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Abstract

One of the most fundamental problems in Markov decision processes is analysis and
control synthesis for safety and reachability specifications. We consider the stochastic
reach-avoid problem, in which the objective is to synthesize a control policy to maximize
the probability of reaching a target set at a given time, while staying in a safe set at all prior
times. We characterize the solution to this problem through an infinite dimensional linear
program. We then develop a tractable approximation to the infinite dimensional linear
program through finite dimensional approximations of the decision space and constraints.
For a large class of Markov decision processes modeled by Gaussian mixtures kernels we
show that through a proper selection of the finite dimensional space, one can further reduce
the computational complexity of the resulting linear program. We validate the proposed
method and analyze its potential with numerical case studies.

1. Introduction

A wide range of controlled dynamical systems can be modeled using the framework of
Markov decision processes (MDPs) (Feinberg, Shwartz, & Altman, 2002; Puterman, 1994).
Depending on the problem at hand, several objectives can be formulated for an MDP
including maximization of a reward function or satisfaction of a specification defined by a
formal language. Safety and reachability are two of the most fundamental specifications for
a dynamical system. In a reach-avoid problem for an MDP, the objective is to maximize the
probability of reaching a target set within a given time horizon while staying in a safe set
(Abate, Prandini, Lygeros, & Sastry, 2008). This objective is stage-wise sum-multiplicative,
in contrast to the stage-wise additive cost functions typically used in MDPs. This addresses
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a recognized limitation of additive cost functions: many tasks are not easily encoded by
an additive cost function and are more naturally posed in terms of reaching and avoiding
certain sets (Kolobov, Mausam, Weld, & Geffner, 2011; Steinmetz, Hoffmann, & Buffet,
2016). The stochastic reach-avoid framework is utilized in applications including aircraft
conflict detection (Watkins & Lygeros, 2003; Ding, Kamgarpour, Summers, Abate, Lygeros,
& Tomlin, 2013), feedback control of camera networks (Kariotoglou, Raimondo, Summers,
& Lygeros, 2015) and optimal feedback policies for building evacuation under a randomly
evolving hazards (Wood, Summers, & Lygeros, 2013).

The reach-avoid problem considered in this paper is closely related to the stochastic
shortest path problem (Bertsekas & Tsitsiklis, 1991). In contrast to stochastic shortest
path however, there is no cost function for transitioning from one state (often treated as a
graph node) to another. As pointed out by Kolobov et al. (2011), Kolobov, Mausam, and
Weld (2012), Steinmetz et al. (2016), this difference makes the dynamic programming algo-
rithm developed for stochastic shortest path fail for the reachability and consequently the
reach-avoid problem. Hence, Kolobov et al. (2011, 2012) propose the so-called generalized
stochastic shortest path framework that can address a wide range of stage cost structures.
Similarly, Steinmetz et al. (2016) highlight the under-explored stochastic reachability prob-
lem and proposes a heuristic approach for the stochastic reachability problem. Though our
problem has very similar objective, it is not formulated in the category of MDPs considered
by Kolobov et al. (2011, 2012), Steinmetz et al. (2016) due to the continuous state and
input spaces. As such, our approximation approach is different than the past proposed
heuristics in that we utilize optimization in continuous spaces. Note that continuous spaces
are a natural modeling framework in several dynamical systems, such as robots, where the
dynamics are described by physical laws of motion.

The dynamic programming (DP) principle characterizes the solution to the stochastic
reach-avoid problem with continuous state and action spaces (Prandini & Hu, 2006). One
can approximate the DP equations on a finite grid defined over the MDP state and action
spaces. Gridding techniques are theoretically attractive since they can provide explicit
error bounds for the approximation of the value function under general Lipschitz continuity
assumptions (Abate, Amin, Prandini, Lygeros, & Sastry, 2007; Kushner & Dupuis, 2001).
In practice, the complexity of gridding based techniques suffers from the infamous Curse
of Dimensionality. That is, the sum of state and control space dimensions that can be
addressed is limited by the cardinality of the state-control pairs that need to be considered
to fairly approximate reach-avoid probabilities. Typically, the required cardinality to keep
approximations meaningful scales exponentially with dimensions of state and action spaces.
An important problem is therefore to explore approximation techniques that scale better.

Several researchers have developed approximate dynamic programming (ADP) tech-
niques for various classes of stochastic control problems (Powell, 2007; Bertsekas, 1995).
Most of the existing work has focused on problems where the state and control spaces are
finite but too large to directly solve DP recursions. Our work is motivated by the technique
discussed by de Farias and Van Roy (2003) where the authors develop an ADP method
for optimal control of an MDP with finite state and action spaces and an infinite horizon
discounted additive stage cost. In this approach, the value function of the stochastic control
problem is approximated as a weighted sum of basis functions, where the weights are the
solution to a linear program (LP) (de Farias & Van Roy, 2004). The number of constraints
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in the LP is equal to the cardinality of state and action spaces. Hence, computation be-
comes challenging for large MDPs. To handle this, a constraint sampling approach with
probabilistic bounds has been proposed by de Farias and Van Roy (2004).

For optimal control of MDPs with continuous state and action spaces and an additive
stage cost, an infinite dimensional linear program has been developed to characterize the
value function (Hernández-Lerma & Lasserre, 1996). Here, the decision variable is the
value function defined over the uncountable state space, hence, it is infinite dimensional.
Furthermore, the number of constraints is uncountably infinite since there is one constraint
corresponding to each state-input pair. Hauskrecht and Kveton (2003), Kveton, Hauskrecht,
and Guestrin (2006) consider a similar setup extending to mixed continuous and discrete
state variables. They propose approximating the value function as a weighted sum of
basis functions and devise an efficient approach to solving the resulting large-scale LP by
considering dynamical systems that are modeled by or can be fairly approximated using
the so-called “factored” MDPs. In contrast, in the reach-avoid problem considered here the
value function is sum-multiplicative in states over the time horizon and has no discount
factor. Furthermore, we make no a-priori assumptions on system dynamics.

The LP approach to the stochastic reachability problem for MDPs over continuous state
and action spaces and an infinite horizon was first proposed by Kamgarpour, Summers, and
Lygeros (2013). An infinite dimensional linear program was formulated whose solution,
in theory, would characterize the maximum reachability probability over the continuous
state space. However, no computational approach to solving this problem was provided. In
general, LP approaches to ADP are desirable since several commercially available software
packages can handle LP problems with large numbers of decision variables and constraints.
Motivated by this observation and leveraging advances in the past works by Powell (2007),
Bertsekas (1995), Kamgarpour et al. (2013) we develop a computational framework to ap-
proximate the optimal value function and policy of a stochastic reach-avoid problem over
continuous state and action spaces.

Our contributions are as follows. First, we derive an infinite dimensional LP formulated
over the space of Borel measurable functions and prove its equivalence to the standard DP-
based solution approach for the stochastic reach-avoid problem, under assumptions of the
continuity of the MDP transition kernel and compactness of the action space. Second, we
prove that through restricting the infinite dimensional decision space to a finite dimensional
subspace spanned by a collection of basis functions (semi-infinite or robust LP), we obtain
an upper bound on the stochastic reach-avoid value function. Third, we use randomized
optimization to obtain a tractable finite dimensional LP with probabilistic feasibility guar-
antees. The final contribution of our paper is the focus on numerical validation of the LP
approach to stochastic reach-avoid problems. As such, we propose a class of basis func-
tions for reach-avoid problems for MDPs with Gaussian mixture kernels. Basis functions
in this class have been successfully used in similar function approximation schemes due to
their analytic properties (Kveton & Hauskrecht, 2006). We then develop several benchmark
problems to test the scalability and accuracy of our proposed method.

A preliminary version of our approach appeared as a brief conference paper Kariotoglou,
Summers, Summers, Kamgarpour, and Lygeros (2013). Compared to the results discussed
by Kariotoglou et al. (2013), we extend and refine all theoretical statements since lemmas,
propositions and theorems proven here were missing. Furthermore, we provide novel nu-
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merical studies to illustrate the accuracy of the approach and its applicability to relatively
large-scale problems. Given that there are no competing approaches for the problem at hand
to handle large state-input dimensions, we compare the results to well-studied heuristics,
tuned to approximate the solution to simple stochastic reach-avoid problems.

The rest of the paper is organized as follows. In Section 2 we introduce the stochastic
reach-avoid problem for MDPs and formulate an infinite dimensional LP that characterizes
its solution. In Section 3 we derive an approach to approximate the solution to the infinite
LP through restricting the decision space to a finite dimensional subspace using basis func-
tions and reducing the infinite constraints to finite constraints through sampling. Section 4
proposes Gaussian radial basis functions to analytically compute operations arising in the
LP for MDPs with Gaussian mixture kernels. In Section 5 we validate the accuracy and
scalability of the solution approach with three case studies.

2. Stochastic Reach-Avoid Problem

We consider a discrete-time controlled stochastic process xt+1 ∼ Q(dx|xt, ut), (xt, ut) ∈
X ×U . Here, Q : B(X )× X ×U → [0, 1] is a transition kernel and B(X ) denotes the Borel
σ-algebra of X . Given a state control pair (xt, ut) ∈ X × U , Q(A|xt, ut) measures the
probability of xt+1 belonging to the set A ∈ B(X ). The transition kernel Q is a Borel-
measurable stochastic kernel, that is, Q(A|·) is a Borel-measurable function on X × U for
each A ∈ B(X ) and Q(·|x, u) is a probability measure on X for each (x, u). For the rest
of the paper all measurability conditions refer to Borel measurability. We allow the state
space X to be any subset of Rn and assume that the control space U ⊆ Rm is compact.

We consider a safe set K ′ ∈ B(X ) and a target set K ⊆ K ′. We define an admissible
T -step control policy to be a sequence of measurable functions µ = {µ0, . . . , µT−1} where
µi : X → U for each i ∈ {0, . . . , T−1}. The reach-avoid problem over a finite time horizon T
is to find an admissible T -step control policy that maximizes the probability of xt reaching
the set K at some time j ≤ T while staying in K ′ for all 0 ≤ t ≤ j. For any initial state
x0, we denote the reach-avoid probability associated with a given µ as

rµx0(K,K ′) = Pµx0{∃j ∈ {0, . . . , T} : xj ∈ K ∧ ∀i ∈ {0, . . . , j − 1}, xi ∈ K ′ \K}.

2.1 Dynamic Programming Approach

The reach-avoid probability rµx0(K,K ′) can be equivalently formulated as an expected value
objective function. In contrast to an optimal control problem with additive stage cost,
rµx0(K,K ′) is a history dependent sum-multiplicative cost function (Summers & Lygeros,
2010):

rµx0(K,K ′) = Eµx0

 T∑
j=0

(
j−1∏
i=0

1K′\K(xi)

)
1K(xj)

 , (1)

where we use the notation of
∏j
i=k(·) = 1 if k > j. Above, 1A(x) denotes the indicator

function of a set A ∈ B(X ). Our objective is to find supµ r
µ
x0(K,K ′) and the optimal policy

achieving the supremum. The sets K and K ′ can be time-varying or stochastic (Summers,
Kamgarpour, Tomlin, & Lygeros, 2013) but for simplicity we assume here that they are
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constant. We denote the difference between the safe and target sets by X̄ := K ′ \ K to
simplify the presentation of our results.

Similar to the dynamic programming approach to an optimal control problem with
additive stage cost, the solution to the reach-avoid problem is characterized by a recursion
(Summers & Lygeros, 2010) as follows. Define the value functions V ∗k : X → [0, 1] for
k = T − 1, . . . , 0 as

V ∗T (x) = 1K(x),

V ∗k (x) = sup
u∈U

{
1K(x) + 1X̄ (x)

∫
X
V ∗k+1(y)Q(dy|x, u)

}
.

(2)

It can be shown that V ∗0 (x0) = supµ r
µ
x0(K,K ′) (Summers & Lygeros, 2010). Past work has

focused on approximating V ∗k recursively on a discretized grid of X̄ and U (Prandini & Hu,
2006; Abate et al., 2007; Summers & Lygeros, 2010). Note that the DP recursion defined
by (2) does not fall into the category of additive discounted cost problems. This difference
yields certain approximation approaches for MDPs with discounted additive cost function
not applicable to the problem at hand.

Next, we will establish the measurability and continuity properties of the reach-avoid
value functions to enable the use of a linear program to approximate these functions.

Assumption 1. For every x ∈ X , A ∈ B(X ) the mapping u 7→ Q(A|x, u) is continuous.

Proposition 1. Under Assumption (1), at every step k, the supremum in (2) is attained
by a measurable function µ∗k : X → U and the resulting V ∗k : X → [0, 1] is measurable.

Proof. By induction. First, note that the indicator function V ∗T (x) = 1K(x) is measurable.
Assuming that V ∗k+1 is measurable we will show that V ∗k is also measurable. Define F (x, u) =∫
X V

∗
k+1(y)Q(dy|x, u). Due to continuity of the map u 7→ Q(A|x, u) by Assumption 1, the

map u 7→ F (x, u) is continuous for every x (Nowak, 1985, Fact 3.9). Since U is compact,
there exists a measurable function µ∗k(x) that achieves the supremum (Brown & Purves,
1973, Corollary 1). Furthermore, as shown by Bertsekas and Shreve (1978, Proposition
7.29), the mapping (x, u) 7→ F (x, u) is measurable. It follows that F (x, µ∗k(x)), and hence
V ∗k , is measurable as it is composition of measurable functions.

Since the optimizing policy is attained, we will use max instead of sup. Proposition 1
allows one to compute an optimal feedback policy at each stage k through

µ∗k(x) ∈ arg max
u∈U

{
1K(x) + 1X̄ (x)

∫
X
V ∗k+1(y)Q(dy|x, u)

}
= arg max

u∈U

{∫
X
V ∗k+1(y)Q(dy|x, u)

}
. (3)

For functions f, g : X → R, we use f ≤ g to denote f(x) ≤ g(x), ∀x ∈ X . It is easy
to verify by induction that 0 ≤ V ∗k ≤ 1, for k = T, T − 1, . . . , 0. Furthermore, due to the
indicator functions in (2), V ∗k (x) are defined on disjoint regions of X as:

V ∗k (x) =


1, x ∈ K
maxu∈U

∫
X V

∗
k+1(y)Q(dy|x, u), x ∈ X̄

0, x ∈ X \K ′
(4)
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Hence, it suffices to compute V ∗k and the optimizing policy on X̄ . We show that with an
additional assumption on kernel Q, V ∗k is continuous on X̄ . The continuity is a desired
property for approximating V ∗k on X̄ using basis functions.

Assumption 2. For every A ∈ B(X ) the mapping (x, u) 7→ Q(A|x, u) is continuous.

Proposition 2. Under Assumption (2), V ∗k (x) is piecewise continuous on X .

Proof. From continuity of (x, u) 7→ Q(A|x, u) we conclude that the mapping (x, u) 7→
F (x, u) is continuous (Nowak, 1985, Fact 3.9). From the Maximum Theorem (Sundaram,
1996), it follows that F (x, u∗(x)) and thus each V ∗k (x), is continuous on X̄ . The result
follows by (4).

2.2 Linear Programming Approach

Let F := {f : X → R, f is measurable}. For V ∈ F define two operators Tu, T : F → F

Tu[V ](x) =

∫
X
V (y)Q(dy|x, u), (5)

T [V ](x) = max
u∈U
Tu[V ](x). (6)

Let ν be a non-negative measure supported on X̄ , referred to as state-relevance measure.

Theorem 1. Suppose Assumption 1 holds. For k ∈ {0, . . . , T − 1}, let V ∗k+1 be the value
function at step k + 1 defined in (2). Consider the infinite dimensional linear program:

inf
V (·)∈F

∫
X̄
V (x)ν(dx) (Inf-LP)

subject to V (x) ≥ Tu[V ∗k+1](x), ∀(x, u) ∈ X̄ × U . (7)

(a) Any feasible solution of (Inf-LP) is an upper bound on the optimal reach-avoid value
function V ∗k on X̄ ; (b) V ∗k is a solution to this optimization problem and any other solution
to (Inf-LP) is equal to V ∗k , ν-almost everywhere on X̄ .

Although the domain of V is restricted to X̄ = K ′ \K, in order to evaluate a constraint
in (7) for each (x, u), one has to evaluate V ∗k+1 also on the set K to be able to compute the
integral Tu[V ∗k+1]. This value equals one by definition of the DP in (2).

Proof. Let J∗ ∈ R denote the optimal value of the objective function in (Inf-LP). From
the definition of V ∗k and Proposition 1, V ∗k ∈ F and is equal to the supremum over u ∈ U
of the right hand side of the constraint (7). Hence, for any feasible V ∈ F , we have
V (x) ≥ V ∗k (x) for all x ∈ X̄ and part (a) is shown. By non-negativity of ν it follows that
for any feasible V ,

∫
X̄ V (x)ν(dx) ≥

∫
X̄ V

∗
k (x)ν(dx), which implies J∗ ≥

∫
X̄ V

∗
k (x)ν(dx). On

the other hand, J∗ ≤
∫
X̄ V

∗
k (x)ν(dx) since it is the least cost among the set of feasible

functions. Hence, J∗ =
∫
X̄ V

∗
k (x)ν(dx) and V ∗k is an optimal solution. To show that any

other solution to (Inf-LP) is equal to V ∗k ν-almost everywhere on X̄ , assume there exists
a function V ∗, optimal for (Inf-LP) that is strictly greater than V ∗k on a set Am ∈ B(X )
of non-zero ν-measure. Since V ∗ and V ∗k are both optimal, we have that

∫
X̄ V

∗(x)ν(dx) =
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∫
X̄ V

∗
k (x)ν(dx) = J∗. We can then reduce V ∗ to the value of V ∗k on Am, while ensuring

feasibility of V ∗. This reduces the value of
∫
X̄ V

∗(x)ν(dx) below J∗, contradicting that V ∗

is optimal and part (b) is shown.

Note that the decision variable in Inf-LP lives in F , an infinite dimensional space. The
objectives and constraints are linear in the decision variable but there are infinitely many
constraints since X̄ and U are continuous spaces. This class of problems is referred to in
literature as an infinite dimensional linear program (Anderson & Nash, 1987; Hernández-
Lerma & Lasserre, 1998). As shown in Theorem 1, the sequence of value functions of the
stochastic reach-avoid problem derived in (2) are equivalently characterized as solutions
of a sequence of infinite dimensional linear programs. Thus, instead of the classical space
gridding approaches to solve (2), we focus on approximating V ∗k by approximating the
solutions to (Inf-LP).

3. Approximation with a Finite Linear Program

An infinite dimensional LP is in general NP-hard (Anderson & Nash, 1987; Hernández-
Lerma & Lasserre, 1998). We approximate the solution to (Inf-LP) by deriving a finite LP
through two steps. First, we restrict the decision space to a finite dimensional subspace
FM ⊂ F . Second, we replace the infinite constraints in (7) with a sufficiently large finite
number of randomly sampled constraints.

3.1 Restriction to a Finite Dimensional Function Class

Let FM be a finite dimensional subspace of F spanned by M basis elements denoted by
{φi}Mi=1. Given f ∈ F , consider the following semi-infinite linear program defined over
functions

∑M
i=1wiφi(x) ∈ FM with decision variable w ∈ RM :

S-LP(f) := min
w1,...,wM

M∑
i=1

wi

∫
X̄
φi(x)ν(dx) (Semi-LP)

subject to

M∑
i=1

wiφi(x) ≥ Tu[f ](x), ∀(x, u) ∈ X̄ × U . (8)

The above linear program has finitely many decision variables and infinitely many con-
straints. It is referred to as a semi-infinite linear program. We assume that problem
(Semi-LP) is feasible. Note that for a bounded f , this can always be guaranteed by includ-
ing φ(x) = 1 in the basis functions.

Consider the following semi-norm on F induced by the state-relevance measure ν,
‖V ‖1,ν :=

∫
X̄ |V (x)|ν(dx). In the infinite dimensional linear program (Inf-LP) the choice

of ν does not affect the optimal solution, as seen in Theorem (1). For finite dimensional
approximations, as will be shown in the next Lemma, ν influences approximation accuracy
in different regions of X̄ .

Let V̂f =
∑M

i=1 ŵiφi be a solution to (Semi-LP) and V ∗f ∈ F be a solution to (Inf-LP),
where the right-hand-side constraint V ∗k+1 is replaced with f .

Lemma 1. V̂f achieves the minimum of
∥∥V − V ∗f ∥∥1,ν

, over the set {V ∈ FM , V ≥ V ∗f }.
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Proof. It follows from the proof of Theorem (1) that V ∗f = supu Tu[f ], ν-almost everywhere.

Now, a function V̂ ∈ FM is an upper bound on V ∗f = supu Tu[f ] if and only if it satisfies

constraint (8). To show that V̂f minimizes the (1, ν)-norm distance to V ∗f , notice that for

any V (x) =
∑M

i=1wiφi(x) satisfying (8) we have that

‖V − V ∗f ‖1,ν =

∫
X̄
|V (x)− V ∗f (x)|ν(dx) =

∫
X̄
V (x)ν(dx)−

∫
X̄
V ∗f (x)ν(dx),

where the second equality is due to the fact that V is an upper bound of V ∗f . Since V ∗f is a
fixed constant in the norm optimization of the lemma above, the result follows.

The interpretation of the above lemma is that in the class of functions that upper
bound V ∗f , we find the function with the least distance to V ∗f , where the distance is defined
with respect to the (1, ν)-norm. We will use semi-infinite problem (Semi-LP) to recursively
approximate V ∗k using a weighted sum of basis functions as follows.

For every k ∈ {0, . . . , T − 1}, let FMk denote the span of a fixed set of Mk basis ele-
ments {φki }Mk

i=1 where each φki ∈ F . Start with the known value function V ∗T and recursively

construct V̂k(x) =
∑Mk

i=1 ŵ
k
i φ

k
i (x) where ŵki is the solution to (Semi-LP) obtained by sub-

stituting f = V̂k+1 in (Semi-LP), that is, solving S-LP(V̂k+1).

Proposition 3. The functions V̂k
(a) V̂k(x) ≥ V ∗k (x) for all x ∈ X̄ and k = 0, . . . , T − 1.

(b) Each V̂k is an optimizer in:

min
V (·)∈FMk

∥∥V − V ∗k ∥∥1,ν
(9)

subject to V (x) ≥ Tu[V̂k+1](x), ∀(x, u) ∈ X̄ × U . (10)

Proof. We prove part (a) by induction. Note that at step T − 1 the results above hold as
a direct consequence of Lemma (1). Now, suppose at time step k, V̂k(x) ≥ V ∗k (x). From

monotonicity of the operator Tu (Summers & Lygeros, 2010), it follows that Tu[V̂k](x) ≥
Tu[V ∗k ](x). By constraint (10), it follows that V̂k−1(x) ≥ Tu[V̂k](x) ≥ Tu[V ∗k ](x) = V ∗k−1(x),
where the last equality is due to the definition of V ∗k in (4). To prove part (b), con-

sider that V̂k is the solution for (Semi-LP) with f = V̂k+1 which implies that V̂k(x) ≥
Tu[V̂k+1](x),∀(x, u) ∈ X̄ × U and it thus satisfies (10). Being a solution to (Semi-LP)
also implies that V̂k achieves the minimum of ‖V − V ∗k+1‖1,ν over the set {V ∈ FMk}.
The cost function ‖V − V ∗k ‖1,ν expands to ‖V − V ∗k ‖1,ν =

∫
X̄ |V (x) − V ∗k (x)|ν(dx) =∫

X̄ V (x)ν(dx) −
∫
X̄ V

∗
k (x)ν(dx) where the last step follows from part (b) proven above.

Hence minimizing ‖V − V ∗k ‖1,ν is equivalent to minimizing ‖V − V ∗k+1‖1,ν since V ∗k+1 and
V ∗k (x) are fixed.

The above proposition illustrates that by restricting the decision space of the infinite
dimensional linear program, we obtain an upper bound to the reach-avoid value functions
V ∗k , at every step k. This is also the least (in the (1, ν)-norm) upper bound in the space
spanned by the basis functions subject to constraint (10).
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3.2 Restriction to a Finite Number of Constraints

The semi-infinite linear program, (Semi-LP) is in general NP-hard (Bertsimas, Brown, &
Caramanis, 2011; Ben-Tal & Nemirovski, 2002; Hettich & Kortanek, 1993). One way to
approximate the solution is to solve a relaxation of the problem by imposing the constraints
on only a finite set of points from X̄ × U . One can then use generalization results from
sampled convex programs (Calafiore & Campi, 2006; Campi, Garatti, & Prandini, 2009)
to quantify, probabilistically, the feasibility of the obtained solution for the original infinite
constraints.

Construct a set of samples S := {(xi, ui)}Ni=1 by drawing N independent points according
to a probability measure on X̄ × U denoted by PX̄×U . For a fixed function f ∈ F , consider

the following finite LP defined over functions
∑M

i=1wiφi(x) ∈ FM :

F-LP(f) := min
w1,...,wM

M∑
i=1

wi

∫
X̄
φi(x)ν(dx)

subject to
M∑
i=1

wiφi(x) ≥ Tu[f ](x), ∀(x, u) ∈ S
(Fin-LP)

Assume for any S ⊂ X̄ ×U , the feasible region of (Fin-LP) is non-empty and the optimizer
is unique. Let w̃S be the sample dependent optimizer in (Fin-LP).

Lemma 2. (Campi et al., 2009, Theorem 1) Choose a violation and confidence levels
ε, β ∈ (0, 1). If

N ≥ 2

ε

(
M + ln

(
1

β

))
Then, with confidence 1− β

PX̄×U
( M∑
i=1

w̃Si φi(x)(x)
)
< Tu[f ](x)) ≤ ε. (11)

The above result indicates that the optimizer w̃S violates the constraints of the linear
program on a subset of X̄ × U with maximum measure ε. Note that PX̄×U is a choice.
The interpretation of (11) is that we bound the size of the set in which the constraints are
violated with respect to the chosen measure PX̄×U .

In summary, we can recursively construct Ṽk =
∑Mk

i=1 w̃
k
i φ

k
i by solving (Fin-LP) using

f = V ∗T at time T , and f = Ṽk+1 for k = T − 1, . . . , 0. Hence, we solve F-LP(Ṽk+1)
recursively. Given potentially time-varying confidence βk and violation probability εk, we
then find the number of samples Nk(εk, βk,Mk) to include in (Fin-LP). It follows that with
confidence greater than 1 − βk, the probability of violating the upper bound constraint is
less than εk. Consequently, the approximation functions Ṽk are only probabilistic upper
bounds on the value functions V ∗k , in contrast to the guaranteed upper bounds provided

in Proposition (3). In particular, it can be shown that with confidence 1 −∑T−1
i=0 βi, the

probability that Ṽ0 is an upper bound on V ∗0 is greater than 1 −∑T−1
i=0 εi (Kariotoglou,
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Margellos, & Lygeros, 2016). This recursive approximation technique can be extended to
large horizons with a linear increase in the number of decision variables. However, the
approximation guarantees get progressively worse.

Remark: An alternative approach to approximate the solution to a semi-infinite linear
program could be the constraint generation technique (Patrascu, Poupart, Schuurmans,
Boutilier, & Guestrin, 2002; Guestrin, Koller, Parr, & Venkataraman, 2003). Similar to
our approach, in constraint generation, the problem is first solved by considering a finite
subset S of the constraints. Then, given the optimizer wS , the most violating constraint in
the set X̄ × U is computed and added to the set of constraints and the process is repeated
until a stopping criteria is reached. Notice that the problem of finding the most violating
constraints in our case is a non-convex optimization problem. To the best of our knowledge,
convergence of the constraint generation approach is not guaranteed in this case.

Remark: To evaluate the accuracy of Ṽk, ideally, one may attempt to bound ‖Ṽk −
V ∗k ‖1,ν as a function of ‖V̂k − V ∗k ‖1,ν , where V̂k is computed according to Proposition (3)

and bound ‖V̂k −V ∗k ‖1,ν to a given accuracy using the properties of the basis functions and
V ∗k . The first bound is concerned with quantifying the accuracy in the objective function of
a sampled convex program. To do so, the number of samples can be updated by considering
the Lipschitz properties of the objective function (Mohajerin Esfahani, Sutter, & Lygeros,
2015). The problem of how to determine the basis functions to bound ‖V̂k − V ∗k ‖1,ν to a
given accuracy is also heavily dependent on the continuity properties of the objective func-
tion and in general is a challenging open problem. For a technical discussion on quantifying
the error between an infinite dimensional LP and approximations based on finite dimen-
sional restrictions we refer readers to the works by Hernández-Lerma and Lasserre (1998),
Mohajerin Esfahani et al. (2015).

In the remainder of the paper we will evaluate the computational tractability and accu-
racy of (Fin-LP) in estimating reach-avoid value functions for a general subset of MDPs.

4. Radial Basis Functions for MDPs with Gaussian Mixture Kernels

For a general class of MDPs modeled by Gaussian mixture kernels (Khansari-Zadeh & Bil-
lard, 2011) we propose using Gaussian radial basis functions (GRBFs) for approximating
the reach-avoid value functions. Through this choice, the constraint in (Fin-LP) involving
the integration Tu[f ] can be computed in closed form. Moreover, it is known that radial
basis functions are a sufficiently rich function class to approximate continuous functions
(Hartman, Keeler, & Kowalski, 1990; Sandberg, 2001; Park & Sandberg, 1991; Cybenko,
1989). In fact, Kveton and Hauskrecht (2006) also propose an algorithm for learning ba-
sis functions in the context of approximate linear programming using mean-parametrized
GRBFs.

4.1 Basis Function Choice

To apply GRBFs in the reach-avoid framework, we consider the following problem data:

1. The kernel Q is a Gaussian mixture kernel
∑J

j=1 αjN (µj ,Σj) with diagonal covariance

matrices Σj , means µj and weights αj such that
∑J

j=1 αj = 1 for a finite J ∈ N+.
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2. The target and safe sets K and K ′ are unions of disjoint hyper-rectangle sets, i.e.
K =

⋃P
p=1Kp =

⋃P
p=1

(×n
l=1[apl , b

p
l ]
)

and K ′ =
⋃M
m=1K

′
m =

⋃M
m=1

(×n
l=1[cml , d

m
l ]
)

for
finite P,M ∈ N+ with n = dim(X ) and ap, bp, cm, dm ∈ Rn, ∀p,m.

The above restrictions apply to a large class of MDPs. For example, the kernel of general
nonlinear systems subject to additive Gaussian mixture noise is a Gaussian mixture kernel.
Moreover, in several problems, the state and input constraints are decoupled in different
dimensions resulting in disjoint hyper-rectangles as constraint sets. It should be noted
that whenever the safe and target sets are polytopic and cannot be written as unions of
disjoint hyper-rectangles, one can approximate them as such to arbitrary accuracy using
the methods suggested by Bemporad, Filippi, and Torrisi (2004). For a fixed approximation
accuracy such algorithms are of polynomial complexity with respect to the dimension of the
space. Approximations of more general sets with polytopes within a predefined accuracy
is a much harder problem and algorithms may scale exponentially in the dimension of the
problem (Bronstein, 2008).

For each time step k, let FMk denote the span of a set of GRBFs {φki }Mk
i=1 : Rn → R:

φki (x) =
n∏
l=1

1√
2πski,l

exp

(
−1

2

(xl − cki,l)2

ski,l

)
, (12)

where {cki,l}nl=1 ∈ R, {ski,l}nl=1 ∈ R+ are the centers and the variances, respectively, of the
GRBF. The class of GRBFs is closed with respect to multiplication (Hartman et al.,
1990, Section 2). In particular, let f1 =

∑Mk
i=1w

1
i φ

k
i , f

2 =
∑Mk

j=1w
2
jφ

k
j . Then, f1f2 =∑Mk

i=1

∑Mk
j=1w

1
iw

2
j φ̃

k
ij , where the centers and variances of the bases φ̃kij are explicit functions

of those of φki , φ
k
j .

Integrating the proposed GRBFs over a union of hyper-rectangles decomposes into one
dimensional integrals of Gaussian functions. In particular, let Ṽk(x) =

∑Mk
i=1 w̃

k
i φ

k
i (x) denote

the approximate value function at time k and A =
⋃D
d=1([ad1, b

d
1] × · · · × [adn, b

d
n]), denote a

finite union of hyper-rectangles. The integral of Ṽk over A after some algebra reduces to∫
A
Ṽk(x)ν(dx) =

D∑
d=1

Mk∑
i=1

w̃ki

n∏
l=1

1

2
erf

bdl − cki,l√
2ski,l

− 1

2
erf

adl − cki,l√
2ski,l

, (13)

where ν is assumed to be uniform product measure on each dimension d and erf denotes
the error function defined as erf(x) = 2√

π

∫ x
0 exp

(
−t2
)
dt.

Due to the decomposition of the reach-avoid value functions on the sets K = ∪Pp=1Kp

and X̄ = K ′ \K = (K ′ = ∪Mm=1K
′
m) \K as stated in (4), Tu[Ṽk] in (5) is equivalent to∫

X
Ṽk(y)Q(dy|x, u) =

M∑
m=1

Mk∑
i=1

w̃ki

∫
K′m

φki (y)Q(dy|x, u) +

P∑
p=1

∫
Kp

Q(dy|x, u). (14)

Since a Gaussian mixture kernel Q can be written as a GRBF, every term inside the integral
above is a product of GRBFs. Hence, it is a GRBF with known centers and variances. The
integrals over K ′m and Kp in the right-hand-side of the (Fin-LP) can thus be computed
using (13) at a sampled point (xs, us).
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4.2 Recursive Value Function and Policy Approximation

We summarize the method to approximate the reach-avoid value function in Algorithm 1.
The design choices include the number of basis functions, their centers and variances, the
sample violation and confidence bounds in Lemma 2 and the state-relevance weights. The
number of basis functions is problem dependent and in our case studies, we use trial and
error to fix this number. We choose the centers of the GRBFs by sampling them from a
uniform probability measure supported on X̄ . We sample the variances from a uniform
measure supported on a bounded set that depends on problem data. Note that the method
is still applicable if centers and variances are not sampled but set in another way, for example
using neural network training or trial and error. Typically, ε and β are chosen to be close
to 0 to enhance the feasibility guarantees of Lemma 2 at the expense of more constraints
in (Fin-LP). Furthermore, we choose the state-relevance measure ν as a uniform product
measure on the space X̄ to use the analytic integration in (13). This corresponds to equal
weighting on potential errors on different state space regions.

Given the approximate value functions, we compute the so-called greedy control policy:

µ̃k(x) = arg max
u∈U

∫
X
Ṽk+1(y)Q(dy|x, u). (15)

The optimization problem in (15) is non-convex. However, the cost function is smooth with
respect to u for a fixed x ∈ X̄ , the gradient and Hessian information can be analytically
obtained using the erf function and the decision space U is typically low dimensional (in
most mechanical systems for example, dimU ≤ dimX ). Thus, a locally optimal solution
can be obtained efficiently using off-the-shelf optimization solvers.

5. Numerical Case Studies

We develop and solve a series of benchmark problems and evaluate our approximate so-
lutions in two ways. First, we compute the closed-loop empirical reach-avoid policy by
applying the approximated control input obtained from (15). Second, we use scalable al-
ternative approaches to approximate the benchmark reach-avoid problems. To this end, we
consider three reach-avoid problems that differ in structure and complexity. The first two
examples are academic and illustrate the scalability and accuracy of the approach. The last
example is a practical problem, where the approach was also implemented on a miniature
race-car testbed. Throughout, we refer to our approach as the ADP approach. All compu-
tations were carried out on an Intel Core i7 Q820 CPU clocked at 1.73 GHz with 16GB of
RAM memory, using IBM’s CPLEX optimization toolkit in its default settings.

5.1 Example 1

We consider linear systems with additive Gaussian noise, xk+1 = xk + uk + ωk, where
xk ∈ X = Rn, uk ∈ U = [−0.1, 0.1]n and ωk is distributed as a Gaussian random variable
ωk ∼ N (0n×1,Σ) with diagonal covariance matrix. We consider a target setK = [−0.1, 0.1]n

centered at the origin and a safe set K ′ = [−1, 1]n (see Figure 1 for a 2D illustration).
The objective is to reach the target set while staying in the safe set over a horizon of
T = 5 steps. We approximated the value function using Algorithm 1 for a range of system
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Algorithm 1 linear programming based reach-avoid value function approximation

Input Data:

• State and control spaces X̄ × U , reach-avoid time horizon T .

• Target and safe sets K and K ′, written as unions of disjoint hyper-rectangles.

• Centers and variances of the MDP Gaussian mixture kernel Q.

Design parameters:

• Number of basis functions {Mk}T−1
k=0 .

• Violation and confidence levels {εi}T−1
i=0 , {1− βi}T−1

i=0 , probability measure PX̄×U .

• Probability measure of centers and variances for the basis functions {φki }Mk
i=1.

• State-relevance measure ν decomposed as a product measure on the state space.

Initialize ṼT (x)← 1K(x).
for k = T − 1, T − 2, . . . , 0 do

Construct FMk by sampling Mk centers {ci}Mk
i=1 and variances {si}Mk

i=1 according to the
chosen probability measures.
Sample N(εk, βk,Mk) pairs (xs, us) from X̄ × U using the measure PX̄×U .
for all (xs, us) do

Evaluate Tus [Ṽk+1](xs) using (14).
end for
Solve the finite LP in (Fin-LP) to obtain w̃k = (w̃k1 , . . . , w̃

k
Mk

).

Set the approximated value function on X̄ to Ṽk(x) =
∑Mk

i=1 w̃
k
i φ

k
i (x).

end for
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Figure 1: 2D depiction of safe and target
sets and sample trajectories.

dim(X × U) 4D 6D 8D

Mk 100 500 1000
Nk 4184 20184 40184
εk 0.05 0.05 0.05
1− βk 0.99 0.99 0.99

‖Ṽ0 − VADP‖ 0.0692 0.104 0.224
Construction (sec) 4 85 450
LP solution (sec) 2 50 520
Memory (MB) 3.2 80 320

Table 1: Parameters and properties of the
value function approximation scheme.

dimensions dim(X × U) = 4, 6, 8, to analyze scalability and accuracy of the LP-based reach-
avoid solution in a benchmark problem that scales up in a straightforward way.

The transition kernel of the considered linear system is Gaussian xk+1 ∼ N (xk +uk,Σ).
The sets K and K ′ are hyper-rectangles. Thus, the GRBF framework applies. We chose
100, 500 and 1000 GRBF elements for the reach-avoid problems of dim(X × U) = 4, 6, 8,
respectively (Table 1). We used uniform measures supported on X̄ and [0.02, 0.095]n to

275



Kariotoglou, Kamgarpour, Summers & Lygeros

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

Basis elements

‖V
A
D
P
−
V
L
Q
G
‖

4D
6D
8D

(a) Mean absolute difference between the em-
pirical reach-avoid probabilities achieved by
the ADP (VADP) and LQG (VLQG) policies
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is equal to the numbers reported in Table 1.
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Figure 2: Example 1 - performance of the algorithm as a function of parameters.

sample the GRBFs’ centers and variances, respectively. The violation and confidence levels
for every k ∈ {0, . . . , 4} were set to εk = 0.05, 1−βk = 0.99 and the measure PX̄×U required
to generate samples from X̄ × U was chosen to be uniform. Since there is no reason to
favor some states more than others, we also chose ν as a uniform measure, supported on X̄ .
Following Algorithm 1 we obtain a sequence of approximate value functions {Ṽk}4k=0.

To evaluate the performance of the approximation, we sampled 100 initial conditions x0,
uniformly from X̄ . For each initial condition we generated 100 noise trajectories {ωk}T−1

k=0 .
We computed the policy along the resulting state trajectory using (15). We then counted
the number of trajectories that successfully completed the reach-avoid objective, i.e. reach
K without leaving K ′ in T steps. In Table 1 we denote by ‖Ṽ0 − VADP‖ the mean absolute
difference between the empirical success denoted by VADP, and the predicted performance
Ṽ0, evaluated over the considered initial conditions. The memory and computation times
reported correspond to constructing and solving each LP.

Since the system is linear, the noise is Gaussian and the target and safe sets are sym-
metric and centered around the origin, we can use the so-called Linear Quadratic Gaussian
(LQG) controller (Bertsekas, 1995). This controller has the objective to drive the states
close to the origin while ensuring the energy of the input is minimized. The closed-form
optimal policy for the LQG problem can be easily computed (Bertsekas, 1995). As such,
by properly tuning the corresponding weights of the states and inputs in the LQG objec-
tive based on the target and constraint sets, we can heuristically achieve the reach-avoid
objective. This is further explained below.
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The LQG problem for a linear stochastic system xk+1 = Axk + Buk + ωk, as the one
considered above, is defined by an expected value quadratic cost function:

min
{uk}T−1

k=0

Eµx0(
T−1∑
k=0

x>k Qxk + u>k Ruk) + x>TQxT .

Above, Q ∈ Sn+ and R ∈ Sm++, where Sn+ and Sm++ denote the set of n×n positive semidefinite
and m ×m positive definite matrices, respectively. We choose Q and R to correspond to
the largest ellipsoids inscribed in K and U , respectively. Through this choice the level sets
of the LQG cost function proportionally correspond to the size of the target and control
constraint sets. Intuitively, the penalization of states through the quadratic cost Q drives
the state to the origin. The penalization of the input does not guarantee feasibility of the
input constraints. Therefore, we project the LQG control on the feasible set U . Using the
same initial conditions and noise trajectories as those used with the ADP controller above,
we simulated the performance of the LQG controller. We counted the number of trajectories
that reach K without leaving K ′ over the horizon of T = 5 steps.

Figure 2a shows the mean over the initial conditions of the absolute difference between
VLQG and VADP as a function of number of basis functions. We observe a trend of increasing
accuracy with increasing number of basis functions. Figure 2b shows the same metric but
as a function of the total number of sample pairs from X × U for a fixed number of basis
functions. Changing the number of samples N , affects the violation level εk (assuming
constant βk) and the approximation quality seems to improve with increasing N . In Table
2, we observe a trade-off between accuracy and computational time for the 6D problem
varying the number of samples; the result is analogous in the 4D and 8D problems.

N ‖VADP − VLQG‖ Construction (sec) LP solution (sec) Memory (MB)

400 0.283 2.20 3.57 1.60
4000 0.206 17.0 97.0 16.0
40000 0.036 170 162 160

Table 2: Accuracy and computation time as a function of number of sampled points in
dim(X × U) = 6, with Mk = 500 and 1− βk = 0.99.

5.2 Example 2

We consider the same linear dynamical system xk+1 = xk + uk + ωk, with target set K as
defined in Section 5.1. In addition, in this example, the avoid set includes obstacles placed
randomly within the state space as depicted in Figure 3. The safe set is (K ′ \ ⋃5

j=1K
j
α),

where K ′ was defined in the previous example, and each Kj
α denotes a hyper-rectangular

obstacle. We denote the union of obstacle sets by Kα =
⋃5
j=1K

j
α. The reach-avoid time

horizon is T = 7. We use Algorithm 1 to approximate the optimal reach-avoid value function
and compute the greedy policy.
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Figure 3: Example 2 - 2D depiction
of obstacles and sample trajectories.

dim(X × U) 4D 6D 8D

Mk 100 500 1000
Nk 4184 20184 40184
εk 0.05 0.05 0.05
1− βk 0.99 0.99 0.99

‖Ṽ0 − VADP‖ 0.095 0.118 0.191
Construction (sec) 4.20 130 671
LP solution (sec) 3.2 80 700
Memory (MB) 3.20 80.0 320

Table 3: Parameters and properties of the
value function approximation scheme.

We chose the same basis function numbers, basis parameters, sampling and state-
relevance measures as well as violation and confidence levels as in Section 5.1, shown in
Table 3. We simulated the performance of the ADP controller starting from 100 different
initial conditions, selected such that at least one obstacle blocks the direct path to the
origin. For every initial condition we sampled 100 different noise trajectory realizations and
applied the corresponding control policies computed through (15). We then computed the
empirical ADP reach-avoid success probability (denoted by VADP) by counting the total
number of trajectories that reach K while avoiding reaching the obstacles or leaving K ′.

Note that due to the presence of multiple obstacles, the LQG approach cannot be used
as a heuristic for comparison. Nevertheless, the problem of reaching a target set without
passing through any obstacles is an instance of a path planning problem and has been
studied thoroughly for deterministic systems (e.g., Borenstein & Koren, 1991; Richards
& How, 2002; Van Den Berg, Ferguson, & Kuffner, 2006). For a benchmark comparison
we use the approach developed by Richards and How (2002) and formulate the reach-
avoid problem for the noise-free system as a constrained mixed logic dynamical system
(MLD) (Bemporad & Morari, 1999). This problem can in turn be recast as a mixed integer
quadratic program (MiQP) and solved to optimality using standard branch and bound
techniques. To account for noise in the dynamics ωk, we used a heuristic approach as
follows. We truncated the density function of the random variables ωk at 95% of their total
mass and enlarged each obstacle set Kα by the maximum value of the truncated ωk in each
dimension. This resembles the robust (worst-case) approach to control design.

Starting from the same initial conditions as in the ADP approach, we simulated the
performance of the MiQP-based control policy on the 100 trajectory realizations used in
the ADP controller. We implemented the policy in receding horizon by measuring the
state at each horizon step. The empirical success probability of trajectories that reach K
while staying safe is denoted by VMiQP. The mean difference ‖VADP − VMiQP‖ is presented
in Table 4 and is computed by averaging the corresponding empirical reach-avoid success
probabilities over the initial conditions. As seen in this table, as the number of basis
functions increases, ‖VADP−VMiQP‖ decreases. This can indicate that the reach-avoid value
function approximation is increasing in accuracy. Note that for an increase in the planning
horizon T , the number of binary variables (and hence the computational complexity) in
MiQP grows exponentially, whereas in the LP-based reach-avoid approach, the computation
effort grows linearly with the horizon.
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Mk ‖VADP − VMiQP‖ Construction (sec) LP solution (sec) Memory (MB)

50 0.214 1.67 0.18 0.784
100 0.168 5.59 2.66 3.20
200 0.084 22.0 4.30 12.8
500 0.070 130 80.0 80.0
1000 0.045 507 1210 320

Table 4: Example 2 - Accuracy and computational requirements for dim(X × U) = 6.

5.3 Example 3

Consider the problem of driving a race car through a tight corner in the presence of static
obstacles, illustrated in Figure 4. As part of the ORCA project of the Automatic Control
Lab, a six state variable nonlinear model with two control inputs has been identified to
describe the movement of 1:43 scale race cars. The model derivation can be found in the
work by Liniger, Domahidi, and Morari (2014) and is based on a unicycle approximation
with parameters identified on the experimental platform of the ORCA project using model
cars manufactured by Kyosho. We denote the state space by X ⊂ R6, the control space by
U ⊂ R2 and the identified dynamics by a function f : X ×U 7→ X . The first two elements
of each state x ∈ X correspond to spatial dimensions, the third to orientation, the fourth
and fifth to body fixed longitudinal and lateral velocities and the sixth to angular velocity.
The two control inputs u ∈ U are the throttle duty cycle and the steering angle.

We will show how one can address the problem as a finite horizon reach-avoid prob-
lem and approximate its solution using the methodology presented. There are naturally
several other approaches to address this problem (e.g., Richards & How, 2002; Couëtoux,
Hoock, Sokolovska, Teytaud, & Bonnard, 2011). Our choice is only meant to illustrate the
applicability of the framework for a general nonlinear dynamical system in high dimensions.

As typically observed in practice, the state predicted by the identified dynamics and
the state measurements recorded on the experimental platform are different due to process
and measurement noise. Analyzing the deviation between predictions and measurements,

Figure 4: Example 3 - The set up of the
Race-car cornering problem.
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Figure 6: Empirical noise distribution.

Safe region min max variances

K ′1 (m) 0.2 1 [8× 10−4,1.2× 10−3]
K ′2 (m) 0.2 0.6 [8× 10−4,1.2× 10−3]
K ′3 (rad) −π π [5× 10−3,1.5× 10−2]
K ′4 (m/s) 0.3 3.5 [5× 10−3,1.5× 10−2]
K ′5 (m/s) -1.5 1.5 [5× 10−3,1.5× 10−2]
K ′6 (rad/s) -8 8 [2.00,4.00]

Table 5: State constraints and basis functions’
variances used in ADP approximation.

we captured the uncertainties in the original model using additive Gaussian noise, g(x, u) =
f(x, u) + ω, ω ∼ N (µ,Σ), µ ∈ R6,Σ ∈ S6

++, where S6
++ denotes the set of positive-

definite matrices of dimension 6. The noise mean µ, and diagonal covariance matrix Σ have
been selected such that the probability density function of the Markov decision process
describing the uncertain dynamics resembles the empirical data obtained via measurements.
As an example, Figure 6 illustrates the fit for the angular velocity where µ6 = −0.26 and
Σ(6, 6) = 0.53. It follows that the kernel of the stochastic process is a GRBF with a single
basis function described by the Gaussian distribution N (f(x, u) + µ,Σ).

We cast the problem of driving the race car through a tight corner without reaching
obstacles as a stochastic reach-avoid problem. Despite the highly nonlinear dynamics, the
stochastic reach-avoid set-up can readily be applied to this problem. We consider a horizon
of T = 6 and a sampling time of 0.08 seconds. The safe region of the spatial dimensions is
defined as (K ′1 ×K ′2)\Kα whereKα ⊂ R2 denotes the obstacle, see Figures 4 and 5. The safe
set in 6D is thus defined as K ′ = ((K ′1 ×K ′2) \Kα)×K ′3×K ′4×K ′5×K ′6 where K ′3,K

′
4,K

′
5,K

′
6

describe the physical limitations of the model car (see Table 5). Similarly, the target set for
the spatial dimensions is denoted byK1×K2 and corresponds to the end of the turn as shown
in Figure 5. The target set in 6D is then defined as K = K1 ×K2 ×K ′3 ×K ′4 ×K ′5 ×K ′6,
which contains all states x ∈ K ′ for which (x1, x2) ∈ K1 × K2. The constraint sets are
naturally decoupled over the state dimensions. Note that for practical purposes we have
violated the assumption in Section 2 that the target set is a subset of the safe set in the
spatial dimension (see Figure 5). The methodology and results remain the same if one
extends the spatial safe set K ′1 ×K ′2 to include K1 ×K2.

We used 2000 GRBFs for each approximation step with centers and variances sampled
according to uniform measures supported on X̄ and on the hyper-rectangle defined by
the product of intervals in the rows of Table 5, respectively. We used a uniform state-
relevance measure and a uniform sampling measure to construct each one of the finite linear
programs in Algorithm 1. All violation and confidence levels were chosen to be εk = 0.2 and
1− βk = 0.99 respectively for k = {0, . . . , 5}. We then implemented the steps of Algorithm
1 and compute a sequence of approximate value functions.

To evaluate the quality of the approximations we initialized the car at two different initial
conditions x1 = (0.33, 0.4,−0.2, 0.5, 0, 0) and x2 = (0.33, 0.4,−0.2, 2, 0, 0). They correspond
to entering the corner at low (x1

4 = 0.5 m/s) and high (x2
4 = 2 m/s) longitudinal velocities.

The approximate value functions evaluate to Ṽ0(x1) = 0.98, Ṽ0(x2) = 1 and indicate success
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with high probabilities for both cases. Interestingly, the associated trajectories computed
via the greedy policy defined through (15) vary significantly. In the low velocity case, the
car avoids the obstacle by driving above it while in the high velocity case, it does so by
driving below it (see Figure 5). Such a behavior is expected since the car can slip if it
turns aggressively at high velocities. We also computed empirical reach-avoid probabilities
in simulation by sampling 100 noise trajectories from each initial state and implementing
the ADP control policy using the associated value function approximation. The sample
trajectories are plotted in Figure 5 with VADP(x1) = 1 and VADP(x2) = 0.99

The controller was tested on the ORCA setup by running 10 experiments from each
initial condition1. We pre-computed the control inputs at the predicted mean trajectory of
the states over the horizon for each experiment. Implementing the feedback policy online
would require solving problem (15) within the sampling time of 0.08 seconds. In theory,
this computation is possible since the control space is only two dimensional but it requires
developing an embedded nonlinear programming solver compatible with the ORCA setup.
Here, we have implemented the open loop controller. We note however that if the open
loop controller performs accurately, the closed loop computation can only improve the
performance by utilizing updated state measurements.

6. Conclusions

We developed a numerical approach to compute the value function of the stochastic reach-
avoid problem for Markov decision processes with continuous state and action spaces. Since
the method relies on solving linear programs we were able to tackle reach-avoid problems
with larger dimensions than those addressed with established state-input space gridding
methods. The potential of the approach was analyzed through two benchmark case studies
and a trajectory planning problem for a six dimensional nonlinear system with two inputs.
To the best of our knowledge, this is the first time that stochastic reach-avoid problems up
to eight continuous state and input dimensions have been addressed.

We are currently focusing on the problem of systematically choosing the basis func-
tion parameters by exploiting knowledge about the system dynamics. Furthermore, we are
developing decomposition methods for the large linear programs that arise in our approxi-
mation scheme to allow addressing control of MDPs in higher dimensions. An interesting
research problem is to explore alternative tractable reformulations of the infinite constraints
in the semi-infinite linear programs, using for example, constraint generation techniques or
symbolic approaches (Kveton et al., 2006; Vianna, De Barros, & Sanner, 2015). Finally,
given the close connections between reinforcement learning and approximate dynamic pro-
gramming, it will be interesting to explore the possibility of using our stochastic reach-avoid
formulation and results in developing inverse reinforcement learning algorithms. Such al-
gorithms could incorporate safety and reachability objectives in addition to optimizing an
additive reward or cost function.

1. Please visit the YouTube channel of ETHZurichIfA for the video of the experiment
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Automatic Control Laboratory in ETH Zürich for his help in testing the algorithm on the
ORCA platform.

References

Abate, A., Amin, S., Prandini, M., Lygeros, J., & Sastry, S. (2007). Computational ap-
proaches to reachability analysis of stochastic hybrid systems. In Hybrid Systems:
Computation and Control, pp. 4–17. Springer.

Abate, A., Prandini, M., Lygeros, J., & Sastry, S. (2008). Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica, 44 (11),
2724–2734.

Anderson, E. J., & Nash, P. (1987). Linear programming in infinite-dimensional spaces:
theory and applications. Wiley New York.

Bemporad, A., Filippi, C., & Torrisi, F. D. (2004). Inner and outer approximations of
polytopes using boxes. Computational Geometry, 27 (2), 151–178.

Bemporad, A., & Morari, M. (1999). Control of systems integrating logic, dynamics, and
constraints. Automatica, 35 (3), 407–427.

Ben-Tal, A., & Nemirovski, A. (2002). Robust optimization–methodology and applications.
Mathematical Programming, 92 (3), 453–480.

Bertsekas, D. P., & Shreve, S. E. (1978). Stochastic optimal control: The discrete time case,
Vol. 139. Academic Press NY.

Bertsekas, D. P. (1995). Dynamic programming and optimal control, Vol. 1. Athena scientific
Belmont, MA.

Bertsekas, D. P., & Tsitsiklis, J. N. (1991). An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16, 580–595.

Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust
optimization. SIAM review, 53 (3), 464–501.

Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast obstacle avoidance for
mobile robots. IEEE Transactions on Robotics and Automation, 7 (3), 278–288.

Bronstein, E. M. (2008). Approximation of convex sets by polytopes. Journal of Mathe-
matical Sciences, 153 (6), 727–762.

Brown, L. D., & Purves, R. (1973). Measurable selections of extrema. The Annals of
Statistics, 1 (5), 902–912.

Calafiore, G. C., & Campi, M. C. (2006). The scenario approach to robust control design.
IEEE Transactions on Automatic Control, 51 (5), 742–753.

282



The Linear Programming Approach to Reach-Avoid Problems for MDPs

Campi, M. C., Garatti, S., & Prandini, M. (2009). The scenario approach for systems and
control design. Annual Reviews in Control, 33 (2), 149–157.
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