a more intelligent form of randomization seems desired. Game theory
provides a natural framework to determine such a randomized strategy. We can model the
test as a game between the tester, who chooses questions for the test, and the test taker,
who chooses for which questions (on material that he has not mastered) to memorize the
answers. This is the approach that we take in this paper.

We model the test game as a Bayesian game, in which there is uncertainty about the
type of the test taker. We assume here the availability of detailed statistical data on the
different types of test takers, specifically concerning their mastery of various material that
is potentially on the test, and their ability to memorize answers. Our primary focus is on
the computational problem of, given this data, determining an optimal mixed strategy for
the tester to determine what is on the test.

While we have used exams and similar tests as motivating examples in the above, there
are other potential applications in which some entity is being examined in a limited way.
For example, a team of (say, nuclear) inspectors may be able to visit only a limited number
of suspect sites (corresponding to being able to place only a limited number of questions on
an exam). The entity being investigated may be able to cover up illicit activity at a limited
number of sites (corresponding to memorizing the answers to selected questions), and many
of the sites may not have any illicit activity in the first place (corresponding to questions
that the test taker can handle without having to memorize the answer).

An early version of this paper appeared in the proceedings of IJCAI 2013 (Li & Conitzer,
2013). The following additional material has been added to this journal version. A more
general game model is introduced, which also includes scored tests and their zero-sum trans-
formation. Polynomial-time algorithms for solving scored tests are given, and additional
experiments with scored tests as well as with non-uniform test games are included. Fi-
nally, a more detailed proof of Theorem 3 (Theorem 2 in the conference paper) is included,
for which there was insufficient space in the conference proceedings. The abstract and
introduction have also been updated.

1.1 Related Work

The computation of Stackelberg mixed strategies has recently been applied to a number of
real security domains (Pita, Jain, Ordóñez, Portway, Tambe, & Western, 2009; Tsai, Rathi,
Kiekintveld, Ordóñez, & Tambe, 2009; Shieh, An, Yang, Tambe, Baldwin, DiRenzo, Maule,
& Meyer, 2012; Yin, Jiang, Johnson, Tambe, Kiekintveld, Leyton-Brown, Sandholm, &
Sullivan, 2012; Fang, Jiang, & Tambe, 2013; Xu, Fang, Jiang, Conitzer, Dughmi, & Tambe,
2014). The main reason for using a Stackelberg formulation in these domains is that in
many of them, an attacker could observe the defender’s actions over time and thereby
learn the defender’s strategy before acting; the same can be argued for the domain that
we are studying here. The Stackelberg model also largely avoids the possible equilibrium
selection problems of a simultaneous-move model. Another advantage is that a Stackelberg
strategy of a two-player normal-form game can be computed in polynomial time (Conitzer
& Sandholm, 2006; von Stengel & Zamir, 2010), whereas computing one Nash equilibrium is
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PPAD-complete (Daskalakis, Goldberg, & Papadimitriou, 2009; Chen, Deng, & Teng, 2009)
and computing an (even approximately) optimal Nash equilibrium is NP-hard (Gilboa &
Zemel, 1989; Conitzer & Sandholm, 2008). However, for Bayesian games (which we study
here), computing an optimal (or even approximately optimal) Stackelberg strategy is NP-
hard (Conitzer & Sandholm, 2006; Letchford, Conitzer, & Munagala, 2009). Mixed integer
program and heuristic branch-and-bound approaches have been used to tackle this problem
and have turned out to be reasonably scalable (Jain, Pita, Tambe, Ordóñez, Paruchuri, &
Kraus, 2008; Jain, Kiekintveld, & Tambe, 2011). Our approach is very different. We modify
the Bayesian Stackelberg game into a Bayesian zero-sum game by exploiting our problem’s
structure, allowing us to use a much more efficient minimax LP.

Of course, problem structure has also been exploited in previous work on security games.
Kiekintveld et al. proposed a quite general (though not all-encompassing) model of security
games (Kiekintveld, Jain, Tsai, Pita, Ordóñez, & Tambe, 2009). In it, the defender assigns
resources to targets (or sets of targets), and the attacker chooses a single target to attack.
The size of the normal form of these games is exponential in the natural representation size,
but a more compact MIP/LP formulation can be given whose size is polynomial (Kiekintveld
et al., 2009). However, this formulation is correct only under certain conditions (for example,
each resource can be assigned only to a single target), and when these do not hold NP-
hardness is usually encountered (Korzhyk, Conitzer, & Parr, 2010; Letchford & Conitzer,
2013).

In our domain, when tests have binary outcomes (“pass” or “fail”), we give a polynomial-
size LP for the case where only a single question is tested, but show NP-hardness results
for multi-question tests. (Our general minimax LP has exponential size in the natural
representation of the problem.) On the other hand, when tests have linear outcomes (i.e.,
agents’ utilities are linear in scores), we can solve for the optimal test for any number
of questions using a polynomial separation oracle. Hence scored tests are relatively easy
compared to binary tests. As a result, we will devote most of the space in later sections to
binary tests.

It is not surprising that there are many high-level similarities between our results and
previous results on security games. In some ways, the role of the tester is analogous to
that of the attacker (with the test-taker “defending” certain questions by memorizing their
answers). However, the tester is the natural Stackelberg leader and in that sense resembles
the defender in security games. In section 3, we show that if we do make the test taker the
Stackelberg leader, the zero-sum equivalence that we demonstrate and rely on no longer
holds.

1.2 Contributions

In this paper, we take the loss of confidentiality as a fact and model the test as a 2-player
Bayesian Stackelberg game between the tester and the test taker. By exploiting the utility
structure, we transform the game into a Bayesian zero-sum game (which only works if
the tester is the Stackelberg leader). It allows us to show the equivalence among Nash
equilibrium, Stackelberg, and minimax strategies of the transformed zero-sum game. Hence
using a minimax linear program, we can compute Stackelberg strategies more efficiently
than than we can for general Bayesian Stackelberg games.
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However, that linear program is still of exponential size. To completely settle the com-
putational complexity, we further consider two special cases of test games: scored tests
and binary tests, where the former one has a linear utility (score), while the latter has a
binary utility (pass or fail). We show that scored tests are relatively easy as we can use
a separation oracle to compute their optimal strategies in polynomial time. On the other
hand, we prove several (co)NP-hardness results for computing binary tests’ optimal strate-
gies. Yet, in the special case where the binary test only consists of one question, polynomial
algorithms exist. We gave both a linear program approach and a network-flow approach
for this special case. The network-flow approach is faster in our experiments, and it can be
used to prove an interesting property of the optimal test strategies in one-question binary
tests: there always exists an optimal strategy that selects a subset of questions, and asks
any one of them with equal probability.

2. Definitions and Notation

A test game G = (Q,Θ, p, t, u1, u2) is a 2-player Bayesian game between the tester (player
1) and the test taker (player 2). The tester has a set of potential test questions Q =
{q1, q2, . . . , qn}.1 The test taker has a type θ ∈ Θ (|Θ| = L) that characterizes which
questions are hard for the test taker (i.e., which questions he would not be able to answer
without memorizing them), and how many questions the test taker can memorize. That is,
θ = (Hθ,mθ), where Hθ ⊆ Q is the set of questions that are hard for θ, and mθ ∈ N is the
number of questions for which θ would be able to memorize the answer, so that a test taker of
type θ has

(|Hθ|
mθ

)
pure courses of action. (Without loss of generality, we assume mθ ≤ |Hθ|.)

The function p : Θ → [0, 1] is the probability distribution over types (
∑

θ∈Θ p(θ) = 1).
The tester can put t questions on the test, and thus has

(
n
t

)
pure strategies. We use T to

denote such a pure strategy, and Mθ to denote the subset of questions that θ memorizes.
u1(θ, T,Mθ) denotes the tester’s utility for type θ, and u2(θ, T,Mθ) denotes the utility of a
type θ test taker.

In general, the utility functions could be very rich, depending in a complicated way on
the true type and the number (or even precise set) of questions answered correctly. To avoid
getting too deeply into the modeling aspects of this, we study the two cases that occur most
frequently in our lives.

1. Scored Tests. Each question q ∈ Q has a score sq. If a test taker fails to solve q, score
sq is deducted. Most exams at schools fall into this category. The test taker wants
to maximize the score, which is equivalent to minimize the score deducted. Hence
the test taker’s utility is u2(θ, T,Mθ) = −ωθ

∑
q∈T∩(Hθ\Mθ) sq where ωθ denotes how

much θ cares about the test.

We also assume that the tester wants to find out as many questions as possible, in
terms of the sum of their scores, that the test takers cannot solve. Hence u1(θ, T,Mθ) =
vθ
∑

q∈T∩(Hθ\Mθ) sq, where vθ is how much the tester cares about type θ.

2. Binary Tests. The only two outcomes of a binary test are to pass or fail the test
taker. An example of this is driver’s license tests. Moreover, we assume that the tester

1. In common parlance, “problem” may be a better word, but this runs the risk of confusion with our
computational problems.
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does not want to pass any test taker that cannot answer all the questions (without
memorizing any). Thus, the tester will pass exactly the agents that answer all the
questions on the test correctly. Agents that can answer all the questions without
memorizing any have no strategic decisions to make and will always pass; therefore,
we do not model them explicitly as a type in the game. (They can be thought of
as adding a constant to the tester’s utility function that is sufficiently large that the
tester indeed wants to pass agents that answer all questions correctly.)

Thus, for the explicitly modeled types θ (which the tester wants to fail), we assume
that u1(θ, T,Mθ) = 0 if T ∩ (Hθ \Mθ) 6= ∅ (i.e., a question is tested that the agent
cannot answer, so the the agent fails) and u1(θ, T,Mθ) = −vθ otherwise (the cost of
passing an agent of type θ). For the test takers, u2(θ, T,Mθ) = 0 if T ∩ (Hθ \Mθ) 6= ∅,
and u2(θ, T,Mθ) = ωθ otherwise.2

In both cases, ωθ can be seen as θ’s perception of the test’s importance, and vθ can be
seen as the tester’s perception of θ’s importance. We require vθ, ωθ > 0.

We believe that a Stackelberg model is most natural for our setting, where the tester
first commits to a mixed strategy, and the test takers observe this mixed strategy and
best-respond. This is because the test takers can observe and learn the tester’s strategy
over time.3 Arguably, however, if the test takers are not able to do such learning, a Nash
equilibrium model (i.e., no Stackelberg leadership) also makes sense. In the next section,
we show that in fact, both of these models are equivalent to the same zero-sum game.

Definition 1 (Nash Equilibrium). A strategy profile σ = (σ1, σ2) is a Nash equilibrium
if and only if for each player i, her strategy σi is a best response to the other: σ1 ∈
BR1(σ2), σ2 ∈ BR2(σ1).

Definition 2 (Stackelberg Strategy). A Stackelberg strategy σ∗1 of the leading player 1 is
one that maximizes her utility when the following player 2 plays a best response strategy
σ2 ∈ BR2(σ∗1). (If player 2 has multiple best responses (|BR2(σ∗1)| > 1), we assume that he
will break the tie in favor of player 1, as is commonly done in this line of research.)

3. Equivalence to a Zero-Sum Game

For any test game G as defined above (both scored tests and binary tests), we can modify
it into a zero-sum game G′ by substituting the following utility function for the test taker:
u′2(θ, T,Mθ) = vθ

ωθ
u2(θ, T,Mθ).

Proposition 1. The set of Stackelberg mixed strategies for the tester in Bayesian game G
is equal to the set of maximin strategies for the tester in zero-sum Bayesian game G′. These
sets are also equal to the set of Nash equilibrium strategies for the tester in G.

2. It is instructive to consider the case where we have only a single type θ (p(θ) = 1). In this case, it is
optimal for the test taker to choose questions uniformly at random from Hθ. We face more interesting
tradeoffs when there are more types. For example, a question that is hard for multiple types is more
appealing than one that is hard only for a single type. However, if it is completely predictable that we
will put the former question on the test, then all types will memorize it.

3. It is observable even if only a fraction of test takers leak the tests (especially when there are many test
takers).
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for test taker θ1 memorize q1 memorize q2

test q1 -100, 1 0, 0

test q2 0, 0 -100, 1

for test taker θ2 memorize q1 memorize q2

test q1 -1, 100 0, 0

test q2 0, 0 -1, 100

Table 1: Normal-form representation of our counterexample to zero-sum equivalence when
the test taker (in a binary test) is the Stackelberg leader.

Proof. From each test taker’s perspective, we just multiply their utility by a constant vθ
ωθ

.
Hence their best responses remain the same. Therefore the tester’s Stackelberg mixed
strategies and the set of Nash equilibrium strategies remain the same.

Finally, G′ is a zero-sum game, and it is well known that in a 2-player zero-sum game,
the set of Nash equilibrium strategies is equal to the set of maximin strategies for the leader
(by the minimax theorem, see von Neumann, 1928), which is equal to the set of Stackelberg
mixed strategies (in a 2-player zero-sum game).

We note that the equivalence to this zero-sum game is not complete, in the sense that
it would not hold if the test taker is a Stackelberg leader who can commit to a strategy
(before learning his type). An example is provided below in section 3.1. However, since this
reversed Stackelberg model is not of primary interest to us, we proceed with the zero-sum
formulation from here on, focusing on G′ knowing that its solution will give us a solution
to our original problem. We also note that there is no harm for the tester if the test taker
does not play the equilibrium strategy of G′: the tester’s utility (which is the same in both
G and G′) could only weakly increase.

3.1 Counterexample to Zero-Sum Equivalence when the Test Taker (in a
Binary Test) is the Stackelberg Leader

Consider a binary test where Q = {q1, q2}, Θ = {θ1, θ2}, Hθ1 = Hθ2 = Q, mθ1 = mθ2 = 1,
p(θ1) = p(θ2) = 1/2, t = 1, vθ1 = 100, vθ2 = 1, ωθ1 = 1, and ωθ2 = 100. Table 1 is a
normal-form representation of this game.

If the tester is the leader, then it is optimal for her place probability 1/2 on each question
(and so, by Proposition 1, this is also optimal in the zero-sum version of the game). This
results in an expected utility of 0.5 for a test taker of type θ1, and one of 50 for a test taker
of type θ2—so an expected utility of 25.25 for the test taker ex ante.

However, if the test taker can commit to a strategy in the Bayesian game ex ante (before
learning his type), then he can commit to memorize conditionally on the type as follows:
Mθ1 = {q1} and Mθ2 = {q2}. Because the tester cares more about failing θ1, she will test
q2. This results in an ex ante expected utility of (1/2) · 100 = 50 for the test taker, which
is more than the 25.25 from the strategy in the regular version.
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4. Scored Tests

Computing an optimal Stackelberg mixed strategy in a general 2-player Bayesian game
is NP-hard (Conitzer & Sandholm, 2006) and inapproximable (Letchford et al., 2009); a
general mixed-integer linear program formulation has previously been proposed (Paruchuri,
Pearce, Marecki, Tambe, Ordóñez, & Kraus, 2008). However, thanks to Proposition 1, we
only need to solve for a maximin strategy of a zero-sum game. With that, we show how to
solve scored tests in polynomial time in this section.4

Theorem 1. Finding the optimal test strategies for scored tests is in P.

Proof. Due to Proposition 1, we only focus on solving zero-sum game G′, which has the
same optimal test strategies as G. The linear program (1) below is essentially a maximin
LP for zero-sum game G′. Inequality (1a) ensures that the test takers are best responding
and equation (1b) lets the tester only test t questions. It has an exponential number of
constraints but only a polynomial number of variables. (The number of constraints is

exponential because there are
(|Hθ|
|Mθ|
)
, an exponential number, actions for the test taker.) In

order to obtain only polynomially many variables (rather than exponentially many), we use
marginal probabilities xq instead of pure action probabilities xT . Here, variable Vθ is the
utility that the tester receives from type θ (Vθ could be nonnegative or negative), xq is the
marginal probability of testing question q, and xT is the probability of testing exactly the
questions in T .

Here we can use the marginal probability xq because the test utility is linear for test
takers so their best-responses only depend on xq. Given those marginal probabilities xq, we
can find the mixed strategy explicitly using the Dulmage-Halperin algorithm (Dulmage &
Halperin, 1955; Chang, Chen, & Huang, 2001) for finding the Birkhoff-von Neumann decom-
position (Birkhoff, 1946); similar techniques are used in the context of security games (Ko-
rzhyk et al., 2010).

max
x,V

∑
θ∈Θ

p(θ)Vθ (1)

s.t. (∀θ ∈ Θ, ∀Mθ ⊆ Hθ : |Mθ| = mθ)

vθ
∑

q∈Hθ\Mθ

sqxq ≥ Vθ; (1a)

∑
q∈Q

xq = t; (1b)

(∀q) 0 ≤ xq ≤ 1; (1c)

Given any vector of xq, we can find out in polynomial time whether a constraint is
violated as follows. There are only a polynomial number of inequalities (1b) and (1c), so
checking them is trivial. For inequality (1a), we enumerate over all types. For each type θ,
sort questions q ∈ Hθ by sqxq, and select the top mθ questions as θ’s best response Mθ. If

4. We thank Yang Cai for his helpful advice about separation oracles in general multi-row/column zero-sum
games.
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inequality (1a) holds for this Mθ, it also holds for any other Mθ. Hence we either report
violation of this constraint, or report that no violation is found after checking all θ.

With this polynomial separation oracle5, we can solve the LP and find the optimal
strategy in polynomial time using the ellipsoid algorithm (Grötschel, Lovász, & Schrijver,
1981) (one can solve a LP with an exponential number of constraints as long as there is a
polynomial separation oracle).

5. Binary Tests

We now turn our attention to binary tests, where our algorithmic contributions will be more
technically demanding. As before, we will only focus on solving zero-sum game G′ due to
Proposition 1.

5.1 General Linear Program (LP) Formulation

Similar to LP (1), the following maximin linear programming approach is standard. How-
ever, unlike LP (1), we have to use pure action probabilities xT instead of marginal proba-
bilities xq since the outcome of a test is no longer linear in the questions missed.

max
x,V

∑
θ∈Θ

p(θ)Vθ

s.t. (∀θ,∀Mθ ⊆ Hθ : |Mθ| = mθ)∑
T⊆Q:|T |=t

u1(θ, T,Mθ)xT ≥ Vθ;∑
T⊆Q:|T |=t

xT = 1;

(∀T ⊆ Q : |T | = t) xT ≥ 0;

(2)

The dual of the above LP is:

min
y,U

U

s.t. (∀T ⊆ Q : |T | = t)

U ≥
∑

θ,Mθ⊆Hθ:|Mθ|=mθ

u1(θ, T,Mθ)yθ,Mθ
;

(∀θ)
∑

Mθ⊆Hθ:|Mθ|=mθ

yθ,Mθ
= p(θ);

(∀θ,Mθ ⊆ Hθ : |Mθ| = mθ) yθ,Mθ
≥ 0;

(3)

The variables of the dual LP yθ,Mθ
give a strategy for the test taker that maps types

to probabilities of memorizing subsets of questions: the probability of memorizing Mθ

5. An algorithm that for a candidate solution produces a constraint that that candidate solution violates,
or returns that there is no such constraint, is a separation oracle.
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conditional on having type θ is yθ,Mθ
/p(θ).6 The objective U = maxT⊆Q:|T |=t UT is the

best-response utility for the tester, where UT =
∑

θ,Mθ⊆Hθ:|Mθ|=mθ u1(θ, T,Mθ)yθ,Mθ
is the

utility of testing T . By linear programming duality, the two LPs have the same optimal
solution value (corresponding to the minimax theorem); strategies corresponding to optimal
solutions of these LPs constitute an equilibrium of the game. (Note that we are now
considering zero-sum game G′ in Proposition 1 so the Nash equilibrium, minimax, and
Stackelberg strategies are all equivalent.)

Linear programs can be solved in time polynomial in their size (Khachiyan, 1979).
However, while the size of the LPs above is polynomial in the size of the game matrix, it
is nevertheless exponential in the size of the natural representation of our test games. The
tester’s pure strategy space is exponential in t (the number of questions to test) and the
pure strategy space for a test taker of type θ is exponential in mθ (the number of questions
whose answers he can memorize). When t and maxθmθ are constant, the LPs 2 and 3
indeed give us a polynomial-time algorithm. But, can the binary test game be solved in
polynomial time when either the number of questions to test, the number of answers to
memorize, or both are not constant?

5.2 Constant Memory Size

In this subsection, we study the case where memory size (maxθmθ) is constant, but test
size t is not. We first define a decision variant of our problem:

Definition 3 (The Optimal Binary Test Strategy problem). Given a binary test game
G and a value u, the Optimal Binary Test Strategy problem is to decide whether the
tester has a strategy that gives her a utility of at least u (when the test taker best-responds).

Proposition 2. When memory size (maxθmθ) is constant, Optimal Binary Test Strat-
egy is in NP.

Proof. When maxθmθ is constant, the number of constraints (not counting the nonnegativ-
ity constraints on the variables) in LP (2) is polynomial. Any LP has an optimal solution
with a number of nonzero variables that is at most the number of constraints (not counting
the nonnegativity constraints)—this follows, for example, from the simplex algorithm (Van-
derbei, 2001, p. 38). Hence, a subset of the variables of this LP of this size can serve as a
certificate: we can solve the LP restricted to these variables in polynomial time, and check
whether the optimal solution is at least u.

We now prove that the problem is in fact NP-hard, even when the test taker cannot
memorize any questions!

Theorem 2. Even if the test taker cannot memorize any questions (mθ = 0) and |Hθ| = 2
for all θ ∈ Θ, Optimal Binary Test Strategy is NP-hard.

Proof. We reduce from the Vertex Cover problem, in which we are given a graph (V,E)
and a number k, and are asked whether there exists a subset of k vertices such that every
edge is incident on at least one of these vertices. For any instance of this problem, we

6. Without loss of generality, we assume p(θ) > 0, otherwise we can just ignore that type.
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construct an Optimal Binary Test Strategy instance as follows. Let Q = V . For each
edge e = {i, j} ∈ E, add one type of test taker θe whose hard question set Hθe = e. Let
p(θe) = 1/|E|, vθe = 1 and mθe = 0 for all e ∈ E. Finally, let t = k and u = 0.7

If there exists a vertex cover, consider the tester strategy of testing exactly these ques-
tions. Then, every type will fail at least one question and hence the test, resulting in a
utility of 0 for the tester.

Conversely, if there exists a tester strategy that gives the tester a utility of 0, then every
type passes the test with probability 0 under this tester strategy. Thus, consider any T ⊆ Q
with |T | = k that gets positive probability; every type must fail this test. This means that
T includes at least one endpoint of every edge, i.e., it is a vertex cover.

5.3 Constant Test Size

In this section, we study the case where test size is constant, but memory size is not.

Proposition 3. When the test size (t) is constant, Optimal Binary Test Strategy is
in coNP.

Proof. When t is constant, the number of constraints (not counting the nonnegativity con-
straints on the variables) in LP (3) is polynomial. As in the proof of Proposition 2, this
implies that a subset of the variables of this LP of the requisite size can serve as a certificate
that u cannot be achieved: we can solve the LP restricted to these variables in polynomial
time, and check whether the optimal solution is strictly less than u. If so, then by weak
duality, it is impossible for the tester to obtain u or more. Moreover, if it is not possible
for the tester to obtain u or more, then by strong duality, there exists a set of variables (of
the requisite size, by the same argument as in the proof of Proposition 2) of the LP that
certifies this.

Theorem 3. Even if the test size t is 2 and there are only two types that can memorize
any answers, Optimal Binary Test Strategy is coNP-hard.

Proof. We reduce from the Independent Set problem, in which we are given a graph
(V,E) and a number k, and are asked whether there exists a subset of k vertices such that
no two of these vertices have an edge between them. For any instance of this problem,
we construct an Optimal Binary Test Strategy instance that has a “no” answer if
and only if the Independent Set instance has a “yes” answer, as follows. Let Q = V .
Construct L = |E|+ |V |+ 2 test taker types, as follows:

• For each edge e = {i, j} ∈ E, add one test taker type θe with vθe = L (|Θ| = L),
Hθe = {i, j}, and mθe = 0.

• For each vertex i, add one test taker type θi with vθi = L(dmax−d(i)), Hθi = {i}, and
mθi = 0. Here d(i) is the degree of vertex i and dmax = 1 + maxi d(i).

• Add a single test taker type θ∗ with vθ∗ = Lαε,mθ∗ = 2 and Hθ∗ = V , where
α =

(|V |
2

)
− |E| −

(
k
2

)
and ε < 1.

7. The value of ωθ is irrelavant due to our zero-sum transformation; for completeness, however, one can
always assume ωθ = 1 in our game constructions.
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• Finally, add a single test taker type θ∗∗ with vθ∗∗ = Lε,Hθ∗∗ = V , and mθ∗∗ = k.

Let the test taker types occur with uniform probability p = 1/L, let t = 2, and let

u = (2− |V |)dmax + |E| −
(
V
2

)
− |E| − 1(
V
2

)
− |E|

ε

We now prove both directions of the equivalence.

1. First, suppose there exists an independent set of size k. We will construct a strategy
for the test taker, that is, a feasible solution to LP (3), that results in a utility of at
most (2− |V |)dmax + |E| − ε < u for the tester.8 Let type θ∗∗ choose (memorize the
answers to) the questions in the independent set (with probability 1). Let type θ∗

choose a pair of questions that do not have an edge between them, and of which at
least one is outside the independent set (and choose such a pair uniformly at random).
The other types have memory size 0.

We then consider different pairs of questions that the tester may choose in response
to this test taker strategy.

(a) If the tester chooses a pair of questions with an edge between them ({i, j} ∈ E)),
then the types that fail are θi, θj , θ

∗, θ∗∗, and all the θe where e ∈ E, e∩{i, j} 6= ∅.
This results in a savings of 2dmax − d(i) − d(j) + αε + ε + d(i) + d(j) − 1 =
2dmax + (α+ 1)ε− 1 relative to passing everyone.

(b) If the tester chooses i and j with {i, j} /∈ E and at least one of i and j outside
the independent set, then the types that fail with probability 1 are θi, θj , θ

∗∗, and
all the θe where e ∈ E, e ∩ {i, j} 6= ∅; type θ∗ fails with probability α−1

α . This
results in a savings of 2dmax− d(i)− d(j) + ε+ d(i) + d(j) + α−1

α αε = 2dmax +αε
(which is greater than the previous case).

(c) Finally, if the tester chooses i and j that are both in the independent set, then
the types that fail are θi, θj , θ

∗, and all the θe where e ∈ E, e ∩ {i, j} 6= ∅. This
results in a savings of 2dmax− d(i)− d(j) +αε+ d(i) + d(j) = 2dmax +αε (which
is the same as the previous case).

Because the utility to the tester of passing everyone is −|E|− |V |dmax + 2|E|−αε− ε,
a savings of 2dmax +αε results in a utility of (2−|V |)dmax + |E|−ε < u for the tester.
So the answer to the Optimal Binary Test Strategy instance is “no.”

2. Conversely, suppose that no independent set of size k exists. Consider the tester
mixed strategy that chooses a pair of questions i, j with {i, j} /∈ E uniformly at
random (there are

(|V |
2

)
− |E| such pairs). We will show that this strategy guarantees

the tester an expected utility of at least u. Again, we will reason in terms of the
savings to the tester relative to passing everyone.

8. Note that this is only a feasible strategy, not an optimal strategy, so the player may not be best respond-
ing; in other words, this is only a feasible solution, not an optimal solution to our LP.
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(a) We first consider the savings from types θe with e ∈ E and θi with i ∈ V . For
these types (which do not have a choice to make), it is easier to reason about
the savings resulting from testing a specific pair of questions i, j with {i, j} /∈ E
with probability 1

(|V |2 )−|E|
. This savings is d(i)+d(j)+2dmax−d(i)−d(j)

(|V |2 )−|E|
= 2dmax

(|V |2 )−|E|
.

Because there are
(|V |

2

)
− |E| such pairs, we have a total savings of 2dmax.

(b) The best response for type θ∗ is to memorize any pair {i, j} where {i, j} /∈ E,

resulting in a probability of
(|V |2 )−|E|−1

(|V |2 )−|E|
that this type fails, so the total savings

corresponding to this type is αε
(|V |2 )−|E|−1

(|V |2 )−|E|
= αε(1− 1

(|V |2 )−|E|
)

(c) Finally, because by assumption, no independent set of size k exists, no matter
which set of k questions θ∗∗ memorizes, the probability that θ∗∗ fails is at least
(|V |2 )−|E|−(k2)+1

(|V |2 )−|E|
= α+1

(|V |2 )−|E|
, so the total savings corresponding to this type is at

least ε α+1

(|V |2 )−|E|
.

Summing the savings for θ∗ and θ∗∗, we get αε+ ε

(|V |2 )−|E|
. Adding all these savings to

the utility to the tester of passing everyone, which is −|E|−|V |dmax +2|E|−αε−ε, we
get that the tester’s utility is (2−|V |)dmax + |E|+ ε

(|V |2 )−|E|
−ε = (2−|V |)dmax + |E|−

(V2)−|E|−1

(V2)−|E|
ε = u. So the answer to the Optimal Binary Test Strategy instance

is “yes.”

5.4 Tests of Size One

Theorem 2 shows that when we do not bound the test size, our problem is NP-hard even if
test takers cannot memorize anything. But, if we do not bound the memory size, Theorem 3
only shows that our problem is coNP-hard if the tester can test two questions simultaneously.
This still leaves open whether an efficient algorithm exists when the test size is restricted to
1 while the memory size is not limited. In this section, we show that this is in fact the case.
Our interest in this special case derives not only from it being left open by our hardness
results, but also from potentially important applications. For one, an interviewer often only
has time to ask an applicant a single question. Moving away from interpreting questions
literally, a (for example) nuclear inspections team may be able only to inspect a single site
(within a particular time frame).

In this special case, LP (2) has polynomially many variables, but an exponential number
of constraints. A quick proof of the polynomial-time solvability of this case is given by es-
tablishing that there is a polynomial-time separation oracle for finding a violated constraint.
This separation oracle is straightforward: simply select, for every type θ, the mθ questions
in Hθ that get the highest probability xq in the current solution (breaking ties arbitrarily),
and see whether the corresponding constraint is violated. However, in this section, we de-
velop more direct approaches that do not require generating violated constraints and that
give more insight into the structure of the solution.
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5.4.1 Linear Program

We first present a linear program that can be thought of as a polynomial-size version of
LP (3). Likewise, it has a single variable U for the objective. But instead of variables
yθ,Mθ

, this linear program has a variable zθ,q for every individual q ∈ Hθ. These variables
correspond to the marginal probability that θ memorizes q (in this case, conditional on θ
being the type). In the case where the tester tests one question, these marginal probabilities
are all that matter. (This is not true when the tester tests more than one question, because
in that case, for example, if the tester always tests two questions together, a test taker may
be best off memorizing the answers either to both questions or to neither question.) Let
U0
q be the utility that the tester obtains when she tests q and nobody memorizes q, i.e.,

U0
q =

∑
θ:q /∈Hθ p(θ)(−vθ). The first set of inequalities below corresponds to the minimax

condition, and the remaining inequalities guarantee that z constitutes a valid test taker
strategy (memory size is limited to mθ, and each probability is in [0, 1]).

min U

s.t. (∀q ∈ Q) U ≥ U0
q −

∑
θ:q∈Hθ

p(θ)vθzθ,q

(∀θ ∈ Θ)
∑
q∈Hθ

zθ,q ≤ mθ

(∀θ ∈ Θ, q ∈ Hθ) 0 ≤ zθ,q ≤ 1

(4)

Solving LP (4) gives us an equilibrium test taker strategy.9

5.4.2 A Network Flow Approach

We now show that LP (4) can also be solved using a network flow approach. Specifically,
given a value U for the objective, we can compute a feasible solution that attains this
objective value (if it exists), as follows. We construct a network consisting of a directed
graph (V,E) and capacities ce on the edges, as follows (see also Figure 1).

Definition 4 (Test network). Given an instance of the binary test game and a value U ,
construct a network as follows. Let V = {s}∪Θ∪Q∪{t} and E = ({s}×Θ)∪ (

⋃
θ∈Θ{θ}×

Hθ) ∪ (Q × {t}). For each edge (s, θ), let its capacity be c(s,θ) = p(θ)vθmθ. For each edge
(θ, q) (with q ∈ Hθ), let its capacity be c(θ,q) = p(θ)vθ. Finally, for each edge (q, t), let its
capacity be c(q,t) = max(0, U0

q − U).

Proposition 4. The test network has a feasible flow that saturates all the edges in Q×{t}
if and only if LP (4) has a feasible solution with value U .

Proof. We prove both directions of the equivalence.

1. If the test network has a feasible flow f that saturates all the edges in Q× {t}, then
consider the solution to LP (4) where zθ,q = f(θ,q)/c(θ,q), so that clearly 0 ≤ zθ,q ≤ 1.

9. See the proof of Theorem 1 for how we can translate marginal probabilities into a mixed strategy.
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Figure 1: The network that is used to solve LP (4).

Because the Q× {t} edges are saturated, we have that for each q ∈ Q,∑
θ:q∈Hθ

p(θ)vθzθ,q =
∑

θ:q∈Hθ

f(θ,q) = max(0, U0
q − U) ≥ U0

q − U

which implies U ≥ U0
q −

∑
θ:q∈Hθ p(θ)vθzθ,q. For each θ ∈ Θ, because of the capacity

constraint on edge (s, θ), we have∑
q∈Hθ

zθ,q = (1/(p(θ)vθ))
∑
q∈Hθ

f(θ,q) ≤ (1/(p(θ)vθ))f(s,θ) ≤ (1/(p(θ)vθ))p(θ)vθmθ = mθ

Hence, we have a feasible solution to LP (4) with objective value U .

2. Conversely, if we have a feasible solution to LP (4) with objective value U , then set:

(1) f(θ,q) = 0 if U0
q ≤ U ; (2) otherwise, set f(θ,q) =

U0
q−U∑

θ′:q∈Hθ′
p(θ′)vθ′zθ′,q

zθ,qc(θ,q). To

satisfy the flow constraints, let f(s,θ) =
∑

q∈Hθ f(θ,q) and f(q,t) =
∑

θ:q∈Hθ f(θ,q). We
now check that the capacity constraints hold. By the first constraint in the LP, we

have
U0
q−U∑

θ:q∈Hθ
p(θ)vθzθ,q

≤ 1 so f(θ,q) ≤ zθ,qc(θ,q), and because zθ,q ≤ 1 we have that the

capacity constraints on the
⋃
θ∈Θ{θ} ×Hθ edges are satisfied. Then, we have

f(s,θ) =
∑
q∈Hθ

f(θ,q) ≤
∑
q∈Hθ

zθ,qc(θ,q) = p(θ)vθ
∑
q∈Hθ

zθ,q ≤ p(θ)vθmθ = c(s,θ)

by the second constraint of the LP. Finally, for any q ∈ Q, there are two cases: (1) if
U0
q ≤ U , then we have f(q,t) =

∑
θ:q∈Hθ f(θ,q) = 0; (2) if U0

q > U , we have

f(q,t) =
∑

θ:q∈Hθ

f(θ,q) =
U0
q − U∑

θ:q∈Hθ p(θ)vθzθ,q

∑
θ:q∈Hθ

zθ,qc(θ,q) = U0
q − U

So the Q× {t} edges are exactly saturated.

We can do a binary search for the optimal value of U to the desired level of precision.10

The proof of Proposition 4 shows us how to find the test taker’s strategy corresponding to
a particular flow.

10. If an exact solution is desired, we can use a similar construction to reduce to the minimax network
flow problem (Han, 1997), where the goal is to compute a maximum flow that minimizes maxe∈E′ fe for
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5.4.3 A Direct Algorithm for Identifying the Tester’s Strategy

We now give a direct algorithm (Algorithm 1) that, given an equilibrium strategy for the
test taker, computes an equilibrium strategy for the tester. This also allows us to prove
that there always exists such a strategy where the tester uniformly randomizes over a subset
of the questions (rather than, for example, placing high probability on a question that is
hard for many types and low, but nonzero, probability on a question that is hard for fewer
types).

The high level idea of this algorithm is to first construct T , the set of questions that
provide the tester the highest utility U . It will not suffice to directly test all those questions
uniformly at random because some test taker types may have unused memory capacity that
can further lower the utility to test some questions. We put those test takers into S, and
use a while loop to gradually expand S and shrink T .

Algorithm 1 Input: A binary test game with t = 1 and an optimal primal solution
(U, (zθ,q)) to LP (4).

1: T ← {q | U0
q −

∑
θ:q∈Hθ p(θ)vθzθ,q = U}

2: S ← {θ :
∑

q∈Hθ∩T zθ,q < mθ}
3: let all θ be unmarked
4: while S has an unmarked element do
5: θ ← an unmarked element from S
6: for all q ∈ Hθ ∩ T and zθ,q < 1 do
7: S ← S ∪ {θ′ ∈ Θ : q ∈ Hθ′ ∧ zθ′,q > 0}
8: T ← T \ {q}
9: end for

10: mark θ
11: end while
12: return the uniform distribution over T

To prove the correctness of Algorithm 1, we first introduce the following two lemmas.

Lemma 1. At every point in Algorithm 1, T is nonempty.

Proof. T is non-empty initially, because otherwise U would clearly be suboptimal. Let T0

denote that initial T . Suppose that at some point, all questions in T0 are deleted. We
will show how to construct an alternative solution (z′θ,q) such that for each q ∈ T0, we
have

∑
θ∈Θ:q∈Hθ p(θ)vθz

′
θ,q >

∑
θ∈Θ:q∈Hθ p(θ)vθzθ,q. This would then allow us to reduce U ,

contradicting its optimality.
We initialize z′θ,q = zθ,q for all θ, q ∈ T0∩Hθ, and z′θ,q = 0 otherwise. Then, we will adjust

the z′θ,q for q ∈ T0 in the same order in which these q were eliminated from T . We maintain

some distinguished set of edges E′ ⊆ E. To do so, first (assuming w.l.o.g. U0
q1 ≤ U0

q2 ≤ U0
qn) we use

our algorithm above to find out in which interval [U0
qi , U

0
qi+1

] the optimal U lies. Then, we modify the

network by setting c(q,t) = max(0, U0
q − U0

qi+1
) and find a flow that saturates these edges. We consider

the residual graph consisting of the remaining capacities, and again adjust the capacities c(q,t) from 0 to
U0
qi+1
−U0

qi whenever U0
q ≥ U0

qi ; finally, we can call a minimax network flow solver on this network with
E′ = Q × {t}. However, as we are not aware of any such solvers, in our experiments we focus on the
approach based on binary search.
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the property that, if q is the latest question for which we have adjusted the z′θ,q, then for all
θ ∈ Sq (where Sq is the subset S in the algorithm after eliminating q), we have

∑
q∈Hθ z

′
θ,q <

mθ (intuitively, S is the set of test taker types that have unused memory capacity). This
property holds initially by the initialization of S. When we reach q ∈ T0, because it was
eliminated, there is a θ ∈ S such that zθ,q < 1. Let ε = min{1 − zθ,q,mθ −

∑
q∈Hθ z

′
θ,q}/2.

Then, let z′θ,q ← zθ,q + ε and, for every θ′ ∈ Θ such that q ∈ Hθ′ and z′θ′,q > 0, let z′θ′,q ←
z′θ′,q−min(z′θ′,q,

ε
2|Θ|

p(θ)vθ
p(θ′)vθ′

), thereby maintaining the property (every new type θ′ that enters

S is guaranteed to have unused memory). As a result,
∑

θ′′∈Θ:q∈Hθ′′
p(θ′′)vθ′′z

′
θ′′,q will have

increased by at least εp(θ)vθ −
∑

θ′∈Θ p(θ
′)vθ′

ε
2|Θ|

p(θ)vθ
p(θ′)vθ′

= εp(θ)vθ − |Θ| ε
2|Θ|p(θ)vθ > 0.

Hence, at the end, for each q ∈ T0, we have
∑

θ∈Θ:q∈Hθ p(θ)vθz
′
θ,q >

∑
θ∈Θ:q∈Hθ p(θ)vθzθ,q

(because it was eliminated).

Lemma 2. Let (zθ,q) be the solution to LP (4) and let T be the final subset that Algorithm 1
returns. Then for each type θ, either

∑
q∈Hθ∩T zθ,q = mθ (θ memorizes as much of T ∩Hθ

as possible) or ∀q ∈ Hθ ∩T, zθ,q = 1 (θ memorizes every question in T ∩Hθ with probability
1 and will certainly pass the test). Therefore all types of test taker are best-responding.11

Proof. We will show that the algorithm maintains the following properties after initialization
of T and S. (1) Any type θ ∈ Θ for which

∑
q∈Hθ∩T zθ,q < mθ is in S. (2) All marked

types θ satisfy ∀q ∈ Hθ ∩ T, zθ,q = 1. From this, the lemma follows, because at the end of
the algorithm, the condition for the while loop must be false, so every type must be either
not in S, in which case the first condition in the lemma holds, or marked, in which case the
second condition holds.

Clearly (1) and (2) hold after initialization. For any θ, the only way in which
∑

q∈Hθ∩T zθ,q
can decrease is if some q ∈ Hθ with zθ,q > 0 is removed from T ; but in that case, in the
preceding line of the algorithm, θ will have been added to S. This proves (1) is maintained.
When some θ is marked, all q ∈ Hθ such that zθ,q < 1 have just been removed from T . This
proves (2) is maintained.

Theorem 4. Let (zθ,q) be the solution to LP (4) and (xq) the uniform distribution over the
set T returned by Algorithm 1. Then ((xq), (zθ,q)) constitute an equilibrium.12

Proof. By Lemma 1, (xq) is a valid strategy. By the initialization of T , T can ever only
include questions that give the tester the maximum utility U . Finally, Lemma 2 shows that
all test taker types are best-responding.

6. Experiments

In this section, we describe experiments that we performed to see how different algorithms
scale. We also show how the optimal test strategy outperforms simple test strategies, such
as drawing questions uniformly at random. In order to compare scored test algorithms with

11. Note that we test each question in T with equal probability, so memorizing as much as possible from
T ∩Hθ is a best-response.

12. By complementary slackness, this also means they constitute optimal primal and dual solutions to our
LPs.
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Figure 2: Runtime for solving for an optimal tester strategy in one-question tests.
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binary test algorithms, we assume that the score of each question is sq = 1 throughout this
section. Hence, a binary test game instance is translated to a scored one by setting sq = 1
without changing any other parameters.

6.1 Tests of Size 1: Scalability

We first restrict our attention to single-question test games, in which we can evaluate all our
algorithms at once. We consider five different algorithms. We use CPLEX (out-of-the-box)
to solve (I) the general LP (2) for binary tests, (II) the one-question marginal-probability-
of-memorizing LP (4) for binary tests, and (III) the scored test LP (1) with constraint
generation.13 Also, we use the network-flow approach from Definition 4 with binary search
on U to a precision of 10−8 using (IV) Edmonds-Karp (Edmonds & Karp, 1972) and (V)
Push-Relabel (Goldberg & Tarjan, 1988), in each case combined with Algorithm 1 to com-
pute the tester’s optimal strategy for binary tests.

In particular, we use CPLEX 12.6.0.0 and the boost 1.46.1 C++ library for Edmonds-
Karp and Push-Relabel. Our machine has an Intel i7-2600 3.40GHz CPU and 8GB memory.

For each experimental data point, we specify three parameters: the number of questions
n, the number of types L (|Θ| = L), and the maximum memory size mmax. We always set
bmax, the maximum size of any Hθ, to 2mmax. Given those parameters, a test game instance
is randomly generated as follows: for each θ ∈ Θ, draw mθ uniformly from 1 to mmax; draw
|Hθ| uniformly from mθ to bmax; generate Hθ by drawing |Hθ| elements from Q uniformly;
and draw wθ = p(θ)vθ uniformly from [0, 1] (these two factors always appear together). For
each data point, we generate 5 test game instances and compute the average running time
for each algorithm. We set a timeout of 5 seconds for each instance.

Figures 2(a), 2(b), and 2(c) show how the algorithms scale in n, L, and mmax, respec-
tively, holding the other parameters fixed. (Note the logarithmic scales on Figure 2(c).)

None of the algorithms have trouble scaling in n alone. The scored test algorithm has
a spike at n = 3000 because it takes more time when t becomes smaller compared to n.
In this case, t = 1 (single-question tests) becomes relatively smaller as we grow n. In fact,
when we change to t = 2 for that n = 3000 instance, the running time suddenly drops and
the spike disappears. Later we will discuss this more in the multi-question experiments.

Edmonds-Karp and the scored test algorithm do not scale very well in L and mmax,14 and
the general LP scales particularly poorly in mmax. However, the general LP outperforms the
scored test algorithm in L. This seems surprising as we argued that scored tests are easier
to solve. But when t = 1, the general LP (2) is exactly the same as the scored test LP (1).
The only difference is that the scored test algorithm uses constraint generation while the
general LP feeds all constraints to CPLEX at once. When the number of constraints is not

13. Specifically for (III), we wrote a C++ program that interacts with CPLEX: we first submit an LP with
a small number of constraints; whenever CPLEX returns a solution, we detect whether it violates a
constraint that we did not submit to CPLEX using the algorithm we described in the proof of Theo-
rem 1; if no, we return the solution; if yes, we add it to the LP and let CPLEX solve it again. In our
implementation, the initial number of constraints is |Q| + |Θ| + 1: all |Q| constraints of (1c); the one
constraint (1b); and only |Θ| constraints of (1a), one for each type θ where Mθ is simply the first mθ

elements of Hθ.
14. Although Edmonds-Karp is a polynomial algorithm, its O(V E2) complexity is quite high for large graphs.
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exponential, feeding all constraints at once is faster. That is the case when we scale in n or
L.

The marginal LP and particularly push-relabel always scale very well.

In fact, these experiments indicate increasing a single parameter by itself never leads
to truly hard instances. For n eventually many of the questions become irrelevant (not
hard for any type). For L and mmax, eventually it becomes optimal to randomize uniformly
over all questions. Thus, to identify more challenging instances, multiple parameters need
to increase simultaneously, as we do in Figure 2(d) (note again the logarithmic scales).
Push-relabel performs best.

6.2 Tests with Multiple Questions: Scalability

When the binary test can contain more than one question, the only algorithm that we have
provided for binary tests is our general LP (2). We compare this with the standard solver for
Bayesian Stackelberg games, DOBSS (Paruchuri et al., 2008), and our scored test algorithm
(using the same version of CPLEX).15 The machine we use and the way we generate test
game instances (other than the number of questions) remain the same as in the previous
subsection. (Note that the scored test algorithm solves a different problem.) However, since
the distribution of the running time is less concentrated, we generate 50 random instances
for each case and show the full box plot of its distribution.

Figure 3 shows that DOBSS scales quite poorly in all parameters, especially in mmax

and t. As might be expected when solving MIPs, the runtime varies dramatically even for
instances of the same size, as indicated by the many outliers in the plots. Our general
LP (2), on the other hand, scales much better in n,L. It does still struggle when scaling
mmax and t (though it outperforms DOBSS). This is expected because the size of the LP
grows exponentially in those parameters. Finally, as expected, the scored test algorithm
scales well in all parameters. One interesting phenomenon is that the scored test algorithm
runs faster when t increases. We believe that this is due to the constraint generation. As t
grows, the number of variables and the total number of constraints do not change. But for
greater t, more questions can be covered in a single test. Hence fewer constraints need to
be added to reach the solution.

6.3 Tester Utility

One may wonder whether computing a game-theoretically optimal strategy is worth the
effort; maybe a simple heuristic performs almost as well. To assess this, we have compared
our optimal test strategies to (1) the optimal strategy under the assumption that test tak-
ers do not memorize anything, and (2) choosing t questions uniformly at random from all
questions. We generated all the test game instances as before except for Hθ. Besides gener-
ating Hθ uniformly at random, we also generate structured instances, where the questions
q1, q2, . . . are sorted by difficulty (starting with the most difficult), and a type is defined by
how deep into the list it needs to go before being able to answer questions. That is, we have
Hθ = {q1, q2, . . . , q|Hθ|} for every θ. In all cases, (1) performed exceedingly poorly, many

15. For both DOBSS and our LPs, we generate the LP/MILP using GLPK in CPLEX LP format, and let
CPLEX solve it using a single “optimize” command without any initialization.
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Figure 3: Running time for solving for an optimal tester strategy in multi-question tests.
For brevity, the parameter mmax is denoted as m in the title of each graph. The
minimax algorithm in the second and the third row refers to LP (2).
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Figure 4: The increase in tester utility that the optimal test strategy gives as compared
to the uniform test strategy in binary tests. The hard question sets Hθ in the
first 4 plots are sampled uniformly at random. In the last 4 plots, the questions
are sorted by difficulty so Hθ is always {q1, q2, . . . , q|Hθ|}. Letting the optimal
utility be u∗ and the uniform test’s utility be u0, the number we show for the
performance increase is u∗/u0 − 1. For brevity, the parameter mmax is denoted
as m in the title of each graph.
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Figure 5: The increase in tester utility that the optimal test strategy gives as compared
to the uniform test strategy in scored tests. The hard question set Hθ in the
first 4 plots are sampled uniformly at random. In the last 4 plots, the questions
are sorted by difficulty so Hθ is always {q1, q2, . . . , q|Hθ|}. Letting the optimal
utility be u∗ and the uniform test’s utility be u0, the number we show for the
performance increase is u∗/u0 − 1. For brevity, the parameter mmax is denoted
as m in the title of each graph.
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constant mmax non-constant mmax

t = 0, 1 P P
constant t ≥ 2 P coNP-c
non-constant t NP-c coNP-h and NP-h

Table 2: Optimal Binary Test Strategy’s complexity (t,mmax are the test size and
max memory size respectively)

factors worse than the optimal strategy; (2) performed decently and so we only present
results comparing to (2).

When Hθ is drawn uniformly at random (the first 4 plots of Figure 4 and 5), the
performance increase drops when L and m increase, and it increases when n and t increase.
This is a natural consequence of the way we generate the test game instances. The larger
L and m are, the more equivalent subsets of questions are likely to be as the hardness sets
start to cover the questions more uniformly; on the other hand, the opposite is true for n (for
example, with large n, some questions may not be hard for any type and so a waste to test)
and t (presumably because as t grows it becomes more important to pick questions that
expose weaknesses of different types). All in all, the performance of the uniform strategy is
quite decent when Hθ is drawn uniformly at random.

We suspect, though, that the way we construct those uniform-at-random test game
instances, which assumes that each question has the same probability to be hard for a test
taker, favors the uniform strategy. In reality, we expect there to be some correlation—that
is, a question that is hard for one type is more likely to be hard for another type as well—and
presumably the uniform strategy is less effective in this context.

For example, in the last 4 plots of Figure 4 and 5 when the questions can be sorted by
difficulty (so Hθ is structured), the optimal strategy significantly outperforms the uniform
strategy. The performance increase varies according to n,L,m similarly to the uniform-at-
random cases, but not for t. As t increases, it becomes much easier for the uniform strategy
to catch test takers in a binary test, hence the performance increase drops.

7. Conclusion

In this paper, we proposed two general classes of test games: scored tests and binary tests.
Our goal is to compute the optimal test strategies when confidentiality might be lost. The
optimal scored test strategies can be efficiently computed in polynomial time while the
optimal binary test strategies are generally harder to compute. Table 2 summarizes our
complexity results for binary tests.

Our work is only a small first step in the design of algorithms for game-theoretically
optimal design of tests. Future research could focus on identifying other tractable cases.
For example, in practice, one would expect the Hθ sets to exhibit structure that may be
exploited algorithmically. From a practical perspective, it is also important to develop
methodology to obtain the statistical information about test taker types that is needed
as input to our algorithms. Perhaps even better than a two-phase approach, in which we
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first estimate this information and then run our algorithm, would be a true online-learning
approach, where we update our testing strategy as additional test takers take our tests.
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Jain, M., Pita, J., Tambe, M., Ordóñez, F., Paruchuri, P., & Kraus, S. (2008). Bayesian
Stackelberg games and their application for security at Los Angeles International
Airport. SIGecom Exch., 7 (2), 1–3.

Khachiyan, L. (1979). A polynomial algorithm in linear programming. Soviet Math. Dok-
lady, 20, 191–194.

Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., & Tambe, M. (2009). Com-
puting Optimal Randomized Resource Allocations for Massive Security Games. In
Proceedings of the Eighth International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pp. 689–696 Budapest, Hungary.

Korzhyk, D., Conitzer, V., & Parr, R. (2010). Complexity of Computing Optimal Stackel-
berg Strategies in Security Resource Allocation Games. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pp. 805–810 Atlanta, GA, USA.

Letchford, J., & Conitzer, V. (2013). Solving Security Games on Graphs via Marginal
Probabilities. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence, pp. 591–597 Bellevue, WA, USA.

Letchford, J., Conitzer, V., & Munagala, K. (2009). Learning and Approximating the Opti-
mal Strategy to Commit to. In Proceedings of the Second Symposium on Algorithmic
Game Theory (SAGT-09), pp. 250–262 Paphos, Cyprus.

Li, Y., & Conitzer, V. (2013). Game-Theoretic Question Selection for Tests. In Proceedings
of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI),
pp. 254–262 Beijing, China.

Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordóñez, F., & Kraus, S. (2008). Play-
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