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Abstract
We study the problem of self-interested planning under uncertainty in settings shared with more

than a thousand other agents, each of which plans at its own individual level. We refer to such
large numbers of agents as an agent population. The decision-theoretic formalism of interactive
partially observable Markov decision process (I-POMDP) is used to model the agent’s self-interested
planning. The first contribution of this article is a method for drastically scaling the finitely-nested
I-POMDP to certain agent populations for the first time. Our method exploits two types of structure
that is often exhibited by agent populations – anonymity and context-specific independence. We
present a variant called the many-agent I-POMDP that models both these types of structure to plan
efficiently under uncertainty in multiagent settings. In particular, the complexity of the belief update
and solution in the many-agent I-POMDP is polynomial in the number of agents compared with
the exponential growth that challenges the original framework.

While exploiting structure helps mitigate the curse of many agents, the well-known curse of
history that afflicts I-POMDPs continues to challenge scalability in terms of the planning horizon.
The second contribution of this article is an application of the branch-and-bound scheme to reduce
the exponential growth of the search tree for look ahead. For this, we introduce new fast-computing
upper and lower bounds for the exact value function of the many-agent I-POMDP. This speeds up
the look-ahead computations without trading off optimality, and reduces both memory and run time
complexity. The third contribution is a comprehensive empirical evaluation of the methods on three
new problems domains – policing large protests, controlling traffic congestion at a busy intersection,
and improving the AI for the popular Clash of Clans multiplayer game. We demonstrate the feasibility
of exact self-interested planning in these large problems, and that our methods for speeding up the
planning are effective. Altogether, these contributions represent a principled and significant advance
toward moving self-interested planning under uncertainty to real-world applications.

1. Introduction

Decision-theoretic planning by a single agent under partial observability is formalized by the par-
tially observable Markov decision process (POMDP) (Kaelbling, Littman, & Cassandra, 1998). A
POMDP is an appealing framework for study because of its mathematical rigor and a theoretical
assurance of optimal planning under uncertainty. However, the planning is challenged by high
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computational complexity. Two sources contribute to this complexity: the curse of state dimension-
ality which disproportionately impacts the size of the belief space; and, of particular relevance to
this article, the curse of history or policy space that is due to an exponentially growing search tree
with increase in planning horizon. As partial observability is encountered in various applications,
especially in those involving agents with sensors, POMDPs have been generalized to multiagent
settings in different ways (Seuken & Zilberstein, 2008). In this article, we focus on self-interested
planning under uncertainty in settings shared with other agents who themselves plan, act and observe.
This is formalized by the well-known interactive POMDP (I-POMDP) framework (Gmytrasiewicz
& Doshi, 2005).

We situate the problem of self-interested planning under uncertainty in settings shared with more
than a thousand other agents, each of which plans at its own individual level. For example, consider
the decision-making problem of the police when faced with a large protest distributed over multiple
protest sites. These settings require us to model many agents in an I-POMDP and solve exactly in
this context. Such scalability is critically needed because I-POMDPs cover an important portion of
the multiagent planning problem space (Doshi, 2012; Durfee & Zilberstein, 2013). Applications in
diverse areas such as security (Seymour & Peterson, 2009; Ng, Meyers, Boakye, & Nitao, 2010),
robotics (Woodward & Wood, 2012; Wang, 2013), ad hoc teams (Chandrasekaran, Doshi, Zeng, &
Chen, 2014) and human behavior modeling (Doshi, Qu, Goodie, & Young, 2010; Wunder, Kaisers,
Yaros, & Littman, 2011; Hula, Montague, & Dayan, 2015) testify to the wide appeal of I-POMDPs
while motivating better scalability.

Both of the previously mentioned sources of complexity present in POMDPs are inherited
by I-POMDPs, and exacerbated because of multiple agents. Mitigating these sources to promote
scalability has been the focus of attention of methods so far, as we review in the next section. While
the above sources of complexity are well understood, additional lesser-known barriers emerge in
contexts populated by many agents. Potent among these is the fact that the space of models in the
interactive state space grows exponentially with the number of agents. We refer to this complexity
afflicting multiagent planning as the “curse of many agents”.

We identify two problem structures that afford tractability in the context of interactions involving
many agents. For illustration, consider again the decision-making problem of the police when faced
with a large protest. The degree of the police response is often decided by how many protestors of
which type (disruptive or not) are participating. The individual identity of the protestor within each
type seldom matters. This key observation of frame-action anonymity, where a frame encapsulates
the agent’s capabilities and preferences, 1 motivates us in how we model the agent population in the
planning. Such anonymity is also observed in other problems that require decision making in the
presence of many other agents such as a smart grid operator seeking to time shift flexible energy loads
of many consumers, devising strategy for a massively multiplayer online game, or in intelligently
managing dense vehicular traffic for congestion control. However, as we identify the frames of
agents, an implicit assumption is that there are far fewer distinct frames than agents. Furthermore, the
planned degree of response at a protest site is influenced, in part, by how many disruptive protestors
are predicted to converge to the site and much less by some other actions of the protestors such as
movement between other distant sites. This example illustrates two known and powerful types of
problem structure in domains involving many agents: action anonymity (Roughgarden & Tardos,
2002) and context-specific independence (Boutilier, Friedman, Goldszmidt, & Koller, 1996).

1. I-POMDPs distinguish between an agent’s frame and its type with the latter including beliefs as well. Frames are
similar in semantics to the colloquial use of types.
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Action anonymity allows the exponentially large joint action space to be substituted with a much
more compact space of action configurations where a configuration is a tuple representing the number
of agents performing each action. Consequently, the run-time complexity is no longer exponential
in the number of agents but is instead polynomial. Context-specific independence wherein given
a context such as the state and agent’s own action, not all actions performed by other agents are
relevant toward determining the next state permits the space of configurations to be compressed by
projecting counts over a limited subset of others’ actions. We extend both action anonymity and
context-specific independence to allow considerations of an agent’s frame as well.

Consequently, our first contribution in this article is a variant of finitely-nested I-POMDPs
referred to as the many-agent I-POMDP framework that models both types of structure – frame-
action anonymity and context-specific independence – to plan efficiently and exactly in multiagent
settings. In particular, the complexity of the belief update and solution in the many-agent I-POMDP
is polynomial in the number of agents under certain assumptions compared with the exponential
growth that challenges the original framework. A key feature of the framework is a systematic way
of modeling the context-specific independence in transition, observation and reward functions using
frame-action hypergraphs, and exploiting it in an exact method for solving I-POMDPs that models
other agents using finite-state machines. The Bellman equation modified to include frame-action
configurations and independences continues to remain optimal given the I-POMDP with explicated
problem structure.

While exploiting problem structure helps mitigate the curse of many agents, the well-known curse
of history that afflicts I-POMDPs continues to challenge scalability in terms of the planning horizon.
Specifically, the look-ahead search tree for planning has a branching factor that is proportional to the
number of subject agent’s actions and observations, and grows exponentially with the horizon. The
second contribution of this article is a first application of the branch-and-bound scheme in the context
of I-POMDPs to significantly reduce the size of the look-ahead search tree. We introduce new
fast-computing upper and lower bounds for the exact value function of the many-agent I-POMDP.
Both these are utilized in the branch and bound scheme. The lower bound is obtained by blindly
pursuing a single policy oblivious to the observation and the upper bound is the result of assuming
that the initial state is known but not the subsequent states; both these bounds are appropriately
generalized to the many-agent I-POMDP.

The third contribution of this article is a theoretical verification of the savings in computational
time and memory due to the anonymity and context-specific independence, and its demonstration
on three large problem domains that naturally contain agent populations. The first domain pertains
to policing a large protest involving more than a thousand protestors of different types, which are
distributed over multiple protest sites. The second domain requires managing vehicular traffic at
multiple intersections for congestion control. The third domain is to play defense in the popular
massively multiplayer game Clash of Clans (http://clashofclans.com). The subject agent
is tasked with defending its settlement and other resources against an invasion by other players’
armies. All of these domains are new and could potentially serve as testbeds for evaluating both
self-interested and cooperative planning in many-agent settings. We demonstrate the efficiency of
the branch and bound method by exactly solving these problems for up to 2,000 agents in less than
6 hours on a standard computing platform.

The rest of this article is structured as follows. Section 2 presents the background briefly
reviewing the definition of the finitely-nested I-POMDP and its solution, and reviewing the game-
theoretic framework of action graph games. Using a running example, we introduce the frame-action
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hypergraph as a model of frame-action anonymity and context-specific independence and how it is
used in the many-agent I-POMDP framework, in Section 3. Section 4 gives the relevant algorithms
and discusses the run time complexity. We derive upper and lower bounds for the exact value function
and present the branch-and-bound scheme in Section 5. The problem domains are introduced in
Section 6 followed by a comprehensive discussion of the experimentation. We discuss related work in
detail in Section 7 in particular emphasizing how our frame-action anonymity differs from the use of
anonymity in other approaches. We conclude this article with some remarks in Section 8. Appendix 1
summarizes key notation in a table for easy reference, while Appendix 2 gives proofs of the theorems.

2. Background

In this section, we first briefly review POMDPs and some bounds on its value function. Then, we
briefly describe how I-POMDPs generalize POMDPs to multiagent settings. Finally, we briefly
review action graph games that model the problem structures, which we expand in our framework.

2.1 Partially Observable Markov Decision Processes

Decision-theoretic planning under uncertainty when the physical state is not perfectly observed is
formalized using a POMDP (Smallwood & Sondik, 1973; Kaelbling et al., 1998). Mathematically,
a POMDP is defined as the following tuple of parameters:

POMDP := 〈S,A, T,Ω, O,R,OC〉

where:
• S is the set of physical states of the environment and the agent relevant to the planning;

• A is the set of actions that the agent may perform;

• T : S ×A× S → [0, 1], is a stochastic transition function which gives the distribution over the
next physical states given the current state and agent’s action;

• Ω is the set of observations that the agent may receive;

• O : S × A × Ω → [0, 1], is a stochastic observation function which gives the probability with
which the agent receives an observation conditioned on its action and the resulting state;

• R : S ×A→ R, is the reward function that gives the reward (or cost) for the agent given its state
and the action from the state;

• OC is the optimality criterion, which can be to maximize a sum of the (discounted) rewards
obtained over a fixed number of steps H (called horizon), or a discounted sum over an infinite

number of steps. In this article, we maximize a discounted finite-horizon sum, max
H−1∑
t=0

γt E[rt],

where the discount factor is denoted by γ ∈ [0, 1] and E[rt] is the expected reward at time step t.
Due to the partial observability, the agent maintains a probability distribution over the current

state, which is referred to as its belief. The agent updates its belief on performing an action and
receiving an observation using the well-known Bayes filter. An agent’s belief over the state is a
sufficient statistic for its history of observations.

The solution of a POMDP is an optimal policy, which is a function that maps the agent’s beliefs
to a distribution over actions, π : B×A→ [0, 1], where B is the belief simplex. If the horizon is finite,
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the policy is not stationary and is also indexed by the horizon ranging from H to 1. A finite-horizon
policy may be conveniently represented as a labeled tree whose root node gives the action to perform,
labeled edges represent observations each of which leads to a node denoting an action to perform
given the observation. Thus, a tree-based representation assumes that the sequence and space of
observations are finite. To obtain the policy exactly, we define a value function, V : B → R, which
gives the expected long-term reward from a belief according to the optimality criterion:

V h(bt) = max
at∈A

[∑
st∈S

bt(st)R(st, at) + γ
∑

ωt+1∈Ω

max
αh−1

{∑
st∈S

bt(st)
∑

st+1∈S

O(st+1, at, ωt+1)

T (st, at, st+1) αh−1(st+1)
}]

(1)

where h is the horizon and α : S → R is an alpha vector of values of dimension |S|. For
computation purposes, we may factorize this value function as an inner product between the belief
and optimizing alpha vectors. We can rewrite the above value function more succinctly as, V h(bt) =
maxa∈A

∑
st∈S b

t(s) αhbt,a,ω(s). An optimal policy is the one whose actions optimize the value
function. Various algorithms (Hauskrecht, 1997) show how the value function may be computed
in different ways – some do it more efficiently than others.

The value function defined above also admits several lower and upper bounds, which are utilized
in faster approximation methods (Smith & Simmons, 2004). We briefly review one upper and
lower bound, introduced by Hauskrecht (2000), as we will generalize these later in this article. A
fast-computing lower bound is the value of a policy that performs a root action from the current
belief followed by the next action regardless of the observation; as such it is blind to the observations.
The value function for the blind-policy lower bound is:

V h(bt) = max
at∈A

[∑
st∈S

bt(st)R(st, at) + γmax
αh−1

{ ∑
ωt+1∈Ω

∑
st∈S

bt(st)
∑

st+1∈S

O(st+1, at, ωt+1)

× T (st, at, st+1) αh−1(st+1)
}]

= max
at∈A

[∑
st

bt(st)R(st, at) + γmax
αh−1

{∑
st

bt(st)
∑
st+1

T (st, at, st+1) αh−1(st+1)
}]

= max
at∈A

∑
st

bt(st)
[
R(st, at) + γ

∑
st+1∈S

T (st, at, st+1) αh−1
bt,at(s

t+1)
]

= max
at∈A

∑
st∈S

bt(st) αhbt,at(s
t) (2)

Clearly, not considering the observations in determining the next action is suboptimal and Hauskrecht
establishes that Eq. 2 lower bounds the exact value function. Furthermore, this update of the value
function requires generating O(|A||Γh−1|) possible alpha vectors, which can be much less than the
O(|A||Γh−1||Ω|) many alpha vectors in the exact case. Here, Γh−1 is the set of alpha vectors in the
previous horizon. The update takes time O(|A||S|2|Γh−1|).

An upper bound that is computed quickly is obtained using the following update rule. It uses the

maximizing alpha vector that is the arg max
αh−1

{ ∑
st+1∈S

O(st+1, at, ωt+1) T (st, at, st+1)αh−1(st+1)
}

.
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Compare this to the maximizing alpha vector used in the exact update rule, arg max
αh−1

{ ∑
st+1∈S

O(st+1,

at, ωt+1)
∑
st∈S

b(st) T (st, at, st+1) αh−1(st+1)
}

, and we note that the latter selection is more in-

formed leading to an upper bound:

V
h(bt) = max

at∈A

[∑
st∈S

bt(st)R(st, at) + γ
∑

ωt+1∈Ω

∑
st∈S

b(st) max
αh−1

{ ∑
st+1∈S

O(st+1, at, ωt+1)

× T (st, at, st+1)αh−1(st+1)
}]

= max
at∈A

∑
st∈S

bt(st)
[
R(st, at) + γ

∑
ωt+1∈Ω

max
αh−1

{ ∑
st+1∈S

O(st+1, at, ωt+1) T (st, at, st+1)

× αh−1(st+1)
}]

= max
at∈A

∑
st∈S

bt(st) αat(s
t) (3)

Notice that an update of the value function involves computing |A|many vectors only compared to the
exponentially-growing |A||Γh−1||Ω| vectors in the exact case. An alpha vector in this bound utilizes
a vector from the next time step for each observation and current state. The update in this bound
takes time O(|A|2|S|2|Ω|) because |Γh−1| = |A|, which is significantly less than the worst-case
O(|A||S|2|Γh−1||Ω|) time taken by the exact update. Thus, this informed bound is computed quickly,
and as Hauskrecht (2000) shows empirically, is tight as well.

2.2 Interactive POMDP

Moving from a self-interested single- to multi-agent setting, the framework of interactive POMDP
(I-POMDP) generalizes POMDPs. An agent in the I-POMDP framework predicts actions of the
other agents by reasoning about possible models that could explain the agent’s observations. A model
may itself be an I-POMDP, which gives rise to recursive reasoning. For purposes of computability,
the recursive reasoning is limited to finite depths; the corresponding finitely-nested I-POMDP for
an agent 0 situated with N other agents is defined below:

I-POMDP0,l := 〈IS0,l, A, T0,Ω0, O0, R0, OC0〉

where:
• IS0,l denotes the set of interactive states defined as, IS0,l = S ×

∏N
j=1Mj,l−1, l ≥ 1, where S is

the set of shared physical states relevant to all agents and Mj,l−1 is the set of models ascribed to
the other agent j; IS0,0 = S. We describe the model space after this definition;

• A = A0 ×A1 × . . .×AN is the set of joint actions of all agents. Let a−0 denote a joint action of
the N other agents, a−0 ∈

∏N
j=1Aj ;

• T0 : S ×A0 ×
∏N
j=1Aj × S → [0, 1] is the transition function which gives the distribution over

the next physical states given the current state and a joint action;

• Ω0 is the set of agent 0’s observations;
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• O0 : S ×A0 ×
∏N
j=1Aj × Ω0 → [0, 1] is the observation function giving the likelihood of agent

0’s observations conditioned on a joint action and the resulting state;

• R0 : S × A0 ×
∏N
j=1Aj → R is the reward function that specifies the reward agent 0 receives

given a joint action performed by all agents from a state.

• OC0 is the optimality criterion, which is similar to that for a POMDP. In this article, we limit to
optimizing over a discounted finite horizon.

As we mentioned, besides the physical state the I-POMDP’s interactive state contains a model
for each other agent. The space of models, Mj,l−1 = {Θj,l−1 ∪SMj}, for l ≥ 1, where Θj,l−1 is the
set of computable, intentional models ascribed to agent j: θj,l−1 = 〈bj,l−1, θ̂j〉, where bj,l−1 is agent
j’s level l − 1 belief, bj,l−1 ∈ 4(ISj,l−1), and θ̂j := 〈A, Tj ,Ωj , Oj , Rj , OCj〉, is j’s frame. Here, j
is assumed to be Bayes-rational. At level 0, bj,0 ∈ 4(S) and a level-0 intentional model reduces to a
POMDP. SMj is the set of subintentional models of j, an example of which is a finite state automaton.

Analogous to POMDPs, an agent in a I-POMDP maintains a belief that is a distribution over
the interactive states, b0,l ∈∆(IS0,l). Solution of a finitely-nested I-POMDP is a policy that maps
agent 0’s beliefs to a distribution over actions. If agent 0’s initial belief is given, then the policy can
be equivalently redefined as a mapping from the agent’s history of observations to a distribution over
its actions. The optimal policy is obtained by unrolling a finite tree of all possible beliefs that the
agent may have given all possible actions and observations. A value is then assigned to each belief
using a value function, and the action(s) that leads to the highest value at each belief constitutes the
optimal policy. Belief update to find the next beliefs and value function are both given below.

In its belief update, the agent updates its belief about the physical states as well as about the other
agents’ models based on an estimation of other agents’ observations and how they update their models.
If the models of N agents are intentional, and bt0,l(is

t) denotes Pr(st,mt
1,l−1,m

t
2,l−1, . . . ,m

t
N,l−1|

ωt+1
0 , ato, b

t
0,l), the belief update SE(bt0,l, a

t
0, ω

t+1
0 ) to obtain bt+1

0,l is written as:

Pr(st+1,mt+1
1,l−1,m

t+1
2,l−1, . . . ,m

t+1
N,l−1|ω

t+1
0 , ato, b

t
0,l) =

∑
ist∈IS0,l

bt0,l(is
t)

N∏
j=1

Pr(aj |mt
j,l−1)

× T0(st, at0,a
t
−0, s

t+1) O0(st+1, at0,a
t
−0, ω

t+1
0 )

N∏
j=1

(∑
ωt+1
j

Oj(st+1, atj ,a
t
−j , ω

t+1
j )

× τ(bt+1
j,l−1, SE(btj,l−1, a

t
j , ω

t+1
j ))

)
(4)

Here, τ(bt+1
j,l−1, SE(btj,l−1, a

t
j , ω

t+1
j )) is 1 if SE(btj,l−1, a

t
j , ω

t+1
j ) results in bt+1

j,l−1, otherwise it is 0.
If a subset of agents’ behaviors are correlated, the model space can be expanded to include models
that predict the joint actions of these agents possibly using various correlation devices. The optimal
policy may be obtained by assigning a value to each belief of agent 0:
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V h(bt0,l) = max
at0∈A0

[ ∑
ist∈IS0,l

bt0,l(is
t)ER0(ist, at0) + γ

∑
ωt+1

0 ∈Ω

max
αh−1

{ ∑
ist∈S

bt0,l(is
t)

∑
ist+1∈IS0,l

×
N∏
j=1

Pr(aj |mt
j,l−1) T0(st, at0,a

t
−0, s

t+1)
N∏
j=1

(∑
ωt+1
j

Oj(st+1, atj ,a
t
−j , ω

t+1
j )

τ(bt+1
j,l−1, SE(btj,l−1, a

t
j , ω

t+1
j ))

)
αh−1(ist+1)

}]
(5)

where α : IS0,l → R is a vector of values of dimension |IS0,l|.
In the context of N agents, interactive bounded policy iteration (Sonu & Doshi, 2015) generates

good quality solutions for an agent interacting with 4 other agents (total of 5 agents) without
considering any problem structure. To the best of our knowledge, this result illustrates the maximum
scalability of I-POMDPs so far for N > 2 agents.

2.3 Action Graph Games

Building on graphical games (Kearns, Littman, & Singh, 2001), action graph games (AGG) (Jiang,
Leyton-Brown, & Bhat, 2011) utilize problem structures such as action anonymity and context-
specific independence to concisely represent the reward function of single shot complete-information
games and to scalably solve for Nash equilibrium in the number of agents.

The independence is modeled using a directed action graph whose nodes are actions and an
edge between two nodes indicates that the reward of an agent performing an action indicated by
one node is affected by other agents performing action of the other node. Lack of edges between
nodes encodes the context-specific independence where the context is the specific action. Action
anonymity is useful when the action sets of agents overlap substantially. In AGGs, the rewards on
performing a certain action depend on the count of agents performing each of its neighboring actions
in the action graph. Significant savings are obtained because the space of the vectors of counts
over the set of distinct actions called a configuration, is much smaller than the space of joint-action
profiles; the latter is exponential in the number of agents. An AGG is formally defined using the
tuple 〈N,A, (Ψ, E), R〉, where N is the number of agents, identified by an integer beginning at 0;
A is the set of joint actions of all agents as defined previously; the pair (Ψ, E) defines the graph
where the set of nodes is, Ψ =

⋃N
i=0Ai, each of which provides a context, and E is the set of edges

between nodes. Finally, R maps each configuration over an agent’s action and the actions (of others)
in its neighborhood as determined by the graph, to a real number indicating the payoff to the agent.

3. Many-Agent Interactive POMDP

As the number of agents sharing the environment grows, the sizes of the joint action and joint
model spaces increases exponentially. Therefore, the memory requirement for representing the
transition, observation and reward functions grows exponentially as well as does the complexity
of performing the belief update over the interactive states. We call this source of exponentially
increasing complexity due to more agents as the curse of many agents. To facilitate an understanding
of the challenges with N agents and experimentation, we introduce a pragmatic running example
that also forms one of our evaluation domains.
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Figure 1: Protesters of different frames (colors) and police troops (denoted by P enclosed in a box)
distributed across 3 sites in the policing protest domain. The state space of police decision
making is factored into the protest intensity levels at the sites.

Example 1 (Policing Protest). Consider a policing scenario where police (agent 0) must maintain
order in 3 geographically distributed and designated protest sites (labeled 0, 1, and 2) as shown in
Fig. 1. A total population of N agents is protesting at these sites. A protestor may be peaceful or
disruptive and this does not change over time. Police may dispatch one or two riot-control troops to
either the same or different locations. Protests with differing intensities – low, medium and high –
occur at each of the three sites. The goal of the police is to deescalate protests to the low intensity
at each site. Protest intensity at any site is influenced by the number of protestors, how many are
disruptive, and the number of police troops at that location. In the absence of adequate policing, we
presume that the protest intensity escalates. On the other hand, two police troops at a location are
adequate for deescalating protest of any intensity.

We may model the decision making of the self-interested police in this quasi-adversarial situation
using a finitely-nested I-POMDP. 2 However, both the problem representation and solution are
challenged by the presence of a large number of other agents (protestors) in the context. Consequently,
ways of reducing the complexity are needed. We begin by factoring the subject agent’s belief over
state and models, as shown in Section 3.1. This factorization paves the way to model and exploit the
action anonymity of other agents (protestors), as shown in Section 3.2. Finally, we systematically
introduce further efficiency by utilizing context-specific independence in Section 3.3. Coalesced
together, these structures lead to the definition of the many-agent I-POMDP framework in Section 3.4.

3.1 Factored Belief and Update

As we mentioned previously, the subject agent in the I-POMDP framework maintains a belief over
the physical state and joint models of other agents, b0,l ∈ ∆(S ×

∏N
j=1Mj,l−1), where ∆(·) is

the space of probability distributions. For settings where N is large, the size of the interactive
state space is exponentially larger, |IS0,l| = |S||Mj,l−1|N , and the belief representation becomes
unwieldy. In fact, N > 30 would require many gigabytes of memory to store the belief in joint
form. For problem domains involving thousands of agents such as the one described in Example 1,

2. The decision making in policing protests may be modeled differently. For example, it is tempting to model it as a large
Stackelberg game (Fudenberg & Tirole, 1991). However, we do not view this problem as a leader-follower game;
rather it is a simultaneous-move game where protester and troop movements co-occur.
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it is intractable to represent beliefs in this form. However, the representation becomes manageable
for large N if the belief is factored:

b0,l(s,m1,l−1,m2,l−1, . . . ,mN,l−1) = Pr(s) Pr(m1,l−1,m2,l−1, . . . ,mN,l−1|s)
≈ Pr(s) Pr(m1,l−1|s) Pr(m2,l−1|s)× . . .× Pr(mN,l−1|s)

(6)

The factorization in the second line assumes conditional independence between models of different
agents given the physical state. Consequently, beliefs that correlate behaviors of different agents due
to which the belief over those agents’ models cannot be factored, may not be directly represented.
However, correlation could be alternately supported by introducing models that predict joint behaviors
using say, a correlating device.

The memory consumed in storing a factored belief is O(|S|+N |S||Mj |∗), where |Mj |∗ is the
largest size of the model space among all other agents. This is linear in the number of agents, and
is significantly dominated by the exponentially-growing memory required to represent the belief
as a joint distribution over the interactive state space, O(|S||Mj |N ).

Given agent 0’s belief at time t, bt0,l, its action at0 and the subsequent observation it makes ωt+1
0 ,

the updated belief at time step t + 1, bt+1
0,l , may be obtained as:

bt+1
0,l (st+1,mt+1

1,l−1, . . . ,m
t+1
N,l−1) = Pr(st+1,mt+1

1,l−1, . . . ,m
t+1
N,l−1|b

t
0,l, a

t
0, ω

t+1
0 )

= Pr(st+1|bt0,l, at0, ωt+1
0 )Pr(mt+1

1,l−1|s
t+1,mt+1

2,l−1, . . . ,m
t+1
N,l−1, b

t
0,l, a

t
0, ω

t+1
0 )

× . . .× Pr(mt+1
N,l−1|s

t+1, bt0,l, a
t
0, ω

t+1
0 ) (Chain rule) (7)

Each factor in the product of Eq. 7 may be obtained as follows. The update over the physical
state is:

Pr(st+1|bt0,l, at0, ωt+1
0 ) =

1
Pr(ωt+1

0 |bt0,l, at0)
Pr(st+1, ωt+1

0 |bt0,l, at0) (Bayes Rule)

∝ Pr(st+1, ωt+1
0 |bt0,l, at0)

=
∑
st

∑
mt
−0,l−1

∑
at−0

Pr(st+1, ωt+1
0 , st,mt

−0,l−1,a
t
−0|bt0,l, at0)

=
∑
st

bt0,l(s
t)

∑
mt
−0,l−1

bt0,l(m
t
1,l−1|st)× . . .× bt0,l(mt

N,l−1|st)×
∑
at−0

Pr(at1|mt
1,l−1)× . . .×

Pr(atN |mt
N,l−1)×O0(st+1, at0,a

t
−0, ω

t+1
0 ) T0(st, at0,a

t
−0, s

t+1) (8)

where mt
−0,l−1 and at−0 denote the vectors of models and actions of agents other than 0, respectively.

The update over the model of each other agent, j = 1 . . . N , conditioned on the state at t+ 1 is:

Pr(mt+1
j,l−1|s

t+1,mt+1
j+1,l−1, . . . ,m

t+1
N,l−1, b

t
0,l, a

t
0, ω

t+1
0 )

=
∑
st

bt0,l(s
t)
∑
mt
−0

bt0,l(m
t
1,l−1|st) bt0,l(mt

2,l−1|st)× . . .× bt0,l(mt
N,l−1|st)

∑
atj

∑
at−j

Pr(at1|mt
1,l−1)

× . . .× Pr(atN |mt
N,l−1)

∑
ωt+1
j

Oj(st+1, atj ,a
t
−j , ω

t+1
j ) Pr(mt+1

j,l−1|m
t
j,l−1, a

t
j , ω

t+1
j ) (9)

734



DECISION-THEORETIC PLANNING UNDER ANONYMITY

If the models are intentional, then Pr(mt+1
j,l−1|m

t
j,l−1, a

t
j , ω

t+1
j ) is equal to τ(bt+1

j,l−1, SE(btj,l−1, a
t
j ,

ωt+1
j )) that appeared in Eq. 4. Derivations of Eqs. 8 and 9 are straightforward and not included here

for brevity. In particular, note that models of agents other than j at t+ 1 do not impact j’s model
update in the absence of correlated behavior. Thus, under the assumption of a factored prior as in
Eq. 6 and absence of model correlations, the I-POMDP belief update may be decomposed into an
update of the physical state and the models of the N agents conditioned on the state.

3.2 Frame-Action Anonymity

As noted by Jiang et al. (2011), many noncooperative and cooperative problems exhibit the structure
that rewards depend on the number of agents acting in particular ways rather than which agent is
performing the act. This is particularly evident in Example 1 where the outcome of policing at any
given site largely depends on the number of peaceful and disruptive protesters converging at that site.
Building on this, we additionally observe that the transient state of the protests and observations of
the police at a site are also largely influenced by the number of peaceful and disruptive protesters
moving from one location to another. This is noted in the example below:

Example 2 (Frame-action anonymity of protesters). The transient state of protests reflecting the
intensity of protests at each site depends on the previous intensity at a site and the number of peaceful
and disruptive protesters entering the site. Police (noisily) observes the intensity of protest at each
site which is again largely determined by the number of peaceful and disruptive protesters at a site.
Finally, the outcome of policing at a site is contingent on whether the protest was largely peaceful or
disruptive. Consequently, the identity of the individual protesters beyond their frame and action is
disregarded.

Here, the peaceful or disruptive nature of the protesters are captured by different frames of others
in agent 0’s I-POMDP, and this modeling may be extended to any number of frames. Frame-action
anonymity is an important attribute of the above domain. We formally define it in the context of
agent 0’s transition, observation and reward functions next:

Definition 1 (Frame-action anonymity). Let ap−0 be a joint action of all peaceful protesters and ad−0

be a joint action of all disruptive ones. Let ȧp−0 and ȧd−0 be some permutations of the two joint action
profiles, respectively. An I-POMDP models frame-action anonymity iff for any a0, s, s′, ap−0 and
ad−0 :

T0(s, a0,a
p
−0,a

d
−0, s

′) = T0(s, a0, ȧ
p
−0, ȧ

d
−0, s

′),

O0(s′, a0,a
p
−0,a

d
−0, ω0) = O0(s′, a0, ȧ

p
−0, ȧ

d
−0, ω0), and

R0(s, a0,a
p
−0,a

d
−0) = R0(s, a0, ȧ

p
−0, ȧ

d
−0) ∀ȧp−0, ȧ

d
−0.

Recall the definition of an action configuration, which we will denote by C, as the vector of
action counts across an agent population. A permutation of joint actions of others having the same
frame, say ȧp−0, differently assigns actions from the same set of actions to individual agents with the
frame. Despite this, the fact that the transition and observation probabilities, and the reward remains
unchanged indicates that these probabilities and reward are conditionally independent of the identities
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of the agents performing the actions given the configuration. Importantly, the action configuration of
the joint action and its permutation stay the same: C(ap−0) = C(ȧp−0). This combined with Defini-
tion 1 allows redefining the transition, observation and reward functions to be over configurations as:
T0(s, a0, C(ap−0), C(ad−0), s′), O0(s′, a0, C(ap−0), C(ad−0), ω), and R0(s, a0, C(ap−0), C(ad−0)).

Let Ap1, . . . , Apn be the sets of actions of n peaceful protesters, and Ap−0 is the Cartesian product
of these sets. Let C(Ap−0) be the set of all action configurations for Ap−0. Observe that multiple
joint actions from Ap−0 may result in a single configuration; these joint actions are configuration
equivalent. Consequently, the equivalence partitions the joint action set Ap−0 into |C(Ap−0)| classes.
Furthermore, when other agents of same frame have overlapping sets of actions, the number of
configurations could get much smaller than the number of joint actions. Consequently, definitions of
the transition, observation and reward functions involving configurations would be more compact.
Of course, as we identify actions with frames, the scenario gradually loses anonymity with more
frames. Thus, an implicit assumption, which is also realistic, is that there are far fewer frames than
the numbers of agents. For example, protestors in the policing protest example exhibit two frames.

For the sake of convenience, let C be a tuple representing configurations over the actions
performed by agents of all frames. Then, we may write the transition, observation, and reward
functions as T0(s, a0, C, s′), O0(s′, a0, C, ω) and R0(s, a0, C), respectively.

3.3 Frame-Action Hypergraphs

In addition to frame-action anonymity, domains involving agent populations often exhibit another
form of structure – context-specific independences. This is a broad category and includes the context-
specific independence found in conditional probability tables of Bayesian networks (Boutilier
et al., 1996) and in action-graph games. It offers significant additional structure for computational
tractability. We begin by illustrating this in the context provided by Example 1.

Example 3 (Context-specific independence in policing). At a protest site, payoff for policing is
independent of the movement of the protesters to other sites. Similarly, the transient intensity of the
protest at a site given the level of policing at the site as context is independent of the movement of
protesters between other sites.

The context-specific independences above build on the similar independence modeled in action
graphs in two ways: (i) We model such partial independence in the transitions of factored states and
in the observation function as well, in addition to the reward function. (ii) We allow the context-
specific independence to be mediated by the frames of other agents in addition to their actions.
For example, the reward from passive policing at a site is independent of the number of peaceful
protesters, instead influenced primarily by the number of disruptive protesters.

These differences imply that the context has expanded to include nodes for transitions (when
independence is used in transition function) and other agent’s frame. Therefore, action graphs are
no longer sufficient because each edge has more than two nodes. We generalize the action graphs
into frame-action hypergraphs, and specifically 3-uniform hypergraphs where each edge is a set
of 3 nodes. We formally define it below:

Definition 2 (Frame-action hypergraph). A frame-action hypergraph for agent 0 is a 3-uniform
hypergraph G = 〈Ψ, A−0, Θ̂−0, E〉, where Ψ is a set of nodes that represent the context, A−0 is a
set of action nodes with each node representing an action that any other agent may take; Θ̂−0 is a
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set of frame nodes, each node representing a frame ascribed to an agent, and E is a set of 3-uniform
hyperedges where each hyperedge contains one node from each set Ψ, A−0, and Θ̂−0, respectively.

Both context and action nodes differ based on whether the hypergraph applies to the transition,
observation or reward functions:

• For the transition function, the context is a set containing a pair of states between which a
transition may occur and an action of agent 0, Ψ = S ×A0 × S, and the action nodes include
actions of all other agents, A−0 =

⋃N
j=1Aj . Neighbors of a context node ψ = 〈s, a0, s

′〉 are
all the frame-action pairs that affect the probability of the transition. An edge (〈s, a0, s

′〉, a−0,
θ̂) indicates that the probability of transitioning from s to s′ on performing a0 is affected (in
part) by the number of other agents of frame θ̂ performing the particular action in a−0.

• The context for agent 0’s observation function is the set of state-action-observation triplets,
Ψ = S × A0 × Ω0, and the action nodes are identical to those in the transition function.
Neighbors of a context node, 〈s, a0, ω0〉, are all those frame-action pairs that affect the
observation probability. Specifically, an edge (〈s, a0, ω0〉, a−0, θ̂) indicates that the probability
of observing ω0 from state s on performing a0 is affected (in part) by the number of other
agents performing action a−0 who possess frame θ̂.

• For agent 0’s reward function, the context is the set of pairs of state and action of agent
0, Ψ = S × A0, and the action nodes are the same as those in transition and observation
functions. An edge (〈 s, a0〉, a−0, θ̂−0) in this hypergraph indicates that the reward for agent 0
on performing action a0 at state s is affected (in part) by the agents of frame θ̂−0 who perform
action a−0.

(a) (b)

Figure 2: Levi (incidence) graph representation of a generic frame-action hypergraph for (a) the transition
function, and (b) the reward function. The shaded black nodes represent edges in the hypergraph.
Each edge has the context, ψ, denoted in bold, agent’s action, a, and its frame, θ̂, incident on it.
For example, the reward for a state and agent 0’s action, 〈s, a0〉1 is affected by others’ actions a1

j

and a2
j performed by any other agent of frame θ̂1j only.
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We illustrate a schematic frame-action hypergraph for context-specific independence in a tran-
sition function and in a reward function as Levi graphs in Figs. 2(a) and (b), respectively. We
point out that the hypergraph for the reward function comes closest in semantics to the graph in
action graph games (Jiang et al., 2011) although the former adds the state to the context as well
as nodes for frames. Hypergraphs for the transition and observation functions differ substantially
in semantics and form from action graphs.

To use these hypergraphs in our algorithms, we first define the general frame-action neighborhood
of a context node.

Definition 3 (Frame-action neighborhood). The frame-action neighborhood of a context node
ψ ∈ Ψ, ν(ψ), given a frame-action hypergraph G is defined as a subset of A−0 × Θ̂ such that
ν(ψ) = {(a−0, θ̂)|a−0 ∈ A−0, θ̂ ∈ Θ̂, (ψ, a−0, θ̂) ∈ E}.

As an example from Fig. 2(b), the frame-action neighborhood of a state-action pair, 〈s, a0〉
in a hypergraph for the reward function is the set of all action and frame nodes incident on each
hyperedge anchored by the node 〈s, a0〉.

We move toward integrating frame-action anonymity introduced in the previous subsection with
the context-specific independence as modeled above by introducing frame-action configurations.

Definition 4 (Frame-action configuration). A configuration over the frame-action neighborhood of a
context node, ψ, given a frame-action hypergraph is a vector,

Cν(ψ) 4= 〈 C(aθ̂1−0), C(aθ̂2−0), . . . , C(a
θ̂|Θ̂|
−0 ), C(φ) 〉

where each a included in aθ̂−0 is an action in ν(ψ) with frame θ̂, and C(aθ̂−0) is a configuration over
actions by agents other than 0 whose frame is θ̂. All agents with frames other than those in the
frame-action neighborhood are assumed to perform a dummy action, φ.

Definition 4 allows further inroads into compacting the transition, observation and reward
functions of the I-POMDP using context-specific independence. Specifically, we may redefine
these functions one more time (see previous redefinition in the prior subsection) to limit the con-
figurations only over the frame-action neighborhood of the context as, T0(s, a0, Cν(s,a0,s′), s′),
O0(s′, a0, Cν(s′,a0,ω0), ω0) and R0(s, a0, Cν(s,a0)). 3

3.4 I-POMDP with Anonymity and Context-Specific Independence

In order to benefit from structures of anonymity and context-specific independence, we switch to a
factored representation of the state space and redefine I-POMDP for agent 0 as follows:

I-POMDP0,l = 〈IS0,l, A,Ω0, T0,O0,R0, OC0〉

where:

• IS0,l, A, Ω0 and OC0 remain the same as before except that the physical states are factored as,
S =

∏K
k=1Xk, where Xk is a set of values of the kth state variable, and let xk denote a value.

3. Context in our transition function is 〈s, a0, s
′〉 compared with the context of just 〈s, a0〉 in Varakantham et al’s (2014)

transition function.
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• T0 is the transition function, T0(x, a0, Cν(x,a0,x′), x′) where Cν(x,a0,x′) is the configuration over
the frame-action neighborhood of context 〈x, a0, x

′〉 obtained from a hypergraph that holds
for the transition function.

This transition function is significantly more compact than the original that occupies space
O(|X|2|A0||Aj |N ) compared to the O(|X|2|A0|( N

|ν∗|)
|ν∗|) of T0, where the fraction is the

complexity of
(N+|ν∗|+1
|ν∗|+1

)
; |ν∗| is the cardinality of the largest neighborhood of any context,

and ( N
|ν∗|)

|ν∗|� |Aj |N . The value
(N+|ν∗|+1
|ν∗|+1

)
is obtained from combinatorial compositions

and represents the number of ways |ν∗|+ 1 non-negative values can be weakly composed such
that their sum is N .

• The redefined observation function is O0(x′, a0, Cν(x′,a0,ω0), ω0) where Cν(x′,a0,ω0) is the
configuration over the frame-action neighborhood of context 〈x′, a0, ω0〉 obtained from a
hypergraph that holds for the observation function. Analogously to the transition function,
the original observation function consumes space O(|X||Ω||A0||Aj |N ), which is much larger
than space O(|X||Ω||A0|( N

|ν∗|)
|ν∗|) occupied by this redefinition.

• R0 is the reward function defined asR0(x, a0, Cν(x,a0)) where Cν(x,a0) is defined analogously
to the configurations in the previous parameters. The reward for a state and actions may
simply be the sum of local rewards for the state factors and actions (or a more general
function if needed). As with the transition and observation functions, this reward function is
compact occupying space O(|X||A0|( N

|ν∗|)
|ν∗|) that is much less than O(|X||A0||A−0|N ) of

the original.

3.4.1 BELIEF UPDATE WITH ANONYMITY AND CONTEXT-SPECIFIC INDEPENDENCE

For this extended I-POMDP, we compute the updated belief over a physical state as a product
of its factors using Eq. 12 and belief update over the models of each other agent using Eq. 13
as shown below:

Pr(st+1|bt0,l, at0, ωt+1
0 ) ∝ Pr(st+1, ωt+1

0 |bt0,l, at0)

= Pr(ωt+1
0 |st+1, bt0,l, a

t
0) Pr(st+1|bt0,l, at0)

= Pr(〈ωt+1
0,1 , ω

t+1
0,2 , . . . , ω

t+1
0,k 〉|〈x

t+1
1 , xt+1

2 , . . . , xt+1
k 〉, b

t
0,l, a

t
0) Pr(〈xt+1

1 , xt+1
2 , . . . , xt+1

k 〉|b
t
0,l, a

t
0)

=
{ K∏
k=1

Pr(ωt+1
0,k |〈x

t+1
1 , xt+1

2 , . . . , xt+1
k 〉, b

t
0,l, a

t
0)
}
×
{ K∏
k=1

Pr(xt+1
k |b

t
0,l, a

t
0)
}

(10)

=
{ K∏
k=1

Pr(ωt+1
0,k |x

t+1
k , bt0,l, a

t
0)
}
×
{ K∏
k=1

Pr(xt+1
k |b

t
0,l, a

t
0)
}

(11)

Without loss of generality, let the observation be decomposed into factors. For simplicity, we assume
that there as many factors as the state factors. Equation 10 results from supposing that both the
observation and state factors are independent. Additionally, we suppose that an observation factor
ω0,k is conditionally independent of state factors other than xk given the latter, leading to Eq. 11.
We discuss the feasibility of these suppositions in the context of our test problem domains and
more generally in practice, in Section 6. Next, we seek to replace the belief bt0,l in the condition
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of each probability term in Eq. 11 with the state using marginalization. This step allows us to
proceed toward including the transition and observation functions in the factored belief update. Thus,
Pr(st+1|bt0,l, at0, ω

t+1
0 ) becomes

=
{ K∏
k=1

∑
st

bt0,l(s
t)Pr(ωt+1

0,k |x
t+1
k , bt0,l, a

t
0, s

t)
}
×
{ K∏
k=1

∑
st

bt0,l(s
t)Pr(xt+1

k |b
t
0,l, a

t
0, x

t)
}

=
{ K∏
k=1

∑
st

bt0,l(s
t)
∑
mt
−0

bt0,l(m
t
−0|st)

∑
at−0

Pr(at−0|mt
−0)Pr(ωt+1

0,k |x
t+1
k , at0,a

t
−0)
}
×

{ K∏
k=1

∑
st

bt0,l(s
t)
∑
mt
−0

bt0,l(m
t
−0|st)

∑
at−0

Pr(at−0|mt
−0)Pr(xt+1

k |x
t, at0,a

t
−0)
}

Let us introduce a projection function δν(ψ) that maps joint actions of others to the corre-
sponding frame-action configurations as defined in Def. 4. Formally δν(ψ) : A−0 × Θ̂ → Cν(ψ),
where Cν(ψ) is the set of all possible frame-action configurations. Notice that δν(ψ) is a many-
one map because there may be many joint action vectors that map to the same frame-action
configuration due to anonymity; these joints are configuration-equivalent as mentioned previ-
ously. Thus, δν(ψ) induces an equivalence partition of A−0. An equivalence set for a configu-

ration Cν(ψ) ∈ Cν(ψ) is {Aθ̂1−0, A
θ̂2
−0, . . . , A

θ̂|Θ̂|
−0 }, where Aθ̂1−0 for instance is a set of joint actions

of all other agents with frame θ̂1 that induce the same C(aθ̂1−0). Therefore, for each a−0 in Aθ̂1−0

× Aθ̂2−0 × . . .× A
θ̂|Θ̂|
−0 , T0(xtk, a

t
0,a

t
−0, x

t+1
k ) = T0(xtk, a

t
0, Cν(xtk,a

t
0,x

t+1
k ), xt+1

k ), and analogously

O0(xt+1
k , at0,a

t
−0, ω

t+1
0,k ) = O0(xt+1

k , at0, C
ν(xt+1

k ,at0,ω
t+1
0,k ), ωt+1

0,k ). Previous equation for the belief
update becomes, Pr(st+1|bt0,l, at0, ω

t+1
0 ) ∝

{ K∏
k=1

∑
st

bt0,l(s
t)
|Cν(xt+1

k
,at0,ω

t+1
0,k

)|∑
c=1

∑
mt
−0

bt0,l(m
t
−0|st)

∑
at−0∈Ac−0

Pr(at−0|mt
−0) Pr(Cν(xt+1

k ,at0,ω
t+1
0 )|

xt+1
k , at0) O0(xt+1

k , at0, Cν(xt+1
k ,at0,ω

t+1
0 ), ωt+1

0,k )
}
×
{ K∏
k=1

∑
st

bt0,l(s
t)
|Cν(xtk,a

t
0,x

t+1
k

)|∑
c=1

∑
mt
−0

bt0,l(m
t
−0|st)

×
∑

at−0∈Ac
−0

Pr(at−0|mt
−0) Pr(Cν(xtk,a

t
0,x

t+1
k )|xtk, at0) T0(xtk, a

t
0, Cν(xtk,a

t
0,x

t+1
k ), xt+1

k )
}

where Ac
−0 denotes the equivalence set Aθ̂1−0 × Aθ̂2−0 × . . .× A

θ̂|Θ̂|
−0 . By construction of Ac

−0, the
observation and transition probabilities remain the same for every at−0 ∈ Ac

−0. Furthermore, we may
compute the probability of a given configuration using the probability of the models of other agents
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and the probability of their actions given the models. Therefore, we may rewrite the belief update as:

Pr(st+1|bt0,l, at0, ωt+1
0 )

∝
{ K∏
k=1

∑
st

bt0,l(s
t)

∑
Cν(xt+1

k
,at0,ω

t+1
0 )

Pr(Cν(xt+1
k ,at0,ω

t+1
0 )|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

O0(xt+1
k , at0, Cν(xt+1

k ,at0,ω
t+1
0 ), ωt+1

0 )
}
×
{ K∏
k=1

∑
st

bt0,l(s
t)

∑
Cν(xt

k
,at0,x

t+1
k

)

Pr(Cν(xtk,a
t
0,x

t+1
k )|

bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) T0(xtk, a
t
0, Cν(xtk,a

t
0,x

t+1
k ), xt+1

k )
}

(12)

Here, Pr(Cν(xt+1
k ,at0,ω

t+1
0 )|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) is the probability of a frame-action

configuration that is context specific to the triplet, 〈xt+1
k , a0, ω

t+1
0,k 〉. It is computed using the factored

belief distributions over the models of each other agent using a dynamic program as outlined later.
A benefit of the belief factorization is that the program takes as input just N beliefs each of size
|Mj | compared to a single large belief of exponential size |Mj |N .

Analogously, the factored belief update over the models of each other agent j = 1 . . . N
conditioned on the state at t + 1 as previously shown in Eq. 9 now becomes:

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0)

=
∑
st

bt0,l(s
t)
∑
mtj

bt0,l(m
t
j |st)

∑
atj

Pr(atj |mt
j)
∑
ωt+1
j

{ K∏
k=1

∑
Cν(xt+1

k
,at
j
,ωt+1
j,k

)

Pr(Cν(xt+1
k ,atj ,ω

t+1
j,k )|

at0, b
t
0,l(M1,l−1|st), . . . , bt0,l(Mj−1,l−1|st), bt0,l(Mj+1,l−1|st), . . . , bt0,l(MN,l−1|st))

Oj(xt+1
k , atj , C

ν(xt+1
k ,atj ,ω

t+1
j,k ), ωt+1

j,k )
}
Pr(mt+1

j |m
t
j , a

t
j , ω

t+1
j ) (13)

The probability of configuration given action at0 and beliefs over models of all others except j is
computed as mentioned previously using dynamic programming.

3.4.2 VALUE FUNCTION

The finite-horizon value function of the many-agent I-POMDP continues to be the sum of agent 0’s
immediate reward and the discounted expected reward over the future:

V h(bt0,l) = max
at0∈A0

ER0(bt0,l, a
t
0) + γ

∑
ωt+1

0

Pr(ωt+1
0 |bt0,l, at0) V h−1(bt+1

0,l ) (14)

where ER0(bt0,l, a
t
0) is the expected immediate reward of agent 0 and γ is the discount factor. In the

context of the redefined reward function of the I-POMDP framework in this section, the expected
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immediate reward is obtained as:

ER0(bt0,l, a
t
0) =

∑
st

bt0,l(s
t)
( K∑
k=1

∑
Cν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

R0(xtk, a
t
0, Cν(xtk,a

t
0))
)

(15)

where the inner sum is over all the state factors, st = 〈xt1, . . . , xtK〉, and the term Pr(Cν(xtk,a
t
0)|

bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) denotes the probability of a frame-action configuration that
is context-specific to the factor xtk and action at0.

Notice that Eq. 14 involves updating agent 0’s belief bt0,l to obtain bt+1
0,l . This is accomplished

using the belief update derived in Section 3.4.1, which relied on the property of frame-action
anonymity (Definition 1) and the resulting structure (Definitions 3 and 4), as well as context-specific
independence as modeled in frame-action hypergraphs (Definition 2). Importantly, Proposition 1
establishes that the Bellman equation above is exact.

Proposition 1 (Optimality). The Bellman equation in (14) provides an exact computation of the
value function for the many-agent I-POMDP under the conditions of Definitions 1 and 4.

Proof. The proof of Proposition 1 proceeds by induction on the horizon. For base case of horizon 1
the value function may be written as:

V 1(bt0,l) = max
at0

ER0(bt0,l, a
t
0)

= max
at0

∑
st,mt

−0,a
t
−0

Pr(st,mt
−0,a

t
−0)

K∑
k=1

R0(xtk, a
t
0,a

t
−0)

= max
at0

∑
st

bt0,l(s
t)

∑
mt
−0,a

t
−0

Pr(mt
−0,a

t
−0|st)

K∑
k=1

R0(xtk, a
t
0,a

t
−0)

= max
at0

∑
st

bt0,l(s
t)

K∑
k=1

∑
mt
−0,a

t
−0

Pr(mt
−0,a

t
−0|st) R0(xtk, a

t
0,a

t
−0)

where st = 〈xt1, xt2, . . . , xtK〉. Frame-action anonymity and context-specific independence as stated
in Definitions 1 and 4 allows us to introduce configurations. Thus, V 1(bt0,l) becomes

= max
at0

∑
st

bt0,l(s
t)
{ K∑
k=1

∑
Cν(xt

k
,at0)

∑
mt
−0,a

t
−0

Pr(Cν(xtk,a
t
0),mt

−0,a
t
−0|st) R0(xtk, a

t
0, Cν(xtk,a

t
0))
}

= max
at0

∑
st

bt0,l(s
t)
{ K∑
k=1

∑
Cν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

×R0(xtk, a
t
0, Cν(xtk,a

t
0))
}
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As we mentioned previously, the probability of a configuration can be computed using the conditional
belief over other agents’ models.

As the inductive hypothesis, let the value function be exact for horizon h− 1. Then, from Eq. 14
the horizon h value function is composed as

V h(bt0,l) = max
at0∈At0

ER0(bt0,l, a
t
0) + γ

∑
ωt+1

0

Pr(ωt+1
0 |bt0,l, at0)V h−1(bt+1

0,l )

The first term is the horizon 1 value function which is exact from the base case. Term V h−1(bt+1
0,l )

is exact by inductive hypothesis. Finally, the term Pr(ωt+1
0 |bt0,l, at0) is merely the normalization

constant for the belief update. Equations 12 and 13 that constitute the belief update for the many-
agent I-POMDP are derived from first principles under the condition that the observation and state
factors are independent. Hence, V h(bt0,l) is exact.

4. Algorithm

In this section, we present our simple method for solving the many-agent I-POMDP defined pre-
viously. The section that follows improves on this initial method. To assist in understanding the
remaining sections better, we recapitulate key notation introduced so far and some new notation
in Appendix A.

4.1 Look-Ahead Tree for Solution

We utilize a straightforward method for solving the many-agent I-POMDP given an initial belief:
each other agent is modeled using a finite-state controller which is included as part of the interactive
state space. A tree consisting of beliefs as nodes, which can be reached is projected for as many
steps as the horizon using Eqs. 12 and 13. Value iteration (Eq. 14) is then performed on the tree
in a bottom up manner to obtain the exact value at the root node.

b0,l
t

a1 a|A|

W(b0,l
t
,a1,o0) W(b0,l

t
,a1,o|:|) W(b0,l

t
,a|A|,o0) W(b0,l

t
,a|A|,o|:|)

Figure 3: Computing beliefs reachable from a given belief in one step. A belief is obtained for each
action-observation pair 〈at0, ω

t+1
0 〉.

Figure 3 illustrates the computation of beliefs reachable from initial belief bt0,l in one step. For
each action at0 and observation ωt+1

0 , the updated belief τ(bt0,l, a
t
0, ω

t+1
0 ) is obtained. A horizon

h reachability tree is projected by computing 1 step reachability for the root node and all inner
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nodes. Note that the number of beliefs in the reachability tree is O((|A0||Ω0|)h) which affects the
computational complexity exponentially; this is the well-known curse of history. As such, it is easy
to see that this solution method does not scale with horizon.

Equations 12, 13 and 15, which form key steps in the value iteration, utilize distributions over
frame-action configurations. Next, we present an algorithm that computes this distribution using
the conditional belief over the models of each other agent, which gives the probability of their
action(s) given the model.

4.2 Computing Distribution Over Frame-Action Configurations

Algorithm 1 generalizes the dynamic programming by Jiang and Lleyton-Brown (2011) for computing
configurations over actions given mixed strategies of other agents to include frames and conditional
beliefs over models of other agents. It computes the probability distribution of configurations over
the frame-action neighborhood of a context given the belief over the agents’ models. Specifically,
the algorithm allows us to obtain Pr(Cν(xt+1

k ,a0,ω
t+1
0,k )|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) and

Pr(Cν(xtk,a0,x
t+1
k )|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) in Eq. 8, Pr(Cν(xt+1

k ,atj ,ω
t+1
j,k )|bt0,l(M1,l−1|st),

. . . , bt0,l(Mj−1,l−1|st), bt0,l(Mj+1,l−1|st), . . . bt0,l(MN,l−1|st)) in Eq. 9, and Pr(Cν(xtk,a0)|
bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) in Eq. 15.

Algorithm 1 Computing Pr(Cν(·)|b0,l(M1,l−1|s), . . . , b0,l(MN,l−1|s))
Input: ν(·), 〈b0,l(M1,l−1|s), . . . , b0,l(MN,l−1|s)〉
Output: Trie Pn representing distribution over frame-action configurations in ν(·)

1: Initialize c0 = (0, · · · , 0) one value for each frame-action pair in ν(·) and one for dummy action
φ representing all other actions. Insert it into an empty trie P0

2: Initialize P0[c0]← 1
3: for j = 1 to N do
4: Initialize Pj to be an empty trie
5: for all cj−1 from Pj−1 do
6: for all mj,l−1 ∈Mj,l−1 do
7: for all aj ∈ Aj such that Pr(aj |mj,l−1) > 0 do
8: cj ← cj−1

9: if 〈θ̂j , aj〉 ∈ ν(·) then
10: cj [θ̂, aj ]

+← 1
11: else
12: cj [φ] +← 1
13: if Pj [cj ] does not exist then
14: Initialize Pj [cj ]← 0
15: Pj [cj ]

+← Pj−1[cj−1]× Pr(aj |mj,l−1)× b0,l(mj,l−1|s)
16: return Pn

At a high level, all configurations supported by the set of models ascribed to each other agent
and their solutions, are generated and receive a non-zero probability. Algorithm 1 computes a
probability for a configuration, which is the result of multiplying the probabilities of actions of N
agents scaled by the belief over the corresponding models, which contributed to the configuration.
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The final probability assigned to a configuration is a sum of all probabilities previously assigned
to that configuration.

Algorithm 1 adds the predicted actions of each agent one at a time. It utilizes a trie data structure
to store the probabilities of configurations. The trie enables efficient insertion and access of the
configuration probabilities in the algorithm. We begin by initializing the configuration space for
agent 0 (P0) to contain one tuple of integers (c0) with |ν|+ 1 0s and assign its probability to be 1
(lines 1-2). Using the configurations from the previous step, we construct the configurations over
the actions performed by N agents by adding 1 to the relevant element depending on agent j’s
action and its frame (lines 3-15). If an action aj performed by an agent j with frame θ̂j is in the
frame-action neighborhood ν(·) then we increment its corresponding count by 1. Otherwise, it is
considered as a dummy action and the count of φ is incremented (lines 9-12). Similarly, we update
the probability of a configuration using the probability of aj and that of the base configuration cj−1

(line 15). This algorithm may be invoked multiple times for different contexts ν(·) as needed in
computing the belief update and value function.

4.3 Analysis of Computational Savings

The complexity of accessing an element in a ternary search trie with |ν|+ 1 elements is Θ(|ν|). The
maximum number of configurations encountered at any iteration is upper bounded by total number
of configurations for N agents, i.e. O(( N

|ν∗|)
|ν∗|). Importantly, the complexity of Algorithm 1 is

polynomial in N , O(N |M∗j ||A∗j ||ν∗|( N
|ν∗|)

|ν∗|) where M∗j and A∗j are the largest sets of models and
actions among any other agent.

For the traditional I-POMDP belief update, the complexity of computing Eq. 8 is O(|S||M∗j |N

|A∗j |N ) and that for computing Eq. 9 isO(|S||M∗j |N |A∗j |N |Ω∗j |) where ∗ denotes the maximum cardi-
nality set for any agent. For a factored representation, the belief update operator invokes Eq. 8 for each
value of all state factors and it invokes Eq. 9 for each model of each other agent j and for all values of
updated states. Hence, the total complexity of belief update isO(N |M∗j ||S|2|M∗j |N |A∗j |N |Ω∗j |). The
complexity of computing updated belief over state factor xt+1 using Eq. 12 is O(|S|NK|M∗j ||A∗j |
|ν∗|( N

|ν∗|)
|ν∗|) (recall the complexity of Algorithm 1). Similarly, the complexity of computing up-

dated model probability using Eq. 13 is O((|S|N |M∗j ||A∗j ||ν∗|+ |Ω∗j |)( N
|ν∗|)

|ν∗|). These complexity
terms are polynomial in N for small values of |ν∗| as opposed to exponential in N as in Eqs. 8 and
9. The overall complexity of belief update is also polynomial in N .

Complexity of computing the immediate expected reward in the absence of problem structure
is O(|S|K|M∗j |N |A∗j |N ). On the other hand, the complexity of computing expected reward using
Eq. 15 is O(|S|KN |M∗j ||A∗j ||ν∗|( N

|ν∗|)
|ν∗|), which is again polynomial in N thereby providing

significant savings for low values of |ν∗|.

5. Branch and Bound for Scaling Exact Solution

In order to mitigate the curse of history, we present a novel branch-and-bound based method that
utilizes upper and lower bounds on the value function of the many-agent I-POMDP to prune action
nodes of the reachability tree while avoiding exactly evaluating the subtree below them. This method
is a first application of the branch-and-bound scheme in the context of I-POMDPs, and in particular
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addresses the challenge of deriving fast value function bounds. We derive these bounds and outline
the branch-and-bound algorithm in this section.

Hauskrecht (2000) discusses various lower and upper bounds for POMDPs some of which are
tight and can be computed quickly. Among these, the blind-policy lower bound and the informed
upper bound, briefly reviewed in Section 2, can be computed quickly. We adapt these to the
framework of many-agent I-POMDP.

5.1 Lower Bound Using Pessimistic Blind Policy

A blind policy chooses the same action at a time step regardless of the observation it receives. In
other words, it ignores the information contained in the observation. This loss of information leads
to an underestimation of the expected value. We extend this lower bound to many-agent I-POMDPs.
Furthermore, to quickly compute this bound, for any given context we adopt a pessimistic perspective
by utilizing the configuration that would lead to the least expected value for the agent. This shares
similarities with the maximin way of estimating a player’s utility in a game. A direct benefit of this
step is that it avoids running Algorithm 1 to compute the distribution over configurations.

Proposition 2 (Pessimistic Blind Policy). The pessimistic blind policy yields a lower bound on the
exact value of the many-agent I-POMDP.

The proof of this proposition uses mathematical induction on the horizon, and is detailed in
Appendix B. We show that the lower bound obtained by selecting the configuration Cν(xtk,a

t
0) that

minimizesR0 for the horizon 1 action-value is: Q1
0,l

(bt0,l, a
t
0) =

∑
st
bt0,l(s

t)
K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)).

Analogously to POMDPs, we may decompose this lower bound value using alpha vectors as

Q1
0,l

(bt0,l, a
t
0) =

∑
st
α1(st) · bt0,l(st), where α1(st) =

K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)).

For horizon h > 1, the action-value lower bound in full is,

Qh
0,l

(bt0,l, a
t
0) =

∑
st

bt0,l(s
t)

K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)) + γ

∑
st

bt0,l(s
t)
∑
st+1

K∏
k=1

T0(xtk, a
t
0,

Cν(xtk,a
t
0,x

t+1
k ), xt+1

k ) αh−1
∗ (st+1)

The lower-bound vectors for horizon h may be obtained for all actions by using lower bound
vectors from horizon h − 1 as follows:

αh(st) =
K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)) + γ

∑
st

bt0,l(s
t)
∑
st+1

K∏
k=1

T0(xtk, a
t
0, C

ν(xtk,a
t
0,x

t+1
k ), xt+1

k )

× αh−1
∗ (st+1)

Notice that the vectors computed for the lower bound are over the physical states only (and not
over the interactive state space). Hence, they are not impacted by the curse of many agents and
can be computed quickly. Given agent 0’s belief over the physical states b0,l, a lower bound on
the horizon h value function is obtained as:

V h
0,l(b

t
0,l) = max

at0∈A0

Qh
0,l

(bt0,l, a
t
0) (16)
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5.2 Fast Informed Upper Bound with Optimistic Configurations

As we mentioned in Section 2, the fast informed bound provides an upper bound to the POMDP
value function. Hauskrecht (1997) shows that this bound is tighter than the one obtained by using
the MDP based method. We generalize this bound to the many-agent I-POMDP and enable faster
computation by choosing configurations that maximize reward and probabilities while upholding
the upper bound property.

Proposition 3 (Optimistic Fast Informed Bound). The fast informed update with maximizing config-
urations gives an upper bound to the exact many-agent I-POMDP value function.

Analogously to the previous proposition, the proof here also uses mathematical induction on the
horizon, and is detailed in Appendix B. An upper bound for the horizon 1 value is obtained as follows:

Q
1
0,l(b0,l, a

t
0) =

∑
st
bt0,l(s

t)
K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)), where Cν(xtk,a

t
0) is the configuration that

maximizes R0(xtk, a
t
0, C

ν(xtk,a
t
0)). These upper bounds may be decomposed into a set of vectors one

for each action a0, α1
a0

(st) =
K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)), and each vector has as many components

as states.
For horizon h, the action-value upper bound is Qh0,l(b

t
0,l, a

t
0) =

∑
st
bt0,l(s

t) αh
at0

(st). Each action

value is associated with a single alpha vector due to which there are as many vectors as the number
of actions. We write out the full definition of the alpha vector for completeness:

αhat0
(st) =

K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)) + γ

∑
ωt+1

0

∑
st+1

K∏
k=1

O0(xt+1
k , at0, C

ν(xt+1
k ,at0,ω

t+1
0 )

, ωt+1
0 )

× T0(xtk, a
t
0, C

ν(xtk,a
t
0,x

t+1
k )

, xt+1
k ) αh−1

∗ (st+1)
}

(17)

The upper bound on the value function is obtained as:

V
h
0,l(b

t
0,l) = max

at0∈A0

Q
h
0,l(b

t
0,l, a

t
0) (18)

Similar to the lower bound, the upper bound vectors are defined over the physical states only.
Therefore, joint models or joint actions are not needed in their computation. Hence, these bounds
are unaffected by the curse of many agents. 4

5.3 Improved Efficiency using Branch and Bound

Branch and bound (Land & Doig, 1960) is a well known and general scheme for finding optimal
solutions to typically discrete problems. It involves iterating over the two steps of assigning values

4. A minor modification to the backup rules of the lower and upper bounds introduced in Sections 5.1 and 5.2 respectively,
improves the tightness of these bounds. Let the horizon 1 action values that form the lower and upper bounds
respectively, remain unchanged. Note that the update rules for horizon h > 1 utilize these action values. We
may replace these lower and upper bound horizon 1 action values in the update rules with their exactly computed
horizon 1 counterparts. Clearly, the modified action values continue to upper and lower bound the exact action values,
respectively. Simultaneously, including the exact horizon-1 action value tightens both the bounds. However, these
bounds are no longer independent of the joint model space because of the exact component and cannot be computed
quickly.
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to an increasing subset of variables (branch) and establishing bounds on the values of the solutions
based on the partial assignment. The bounds are utilized in pruning portions of the search tree
that are guaranteed to lead to suboptimal solutions. Therefore, it requires a flexible way to lower
and upper bound the exact value of the solution that becomes increasingly tight with a growing
partial assignment.

Algorithm 2 InitializeNode
Input: Current belief bt0,l, horizon h
Output: A node n in the reachability tree and the subset of actions to be expanded from n

1: Initialize a new node n, and set its belief to be bt0,l and look ahead to h
2: for all a0 ∈ A0 do
3: LB[a0]← Qh(bt0,l, a0) (Initialize to pessimistic blind policy value as in Section 5.1)

4: UB[a0]← Q
h(bt0,l, a0) (Initialize to optimistic fast-informed value as in Section 5.2)

5: V ←max
a0

LB[a0]

6: V ←max
a0

UB[a0]

7: for all a′0 ∈ A0 do
8: if UB[a′0] < V then
9: Do not expand the tree for action a′0

We will use branch and bound to compute more efficiently the optimal expected value of the
initial belief at the root node of the tree in Fig. 3 and the corresponding policy tree. Observe that
the reachability tree of Fig. 3 explores all possible actions from a node in order to find the action
with the largest value. However, computing the exact value of a node requires knowing the value
of the best action only at each of its children. Consequently, there is potential for improvement by
avoiding expanding the tree for suboptimal actions.

Algorithm 2 initializes the root node of the reachability tree using an iteration of branch and
bound. It takes the belief and horizon as input. For each action of agent 0, a0, the algorithm initializes
the upper and lower bound values for policies with a0 as the initial action as described in Sections 5.1
and 5.2. The upper and lower bound on the overall value of the node is initialized to be the largest
values of these bounds currently as V and V , respectively. Actions for which the corresponding
upper bound is smaller than the lower bound on the overall value function are guaranteed to produce
sub-optimal policy. Hence they need not be explored further without affecting the solution quality.

Next, we recursively tighten the lower and upper bounds on the value of the root node using
the branch and bound approach as outlined in Algorithms 3, 4 and 5. Particularly, we repeatedly
invoke Algorithm 3 on the root node of the reachability tree to update its bound until the upper and
lower bounds have the same value and the algorithm returns true.

It partially unfolds the reachability tree for some action a0 and computes tighter bounds on its
action-value based on the unfolded tree. We base the choice of action for which to expand the tree
on a heuristic function (line 3 in Algorithm 3). Both the upper and lower bounds are informative
about which action is likely optimal given the current belief. Subsequently, while we may pick either
bound to provide a heuristic ordering of actions, we select the relative upper bounds for prioritizing
actions. This heuristic is also referred to as the IE-Max (Kaelbling, 1993) and it makes an appearance
in several other heuristic-based POMDP methods (Smith & Simmons, 2004; Shani, Brafman, &
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Algorithm 3 UpdateBounds
Input: A node n of the reachability tree
Output: True if the node’s optimal value is available otherwise false

1: if V = V for n then
2: return true (Terminate)
3: a0← Pick action according to a heuristic ordering
4: if did not previously expand on action a0 or do not expand is not flagged for a0 then
5: NextNodes[a0][]← Branch (n, a0)
6: Set branched[a0]← true
7: else
8: for all ω0 ∈ Ω0 do
9: Recursively invoke UpdateBounds on NextNode[a0][ω0]

10: Get LB[a0], UB[a0]← Bound (n, a0)
11: V ←max

a0

LB[a0]

12: V ←max
a0

UB[a0]

13: for all a′0 ∈ A0 do
14: if UB[a′0] < V then
15: Do not expand the tree for action a′0 at node n
16: return false

Shimony, 2007; Kurniawati, Hsu, & Lee, 2008). It is preferred because as the upper bound for
an action a0 is updated, its value may drop below the upper bound for some other action thereby
allowing another action to be explored. On the other hand, picking an action based on the lower
bound will often result in the same action because its value will increase monotonically as the lower
bound is tightened. This makes it difficult to discover its suboptimality till the entire subtree rooted
at that node has been expanded and evaluated.

Algorithm 4 Branch
Input: A node n of the reachability tree and action a0

Output: Next nodes on performing a0 and all observations if horizon is not 1

1: if h > 1 then
2: for all ω0 ∈ Ω0 do
3: NextNode[a0][ω0]← InitializeNode (τ(b0,l, a0, ω0), h− 1)

The algorithm then expands the tree for the chosen action if it hasn’t done so previously by
invoking Algorithm 4 in line 5. Branch() expands a subtree of depth 1 for that action by performing
the belief update for each observation, and initializes the bounds at the child nodes. This is followed
by updating the bound for the chosen action (line 10) and using the largest of the lower and upper
bounds for all explored actions so far to obtain the exact value bounds at node n. If the upper bound
for an action at any iteration is less than the overall lower bound on the value function, the action
is flagged so that it is no longer explored.
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Algorithm 5 Bound
Input: A node n of the reachability tree and action a0

Output: Updated lower and upper bounds for n

1: ER0← Compute expected immediate reward for b0,l
2: LB[a0]← ER0

3: UB[a0]← ER0

4: if h > 1 then
5: for all ω0 ∈ Ω0 do
6: LB[a0]← γ Pr(ω0|b0,l, a0) × V of NextNode[a0][ω0]
7: UB[a0]← γ Pr(ω0|b0,l, a0) × V of NextNode[a0][ω0]

We may encounter an action that has been previously explored because Algorithm 3 is called
repeatedly. In this case, the bounds on the nodes in the subtree are updated during a depth-first
traversal (lines 8-9).

Bound() described in Algorithm 5 tightens the lower and upper bound on the action-value for a
node n and action a0. These values are updated by considering the updated value function bounds
of the child nodes in the subtree if node n is not a leaf node.

Note that once a subtree has been fully expanded for an action a0 and all its subtrees have been
exactly evaluated, the upper and lower bound value for a0 are the same (i.e., UB[a0] = LB[a0]). At
this point, either the lower bound value for a0 is greater than upper bound value for all other actions
or there exists some other action a′0 such that its upper bound value is greater than UB[a0] (i.e., either
LB[a0] ≥ UB[a′0], ∀a′0 or ∃a′0 such thatUB[a′0] > UB[a0]). In the former, we may conclude that a0

is the optimal action and its corresponding value is the exact solution for the subtree. In the latter case,
the heuristics will pick a′0 to explore if feasible the next time Algorithm 3 is invoked for the node.

6. Experiments

The theoretical analysis establishes exact solutions for the many-agent I-POMDP as well as bounds
on the value that can be quickly computed. In this section, we empirically evaluate these methods
on three problem domains. In particular, we focus on the run time for the planning, how we may
reduce it, the impact of each problem structure, and the expected value of the solution.

6.1 Many-Agent Problem Domains

We seek problem domains that exhibit large agent populations. Such domains often naturally allow
for anonymity and context-specific independence.

6.1.1 POLICING LARGE PROTESTS

Our first problem domain for evaluation is the previously characterized non-cooperative policing
of a large protest by two troops. The problem exhibits 27 physical states, 9 actions for the police
and 4 for the protestors, 8 observations each for the police and protestors. Three factors each of
which informs whether the protest intensity at a site is low or high comprises an observation. The
protests are distributed across 3 sites all connected with each other. The police must decide on where
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to send its two troops while a protestor must decide on whether to protest or not, and move to a
different site. Each protestor has one of two frames, peaceful or disruptive, and its protest action
impacts the intensity of the protest at that site based on its frame. An observation factor in the
policing protest scenario is the protest intensity at a site. As the intensity is determined by the actions
of the protesters present at the site, it is independent of the intensity at any other site. Thus, the
independence supposition of Eq. 10 is easily satisfied in this scenario.

6.1.2 TRAFFIC CONGESTION CONTROL

Our second domain pertains to an intelligent traffic management system that seeks to reduce vehicular
congestion at a busy intersection. We study a typical road network that consists of 3 managed
intersections all of which feed into another intersection which we seek to decongest. This network is
illustrated in Fig. 4. The traffic management system, which is the subject agent in this domain, has the
choice of either increasing or decreasing the duration of the red lights at three nearby intersections,
A, B and C. All red lights at these intersections are configured to have the same duration. This
regulates the traffic flowing into the intersection of interest because increasing the red light duration
should reduce the traffic flowing from that intersection, otherwise the traffic escalates. Thus, the
subject agent has |A0| = 8 actions at any time step.

Figure 4: Our second problem domain is about decongesting traffic at a busy intersection of a road
network. Traffic from three nearby intersections can flow into the busy intersection. These
are two-lane roads and each passenger vehicle or commercial truck can choose to go
straight, turn left, turn right, or make a U turn.

The state of the problem consists of three factors. Each of these factors represents the congestion
status of the traffic flowing into the busy intersection from each of the three intersections. This could
be low, medium, or high. While there is no consensus on how to accurately measure vehicular traffic
congestion, we could use travel time index, which is a ratio of the number of vehicles passing through
the intersection under congested and free flow conditions and categorize it into the three levels. At
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each time step, the system attempts to ascertain the density of traffic flowing into the intersection
of interest from each of the three directions. It does this using its overhead cameras and object
recognition system, which is typically inaccurate. This leads to |Ω0| = 8 observations. Because
there are various ways of entering or exiting the intersections, the assumption of independence
among the state and observation factors as in Eq. 10 is met. The reward function of the system
encodes its objective to keep the traffic flowing smoothly through the intersection. Therefore, quicker
flows are given a higher reward.

The traffic consists of passenger vehicles and commercial trucks. These are tracked using
overhead cameras and object recognition as they move through the road network over many time
steps. The number of passenger vehicles is larger than commercial trucks, however, commercial
trucks have a disproportionate impact on traffic congestion due to their larger size and slower speed.
Each vehicle may choose either to go straight ahead, turn left, turn right, or make a U turn at an
intersection (|Aj | = 4). The vehicle also observes whether the red light duration at its current
intersection is longer than usual. It prefers to perform its usual action, which may cause it to travel
through the intersection (dislikes detours). Notice that the transition of the state of the system depends
on the joint actions of all agents. The next state is not perfectly determined because the system does
not know how many vehicles may precisely turn into the roads leading to the intersection.

6.1.3 MULTIPLAYER VIDEO GAMING

We base a third problem domain on the popular mobile game Clash of Clans (CoC) (http://
clashofclans.com), which is a massively multiplayer online strategy game. The game has
two aspects: the first is to gather resources through various activities including raiding settlements
of other players using own armies and the second is to build a strong settlement to defend own
resources against the invasion of other players’ armies. For our purpose, we focus on the latter
aspect of the game.

Figure 5: A screen shot of the game Clash of Clans. The image shows a simple settlement in which
the resources are stored in the central structure which is surrounded by walls on four sides.
The walls are guarded using cannons which are situated on the outside of the walls.
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The objective of the subject agent (agent 0) is to defend its resources against any invasion by the
armies of other players. To do so it may erect boundary walls in the four cardinal directions around
its settlement and install cannons alongside each wall that may ward off the attack by invading armies.
Figure 5 is a screen shot of the game depicting an example settlement.

We model the physical state of the game as composed of four factors. The value of each factor
represents the defense status in the respective cardinal direction: is it completely unprotected in that
direction, just walled, or is it walled and guarded using canons. These represent increasing levels of
protection. Therefore |S| = 81 (3 values for each cardinal direction). At any time step, agent 0 may
fortify its defenses in any one cardinal direction only (|A0| = 4) and receive an observation providing
information about the direction with the weakest defense status (|Ω0| = 4). If more than one cardinal
direction is unprotected, agent 0 is informed one of these directions at random. Similarly, if more
than one direction is walled while others are guarded with cannons, one of the walled direction
is told to agent 0 at random. On the other hand, if a single direction is the weakest, the agent is
informed about this direction perfectly. This motivates a probability distribution over observations in
some scenarios, and the observation function is stochastic. The action of fortifying defenses in any
direction raises the level of protection from unprotected to walled and from walled to guarded with
some probability. Note that the defending agent is unable to fortify its defenses due to insufficient
gold. Consequently, the fortify action may fail occasionally and this non-determinism makes the
transition function stochastic (note that we do not include collectibles such as amount of gold, gems
and elixir in the state to keep the state space bounded). When attacked by an opponent’s army, the
subject agent may suffer losses and its defenses may be weakened or even completely destroyed.

An opponent army consists of N agents that may have one of two fixed frames: tier 1 or tier 2.
CoC defines tier 1 to be a class of weaker soldiers (consisting of barbarians, archers and goblins) that
are injured easily by the canons but could recuperate quickly as well. Tier 2 attackers (consisting
of giants and wizards) are more resilient to attack by the canons and cause more damage than the
tier 1 attackers. But when injured, they recover slowly. These agents may attack from one of the
four cardinal directions or they may recover when injured (|Aj | = 5). A common strategy while
attacking a settlement is to target the least protected side. An agent continues to target the same side
until it is injured by a canon. When injured the agent retreats to recover. On recovering, it may pick
another side to target. The state of the defenses in any direction depends on the action of agent 0
and the number of agents of each type attacking that direction.

6.2 Performance Evaluation

We begin by evaluating the performance of the exact many-agent I-POMDP solution technique
discussed in Section 4. It expands the look-ahead tree to include all reachable beliefs over the finite
horizon and then calculates the optimal value at the root node using the Bellman equation for the
many-agent I-POMDP framework in a bottom up fashion starting at the leaf nodes, as outlined in
Section 4.1. We evaluate its performance in the aforementioned policing protest and traffic control
domains. Other agents are modeled as POMDPs and their predicted behavior is obtained using
bounded policy iteration (Poupart & Boutilier, 2003). This represents the models as finite state
controllers, which enables a compact model space (Sonu & Doshi, 2015).

We set the maximum planning horizon to 5 in all the experiments. The transition, observation
and reward functions of the many-agent I-POMDP are all compactly encoded as frame-action
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Figure 6: A compact Levi graph representation of the Policing Protest scenario as a frame-action
hypergraph for (a) the transition function, and (b) the reward function for site 0. The
variables x and x′ represent the start and end intensity of the protest at site 0 and the
action shows the location of the two police troops. As two police troops are sufficient to
deescalate any protest, the contexts in which both troops are at site 0 are independent of
the actions of other agents. All other contexts depend only on the agents belonging to
either frame choosing to protest at site 0.

hypergraphs; example hypergraphs are shown in Fig. 6. All computations are carried out on a RHEL
platform with 2.80 GHz processor and 4 GB of main memory.

An important baseline that allows evaluating the computational gain due to the problem structures
is an exact method that solves the many-agent I-POMDP but without leveraging the problem
structures of anonymity and context-specific independence. This method enumerates the transition,
observation and reward functions for N agents instead of using hypergraphs and also expands the
look-ahead reachability tree in order to perform exact value iteration.

In our first experimental setting, we consider the policing protest and traffic control problems
with up to N=5 protestors and cars, respectively, exhibiting different frames. Table 1 shows the
run time and expected value of exactly solving the policing problem using the original I-POMDP
and the many-agent I-POMDP that models the problem structures. To assess the impact on time
of modeling each problem structure, we also report the planning time using I-POMDP with action
anonymity but not context-specific independence. All three frameworks produce policies with the
same expected value. However, as the latter losslessly compresses joint actions to configurations
and precludes reasoning about some actions of others based on context, the many-agent I-POMDP
requires the least amount of running time. Exploiting action anonymity but not context-specific
independences reduces the run time compared to the original I-POMDP. The additional impact of
considering context-specific independences can now be ascertained from the run times of using the
many-agent I-POMDP. Furthermore, notice that the gradient of increase in run time with increase
in number of agents is much less for many-agent I-POMDPs compared to the original framework.
This result strongly suggests that the many-agent I-POMDP framework may scale to significantly
larger number of agents. Interestingly, an increase in the number of protestors causes the value to
drop suggesting that policing more protestors is harder, as we may expect.
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No. of Planning time (secs)
protesters (N ) H I-POMDP I-POMDP with many-agent Speed up Exp. Value

action anonymity I-POMDP

2
2 1 0.7 0.55 1.8 77.42
3 19 19 17 1.1 222.42

3
2 3 0.7 0.56 5.4 77.34
3 38 22 17 2.2 222.32

4
2 39 0.7 0.57 68 76.96
3 223 22 17 13.1 221.87

5
2 603 0.80 0.60 1,005 76.88
3 2,480 24 18 137.8 221.77

Table 1: Comparison between the traditional I-POMDP, I-POMDP exhibiting action anonymity
only, and many-agent I-POMDP frameworks, on the domain of policing protest. All frame-
works follow the same solution approach of computing a reachability tree and performing
value iteration on the tree. Note that the last framework exhibits both action anonymity and
context-specific independence. We report the speed up in run time due to exploiting these
structures as compared to the traditional I-POMDP.

No. of Planning time (secs)
vehicles (N ) H I-POMDP I-POMDP with many-agent Speed up Exp. Value

action anonymity I-POMDP

2
2 0.8 1 0.6 1.33 171.76
3 16 14 9 1.78 267.25

3
2 3 1 0.7 4.29 171.77
3 41 15 9 4.56 267.25

4
2 32 1 1 32 171.76
3 328 18 12 27.33 267.26

5
2 449 2 1 449 171.76
3 26,970 23 13 2,075 267.25

Table 2: Comparison between the traditional I-POMDP, I-POMDP exhibiting action anonymity
only, and many-agent I-POMDP frameworks, on the traffic control domain. All run times
reflect the same solution approach of computing a reachability tree and performing value
iteration on the tree. Notice that the speed up for 5 agents at a horizon of 3 is more than
three orders of magnitude.

Table 2 reports on analogous results for the traffic congestion control domain. Compared to the
disproportionate growth in the run time of the traditional I-POMDP, the many-agent I-POMDP
experiences only slight increases in run time as the number of vehicles on the roads grows. Here,
context-specific independence has a significant impact on the run time as observed by comparing the
run times of using I-POMDP with action anonymity and the many-agent I-POMDP frameworks.
This is because two of the four actions of each vehicle at an intersection leads it away from the busy
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intersection of interest; the traffic control system need not consider these actions in its deliberations.
To further understand and test the behavior of the traffic control system, we varied the ratio of
light to heavy vehicles from its default of 8:2 when N = 20. As we increased the proportion of
heavy vehicles in the traffic leading to ratios of 5:5 and 0:10, we observed a slight drop in the
expected values, indicating some increased difficulty in clearing up the congestion caused by more
slow-moving vehicles. The resulting policy resorted to increasing the duration of the red light at
the intersections with more slow-moving vehicles in the traffic.

No. of Planning time (secs)
protesters (N ) H Exhaustive Branch&Bound Exp. Value

20
3 149 7 275.13
4 2,816 27 384.47
5 — 86 482.88

50
3 157 8 274.90
4 3,062 33 384.23
5 — 118 482.62

100
3 193 10 274.41
4 3,651 44 383.72
5 — 187 482.11

200
3 350 19 273.38
4 6,217 108 382.66
5 — 416 481.02

500
3 1,137 73 270.41
4 18,087 285 379.56
5 — 1,462 477.82

1000
3 6,782 465 265.02
4 — 2,135 373.96

1500
3 — 1,851 259.74
4 — 9,858 368.44

2000
3 — 4,189 254.9
4 — 21,534 363.35

Table 3: Comparison of the planning times between the performance of the Exhaustive and
Branch&Bound methods for the policing problem. A ‘—’ indicates that the program
ran out of memory.

In our second set of experiments, we evaluate on settings involving many more agents. As
Table 1 indicates, the traditional I-POMDP does not realistically scale to N > 5 agents. On the
other hand, modeling and considering problem structures as we do in the many-agent I-POMDP
helps. Indeed, Table 3 indicates that we may obtain exact policing solutions using tree search for as
many as 1,000 protestors, and ease traffic congestion for up to 500 vehicles as we show in Table 4.
We may find a defense strategy in CoC when agent 0’s settlement is under attack by an army with
up to 1,000 attackers (Table 5).
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No. of Planning time (secs)
vehicles (N ) H Exhaustive Branch&Bound Exp. Value

20
3 16 2 215.48
4 374 12 316.72
5 10,480 91 412.34

50
3 90 7 140.26
4 46,268 58 185.24
5 — 502 221.66

100
3 256 15 140.28
4 — 119 185.24

200
3 1,182 42 140.92
4 — 332 186.10

500
3 8,410 243 141.00
4 — 5,047 186.09

1000 3 104,393 12,439 140.25

Table 4: Comparison of the planning times between the performance of the Exhaustive and
Branch&Bound methods for the traffic control problem.

Nevertheless, while the exploitation of the problem structures reduces the curse of many agents
that plagues I-POMDPs, the curse of history is unaffected by such approaches. To mitigate the curse
of history we implemented the more efficient branch-and-bound based solution technique presented
in Section 5.3 using the pessimistic blind policy as a lower bound and the optimistic informed bound
as an upper bound. Tables 3, 4, and 5 demonstrate that branch and bound enables planning with more
agents in all three domains. In particular, we can effectively police large protests with up to 2,000
protestors, control traffic for 1,000 vehicles, and plan for an attack with up to 2,000 individuals in
the army. A 4-horizon plan can be obtained for the police in under 6 hours while a 3-horizon plan
for the latter consumed under 3 hours. We were unable to solve beyond 1,000 vehicles for traffic
control as fewer actions of others could be deemed contextually independent. Note that the branch
and bound approach is exact and yields the same expected value as value iteration on the full tree.
Furthermore, it collapses into the exhaustive approach if bounds are not used for pruning.

6.3 Discussion

A comparison of the performance of the many-agent I-POMDP with the original I-POMDP yields
two important results: (i) When there are few other agents, the many-agent I-POMDP provides
exactly the same solution as the original I-POMDP but with reduced planning times because the
problem structure is exploited. (ii) Many-agent I-POMDP scales to larger agent populations, from
100 to more than 1,000, and the new framework delivers promising results within reasonable time on
standard computing platforms. The branch-and-bound method outperforms the exhaustive method
consistently without any loss in value of the outcome policy. However, the increase in run time with
number of agents is not proportionate and the method eventually becomes infeasible as the number of
agents is further increased. While the horizon of 5 may not appear to be large, the look-ahead search
tree for the policing protest problem as an example exhibits a branching factor of 72. Consequently, a
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No. of Planning time (secs)
Attackers (N ) H Exhaustive Branch&Bound Exp. Value

20
3 4 <1 -3.25
4 33 2 -3.99
5 228 7 -4.67

50
3 6 1 -3.31
4 45 3 -4.09
5 304 9 -4.83

100
3 14 2 -3.43
4 97 7 -4.30
5 648 27 -5.14

200
3 56 9 -3.65
4 445 53 -4.66
5 3,359 293 -5.71

500
3 349 93 -4.62
4 3065 818 -6.23
5 — 4,776 -8.01

1000
3 1897 1,190 -6.21
4 — 14,087 -8.79

1500 3 — 5,043 -7.89
2000 3 — 11,089 -8.88

Table 5: Comparison between planning time performances of the Exhaustive and Branch&Bound
methods on the CoC gaming problem.

tree of horizon 3 has more than 373K nodes, and a tree of horizon 4 has more than 268 million nodes.
Experiments reported in Table 3 demonstrate that branch-and-bound consistently offers a speed up
that is greater than an order of magnitude. As such, this is evidence of a significant reduction in the
size of the look-ahead tree. For less numbers of agents, the branch-and-bound also allows scaling the
planning horizon to greater than 5 with proportionate increase in run time.

In general, the policing domain is defined such that the numbers of troops are sufficient to
police the protests even as the number of protestors grows. However, it does become increasingly
difficult to police. This is reflected in the fact that the exact expected value reduces as the number
of protestors increases for the same horizon. For example, for horizon 3 the value reduces from
275.13 for N = 20 to 254.9 for N = 2, 000, and for horizon 4, it reduces from 384.47 for N = 20
to 363.35 for N = 2, 000. The expected rewards in CoC are negative because our planning focuses
solely on one aspect of the game – defending the resources. Specifically, agent 0 incurs costs for
fortifying its defenses and fending off enemy’s attacks. We do not plan for the task of attacking other
agents’ settlements or other activities that could yield positive rewards.

For relatively low numbers of protestors, N ≤ 50, if there is more than one site with a high
protest intensity, the policy recommends sending the two police troops to two different high protest
sites. This enables successfully controlling those protests. But, for greater numbers of protestors,
the policy recommends sending both troops to a single site of high protest intensity even if there are
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more such sites. While two troops are sufficient to control the protests for large N , a single troop is
not. Analogously, the policy for the traffic control domain does not increase the red light durations at
intersections when the traffic flows are low or medium, and the number of vehicles is lower than 50.
However, for more vehicles in the system, the policy recommends increasing the red light durations
at one or two intersections (but not all three) when traffic flows are medium or high.

7. Related Work

We substantially build on AGGs in this article by extending anonymity and context-specific inde-
pendence to include agent frames, and generalizing their use to a partially observable stochastic
game solved using decision-theoretic planning as formalized by I-POMDPs. Indeed, Bayesian
AGGs (Jiang & Leyton-Brown, 2010) extend the original AGG formulation to include agent types,
which results in type-specific action sets. The number of nodes in the action graph grows with
types: |Θ̂||A| nodes for agents with |Θ̂| types each having |A| actions that may overlap. Two actions
from different type-action sets may share a node, in which case these actions are interchangeable
and the count may involve agents of both types. A key difference in our representation is that we
explicitly model frames in the graphs due to which context-specific independence is modeled using
frame-action hypergraphs. Benefits are that we naturally maintain the distinction between two similar
actions but performed by agents of different frames, and we add less additional nodes: |Θ̂| + |A|.
However, a hypergraph is a more complex data structure for operation. Finally another extension of
AGGs, temporal AGGs (Jiang, Leyton-Brown, & Pfeffer, 2009) extend AGGs to a repeated game
setting and allow decisions to condition on chance nodes. These nodes may represent the action
counts from previous step (similar to observing the actions in the previous game). Temporal AGGs
come closest to multiagent influence diagrams (Koller & Milch, 2001) although the former can
additionally model the anonymity and contextual independence structure. Overall, I-POMDPs with
frame-action anonymity and context-specific independence significantly augment the combination
of Bayesian and temporal AGGs in expressivity by utilizing the structures in a partially observable
stochastic game setting with agent types. As such, these structures additionally benefit transition
and observation functions.

Varakantham et al. (2014) building on previous work (Varakantham, Cheng, Gordon, & Ahmed,
2012) recently introduced a decentralized MDP that models a simple form of anonymous interactions:
transition probability and reward specific to some state-action pairs are affected by the number of
agents regardless of their identities. The considered numbers of agents are contextual to the state-
action pair, and may not involve all the agents. In contrast, we consider context-specific independence
where not all actions performed by other agents are relevant depending on the context. Very recently,
Robbel et al. (2016) utilized anonymous influence to scale variable elimination for factor graphs
exhibiting large tree widths. Specifically, structure that relies on the number of binary variables being
active during variable elimination rather than their identity is exploited. Interestingly, this exploit is
used to scale the solution of multiagent MDPs using asynchronous linear programming (Guestrin,
Koller, & Parr, 2001) to allow up to 25 agents. In both these efforts, the interaction influence is not
distinguished into how many agents are performing which actions as in action-specific anonymity
and independence, due to which neither configurations nor hypergraphs are used. Furthermore,
agent types are not considered. Rather, the context in Robbel et al. includes the state variables
and agents that are active.
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Various representations of context have played key roles in decoupling multiagent decision
making, thereby promoting scalability. For example, Witwicki and Durfee (2010) introduce a
decentralized POMDP model that is decoupled into individual POMDPs for the most part except for
transition dependencies due to state factors affected by other agents. Both Varakantham et al. (2009)
and, Mostafa and Lesser (2009) introduce frameworks that allow context-specific interactions with
the benefit that outside these contexts, the decision making of each is independent of others. Finally,
the interaction hypergraphs in networked-distributed POMDPs (Nair, Varakantham, Tambe, & Yokoo,
2005) model complete reward independence between agents that are not linked, analogous to the
independence structure in graphical games. This model differs from the hypergraphs in this article
(and action graphs) that model independence in reward (and transition, observation probabilities)
along a different dimension: actions.

8. Concluding Remarks

The many-agent I-POMDP introduced in this article is a compelling framework because of its ability
to scale exact planning under uncertainty to beyond 1,000 agents by exploiting problem structures.
We formalize widely existing problem structures – frame-action anonymity and context-specific
independence – and encode it in frame-action hypergraphs. Other real-world examples exhibiting
such problem structure are found in economics where the value of an asset depends on the number
of agents vying to acquire it and their financial standing (frame), in real estate where the value of a
property depends on its demand, the valuations of neighboring properties, as well as the economic
status of the neighbors because an upscale neighborhood is desirable. Compared to the previous best
approach (Sonu & Doshi, 2015), which scales to an extension of the simple tiger problem involving
5 agents only, the presented framework is far more scalable in terms of number of agents.

An alternate way of modeling problems involving frame-action anonymity would be to include
the configuration vectors in the state space S and represent the decision-making problem as a
POMDP. A major problem with a representation that directly includes action counts in the state
space is how to generate an accurate transition function that models the probabilities of transitioning
between various action count vectors. Here, I-POMDPs offer the benefit of including models of
other agents, which we update over time to obtain updated distributions over actions. These are
then used to obtain action counts for the next time step. We are not aware of any approach for
transitioning between frame-action configurations directly.

A limitation of the presented method for solving the many-agent I-POMDP is that it proceeds
requiring a prior belief of the subject agent. Updated beliefs are necessary at each step to compute
distributions over the configurations (Algorithm 1) and to evaluate the value of a policy subtree,
which is in turn used to compute the value of the entire policy. This makes it ill-suited for settings
requiring a general solution for any prior in the form of policies and corresponding value vectors.
The belief update in the many-agent I-POMDP assumes that the observation and state factors are
respectively independent. Factors that constitute an observation or a state are typically orthogonal
to each other because each factor represents another “dimension” of the observation or state. Thus,
these independence assumptions are usually satisfied in practice. Another minor limitation is the
assumption that the large set of agents are associated with few frames. This assumption is not
particularly strict with this often being the case in practice, as exemplified in our scenarios. While the
policing protest domain is inspired by contemporary events around the world, our modeling of this
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problem is simplistic. It does not capture the complex nuances and issues involved in real protests;
rather we think of it as an academic abstraction for studying many-agent decision making.

Our future work involves continuing to find ways to scale principled multiagent planning to
larger agent populations. In this regard, we are exploring and modeling other types of problem
structures often found in large problems. We are also investigating new approximation algorithms
for I-POMDPs. A candidate is to replace the exact branch-and-bound with MCTS to scale the
method presented in this article to larger state and action spaces as well. An integration with existing
multiagent simulation platforms (Luke, Cioffi-Revilla, Panait, Sullivan, & Balan, 2005; Bogert,
Solaimanpour, & Doshi, 2015) to illustrate the behavior of agent populations would be interesting.
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Appendix A.

We summarize key notation and its meaning as used in this article, in the table below.

S, s Set of physical states, member of this set
A Set of joint actions of all agents

a0, a−0 Agent 0’s action, joint action of all agents other than 0
T0 Agent 0’s transition function

Ω0, ω0 Set of agent 0’s observations, member of this set
O0 Agent 0’s observation function
R0 Agent 0’s reward function
OC0 Agent 0’s optimality criterion
N Number of agents

Mj,l−1, mj,l−1 Set of level l − 1 models of some agent, member of this set
b0,l Agent 0’s level 0 belief

m−0,l−1 Joint model of all agents other than 0
Θ̂j , θ̂j Frame of some agent, member of this set
C(·) Action configuration derived from the argument
Ψ, ψ Set of nodes in a graph, member of this set
E Set of edges in the graph
ν(·) Frame-action neighborhood of the argument
Xk, xk Set of values of the kth state variable, member of this set
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V
h
0,l, Q

h
0,l Upper bound on agent 0’s horizon-h value function, upper bound on its action value

V h
0,l, Q

h
0,l

Lower bound on agent 0’s horizon-h value function, lower bound on its action value

Table 6: Key notation and its meaning.

Appendix B.

We present detailed proofs for Propositions 2 and 3 in this appendix.

Proposition 2 (Pessimistic Blind Policy). The pessimistic blind policy yields a lower bound on the
exact value of the many-agent I-POMDP.

Proof. The proof uses mathematical induction on the horizon. We begin with the horizon 1 action-
value function and obtain a lower bound for it.

Q1
0,l(b

t
0,l, a

t
0) =

∑
st

bt0,l(s
t)
{ K∑
k=1

∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|b0,l(M1,l−1|st), . . . , b0,l(MN,l−1|st))

R0(xtk, a
t
0, C

ν(xtk,a
t
0))
}

Let Cν(xtk,a
t
0) be the configuration that minimizes R0. We get,

Q1
0,l(b

t
0,l, a

t
0) ≥

∑
st

bt0,l(s
t)
{ K∑
k=1

∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|b0,l(M1,l−1|st), . . . , b0,l(MN,l−1|st))

min
C
ν(xt

k
,at0)

R0(xtk, a
t
0, C

ν(xtk,a
t
0))
}

=
∑
st

bt0,l(s
t)
{ K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0))

∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|b0,l(M1,l−1|st), . . . , b0,l(MN,l−1|

st))
}

=
∑
st

bt0,l(s
t)

K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0))

= Q1
0,l

(bt0,l, a
t
0)

Therefore the lower bound obtained by selecting the minimizing configuration for the horizon 1

action-value is: Q1
0,l

(bt0,l, a
t
0) =

∑
st
bt0,l(s

t)
K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)). Analogously to POMDPs, we

may decompose this lower bound value using alpha vectors as Q1
0,l

(bt0,l, a
t
0) =

∑
s
α1(s) · bt0,l(s),

where α1(s) =
K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)).

Let us assume that for horizon h − 1, the pessimistic blind policy provides a lower bound to
the value function and could be represented using a set of alpha vectors over states only similar to
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the above decomposition. We derive the lower bound value vectors for horizon h. For simplicity of
derivation, we do not mention the configuration contexts for convenience; these are same as before.

Qh0,l(b
t
0,l, a

t
0) = Q1

0,l(b
t
0,l, a

t
0) + γ

∑
ωt+1

0

max
αh−1

[∑
st

bt0,l(s
t)
∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st),

. . . , bt0,l(MN,l−1|st)) O0(st+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

× T0(st, at0, C, s
t+1)

} ∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) αh−1(st+1,mt+1

−0 )
]

At this point, we make the blind policy modification. The agent chooses the same policy regardless
of the observations. Therefore, we may take the maximization over αh−1 outside the summation
over observations analogously to Eq. 2 in Section 2.

Qh0,l(b
t
0,l, a

t
0) ≥ Q1

0,l(b
t
0,l, a

t
0) + γmax

αh−1

[∑
ωt+1

0

∑
st

bt0,l(s
t)
∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st),

. . . , bt0,l(MN,l−1|st)) O0(st+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

× T0(st, at0, C, s
t+1)

} ∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) αh−1(st+1,mt+1

−0 )
]

= Q1
0,l(b

t
0,l, a

t
0) + γmax

αh−1

∑
st

bt0,l(s
t)
∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

× T0(st, at0, C, s
t+1)

} ∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) αh−1(st+1,mt+1

−0 )

= Q1
0,l(b

t
0,l, a

t
0) + γ

∑
st

bt0,l(s
t)
∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

× T0(st, at0, C, s
t+1)

} ∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) αh−1

∗ (st+1,mt+1
−0 )

where αh−1
∗ is the vector that maximizes the second term given belief bt0,l and action at0.

Next, we select minimizing configurations while computing Q1 and αh−1
∗ to obtain their pes-

simistic counterparts, which form corresponding lower bounds as we know from the base case and
inductive hypothesis. The action-value above becomes,
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≥ Q1
0,l

(bt0,l, a
t
0) + γ

∑
st

bt0,l(s
t)
∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

× T0(st, at0, C, s
t+1)

} ∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) αh−1

∗ (st+1)

= Q1
0,l

(bt0,l, a
t
0) + γ

∑
st

bt0,l(s
t)
∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

× T0(st, at0, C, s
t+1)

}
αh−1
∗ (st+1)

∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0)

= Q1
0,l

(bt0,l, a
t
0) + γ

∑
st

bt0,l(s
t)
∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

× T0(st, at0, C, s
t+1)

}
αh−1
∗ (st+1)

Notice that the trailing term
∑

mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) sums to 1. We replace the config-

uration in T0 for each context with the one that minimizes the transition probability. The above
action-value is

≥ Q1
0,l

(bt0,l, a
t
0) + γ

∑
st

bt0,l(s
t)
∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

× T0(st, at0, C, s
t+1)

}
αh−1
∗ (st+1)

= Q1
0,l

(bt0,l, a
t
0) + γ

∑
st

bt0,l(s
t)
∑
st+1

T0(st, at0, C, s
t+1) αh−1

∗ (st+1)

Finally, for completeness we write the action-value lower bound in full.

Qh
0,l

(bt0,l, a
t
0) =

∑
st

bt0,l(s
t)

K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)) + γ

∑
st

bt0,l(s
t)
∑
st+1

K∏
k=1

T0(xtk, a
t
0,

Cν(xtk,a
t
0,x

t+1
k ), xt+1

k ) αh−1
∗ (st+1)

Proposition 3 (Optimistic Fast Informed Bound). The fast informed update with maximizing config-
urations gives an upper bound to the many-agent I-POMDP value function.
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Proof. The proof here also uses mathematical induction on the horizon. The base case is the horizon
1 action-value function and we obtain an upper bound for it.

Q1
0,l(b

t
0,l, a

t
0) =

∑
st

bt0,l(s
t)

K∑
k=1

{ ∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|b0,l(M1,l−1|st), . . . , b0,l(MN,l−1|st))

R0(xtk, a
t
0, C

ν(xtk,a
t
0))
}

Let Cν(xtk,a
t
0) be the configuration that maximizes R0. We get,

Q1
0,l(b

t
0,l, a

t
0) ≥

∑
st

bt0,l(s
t)

K∑
k=1

{ ∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|b0,l(M1,l−1|st), . . . , b0,l(MN,l−1|st))

max
C
ν(xt

k
,at0)

R0(xtk, a
t
0, C

ν(xtk,a
t
0))
}

=
∑
st

bt0,l(s
t)

K∑
k=1

{
R0(xtk, a

t
0, C

ν(xtk,a
t
0))

∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|b0,l(M1,l−1|st), . . . , b0,l(MN,l−1|

st))
}

=
∑
st

bt0,l(s
t)

K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0))

= Q
1
0,l(b

t
0,l, a

t
0)

Therefore an upper bound for the horizon 1 value is obtained as follows: Q1
0,l(b0,l, a

t
0) =

∑
st
bt0,l(s

t)

×
K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)). These upper bounds may be decomposed into a set of vectors one for

each action a0, α1
a0

(s) =
K∑
k=1

R0(xtk, a
t
0, C

ν(xtk,a
t
0)), and each vector has as many components as

states.
Let Γh−1

∗ be the set of alpha vectors for horizon h−1 that are obtained by taking the fast informed
approximation with maximizing configurations. There are as many vectors in this set as the number
of actions |A0|. As the inductive hypothesis, let the vectors in Γh−1

∗ form an upper bound.
Next we derive the upper bound on horizon h value function.

Qh0,l(b
t
0,l, a

t
0) = Q1

0,l(b
t
0,l, a

t
0) + γ

∑
ωt+1

0

max
αh−1

[∑
st

bt0,l(s
t)
∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st),

. . . , bt0,l(MN,l−1|st)) O0(st+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

× T0(st, at0, C, s
t+1)

} ∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) αh−1(st+1,mt+1

−0 )
]
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We replace the backup above with the fast-informed backup that pushes the maximization over αh−1

deeper into the backup.

Qh0,l(b
t
0,l, a

t
0) ≤ Q1

0,l(b
t
0,l, a

t
0) + γ

∑
ωt+1

0

∑
st

bt0,l(s
t) max
αh−1

[∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st),

. . . , bt0,l(MN,l−1|st)) O0(st+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

× T0(st, at0, C, s
t+1)

} ∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) αh−1(st+1,mt+1

−0 )
]

Analogously to Section 2, we may factor out the current belief. The above Q-value becomes,

∑
st

bt0,l(s
t)
{∑

C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))R0(st, at0, C) + γ
∑
ωt+1

0

max
αh−1

[∑
st+1{∑

C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) O0(st+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|bt0,l(M1,l−1|

st), . . . , bt0,l(MN,l−1|st))T0(st, at0, C, s
t+1)

} ∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) αh−1(st+1,mt+1

−0 )
]}

=
∑
st

bt0,l(s
t)
{∑

C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))R0(st, at0, C) + γ
∑
ωt+1

0

∑
st+1{∑

C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) O0(st+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|bt0,l(M1,l−1|

st), . . . , bt0,l(MN,l−1|st))T0(st, at0, C, s
t+1)

} ∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) αh−1

∗ (st+1,mt+1
−0 )

}

We do not show the contexts of the configurations above to promote readability; these are easy to
infer. Let us replace the configuration inR0 with the one that maximizes it given the context (as in
the base case) and use the inductive hypothesis to replace the optimizing horizon h− 1 vectors with
their upper bounds. The above Q-value is,
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≤
∑
st

bt0,l(s
t)
{
R0(st, at0, C) + γ

∑
ωt+1

0

∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

×O0(st+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))T0(st, at0, C, s
t+1)

}

×
∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0) αh−1

∗ (st+1)
}

=
∑
st

bt0,l(s
t)
{
R0(st, at0, C) + γ

∑
ωt+1

0

∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

×O0(st+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))T0(st, at0, C, s
t+1)

}

× αh−1
∗ (st+1)

∑
mt+1
−0

N∏
j=1

Pr(mt+1
j,l−1|s

t+1, bt0,l, a
t
0)
}

=
∑
st

bt0,l(s
t)
{
R0(st, at0, C) + γ

∑
ωt+1

0

∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

×O0(st+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))T0(st, at0, C, s
t+1)

}
× αh−1

∗ (st+1)
}

Thus, the updated models of the other agents sum out. Next, we replace configurations in the
observation and transition functions of agent 0 with those that maximize the respective probabilities
given the context. Action value Qh0,l(b

t
0,l, a

t
0) is,

≤
∑
st

bt0,l(s
t)
{
R0(st, at0, C) + γ

∑
ωt+1

0

∑
st+1

{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

×O0(st+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) T0(st, at0, C, s
t+1)

}
× αh−1

∗ (st+1)}

=
∑
st

bt0,l(s
t)
{
R0(st, at0, C) + γ

∑
ωt+1

0

∑
st+1

{
O0(st+1, at0, C, ω

t+1
0 )

∑
C

Pr(C|bt0,l(M1,l−1|st), . . . ,

bt0,l(MN,l−1|st))
}{
T0(st, at0, C, s

t+1)
∑
C

Pr(C|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))
}

× αh−1
∗ (st+1)}
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This becomes,

Qh0,l(b
t
0,l, a

t
0) =

∑
st

bt0,l(s
t)
{
R0(st, at0, C) + γ

∑
ωt+1

0

∑
st+1

O0(st+1, at0, C, ω
t+1
0 ) T0(st, at0, C, s

t+1)

× αh−1
∗ (st+1)

}
=
∑
st

bt0,l(s
t) αhat0(st)
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