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Abstract

We introduce the concept of local bucket error for the mini-bucket heuristics and show
how it can be used to improve the power of AND/OR search for combinatorial optimization
tasks in graphical models (e.g. MAP/MPE or weighted CSPs). The local bucket error
illuminates how the heuristic errors are distributed in the search space, guided by the mini-
bucket heuristic. We present and analyze methods for compiling the local bucket-errors
(exactly and approximately) and show that they can be used to yield an effective tool for
balancing look-ahead overhead during search. This can be especially instrumental when
memory is restricted, accommodating the generation of only weak compiled heuristics. We
illustrate the impact of the proposed schemes in an extensive empirical evaluation for both
finding exact solutions and anytime suboptimal solutions.

1. Introduction

We address themin-sum problem over graphical models, which includes themost probable and
themaximum a posteriori inference in probabilistic graphical models (Pearl, 1988; Darwiche,
2009; Dechter, 2013). This problem has many applications in areas such as protein side chain
prediction, genetic linkage analysis, and scheduling (Yanover, Schueler-Furman, & Weiss,
2008; Fishelson & Geiger, 2004; Bensana, Lemaitre, & Verfaillie, 1999).

A well-known solving approach is depth-first branch and bound over an AND/OR search
space (AOBB) (Marinescu & Dechter, 2009a, 2009b). Besides computing the optimal solu-
tion, the algorithm also features an anytime behavior which provides a sequence of near-
optimal solutions of improving quality along time (Otten & Dechter, 2012). The performance
of AOBB largely depends on the availability of a heuristic function h(n) which underesti-
mates the optimal value of extending any search node n. The tightness of the heuristic has
an immense impact on the performance of AOBB. A commonly used heuristic is the mini-
bucket elimination (MBE) heuristic (Dechter & Rish, 2002). MBE has a control parameter
known as the i-bound that trades computation time and memory for accuracy. In particular,
computing the heuristic is time and space exponential in the i-bound. In general, MBE gets
more accurate as the i-bound approaches a problem’s induced width. In problems with high

c©2017 AI Access Foundation. All rights reserved.



Lam, Kask, Dechter, & Larrosa

induced width, the i-bound cannot be made close to the problem’s induced width due to
memory demands, yielding weak heuristics.

The goal of our research is to improve both the exact and anytime performance of
AOBB when it is guided by the MBE heuristic. For that purpose we consider the well-
known technique of look-ahead, which is known to be useful in the context of online search
algorithms (e.g. game playing schemes, planning under uncertainty, etc.) (Geffner & Bonet,
2013; Vidal, 2004). Look-ahead improves the heuristic function h(n) of a node by expanding
the search tree below it and backing up the h(n) values of descendants (known as a Bellman
update). Thus, look-ahead can be seen as a secondary search embedded in the primary
search. Indeed, it has been used as a way to create a version of the A* algorithm that
incorporates depth-first search (Stern, Kulberis, Felner, & Holte, 2010; Bu, Stern, Felner, &
Holte, 2014).

A naive implementation of look-ahead is unlikely to be effective in the context of AOBB
since it is essentially a transference of the expansion of nodes from the primary search
to the secondary (look-ahead) search. In this paper we address the challenge of making
look-ahead cost effective. We develop the notion of local bucket error, which we show to
be equivalent to the residuals in depth-1 of look-ahead. We show that local bucket errors
can be computed in a pre-process, thus causing no overhead during search. We provide
the algorithm and characterize its complexity in terms of a structural parameter called
pseudo-width. When the pseudo-width indicates that computing local bucket errors is too
expensive, we suggest approximation schemes. When bucket errors are computed exactly,
they immediately translate to compiled depth-1 look-ahead, yielding an improved heuristic.
Besides that, local bucket errors can be consulted to decide on the right depth of look-
ahead that is likely to improve the heuristic and thus be more cost-effective. In fact our
approach applies look-ahead selectively, only up to the depth where it is likely to improve
the heuristic significantly. To facilitate this, we introduce the notion of look-ahead subtrees
which determines the look-ahead frontier for each variable and prunes them individually as
a pre-processing step based on the local bucket errors.

We also develop the notion of look-ahead graphical model which presents the look-ahead
task as a min-sum sub-problem. We show that the structural complexity (i.e., width) of
such a task can be characterized and determined as a pre-process. The consequence is that
good look-ahead depths can be identified prior to search and an inference algorithm such as
Bucket Elimination can be applied.

In most heuristic search literature, the heuristic function is treated as a black box. The
novelty of our approach lays on a more structural exploitation of the heuristic. Our research
was inspired from the observation that, in a wide spectrum of problems, the heuristic errors
are not uniformly distributed in the search space. On the contrary, there are localized
regions where most of the error accumulates and those regions are just a small fraction of
the entire search space. The main implication is that a blind look-ahead will mainly do
redundant computations (look-ahead on error-free or near-error-free regions has no effect
what-so-ever).

Thus, our main contribution is to exploit the error function structure and design a scheme
that performs look-ahead selectively. In particular, look-ahead will intensify where the heuris-
tic error is high and decrease where it is locally low. In cases where the heuristic is known
to be locally exact, we can even completely skip look-ahead. In our empirical evaluation,
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we show improved runtime for finding exact solutions in many cases and more generally,
improved anytime behavior compared with current state-of-the-art methods (Otten, Ihler,
Kask, & Dechter, 2012).

The rest of the paper is organized as follows. In Section 2, we provide the relevant
background on graphical models and AND/OR search. In Section 3, we describe our main
contributions. We introduce the notion of local bucket error for MBE, establish its connec-
tion with the residuals, and present and analyze an algorithm for computing them. We then
show how the local bucket errors can be used to guide look-ahead. In Section 4, we illus-
trate through several benchmarks how the error is distributed non-homogeneously along the
search spaces. In Section 5, we provide an empirical evaluation of our selective look-ahead
scheme. Section 6 concludes.

2. Background

ch(n) children of node n
c(n,m) cost of edge (n,m)
h∗(n) optimal cost from n
h(n) heuristic value
hd(n) depth d heuristic look-ahead
resd(n) depth d residual

Table 1: Notation on AND/OR search.

2.1 AND/OR Search

While many discrete optimization problems arising in AI can be solved using OR search
spaces, there are some important cases for which AND/OR seems more suitable (see Table
1 for a summary of notation). In AND/OR search trees (Nilsson, 1980; Pearl, 1984) there are
two types of nodes: OR nodes and AND nodes. OR nodes represent branching points where
a decision has to be made, and AND nodes represent sets of (conditionally) independent
sub-problems that need to be solved. In this work, we assume that children of OR nodes are
AND nodes, and the children of AND nodes are OR nodes. OR nodes are always internal
nodes, while AND nodes may be internal nodes, or leaves. There is a cost c(n,m) associated
with each edge between an OR node n and an AND node m, which represents the cost of
making the corresponding decision at that branching point. Here, we will assume AND/OR
trees of bounded height.

A solution tree is a sub-tree of the AND/OR tree that (1) includes its root, (2) if an OR
node is in the solution tree, then exactly one of its children is in the solution tree, (3) if an
AND node is in the solution tree, then all its children are. The cost of a solution tree (for
the min-sum problem) is the sum of costs of all its branches. A solution tree is optimal if
there is no solution tree with lower cost. The task is to find an optimal solution tree.
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2.1.1 Depth-First Branch and Bound

A standard way of finding optimal solution trees on bounded height AND/OR search trees
or graphs is depth-first branch and bound (AOBB). Each search node n is associated with the
subproblem below it, which is finding the optimal cost of the subproblem rooted by n. Let
h∗(n) denote the cost of the optimal solution of its subproblem. AOBB uses a heuristic value
h(n) which is a lower bound of the optimal cost of subproblem below n (that is, h(n) ≤ h∗(n)
for all nodes n).

Algorithm 1: AOBB. The initial call, BBor(root,∞), returns the cost of the optimal
solution tree. The children of a node n are denoted ch(n), the cost of an edge is noted
c(n,m), the heuristic value of node n is denoted h(n).
1 Function BBor(n, ub)
2 begin
3 for m ∈ ch(n) do
4 if c(n,m) + h(m) < ub then
5 ub := c(n,m)+BBand(m,ub− c(n,m))
6 end
7 end
8 return ub;
9 end

10 Function BBand(n, ub)
11 begin
12 if ch(n) = ∅ then return 0;
13 foreach m ∈ ch(n) do q(m) := h(m);
14 foreach m ∈ ch(n) do
15 if

∑
m′∈ch(n) q(m

′) ≥ ub then return ub;
16 else q(m) :=BBor(m,ub−

∑
m′∈ch(n),m′ 6=m q(m)) ;

17 end
18 return

∑
m∈ch(n) q(m);

19 end

Algorithm 1 presents pseudo-code for AOBB. In a call to BBor(n, ub) and BBand(n, ub),
n is an OR node and an AND node, respectively. It represents the subproblem currently
being solved. In both cases, ub is a bound on the best solution tree found so far minus
the path cost and current lower bounds of all the AND ancestors’ sibling OR nodes. The
behavior of both functions is the same: if h∗(n) < ub then it returns h∗(n), else it returns ub.
The initial call is BBor(root,∞) which returns the cost of the problem’s optimal solution
tree h∗(root).

The code of both functions is very similar since both solve the current sub-problem n
by recursively solving in sequence its children ch(n). The only difference is that the optimal
cost of an OR node is the minimum among its children, while the optimal cost of an AND
node is the sum over the optimal costs of its children. In both cases, the result of each
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recursive call is used to adjust the ub of the next call (lines 5 and 16, respectively). Note
that in BBand(n, ub), we use a local variable q(m) for each m, child of n. It initially stores
h(m) (line 12) but it is replaced by h∗(m) as soon as it is known (line 16).

The main role of h(n) is to facilitate pruning, which takes place in lines 4 (OR pruning)
and 15 (AND pruning). In both cases, the heuristic is used to identify when it is not possible
to find solutions that improve over the current threshold ub.

2.2 Background on Graphical Models

Xk, xk variable, assigned variable
fj(·), Sj function, scope
M = (X,D,F,⊗) graphical model
G = (V,E) primal graph (nodes correspond to variables)
G∗(o) induced graph relative to order o
w∗(o) induced width relative to order o
T pseudo-tree (nodes correspond to variables)
X̄k pseudo-tree path from root to Xk

Tk sub-trees rooted by ch(Xk)
Tk,d sub-trees rooted by ch(Xk) with depth d
c(Xk, xk) cost of arc from OR node Xk to AND node xk
x̄k path from root to AND node xk
Bk, SBk bucket associated to pseudo-tree node Xk, scope
Bs
k mini-bucket associated to pseudo-tree node Xk

λsk→p(·) message computed at Bk and sent to Bp
Λk(·) sum of messages from Bk to X̄p

h(x̄p) heuristic value of node x̄p

Table 2: Notation on graphical models AND/OR search.

In this sub-section we give background and notation on graphical models, which is the
context of this research (see Table 2 for a summary). We start by defining the concept
of a graphical model and its primal graph, which captures its structure. Then we define
the associated pseudo-tree which dictates the AND/OR search spaces (AND/OR tree and
AND/OR graph). We also review the Bucket and Mini-Bucket Elimination (BE and MBE)
algorithms and show how MBE can be used as heuristic function.

2.2.1 Graphical Models

Consider a finite set of variables X. Let Xk ∈ X and Dk denote a variable and its domain.
An arbitrary assignment of Xk to one of its domain values is noted xk. Similarly, an
assignment of a set of variables S ⊆ X is noted s. Thus, s is an element of the cartesian
product

∏
Xk∈S Dk. An assignment of all the variables will be noted x.

We will use fj to denote a function returning a positive real number, and Sj ⊆ X its
scope (i.e., fj :

∏
Xk∈Sj Dk → R+). We will often write fj(·) (instead of fj(Sj)) to emphasize

that fj is a function when not needing to refer to its scope. Assigning a function fj(·) with a
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tuple sj returns a constant value. A partially assigned function, noted fj(·| s) (with S ⊂ Sj),
is a function whose scope is the set of variables in Sj\S. Sometimes we will abuse notation
and write fj(s) with Sj ⊂ S, which denotes the assignment of fj(·) with the projection of s
onto Sj .

A graphical model is a collection of functions over subsets of a common set of variables,

Definition 1 (graphical modelM). A graphical modelM is a tupleM = (X,D,F,⊗),
where

1. X = {X1, . . . , Xn} is a finite set of variables

2. D = {D1, . . . , Dn} is a set of finite domains associated with each variable.

3. F = {f1, . . . , fm} is a set of valued local functions with scopes Sj ⊆ X for all fj.

4. ⊗ is a combination operator (typically the sum or product)

A graphical model represents a global function which is the combination of all the local
functions, ⊗mj=1fj(Sj). Graphical models are used to model, in a factorized way, complex
systems that can be queried. For the purpose of this paper we will consider the combination
operator to be the sum and we will focus on the minimization query. We will often omit the
⊗ and refer toM = (X,D,F).

Definition 2 (min-sum problem). Given a graphical model M = (X,D,F), the min-
sum problem is the task of computing the optimal assignment of its variables with respect to
the global function. Namely,

x∗ = argmin
x

∑
fj∈F

fj(x)

where x ranges over the possible assignments of X.

For instance, when the variables are random variables, the combination operator is the
product, and the local functions are conditional probability tables (plus some additional
conditions) the graphical model is a Bayesian network (Pearl, 1988; Darwiche, 2009). If a
negative log transformation is applied to the local functions, the min-sum problem corre-
sponds to the MPE/MAP query (Dechter, 2013). Another well-known example occurs when
variables correspond to decisions, the combination operator is the sum, and local functions
represent local costs of taking the decisions. Then the graphical model is a constraint opti-
mization problem (or weighted constraint satisfaction problem) (Dechter, 2003).

Each graphical model can be associated with graph which makes explicit conditional
independencies,

Definition 3 (primal graph G). The primal graph G = (V,E) of a graphical model
M = (X,D,F) has one node associated with each variable (i.e., V = X) and edges
(Xk, Xk′) ∈ E for each pair of variables Xk and Xk′ that appear in the same scope Sj
of a function fj ∈ F.

Consider a graphical model with variables indexed from A to G and functions F =
{f1(A), f2(A,B), f3(A,D), f4(A,G), f5(B,C), f6(B,D), f7(B,E), f8(B,F ), f9(C,D),
f10(C,E), f11(F,G)}. Its primal graph is shown in Figure 1.
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A" B"

C"D"

E"

F"

G"

Figure 1: A primal graph of a graphical model with 7 variables.

The complexity of the min-sum problem and several other queries for a given graphical
model can be characterized by the induced width of its associated primal graph, which is
built upon several definitions we include here.

Definition 4 (induced width, Dechter, 2013). Given a primal graph G = (V,E), an
ordered graph is a pair (G, o), where o is an ordering of the nodes. The nodes adjacent to
Xk that precede it in the ordering are called its parents.

• The width of a node in an ordered graph is its number of parents.

• The width of an ordered graph (G, o), denoted w(o), is the maximum width over all
nodes.

• The width of a graph is the minimum width over all orderings of the graph.

• The induced graph of an ordered graph (G, o) is an ordered graph (G∗, o), where G∗

is obtained from G as follows: the nodes of G are processed from last to first along o.
When a node Xk is processed, all of its parents are connected.

• The induced width of an ordered graph (G, o), denoted w∗(o), is the maximum number
of parents a node has in the induced ordered graph (G∗, o).

• The induced width of a graph w∗, is the minimum induced width over all its orderings.

The complexity of the min-sum problem for a given graphical model can be bounded by
the induced width w∗ of its associated primal graph (Marinescu & Dechter, 2009a; Dechter,
2013).

2.3 AND/OR Search Spaces for Graphical Models

We show now how the primal graph of a graphical model allows to identify conditionally
independent problems and introduce pseudo-trees which make these independencies explicit
for a particular (fixed) ordering of assigning the variables.

Definition 5 (pseudo tree T ). (Dechter & Mateescu, 2007) Given an undirected graph
G = (V,E), a directed rooted tree T = (V,E′) defined on all its nodes is a pseudo tree if
any arc of G which is not included in E′ is a back-arc in T , namely it connects a node in T
to an ancestor in T . The arcs in E′ may not all be included in E.
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Figure 2: A pseudo tree for the running example. Solid arcs form the main tree structure
and dotted arcs the back-arcs.

We say that an ordering o of the variables is valid for a pseudo tree if it is top-down with
respect to it.

Solid arcs denote the pseudo tree structure and dotted arcs are the back-arcs. ch(Xk)
denotes the children of Xk in the pseudo tree, X̄k denotes the set of variables in the path
from the root to Xk, and Tk denotes the set of subtrees rooted by the children of Xk. Figure
2 shows a pseudo tree for our running example. Observe that Tk represents subproblems
that will become independent if the variables in X̄k are assigned. This independency occurs
no matter which values are assigned to the variables. However, each assignment induces
different subproblems. Next, we show that the conditional independencies uncovered by the
pseudo-tree allow to define AND/OR search spaces.

Definition 6 (Graphical Model AND/OR search tree). (Dechter & Mateescu, 2007)
Given a graphical model M = (X,D,F) and a pseudo tree T , its AND/OR search tree ST
is defined as:

• The root node is an OR node labeled by the variable at the root of T .

• The children of an OR node labeled Xk are AND nodes labeled with the different value
assignments xk ∈ Dk;

• The children of an AND node xk are OR nodes labeled with the children of Xk in the
pseudo-tree T

Each edge from an OR node Xk to an AND node xk represents a variable assignment.
The path from the root to an AND node xk represents a unique assignment to the variables
in X̄k, that will be denoted x̄k. Solution trees of ST correspond to complete assignments of
the variables in the graphical model. The size of an AND/OR search tree is exponential in
the height of the pseudo-tree T (Dechter & Mateescu, 2007).

The AND/OR search tree has arc costs for edges from OR to AND nodes,

Definition 7 (arc cost c(Xk, xk)). The cost c(Xk, xk) of the arc (Xk, xk) is the sum of
all the functions in the graphical model whose scope includes Xk and is fully assigned by the
values specified along the path from the root to node xk.
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The cost of a solution tree which corresponds to the cost of the assignment as given
by the objective function is the sum of the costs of its arcs. Thus, the optimal solution
tree corresponds to the solution of the min-sum problem. A direct consequence is that the
min-sum problem of a graphical model can be solved using AOBB (Algorithm 1).

A more compact search space can be obtained if identical subproblems in the AND/OR
tree are merged, producing an AND/OR graph (Dechter & Mateescu, 2007). A class of
identical subproblems can be identified in terms of their OR context,

Definition 8 (OR context). The OR context of a variable Xk in a pseudo tree T =
(V,E′) is the set of ancestor variables connected to Xk or its descendants by arcs in E′ ∪E
(i.e. the arcs of the pseudo-tree and the back-arcs).

A context-minimal AND/OR search graph CT is obtained from the AND/OR tree merg-
ing OR nodes having the same context. The size of CT is bounded exponentially in the
induced width of (G, o) for any valid order with respect to T . The AOBB algorithm
(Algorithm 1) can be adapted to work on AND/OR search graphs (Marinescu & Dechter,
2009a). Then it can be shown that its time and space complexity is exponential in the
induced width w∗(o).

Example. Figure 3a shows the same pseudo tree as in Figure 2, but annotated with
contexts. Figure 3b shows the corresponding context-minimal AND/OR search graph to
this pseudo tree. Since the context of variable E is only over B,C, the OR nodes have been
merged with respect to A, which is not in the context. Similarly, the OR nodes of G are
merged with respect to B. The solution tree for the assignment (A = 0, B = 1, C = 1, D =
0, E = 0, F = 0, G = 0) is highlighted in the same figure.

2.4 Mini-Bucket Elimination Heuristics

The most commonly used heuristic for AND/OR search in the literature is the mini-bucket
elimination (MBE) heuristic (Dechter & Rish, 2002). It is based on a relaxation of the
exact bucket elimination (BE) algorithm (Dechter, 1999) by running BE on a problem with
duplicated variables.

2.4.1 Bucket Elimination

Bucket elimination works relative to the same pseudo tree that defines the AND/OR search
graph. Each variable Xk of T is associated with a bucket Bk which is a set of functions. A
function fj(·) from F is placed into Bk if Xk is the deepest variable in T such that Xk ∈ Sj .

Each bucket Bk is then processed, bottom-up, from the leaves of the pseudo tree to
the root by computing a new function, known as a message, λk→p(·) = minxk(

∑
f∈Bk f(·) +∑

Xq∈Tk λq→k(·)), where p is the parent of k in the pseudo-tree, f(·) denotes original functions
and λq→k(·)) denotes messages received in the bucket. This message is then added to
bucket Bp. The scope of the message is a subset of X̄p. The scope of a bucket Bp, noted
Scope(Bp), is the union of the scopes of its functions. It can be seen that the size of
Scope(Bp) corresponds to the induced width of Xp with any ordering o valid for the pseudo-
tree (i.e, top-down). Due to the bottom-up processing schedule, a bucket is never processed
until it receives messages from all of its children. At the end of processing, the message
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(a) A pseudo tree for the running example, anno-
tated with contexts.
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(b) Example AND/OR search graph. A solution tree is highlighted.

Figure 3
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A"

f(A,B)"B"

f(B,C)"C" f(B,F)"F"

f(A,G)"
f(F,G)"

G"f(B,E)"
f(C,E)"

E"f(A,D)"
f(B,D)"
f(C,D)"
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λB!A(A)(

λE!C(B,C)(λD!C(A,B,C)(

λC!B(B)(

λG!F(A,F)(

f(A)"

Figure 4: Illustration of bucket elimination.

generated by the root bucket is a constant which is the optimal min-sum value. Message
λk→p(·) compiles the optimal solution for all subproblems on Tk variables, so BE in fact
provides exact heuristics in the context of search.

The BE algorithm’s time and space complexity is exponential in the problem’s induced
width w∗(o) relative to any ordering o that is top-down with respect to T . BE is a variant
of non-serial dynamic programming (Bertele & Brioschi, 1972).

We illustrate the computation on our example problem in Figure 4. It can clearly be
seen here that bucket elimination breaks the entire optimization problem of the graphical
model into smaller subproblems, then combines results by sending messages to parents. This
has been shown to be equivalent to exploring the context-minimal AND/OR search graph
in a bottom-up fashion, given certain conditions (Mateescu & Dechter, 2005).

2.4.2 Mini-Bucket Elimination

If w∗(o) is very large, then using BE to solve the min-sum problem is infeasible. Mini-Bucket
Elimination (MBE) is a relaxation of BE that bounds the induced width of the problem via
a parameter known as the i-bound (Dechter & Rish, 2002). The main difference is in how
functions are processed inside buckets. MBE relaxes the problem by partitioning buckets
into mini-buckets Bk = B1

k ∪ . . . ∪ B
rk
k whose scope sizes do not exceed the i-bound. Each

mini-bucket then generates its own message that is sent to its closest ancestor bucket Bp
such that Xp is in the scope of the message. We denote these messages as λsk→p(·), where
s ∈ {1, . . . , rk} is the mini-bucket index. The scope of a λsk→p(·) message is a subset of X̄p

of size at most i. The partitioning process can be interpreted as a process of duplicating
variables in the problem and optimizing over the copies independently. Therefore, MBE
generates lower bounds on the min-sum problem.

The scope’s size of a bucket Bk after having received all the messages is what we will
define as pseudo-width in Section 3. As we will see, it will be important to characterize the
complexity of computing local bucket errors
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Algorithm 2: Mini-Bucket Elimination (Dechter & Rish, 2002)
Input: Graphical modelM = (X,D,F), pseudo tree T , bounding parameter

i-bound
Output: Lower bound to min-sum onM and messages λsq→p(·)

1 foreach Xp ∈ X in bottom up order according to T do
2 Bp := {fj(·) ∈ F | Xp ∈ Sj}
3 F := F−Bp
4 Put all generated messages λsq→p(·) in Bp
5 Partition bucket Bp into mini-buckets B1

p , . . . , B
rp
p with scope bounded by the

i-bound
6 foreach s = 1..rp do
7 Let Xa be closest ancestor variable of Xp in Bs

p

8 Generate message λsp→a(·) := minxp(
∑

fj∈Bsp fj(·) +
∑

λs′q→p∈Bsp
λs
′
q→p(·))

9 end
10 end
11 return All λ-messages generated (root message is the min-sum lower bound)

We provide details in Algorithm 2. The main loop (lines 1-9) partitions the bucket
into mini-buckets and generates the λ messages used in the above expressions. The message
computed by the root variable is a lower bound on the optimal solution of the graphical
model. In general, each message is possibly not exact if the variable it was generated from
or its descendants had bucket partitions with more than one mini-bucket (i.e. approximation
errors propagate up to ancestors). When the i-bound equals the induced width w∗(o), there
is no need to partition, so the algorithm reduces to bucket elimination. In general, a higher i-
bound leads to a more accurate approximation, but increases in accuracy are not guaranteed.

MBE’s messages can be used to construct a heuristic for search (Kask & Dechter, 1999).
Heuristics generated from the messages of mini bucket elimination are called static heuristics
since they require the execution of MBE to generate all of the messages as a pre-processing
step. As a result the heuristic is pre-compiled and the search only needs to make table
look-ups.

Definition 9 (MBE heuristic). Let x̄p be a partial assignment and X̄p be the set of
corresponding instantiated variables. Λ(k,p) denotes the sum of the messages sent from bucket
Bk to Bp or its ancestors.

Λ(k,p)(·) =
∑

Xq∈X̄p

∑
s=1..rk

λsk→q(·) (1)

Note that Λ(k,p)(·) is a function whose scope is a subset of X̄p. The heuristic value for
x̄p is based on messages sent from buckets bellow X̄p to its ancestors. Formally,

h(x̄p) =
∑
Xk∈Tp

Λ(k,p)(x̄p) (2)

where Tp denotes the set of variables in the pseudo subtree rooted by Xp, excluding Xp.
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Figure 5: Example of mini-bucket elimination on the running example using an i-bound of
3. The index of mini-buckets is omitted when there is no partitioning.

Example. In the example, (see Figure 5), the heuristic function of the partial assignment
(A = 0, B = 1) is h(A = 0, B = 1) = λD→A(A = 0) +λC→B(B = 1) +λF→B(A = 0, B = 1).

We provide an example in Figure 5 for our example problem. Here, we use an i-bound
of 3. In this case, starting with variable D, we have the functions f(A,D), f(B,D), f(C,D)
which all contain that variable. However, the total scope size here is 4, which exceeds the
i-bound of 3. Therefore, we partition it into two mini-buckets and each generates a separate
λ message, as if they were separate variables. For the rest of the variables, the i-bound is
satisfied, so there is no need to partition them.

3. Look-Ahead for AND/OR Search in Graphical Models

Tp,d depth d look-ahead subtree of Xp

M(x̄p, d) depth d look-ahead graphical model relative to assignment x̄p
wp,d induced width of look-ahead graphical modelM(x̄p, d)
Ek(·) local bucket error
Ẽk average local bucket error
Êk sampled local bucket error
T εp,d pruned look-ahead subtree

Table 3: Notation on look-ahead.

This section contains the main contributions of our work. We present and analyze the
look-ahead principle for AND/OR search in graphical models when using the MBE heuristic.
In the first subsection we rephrase look-ahead as a min-sum problem over a graphical (sub)
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problem. In the second subsection we perform a residual analysis and present a method
that identifies the look-ahead relevant regions of the search space that can be used to skip
redundant look-ahead. A summary of the notation introduced in this section appears in
Table 3.

3.1 Look-Ahead

As mentioned in the background, the AOBB algorithm’s performance may improve by having
more accurate heuristic values. One way to achieve this improvement is by look-ahead, which
is especially attractive because it does not increase the space complexity of MBE. The idea
is to replace the h(n) value of a node by the minimum value among all successors to a certain
depth d. Look-ahead has been defined in the OR case in various contexts such as games or
planning (Russell & Norvig, 2009; Vidal, 2004). A natural generalization to the AND/OR
case follows. In our definition we take into account that only OR nodes represent branching
points (i.e., alternatives). Therefore, the notion of depth is in terms of OR nodes, only.
Formally,

Definition 10 (AND/OR look-ahead). The depth d look-ahead of an AND node n is

hd(n) =

{∑
m∈ch(n) minb∈ch(m){c(m, b) + hd−1(b)} d > 0

h(n) d = 0

A related notion that we will be using later is that of residual. The residual measures
the gain produced by look-ahead.

Definition 11 (residual). The depth d residual of node n is

resd(n) = hd(n)− h(n)

3.2 The Look-Ahead Graphical Model

We pointed out in Section 2 that looking ahead is like performing a secondary search inside
of the primary search and backing up heuristic values of the expanded nodes. Next, we show
that in the context of graphical models, looking-ahead corresponds to solving a min-sum
problem over a graphical sub-model. Consequently, it is possible to characterize the induced
width (and therefore the complexity) of such sub-models. The analysis depends only on the
node’s depth and the look-ahead depth, but it does not depend on the actual assignment.
Therefore this induced width can be computed for each variable before search.

As a first step, we define the depth d look-ahead subtree for variable Xp.

Definition 12 (look-ahead subtree). Consider pseudo tree T over a graphical model
M and a variable Xp. The depth d look-ahead subtree for variable Xp, noted Tp,d, is the
subtree formed by the descendants of Xp in T that are no more than depth d away from Xp.

The look-ahead subtree shows which variables in the AND/OR search space are consid-
ered in the look-ahead computation. In our running example pseudo tree (Figure 6) TB,1
is the shaded region, meaning that if B is the last variable assigned in a node, the depth-1
look-ahead will minimize over a search space with respect to variables C and F . Next we
define the look-ahead graphical model, which captures the look-ahead computation.
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Figure 6: Look-ahead subtree example for TB,1 (shaded region)

Definition 13 (look-ahead graphical model at node x̄p). Consider a graphical model
M = (X,D,F) with pseudo-tree T , the set of messages λsj→k generated by MBE(i) along
the pseudo tree. Given a partial assignment x̄p, the depth d look-ahead graphical model
M(x̄p, d) = (Xp,d,Dp,d,Fp,d) is defined by,

• Variables Xp,d: variables in the look-ahead tree {Xk| Xk ∈ Tp,d},

• Domains Dp,d: original domains {Dk| Xk ∈ Tp,d},

• Functions Fp,d:

– Original functions that were originally placed in the buckets of Tp,d, possibly par-
tially assigned by x̄p,

{f(·|x̄p)| Xk ∈ Tp,d, f ∈ Bk}

– Messages sent from buckets below Tp,d to buckets in Tp,d by the MBE algorithm,
possibly partially assigned by x̄p,

{λsj→k(·|x̄p)| Xj ∈ Tp − Tp,d, s ∈ 1, . . . , rj , Xk ∈ Tp,d}

Clearly, Tp,d is a valid pseudo tree forM(x̄p, d). Note that the induced width ofM(x̄p, d)
along Tp,d, denoted wp,d, does not depend on the partial assignment x̄p. It only depends on
the path of assigned variable X̄p and the look-ahead depth d. Therefore, it can be identified
prior to search.

The min-sum problem ofM(x̄p, d) is therefore

Ld(x̄p) = min
x̄p,d


∑

Xk∈Tp,d
f∈Bk

f(x̄p,d|x̄p) +
∑

Xk∈Tp,d,Xj∈Tp−Tp,d
s∈1,...,rj

λsj→k(x̄p,d|x̄p)

 (3)

where x̄p,d denotes an arbitrary assignment of all the variables in Tp,d.
Next we show that Ld(x̄p) is the task required to compute look-ahead when the MBE

heuristic is used,
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Proposition 1 (look-ahead value for MBE heuristic in graphical models). Con-
sider a graphical model M, a pseudo-tree Tp,d and its associated AND/OR search graph. If
the MBE heuristic guides the search, the depth d look-ahead value of partial assignment x̄p
(Definition 10) satisfies,

hd(x̄p) = Ld(x̄p) +
∑

Xk∈Tp−Tp,d

Λ(k,p)(x̄p) (4)

Proof. See Appendix A.

Note that the second term in Equation 4 contains all messages sent from buckets below
Tp,d to buckets in X̄p. Note as well that all these messages are constant values, since they
are completely assigned by x̄p, and therefore irrelevant in terms of the optimization task.
Therefore, computing the look-ahead at node x̄p is equivalent to computing Ld(x̄p), and it
can be done with BE in time and space exponential on wp,d. In those levels of Xp where the
width is smaller than the depth (i.e., wp,d < d) exact inference (i.e., BE) is more efficient
than search.

Computing depth-d AND/OR look-ahead, even with bucket elimination, can be compu-
tationally expensive. Clearly, look-ahead is worthless if it does not increase and thus improve
the accuracy of the heuristic value. Recall that the gain produced by the look-ahead is the
so-called residual (Definition 11). We next analyze depth 1 residuals and show how they can
be used to approximate residuals of higher depth.

We start by relating the residual’s expression to Ld(x̄p),

Proposition 2 (AND/OR depth-d residual for MBE). Consider a graphical model
M, a pseudo-tree Tp,d and its associated AND/OR search graph. If the MBE heuristic
(Definition 9) guides the search, the depth d residual at x̄p (Definition 11) satisfies

resd(x̄p) = Ld(x̄p)−
∑

Xk∈Tp,d

Λ(k,p)(x̄p) (5)

Proof. From Definition 11, resd(n) = hd(n)− h(n). Replacing hd and h and using Proposi-
tion 1 and Equation 2 respectively, we obtain the expresion above.

Note that the subtracted expression in Equation 5 is a constant. Therefore, as could
be expected, computing the residual requires computing Ld(x̄p). We therefore propose to
approximate depth-d residuals using a sum of depth-1 residuals.

Proposition 3. Given a node n, let Nk denote all nodes that are k-levels away from n in
the search graph. Then we have

resd(n) ≥
d−1∑
k=0

min
nk∈Nk

res1(nk)

Proof. See Appendix B.
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Corollary 1. For a given level j in a depth-d residual, if res1(nj) = 0 for all nodes nj ∈ Nj,
clearly,

resd(n) ≥
d−1∑
k=0

min
nk∈Nk

res1(nk) =

d−1∑
k=0,k 6=j

min
nk∈Nk

res1(nk)

This suggests that depth-1 residuals can be informative when they are large, pointing
out which levels are likely to contribute to a depth-d look-ahead. Furthermore, if the depth-
1 residuals for all nodes at a particular level are 0, they have a null contribution. Since
depth-1 residuals can informative for depth-d look-ahead, we next analyze depth-1 residuals
for MBE heuristics. We show that it corresponds to a notion of local bucket error of MBE,
to be defined next.

3.3 Local Bucket Error

We start by comparing the message that a particular bucket would have computed without
partitioning (called the exact bucket message µ∗k(·)) to that of the sum of the messages
computed by the mini-buckets of the bucket (called the combined mini-bucket message µk(·)).
We define these notions below.

Definition 14 (combined bucket and mini-bucket messages). Given a mini-bucket
partition Bk = B1

k ∪ . . . ∪B
rk
k , we define the combined mini-bucket message at Bk,

µk(·) =

rk∑
s=1

min
xk

∑
f∈Bsk

f(·) +
∑

λsp→k∈B
s
k

λsp→k(·)

 (6)

where f and λ denote original functions and messages, respectively. In contrast, the exact
bucket message without partitioning at Bk is

µ∗k(·) = min
xk

∑
f∈Bk

f(·) +
∑

λsp→k∈Bk

λsp→k(·)

 (7)

Note that although we say that µ∗k(·) is exact, it is exact only locally to Bk since it may
contain partitioning errors introduced by messages computed in earlier processed buckets.
We now define the local error for MBE,

Definition 15 (local bucket error of MBE). Given a completed run of MBE, the local
bucket error function at Bk denoted Ek(·) is

Ek(·) = µ∗k(·)− µk(·)

The scope of Ek(·) is the set of variables in bucket Bk excluding Xk.

Next, we show that depth-1 residual corresonds to the sum over children variables of
local bucket errors of MBE.
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Theorem 1 (equivalence of residuals and local bucket errors). Assume an execution
of MBE(i) along T yielding heuristic h(x̄p), then for every x̄p,

res1(x̄p) =
∑

Xk∈ch(Xp)

Ek(x̄p) (8)

We first present the following lemmas which relates µk (Equation 6) to the MBE heuristic
at the parent of Xx, and relates µ∗k (Equation 7) to the depth 1 look-ahead also at the parent
of Xk.

Lemma 1. If Xk is a child of variable Xp, then Λ(k,p)(·) = µk(·).

Proof. Λ(k,p)(·) is the sum of messages that MBE(i) sends from Bk to the buckets of variables
in X̄p. Since Xp is the parent of Xk, Λ(k,p)(·) is the sum of all the messages sent from Bk,
which is the definition of µk(·).

Lemma 2. L1(x̄p) =
∑

Xk∈ch(Xp) µ
∗
k(x̄p).

Proof. Given the definition of L1(x̄p) (Equation 3, with d = 1), we can push the minimization
into the summation, yielding:

L1(x̄p) =
∑

Xk∈ch(Xp)

min
xk

∑
f∈Bk

f(xk|x̄p) +
∑

Xj∈Tp−ch(Xp)

λsj→k(xk|x̄p)

 (9)

The set of functions inside each minxk are, original functions or messages having Xk in their
scope and possibly having ancestors of Xk. This is the definition of the exact bucket message
(Equation 7) so we obtain

L1(x̄p) =
∑

Xk∈ch(Xp)

µ∗k(x̄p)

Proof of Theorem 1. From Proposition 2 given d = 1, we have

res1(x̄p) = L1(x̄p)−
∑

Xk∈ch(Xp)

Λ(k,p)(x̄p)

By applying Lemma 2 and Lemma 1 to the first and second terms respectively, we obtain

res1(x̄p) =
∑

Xk∈ch(Xp)

µ∗k(x̄p)−
∑

Xk∈ch(Xp)

µk(x̄p)

=
∑

Xk∈ch(Xp)

(µ∗k(x̄p)− µk(x̄p))

Yielding (Definition 15),
res1(x̄p) =

∑
Xk∈ch(Xp)

Ek(x̄p) (10)
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Corollary 2. When a bucket is not partitioned into mini-buckets, its local bucket error is
0, therefore it does not contribute to the look-ahead value of its parent.

Establishing this equivalence between the depth-1 residuals and local bucket error is
useful as each bucket corresponds to a particular variable and look-ahead is based on the
look-ahead subtree (Definition 12), which is defined in terms of these variables.

3.4 Computing Local Bucket Errors

Now that we established that local bucket errors can be used to assess the impact of depth-
1 look-ahead at a particular variable, we present an algorithm for computing them in a
pre-processing step before search begins and analyze it.

Algorithm 3: Local Bucket Error Evaluation (LBEE)
Input: A Graphical modelM = (X,D,F), a pseudo tree T , i-bound
Output: Error function Ek(·) for each bucket Bk

1 Initialization: Run MBE(i) w.r.t. T .
2 foreach Xk ∈ X in bottom-up order w.r.t. T do
3 Let Bk = B1

k ∪ . . . ∪B
rk
k be the partition used by MBE(i)

4 µk(·) =
∑

s=1..rk
minxk(

∑
f∈Bsk

f(·) +
∑

λsp→k∈B
s
k
λsp→k(·))

5 µ∗k(·) = minxk(
∑

f∈Bk f(·) +
∑

λsp→k∈Bk
λsp→k(·))

6 Ek(·) = µ∗k(·)− µk(·)
7 end
8 return E functions

Algorithm 3 (LBEE) computes the local bucket error Ek(·) for each bucket Bk. Fol-
lowing the execution of MBE(i), a second pass is performed from leaves to root along the
pseudo tree. When processing a bucket Bk, LBEE computes the combined mini-bucket mes-
sage µk(·), the exact bucket message µ∗k(·), and the error function Ek(·). The complexity of
processing each bucket is exponential in the scope of the bucket following the execution of
MBE(i). The total complexity is therefore dominated by the largest scope of the output
buckets. We call this number the pseudo-width.

Definition 16 (pseudo-width(i)). Given a run of MBE(i) along pseudo tree T , the
pseudo-width of Bk, psw

(i)
k is the number of variables in Bk after all messages have been

received. The pseudo-width of T relative to MBE(i) is psw(i) = maxXk{psw
(i)
k }

Theorem 2 (complexity of LBEE). The time and space complexity of LBEE is O(nzpsw(i)),
where n is the number of variables, z bounds the domain size, and psw(i) is the pseudo-width
along T relative to MBE(i).

The pseudo-width lies between the width w(o) and the induced width w∗(o) of a pseudo-
tree ordering o and grows with the i-bound. When the i-bound of MBE(i) is large, com-
puting the local errors may be intractable.
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Figure 7: Example to illustrate the concept of pseudo-width. Left: the mini-bucket tree,
right: the exact bucket tree. Buckets C and D in both are annotated with their pseudo-width
for MBE and induced width for BE.

Example. In Figure 7, we illustrate the concept of pseudo-width and also relate it to
LBEE with our running example. We consider the buckets for variable C and D in this
example. On the left-hand side, we show the mini-bucket tree for an i-bound of 3 and on
the right-hand side, we show the bucket tree of exact bucket elimination. In the mini-bucket
tree, we annotate C and D with their pseudo-width. For the bucket tree, since the pseudo-
width is equal to the induced width, C and D are annotated with their induced width.
Starting with processing bucket D, computing the exact message µ∗D is like treating the
bucket as if it was not partitioned (e.g., the form of bucket D on the right-hand side figure).
Therefore, its pseudo-width is 4, which is greater than the i-bound of 3. However, when
moving to process bucket C, we still use the message obtained by MBE (λD→C(B,C)). Thus,
the pseudo-width of bucket C is 2 rather than being equal to the induced width in the bucket
tree 3. The distinction here is that unlike in exact bucket elimination, the complexity of
LBEE stays local. Overall, we illustrate here that the pseudo-width lies between the i-bound
and induced width.

3.4.1 Approximating Local Bucket Errors

Indeed, since the time and space complexity of LBEE may be higher than that of MBE
itself, sometimes it may not be practical. Therefore, we consider sampling and subsequently
aggregating the local bucket error functions for each variable as an approximation. The goal
here is to obtain an efficiently computable metric for each variable, which we will then use
to inform us about the impact of look-ahead at each variable. For the sake of simplicity in
the analysis, we will assume that all variable domains have size z.

We first address the space complexity with the following:

Definition 17 (average local error). Consider bucket Bk, with scope SBk , its average
local error Ẽk is the average value of the error function,

Ẽk =
1

z|SBk |

∑
sBk

Ek(sBk) (11)
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Computing Ẽk takes O(z|SBk |) time per variable, but only O(1) space to store. Clearly,
we also do not lose any information if Ẽk turns out to be 0, so it is sufficient to conclude in
this case that performing look-ahead on variable Xk yields no benefit. Otherwise, we have
an approximation for all assignments to X̄k.

An alternative measure is the average relative local error, computed by dividing each
Ek(sBk) term by the exact bucket message µ∗k(sBk). This serves as a way to normalize the
error with respect to the function values, which can vary in scale amongst the bucket errors
in practice.

Sampling Local Errors The average local error may still require significant time to
compute, because we would still need to enumerate over all the possible assignments of the
variables in the scope, as mentioned above. To address this, we can sample rather than
enumerate. We can draw samples from a uniform distribution over the domain of the error
function’s scope and finally average over the samples to approximate the average local error
Ẽk.

Definition 18 (sampled average local error). Consider bucket Bk, with scope SBk ,
its sampled average local error Êk is the average value over a uniformly generated sample of
its entries,

Êk =
1

#samples

∑
sBk

Ek(sBk) sBk ∼ U(SBk) (12)

3.5 Look-Ahead Subtree Pruning

With efficient methods to approximate the bucket errors, we now present our main scheme
for selective look-ahead through a method of choosing a look-ahead subtree for each variable
that balances time and accuracy. From Proposition 3, we have a lower-bound on depth-d
residual using summation of depth-1 residuals (which is exact when d = 1). We will use the
local bucket error as a measure of relevance for including a particular variable when looking
ahead.

Definition 19 (ε-relevant variable). A variable Xk is ε-relevant if Ẽk > ε.

We will include paths in the look-ahead subtree only if they reach relevant variables.

Definition 20 (ε-pruned look-ahead subtree). An ε-pruned look-ahead subtree T εp,d
is a subtree of Tp,d containing only the nodes of Tp,d that are ε-relevant or on a path to an
ε-relevant node.

We show in Figure 8 the look-ahead subtree TB,2. Since D is the only relevant variable
due to its mini-bucket partitioning (see Figure 5), only the path from C to D remains in
the ε-pruned look-ahead subtree T εB,2 for ε = 0 (circled).

Algorithm 4 (CompilePLS(ε)) generates the ε-pruned look-ahead subtree for each vari-
able. Its complexity is linear in the size of the look-ahead subtree Tp,d.

The ε-pruned look-ahead subtrees are computed prior to search. This suggests a static
approach for deciding where look-ahead before search begins by consulting the readily avail-
able look-ahead subtrees during search. When ε = 0, the look-ahead subtrees guide the
computation to only compute as much as necessary for a given depth-d look-ahead, since
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Figure 8: Look-ahead subtree TB,2. (B is shown for reference to root the multiple subtrees
that make up TB,2.) Circled: the ε-pruned look-ahead subtree T εB,2 for ε = 0.

Algorithm 4: Compile ε-pruned Look-ahead Subtrees (CompilePLS(ε))
Input: A Graphical modelM = (X,D,F), a pseudo tree T , i-bound, threshold ε,

depth d
Output: ε-pruned look-ahead subtree for each Xp ∈ X

1 Compute average (relative) local error Ẽk for each Xk ∈ X

2 X′ ← all nodes in T that are ε-relevant (Xk ∈ X s.t. Ẽk > ε)
3 foreach Xp ∈ X do
4 Initialize T εp,d to Tp,d
5 while T εp,d has leaves /∈ X′ do
6 Remove leaf Xj /∈ X′ from T εp,d
7 end
8 end
9 return T εp,d for each Xp

buckets with zero error do not contribute to any look-ahead. As ε increases, we get less
look-ahead across the search space, targeting regions with higher error only. Finally, at
ε =∞, our scheme reduces to using no look-ahead at all.

We present in Algorithm 5 pseudo-code for our MBE look-ahead heuristic. Before
search begins, we initialize the regular MBE heuristics, which generates the λ messages used
for the heuristics (Definition 9). We also execute CompilePLS(ε) for some depth d and ε
to generate the ε-pruned look-ahead subtrees. Then, AND/OR depth-first search begins
(AOBB, Algorithm 1) where the two references to the heuristic function h(·) in lines 4
and 15 are replaced by MBE look-ahead. As can be seen in the look-ahead algorithm, if
the ε-pruned look-ahead subtree T εp,d is empty, it returns the MBE heuristic value (look-
ahead is skipped). Otherwise, we construct the look-ahead graphical modelMε(x̄p, d) with
respect to T εp,d and solve for its min-sum value with BE and return that value plus the MBE
heuristic value without the contribution from messages generated from variables within the
look-ahead subtree (Definition 1). The overall complexity of this algorithm is O(nzwp,d),
where wp,d is the width of the look-ahead graphical modelMε(x̄p, d).
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Algorithm 5: Look-ahead Heuristic for MBE (MBE-Look-ahead) of a partial assign-
ment x̄p.
Input: A Graphical modelM = (X,D,F), a pseudo tree T , messages from

MBE(i), pruned look-ahead trees T εp,d for each Xp ∈ X, assignment x̄p
Output: Lower bound on partial assignment x̄p toM

1 if T εp,d is empty then
2 return

∑
Xk∈Tp Λ(k,p)(x̄p)

3 end
4 else
5 Construct look-ahead graphical modelMε(x̄p, d) w.r.t. T εp,d
6 Ld(x̄p) := min-sum Bucket Elimination onMε(x̄p, d)

7 return Ld(x̄p) +
∑

Xk∈Tp−T εp,d
Λ(k,p)(x̄p)

8 end
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Figure 9: A pseudo-tree annotated with bucket errors, given that the error function of D
shown here.

4. Analysis of Local Errors

To better understand the practical use of look-ahead subtrees, we show the pseudo-tree of
selected problem instances. We annotate their respective variables with the average local
error. As an example, Figure 9 shows the annotated pseudo-tree for our running example
problem. Only variable D has mini-bucket partitioning and a non-zero bucket error. On this
example, for a particular depth d, we can construct a look-ahead subtree for each variable.
For example, if d = 2 and ε = 0, then we can extract from this figure the ε-pruned look-
ahead subtree shown earlier in Figure 6 by observing that D is the only relevant variable
(Figure 9). For every other variable excluding C, the ε-pruned look-ahead subtrees are
empty, so look-ahead would be completely skipped.

We now show annotated pseudo-trees of one problem instance from the pedigree, grid,
promedas, and dbn classes. These classes make up some of the benchmarks that are used
in the main experimental evaluation in Section 5. We also annotate the pseudo-trees with
the number of mini-buckets (mb), the pseudo-width (psw). Each node is color coded on
a spectrum of pale yellow to dark red to indicate its relative degree of error. Within each
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Figure 10: Extracted structure from pseudo-tree showing errors for pedigree40 (n=842, z=7,
w=27, h=111) with an i-bound of 12. mb: the number of mini-buckets, psw : the pseudo-
width of that node. The top number in each box is the variable index and the bottom is
the average relative local bucket error.

node, we indicate its variable index on top and its average relative local bucket error on the
bottom. Nodes with partitioning but zero error are colored dark gray. Finally, nodes with
no partitioning are colored light gray and the mini-bucket and pseudo-width annotations
are omitted. We also provide problem statistics in the caption: n - the number of variables,
z - the maximum domain size, w - the induced width, and h - the pseudo-tree height. We
only show portions of the tree since the full pseudo-trees are too large to show. The full
pseudo-trees can be viewed online (Lam, 2017c).

For each instance, we also provide two additional plots. First, we show variables ordered
by their average relative local errors in order to see the frequency of different error values.
Second, we plot for each variable the number of mini-buckets in order to show how mini-
bucket partitioning is related to error. We also note the number of buckets with zero average
relative error, the average across all variables, and the average across all variables with non-
zero error. The quadruplet in the title of each plot indicates the same problem statistics
(n, z, w, h) mentioned in each pseudo-tree.

4.1 Case Study: Pedigree

We show in Figure 10 an extracted portion of the pseudo-tree of pedigree40 annotated with
local bucket error information when the i-bound of MBE applied is 12. We see that the
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Figure 11: Distribution of errors and mini-buckets for pedigree40. The variables (x-axis) are
plotted in descending order based on their average relative local bucket error.

errors tend to appear along several paths. On the left side, the decomposed subproblems
that sit near the leaves of the pseudo-tree have zero partitioning, and therefore, zero error.
It means that messages in the leaves are small and no partitioning is required. Notably, the
magnitude of the errors differ, as we notice that the error on nodes 73, 581, and 427 (the
red nodes) have much higher error than the rest. We also see that nodes 352 and 360 (dark
gray) have zero error, despite having partitioning.

In Figure 11, we plot each variable with its error (top) and mini-bucket partitioning
(bottom). The variables are sorted in descending order based on their error. In the plot on
the top, we observe that most of the variables (729 out of 842) have zero error, and that
very few variables have a high error. The average error is 0.17 (1.259 excluding zeros). In
the plot on the bottome we see that most, but not all, the variables that have zero error is
because there is no mini-bucket partitioning. We also see that the number of mini-buckets
does not seem to be correlated to the error value (left side of the bottom plot).

4.2 Case Study: Grid

Figure 12 provides another example, showing a part of the pseudotree for grid80x80.f15
when the i-bound of the MBE applied is 14. This instance is difficult, having an induced
width of 112. The pseudo-tree contains long chains with errors (see top plot) as well as
very arboreous regions (see bottom plot) which indicate high amounts of decomposition.
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Figure 12: Extracted structures from pseudotree showing errors for grid instance
grid80x80.f15 (n=6400, z=2, w=112, h=296) with an i-bound of 14. mb: the number
of mini-buckets, psw : the pseudo-width of that node. The top number in each box is the
variable index and the bottom is the average relative local bucket error.

The first observation is that decomposition regions seems to be where larger errors occur.
Despite most buckets only needing to partition into two mini-buckets, we can observe that
the errors can vary, from as low as 0.09 (variable 4610, near the top right) to 2.33 (variable
4455, near the bottom left).
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Figure 13: Distribution of errors and mini-buckets for grid instance grid80x80.f15. The
variables (x-axis) are plotted in descending order based on their average relative local bucket
error.

In the top plot of Figure 13 we see again that most variables have zero error (5196 out
of 6400) and very few have large error. The average error is 0.576 and the maximum is 3.5.
In the plot at the bottom we see again that several buckets where partition is needed still
have zero error. As in the previous example we observe that the number of mini-buckets does
not correlate with the magnitude of error. There are many variables with 3 mini-buckets
that are spread out roughly uniformly over the range of errors.

An interesting final observation is that, when a bucket needs to partition into mini-
buckets, the partition rarely needs more than 3 minibuckets and never more than 4. That
means that in this instance the pseudo-width (bounded above by 4× 11 + 1 = 45) is clearly
smaller than the induced width (112) and in most of the buckets much smaller.

4.3 Case Study: Promedas

Another example of an instance is or_chain_140.fg in Figure 14. Here, the MBE i-bound
is 10. Despite the many places here where there is mini-bucket partitioning, a fair number of
them have zero error. For example, notice on the right branch that there are three variables
in a row with zero error. Also, like in the pedigree instance, the errors appear along paths.
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Figure 14: Extracted structure from pseudo-tree showing errors for or_chain_140.fg
(n=1260, z=2, w=32, h=79) with an i-bound of 10. mb: the number of mini-buckets,
psw : the pseudo-width of that node. The top number in each box is the variable index and
the bottom is the average relative local bucket error.

The magnitude of the errors also differ as we see for variable 558 in red with an error of
74.944.

In Figure 15 we can see that only 122 variables have error, yet there are more variables
with mini-bucket partitioning. The average error excluding everything with zero error is
10.361. As with the examples we have seen so far, most variables have zero error due to the
lack of mini-bucket partitioning. Also, when comparing the magnitude of the errors to the
number of mini-buckets, there is no correlation once again.
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Figure 15: Distribution of errors and mini-buckets for or_chain_140.fg. The variables
(x-axis) are plotted in descending order based on their average relative local bucket error.

4.4 Case Study: DBN

In the last example pseudo-tree of the instance rus2_50_100_3_2 from the DBN bench-
mark in Figure 16 the i-bound is 14. The problem instances of this benchmark typically
have the same structure where the pseudo-tree starts with a chain (the first 60 variables, in
this example) until one point where the rest of variables branch out from it (100 variables,
in the example). There is partitioning only at the leaves with 5 mini-buckets per variable.
The average relative bucket errors are very large, suggesting that the residuals can be highly
informative in guiding search. Observe that there is a single node having far higher error
than the rest (variable 57, colored in red in the figure).

Figure 17 is consistent with the annotated pseudo-tree. The chain of 60 variables is
error free. In the rest of the variables, unlike previous examples, errors are high. In every
bucket where there is partition, there are errors (with an average of 7966).

Because of the very special structure of these instances, the pseudo-width is the same as
the induced width, meaning that it is equally expensive to pre-compute local bucket errors
exactly as to solve the problem. However, the analysis is not completely useless, since it let’s
know that our approach will produce empty pruned look-ahead trees along the chains, thus
preventing the algorithm from doing any useless look-ahead. Interestingly, only nodes at the
end of the chain, where look-ahead can be advantageous, will have non-empty look-ahead
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Figure 16: Extracted structure from pseudotree showing errors for DBN instance
rus2_50_100_3_2 (n=160, z=2, w=59, h=59) with an i-bound of 14. mb: the number
of mini-buckets, psw : the pseudo-width of that node. The top number in each box is the
variable index and the bottom is the average relative local bucket error. We also include
here another portion of the leaf level of the tree with an outlier node.

Figure 17: Distribution of errors and mini-buckets for DBN instance rus2_50_100_3_2.
The variables (x-axis) are plotted in descending order based on their average relative local
bucket error.
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Benchmark d=1 d=2 d=3 d=4 d=5 d=6
Pedigree 0.89 0.87 0.85 0.85 0.85 0.85

LargeFam3 0.87 0.86 0.85 0.85 0.85 0.85
Promedas 0.90 0.87 0.86 0.86 0.86 0.86
Type4 0.86 0.83 0.81 0.81 0.81 0.81
DBN 0.99 0.98 0.97 0.97 0.96 0.95
Grid 0.82 0.77 0.75 0.74 0.73 0.73

Table 4: For each benchmark, the average ratio of variables with near empty look-ahead
subtrees over for various look-ahead depths with a fixed i-bound of 10.

trees. In these nodes, due to the extremely high decomposition level that the pseudo-tree
uncovers, the induced width of the look-ahead graphical model wp,d is much smaller than d,
so exact inference (BE) is a more efficient method to compute the look-ahead than search.

4.4.1 Discussion

We considered a handful of differently structured instances in this section that illustrated
different structures of error distributed along the pseudo-trees. As expected, the bucket
error grows when the i-bound is low relative to the induced width (consider the grid instance
compared with the pedigree instance). We also observed that there are a fair number of
nodes within the pseudo-trees having no error, which is useful for controlling the look-ahead.
Indeed we systematically see that there are nodes that appear to have error when considering
the mini-bucket partitioning alone, yet evaluating their bucket errors tells otherwise. We
showed here that the local bucket error provides information beyond the presence of mini-
bucket partitioning.

Most importantly, we observe that problems typically have zero error in a majority of its
variables, meaning that look-ahead during search is most often to be redundant and therefore
counter-effective. To demonstrate this beyond the 4 previous examples, we compiled the
look-ahead subtrees for every problem instance across the 6 benchmarks that will be used in
our experimental evaluation in the following section. The results are summarized in Table
4 by averaging the ratio of variables which have a look-ahead subtree that is nearly empty
(defined by being at most 10% of the unpruned look-ahead subtree’s size) for an i-bound
of 10 and look-ahead depths ranging from 1 to 6 with an error threshold ε of 0.01. Indeed,
most variables have nearly empty look-ahead subtrees, with the ratio decreasing relatively
slowly as depth increases. Clearly, this would yield a positive impact on dealing with the
overhead of look-ahead.

5. Experimental Evaluation

We now evaluate empirically the impact of our look-ahead scheme in branch and bound
depth first for different look-ahead depths. In Subsection 5.1 we consider the problem of
finding the optimal solution and proving its optimality which is important in not-so-hard
instances. The main efficiency measure here is cpu time to complete the execution. In
Subsection 5.2 we consider the problem of obtaining near-optimal solutions in an anytime
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manner which is important when dealing with hard instances that can not be solved within
reasonable time limits. In this context one algorithm is better than another if it obtains
better solutions sooner.

Our baseline algorithm is AOBB with context-based caching, so the search is done on
the AND/OR search graph (Marinescu & Dechter, 2009b). We augmented it with breadth
rotation (BRAOBB) (Otten & Dechter, 2012) in order to enhance the any-time performance.
As heuristic, we use Mini-Bucket Elimination with Moment-Matching, which adds a step
that shifts costs between mini-buckets to tighten the approximation (Ihler, Flerova, Dechter,
& Otten, 2012). Together, they form one of the best algorithms for optimization in graphical
models, which won the PASCAL Inference Competition in 2011 (Otten et al., 2012).

We compare the baseline with an algorithm that starts computing CompilePLS(ε)
(Algorithm 4) for compiling the pruned look-ahead subtrees. The average error was com-
puted exactly if the local bucket error function had no more than 105 entries. Otherwise,
we approximated by sampling 105 of the entries and averaging over the samples. Lastly, we
have our two parameters of depth d and the error threshold ε that control the amount of
look-ahead performed. Using ε, we can in principle control look-ahead without using the
depth d at all (namely we can always use full look-ahead subtree and pruning that), this
parameter is highly dependent on the particular problem instance and heuristic strength.
On the other hand, controlling with the depth d as usual provides much tighter control
of the overhead. We generally found that using a fixed ε of 0.01 tended to be the best
when controlling look-ahead primarily when using the depth d. We provide an overview
of the experiments performed in this area in Section 5.3. (Also see Lam, 2017a, for a full
account of the experiments.) In the following two sections evaluating the exact and anytime
performance, we vary the look-ahead depth from 1 to 6 and used a fixed ε of 0.01.

Both the baseline and our approach were based on a branch of the DAOOPT code which
is implemented in C++ (64-bit) (Otten, 2013; Lam, 2017b). Experiments were run on an
Intel Xeon X5650 2.66GHz processor, with a 4GB memory limit for each job. The time limit
for every experiment was bounded to 2 hours (7200 seconds).

Benchmarks. We used benchmarks from the UAI and PASCAL2 competitions. In
particular we considered instances from genetic linkage analysis (Pedigree, LargeFam3,
Type4) (Fishelson & Geiger, 2004), medical diagnosis (Promedas) (Wemmenhove, Mooij,
Wiegerinck, Leisink, Kappen, & Neijt, 2007), deep belief networks (DBN), and binary grids
(Grids). Altogether, we report results on 221 instances. For each problem, we used a fixed
pseudo-tree. We provide additional details on instance selection criteria and benchmark
statistics at the beginning of Sections 5.1 and 5.2, which focus on evaluating for exact
solutions and anytime behavior, respectively.

5.1 Evaluating Look-Ahead for Exact Solutions

In order to experiment on non-trivial, yet solvable instances, we selected a subset of the
benchmark instances. Instances that could be solved with the baseline in less than 30
seconds with a weak heuristics (i-bound = 6) were discarded for being too easy. Instances
that could not be solved with the baseline in less than 7200 seconds with the highest i-bound
fitting in memory (4GB) were discarded for bein too hard. 95 instances, having induced
widths ranging from 19 to 69 passed the filter. See Table 5 for additional statistics.
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Benchmark # inst n z w h |F | a

Pedigree 12 581 3 19 79 794 4
1006 7 39 143 1185 5

LargeFam3 13 874 3 21 44 1321 4
1712 3 39 77 2720 4

Promedas 31 615 2 28 65 625 3
1911 2 69 128 1427 3

DBN 30 70 2 29 29 16167 2
70 2 29 29 16167 2

Grids 9 400 2 24 62 1161 2
1600 2 52 157 4721 2

Table 5: Benchmark statistics for exact solution evalution. # inst - number of instances,
n - number of variables, z - maximum domain size, w∗ - induced width, h - pseudotree
height, |F | - number of functions, a - maximum arity. The top value is the minimum and
the bottom value is the maximum for that statistic.

For each instance we conducted experiments with 3 different i-bounds: the highest one
fitting in memory, the lowest one that allowed to solve the instance with the baseline in less
than 7200 seconds, and another one in between.

Tables 6, 7, 8, 9, and 10, present results on the amount of time spent (in seconds) and
nodes expanded (in millions of nodes) for selected representative instances. Next to each
time, we also provide the relative speedup over the baseline. Similarly, next to each node
count, we provide a “compression” ratio of nodes expanded relative to the baseline. In cases
were the baseline fails to find the exact solution, we give a lower bound on the speedup,
assuming the baseline is 7200 seconds. For the number of nodes expanded, the ratio is an
upper bound obtained by counting the number of nodes expanded by the timeout. Within
an instance, each column corresponds to a different i-bound and each row corresponds to a
different look-ahead depth.

To account for the full set of instances solved within the time limit, we provide in
Figures 18, 19, 20, 21, and 22 scatter plots of the speedups of the runtime of each
look-ahead depth against the baseline. The differently colored points represent the different
problem instances in the benchmark. Each depth is annotated by the number of instances
which performed better than the baseline. We separate these into the same weak to strong
heuristic groupings as done in the tables.

The Type4 benchmark is not included in the results for finding exact solutions since
there were no instances which were solved within the time limit.

5.1.1 Pedigree

Our first benchmark consists of genetic linkage analysis problems. Table 6 shows the results
in terms of time spent and nodes expanded to find the exact solution on selected i-bounds of
representative instances. We observe that look-ahead improves the performance, especially
for lower i-bounds. For instance, on pedigree18 with an i-bound of 5, we see a runtime of
675 seconds with a look-ahead depth of 4, which is 2.16 times faster than the baseline time

319



Lam, Kask, Dechter, & Larrosa

instance
(n, z, w∗, h) depth time (speedup) nodes (ratio) time (speedup) nodes (ratio) time (speedup) nodes (ratio)

i=11 i=16 i=21
d=0 2078 (1.00) 385.79 (1.00) 74 (1.00) 13.32 (1.00) 142 (1.00) 4.66 (1.00)
d=1 1905 (1.09) 280.04 (0.73) 75 (0.99) 10.59 (0.80) 146 (0.97) 3.95 (0.85)
d=2 1846 (1.13) 226.18 (0.59) 72 (1.02) 8.91 (0.67) 147 (0.96) 3.45 (0.74)

pedigree7 d=3 1972 (1.05) 177.49 (0.46) 76 (0.97) 7.43 (0.56) 148 (0.95) 3.08 (0.66)
(867,4,28,123) d=4 2423 (0.86) 135.83 (0.35) 86 (0.86) 6.18 (0.46) 154 (0.92) 2.64 (0.57)

d=5 3204 (0.65) 103.89 (0.27) 104 (0.71) 5.11 (0.38) 169 (0.84) 2.44 (0.52)
d=6 4976 (0.42) 81.77 (0.21) 146 (0.50) 4.29 (0.32) 194 (0.73) 2.22 (0.48)

i=5 i=8 i=23
d=0 5207 (1.00) 974.63 (1.00) 386 (1.00) 79.94 (1.00) 85 (1.00) 0.01 (1.00)
d=1 4249 (1.23) 668.92 (0.69) 372 (1.04) 65.51 (0.82) 85 (0.99) 0.01 (0.95)
d=2 4061 (1.28) 564.38 (0.58) 325 (1.19) 50.21 (0.63) 87 (0.97) 0.01 (0.90)

pedigree9 d=3 3594 (1.45) 371.50 (0.38) 312 (1.24) 38.44 (0.48) 85 (0.99) 0.01 (0.88)
(935,7,25,137) d=4 3548 (1.47) 245.15 (0.25) 398 (0.97) 32.54 (0.41) 85 (0.99) 0.01 (0.85)

d=5 3654 (1.43) 159.41 (0.16) 457 (0.84) 22.58 (0.28) 85 (0.99) 0.01 (0.83)
d=6 5523 (0.94) 128.85 (0.13) 680 (0.57) 19.37 (0.24) 85 (1.00) 0.01 (0.75)

i=5 i=7 i=10
d=0 1464 (1.00) 327.19 (1.00) 66 (1.00) 17.60 (1.00) 7 (1.00) 1.93 (1.00)
d=1 1245 (1.18) 244.45 (0.75) 55 (1.19) 12.88 (0.73) 6 (1.12) 1.36 (0.70)
d=2 1147 (1.28) 200.20 (0.61) 48 (1.35) 10.08 (0.57) 5 (1.39) 0.94 (0.49)

pedigree18 d=3 887 (1.65) 136.37 (0.42) 36 (1.83) 6.64 (0.38) 4 (1.53) 0.69 (0.36)
(931,5,19,102) d=4 675 (2.17) 84.72 (0.26) 29 (2.30) 4.17 (0.24) 5 (1.34) 0.48 (0.25)

d=5 755 (1.94) 64.45 (0.20) 30 (2.22) 3.14 (0.18) 6 (1.23) 0.39 (0.20)
d=6 777 (1.88) 46.28 (0.14) 42 (1.55) 2.32 (0.13) 8 (0.87) 0.28 (0.14)

i=13 i=15 i=18
d=0 3193 (1.00) 544.11 (1.00) 1470 (1.00) 246.25 (1.00) 108 (1.00) 2.63 (1.00)
d=1 3125 (1.02) 457.74 (0.84) 1458 (1.01) 210.39 (0.85) 114 (0.95) 2.26 (0.86)
d=2 2705 (1.18) 334.54 (0.61) 1497 (0.98) 188.04 (0.76) 114 (0.95) 2.02 (0.77)

pedigree34 d=3 3118 (1.02) 284.64 (0.52) 1736 (0.85) 168.68 (0.69) 106 (1.02) 1.87 (0.71)
(922,5,28,143) d=4 4086 (0.78) 249.13 (0.46) 2119 (0.69) 147.71 (0.60) 123 (0.88) 1.61 (0.61)

d=5 6205 (0.51) 212.84 (0.39) 3022 (0.49) 128.82 (0.52) 136 (0.80) 1.39 (0.53)
d=6 oot - 4992 (0.29) 116.30 (0.47) 166 (0.65) 1.27 (0.48)

i=8 i=12 i=23
d=0 2256 (1.00) 492.98 (1.00) 345 (1.00) 81.92 (1.00) 76 (1.00) 0.00 (1.00)
d=1 2066 (1.09) 389.99 (0.79) 351 (0.98) 68.86 (0.84) 77 (0.99) 0.00 (1.00)
d=2 2027 (1.11) 324.45 (0.66) 313 (1.10) 53.82 (0.66) 77 (0.99) 0.00 (1.00)

pedigree44 d=3 1787 (1.26) 220.62 (0.45) 303 (1.14) 38.10 (0.47) 76 (1.00) 0.00 (1.00)
(644,4,24,79) d=4 1847 (1.22) 166.69 (0.34) 330 (1.05) 28.83 (0.35) 77 (0.99) 0.00 (1.00)

d=5 2167 (1.04) 114.99 (0.23) 382 (0.90) 20.07 (0.24) 77 (0.99) 0.00 (1.00)
d=6 3027 (0.75) 91.94 (0.19) 494 (0.70) 13.80 (0.17) 77 (0.99) 0.00 (1.00)

i=16 i=19 i=22
d=0 4075 (1.00) 917.81 (1.00) 2545 (1.00) 599.16 (1.00) 502 (1.00) 82.85 (1.00)
d=1 4168 (0.98) 782.74 (0.85) 2673 (0.95) 508.52 (0.85) 514 (0.98) 71.01 (0.86)
d=2 4108 (0.99) 670.59 (0.73) 2759 (0.92) 442.76 (0.74) 536 (0.94) 64.13 (0.77)

pedigree51 d=3 3892 (1.05) 512.25 (0.56) 2590 (0.98) 335.50 (0.56) 542 (0.93) 53.31 (0.64)
(871,5,39,98) d=4 4871 (0.84) 437.29 (0.48) 3004 (0.85) 278.58 (0.46) 614 (0.82) 45.33 (0.55)

d=5 5896 (0.69) 351.41 (0.38) 3697 (0.69) 224.62 (0.37) 759 (0.66) 39.73 (0.48)
d=6 oot - 5708 (0.45) 194.39 (0.32) 1091 (0.46) 35.33 (0.43)

Table 6: Selected pedigree instances: “time” indicates the CPU time in seconds (speedup
over baseline) and “nodes” indicates the number of OR nodes expanded in millions of nodes
(ratio relative to baseline) In a time column, ’oot’ that the time limit of 2 hours was exceeded.
The problem parameters are also provided for each instance (n: number of variables, z:
maximum domain size, w∗: induced width, and h: height) Within each instance and i-
bound, the best time is boxed.

320



Residual-Guided Look-Ahead in AND/OR Search for Graphical Models

of 1464 seconds. Indeed, the number of nodes expanded here decreases by 74%. However,
on higher i-bounds, lookahead is less cost effective.

Figure 18: Solved pedigree instances: plot of speedups on instances by look-ahead depth.
The number on top of each depth group is the number of instances that had speedup over
1. #inst indicates the number of instances in the benchmark that are shown in each plot.

Figure 18 shows the distribution of speedups across all the instances of this benchmark
that were solved within the time limit. For low i-bounds of modest look-ahead depths (less
than 3), we observe that look-ahead improves over the baseline for most of the instances.
However, as the look-ahead depths increase, it is often the case that it is not cost-effective.
Also, when the heuristic is more accurate, look-ahead has less of an impact on the reduction
of the number of nodes, and is consequently less effective.

In summary, due to the relatively easy nature of this benchmark, the bucket errors tend
to be very low for the higher i-bounds. Thus, there are fewer opportunities for look-ahead
to improve the pre-compiled mini-bucket heuristic.

5.1.2 LargeFam3

Here we have another benchmark based on genetic linkage analysis, but in contrast to the
pedigree benchmark, these instances are more difficult as seen by the relatively higher
induced width and therefore higher i-bounds required to find exact solutions. Table 7
shows the detailed results for representative instances in this benchmark. We observe that
on weaker heuristics, look-ahead obtains some speedups. For instance lf3-10-52, we see a
runtime of 4915 seconds for a depth of 3 compared to 6560 seconds for the baseline, close
to the timeout. At a depth of 4, the ratio of the number of nodes only changes by 10%,
thus making look-ahead less cost-effective. When moving to higher i-bounds, we see a shift
towards lower depths being cost effective, but with relatively small improvements over the
baseline. For example, on the same instance, for i=20, a depth of 1 reduces the runtime only
marginally. Still, in lf3-13-58, there is more payoff with a look-ahead depth of 2 giving a 1.2
speedup over the baseline, thanks to a 50% reduction in the number of nodes expanded.

Figure 19 shows the distributions of speedups across all the instances of the benchmark
that were solved within the time limit. Here we observe that for the weaker heuristics, only a
very small number of instances improve over the baseline for the various look-ahead depths.
We see that for depths of 1 and 2, 5 of the instances performed better than the baseline, but
as the depth increases, the number of instances that perform better decreases. For stronger
heuristics (medium and high i-bounds), a slightly larger proportion of instances improve
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instance
(n, z, w∗, h) depth time (speedup) nodes (ratio) time (speedup) nodes (ratio) time (speedup) nodes (ratio)

i=16 i=18 i=20
d=0 6560 (1.00) 1306.25 (1.00) 2180 (1.00) 471.67 (1.00) 387 (1.00) 75.13 (1.00)
d=1 6058 (1.08) 991.91 (0.76) 1999 (1.09) 343.13 (0.73) 371 (1.04) 54.20 (0.72)
d=2 5669 (1.16) 744.66 (0.57) 1978 (1.10) 263.95 (0.56) 380 (1.02) 42.71 (0.57)

lf3-10-52 d=3 4915 (1.33) 431.36 (0.33) 2545 (0.86) 214.29 (0.45) 467 (0.83) 33.51 (0.45)
(959,3,39,68) d=4 6068 (1.08) 301.99 (0.23) 3809 (0.57) 165.31 (0.35) 651 (0.59) 26.56 (0.35)

d=5 oot - 6627 (0.33) 131.89 (0.28) 1087 (0.36) 21.56 (0.29)
d=6 oot - oot - 1974 (0.20) 17.54 (0.23)

i=14 i=16 i=18
d=0 oot - 5319 (1.00) 1041.65 (1.00) 471 (1.00) 70.24 (1.00)
d=1 oot - 4879 (1.09) 752.73 (0.72) 433 (1.09) 49.08 (0.70)
d=2 oot - 4418 (1.20) 529.90 (0.51) 390 (1.21) 35.29 (0.50)

lf3-13-58 d=3 oot - 3858 (1.38) 340.03 (0.33) 462 (1.02) 28.11 (0.40)
(1272,3,32,76) d=4 oot - 5222 (1.02) 261.37 (0.25) 575 (0.82) 21.10 (0.30)

d=5 oot - oot - 865 (0.55) 16.66 (0.24)
d=6 oot - oot - 1447 (0.33) 12.20 (0.17)

i=14 i=16 i=18
d=0 3971 (1.00) 821.75 (1.00) 644 (1.00) 154.40 (1.00) 56 (1.00) 10.94 (1.00)
d=1 3579 (1.11) 609.38 (0.74) 499 (1.29) 99.26 (0.64) 51 (1.10) 7.59 (0.69)
d=2 3071 (1.29) 464.28 (0.56) 455 (1.41) 75.97 (0.49) 48 (1.16) 5.97 (0.55)

lf3-15-59 d=3 3057 (1.30) 346.87 (0.42) 480 (1.34) 61.42 (0.40) 50 (1.11) 4.79 (0.44)
(1574,3,33,71) d=4 3896 (1.02) 284.40 (0.35) 614 (1.05) 47.89 (0.31) 61 (0.92) 3.65 (0.33)

d=5 4740 (0.84) 219.70 (0.27) 972 (0.66) 38.95 (0.25) 98 (0.57) 3.09 (0.28)
d=6 oot - 1655 (0.39) 30.63 (0.20) 178 (0.31) 2.50 (0.23)

i=14 i=16 i=18
d=0 1760 (1.00) 367.61 (1.00) 381 (1.00) 77.79 (1.00) 104 (1.00) 9.30 (1.00)
d=1 1954 (0.90) 337.70 (0.92) 400 (0.95) 66.06 (0.85) 112 (0.93) 8.11 (0.87)
d=2 1862 (0.95) 281.86 (0.77) 376 (1.01) 53.07 (0.68) 107 (0.97) 6.28 (0.67)

lf3-16-56 d=3 1926 (0.91) 227.79 (0.62) 366 (1.04) 40.25 (0.52) 104 (1.00) 4.55 (0.49)
(1688,3,38,77) d=4 2232 (0.79) 175.98 (0.48) 430 (0.89) 31.17 (0.40) 112 (0.92) 3.65 (0.39)

d=5 2183 (0.81) 104.73 (0.28) 513 (0.74) 20.77 (0.27) 115 (0.91) 2.31 (0.25)
d=6 2803 (0.63) 77.90 (0.21) 732 (0.52) 15.65 (0.20) 131 (0.79) 1.60 (0.17)

i=12 i=14 i=16
d=0 1386 (1.00) 263.46 (1.00) 476 (1.00) 93.62 (1.00) 20 (1.00) 2.28 (1.00)
d=1 1401 (0.99) 208.27 (0.79) 463 (1.03) 70.44 (0.75) 22 (0.90) 1.53 (0.67)
d=2 1212 (1.14) 161.49 (0.61) 436 (1.09) 53.60 (0.57) 21 (0.92) 1.12 (0.49)

lf3-17-58 d=3 1468 (0.94) 117.04 (0.44) 579 (0.82) 43.52 (0.46) 22 (0.91) 0.74 (0.33)
(1712,3,31,75) d=4 1988 (0.70) 88.02 (0.33) 1039 (0.46) 35.35 (0.38) 27 (0.73) 0.57 (0.25)

d=5 2129 (0.65) 33.84 (0.13) 2770 (0.17) 23.36 (0.25) 36 (0.54) 0.41 (0.18)
d=6 3968 (0.35) 24.37 (0.09) 5428 (0.09) 10.40 (0.11) 63 (0.31) 0.32 (0.14)

Table 7: Selected LargeFam3 instances: “time” indicates the CPU time in seconds (speedup
over baseline) and “nodes” indicates the number of OR nodes expanded in millions of nodes
(ratio relative to baseline) In a time column, ’oot’ that the time limit of 2 hours was exceeded.
The problem parameters are also provided for each instance (n: number of variables, z:
maximum domain size, w∗: induced width, and h: height) Within each instance and i-
bound, the best time is boxed.
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Figure 19: Solved LargeFam3 instances: plot of speedups on instances by look-ahead depth.
The number on top of each depth group is the number of instances that had speedup over
1. #inst indicates the number of instances in the benchmark that are shown in each plot.

over the baseline since it also includes more difficult instances that could not be solved with
weaker heuristics. However, increasing depth past 2 or 3 results in fewer improvements.

In summary, for this benchmark, the impact of look-ahead is somewhat similar to what
we saw for the pedigree benchmark. While the instances that we could solve were more
difficult, the bucket errors behave similarly.

5.1.3 Promedas

We now move onto a benchmark of problems based on medical diagnosis. Table 8 shows
the detailed results for representative instances. We see a significant speedup when using
weak heuristics. For example on or-chain-140.fg, a depth 6 look-ahead completed in 1156
seconds where the baseline required 4555 seconds, a 3.94 speedup. Also worth noting in this
benchmark is or-chain-108.fg, which is a fairly hard instance with an induced width of 67.
Here, even the highest i-bound of 22 which we could use resulted in the baseline timing out
at 7200 seconds. Thus, with a depth of 4, we achieved a time which is at least twice as fast.

Figure 20: Solved promedas instances: plot of speedups on instances by look-ahead depth.
The number on top of each depth group is the number of instances that had speedup over
1. #inst indicates the number of instances in the benchmark that are shown in each plot.

Figure 20 shows the distribution of speedups across all instances that were solved within
the time limit. For low i-bounds, we observe a general trend of deeper look-ahead improving
performance. In particular, the number of instances for which look-ahead improved perfor-
mance increases monotonically until a depth of 4. Moving to medium i-bounds, look-ahead
improves over the baseline on only about half of the 30 solved instances from depths 1 to
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instance
(n, z, w∗, h) depth time nodes time nodes time nodes

i=18 i=20 i=22
d=0 oot - 6685 (1.00) 1538.31 (1.00) oot -
d=1 oot - 6519 (1.03) 1311.00 (0.85) oot -
d=2 oot - 6216 (1.08) 1135.75 (0.74) 3892 (>1.85) 746.99 (<0.66)

or-chain-108.fg d=3 6782 (>1.06) 1083.13 (<0.69) 5741 (1.16) 928.40 (0.60) 3664 (>1.97) 633.30 (<0.56)
(1263,2,67,117) d=4 6221 (>1.16) 836.41 (<0.54) oot - 3554 (>2.03) 526.19 (<0.47)

d=5 6741 (>1.07) 723.05 (<0.46) oot - 3931 (>1.83) 450.86 (<0.40)
d=6 oot - oot - 5224 (>1.38) 361.61 (<0.32)

i=8 i=14 i=22
d=0 4048 (1.00) 922.01 (1.00) 940 (1.00) 250.21 (1.00) 40 (1.00) 7.13 (1.00)
d=1 3225 (1.26) 677.95 (0.74) 897 (1.05) 200.63 (0.80) 45 (0.91) 6.14 (0.86)
d=2 2981 (1.36) 588.24 (0.64) 687 (1.37) 151.52 (0.61) 42 (0.96) 4.92 (0.69)

or-chain-113.fg d=3 2454 (1.65) 486.12 (0.53) 704 (1.34) 125.95 (0.50) 40 (1.01) 3.54 (0.50)
(1416,2,40,83) d=4 2327 (1.74) 395.83 (0.43) 763 (1.23) 95.09 (0.38) 42 (0.95) 2.81 (0.39)

d=5 2442 (1.66) 296.26 (0.32) 797 (1.18) 76.51 (0.31) 47 (0.86) 2.26 (0.32)
d=6 2790 (1.45) 227.63 (0.25) 1024 (0.92) 60.46 (0.24) 55 (0.73) 1.77 (0.25)

i=6 i=14 i=22
d=0 4555 (1.00) 989.30 (1.00) 485 (1.00) 123.22 (1.00) 23 (1.00) 1.96 (1.00)
d=1 3769 (1.21) 724.32 (0.73) 432 (1.12) 96.52 (0.78) 25 (0.89) 1.76 (0.90)
d=2 3005 (1.52) 550.05 (0.56) 337 (1.44) 67.55 (0.55) 25 (0.92) 1.40 (0.72)

or-chain-140.fg d=3 2132 (2.14) 370.58 (0.37) 304 (1.60) 50.38 (0.41) 24 (0.95) 1.12 (0.57)
(1260,2,32,79) d=4 1604 (2.84) 226.90 (0.23) 297 (1.63) 39.68 (0.32) 24 (0.93) 1.04 (0.53)

d=5 1403 (3.25) 152.70 (0.15) 370 (1.31) 33.30 (0.27) 26 (0.87) 0.94 (0.48)
d=6 1156 (3.94) 93.02 (0.09) 514 (0.94) 26.82 (0.22) 28 (0.82) 0.76 (0.39)

i=16 i=18 i=22
d=0 3392 (1.00) 776.00 (1.00) 1347 (1.00) 332.59 (1.00) 590 (1.00) 135.98 (1.00)
d=1 3445 (0.98) 672.30 (0.87) 1521 (0.89) 292.67 (0.88) 583 (1.01) 115.44 (0.85)
d=2 3049 (1.11) 531.20 (0.68) 1094 (1.23) 200.99 (0.60) 446 (1.32) 74.57 (0.55)

or-chain-202.fg d=3 3037 (1.12) 443.17 (0.57) 1016 (1.33) 159.28 (0.48) 433 (1.36) 62.09 (0.46)
(1138,2,57,99) d=4 3465 (0.98) 385.27 (0.50) 1163 (1.16) 138.94 (0.42) 493 (1.20) 54.06 (0.40)

d=5 3833 (0.88) 286.23 (0.37) 1304 (1.03) 115.07 (0.35) 536 (1.10) 44.13 (0.32)
d=6 5345 (0.63) 247.75 (0.32) 1815 (0.74) 102.03 (0.31) 801 (0.74) 37.78 (0.28)

i=14 i=16 i=20
d=0 5360 (1.00) 1051.18 (1.00) 3179 (1.00) 641.34 (1.00) 1860 (1.00) 381.76 (1.00)
d=1 4292 (1.25) 736.64 (0.70) 3309 (0.96) 558.36 (0.87) 1829 (1.02) 323.42 (0.85)
d=2 3554 (1.51) 553.47 (0.53) 2420 (1.31) 382.38 (0.60) 1661 (1.12) 271.88 (0.71)

or-chain-230.fg d=3 3325 (1.61) 463.20 (0.44) 2501 (1.27) 340.48 (0.53) 1764 (1.05) 245.41 (0.64)
(1338,2,61,109) d=4 3583 (1.50) 406.36 (0.39) 2518 (1.26) 271.47 (0.42) 1853 (1.00) 202.43 (0.53)

d=5 4723 (1.13) 323.11 (0.31) 2814 (1.13) 212.02 (0.33) 2202 (0.84) 166.51 (0.44)
d=6 4779 (1.12) 200.85 (0.19) 3360 (0.95) 173.98 (0.27) 2832 (0.66) 143.76 (0.38)

i=8 i=14 i=22
d=0 1936 (1.00) 473.14 (1.00) 698 (1.00) 174.41 (1.00) 34 (1.00) 4.99 (1.00)
d=1 1455 (1.33) 318.79 (0.67) 654 (1.07) 138.89 (0.80) 39 (0.86) 4.43 (0.89)
d=2 1221 (1.59) 240.71 (0.51) 593 (1.18) 112.57 (0.65) 39 (0.87) 3.79 (0.76)

or-chain-8.fg d=3 1072 (1.81) 192.22 (0.41) 574 (1.21) 93.09 (0.53) 36 (0.94) 2.53 (0.51)
(1195,2,42,80) d=4 1034 (1.87) 151.75 (0.32) 577 (1.21) 75.34 (0.43) 38 (0.88) 2.09 (0.42)

d=5 1094 (1.77) 127.13 (0.27) 682 (1.02) 62.81 (0.36) 43 (0.79) 1.72 (0.34)
d=6 1117 (1.73) 87.01 (0.18) 904 (0.77) 56.84 (0.33) 53 (0.64) 1.50 (0.30)

Table 8: Selected promedas instances: “time” indicates the CPU time in seconds (speedup
over baseline) and “nodes” indicates the number of OR nodes expanded in millions of nodes
(ratio relative to baseline) In a time column, ’oot’ that the time limit of 2 hours was exceeded.
The problem parameters are also provided for each instance (n: number of variables, z:
maximum domain size, w∗: induced width, and h: height) Within each instance and i-
bound, the best time is boxed.
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4. This is due to how a large number of the instances are trivial to solve (less than 30
seconds of runtime) once using a stronger heuristic (typically an i-bound of 14). Increasing
the heuristic strength further, most of the instances are solved easily, except for a few of the
hardest ones such as or-chain-108 in Table 8, which still exhibit significant speedup.

In this benchmark, which contains some hard instances, we see for the first time the
power of look-ahead when memory restrictions allow only relatively weak heuristics. Indeed,
here we see more than before that look-ahead improves with depths even when we have the
strongest heuristics that we can compile under the memory constraints.

5.1.4 DBN

This benchmark contains problems derived from deep belief networks. Table 9 shows the
detailed results for representative instances. On the hardest instance we were able to solve
(rus2-20-40-9-3 ), we see a significant improvement using the lowest i-bound of 8, and a
look-ahead depth of 4 resulting in a runtime of 1744 seconds compared with the baseline
yielding 6171 seconds, a speedup of 3.54. Indeed, the number of nodes expanded is reduced
by about 90.5%. We observe improved performance for many instances as we increase the
i-bound. The baseline time is generally at least twice that of the look-ahead depth of 1.

Figure 21: Solved DBN instances: plot of speedups on instances by look-ahead depth. The
number on top of each depth group is the number of instances that had speedup over 1.
#inst indicates the number of instances in the benchmark that are shown in each plot.

In Figure 21, we see that look-ahead nearly always improves over the baseline. For low
i-bounds, the speedups range between 1.5 to 3.5 for all instances. This range decreases for
medium i-bounds, but in nearly all cases look-ahead produces gains over the baseline. Note
that the number of nodes expanded at an i-bound of 12 is greater than the number at an
i-bound of 10. This is an example of a case where higher i-bounds may result in weaker
heuristics, due to the unpredictable behavior of partitioning given that all of the functions
in this benchmark are binary, yet having high induced width in the model as a whole.
Partitioning has been shown to be an important factor in the quality of MBE heuristics
(Rollon, Larrosa, & Dechter, 2013). At the same time, the minimum speedup increases for
the high i-bounds, suggesting more errors in the heuristic, which look-ahead manages to
exploit.

In summary, all of the instances in this benchmark have structure where all of the
partitioning occurs at the leaves of the pseudo-tree. As a result, it is easy to identify
where look-ahead should be performed to be cost-effective (near the leaves of the search
space). Furthermore, the relative errors are extremely high for this benchmark, which can
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instance
(n, z, w∗, h) depth time (speedup) nodes (ratio) time (speedup) nodes (ratio) time (speedup) nodes (ratio)

i=8 i=10 i=12
d=0 271 (1.00) 3.50 (1.00) 47 (1.00) 0.64 (1.00) 498 (1.00) 5.57 (1.00)
d=1 126 (2.16) 2.02 (0.58) 28 (1.68) 0.39 (0.61) 197 (2.53) 3.04 (0.55)
d=2 111 (2.44) 1.19 (0.34) 24 (1.95) 0.24 (0.38) 166 (3.01) 1.68 (0.30)

rus2-20-40-1-1 d=3 110 (2.46) 0.71 (0.20) 26 (1.81) 0.15 (0.24) 166 (2.99) 0.94 (0.17)
(70,2,29,29) d=4 119 (2.28) 0.43 (0.12) 28 (1.66) 0.09 (0.15) 164 (3.03) 0.53 (0.10)

d=5 137 (1.97) 0.26 (0.07) 35 (1.33) 0.06 (0.09) 189 (2.64) 0.30 (0.05)
d=6 158 (1.72) 0.16 (0.04) 41 (1.14) 0.04 (0.06) 210 (2.37) 0.17 (0.03)

i=8 i=10 i=12
d=0 264 (1.00) 3.09 (1.00) 104 (1.00) 1.21 (1.00) 386 (1.00) 4.28 (1.00)
d=1 120 (2.21) 1.70 (0.55) 53 (1.97) 0.67 (0.56) 169 (2.28) 2.27 (0.53)
d=2 97 (2.73) 0.95 (0.31) 42 (2.47) 0.39 (0.32) 129 (3.00) 1.22 (0.29)

rus2-20-40-3-3 d=3 95 (2.79) 0.54 (0.17) 42 (2.49) 0.22 (0.18) 122 (3.17) 0.66 (0.15)
(70,2,29,29) d=4 99 (2.68) 0.31 (0.10) 48 (2.19) 0.13 (0.11) 131 (2.95) 0.36 (0.09)

d=5 108 (2.45) 0.18 (0.06) 48 (2.15) 0.08 (0.06) 142 (2.71) 0.20 (0.05)
d=6 119 (2.21) 0.11 (0.03) 57 (1.84) 0.04 (0.04) 147 (2.62) 0.11 (0.03)

i=8 i=10 i=12
d=0 307 (1.00) 3.89 (1.00) 53 (1.00) 0.76 (1.00) 539 (1.00) 6.41 (1.00)
d=1 150 (2.05) 2.27 (0.58) 30 (1.79) 0.47 (0.61) 240 (2.25) 3.52 (0.55)
d=2 123 (2.50) 1.35 (0.35) 26 (2.01) 0.29 (0.38) 206 (2.61) 1.97 (0.31)

rus2-20-40-4-1 d=3 124 (2.48) 0.81 (0.21) 29 (1.83) 0.18 (0.24) 188 (2.86) 1.11 (0.17)
(70,2,29,29) d=4 134 (2.30) 0.49 (0.13) 32 (1.67) 0.11 (0.15) 201 (2.68) 0.64 (0.10)

d=5 160 (1.92) 0.30 (0.08) 39 (1.36) 0.07 (0.09) 211 (2.55) 0.37 (0.06)
d=6 187 (1.64) 0.19 (0.05) 46 (1.16) 0.05 (0.06) 246 (2.20) 0.22 (0.03)

i=8 i=10 i=12
d=0 1517 (1.00) 17.09 (1.00) 569 (1.00) 6.76 (1.00) 2156 (1.00) 22.32 (1.00)
d=1 698 (2.17) 9.47 (0.55) 234 (2.43) 3.83 (0.57) 861 (2.50) 11.89 (0.53)
d=2 562 (2.70) 5.32 (0.31) 213 (2.67) 2.21 (0.33) 691 (3.12) 6.41 (0.29)

rus2-20-40-5-2 d=3 523 (2.90) 3.03 (0.18) 209 (2.72) 1.29 (0.19) 680 (3.17) 3.48 (0.16)
(70,2,29,29) d=4 544 (2.79) 1.75 (0.10) 231 (2.47) 0.76 (0.11) 661 (3.26) 1.92 (0.09)

d=5 621 (2.44) 1.02 (0.06) 269 (2.11) 0.45 (0.07) 750 (2.88) 1.06 (0.05)
d=6 659 (2.30) 0.61 (0.04) 292 (1.95) 0.27 (0.04) 746 (2.89) 0.60 (0.03)

i=8 i=10 i=12
d=0 350 (1.00) 4.21 (1.00) 161 (1.00) 1.80 (1.00) 564 (1.00) 6.49 (1.00)
d=1 154 (2.27) 2.36 (0.56) 81 (2.00) 1.02 (0.57) 232 (2.43) 3.48 (0.54)
d=2 130 (2.70) 1.34 (0.32) 70 (2.30) 0.59 (0.33) 189 (2.98) 1.89 (0.29)

rus2-20-40-8-2 d=3 128 (2.73) 0.78 (0.18) 64 (2.53) 0.34 (0.19) 183 (3.08) 1.04 (0.16)
(70,2,29,29) d=4 134 (2.62) 0.46 (0.11) 64 (2.53) 0.20 (0.11) 183 (3.09) 0.58 (0.09)

d=5 149 (2.35) 0.27 (0.06) 69 (2.33) 0.12 (0.07) 193 (2.92) 0.33 (0.05)
d=6 167 (2.10) 0.17 (0.04) 71 (2.26) 0.07 (0.04) 212 (2.66) 0.19 (0.03)

i=8 i=10 i=12
d=0 6171 (1.00) 58.00 (1.00) 1906 (1.00) 23.11 (1.00) oot -
d=1 2620 (2.36) 31.70 (0.55) 903 (2.11) 13.03 (0.56) 2913 (>2.47) 40.58 (<0.53)
d=2 1905 (3.24) 17.52 (0.30) 713 (2.67) 7.48 (0.32) 2435 (>2.96) 21.53 (<0.28)

rus2-20-40-9-3 d=3 1956 (3.15) 9.74 (0.17) 696 (2.74) 4.30 (0.19) 2128 (>3.38) 11.47 (<0.15)
(70,2,29,29) d=4 1744 (3.54) 5.48 (0.09) 748 (2.55) 2.50 (0.11) 2158 (>3.34) 6.17 (<0.08)

d=5 1995 (3.09) 3.07 (0.05) 820 (2.32) 1.44 (0.06) 2198 (>3.28) 3.33 (<0.04)
d=6 2156 (2.86) 1.75 (0.03) 1035 (1.84) 0.83 (0.04) 2403 (>3.00) 1.81 (<0.02)

Table 9: Selected DBN instances: “time” indicates the CPU time in seconds (speedup over
baseline) and “nodes” indicates the number of OR nodes expanded in millions of nodes (ratio
relative to baseline) In a time column, ’oot’ that the time limit of 2 hours was exceeded. The
problem parameters are also provided for each instance (n: number of variables, z: maximum
domain size, w∗: induced width, and h: height) Within each instance and i-bound, the best
time is boxed.
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be exploited by look-ahead to a great extent. Overall, across all i-bounds shown here, we see
that a look-ahead depth of 1 leads to most of the improvement, with higher depths having
incremental positive impact to a depth of 4.

instance
(n, z, w∗, h) depth time (speedup) nodes (ratio) time (speedup) nodes (ratio) time (speedup) nodes (ratio)

i=12 i=14 i=16
d=0 2566 (1.00) 598.29 (1.00) 1876 (1.00) 433.11 (1.00) 14 (1.00) 3.22 (1.00)
d=1 2522 (1.02) 492.63 (0.82) 1915 (0.98) 372.87 (0.86) 18 (0.77) 2.94 (0.91)
d=2 2308 (1.11) 402.01 (0.67) 1559 (1.20) 276.33 (0.64) 17 (0.81) 2.42 (0.75)

grid20x20.f10.wrap d=3 2427 (1.06) 355.08 (0.59) 1667 (1.13) 246.56 (0.57) 18 (0.78) 2.16 (0.67)
(400,2,44,68) d=4 2622 (0.98) 303.87 (0.51) 1963 (0.96) 221.55 (0.51) 20 (0.68) 1.94 (0.60)

d=5 2689 (0.95) 232.46 (0.39) 2127 (0.88) 175.57 (0.41) 26 (0.54) 1.78 (0.55)
d=6 3186 (0.81) 198.89 (0.33) 2242 (0.84) 132.04 (0.30) 33 (0.42) 1.54 (0.48)

i=10 i=12 i=14
d=0 148 (1.00) 33.63 (1.00) 126 (1.00) 32.05 (1.00) 95 (1.00) 24.37 (1.00)
d=1 138 (1.08) 27.24 (0.81) 132 (0.95) 27.81 (0.87) 97 (0.98) 19.94 (0.82)
d=2 136 (1.09) 23.77 (0.71) 126 (1.00) 24.01 (0.75) 86 (1.10) 16.59 (0.68)

grid20x20.f5.wrap d=3 151 (0.99) 21.60 (0.64) 95 (1.32) 15.93 (0.50) 90 (1.05) 14.48 (0.59)
(400,2,45,69) d=4 159 (0.94) 18.11 (0.54) 95 (1.32) 13.22 (0.41) 92 (1.04) 11.90 (0.49)

d=5 190 (0.78) 15.34 (0.46) 95 (1.32) 10.30 (0.32) 95 (1.00) 9.74 (0.40)
d=6 238 (0.62) 12.18 (0.36) 100 (1.26) 8.16 (0.25) 109 (0.87) 8.05 (0.33)

i=18 i=20 i=22
d=0 oot - 2907 (1.00) 562.40 (1.00) 845 (1.00) 156.13 (1.00)
d=1 oot - 2934 (0.99) 504.87 (0.90) 851 (0.99) 141.49 (0.91)
d=2 oot - 2732 (1.06) 430.81 (0.77) 667 (1.27) 104.68 (0.67)

grid40x40.f10 d=3 oot - 2923 (0.99) 397.71 (0.71) 665 (1.27) 93.53 (0.60)
(1600,2,52,148) d=4 oot - 3276 (0.89) 361.41 (0.64) 695 (1.22) 83.73 (0.54)

d=5 oot - 4211 (0.69) 337.03 (0.60) 767 (1.10) 73.28 (0.47)
d=6 oot - 6094 (0.48) 305.26 (0.54) 972 (0.87) 68.07 (0.44)

i=16 i=18 i=20
d=0 4924 (1.00) 947.79 (1.00) 373 (1.00) 68.89 (1.00) 1177 (1.00) 213.90 (1.00)
d=1 4908 (1.00) 877.94 (0.93) 386 (0.97) 65.21 (0.95) 932 (1.26) 151.49 (0.71)
d=2 5049 (0.98) 845.76 (0.89) 369 (1.01) 57.45 (0.83) 859 (1.37) 135.76 (0.63)

grid40x40.f2 d=3 4782 (1.03) 727.57 (0.77) 392 (0.95) 54.90 (0.80) 859 (1.37) 123.10 (0.58)
(1600,2,52,157) d=4 4873 (1.01) 591.59 (0.62) 451 (0.83) 53.48 (0.78) 911 (1.29) 111.25 (0.52)

d=5 6389 (0.77) 554.56 (0.59) 567 (0.66) 52.05 (0.76) 1132 (1.04) 105.15 (0.49)
d=6 oot - 811 (0.46) 49.68 (0.72) 1596 (0.74) 105.20 (0.49)

i=18 i=20 i=22
d=0 oot - oot - 543 (1.00) 92.97 (1.00)
d=1 oot - oot - 393 (1.38) 57.67 (0.62)
d=2 oot - 6231 (>1.16) 1068.42 (<0.79) 383 (1.42) 50.90 (0.55)

grid40x40.f5 d=3 oot - 7147 (>1.01) 975.40 (<0.72) 421 (1.29) 49.22 (0.53)
(1600,2,52,136) d=4 oot - oot - 504 (1.08) 45.44 (0.49)

d=5 oot - oot - 730 (0.74) 48.60 (0.52)
d=6 oot - oot - 868 (0.63) 37.27 (0.40)

Table 10: Selected grid instances: “time” indicates the CPU time in seconds (speedup over
baseline) and “nodes” indicates the number of OR nodes expanded in millions of nodes (ratio
relative to baseline) In a time column, ’oot’ that the time limit of 2 hours was exceeded. The
problem parameters are also provided for each instance (n: number of variables, z: maximum
domain size, w∗: induced width, and h: height) Within each instance and i-bound, the best
time is boxed.

5.1.5 Grids

This benchmark is based on binary grid structured networks. Table 10 shows the detailed
results for representative instances. We observe generally modest speedups for this bench-
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mark. For instance, on grid40x40.f2 with an i-bound of 16, the baseline achieved a runtime
of 4924 seconds where the best setting of the depth of 3 only reduced this runtime to 4782.
Indeed, we only observe roughly a 23.2% reduction in the number of nodes expanded in this
case. Though deeper depths lead to additional reduction, it is not cost-effective.

Figure 22: Solved grid instances: plot of speedups on instances by look-ahead depth. The
number on top of each depth group is the number of instances that had speedup over 1.
#inst indicates the number of instances in the benchmark that are shown in each plot.

In Figure 22, considering the instances that were solved with the low i-bounds, we do
see that a look-ahead depth of 1 always has a positive impact, though only marginally, with
the best speedup at around 1.1. As the depth increases, the number of instances that are
improved decreases, though there is one instance that exhibits additional speedup with more
look-ahead. At higher i-bounds, many instances benefit from look-ahead, but with modest
speedups up to 1.4.

In summary, we see on this benchmark that using high i-bounds yields accurate heuristics
and therefore little search. As such, there are few cases where look-ahead can exploit any
error. Overall, look-ahead improves performance on this benchmark, but the improvements
are modest.

5.1.6 Summary

We conclude our evaluation of exact solutions with the following takeaways.

1. Look-ahead improves more for weak heuristics: the purpose of look-ahead is
to correct the error in heuristics and this conclusion is supported by our evaluation.
We observed that lower i-bounds tended to benefit more in benchmarks where high
i-bounds were fairly accurate without look-ahead (e.g. pedigree and LargeFam3).
For harder instances where the heuristic was relatively weak even the highest i-bound
under our memory constraints, look-ahead was also beneficial.

2. Depth is a significant control parameter that should be used for the best
balancing: Across the benchmarks, the best depth tended to range between 2 and 3,
suggesting that a modest depth of look-ahead is best.

3. Look-ahead is a method that enables trading memory for time: In cases where
even the highest i-bound that memory allows is still weak (instances having runtimes
in hundreds of seconds for the baseline), spending time to perform look-ahead is a
cost-effective way improve the heuristic without spending more memory.
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4. Bucket error is a useful metric for enabling cost-effective look-ahead: We
see that when the heuristic is quite accurate the look-ahead often does not improve,
but also does not deteriorate the performance by much.

5.2 Evaluating the Anytime Behavior

Benchmark # inst n z w h |F | a

LargeFam3 39 950 3 34 66 1457 4
2180 3 67 153 3772 4

Type4 31 3907 5 21 300 5749 4
8984 5 48 925 13585 4

DBN 74 70 2 29 29 16167 2
310 2 109 109 99927 2

Grids 12 1600 2 95 153 4801 2
6400 2 196 341 19201 2

Table 11: Benchmark statistics for anytime evaluation. # inst - number of instances, n -
number of variables, z - maximum domain size, w∗ - induced width, h - pseudotree height,
|F | - number of functions, a - maximum arity. The top value is the minimum and the bottom
value is the maximum for that statistic.

We next show results on the impact of our look-ahead scheme on anytime behavior. For
this evaluation, we selected those instances selection focused on instances that could not be
solved with the baseline within 7200 seconds. Thus, the pedigree and promedas bench-
marks are omitted from this part of the evaluation, but we include the type4 benchmark,
which has no instances we were able solve exactly. Additionally, we included instances only
if we were able to generate at least one anytime solution. Overall, this resulted in a total
of 156 instances with induced widths ranging from 21 to 196. Table 11 shows problem
statistics on the selected instances across each benchmark.

In this experiment we chose the highest i-bound fitting in memory, plus another lower
one to demonstrate the effects of varying the heuristic strength.

We show results in Figures 23, 25, 27, and 29. In these figures, we plot the cost of
the best solution found as a function of time on selected instances.

Lastly, to summarize over each benchmark, we plot, for each instance, the normalized
relative accuracy for selected i-bounds and look-ahead depths at different time points (60,
1800, 3600, and 7200 seconds) compared with no look-ahead. For a given i-bound, we
define the normalized relative accuracy as Cw−C

Cw−Cb , where Cw and Cb are the worst and best
solutions obtained at any time over any look-ahead depth. Thus, an algorithm is better if
it obtains a higher relative accuracy. The differently colored points represent the different
problem instances over the benchmark. We summarize this by annotating each plot with
a tuple (#wins for look-ahead/#wins for baseline/#ties). For clarity, we exclude instances
from a plot if no solutions were found by both the baseline and look-ahead method by any
time point. These are shown in Figures 24, 26, 28, and 30.
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Figure 23: LargeFam3 instances: Anytime plots across 2 different i-bounds for two selected
instances. As usual, the tuple next to the problem instance name indicates (n: number of
variables, z: maximum domain size, w: induced width, and h: pseudo-tree height). The
solution cost is plotted against the time. The timeout is shown as a vertical dotted line;
plots reaching past this line timed out. Lower plots early on are better.

5.2.1 LargeFam3

In Figure 23, we see that for lf3-haplo_18_57 with an i-bound of 12 and with look-ahead
depths of 3 and higher, we quickly obtain a better solution than the baseline at the start
of the time period. It is not until near the timeout that the baseline manages to obtain
a solution of the same quality as look-ahead with a depth of 4 or higher. Moving to an
i-bound of 15, all of the look-ahead schemes shown outperform the baseline. Furthermore,
the best solution is obtained near timeout with a look-ahead depth of 6.

Figure 24 summarizes instances for depths of 2 and 5. Starting with the lowest i-bound
of 12 and a depth of 2, we observe at 60 seconds that look-ahead has a slight edge over the
baseline, with 6 instances where it improves and 4 instances where it is outperformed by the
baseline. However, we see that look-ahead performs better moving forward in time.

Increasing the look-ahead depth to 5, the results are similar, but puts look-ahead at
an advantage on more instances. Increasing the i-bound to 16, look-ahead can still help
when the depth is lower, but at a higher depth, it tends to be less cost-effective. Across all
the plots at anytime point, it is worth nothing that there are a number of cases where the
relative accuracy of the baseline is zero while look-ahead obtains non-zero relative accuracies,
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Figure 24: LargeFam3. Normalized relative accuracies for all instances in the benchmark
across 2 different i-bounds and 2 different look-ahead depths. On the x-axis is the baseline
and on the y-axis is the look-ahead algorithm with the specified depth. Each row of plots
corresponds to a particular i-bound/depth and each column corresponds to a time point.
We provide summary statistics for each plot with a tuple that counts the numbers of (#wins
for look-ahead/#wins for baseline/#ties). Instances above the diagonal line indicate better
accuracy for the look-ahead scheme.
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indicating that there are a number of instances where look-ahead manages to produce much
better solutions all the time.

In summary, on this benchmark, a high look-ahead depth is quite useful when the i-bound
is lower. On the other hand, a lower look-ahead depth is preferable when the heuristic is
stronger.

5.2.2 Type4

Figure 25: Type4 instances: Anytime plots across 2 different i-bounds for two selected
instances. As usual, the tuple next to the problem instance name indicates (n: number of
variables, z: maximum domain size, w: induced width, and h: pseudo-tree height). The
solution cost is plotted against the time. The timeout is shown as a vertical dotted line;
plots reaching past this line timed out. Lower plots early on are better.

This is another benchmark based on genetic linkage analysis, but contains problems that
are harder than those in LargeFam3. One factor contributing to the difficulty is a large
domain size of 5. In Figure 25, for instance t4b_130_21 with an i-bound of 14, the baseline
does not produce any solution during the entire time period (namely, the corresponding line
is not present). Comparing the look-ahead depths against each other, a depths of 6 is
superior. Increasing the i-bound to 16, the heuristic becomes strong enough so that the
baseline produces solutions and it is now also the first to do so. However, it is outperformed
by look-ahead of all depths in under 100 seconds, with depths of 4 and higher producing
considerably better solutions. Overall, look-ahead is usually superior to the baseline, with
a bit of a preference for deeper depth regardless of heuristic strength.
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Figure 26: Type4. Normalized relative accuracies for all instances in the benchmark across
2 different i-bounds and 2 different look-ahead depths. On the x-axis is the baseline and
on the y-axis is the look-ahead algorithm with the specified depth. Each row of plots
corresponds to a particular i-bound/depth and each column corresponds to a time point.
We provide summary statistics for each plot with a tuple that counts the numbers of (#wins
for look-ahead/#wins for baseline/#ties). Instances above the diagonal line indicate better
accuracy for the look-ahead scheme.
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In Figure 26, we summarize over the benchmark for depths 2 and 5. Starting with the
lower i-bound of 14 and lower look-ahead depth of 2, we observe that look-ahead produces
better solutions early on many instances at the 60 second mark. As time advances, additional
instances also benefit from look-ahead. Increasing the depth to 5, look-ahead dominates the
baseline. Increasing the i-bound to 16, we can observe that look-ahead remains dominant
over the baseline regardless of depth. Additionally, we see that there are a number of
instances where look-ahead manages to produce solutions of non-zero relative accuracy while
the baseline remains at zero, indicating a clear dominance over the baseline in solution
quality by look-ahead.

In summary, while we were not able to find any exact solutions within the time limit
for instances in this benchmark, look-ahead clearly has a positive impact when considering
anytime solutions, even under high i-bounds.

5.2.3 DBN

Figure 27: DBN instances: Anytime plots across 2 different i-bounds for two selected
instances. As usual, the tuple next to the problem instance name indicates (n: number of
variables, z: maximum domain size, w: induced width, and h: pseudo-tree height). The
solution cost is plotted against the time. The timeout is shown as a vertical dotted line;
plots reaching past this line timed out. Lower plots early on are better.

In Figure 27, we observe little difference between look-ahead and the baseline. Indeed,
across all the instances (including the 30 instances where exact solutions were achieved),
we see in Figure 28, we see that this behavior is systematic for this benchmark. Although
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Figure 28: DBN. Normalized relative accuracies for all instances in the benchmark across 2
different i-bounds and 2 different look-ahead depths. On the x-axis is the baseline and on the
y-axis is the look-ahead algorithm with the specified depth. Each row of plots corresponds
to a particular i-bound/depth and each column corresponds to a time point. We provide
summary statistics for each plot with a tuple that counts the numbers of (#wins for look-
ahead/#wins for baseline/#ties). Instances above the diagonal line indicate better accuracy
for the look-ahead scheme.
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we saw impressive speedups for look-ahead when finding exact solutions, we see here that
the exact solution is actually obtained with a less significant margin of time between the
two competing schemes. For example, in the anytime plot for rus-2-20-40-9-2 (Figure 27,
top), the exact solution is found by all look-ahead depths in less than 100 seconds, while the
base line took about 200 seconds. The rest of the time is spent proving that the solution is
optimal. However, look-ahead methods achieve this 2 to 3 times faster than the base line.

In summary, in the context of anytime behavior, though look-ahead here results in
a speedup for reaching the exact solution, there is little to no variance in the solution
quality over most the time period since the baseline also manages to reach the exact solution
relatively early.

5.2.4 Grids

Figure 29: Grid instances: Anytime plots across 2 different i-bounds for two selected in-
stances. As usual, the tuple next to the problem instance name indicates (n: number of
variables, z: maximum domain size, w: induced width, and h: pseudo-tree height). The
solution cost is plotted against the time. The timeout is shown as a vertical dotted line;
plots reaching past this line timed out. Lower plots early on are better.

In Figure 29, for 80x80.f10.wrap using an i-bound of 14, the baseline generates a solution
earlier than look-ahead, but all look-ahead depths of 2 and higher produce better solutions
by 100 seconds. The solution qualities converge towards the end, but all look-ahead depths
manage to maintain leads over the baseline, with a depth of 2 performing the best. Moving
to a higher i-bound of 18, the behavior at the start is similar. However, there is more
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variance in the solutions between each setting, with depths of 4 and higher performing the
best. The results for 80x80.f15.wrap are similar, with look-ahead still outperforming the
baseline, though there is less variance between the solutions.

Figure 30: Grids. Normalized relative accuracies for all instances in the benchmark across 2
different i-bounds and 2 different look-ahead depths. On the x-axis is the baseline and on the
y-axis is the look-ahead algorithm with the specified depth. Each row of plots corresponds
to a particular i-bound/depth and each column corresponds to a time point. We provide
summary statistics for each plot with a tuple that counts the numbers of (#wins for look-
ahead/#wins for baseline/#ties). Instances above the diagonal line indicate better accuracy
for the look-ahead scheme.
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In Figure 30, for an i-bound of 14, at 60 seconds that a depth of 2 falls a bit short
compared with the baseline. However, moving forward in time, look-ahead establishes a
clear advantage. Increasing the depth to 5, the advantage starts at 60 seconds and this is
maintained to the end. Increasing the i-bound to 18, the baseline outperforms look-ahead
regardless of the depth at 60 seconds. Indeed, the relative accuracy of the solution for a
number of instances is zero for look-ahead. However, past this, look-ahead establishes itself
as the better performer regardless of depth, having better solutions on about half of the
instances and matching the baseline on the other.

In summary, look-ahead always has a positive impact on this benchmark.

5.2.5 Summary

In shifting our focus to hard instances where we could not evaluate for exact solution within
the time bound, our takeaways from Section 5.1 carry over to this evaluation of the anytime
behavior. We re-iterate the first two points with discussion specific to this section.

First, on look-ahead’s impact on weak heuristics, this evaluation further enforces
its positive impact as the best heuristics are relatively weaker due to the difficulty of the
problems. We see that the baseline tended to be outperformed by look-ahead on many
instances for all of the benchmarks.

Next, on the depth as a control parameter, one difference is that the best depth
tended to be deeper for anytime solutions. On each of the benchmarks, a depth of 5 tended
to produce better solutions earlier on more instances compared with a depth of 2. Many of
the instance-specific plots also show higher depths resulting in higher quality solutions being
found earlier in general. It is worth noting that in many cases that as the depth increases,
the first solution found improves. Thus, this suggests that deep look-ahead is particularly
effective for guiding search early on to more promising parts of the search space.

5.3 Impact of the ε Parameter

As all of the experiments in the previous two sections used a fixed ε of 0.01 for generating
the ε-pruned look-ahead subtrees, the question of the impact of the ε parameter remains.
As discussed earlier in Section 3.5, less look-ahead is performed as ε increases since the
look-ahead subtrees are pruned more aggressively. This opens up the opportunity for more
focused look-ahead at parts of the search space with more significant errors. Clearly, as
ε → ∞, the look-ahead scheme reduces to the baseline. Thus, adjusting ε is an alternative
way to control the computational trade-off of look-ahead.

Figure 31 plots the anytime performance on two representative largefam3 instance for
two different i-bounds. For the look-ahead control parameters, we vary the depth on {2, 5}
and vary ε on {0, 0.01, 1,∞}. These plots illustrate how strong look-ahead can be especially
useful when the heuristics is weaker, as a depth of 5 with no pruning of the look-ahead
subtrees (ε = 0) tends to be the best performing when i = 12. Increasing ε here degrades
the performance. On the other hand, we see that higher ε can be useful to mitigate the
effects of excessive look-ahead at a depth of 5 when the heuristic is strong, as seen in the
plot for lf3-haplo-19-55 with i = 17.

We refer the reader to the work of Lam (2017a) for a full account of the experiments
on the largefam3 and grid benchmarks. Overall, we found that moving from ε = 0 to
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Figure 31: LargeFam3 instances: Solutions obtained over time for different ε thresholds
with look-ahead depths of 2 and 5. The information shown is similar to figures presented in
Section 5.2.

ε = 0.01 yielded the largest positive change in the speedup. Therefore, we used ε = 0.01
as our default setting. Increasing ε further generally helps in making look-ahead more cost-
effective for a fixed high depth, but this tended to approach the baseline using no look-ahead
for lower depths. A slight caveat for ε = 0 is that since no subtree pruning is required here,
we can skip pre-processing, which allows search to commence sooner. This is especially
relevant when evaluating for anytime solutions on extremely hard problems. On many of
these, we found that strong look-ahead allows for a superior early solution, so for very low
time bounds, subtree pruning is not cost-effective.

6. Conclusion

Look-ahead, known as the Bellman update, is a well-known technique to improve search
when dealing with weak heuristics. In this paper we addressed the topic of making look-
ahead cost effective in the context of AND/OR search for graphical models when using the
MBE heuristic.

While most heuristic search literature takes the heuristic function as a black box, we
try to gain insight and exploit some structural aspects in order to make look-ahead cost-
effective. We have observed that in many benchmarks the heuristic function behaves in a
non-monotone manner. Namely, as we expand more and more deep nodes, the evaluation
function (which is a lower bound on the exact cost) grows along a path and yields potentially
more accurate lower bounds. However, the change in accuracy (namely the nodes where the
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Bellman update, or look-ahead, can improve the heuristic) does not happen evenly across
the search space. In large regions there is no increase along many paths, while in others we
observe changes occurring in well localized contiguous regions. Since look-ahead will have an
impact only where the evaluation function increases, our goal was to predict where changes
can occur in order to focus look-ahead in only the necessary places to improve accuracy of
the heuristic.

Our paper introduced the concept of local bucket-error in order to predict look-ahead
cost-effective regions. We showed that the local bucket error is equivalent to depth-1 residual
(i.e, the gain of depth-1 look-ahead w.r.t. no look-ahead) and developed algorithm LBEE for
its computation whose time and space complexity is exponential in a structural parameter
called pseudo-width. LBEE can compile the depth-1 look-ahead in a pre-processing manner
which can be consulted during search as lookup table. We also proposed two approximation
schemes, average local error and sampled average local error, that mitigate the complexity
when the full computation of the bucket-errors it is too high.

To go beyond depth 1, we aggregated depth-1 residuals to estimate higher depth resid-
uals. We defined look-ahead tree and show that computing the look-ahead up to depth d
is equivalent to computing a min-sum problem over a graphical sub-problem. Using infor-
mation from the local bucket errors (or their estimates) we prune the tree in order to avoid
useless look-ahead.

From our experimental evaluation we can conclude that look-ahead is potentially useful
when dealing with weak heuristics, namely when the i-bound is not near the induced width
of the problem. We observed that, in many cases our selective look-ahead allows solving
instances faster with relative small look-ahead depths (2 or 3). For anytime solving we
observed that higher depths (4 to 6) were more effective.

In future work we would like to change the algorithm parameters ε and d dynamically
during the executions, since there do not seem to be universally good values for them.
Also, we would like to move from the current variable-based look-ahead subtrees to context-
dependent trees based on the current instantiation. Another promising idea is to determine
the amount of look-ahead in terms of look-ahead width rather than depth (i.e, wpd instead
of d), which is a more faithful estimator of the look-ahead overhead when it is computed
with inference algorithms.
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Appendix A. Proof of Proposition 1

Proof. We rewrite the hd(x̄p) term by using Definition 10 and unrolling the recursive
hd−1(x̄q) term. The unrolling produces an expression that alternates summations and mini-
mizations d times. All the summations can be pushed inside the expression resulting in the
following,
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hd(x̄p) = min
x̄p,d

 ∑
Xk∈Tp,d

c(Xk, xk) +
∑

Xk∈Tp,d−Tp,d−1

h(x̄p, x̄p,d)


Next, we replace the cost c(Xk, xk) and the heuristic h(x̄p, x̄p,d) with the appropriate terms
(Definition 7 and Equation 2), yielding

hd(x̄p) = min
x̄p,d

 ∑
Xk∈Tp,d

∑
f∈Bk

f(x̄p, x̄p,d) +
∑

Xj∈Tp−Tp,d

∑
Xk∈Tp,d−Tp,d−1

Λ(j,k)(x̄p, x̄p,d)

 (13)

We then further expand Λ terms using Equation 1,

hd(x̄p) = min
x̄p,d

 ∑
Xk∈Tp,d

∑
f∈Bk

f(x̄p, x̄p,d) +
∑

Xj∈Tp−Tp,d

∑
s=1..rj

∑
Xq∈Tp,d∪X̄p

λsj→q(x̄p, x̄p,d)


Next, the term’s inner sum ∑

Xq∈Tp,d∪X̄p

λsj→q(x̄p, x̄p,d)

can be broken down into

∑
Xq∈Tp,d

λsj→q(x̄p, x̄p,d) +
∑

Xq∈X̄p

λsj→q(x̄p)

where we drop the x̄p,d argument in the second term since those messages do not contain
any variables in Tp,d.

hd(x̄p) = min
x̄p,d

 ∑
Xk∈Tp,d

∑
f∈Bk

f(x̄p, x̄p,d)

+
∑

Xj∈Tp−Tp,d

∑
s=1..rj

 ∑
Xq∈Tp,d

λsj→q(x̄p, x̄p,d) +
∑

Xq∈X̄p

λsj→q(x̄p)


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Factoring out the terms that do not depend on the minimization over x̄p,d and applying
Equation 1 on the factored out terms,

hd(x̄p) = min
x̄p,d

 ∑
Xk∈Tp,d

∑
f∈Bk

f(x̄p, x̄p,d) +
∑

Xj∈Tp−Tp,d

∑
s=1..rj

∑
Xq∈Tp,d

λsj→q(x̄p, x̄p,d)


+

∑
Xj∈Tp−Tp,d

∑
s=1..rj

∑
Xq∈X̄p

λsj→q(x̄p)

= min
x̄p,d

 ∑
Xk∈Tp,d

∑
f∈Bk

f(x̄p, x̄p,d) +
∑

Xj∈Tp−Tp,d

∑
s=1..rj

∑
Xq∈Tp,d

λsj→q(x̄p, x̄p,d)


+

∑
Xj∈Tp−Tp,d

Λ(j,p)(x̄p)

Finally, redistributing and renaming indexes (from q to k) the summation of the λ terms,
we obtain

hd(x̄p) = min
x̄p,d

 ∑
Xk∈Tp,d

∑
f∈Bk

f(x̄p, x̄p,d) +
∑

Xj∈Tp−Tp,d

∑
s=1..rj

λsj→k(x̄p, x̄p,d)


+

∑
Xj∈Tp−Tp,d

Λ(j,p)(x̄p)

By Definition 13, we replace the first term with Ld(x̄p), therefore showing that

hd(x̄p) = Ld(x̄p) +
∑

Xk∈Tp−Tp,d

Λ(k,p)(x̄p)

Appendix B. Proof of Proposition 3

Given a node n, let Nk denote all nodes that are k-levels away from n in the search graph.
Then we have

resd(n) ≥
d−1∑
k=0

min
nk∈Nk

res1(nk)

We start by assuming that we have the optimal depth-d look-ahead path {nopt(d)
k ∈

Nk|0≤k≤d}. We derive the following to relate the depth-1 look-ahead heuristic for each level
k to the path costs and base heuristic under this assumption. Given the definition of the
look-ahead heuristic (Definition 10) for d = 1 and some node nopt(d)

k on the optimal path,
we have

h1(n
opt(d)
k ) = min

nk+1∈ch(n
opt(d)
k )

{
c(n

opt(d)
k , nk+1) + h(nk+1)

}
With the optimal depth-d look-ahead path, setting nk+1 = n

opt(d)
k+1 , this yields an upper-

bound on the minimization.

h1(n
opt(d)
k ) ≤ c(nopt(d)

k , n
opt(d)
k+1 ) + h(n

opt(d)
k+1 )
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Subsequently, from the definition of the depth-1 residual (Definition 11), we can derive
the following:

res1(n
opt(d)
k ) = h1(n

opt(d)
k )− h(n

opt(d)
k )

≤ c(nopt(d)
k , n

opt(d)
k+1 ) + h(n

opt(d)
k+1 )− h(n

opt(d)
k )

(14)

We will refer to Equation 14, which is an upper-bound on the depth-1 residual as res1
≤(n

opt(d)
k )

in the following lemma which establishes that the summation of these upper-bounds is equiv-
alent to the depth-d residual resd(n).

Lemma 3. If resd(n) is the depth-d residual from node n and {nopt(d)
k ∈ nk|0≤k≤d} is the

set of nodes on the optimal depth-d look-ahead path (where nopt(d)
0 is trivially n), then the

following holds:

resd(n) =

d−1∑
k=0

res1
≤(n

opt(d)
k )

Proof. Starting with the definition of the depth-d residual, we have

resd(n) = hd(n)− h(n)

Rewriting the look-ahead heuristic hd, we obtain

resd(n) = min
n1∈n

{
c(n, n1) + hd−1(n1)

}
− h(n)

Without loss of generality, we substitute n with n0 in the following. By unrolling the
recursive hd−1 look-ahead term completely, we obtain a min-sum problem over a path.

resd(n0) = min
n1,...,nd

{
d−1∑
k=0

(c(nk, ni+k)) + h(nd)

}
− h(n0)

Since we are given the optimal path, we remove the minimization and substitute each nk
with nopt(d)

k , obtaining

resd(n
opt(d)
0 ) =

d−1∑
k=0

c(n
opt(d)
k , n

opt(d)
k+1 ) + h(n

opt(d)
d )− h(n

opt(d)
0 )

=
d−1∑
k=0

c(n
opt(d)
k , n

opt(d)
k+1 ) + h(n

opt(d)
d ) +

d−1∑
k=1

h(n
opt(d)
k )−

d−1∑
k=1

h(n
opt(d)
k )− h(n

opt(d)
0 )

=
d−1∑
k=0

c(n
opt(d)
k , n

opt(d)
k+1 ) +

d∑
k=1

h(n
opt(d)
k )−

d−1∑
k=0

h(n
opt(d)
k )

=

d−1∑
k=0

c(n
opt(d)
k , n

opt(d)
k+1 ) +

d−d∑
k=0

h(n
opt(d)
k+1 )−

d−1∑
k=0

h(n
opt(d)
k )

=
d−1∑
k=0

c(n
opt(d)
k , n

opt(d)
k+1 ) + h(n

opt(d)
k+1 )− h(n

opt(d)
k )
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We can see that we obtain a summation over k for Equation 14, so we prove our claim
(substituting nopt(d)

0 with n):

resd(n) =

d−1∑
k=0

res1
≤(n

opt(d)
k )

Proof of Proposition 3. Since res1
≤(n

opt(d)
k ) is an upper-bound for res1(n

opt(d)
k ) for every k,

it follows that their summation is an lower-bound on the depth-d residual.

resd(n) =
d−1∑
k=0

res1
≤(n

opt(d)
k ) ≥

d−1∑
k=0

res1(n
opt(d)
k ) (15)

Taking the minimization of a depth-1 residual with respect to all nodes for a given level k,
we obtain

res1(n
opt(d)
k ) ≥ min

nk∈Nk
res1(nk) (16)

Applying Equations 15 and 16 together, we obtain our proposed statement.

resd(n) ≥
d−1∑
k=0

min
nk∈Nk

res1(nk)
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