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Abstract
We investigate the effects of market making on market performance, focusing on allocative effi-

ciency as well as gains from trade accrued by background traders. We employ empirical simulation-
based methods to evaluate heuristic strategies for market makers as well as background investors
in a variety of complex trading environments. Our market model incorporates private and common
valuation elements, with dynamic fundamental value and asymmetric information. In this context,
we compare the surplus achieved by background traders in strategic equilibrium, with and with-
out a market maker. Our findings indicate that the presence of the market maker strongly tends to
increase total welfare across various environments. Market-maker profit may or may not exceed
the welfare gain, thus the effect on background-investor surplus is ambiguous. We find that mar-
ket making tends to benefit investors in relatively thin markets, and situations where background
traders are impatient, due to limited trading opportunities. The presence of additional market mak-
ers increases these benefits, as competition drives the market makers to provide liquidity at lower
price spreads. A thorough sensitivity analysis indicates that these results are robust to reasonable
changes in model parameters.

1. Introduction

A market maker (MM) facilitates trade in a two-sided auction market by simultaneously maintain-
ing offers to buy and sell. An ever-present MM supplies liquidity to the market. Liquidity refers to
the availability of immediate trading opportunities at prices that reasonably reflect current market
conditions. In compensation for liquidity provision, MMs profit from the spread, the difference be-
tween their buy and sell offers. MM activity is generally understood to stabilize prices and facilitate
discovery of accurate prices in the market (Schwartz & Peng, 2013).

The exact role of market makers varies across market institutions. In a pure dealer market, mul-
tiple MMs competitively quote prices, and incoming market orders from investors trade at the best
available MM price (Huang & Stoll, 1996). In a pure limit-order market, both investors and MMs
submit orders with price limits, and whenever an incoming order matches an existing order, they
trade at the incumbent order’s limit price. This market mechanism is also called a continuous double
auction (CDA), the name we use here. In a specialist market, there is a single MM designated to
act as dealer, with an affirmative obligation to maintain fair and orderly markets (Saar, 2010). With
the transition to electronic markets, pure limit-order markets are predominating (Frey & Grammig,
2006; Glosten, 1994), so this is the market mechanism we employ in our study.
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Providing liquidity can generate profits from investors, but also runs the risk of adverse selec-
tion: when traders with newer or otherwise better information take advantage of the MM’s standing
offers. Much of the market making literature focuses on this tradeoff and its implications for MM
strategies (Glosten & Milgrom, 1985; Kyle, 1985); other prior research has investigated the ef-
fects of MM on liquidity (e.g., as measured by price spreads) (Das & Magdon-Ismail, 2008; Eldor,
Hauser, Pilo, & Shurki, 2006) and price discovery (Leach & Madhavan, 1992). Although liquidity
and price discovery are generally expected to be positive factors for market performance and there-
fore welfare, there has been a notable dearth of prior research modeling this directly. Of the existing
work addressing welfare, the focus has been on the need for an affirmative MM obligation due to
adverse selection (Bessembinder, Hao, & Lemmon, 2011; Bessembinder, Hao, & Zheng, 2015), the
cost structure of market participation in supplying liquidity (Huang & Wang, 2010), and trading
mechanisms to incentivize market making (Brusco & Jackson, 1999).

The impact of MMs may depend on the number of market makers present. Prior works have
considered the effect of MMs competing for the orders of other traders. These studies have exam-
ined market maker competition in models where background-trader orders are split across separate
markets, each with an MM (Bernhardt & Hughson, 1997); where background traders can deal with
each MM separately (Dennert, 1993); or, as in this study, where MMs compete in the same market
through a common limit order book (Biais, Martimort, & Rochet, 2000; Glosten & Milgrom, 1985).

We investigate the effects of MM on market performance, focusing on allocative efficiency as
well as gains from trade accrued by background investors. In our model, a single security is traded
via the CDA mechanism in a market environment comprising multiple background traders, and in
some cases one or more market makers. The fundamental value of the security evolves according
to a mean-reverting stochastic process. An investor’s value for units of the security is given by this
fundamental plus an agent-specific private value that decreases in marginal value with the number
of units held. The background traders enter and reenter according to a stochastic arrival process,
each time to offer to buy or sell a single unit of the security. The stochastic arrival process can
be interpreted to represent agents’ perception of information or trading opportunities at random
intervals. It forces agents to weigh the benefit of trading immediately at a known price against the
uncertain possibility of a future arrival. MMs in our model have no private value, and thus aim to
profit through maintaining buy and sell offers with a positive price spread.

To compare outcomes both with and without market making, we search for strategy configura-
tions where traders best-respond to the environment and other-agent behavior. As analytic game-
theoretic solution of this rich dynamic model appears intractable, we employ empirical simulation-
based methods to derive equilibria over a restricted strategy space. For background traders, we
consider parameterized strategies based on Zero Intelligence agents (Gode & Sunder, 1993). For
the MM, we consider heuristic strategies loosely based on that defined by Chakraborty and Kearns
(2011). From extensive simulation over thousands of strategy profiles, we estimate game models
for various instances of the target scenario.

Analysis of the empirical games provides strong support for overall welfare benefits of market
making in most settings. We derive empirical equilibria with and without market making in 30
environments, finding that the mix of background-trader strategies in equilibrium varies depending
on the presence and strategy choice of the MM(s). In all of our environments, a single market
maker is profitable in equilibrium, and in all but four equilibrium comparisons, the presence of MM
increases overall welfare (background-trader surplus combined with MM profit). These findings are
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robust to changes in many environment parameters, including the number of traders in the market,
the distribution of private values, the duration of simulations, and the speed of background traders.

Whether market making benefits background traders (i.e., increases welfare net of MM profits)
is more ambiguous, however. A single market maker made the investors better off in many envi-
ronments tested, and was more likely to do so in relatively thin markets. For impatient investors
with relatively infrequent trading opportunities, there is some evidence the MM is more beneficial
in settings with a short trading horizon.

In contrast, we find that when multiple MMs compete, background traders always earn higher
surplus than when there is a monopolist market maker or none at all. With two or four MMs present,
every environment tested showed higher social welfare and greater background-trader surplus than
the corresponding environment with zero or one MM (all other conditions being equal). Market
makers’ equilibrium strategies had narrower spreads in settings with multiple MMs, compared to
settings with a single MM. These narrower spreads may partly account for the greater surplus
achieved by background traders when multiple MMs are present.

In the next section we explain by way of example the potential role of market makers in alle-
viating allocative inefficiencies. We describe relevant work in Section 3. Section 4 discusses the
market environment including background-trader and MM strategies. In Section 5 we present our
empirical game-theoretic analysis, and we conclude in Section 6.

2. Motivating Example

We illustrate the problem of allocative inefficiency in CDAs, and the influence of market makers,
with the following simple example. Suppose a market with four background traders: two buyers
and two sellers. The buyers have values b1 and b2, and seller values are s1 and s2, with b1 > s1 >
b2 > s2. Let us further assume for this illustration that the traders submit orders at their valuations.

Suppose that the orders arrive at the market in the order shown in Figure 1. Then buyer 1 trades
with seller 1, and buyer 2 with seller 2, achieving a total surplus of (b1 − s1) + (b2 − s2). The
socially optimal allocation, in contrast, would have buyer 1 trading with seller 2, for a total surplus
of b1 − s2. The difference between the optimal and achieved surplus is ∆ = s1 − b2 > 0. We
can attribute this loss to the vagaries of the sequencing of limit orders, combined with the greedy
matching implemented by the CDA mechanism. We choose to depict in the figure a sequence
that leads to a suboptimal allocation; however, this is not the only one. In fact, only one-third of
the possible orderings of these bids (8 out of 24) would result in the optimal allocation, with the
remaining two-thirds under-performing by ∆.

Now suppose there is a market maker who continually maintains buy and sell offers in the
auction, with difference δ between them. As long as the MM’s offer to buy is within the interval
(s2, s1), and its offer to sell falls within (b2, b1), then for this sequence of order arrivals, buyer 1 and
seller 2 will trade with the MM, and the allocation will be efficient. If the MM quotes lie within the
narrower interval of competitive equilibrium prices1 [b2, s1], then the efficient allocation is achieved
for any sequence. In such cases, the MM accrues a profit of δ, with the remaining surplus divided
among background traders.

The MM promotes efficiency in this example by providing liquidity to the market. In the absence
of MM, when buyer 1 arrives, it has nobody to trade with. Seller 1 fills the vacuum and makes a

1. A competitive equilibrium price balances supply and demand with price-taking bidders. Here the balance is with
respect to cumulative orders over the time horizon.
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Figure 1: A sequence of CDA orders leading to a suboptimal allocation.

profitable trade with this buyer, but at a price far removed from that which would match supply and
demand aggregated over time. An MM with quotes approximating this long-run price, in contrast,
allows arriving bidders to trade near prevailing prices. Equally important, it prevents bidders who
should not trade based on their valuations from doing so.2

Even assuming that the MM improves overall efficiency, does it make the background traders
better off? In the specific scenario of Figure 1, the background traders benefit (in aggregate) if
δ < ∆. If instead we consider the same set of four bids, but submitted in random order, then the
background traders are clearly worse off in the third of instances where they would have achieved
the efficient allocation without the MM’s help. With random sequencing, the background traders
benefit in expectation if and only if δ < 2

3∆.
More generally, we see that the question of whether MM presence is welfare-improving for

background traders depends on specific details of the market setting. For background traders, the
MM contribution may be sensitive to the distribution of valuations and bids, as well as their pat-
tern of arrival over time. It also depends pivotally on the MM strategy—how well it tracks the
prevailing market price and how large a spread the MM maintains between its buy and sell offers.
In realistic environments, valuations include a combination of common and private elements and
may evolve over time. Based on time and role, agents may have differential information about
the common-value component. Thus for time-varying environments, we cannot assume the MM
knows the underlying market equilibrium; it must instead act adaptively based on observations and
statistical assumptions.

Moreover, individual traders may reenter the market to revise bids or reverse transactions, or to
trade multiple units of the good. If such reentry were costless, market making would not be neces-
sary to achieve allocative efficiency, as the traders could exchange among themselves to quiescence
(Huang & Wang, 2010). As long as the traders do not indefinitely hold out for strict profits, the
market would converge to an efficient allocation. In other words, liquidity has economic value only
to the extent that patience and market participation have costs or limits.

With such complications, it seems unlikely we will be able to establish general analytical con-
ditions for the benefits of MM. We therefore adopt a simulation approach, employing empirical
game-theoretic techniques to search for strategically stable background-trader and MM strategies.

2. A modest amount of bid shading can also prevent inefficient trades, and indeed equilibrium shading strategies often
lead to more efficient outcomes than truthful bidding in CDAs (Zhan & Friedman, 2007).
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Our model includes all of the elements listed above, within an extensible framework that could
incorporate (in future work) additional relevant features of financial markets.

3. Related Work

Literature on market making lies predominantly within the field of market microstructure, which
examines the process by which prices, information, and transactions are formed by detailed inter-
actions of traders in a market mechanism (Biais, Glosten, & Spatt, 2005; Madhavan, 2000; O’Hara,
1995). Early work focused on dealer markets, in which a monopolistic MM (the dealer) controls
trading by acting as the middleman. Garman (1976) presents an explicit formulation of the market
maker’s optimization problem. O’Hara and Oldfield (1986) and Amihud and Mendelson (1980)
concentrate on the impact of dealer inventory on spreads, while the seminal model of Glosten and
Milgrom (1985) frames spreads as arising from adverse selection. Others focus on the consequences
of informed trading on MM (Kyle, 1985; Chowdhry & Nanda, 1991; Das, 2008), as well as the role
of market makers as liquidity providers (Grossman & Miller, 1988; Seppi, 1997).

The standard model of Glosten and Milgrom (1985) assumes perfect competition, constraining
the MMs to set prices to achieve zero expected profit. Another line of research investigates models
where MMs have some market power and may obtain positive profits. Such works typically de-
rive the prices that would be set by rational market makers, either as monopolists (Das, 2008) or
in oligopolistic competition with each other (Bernhardt & Hughson, 1997; Biais et al., 2000; Den-
nert, 1993). In particular, the model of Biais et al. (2000) suggests that multiple market makers in
imperfect competition will earn positive expected profit, but approach zero profit in the limit as the
number of MMs goes to infinity.

Much of the relevant theoretical literature, however, relies on simplifying assumptions about
MM behavior and trader interactions (Biais et al., 2005). Empirical studies have provided insight
into the effects of market makers in real-world markets (Conrad, Wahal, & Xiang, 2015; Eldor et al.,
2006; Frey & Grammig, 2006; Hasbrouck & Sofianos, 1993; Manaster & Mann, 1996; Menkveld,
2013; Sandås, 2001). Historical data alone, however, cannot elucidate the strategic choices faced by
market participants. Agent-based modeling (ABM) and simulation of financial markets has proven
conducive to exploring these questions (LeBaron, 2006); however, only a handful of ABM finance
papers focus on market making (Chan & Shelton, 2001; Darley, Outkin, Plate, & Gao, 2000; Das,
2008).

Outside of microstructure, researchers have developed MM strategies for a variety of settings,
including prediction markets (Hanson, 2007; Chen & Pennock, 2007; Abernethy, Chen, & Wort-
man Vaughan, 2011), dealer-mediated markets (Das, 2005; Jumadinova & Dasgupta, 2010), CDAs
(Feng, Yu, & Stone, 2004), and environments where prices are generated exogenously (Abernethy
& Kale, 2013). In this last category, Chakraborty and Kearns (2011) demonstrate the profitability
of market making, given a mean-reverting price series. They propose a simple MM algorithm to
submit a ladder of prices; the market makers we investigate can be viewed as variations on this
strategy.

None of these studies, however, addresses questions about allocative efficiency in the market.
Existing studies are largely concerned with how adverse selection affects allocative efficiency. For
example, Bessembinder et al. (2011) demonstrate that restricting spread widths improves alloca-
tive efficiency and encourages more traders to become informed. Their results suggest that MMs
enhance efficiency primarily when information asymmetries are significant. Brusco and Jackson
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(1999) illustrate the inefficiencies of competitive markets in a two-period model in which the mar-
ket maker position is designated via an auction. They also design a system of trading rules to reach
an efficient allocation by identifying and incentivizing MM agents. Huang and Wang (2010) pro-
pose a model in which provision of liquidity is endogenous, finding that mandating participation
tends to improve welfare, but that the welfare effects of lowering costs for liquidity provision per se
are ambiguous. In a similar vein, Bessembinder et al. (2015) present a model in which a firm can
sell an asset to an investor in an IPO, with the option of paying a designated market maker (DMM)
in exchange for liquidity provision in a secondary market. When the secondary market is illiquid
due to asymmetric information and uncertainty regarding the asset’s fundamental value, social wel-
fare can be improved if the firm enters into a DMM contract. Menkveld and Wang (2013) provide
empirical evidence for DMM benefits in otherwise illiquid markets for small-cap stocks.

4. Market Environment

To investigate the effect of market making on allocative efficiency, we construct a simple model of
a single security traded in a continuous double auction market. Prices are fine-grained but discrete,
taking values at integer multiples of the tick size, pts. Time is likewise fine-grained and discrete,
with finite horizon T . The horizon places pressure on agents to accomplish trades quickly, thus
modulating T allows us to study the impact of varying immediacy preference. Agents arrive at
designated times, and submit limit orders to the market. The CDA maintains price quotes reflecting
the best outstanding orders. BIDt corresponds to the highest buy offer at time t, and ASKt to the
lowest offer to sell. Other bids in the order book are not visible to traders. The market environment
is populated by multiple background traders, representing investors, and (optionally) one or more
market makers. At any time, the background investors are restricted to placing a single order to buy
or sell one unit, whereas the MM may maintain orders to buy and sell any number of units at various
prices.

The source code of the financial market simulator employed for this study is publicly available
online (Strategic Reasoning Group, 2016).

4.1 Valuation Model

Each background trader has an individual valuation for the security composed of private and com-
mon components. We denote by rt the common fundamental value for the security at time t. The
fundamental time series is generated by a mean-reverting stochastic process:

rt = max {0, κr̄ + (1− κ) rt−1 + ut} .

Parameter κ ∈ [0, 1] specifies the degree to which the fundamental reverts back to the mean r̄, and
ut ∼ N

(
0, σ2s

)
is a random shock at time t.

The private component for agent i is a vector Θi representing differences in private benefits of
trading given the trader’s net position, similar to the model of Goettler, Parlour, and Rajan (2009).3

The vector is of size 2qmax, where qmax > 0 is the maximum number of units the agent can be long

3. Goettler et al. assume an infinite horizon and employ exponential discounting to represent the cost of trading delays.
We adopt a finite horizon, which provides an alternative force for trading urgency. The stochastic agent arrivals in
combination with a finite trading horizon capture, in effect, the role of discounting in an infinite horizon model.
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or short at any time, with

Θi =
(
θ−qmax+1
i , . . . , θ0i , θ

+1
i , . . . , θqmax

i

)
.

Element θqi is the incremental private benefit foregone by selling one unit of the security given
current position q, where positive (negative) q indicates a long (short) position. Similarly, θq+1

i is
the marginal private gain from buying an additional unit given current net position q.

We generate Θi from a set of 2qmax values drawn independently from a Gaussian distribution.
Let θ̂ ∼ N

(
0, σ2PV

)
denote one of these drawn values. To ensure that the valuation reflects dimin-

ishing marginal utility, that is, θq
′ ≥ θq for all q′ ≤ q, we sort the θ̂ in non-increasing order and set

the θqi to respective values in the sorted list.
Background trader i’s valuation v for the security at time t is based on its current position qt and

the value of the global fundamental at time T , the end of the trading horizon:

vi(t) = rT +

{
θqt+1
i if buying 1 unit
θqti if selling 1 unit.

To be clear, a trader does not know the final fundamental value rT at any time t < T , though it can
form an estimate based on its actual observations, as described below (2).

For a single-quantity limit order transacting at time t and price p, a trader obtains surplus:{
vi(t)− p for buy transactions, or
p− vi(t) for sell transactions.

Since the price and fundamental terms cancel out in exchange, the total surplus achieved when
agent B buys from agent S is θq(B)+1

B − θq(S)S , where q(i) denotes the pre-trade position of agent i.
The total payoff to an agent over a game instance equals the net cash taken in from trades, plus

the value of final holdings qT , accounting for both common (fundamental) and private components
of valuation:

cT + qT rT +


∑qT

j=1 θ
j
i if qT > 0

0 if qT = 0∑0
j=qT+1−θ

j
i if qT < 0,

(1)

where cT is the agent’s cash holdings at time T .

4.2 Background Trading Strategies

There is an extensive literature on autonomous bidding strategies for CDAs (Friedman, 1993; Das,
Hanson, Kephart, & Tesauro, 2001; Wellman, 2011). In this study, we consider trading strategies in
the so-called Zero Intelligence (ZI) family (Gode & Sunder, 1993).

The background traders arrive at the market according to an independent Poisson process per
trader, with rate λBG. On arrival, they are assigned to buy or sell with equal probability, and
accordingly submit an order to buy or sell a single unit. (A trader is randomly reassigned to buy or
to sell each time it arrives.) Background traders subsequently reenter the market, with time between
entries distributed exponentially at the same rate λBG—in other words, each trader reenters the
market by an independent Poisson process, just like its arrival process. Agents may trade once per
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arrival and any number of times overall, as long as their net positions do not exceed qmax (either
long or short). Background traders are notified of all transactions and current price quotes with zero
delay, and may use this information in computing their bids.

The randomized agent arrival process serves several useful functions in a financial market model
(Goettler et al., 2009). It provides each agent a noisy signal of the security’s true value at random
intervals, reflecting the impossibility of an agent detecting every favorable trading opportunity. It
presents the agent with a choice between trading immediately at a known price or waiting for an
uncertain later arrival. In aggregate, it generates a stochastic sequence of orders to the limit order
book. Relative rates of arrival for background traders and MMs (λBG versus λMM ) further serve to
capture speed differences between these two categories of trader.

A ZI trader assesses its valuation vi(t) at the time of market entry t, using an estimate r̂t of the
terminal fundamental rT . The estimate is based on the current fundamental, rt, adjusted to account
for mean reversion:

r̂t =
(
1− (1− κ)T−t

)
r̄ + (1− κ)T−trt. (2)

The ZI agent then submits a bid shaded from this estimate by a random offset—the degree of surplus
it demands from the trade. The amount of shading is drawn uniformly from range [Rmin, Rmax].
Specifically, a ZI trader i arriving at time t with current position q submits a limit order for a single
unit of the security at price

pi ∼

{
U
[
r̂t + θq+1

i −Rmax, r̂t + θq+1
i −Rmin

]
if buying

U [r̂t + θqi +Rmin, r̂t + θqi +Rmax] if selling.

We extend ZI by including a threshold parameter η ∈ [0, 1], whereby if the agent can achieve
a fraction η of its requested surplus at the current price quote, it submits a marketable order that
simply takes that quote. Technically, the agent still posts a limit order, but at a price that ensures the
order will transact immediately rather than get added to the order book. Setting η = 1 is equivalent
to the strategy without employing the threshold.

Note that although the ZI strategy as originally defined by Gode and Sunder (1993) was not
tuned to its environment, we implicitly assume that a community of ZI agents would eventually
select strategy parameters Rmin, Rmax, and η to reach a Nash equilibrium in their environment.
Each agent will play a fixed parameterization of ZI, but the community of agents will play a Nash
equilibrium mixed strategy over ZI parameters.

In our model, background traders are permitted to reenter the market. Upon each reentry, the
trader withdraws its previous order (if not transacted yet) before executing its extended ZI strategy
described above.

4.3 Market Maker Strategies

Much of the prior work on MM strategies treats the market maker as a dealer (Glosten & Milgrom,
1985; Das, 2005), which must take one side of each trade. In our model, however, all trades execute
through the CDA order book, therefore the MM submits limit orders just as background traders do.
We consider a family of MM strategies that submit at time t a ladder of unit-quantity buy and sell
orders, composed of K rungs spaced ξ ticks apart:{

[St, St + ξ, St + 2ξ, . . . , St + (K − 1)ξ] for sell orders

[Bt − (K − 1)ξ, . . . , Bt − 2ξ,Bt − ξ,Bt] for buy orders
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with St > Bt and K, ξ > 0. Each MM arrives at time 0 and reenters the market according its own,
independent Poisson process with rate λMM . On reentry at time t, the MM observes the current
fundamental rt, which it may use in determining its ladder of buy and sell orders. It cancels any
standing orders remaining from its previous ladder when submitting a new ladder.

Like the background traders, the MM values its inventory at the end of the trading horizon at
the global fundamental rT . The MM’s total profit is defined by the sum of trading cash flow plus
the value of holdings. The total payoff for an MM is thus the same as for a background trader (1),
but without the private value term.

To avoid crossing the current BID–ASK quote, the MM truncates its ladder. Specifically, if
BIDt > St (or similarly, Bt > ASKt), the agent cuts the ladder off at the rung that is at or above
(below) the current BID (ASK) price. The truncated ladder is:{

[St + (K − x)ξ, . . . , St +Kξ] if BIDt > St

[Bt −Kξ, . . . , Bt − (K − x)ξ] if Bt > ASKt,

where x > 0 specifies the rung immediately above BID (for sell orders) or below ASK (for buy
orders). That is, x satisfies the condition St + (K − x − 1)ξ < BIDt < St + (K − x)ξ for sell
orders in the ladder, and Bt − (K − x)ξ < ASKt < Bt − (K − x− 1)ξ for buy orders.

The MM uses its observation of the current fundamental rt to inform its ladder construction.
Specifically, the MM strategies we implement compute an estimate r̂t of the terminal fundamental
rT via (2), and center the ladder around this estimate. The spread ω is set by a strategy parameter.
The central ladder prices are:

St = r̂t +
1

2
ω, Bt = r̂t −

1

2
ω.

A more adaptive market maker strategy would adjust its spread ω in response to changing con-
ditions. We experimented with simple adaptive strategies, and did not find any that improved over
those with fixed spread parameter, Nevertheless, it could well be that more sophisticated adaptation
strategies or other variations could outperform the MM strategies employed here.

5. Empirical Game-Theoretic Analysis

We have described strategies for the roles of background trader and MM, each with tunable param-
eters. Evaluating the effect of market making for all combinations of strategy choices would be
infeasible; moreover, the various strategic contexts are not equally relevant. Generally speaking,
we are most interested in the effect of market making when all agents are doing their best to gener-
ate profit. In other words, we wish to evaluate the impact of MM in equilibrium—where both the
background traders and MM are adopting the best strategies, given the environment and other agent
strategy selections.

We qualify our equilibrium analysis in two ways. First, we consider only a restricted set of avail-
able strategy choices, defined by selected parameterized versions of the strategies introduced above.
These strategies were selected through a manual heuristic process (described in Section 5.2), which
sought to produce high-fitness strategies with broad coverage of the strategy space. Second, we de-
termine equilibria among these strategies through a simulation-based process, known as empirical
game-theoretic analysis (EGTA) (Wellman, 2016). In EGTA, we use systematic simulation of strat-
egy profiles in a specified environment to induce a game model of that environment. For the present
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study, we simulate an instance of the financial market described in Section 4, using an extension of
the discrete-event market simulation system developed for our previous study of latency arbitrage
(Wah & Wellman, 2013). We generate data for various combinations of the strategies introduced in
Sections 4.2 and 4.3, each sampled over many runs (at least 20,000 per profile, often many more)
to account for stochastic effects (valuation schedules, trajectories of the market fundamental, agent
arrival patterns). From these data we estimate game payoffs and derive equilibria with respect to
the strategy space explored. We then take these equilibria as the basis for evaluating MM welfare
effects.

The experiments conducted for the present study supersede those reported in our prior paper
(Wah & Wellman, 2015). The present results incorporate an expanded strategy set (Table 1) and
subtle changes to the background-trader arrival process (Section 4.2). We also more thoroughly
sample the profile space, covering more profiles and with more simulations per profile. The results
are qualitatively consistent with our previous findings, though with a more ambiguous relationship
between trading horizon and MM impact on surplus gains. Our expanded strategy set includes
background traders who persist in strict shading indefinitely, which affords greater scope for MM
benefit even over long trading horizons.

5.1 Environment Settings

We evaluate the performance of background traders and the MM within 30 parametrically distinct
environments. For each environment, we analyze two empirical games that differ in whether or not
an MM is present; in some environments, we also analyze games with two or four MMs present. In
all settings, there are N ∈ {25, 66} background traders. Each simulation run lasts T time steps, for
T ∈ {1, 4, 12, 24} × 103. Simulations with lower T represent market settings where traders have
a greater desire for trading immediacy. If present, the MM in each environment enters the market
at the start of the simulation and reenters with rate λMM = 0.005, or approximately once every
200 time steps. The global fundamental has a mean value r̄ = 105 and mean-reversion parameter
κ = 0.05. The minimum tick size pts is fixed at 1. The maximum number of units the background
trader can be long or short at any time is qmax = 10.

The environments differ in number of background traders (N ), background-trader reentry rate
(λBG), fundamental shock variance (σ2s ), and time horizon (T ). Environments with a low background-
trader arrival rate λBG represent market settings where MMs have a speed advantage relative to
other traders. The configurations of parameter settings for N ∈ {25, 66} background traders and
T ∈ {1, 4, 12, 24} × 103 are as follows.

A λBG = 0.0005, σ2s = 1× 106, σ2PV = 5× 106

B λBG = 0.005, σ2s = 1× 106, σ2PV = 5× 106

C λBG = 0.005, σ2s = 5× 105, σ2PV = 5× 106

In addition, we considered two variations on environment A that increase and decrease (resp.) the
private value variance (σ2PV ) by a factor of two. Modulating this parameter is tantamount to chang-
ing the weighting in importance between private and common components of background-trader
valuation. For these variants, we investigated configurations withN = 25 and T ∈ {1, 4, 12}×103.

D λBG = 0.0005, σ2s = 1× 106, σ2PV = 1× 107
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E λBG = 0.0005, σ2s = 1× 106, σ2PV = 2.5× 106

We describe each environment by its configuration label, followed by time horizon (in thousands).
For example, B12 is the environment labeled B above with T = 12000.

5.2 EGTA Process

We model our market as a role-symmetric game, in which players are partitioned into roles, each
role with its own strategy set and payoff function. The payoff for playing a strategy in a particular
role depends on the number of other agents playing each strategy in each role, but not on how the
strategies are mapped to players within the roles. The two roles in our model are background trader
(25 or 66 players) and market maker (0, 1, 2, or 4 players). The background-trader strategy set S
comprises thirteen parameterized versions of the ZI strategy, as shown in Table 1. The MM strategy
set includes the seven MM strategies shown in Table 4. The payoff function for each agent is defined
by (1).

We constructed the strategy set for each role through a heuristic, iterative process, starting from
a few instances of parameterized strategy families from prior work. We started by running pilot sim-
ulations using an initial set of parameterized strategies. Based on observations of which strategies
from the initial set were in the support (i.e., played with positive probability) of Nash equilibria in
different environments, we augmented the strategy set with new strategies that appeared promising.
For example, if the initial ZI strategy with the lowest Rmax appeared with high probability in many
equilibria, we might introduce a new ZI strategy with a lowerRmax value. In this way, we iteratively
adjusted the strategy set until it appeared to provide ample opportunities for agents to adapt to the
different market conditions of our various environments.

Even if we exploit symmetry, the game size (number of distinct strategy profiles) grows expo-
nentially with the number of players and strategies, so it is computationally infeasible to sample
every profile in games with many players and strategies. For example, in a game with N = 25
background traders, no MMs, and |S| = 13 background-trader strategies, there are

(N+|S|−1
N

)
=(

25+13−1
25

)
≈ 1.9 × 109 possible symmetric strategy profiles—far too many to evaluate via simu-

lation. We therefore apply aggregation to approximate a many-player game as a game with fewer
players, which we call a reduced game.

The technique we use, called deviation-preserving reduction (DPR) (Wiedenbeck & Wellman,
2012), defines reduced-game payoffs in terms of payoffs in the original game as follows. Consider
an N -player symmetric game, reduced to a k-player game, for k < N . The payoff for playing
strategy s1 in the reduced game, with other agents playing strategies (s2, . . . , sk), is given by the
payoff of playing s1 in the original N -player game when the other N − 1 agents are evenly divided
(N−1k−1 each) among strategies s2, . . . , sk. The reduction is termed “deviation-preserving” because
the payoff to one player switching strategies in a reduced profile is the same with respect to a
deviation in the corresponding original profile.4

To see how DPR reduces the number of samples required, note that if we reduce a game of
N = 25 players to k = 5, with |S| = 13 strategies, we now require only

(k+|S|−1
k

)
=
(
5+13−1

5

)
=

6188 (reduced-game) profiles. And if we limit the search space to four strategies, there are only(
5+4−1

5

)
= 56 profiles.

4. Although DPR provides no general guarantees, we have found in several settings that equilibrium profiles in the
reduced game often have low regret in the original game (Wiedenbeck & Wellman, 2012).
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We chose values for N in this study to facilitate DPR by ensuring that the required aggregations
come out as integers: the approximation of an (N, 1)-size game (i.e., N background traders and
1 MM) by a (k, 1)-player reduced game works best when k divides N and k − 1 divides N − 1.
Specifically, we use simulation data from the (66, 1)-agent environments to estimate reduced (6, 1)-
player games, where six players represent the 66 background traders in the simulated environment.
We similarly estimate (5, 1)-player games from the (25, 1)-agent cases.

For an example of DPR in action, consider a game with N = 25 background traders and no
MM. We can map this to a reduced game of k = 5 background traders. The focal player in the
reduced game is said to control one agent in the original game, and the other four players each
control N−1

k−1 = 6 original-game agents. The reduced-game payoff function maps each strategy
s ∈ S for the focal player and vector of realizable counts ci of how many of the other four agents
play each strategy i ∈ S , to the payoff for playing s in this setting. The realizable count vectors
have ci ∈ {0, . . . , k−1} for all i, and

∑|S|
i=1 ci = k−1. The empirical payoff for (s,~c) is estimated

by averaging the results from simulations of the associated profile where 1+cs× N−1
k−1 play strategy

s, and for each i 6= s, ci × N−1
k−1 play strategy i.

DPR works similarly in a game with MMs. For example, from an original game with N = 25
background traders and two MMs, DPR profiles are constructed both from the perspective of a
background trader as focal player, and with an MM as focal. In either case, the reduced game has
k = 5 background traders and two MMs. If a background trader is the focal player in the reduced
game, it controls one background trader in the original; the other four control N−1

k−1 = 6 background
traders each in the original game, and each reduced-game MM controls one original-game MM. If
an MM is the focal player in the reduced game, it controls one MM in the original game; the other
reduced-game MM controls the other original-game MM; and each of the five background traders in
the reduced game controls N

k = 5 original-game background traders. This also demonstrates why
it is useful for k to divide N and for (k − 1) to divide (N − 1).

We iteratively apply EGTA to guide our exploration of the strategy space. We start by sim-
ulating all the role-symmetric pure profiles, where a single strategy is shared by all players in a
role. Exploration then spreads to the explored profiles’ neighbors, that is, those profiles related by
a single-player deviation (one player switching strategies) to some profile explored already. The
goal in this process is to identify Nash equilibria, and we focus our search on role-symmetric Nash
equilibria (RSNE). A role-symmetric profile assigns a mixed strategy (probability of playing each
action) to every role, such that all agents of a role have the same mixed strategy. The profile is an
RSNE if no agent can benefit in expectation by unilaterally switching to a different strategy.

As the observed payoffs from our simulator are incrementally added to the empirical game’s
payoff matrix, we compute mixed-strategy equilibria for each completed subgame. A subgame is a
mapping from each role to a nonempty subset of that role’s strategy set. A subgame is complete if
we have obtained at least some minimum number of samples (e.g., 20,000) for every DPR strategy
profile that uses only strategies contained in the subgame.

Given a complete subgame, we can compute its role-symmetric Nash equilibria. The equilib-
ria of the complete subgames are initially candidates for equilibria in the full game, which we can
either refute by finding a beneficial deviation outside the subgame’s strategy set, or confirm by ex-
amining all deviations without finding any beneficial deviation. It is feasible to evaluate all possible
deviations for a subgame, as these are bounded in number by the size of the subgame times the size
of the strategy set. To find the value for a single agent of deviating to pure strategy s while other
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agents play profile ~c, it is sufficient to sample the DPR profiles for the subgame including strategies
in the support of ~c, along with strategy s.

We continue to refine the empirical game with additional simulations, until the following con-
ditions are met:

1. at least one equilibrium is confirmed,

2. all non-confirmed candidates are refuted (up to a threshold support size—in this study three
background strategies and unlimited MMs), and

3. for all refuted candidates (up to the threshold support size), we have explored subgames
formed by adding the best response to the candidate’s support.

In this study, we successfully find at least one and at most four non-trivial RSNEs for each game
evaluated, with support sizes up to four for background traders and up to two for MMs.

We utilize the EGTAOnline infrastructure (Cassell & Wellman, 2013) for conducting and man-
aging our experiments, and run our simulations on a high-performance computing cluster at the
University of Michigan. The process accumulates a dataset of profile simulation results, which we
use to estimate payoff values for strategy profiles in the game.

For all the games we model, there exists a trivial pure RSNE in which all agents play a “NOOP”
strategy that refrains from bidding. This exists because if none of the other agents (background
traders or MM) submit limit orders, then there is nobody to trade with and there will be no transac-
tions regardless of the strategy the subject agent employs. In our discussion below, we ignore this
degenerate equilibrium, which obviously has payoff zero for all agents.

To provide a benchmark for efficiency, we calculate the social optimum based on the trader
population and valuation distribution used in our environments A, B, and C5 (i.e., N ∈ {25, 66}
background traders with parameters qmax = 10 and σ2PV = 5×106). We determine the optimum for
a particular draw of N valuation vectors by treating each as a demand curve and finding a uniform
competitive equilibrium price. This is conveniently implemented in our simulation environment,
where valuation vector Θi is represented by a background trader i, who submits qmax single-unit
sell orders at prices r̄ + θsi , s ∈ {−qmax + 1, . . . , 0}, and qmax single-unit buy orders at prices
r̄ + θbi , b ∈ {+1, . . . , qmax}. A call market computes a uniform clearing price to match supply and
demand, which defines the optimal allocation for the sample. From 20,000 samples, we find a mean
social welfare of 44155 and 16306 for 66 and 25 background traders, respectively. Figure 2 presents
histograms of trades per background trader in the social optima.

5.3 Game without Market Making

The empirical games without MM cover 14 background-trader strategies: 13 versions of ZI (see Ta-
ble 1), and (implicitly) the no-trade strategy NOOP. We identified 1–4 ZI equilibria for each of our
30 environments (see Tables 2 and 3). For each equilibrium, we estimated background-trader sur-
plus by sampling 2,500 profiles according to the equilibrium mixture, running 25–100 simulations
per sampled profile (at least 62,500 simulations in total) and then recording the aggregate surplus.

5. Environments D and E employ different weighting between private and common value, and hence have different
social optima.

625



WAH, WRIGHT, & WELLMAN

0

2

4

6

8

10

12

14

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

position

N=66 N=25

Figure 2: Distributions of the net position (equivalently, number of units traded) of N background
traders in socially optimal allocations for environments A, B, and C. The histograms
(shown superimposed) are compiled from 20,000 samples.

Table 1: ZI strategy combinations included in empirical game-theoretic analysis.

Rmin Rmax η

0 65 0.8
0 125 0.8
0 125 1
0 250 0.8
0 250 1
0 500 1
0 1000 0.8
0 1000 1
0 1500 0.6
0 2500 1

250 500 1
500 1000 0.4
1000 2000 0.4

5.4 Game with Market Making

Our games with MM include the 14 background-trader strategies from the no-MM treatment above,
plus seven strategies for the MM role. The MMs employed in our game analysis are as described
in Section 4.3, with K = 100 rungs spaced ξ ∈ {25, 50, 100} units apart. Each MM strategy type
employs a fixed spread ω ∈ {64, 128, 256, 512, 1024}. The set of all MM strategies employed is in
Table 4. The equilibria found are presented in Tables 5 and 6. Background-trader surplus and MM
profit are estimated for each equilibrium based on the sampling method described for the no-MM
game above.
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Table 2: Symmetric equilibria for games without market makers, N = 66, calculated from the 6-
player DPR approximation. Each row of the table describes one equilibrium found and
its average values for total surplus and two strategy parameters: Rmid (the midpoint of ZI
range [Rmin, Rmax]) and threshold η. Values presented are the average over strategies in
the profile, weighted by mixture probabilities. Surplus values are means from thousands of
simulations, where strategies are randomly sampled from the equilibrium mixed-strategy
profile.

Env Surplus Rmid η

A1 3712 750 0.4
A1 4439 374 0.980
A4 16578 340 0.977
A4 16551 353 1
A12 33741 267 0.955
A24 42361 125 0.8
A24 42413 107 0.941
A24 41563 229 0.972
B1 29150 441 0.894
B4 40392 411 0.961
B12 40102 494 0.810
B24 40170 497 0.806
B24 40100 677 0.576
C1 30803 250 1
C1 29726 375 1
C4 41130 500 0.8
C4 39901 390 0.976
C12 41410 446 0.923
C24 43021 501 0.799
C24 41531 416 0.939

5.5 Comparison of Market Performance

Our findings with regard to the central question in this paper are presented in Figures 3 and 4. For
each environment, we compare equilibrium outcomes, with and without an MM, on two measures:
social welfare and background-trader surplus. Since there are often multiple equilibria, the differ-
ences are presented as ranges, delimiting the most and least favorable comparisons.

In the scenarios with 66 background traders (Figure 3(a)), the change in overall welfare is gen-
erally positive, with four environments (B4, C1, C4, and C24) providing small exceptions. The
change in background-trader surplus, in contrast, varies widely across environments, with multiple
examples of both positive and negative changes. The effect is strongly negative in the A environ-
ments with longer trading horizons, which may be explained by the significant information advan-
tage of MMs over background traders due to their disparate reentry rates (λMM = 0.005 versus
λr = 0.0005). For environments B and C with T ≥ 4000, the total social welfare without MM is
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Table 3: Symmetric equilibria for games without market makers, N = 25, calculated from the
5-player DPR approximation. Data are presented as in Table 2.

Env Surplus Rmid η

A1 1041 750 0.404
A1 1351 371 1
A4 5616 350 0.986
A12 11669 335 1
A24 13697 375 1
A24 15162 218 0.949
A24 15543 117 0.826
B1 8752 750 0.4
B4 14041 517 0.773
B12 14256 553 0.715
B24 14478 556 0.710
C1 10379 375 1
C4 14225 476 0.838
C12 14617 441 0.894
C24 14618 490 0.816
D1 2120 366 0.994
D1 1926 690 0.496
D4 7894 716 0.454
D12 17334 392 0.972
E1 1055 125 0.884
E4 4110 178 1.000
E12 8696 160 0.999
E12 8891 125 0.886

Table 4: MM strategy parameter combinations explored.

K ξ ω

100 25 256
100 50 64
100 50 128
100 50 256
100 50 512
100 50 1024
100 100 512

over 89% of the socially efficient outcome of 44155. That is, the ZI background traders in these
environments extract a high fraction of the potential surplus in the market on their own. Intuitively,
given sufficient time for reentry (as governed by horizon T and reentry rate λr), agents with pri-
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Table 5: Role-symmetric equilibria for games with one market maker, N = 66, calculated from
the (6, 1)-player DPR approximation. Each row of the table describes one equilibrium
found and its average values for background-trader surplus, MM profit, and four strategy
parameters: Rmid (the midpoint of ZI range [Rmin, Rmax]), threshold η, MM spread ω,
and rung size ξ. Values presented are the average over strategies in the profile, weighted
by mixture probabilities.

Env Surplus Profit Rmid η ω ξ

A1 4545 461 238 0.933 512 61
A1 4553 485 205 1.000 512 100
A1 4465 382 298 0.943 512 50
A4 16503 1890 139 0.834 256 50
A4 16768 1704 135 1.000 256 25
A4 16517 1953 132 0.810 256 25
A12 32765 3279 135 0.815 256 48
A24 39367 3668 110 0.976 256 50
A24 39180 3912 105 0.800 256 25
A24 38817 4249 118 0.802 256 25
B1 29238 21 433 0.907 931 59
B4 40042 196 431 0.942 512 100
B12 40575 113 400 0.974 512 100
B12 42304 820 492 0.806 491 50
B24 41631 1196 550 0.725 256 50
B24 42379 1253 589 0.857 256 50
B24 40693 374 480 0.864 512 100
B24 41150 2451 807 0.645 256 25
C1 29507 302 375 1.000 512 50
C4 39669 878 421 0.954 256 50
C4 42248 626 250 1.000 256 25
C12 41658 2003 500 0.864 256 50
C12 40836 1233 431 0.911 256 50
C12 42037 1572 455 0.976 256 50
C24 42912 489 488 0.925 256 50
C24 42964 702 418 0.887 256 25
C24 42236 37 440 0.897 256 25

vate values on the correct side of competitive prices will eventually trade, and any inefficient trades
can effectively be reversed. When the background traders have sufficient time to reach efficient
outcomes, the MM may provide little benefit to overall welfare, and its profits tend to come out
of background-trader surplus. Accordingly, we observe that the MM degrades investor surplus for
some or all equilibria in four of these six cases.

The trading horizon T reflects whatever might limit an investor’s patience (liquidity needs, port-
folio hedging, cost of monitoring, etc.). By curbing agents’ ability to find efficient trades, the time
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Table 6: Role-symmetric equilibria for games with one market maker, N = 25, calculated from the
(5, 1)-player DPR approximation. Data are presented as in Table 5.

Env Surplus Profit Rmid η ω ξ

A1 1593 285 164 0.863 512 50
A1 1596 320 115 0.940 512 100
A4 5711 852 188 0.896 512 100
A4 5773 961 125 0.956 512 100
A4 5701 874 186 0.916 512 50
A4 5797 934 117 1.000 512 100
A12 11975 1696 88 0.883 256 25
A12 11907 1728 111 0.803 256 25
A12 12014 1606 103 1.000 256 47
A12 11879 1785 63 0.944 256 50
A24 14406 1899 57 0.800 256 50
A24 14275 1949 112 0.868 256 25
B1 10666 220 329 1.000 512 100
B1 10292 113 446 0.886 512 100
B4 14174 384 413 0.927 512 100
B12 14600 341 444 0.889 512 67
B12 14161 828 643 0.656 512 100
B24 15423 716 552 0.824 256 50
B24 15219 330 424 0.994 512 100
C1 10251 348 375 1.000 512 100
C1 10776 747 238 0.981 512 50
C4 13856 612 415 0.937 512 50
C4 15155 1110 215 1.000 256 36
C12 15344 1166 225 0.996 256 50
C12 15236 1183 492 0.988 256 28
C12 14904 1087 461 0.863 256 25
C12 14696 781 419 0.930 512 50
C24 15191 1163 502 0.814 256 50
C24 14552 524 388 0.979 512 50
D1 2099 349 352 0.966 1024 50
D4 8266 1038 316 0.966 512 100
D4 8162 1128 332 0.971 512 54
D4 8283 1522 115 0.945 512 50
D12 16608 2309 213 0.941 512 53
D12 16518 2036 265 1.000 512 100
D12 16443 1964 309 1.000 512 50
E1 1105 158 115 1.000 512 50
E1 1144 159 125 0.805 420 41
E1 1105 160 133 0.806 512 50
E4 4165 668 91 0.888 256 25
E4 4098 599 144 0.830 256 50
E4 4164 712 63 0.920 256 50
E12 8296 1125 125 0.840 256 50

constraint limits their ability to extract all potential surplus solely by trading with each other. This
problem is exacerbated in a thin market, where agents encounter fewer potential counterparties per
unit time. Both factors increase the likelihood that agents trade inefficiently, as they lack sufficient
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Figure 3: The effect of presence of a single MM on background-trader surplus and social welfare
in equilibrium, across environments A, B, and C. Differences are presented as ranges,
reflecting the multiplicity of equilibria found in some environments. The left point of each
range is the minimum gain (in some cases a loss), that is, the lowest value observed with
an equilibrium with MM minus the highest value observed in any equilibrium without
MM. The right point is the maximum improvement observed: the difference between the
highest value with a MM and the lowest without MM.

time and opportunity to reverse poor transactions. In such scenarios, the MM can boost not only
overall welfare but also background-trader surplus by facilitating trade among impatient investors
arriving at different times.
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Figure 4: The effect of presence of a single MM on background-trader surplus and social welfare
in equilibrium, for environments D and E. Data are presented as in Figure 3.

In our study, for markets populated by 25 background traders (Figures 3(b) and 4), the market
maker improves welfare in all eighteen test environments. It improves background-trader surplus
unambiguously in nine, and with a range partly on the positive side in seven more. Two more cases
(D12 and E12) exhibit negative effects. Comparing environments A, D, and E, we do not observe
any qualitative impact of changing the weighting between private and common value.

We observe that background traders are prone to shade less (i.e., midpoint Rmid of the ZI bid
range is lower) when MM is present. The constant presence of a market maker shields the back-
ground traders from adverse selection by later-arriving background traders, thus alleviating the pres-
sure on them to bid defensively. This effect is particularly strong for thin markets (N = 25), where
the risk of adverse selection is greater. These are also the environments where MM tends to im-
prove background-trader surplus. This indicates that the MM facilitates optimal allocations: with
MM present, background investors can demand less surplus per trade, yet still achieve greater payoff
than without the market maker.

We also find that MM spread ω tends to be larger for environments with shorter trading horizons,
as we would expect when traders are more impatient. As evidence for this claim, in the single-MM
equilibria with N = 25, mean MM spread ω weakly decreases with increasing duration T , in 41 of
43 cases. In single-MM equilibria with N = 66, 26 of 27 show weakly decreasing MM spread ω
with increasing duration.

Finally, we evaluate liquidity for the maximum-welfare RSNE (Figure 5), with and without
MM, by sampling results from profiles at the RSNE proportions. We measure liquidity via the
BID–ASK spread (narrower spreads reflect greater liquidity) and background-trader execution
time (interval between order submission and transaction). In general, both spreads and execution
times drop with MM, which is indicative of the liquidity-provisioning capacity of the MM. In
every environment except B4, N = 66, the median spread from local simulation is lower in each
single-MM equilibrium than in any no-MM equilibrium. In the thinner markets, spreads without
MM are significantly wider than in the thicker markets, as would be expected. The presence of the
MM serves to narrow spreads considerably, nearly down to the levels present in the more populous
environments. In every environment except B12 and C1 withN = 66, mean execution time is higher
in equilibria without MM than in any equilibrium with one MM. The fact that the liquidity proxy
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measures improve with MM in environments where background-trader surplus does not, however,
underscores that these measures are not adequate substitutes for direct evaluation of investor welfare
(Wellman & Wah, 2017).
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Figure 5: Comparison of background-trader execution time (Figures 5(a) and 5(b)) and median
spread (Figures 5(c) and 5(d)) for the maximum-welfare RSNE in environments A–C,
with and without MM. Mixed-strategy RSNE are approximated by profiles with trader
population proportions corresponding to the strategy probabilities.
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Figure 6: Comparison of background-trader execution time (Figure 6(a)) and median spread (Fig-
ure 6(b)) for the maximum-welfare RSNE in environments D and E, with and without
MM. Mixed-strategy RSNE are approximated by profiles with trader population propor-
tions corresponding to the strategy probabilities.
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Table 7: Role-symmetric equilibria for games with two market makers, N = 25, calculated from
the (5, 2)-player DPR approximation. Profits shown are total for the two MMs. Data are
presented as in Table 5.

Env surplus profit Rmid η ω ξ

A1 1835 216 63 0.800 256 25
A1 1860 172 96 0.800 256 48
A1 2062 10 73 0.800 128 50
A4 6549 568 52 0.800 128 50
A4 6946 196 47 0.851 64 50
A12 12480 1310 70 0.862 128 50
A12 13292 530 83 0.995 64 50
A12 13228 566 87 0.919 64 50
B1 11957 174 125 0.917 256 50
B1 11968 -52 179 0.886 248 24
B12 15638 712 532 0.774 256 25
B12 15953 410 387 1.000 256 50
B12 15971 406 403 1.000 256 50
B12 16224 204 293 0.968 256 25
C1 11639 630 110 0.967 256 25
C1 11660 612 114 0.968 256 25
C1 11556 732 120 0.809 256 25
C12 16198 410 330 1.000 128 50
C12 15752 822 387 0.716 128 50
C12 15806 740 488 0.809 128 50
C12 15803 764 447 0.800 128 50

5.6 Competition among Market Makers

Our games with multiple MMs have either two or four MMs, and 25 background traders. MMs in
these games choose from 6–7 available strategies from Table 4. Our search for equilibria in these
games is as described above. The equilibria for two- and four-MM settings are presented in Tables
7 and 8, respectively. We use our usual sampling method to estimate the background-trader surplus
and MM profit for each equilibrium profile.

Figure 7 presents the difference in social welfare and background-trader surplus between two-
MM equilibria and zero- or one-MM equilibria, in seven environments. As for Figure 3, each row
shows the range of differences in social welfare or background-trader surplus, comparing equi-
libria in settings with different numbers of MMs present. In each environment we tested, every
equilibrium in the two-MM setting had greater social welfare and greater background-trader sur-
plus than any equilibrium in the corresponding zero-MM or one-MM setting. Competition between
oligopolistic MMs tends to benefit background traders and overall efficiency, relative to not having
an MM or to having one monopolist MM.
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Figure 7: The effect of two MMs on background-trader surplus and social welfare in equilibrium,
compared to corresponding environments without MM (Figure 7(a)), or with one MM
(Figure 7(b)). Data are presented as in Figure 3.

We evaluated two environments with 25 background traders and four MMs, employing a (5, 2)-
player DPR approximation. As shown in Table 8, background-trader surplus in every equilibrium
found is higher than in any equilibrium for corresponding settings with zero or one MM. Backround-
trader surplus also increases as we increase from two to four MMs for the A1 environment, but is
ambiguous in A4. There is no clear trend in social welfare as the number of MMs increases from
two to four, as the greater background-trader surplus with four MMs is offset by lower profits for
each MM. Indeed, each four-MM equilibrium we found has lower MM profit, both in total and per
MM, than any corresponding equilibrium with one or two MMs.6 Overall, as the number of MMs
present increases beyond two, the effect of MM competition exhibits diminishing returns.

The spread setting ω of the MM equilibrium strategy is strictly lower in each equilibrium with
multiple MMs than in any of the corresponding equilibria with one MM. With some competition,
the MMs accept smaller expected gains from each trade by setting a narrower spread, in exchange
for an increased likelihood of trading.

6. The negative profits exhibited for A1 environments reflect DPR approximation errors. The reduced-game payoffs for
these equilibria were zero or slightly positive. Here, as for all our results, we derive equilibria using DPR but evaluate
their surplus and welfare with respect to simulations of the solution profile as an original-game mixture.
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Table 8: Role-symmetric equilibria for games with four market makers, N = 25, calculated from
the (5, 2)-player DPR approximation. Profits shown are total for the four MMs. Data are
presented as in Table 5.

Env surplus profit Rmid η ω ξ

A1 2090 -4 52 0.821 128 50
A1 2097 -20 63 0.800 143 52
A1 2086 -36 103 0.886 145 52
A4 6664 452 63 0.853 128 50

In summary, environments with multiple MMs yield greater social welfare and background-
trader surplus than environments with one or fewer MMs. Competition drives the MMs to provide
cheaper liquidity in terms of reduced spreads, and as might be expected, makes them less profitable.

6. Conclusions

Market makers are generally considered to serve a valuable function in continuous market mech-
anisms by providing liquidity to bridge ebbs and flows of trader orders. The precise impact of
this behavior, however, depends on specific features of market environments and trading strategies.
We conducted a systematic agent-based simulation study to compare several parameterized envi-
ronments with and without market-maker agents. We modeled a single security traded in a CDA
populated by multiple background traders, and we characterized the strategic play in the induced
empirical game model. This enabled us to compare outcomes in equilibrium, that is, allowing the
background traders and market makers to strategically react to each other’s presence.

Our analysis demonstrates the generally beneficial effects of market making on efficiency, and
shows that whether these benefits accrue to background investors depends on market characteristics.
Specifically, we find a tendency of a monopolist MM to improve the welfare of impatient investors
(those in thin markets or with relatively few opportunities to trade with each other), but not in
general. In markets with multiple MMs, we found larger and more consistent benefits to background
traders. Competition among MMs leads them to apply narrower spreads, which provides better
liquidity to the investors at some sacrifice of profit per MM.

Our study has several limitations, which must be taken into account in assessing our conclu-
sions. First, our methods involve sampling, approximation, and limited search, all of which bear on
the accuracy of equilibrium determinations. Sampling error is mitigated through the large number
of simulation runs we gather over a breadth of environments and profiles, so it is not a fundamental
concern for our conclusions here. The player reduction method we employ (DPR) has been shown
to produce good approximate equilibrium estimates on other problems (Wiedenbeck & Wellman,
2012), and for our purposes approximate equilibria provide a sufficient basis for outcome compar-
ison. However, DPR estimates are not guaranteed approximations, and it would be reassuring to
confirm their quality in the context of our trading scenario. Even within the DPR game, we are un-
able to evaluate all profiles and cannot be sure that we have found all equilibria. Our search process
attempts to evaluate all promising equilibrium candidates, but identifying these is not guaranteed.
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A second area of limitation is the relatively narrow exploration of strategies. Our experience
suggests that our equilibration process effectively tunes ZI strategies, and that these strategies ex-
hibit reasonable behavior for this environment. Nevertheless, further investigation may yield im-
proved versions of ZI or other strategies, for example adaptive variants (Cliff, 2009; Vytelingum,
Cliff, & Jennings, 2008), that could alter equilibrium findings. Similar improvements may be found
on the MM side, for instance with strategies incorporating learning (Abernethy & Kale, 2013).

Finally, our exploration of environments is also far from exhaustive. Whereas covering all
plausible environments is infeasible, a broader range of variation on number of players, valuation
distributions, and fundamental dynamics could go a long way in illuminating and validating robust
conditions for qualitative welfare effects of market making in continuous double auctions.
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Appendix A. Equilibria

A.1 Games without MM

Table 9: Symmetric equilibria for games without market makers, N = 66, calculated from the 6-
player DPR approximation. The numeric column headings give Rmax values for the ZI
strategies. All employ Rmin = 0 with the exception of the double star and double dagger
(‡) values which use Rmin = 1

2Rmax. All employ η = 1, except for the starred values
which use η = 0.8, the dagger (†) value which uses η = 0.6, and the double dagger
value which uses η = 0.4. Each row of the table describes the mixture probabilities
for strategies for one equilibrium, and corresponds to the matching row in Table 2. The
column for Rmax = 2500 is not listed in the table as this strategy is not played in any of
the equilibria found.

Env 65* 125* 125 250* 250 500 500** 1000* 1000 1000‡ 1500† 2000‡

A1 0 0 0 0 0 0 0 0 0 1 0 0
A1 0 0 0 0 0 0.106 0.861 0 0 0.033 0 0
A4 0 0.113 0 0 0 0 0.887 0 0 0 0 0
A4 0 0 0 0 0.029 0.115 0.856 0 0 0 0 0
A12 0 0 0 0.223 0.209 0 0.568 0 0 0 0 0
A24 0 0 0 1 0 0 0 0 0 0 0 0
A24 0 0.296 0 0 0.704 0 0 0 0 0 0 0
A24 0 0 0 0.138 0.030 0.832 0 0 0 0 0 0
B1 0 0 0 0 0 0 0.824 0 0 0.176 0 0
B4 0 0 0 0 0 0 0.714 0.193 0.092 0 0 0
B12 0 0 0 0 0 0 0.683 0 0 0.317 0 0
B24 0 0 0 0 0 0 0.676 0 0 0.324 0 0
B24 0 0 0 0 0 0 0 0 0.293 0.707 0 0
C1 0 0 0 0 0 1 0 0 0 0 0 0
C1 0 0 0 0 0 0 1 0 0 0 0 0
C4 0 0 0 0 0 0 0 1 0 0 0 0
C4 0 0 0 0 0 0 0.960 0 0 0.040 0 0
C12 0 0 0 0 0 0.011 0.796 0 0 0 0.193 0
C24 0 0 0 0 0 0 0 0.995 0 0 0.005 0
C24 0 0 0 0 0 0 0.714 0.267 0 0 0.019 0
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Table 10: Symmetric equilibria for games without market makers, N = 25, calculated from the
5-player DPR approximation. Data are presented as in Table 9. Each row corresponds to
the matching row in Table 3. The column for Rmax = 2500 is not listed in the table as
this strategy is not played in any of the equilibria found.

Env 65* 125* 125 250* 250 500 500** 1000* 1000 1000‡ 1500† 2000‡

A1 0 0 0 0 0 0 0 0 0 0.978 0.022 0
A1 0 0 0 0 0 0.035 0.965 0 0 0 0 0
A4 0.072 0 0 0 0 0 0.928 0 0 0 0 0
A12 0 0 0 0 0 0.318 0.682 0 0 0 0 0
A24 0 0 0 0 0 0 1 0 0 0 0 0
A24 0 0 0 0.256 0 0.744 0 0 0 0 0 0
A24 0 0 0.132 0.868 0 0 0 0 0 0 0 0
B1 0 0 0 0 0 0 0 0 0 1 0 0
B4 0 0 0 0 0 0 0.621 0 0 0.379 0 0
B12 0 0 0 0 0 0 0.525 0 0 0.475 0 0
B24 0 0 0 0 0 0 0.490 0.039 0 0.470 0 0
C1 0 0 0 0 0 0 1 0 0 0 0 0
C4 0 0 0 0 0 0 0.730 0 0 0.270 0 0
C12 0 0 0 0 0 0 0.823 0 0 0.177 0 0
C24 0 0 0 0 0 0 0.694 0 0 0.306 0 0
D1 0 0.029 0 0 0 0 0.971 0 0 0 0 0
D1 0 0 0 0 0 0 0.160 0 0 0.840 0 0
D4 0 0 0 0 0 0 0.090 0 0 0.910 0 0
D12 0 0 0 0 0 0 0.954 0 0 0.046 0 0
E1 0 0 0 0.581 0.419 0 0 0 0 0 0 0
E4 0 0 0 0 0.688 0.200 0.112 0 0 0 0 0
E12 0 0 0 0 0.717 0.282 0 0 0 0 0 0
E12 0 0 0 0.572 0.428 0 0 0 0 0 0 0
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A.2 Games with a Single MM

Table 11: Role-symmetric equilibria for games with a market maker, N = 66, based on (6, 1)-
player DPR approximation. Column headings give Rmax values for the ZI strategies
as in Table 9. Each row of the table corresponds to the matching row in Table 5 and
describes one equilibrium found. The column for Rmax value of 2000‡ is not listed in the
table as this strategy is not played in any of the equilibria found.

Env
Background-trader Rmax

65* 125* 125 250* 250 500 500** 1000* 1000 1000‡ 1500† 2500

A1 0 0 0 0.337 0.076 0.273 0.314 0 0 0 0 0
A1 0 0 0.116 0 0.185 0.699 0 0 0 0 0 0
A1 0.061 0 0 0.225 0 0 0.714 0 0 0 0 0
A4 0.034 0.072 0 0.724 0 0.171 0 0 0 0 0 0
A4 0 0 0 0 0.917 0.083 0 0 0 0 0 0
A4 0.058 0 0 0.893 0 0 0.049 0 0 0 0 0
A12 0 0 0 0.924 0 0.076 0 0 0 0 0 0
A24 0 0.122 0.115 0 0.763 0 0 0 0 0 0 0
A24 0 0.327 0 0.673 0 0 0 0 0 0 0 0
A24 0.070 0 0.012 0.918 0 0 0 0 0 0 0 0
B1 0 0 0 0 0 0 0.845 0 0 0.155 0 0
B4 0 0 0 0 0 0 0.843 0 0.012 0 0.145 0
B12 0 0 0 0 0 0 0.934 0 0 0 0.066 0
B12 0 0 0 0 0 0.032 0 0.968 0 0 0 0
B24 0 0 0 0 0 0 0 0.779 0.022 0.199 0 0
B24 0 0 0 0 0 0 0 0 0.642 0 0.357 0
B24 0 0 0 0 0 0 0.616 0 0.157 0.227 0 0
B24 0 0 0 0 0 0 0 0 0 0 0.887 0.113
C1 0 0 0 0 0 0 1 0 0 0 0 0
C4 0 0 0 0 0 0 0.634 0.230 0.136 0 0 0
C4 0 0 0 0 0 1 0 0 0 0 0 0
C12 0 0 0 0 0 0 0 0.678 0.322 0 0 0
C12 0 0 0 0 0 0 0.554 0.446 0 0 0 0
C12 0 0 0 0.119 0 0 0 0 0.881 0 0 0
C24 0 0 0 0 0 0 0.093 0.377 0.529 0 0 0
C24 0 0 0 0 0 0.327 0 0.564 0.109 0 0 0
C24 0 0 0 0 0 0 0.483 0.517 0 0 0 0
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Table 12: Role-symmetric equilibria for games with a market maker, N = 66, based on (6, 1)-
player DPR approximation. Column headings give ω values for MM strategies. All MM
strategies use K = 100 and ξ = 50 except those with subscripts indicating the ξ used.
Each row of the table corresponds to the matching row in Table 5 and describes one
equilibrium found. The columns for MM ω values of 64 and 128 are not listed in the
table as these strategies are not played in any of the equilibria found.

Env
Market-maker ω

25625 256 512 1024 512100

A1 0 0 0.787 0 0.213
A1 0 0 0 0 1
A1 0 0 1 0 0
A4 0 1 0 0 0
A4 1 0 0 0 0
A4 1 0 0 0 0
A12 0.091 0.908 0 0 0
A24 0 1 0 0 0
A24 1 0 0 0 0
A24 1 0 0 0 0
B1 0 0 0 0.819 0.181
B4 0 0 0 0 1
B12 0 0 0 0 1
B12 0 0.082 0.918 0 0
B24 0 1 0 0 0
B24 0 1 0 0 0
B24 0 0 0 0 1
B24 1 0 0 0 0
C1 0 0 1 0 0
C4 0 1 0 0 0
C4 1 0 0 0 0
C12 0 1 0 0 0
C12 0 1 0 0 0
C12 0 1 0 0 0
C24 0 1 0 0 0
C24 1 0 0 0 0
C24 1 0 0 0 0
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Table 13: Role-symmetric equilibria for games with a market maker, N = 25, calculated from the
(5, 1)-player DPR approximation. Each row of the table corresponds to the matching
row in Table 6 and describes one equilibrium found. Data are presented as in Table 11,
but with columns for Rmax values of 2000‡ and 2500 excluded from the table as these
strategies are not played in any of the equilibria found.

Env
Background-trader Rmax

65* 125* 125 250* 250 500 500** 1000* 1000 1000‡ 1500†

A1 0 0 0 0.687 0 0.313 0 0 0 0 0
A1 0 0 0.156 0.300 0.544 0 0 0 0 0 0
A4 0 0 0 0.519 0 0.462 0.019 0 0 0 0
A4 0 0 0 0.221 0.779 0 0 0 0 0 0
A4 0 0 0 0.419 0.127 0.420 0.034 0 0 0 0
A4 0 0 0.130 0 0.870 0 0 0 0 0 0
A12 0 0.587 0 0 0.413 0 0 0 0 0 0
A12 0.149 0 0 0.835 0.017 0 0 0 0 0 0
A12 0 0 0.349 0 0.651 0 0 0 0 0 0
A12 0.280 0 0.673 0 0 0.047 0 0 0 0 0
A24 0.170 0.830 0 0 0 0 0 0 0 0 0
A24 0.145 0 0 0.515 0.340 0 0 0 0 0 0
B1 0 0 0 0 0 0.367 0.633 0 0 0 0
B1 0 0 0 0 0 0 0.810 0 0 0.190 0
B4 0 0 0 0 0 0.058 0.821 0 0 0.121 0
B12 0 0 0 0 0 0 0.754 0.092 0 0.153 0
B12 0 0 0 0 0 0 0 0 0.427 0.573 0
B24 0 0 0 0 0 0 0 0.256 0.537 0.207 0
B24 0 0 0 0 0 0 0.610 0.031 0.359 0 0
C1 0 0 0 0 0 0 1 0 0 0 0
C1 0 0 0 0.096 0 0.904 0 0 0 0 0
C4 0 0 0 0 0 0 0.894 0 0 0.106 0
C4 0 0 0 0 0.281 0.719 0 0 0 0 0
C12 0 0 0 0 0.239 0.742 0 0.019 0 0 0
C12 0 0 0.034 0 0 0 0 0 0.936 0 0.030
C12 0 0 0 0 0 0 0.315 0.685 0 0 0
C12 0 0 0 0 0 0 0.649 0.351 0 0 0
C24 0 0 0 0 0 0 0.155 0.761 0 0 0.084
C24 0 0 0 0 0 0 0.897 0.103 0 0 0
D1 0 0 0 0.117 0 0 0.831 0.052 0 0 0
D4 0.172 0 0 0 0 0 0.829 0 0 0 0
D4 0 0 0.020 0.146 0 0 0.834 0 0 0 0
D4 0 0.165 0 0.110 0.726 0 0 0 0 0 0
D12 0 0 0 0.297 0 0.703 0 0 0 0 0
D12 0 0 0.196 0 0.193 0 0.610 0 0 0 0
D12 0 0 0 0 0.231 0.064 0.705 0 0 0 0
E1 0 0 0.153 0 0.847 0 0 0 0 0 0
E1 0 0 0 0.975 0.025 0 0 0 0 0 0
E1 0 0 0 0.968 0 0 0.032 0 0 0 0
E4 0 0.562 0 0 0.430 0.008 0 0 0 0
E4 0 0 0 0.849 0 0.151 0 0 0 0 0
E4 0 0.400 0.600 0 0 0 0 0 0 0 0
E12 0 0 0 0.801 0.199 0 0 0 0 0 0
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Table 14: Role-symmetric equilibria for games with a market maker, N = 25, calculated from the
(5, 1)-player DPR approximation. Each row of the table corresponds to the matching
row in Table 6 and describes one equilibrium found. Data are presented as in Table 12,
but with MM ω values of 64 and 128 excluded from the table as these strategies are not
played in any of the equilibria found.

Env
Market-maker ω

25625 256 512 1024 512100

A1 0 0 1 0 0
A1 0 0 0 0 1
A4 0 0 0 0 1
A4 0 0 0 0 1
A4 0 0 1 0 0
A4 0 0 0 0 1
A12 1 0 0 0 0
A12 1 0 0 0 0
A12 0.139 0.861 0 0 0
A12 0 1 0 0 0
A24 0 1 0 0 0
A24 1 0 0 0 0
B1 0 0 0 0 1
B1 0 0 0 0 1
B4 0 0 0 0 1
B12 0 0 0.669 0 0.331
B12 0 0 0 0 1
B24 0 1 0 0 0
B24 0 0 0 0 1
C1 0 0 0 0 1
C1 0 0 1 0 0
C4 0 0 1 0 0
C4 0.540 0.460 0 0 0
C12 0 1 0 0 0
C12 0.879 0.121 0 0 0
C12 1 0 0 0 0
C12 0 0 1 0 0
C24 0 1 0 0 0
C24 0 0 1 0 0
D1 0 0 0 1 0
D4 0 0 0 0 1
D4 0 0 0.913 0 0.086
D4 0 0 1 0 0
D12 0 0 0.942 0 0.058
D12 0 0 0 0 1
D12 0 0 1 0 0
E1 0 0 1 0 0
E1 0.359 0 0.641 0 0
E1 0 0 1 0 0
E4 1 0 0 0 0
E4 0 1 0 0 0
E4 0 1 0 0 0
E12 0 1 0 0 0
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A.3 Games with Multiple MM

Table 15: Role-symmetric equilibria for games with two market makers, N = 25, from the (5, 2)-
player DPR approximation. Data are presented as in Table 11. The columns for some
background-trader strategies are not listed, because these strategies are not played in any
of the equilibria found. Each row corresponds to the matching row in Table 7.

Env
Background-trader Rmax

65* 125* 125 250* 250 500 1000* 1000 1000† 1500†

A1 0 1 0 0 0 0 0 0 0 1
A1 0.318 0 0 0.682 0 0 0 0 0 0.072
A1 0 0.828 0 0.172 0 0 0 0 0 0
A4 0.790 0 0 0.210 0 0 0 0 0 0
A4 0.502 0.241 0.257 0 0 0 0 0 0 0
A12 0.414 0.274 0 0 0.312 0 0 0 0 0
A12 0 0.026 0.651 0 0.323 0 0 0 0 0
A12 0 0.406 0.207 0 0.388 0 0 0 0 0
B1 0 0 0 0.415 0.585 0 0 0 0 0
B1 0 0 0 0.570 0 0.430 0 0 0 0.969
B12 0 0 0 0 0 0 0.872 0 0.129 1
B12 0 0 0 0 0.302 0 0 0.698 0 0
B12 0 0 0 0 0.115 0.215 0 0.670 0 0
B12 0 0 0 0.161 0 0.586 0 0.253 0 1
C1 0.163 0 0 0 0.837 0 0 0 0 1
C1 0 0 0.173 0.160 0.668 0 0 0 0 1
C1 0 0.076 0 0.880 0.044 0 0 0 0 1
C12 0 0 0 0 0 0.680 0 0.320 0 0
C12 0 0 0 0.581 0 0 0 0 0.419 0
C12 0 0 0 0 0 0.047 0.953 0 0 0
C12 0 0.106 0 0.018 0 0 0.876 0 0 0
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Table 16: Role-symmetric equilibria for games with two market makers, N = 25, from the (5, 2)-
player DPR approximation. Data are presented as in Table 12. The columns for some
MM strategies are not listed, because these strategies are not played in any of the equi-
libria found. Each row corresponds to the matching row in Table 7.

Env
Market-maker ω

25625 64 128 256

A1 0 0 0 0
A1 0 0 0.928 0
A1 0 1 0 0
A4 0 1 0 0
A4 1 0 0 0
A12 0 1 0 0
A12 1 0 0 0
A12 1 0 0 0
B1 0 0 1 0
B1 0 0 0 0.031
B12 0 0 0 0
B12 0 0 1 0
B12 0 0 1 0
B12 0 0 0 0
C1 0 0 0 0
C1 0 0 0 0
C1 0 0 0 0
C12 0 1 0 0
C12 0 1 0 0
C12 0 1 0 0
C12 0 1 0 0

Table 17: Role-symmetric equilibria for games with four market makers, N = 25, calculated from
the (5, 2)-player DPR approximation. Data are presented as in Tables 11 and 12. Some
strategies are not listed in the table as these strategies are not played in any of the equi-
libria found. Each row corresponds to the matching row in Table 8.

Env
Background-trader Rmax Market-maker ω

65* 125* 125 250* 250 128 512100 NOOP

A1 0.341 0.555 0.104 0 0 1 0 0
A1 0 1 0 0 0 0.957 0.039 0.004
A1 0 0 0.346 0.571 0.084 0.952 0.045 0.003
A4 0 0.734 0.266 0 0 1 0 0
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A.4 Surplus Comparison, with and without MM
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Figure 8: Comparison of background-trader surplus (with and without market makers) and MM
profit for N = 66. The dotted line is the optimal social welfare available (44155). Error
bars indicate the 95% confidence interval for total welfare in the maximum-welfare role-
symmetric Nash equilibrium in each environment, with and without MM.
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Figure 9: Comparison of background-trader surplus (with and without market makers) and MM
profit for N = 25. The dotted line is the optimal social welfare available (16306). Error
bars indicate the 95% confidence interval for total welfare in the maximum-welfare role-
symmetric Nash equilibrium in each environment, with and without MM.
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