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Abstract

We study the problem of finding a short path from a start to a goal within a two-
dimensional continuous and isotropic terrain that has been discretized into an array of
accessible and blocked cells. A classic approach obtains a grid path where each step is along
the edge of an accessible cell or diagonally across one. Grid paths suffer from ‘digitization
bias’ – even if two locations have line-of-sight, the minimum travelling cost between them
can be greater than the distance along the line-of-sight. In a vertex path, steps are allowed
from a cell corner to any other cell corner if they have line-of-sight. While the ‘digitization
bias’ is smaller, shortest vertex paths are impractical to find by brute force. Recent research
has thus turned to methods for finding short (but not necessarily shortest) vertex paths.
To establish the methods’ potential utility, we calculate upper bounds on the difference in
length between the shortest vertex paths versus the shortest r-constrained ones where an
r-constrained path consists of line segments that each traverse at most r rows and at most r
columns of cells. The difference in length reduces as r increases – indeed the shortest vertex
paths are at most 1 percent shorter than the shortest 4-constrained ones. This article will
be useful to developers and users of short(est) vertex paths algorithms who want to trade
path length for improved runtimes in a predictable manner.

1. Introduction

We study the problem of finding a short path that a vehicle can traverse from a start to
a goal within a two-dimensional continuous terrain where locations are either habitable or
not. An example is navigating a watercraft from port to port while staying in a sufficient
depth of water. Similar problems arise in mobile robotics and in the realistic-looking routing
of entities in computer games. We assume that the terrain has been discretized into a two-
dimensional array of accessible and blocked cells (a binary occupancy grid – Figure 1.a into
Figure 1.b). The cells’ corners are declared to be the vehicle’s feasible locations. We assume
that if a line-of-sight between feasible locations passes only through accessible cells then the
vehicle can traverse that line-of-sight in the original terrain. We further assume that when
travelling in accessible terrain, the vehicle can move at the same speed in any direction
(motion is isotropic). Finally, we assume that the vehicle’s dimensions and turning circle
are small compared to the cells so it can ‘squeeze through the diagonal’ between cells that
touch at corners but not faces. The problem’s formulation aligns with readily-available
data sets; for example the ETOPO data set (Amante & Eakins, 2009) provides the altitude
above sea level of the Earth’s surface using cells that have side lengths of 1 arc-minute.
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Unfortunately, while it is easy to represent terrain as a two-dimensional array of ac-
cessible and blocked cells, the search within this representation for a shortest path from
start to goal is not trivial. The true shortest paths between any two locations are the ones
that minimize the travelling cost between them (this holds for any locations in the terrain,
not just the feasible ones). In isotropic terrain, travelling cost is directly proportional to
path length. If the locations have line-of-sight then the true shortest path between them is
along that line-of-sight. So to approximate a true shortest path from a start to a goal it is
sufficient to find a feasible location near to the start, a feasible location near the goal, and
obtain a shortest vertex path between those two locations. Here, a vertex path is a path
through the visibility graph of the feasible locations; by definition, nodes are adjacent in
the visibility graph if they have line-of-sight to each other (Figure 1.c). Thus in principle, to
obtain a shortest vertex path we need only search the visibility graph of feasible locations.
But in practice, the graph is expensive to compute, and too large to search by brute force.

Consequently it is common to consider the paths through the grid graph on the feasible
locations, declaring nodes as adjacent if they share an accessible cell (same edge or diagonally
across). Hence in a grid path, each step is along the edge of an accessible cell or diagonally
across one; this is equivalent to 8-connected motion (Figure 1.d). Grid paths suffer from
‘digitization bias’ (Tsitsiklis, 1995): even if two nodes have line-of-sight, the minimum
travelling cost between them can still be greater than the distance along the line-of-sight.

Algorithms for planning short (but not necessarily shortest) vertex paths have therefore
received much attention (see Uras & Koenig, 2015, for a review of such planners including
so-called ‘any angle’ algorithms). As there is typically a tradeoff between path length
and runtime, developers and users of short vertex path planners may need to tune their
algorithms to obtain ‘good enough’ path lengths within an acceptable runtime. We inform
such efforts by considering paths that are constrained as follows:

Definition: A path is an r-constrained path if it consists of line segments that
each traverse at most r rows and at most r columns of cells.

We will then prove the following:

Main result: Let P be a vertex path from a start to a goal and r be any
positive integer. Then there exists an r-constrained path P ′ from the same start
to the same goal such that

‖P ′‖2 − ‖P‖2
‖P ′‖2

≤ 1− cos

(
arccot (r)

2

)
where ‖ · ‖2 is the Euclidean length. The result holds in particular when P is
a shortest path. Moreover the bound applies to the shortest r-constrained path
from the start to the goal, or any other path P ′′ that is of the same length or
shorter than P ′.

That is, rather than finding a shortest vertex path, it may ‘good enough’ to find a shortest
r-constrained one. Notably, the shortest vertex paths are at most 1 percent shorter than
the shortest 4-constrained paths. Researchers can use the results of this paper to establish
whether a given short vertex path planner is suitable for their application, to anticipate the
improvements that could accrue and to pursue improvements in algorithms.
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Shortest Vertex Paths vs r-Constrained Ones

(a) (b)

(c) (d)

Figure 1: Representing the terrain to find short paths:
a) Locations are either habitable or not (white is accessible, black is forbidden).
b) Discretize into a two-dimensional array of accessible and blocked cells.
c) Vertex paths proceed along feasible locations that have line-of-sight.
d) Grid paths suffer from ‘digitization bias’.
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Previous investigations have focussed on the length of shortest grid paths (1-constrained
paths) versus shortest vertex paths. Nash’s comprehensive study (2012, also see the overview
in Nash & Koenig, 2013) considered grid paths on regular grids in two and three dimensions.
His work was subsequently expanded by Bailey et al. (2015) in the two-dimensional case
to cover both 4- and 8-connected paths, with feasible locations at both cell corners and cell
centers (they also studied the lengths of shortest vertex paths versus true shortest paths).

2. Reduction in Lengths of Shortest Paths

We will be working with lengths and gradients of line segments. For these concepts to be
well-defined, we define a grid-aligned coordinate system as a coordinate system where one
axis is parallel to the rows of the array, the other axis is parallel to the columns, the origin
is at a cell corner, and the cells are declared to be of unit size. Note that for any line
segment, we can choose a grid-aligned coordinate system such that the line segment has a
gradient between zero and one inclusive (Specifically: Given a line segment between vertices
on a binary occupancy grid, choose a pair of axes that puts the line segment in the positive
quadrant with a non-negative gradient. Then if the gradient is greater than one, swap the
axes). We will use this fact to simplify our proofs.

We consider finite sequences of feasible locations {sk}k. Sequences of two points {A,B}
may be abbreviated to AB. A path is a sequence in which sk has line of sight to sk+1

for all k. We write ∂(s, w) for the gradient of the line segment from s to w, ‖ · ‖2 for
the Euclidean norm (`2 distance) and ‖ · ‖∞ for the Chebyshev norm (`∞ distance). For
sequence Q = {sk}k and for any norm ‖ · ‖ we declare ‖Q‖ =

∑
k ‖sk+1 − sk‖. Given this

notation, we may restate the definition of r-constrained sequences:

Definition (r-constrained sequences, restated). Let r be a positive integer. A sequence
Q = {sk}k is r-constrained if ‖sk+1 − sk‖∞ ≤ r for all k. Equivalently, there are at most r
rows and at most r columns of cells between sk and sk+1 for all k.

The crux of our approach is that for any shortest vertex path and for any positive integer
r, there exists an r-constrained path with the same start and goal. We can study the length
of that r-constrained path. This will yield an upper bound on the differences in length
between the shortest vertex paths and the shortest r-constrained paths. Hence we obtain
an upper bound on the inefficiency which we define as follows:

Definition (Inefficiency). Let Q be a sequence. Let Q′ be a sequence that has the same
start and goal as Q but has a longer Euclidean length. We call the relative (percentage)
amount that Q is shorter than Q′ the inefficiency of Q′ with respect to Q, calculated as

η̄(Q′;Q) =
‖Q′‖2 − ‖Q‖2
‖Q′‖2

We will develop our results for line segments (paths of two points) and then apply them
to paths as a straightforward extrapolation. We will need the following technical result that
will be put into context in due course.
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Lemma 1. Let Q, Q′, Q′′ be sequences with the same start and goal locations and suppose
that ‖Q‖ ≤ ‖Q′‖ ≤ ‖Q′′‖. Then

‖Q′‖ − ‖Q‖
‖Q′‖

≤ ‖Q
′′‖ − ‖Q‖
‖Q′′‖

Proof.
‖Q′‖ − ‖Q‖
‖Q′‖

= 1− ‖Q‖
‖Q′‖

≤ 1− ‖Q‖
‖Q′′‖

=
‖Q′′‖ − ‖Q‖
‖Q′′‖

2.1 An Upper Bound on Inefficiency from Differences in Gradient

Suppose that we have a sequence Q from A to B. What is the worst that the inefficiency
can be with respect to AB? That is, can we obtain an upper bound on the inefficiency? We
will see that an upper bound exists, based on the following quantity:

Definition (Maximum difference in angle). Let Q = {sk}k be a sequence with increasing
x coordinates (under some grid-aligned coordinate system). Then

γ(Q) = arctan

(
max
k

∂(sk, sk+1)

)
− arctan

(
min
k
∂(sk, sk+1)

)
In words: γ(Q) is the difference in angle between the steepest and shallowest line segments
of Q. We measure γ in radians.

The idea is to consider Q as a sequence of line segments and rearrange them so that they
are joined end-to-end by increasing gradient. Then γ(Q) is the angle from the first line
segment to the last one. Indeed by extending those line segments until they intersect, we
obtain a triangle that has γ(Q) as an exterior angle. The upper bound on inefficiency comes
from analyzing that triangle.

We first establish that we can rearrange Q without losing anything important.

Lemma 2. Let Q be a sequence of locations with increasing x coordinates (in some grid-
aligned coordinate system). Sort the line segments of Q by increasing gradient, then join
them end-to-end. Then the resulting sequence Q′ has the same start, end, and length as Q.

Proof. By construction, Q′ has the same start as Q. The line segments’ lengths are pre-
served so Q′ has the same length as Q. The gradients are also preserved so the cumulative
displacement from the start of Q is also preserved. Thus Q′ has the same end as Q.

Remark. Q may be a path but the resulting sequence Q′ need not be a path. As we are
interested in Q′ purely for its shape, it does not matter if it passes through blocked cells.

Remark. This article generalizes the approach taken by Nash (2012), to handle line seg-
ments at a finite number of gradients (Nash, 2012, assumed two gradients only).

By extending the first and last line segments until they intersect, we form a triangle.
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Lemma 3. Let Q be a sequence from A to B such that (under some grid-aligned coordinate
system) the x coordinates of Q are increasing, the gradients of the sequence’s line segments
take on at least two distinct values, the gradients of successive line segments are increasing,
and γ(Q) < π. Extend the first and last line segments of Q into lines and construct
C as the intersection of those lines (the conditions on γ(Q) make C well-defined). Put
Q′′ = {A,C,B}. Then ‖Q‖ ≤ ‖Q′′‖.

Proof. If the line segments of Q have two gradients then write Q = {A, s1 . . . sm−1, C, sm+1

. . . sn−1, B} where s0 = A, sn = B, sm = C for some positive integers m,n. Then
‖{s0 . . . sm}‖ = ‖AC‖ and ‖{sm . . . sn}‖ = ‖CB‖ hence ‖Q‖ = ‖Q′′‖. Otherwise write
Q = {A, s0 . . . sn−1, sn, B} so that Q consists of n + 2 line segments with strictly increas-
ing gradients, for some positive integer n. Extend the last and third-last line segments
into lines, let C ′ be their intersection (they are not parallel so C ′ is well-defined), and let
Q′ = {A, s0 . . . sn−1, C

′, B}. Then ‖Q‖ ≤ ‖Q′‖ by the triangle inequality on sn−1C
′sn.

Repeating this process eventually yields Q′ = {A,C,B} and ‖Q‖ ≤ ‖Q′′‖, as required.

Remark. The point C need not be a cell corner. We are only interested in triangle ABC
for its dimensions so it does not matter if it is a sequence or not.

We now analyze the geometry of the triangle.

Lemma 4. For c > 0 and 0 ≤ γ < π fixed, let a, b > 0 such that the triangle ABC of

Figure 2 is well-formed. Put ∆ = 1 − cos γ2 . Then
a+ b− c
a+ b

≤ ∆ for all valid a, b, with

equality when a = b.

Proof. We have β = γ − α and thus 0 ≤ α ≤ γ. By the sine rule

a

sinα
=

b

sinβ
=

c

sin(π − γ)

so

a+ b− c
a+ b

= 1−
sin γ
sinβ b

sinα
sinβ b+ b

= 1− sin γ

sinα+ sin (γ − α)

Construct f(α) = 1− sin γ

sinα+ sin (γ − α)
. We maximize f as a function of α. Note that if

triangle ABC is well-formed then 0 < α < γ. Now f is differentiable on its domain; indeed

df

dα
= sin γ

cosα− cos (γ − α)

(sinα+ sin (γ − α))2

> 0 for 0 ≤ α < γ
2

= 0 for α = γ
2

< 0 for γ
2 < α ≤ γ

That is, f increases to its maximum at α = γ
2 and decreases thereafter so

a+ b− c
a+ b

≤ f(γ2 ) = 1− sin γ

2 sin γ
2

= 1− cos γ2 = ∆

Moreover if α = γ
2 then β = γ

2 and thus a = b.
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Shortest Vertex Paths vs r-Constrained Ones

C A 

B 

b 

a 
c 

 a 

b 

Figure 2: Proof of Lemma 4: For any fixed γ, the relative (percentage) difference between
a+ b and c is maximized when a = b.

Putting everything together yields our upper bound on inefficiency.

Proposition 1 (Upper bound on inefficiency). Choose a grid-aligned coordinate system
such that the line segment AB is accorded a positive gradient (without loss of generality).
Suppose that Q = {sk}k is a sequence from A to B that has increasing x coordinates and
γ(Q) < π. Then

‖Q‖2 − ‖AB‖2
‖Q‖2

≤ 1− cos

(
γ(Q)

2

)
Proof. Form Q into Q′ by sorting its line segments by increasing gradient as per Lemma 2.
Extend the first and last line segments of Q′ into lines and construct C as the intersection
of those lines (the conditions on γ(Q) make C well-defined). Put Q′′ = {A,C,B} and note
that ‖Q′‖ ≤ ‖Q′′‖ by Lemma 3. Then

‖Q‖2 − ‖AB‖2
‖Q‖2

=
‖Q′‖2 − ‖AB‖2

‖Q′‖2
by Lemma 2

≤ ‖AC‖2 + ‖CB‖2 − ‖AB‖2
‖AC‖2 + ‖CB‖2

by Lemma 1

≤ 1− cos

(
γ(Q)

2

)
by Lemma 4

2.2 Existence of r-constrained Paths with Bounded Differences in Gradient

In the previous section, we showed that if P is a path from A to B then there is an upper
bound on the inefficiency of P with respect to AB that can be calculated from γ(P) (the
difference in angle between the steepest and shallowest line segments of P). We now show
that if A has line-of-sight to B then there exists an r-constrained path P from A to B and
moreover there is an upper bound on γ(P). The two results, put together, will yield the
main result for this paper.

The centerpiece of this section is Algorithm 1: If A has line-of-sight to B then Algo-
rithm 1 will construct an r-constrained path P from A to B and the line segments making
up P will have gradients that will allow us to bound γ(P). As notation, let ux, uy denote
the x, y coordinates of a given location u. The following definitions also apply:
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Definition (Flooring of a line segment). Suppose that A = (0, 0) and B = (q, p) where
0 < p < q (in some grid-aligned coordinate system). Let X be a subsequence from 0 . . . q
(in increasing order). We define the flooring of AB over X as

bABcX =
{(
x, bpqxc

)}
x∈X

For brevity we write bABc = bABc0...q.

Definition (Farey sequences and Farey pairs, Weisstein, 2017).

1. We write Fn for the Farey sequence of order n, namely the irreducible rational numbers
a
b where 0 ≤ a ≤ b ≤ n (and a, b are coprime), arranged in increasing order.

2. a
b and c

d are a Farey pair if they are neighbours in a Farey sequence. Moreover if
a
b <

c
d then bc− ad = 1. If a

b < x < c
d for some x then we say that a

b ,
c
d brackets x.

Algorithm 1: Given A = (0, 0) has line-of-sight to B = (q, p), construct P as an
r-constrained path from A to B made up of line segments that have gradient a

b or c
d

where a
b ,

c
d is a Farey pair that brackets p

q .

1 P ← bABc
2 `, u← B
3 for m = 0 . . . pb− qa− 1 do
4 u← (`x − d, `y − c) ˙Move u to Lm+1.
5 Remove from P the points that are strictly between u and `
6 `← Point in bABc ∩ Lm+1 that is below AB with `x minimal ˙Move ` to Lm+1.
7 Remove from P the points that are between ` and u and not on Lm+1

8 return P

Remark. Farey pairs have been used previously to approximate line segments; see the work
of Harabor et al. (2016) and Rivera et al. (2017) for example. This article proves that the
approximations exist and provides an explicit construction.

Algorithm 1 can be understood intuitively by considering a piece of elastic that is
stretched from A to B. Put pins into the elastic wherever it crosses a cell edge. Slide
the pins down to their closest respective cell corners. The elastic is then a path from A to
B (Figure 3). Furthermore we still have a path if any of the interior pins are removed (that
is, other than the first or last one) provided that whenever a pin is removed, the elastic
restores upwards (Figure 4). Now consider the lines of gradient a

b that pass through at
least one cell corner. Restrict and enumerate the lines as Lm such that the first line passes
through B and the last line passes through A (Figure 5). We can ‘slide down’ each Lm,
removing pins as we go, thereby building line segments of gradient a

b . We then ‘step off’ to
Lm+1 via a line segment of gradient c

d (Figure 6). The elastic is then an r-constrained path
from A to B made up of line segments that have gradient a

b or c
d .

We need to prove that Algorithm 1 is correct. We show first that the ‘stepping off’
procedure is valid.
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A 

B 

Figure 3: If A has line of sight to B then bABc is a path from A to B.

  

Figure 4: Removing pins yields a path provided the elastic restores upwards.
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A 

B 

Figure 5: Lines of gradient a
b that pass through at least one cell corner, denoted Lm so that

the first line passes through B and the last line passes through A.
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Shortest Vertex Paths vs r-Constrained Ones

a)

ℓ 

𝑢 

b)

𝑢 

ℓ 

Figure 6: a) ‘Step off’ from L1 to L2 (lines 4–5). b) ‘Slide down’ L2 (lines 6–7).
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c)

𝑢 

ℓ 

d)

𝑢 

ℓ 

Figure 6: c) ‘Step off’ from L2 to L3 (lines 4–5). d) ‘Slide down’ L3 (lines 6–7).
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Lemma 5 (The ‘stepping off’ is valid). Suppose that ` is the point in bABc ∩ Lm that is
below AB with `x minimal. Set u = (`x − d, `y − c). Then u ∈ Lm+1 and u ∈ bABc.

Proof:

1. Proof that u ∈ Lm+1. To satisfy (`x, `y) ∈ Lm we must have `y = a
b

(
`x −

(
q + m

a

))
+p.

Now cb
a = d+ 1

a from a
b ,

c
d being a Farey pair so

`y − c = a
b

(
`x −

(
q + m

a

))
+ p− c

= a
b

(
`x − d−

(
q + m+1

a

))
+ p

Hence (`x − d, `y − c) satisfies the equation for Lm+1.

2. Proof that u ∈ bABc. Let L = (`x − d, `y − c). Then L is below AB as (`x, `y) is
below AB and p

q <
c
d . Let U = (`x − d, `y − (c − 1

b )). Now (`x − b, `y − a) is above
AB by the minimality condition so (`x − d, `y − a− (d− b)ab ) is also above AB from
a
b <

p
q . Moreover −a − (d − b)ab = −ad

b = −(c − 1
b ) from a

b ,
c
d being a Farey pair so

U is above AB. Hence AB intersects LU . Finally L is on a cell corner (it has integer
coordinates) and 1

b < 1 so L is the cell corner immediately below the point where AB
intersects the line x = `x − d. Thus L ∈ bABc.

We now show that bABc is a path from A to B and that we still have a path if we are
careful when removing points.

Definition.

1. Let f, g : I → R2 be continuous functions from a closed interval I into the Euclidean
plane R2 where f(t) = (fx(t), fy(t)), g(t) = (gx(t), gy(t)). We write f ≤ g if fy(t) ≤
gy(t) whenever fx(t) = gx(t). Note that ≤ is a partial ordering: f ≤ f for all f , if
f ≤ g then g 6≤ f , and if f ≤ g and g ≤ h then f ≤ h.

2. Let Q = {sk}nk=0 be a sequence. The linear interpolation of Q is the function
f : [0, n] → R2 defined as f(t) = (t − btc)sdte + (1 − (t − btc))sbtc. Let Q,Q′ be
sequences and f, g be their linear interpolations. We write Q ≤ Q′ if f ≤ g.

Lemma 6. bABc is a path from A to B. Moreover if X is a subsequence fom 0 . . . q that
contains both 0 and q, and bABc ≤ bABcX then bABcX is also a path from A to B.

Proof:

1. Proof that bABc is a path from A to B. For every x ∈ 0 . . . q, (x, pqx) has line-of-sight

to (x + 1, pq (x + 1)). Moreover (x, pqx) can be moved to (x, bpqxc) without breaking

that line-of-sight and likewise (x+ 1, pq (x+ 1)) can be moved to (x+ 1, bpqx+ 1c).

2. Proof that bABcX is a path from A to B. The sequence bABcX includes both A and
B by construction. Now the region between bABc and bABcX is accessible and
bABcX stays inside that region.

Lemma 7 (The removal of points is valid). Let Qm be the sequence that is held by P at
the start of the mth iteration of Algorithm 1. Then for all m, Qm is a path from A to B.
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Proof: We apply induction to show that Q0 is a path from A to B and that if Qm is a path
from A to B then so is Qm+1.

1. Proof that Q0 is a path from A to B. Q0 = bABc and then apply Lemma 6.

2. Proof that if Qm is a path from A to B then so is Qm+1. Qm+1 is generated from by
removing points from Qm so by Lemma 6 it is sufficient to show that Qm ≤ Qm+1.
Suppose the algorithm is on its mth iteration. Put `′ as ` at the start of line 4. By the
minimality condition on `x imposed at line 6, there are no points in lines L0 . . .Lm to
the left of `′. Now on the mth iteration, the points that are removed are to the left
of `′ so the points that are removed are from Lm+1 onwards. Hence Qm ≤ Qm+1.

Having proved that Algorithm 1 is correct, we are now equipped to complete this section:
if A has line-of-sight to B then there exists an r-constrained path P from A to B and
moreover there is an upper bound on γ(P).

Proposition 2 (Existence of r-constrained paths with bounded differences in gradient).
Let r be a positive integer. Suppose that A has line-of-sight to B and choose a grid-aligned
coordinate system such that A = (0, 0) and B = (q′, p′) with q′ > 0, 0 ≤ p′ ≤ q′. Then
there exists an r-constrained path P = {sk}k from A to B and one of the following holds:

1. If p′

q′ = p
q for some p

q ∈ Fr then ∂(sk, sk+1) = p
q for all k.

2. Otherwise let a
b ,

c
d be the Farey pair from Fr that brackets p

q . Then for all k either
∂(sk, sk+1) = a

b or ∂(sk, sk+1) = c
d .

Proof:

1. Proof. We partition AB into segments of the desired length: Let K = q′

q , set xk =

kq for k = 0 . . .K and let sk = (xk,
p
qxk). Then 0 < q ≤ r and 0 ≤ p ≤ q so

‖sk+1 − sk‖∞ ≤ r. Furthermore ∂(sk, sk+1) = p
q by construction.

2. Proof. Use Algorithm 1 to construct P as a path from A to B with gradients a
b , cd .

2.3 Main Result

In previous sections, we have shown that:

1. Proposition 1. If P is a path from A to B then there is an upper bound on the
inefficiency of P with respect to AB that can be calculated from γ(P) (the difference
in angle between the steepest and shallowest line segments of P).

2. Proposition 2. If A has line-of-sight to B then there exists an r-constrained path P
from A to B and moreover there is an upper bound on γ(P).

We now combine these findings into our main result.
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Theorem 1 (Existence of r-constrained paths with bounded inefficiency). Let r be a pos-
itive integer and suppose that A has line-of-sight to B. Then there exists an r-constrained
path P from A to B such that η̄(P;AB) ≤ ∆ where

∆ =

{
0 if ∂(A,B) ∈ Fr
1− cos

(γ
2

)
otherwise

with γ = arctan ( cd)−arctan (ab ) given a
b ,

c
d is the Farey pair from Fr that brackets ∂(A,B).

Proof. Choose a grid-aligned coordinate system such that 0 ≤ ∂(A,B) ≤ 1. If ∂(A,B) = 0
or ∂(A,B) = 1 then P is constructed trivially. Otherwise construct P via Proposition 2
and obtain ∆ from Proposition 1.

By considering all of the Farey pairs from Fr, we can obtain a worst-case inefficiency
that relies solely on r.

Definition (Worst-case inefficiency). Define

∆̂(r) = 1− cos

(
arccot (r)

2

)
Lemma 8. For all Farey pairs a

b ,
c
d ∈ Fr

1− cos
(γ

2

)
≤ ∆̂(r)

where γ = arctan ( cd)− arctan (ab ).

Proof. Observe:

1. Let w = max c
d −

a
b across all Farey pairs a

b ,
c
d ∈ Fn. Then w = 1

n , as attained by the

pairs 0, 1
n and n−1

n , 1. We have k
n ∈ Fn for all k = 0 . . . n so w ≤ 1

n .

2. Let f(v, w) = 1−cos
(γ

2

)
given γ = arctan (v + w)−arctan (v) and 0 ≤ v < v+w ≤ 1.

Then f increases as v decreases and as w increases. If 0 ≤ v < v +w ≤ 1 then γ > 0
so sin (γ/2) > 0. Moreover

∂f

∂v
=

1

2
sin
(γ

2

)( 1

1 + (v + w)2
− 1

1 + v2

)
< 0

so f decreases as v increases. Likewise

∂f

∂w
=

1

2
sin
(γ

2

)( 1

1 + (v + w)2

)
> 0

so f increases as w increases.

So write Fr = {zi}i and let w = 1
r . By (1), zi+1 − zi ≤ w for all i. Then by (2), f(zi, w) is

maximized when zi = 0; that is, when γ = arctan (1
r )− arctan (0) = arccot (r).
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We will need the following technical result, to generalize from line segments to paths.

Lemma 9. Let Q = {sk}nk=0 and Q′ be the concatenation of {Q′k}nk=1 (with removal of
duplicated points) where η̄(Q′k; sk−1sk) ≤ c for all k = 1 . . . n. Then η̄(Q′;Q) ≤ c.

Proof.

η̄(Q′;Q) =

∑n
k=1 ‖Q′k‖ −

∑n
k=1 ‖sk−1sk‖

‖Q‖
=

n∑
k=1

‖Q′k‖
‖Q‖

·
‖Q′k‖ − ‖sk−1sk‖

‖Q′k‖
≤ c

n∑
k=1

‖Q′k‖
‖Q‖

= c

In words: if the inefficiency of Q′k with respect to sk−1sk is bounded by some value c, for
all k, then the inefficiency of the overall path is also bounded by c. We thus find that any
path P has an r-constrained path P ′ with an inefficiency that we can write down.

Corollary 1. Let P be a vertex path from a start to a goal and r be a positive integer.
Then there exists an r-constrained path P ′ from the same start to the same goal such that
η̄(P ′;P) ≤ ∆̂(r).

Proof. Write P = {sk}k. For each k, apply Theorem 1 to generate P ′k as an r-constrained
path from sk to sk+1. Assemble P ′ as the concatenation of {P ′k}k (with removal of duplicated
points). Then P ′ is an r-constrained path with the same start and goal as P. Moreover by
Lemma 8 we have η̄(P ′k; sk−1sk) ≤ ∆̂(r) for each k. Result follows from Lemma 9.

We check that our results apply to the shortest r-constrained paths.

Remark. Corollary 1 applies in particular if P is a shortest vertex path from a start to a
goal (the corollary applies to any path). There still exists an an r-constrained path P ′ from
the same start to the same goal such that η̄(P ′;P) ≤ ∆̂(r).

Lemma 10. Let P be a path from a start to a goal. If there exists path P ′ with the same
start and goal such that η̄(P ′;P) ≤ c for some value c then η̄(P ′′;P) ≤ c for all P ′′ where
‖P ′′‖2 ≤ ‖P ′‖2.

Proof.

η̄(P ′′;P) =
‖P ′′‖2 − ‖P‖2
‖P ′′‖2

≤ ‖P
′‖2 − ‖P‖2
‖P ′‖2

≤ c

where the second step uses Lemma 1.

Corollary 2. Let P be a shortest vertex path from a start to a goal and r be a positive
integer. Let P ′′ be a shortest r-constrained path with the same start and goal as P. Then
η̄(P ′′;P) ≤ ∆̂(r).

Proof. Corollary 1 constructs an r-constrained path P ′ with the same start and goal as P
such that η̄(P ′;P) ≤ ∆̂(r). We have ‖P ′′‖2 ≤ ‖P ′‖2. Result follows from Lemma 10.

We finish with some results of practical interest.
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Remark. We have calculated ∆ such that η̄(P ′;P) ≤ ∆ for shortest vertex paths P and
r-constrained paths P ′. Meanwhile Nash (2012, Theorem 1) found R such that ‖P ′‖2 ≤
R · ‖P‖2 in the case of r = 1 (in a comprehensive study of grid paths on regular grids in
two and three dimensions). We note that η̄(P ′;P) ≤ ∆ if and only if

R =
1

1−∆

Corollary 3 (Confirming Nash, 2012). The shortest vertex paths from a start to a goal
are at most 8 percent shorter than the shortest 8-connected paths.

Proof. Applying Corollary 2 with r = 1 yields η̄(P ′;P) ≤ 8 percent. Furthermore

1

1− ∆̂(1)
=

1

1−
(

1− cos

(
arccot (1)

2

)) =
2√

2 +
√

2

which matches the value reported for R (Nash, 2012, Table 3.3).

Corollary 4. The shortest vertex paths from a start to a goal are at most 1 percent shorter
than the shortest 4-constrained ones.

Proof. Applying Corollary 2 with r = 4 yields η̄(P ′;P) ≤ 1 percent.

3. Experiments

We have calculated upper bounds for the difference in length between shortest vertex paths
versus r-constrained ones. We now compare our calculations with experiments.

3.1 Unblocked Terrain

We first consider an unblocked terrain, namely 113 × 113 cells that are all accessible. For
y = 0, 1, 2, ...113, we let A = (0, 0), B = (113, y), and P = {A,B}. We apply Dijkstra’s
algorithm to find a shortest r-constrained path P ′ from A to B.

Figure 7 charts the results for r = 1 . . . 6. The charts use the angle from the x-axis to
AB as the independent variable and inefficiency as the dependent variable. We plot the
inefficiency as observed for r as a thin black line. The solid red line shows the bounds on
inefficiency as predicted by Theorem 1. We see that these bounds are tight. The dashed
blue line shows the worst-case bound predicted by Corollary 2.

3.2 Blocked Terrain

Blockages in the terrain will affect the existence or nature of vertex paths. But under our
theory, if there exists a vertex path from a start to a goal then there exists an r-constrained
path with an inefficiency that we can bound. To examine this prediction, we consider
terrains of 113 × 113 cells in which a given percentage are accessible. We set A as an
accessible location in the bottom-left quadrant and B as an accessible location in the right
half. We apply A* to find P as a shortest vertex path from A to B and P ′ as a shortest
r-constrained path.
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Inefficiency of r−constrained paths

x−axis: Angle between x axis and line from start to goal (degrees)
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Figure 7: Inefficiency in unblocked terrain. For each chart, the solid red line shows the
upper bound on inefficiency predicted by Theorem 1. The dashed blue line shows
the worst-case bound predicted by Corollary 2. The thin black line plots the
inefficiency as measured for the given r.
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Inefficiency of r−constrained paths in blocked terrains

x−axis: Fraction of cells that are blocked (percent)
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Figure 8: Inefficiency in blocked terrain. For each chart, the blue line shows the worst-case
bound predicted by Corollary 2. Each dot shows the inefficiency recorded for a
shortest r-constrained path with respect to a shortest vertex path.
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Figure 8 charts the results for terrains where 5, 10, . . . 30 percent of the cells are blocked
and r = 1 . . . 6. Each dot shows the inefficiency recorded for a shortest r-constrained path
with respect to a shortest vertex path; 100 trials were performed where each trial consisted
of a terrain, start and goal as described above. The blue line shows the worst-case bound
predicted by Corollary 2. We see that the empirical inefficiency is less than or equal to the
worst-case bound that we predicted.

We also see that the empirical inefficiency tends to decrease as the blockages increase
(the predicted worst-case bound is no longer tight). The behaviour can be accounted for as
follows: as blockages increase, the opportunities for long, unimpeded line segments decrease.
Hence the shortest vertex paths start to coincide with the shortest r-constrained ones and
the inefficiency of the r-constrained paths becomes smaller.

4. Conclusion

The findings from this article can be used to trade path length for improved runtimes
in a predictable manner. Suppose that we have a set of feasible locations and let Gr be
the graph on those locations in which nodes are adjacent if they are within Chebyshev
distance r. The paths through Gr have a ‘digitization bias’ that decreases as r increases.
We quantified ‘digitization bias’ in terms of paths being inefficient and showed that the
worst-case inefficiency is completely determined by r.

Now consider the runtime to search Gr deterministically for shortest paths; for example,
by Dijkstra’s algorithm or A*. There are O(r2) nodes within Chebyshev radius r of a given
node. Thus as r increases, the runtime to search Gr will increase as O(r2). So increasing r
will turn a ‘good’ vertex path into ‘better’ and eventually ‘best-possible’ but the additional
runtime may be large. The same basic issue confronts all algorithms for short(est) vertex
path planning.
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