Journal of Artificial Intelligence Research 60 (2017) 687-716 Submitted 07/17; published 11/17

Chamberlin—Courant Rule with Approval Ballots:
Approximating the MaxCover Problem with Bounded
Frequencies in FPT Time

Piotr Skowron P.K.SKOWRONQGMAIL.COM
TU Berlin,
Berlin, Germany

Piotr Faliszewski FALISZEW@QAGH.EDU.PL
AGH University,
Krakow, Poland

Abstract

We consider the problem of winner determination under Chamberlin—-Courant’s mul-
tiwinner voting rule with approval utilities. This problem is equivalent to the well-known
NP-complete MaxCover problem and, so, the best polynomial-time approximation algo-
rithm for it has approximation ratio 1—1/e. We show exponential-time /FPT approximation
algorithms that, on one hand, achieve arbitrarily good approximation ratios and, on the
other hand, have running times much better than known exact algorithms. We focus on the
cases where the voters have to approve of at most/at least a given number of candidates.

1. Introduction

We study the complexity of winner determination under the Chamberlin—Courant multiwin-
ner voting rule with approval ballots. Intuitively, the Chamberlin—Courant rule proceeds as
follows. Consider a setting where we are given a set C' of candidates, a collection V' of vot-
ers, and the goal is to pick a committee of K candidates that, in some sense, best represent
the voters. We consider the approval model, i.e., the case where the voters express their
preferences by approving subsets of candidates. The Chamberlin—Courant rule picks a set of
K candidates that maximizes the number of voters who approve at least one of the selected
candidates.

On the formal level, the approval-based variant of the Chamberlin—Courant rule is equiv-
alent to the MaxCover problem—i.e., to the problem where one aims to cover as many
elements as possible by using a given number of sets (we will elaborate on this relation
in Section 1.3). While most of the technical part of the paper is written in the language
of the MaxCover problem, our main motivating assumptions and discussions stem from the
voting setting.

1.1 Applications of the Chamberlin—-Courant Rule

While Chamberlin and Courant (1983) proposed their rule as a mean of electing committees
of representatives, such as parliaments, university senates, etc., its applicability in political
domains requires some comment. Indeed, it has been often discussed that this rule is not
perfectly suited for electing committees that make decisions on behalf of societies. For

(©2017 AI Access Foundation. All rights reserved.

SKOWRON & FALISZEWSKI

instance, consider the case where the goal is to select K = 3 committee members, and
where 98% of voters approve candidates c1,c2, and c3, 1% approve candidate ¢4, and 1%
approve candidate cs. In this case, the Chamberlin and Courant rule will elect committee
{c1, ¢4, 5}, which clearly underrepresents the overwhelming majority of 98% of the voters.
One solution to this problem has already been discussed by Chamberlin and Courant: They
suggested that when the goal is to select a decision-making body, the elected committee
members should use weighted voting to make their decisions. Another one was proposed
by Monroe (1995), who complemented the Chamberlin—Courant rule with a mechanism to
ensure proportional representation of the voters (not discussed in this paper). Without
Monroe’s modification, the Chamberlin—Courant rule is far more appealing in the context
of deliberative democracy—where the primary goal is to elect committees that represent as
diverse sets of opinions as possible—than in the context of proportional representation.

However, applications of the Chamberlin—Courant rule reach far beyond the political
domain. For instance, consider a company aiming to choose a few types of a certain prod-
uct to advertise to its customers (e.g., a company that tries to decide which models of cell
phones it should start to produce) (Lu & Boutilier, 2011; Oren & Lucier, 2014). Since a
typical customer would either buy only one unit of a given product or would not buy it at
all, it is natural to model the decision faced by the company as the problem of finding win-
ners under the Chamberlin—-Courant rule (where the potential customers are modeled as the
voters and the product types are modeled as the candidates). The Chamberlin—Courant
rule found many other applications, for example, in resource allocation (Skowron, Fal-
iszewski, & Slinko, 2015a; Skowron, Faliszewski, & Lang, 2016), in certain variants of facility
location problems—see, for example, discussions provided by Procaccia, Rosenschein and Zo-
har (2008) and Betzler, Slinko and Uhlmann (2013)—in diversifying search results (Skowron,
Lackner, Brill, Peters, & Elkind, 2017), in personalized recommendation and advertise-
ment (Lu & Boutilier, 2015), or in improving genetic algorithms (Faliszewski,Sawicki, Schae-
fer, & Smotka, 2017a; Sawicki, Smotka, Los, Schaefer, & Faliszewski, 2017). The MaxCover
problem, which as we will explain later, is equivalent to the problem of finding winners ac-
cording to the Chamberlin—Courant rule, is important for many other areas, such as compu-
tational biology (Vandin, Upfal, & Raphael, 2011) and networking (Kuo, Lin, & Tsai, 2015).

Finally, the Chamberlin—Courant rule can be considered as a prime example of a multi-
winner rule aimed at achieving diversity of outcomes in multiwinner elections. For a more
detailed discussion on the principle of diversity and its significance, and for more discussion
on the Chamberlin—Courant rule we refer the reader to the work of Elkind, Faliszewski,
Skowron and Slinko (2017), to a recent book chapter by Faliszewski, Skowron, Slinko and
Talmon (2017c¢), and to an axiomatic study by Lackner and Skowron (2017).

1.2 Approval Ballots

The Chamberlin—Courant rule was originally defined for the case where the voters express
their preferences by ranking the candidates from the most to the least desirable ones. How-
ever, the rule can be naturally extended to the case where instead of ranking the candidates,
the voters assign cardinal utilities to them (Skowron et al., 2016). Approval ballots are an
extreme example of cardinal utilities, where for each candidate a voter can either give his
or her full support for the candidate or indicate complete lack of support. While very

688

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

simple, the approval model has a number of advantages (Kilgour, 2010). First, providing
approval information puts much less cognitive burden on the voters than providing preference
rankings or more involved cardinal utilities. Second, using approval ballots can positively
influence the willingness of voters to participate in elections and can reduce the effect of
negative campaigning (Brams & Herschbach, 2001). Third, approval ballots are relatively
similar to the first-past-the-post ballots (where each voter provides a single candidate, one
that he or she votes for) and, thus, may be more easily adopted in real-life elections. For
more arguments regarding advantages of using approval ballots we refer the reader to the
works of Aragones, Gilboa and Weiss (2011), Brams and Fishburn (2010), and Laslier and
Van der Straeten (2016).

Unfortunately, the approval-based variant of the Chamberlin—Courant rule is also harder
to compute than the variant with preference rankings based on the Borda scoring func-
tion. Indeed, while it is known that computing winners under the Chamberlin—Courant
rule is NP-hard for both variants—see the work of Procaccia et al. (2008) and of Lu and
Boutilier (2011)—there are far stronger approximation algorithms for the Borda-based one.
In particular, for the Borda-based variant there is a (practically useful) polynomial-time ap-
proximation scheme (Skowron et al., 2015a), and for the approval-based variant it is known
that unless P = NP, there exists no polynomial-time algorithm that achieves approximation
ratio better than 1 — /e (Feige, 1998).

1.3 Our Contribution

The approval-based variant of the Chamberlin—Courant rule turns out to be equivalent to the
MaxCover problem. In the MaxCover problem we are given a set NV of n elements, a family
S ={51,...,Sn} of m subsets of N, and an integer K. The goal is to find a size-at-most-K
subcollection of S that contains (covers) as many elements from N as possible. Each instance
of the MaxCover problem one-to-one corresponds to an approval-based Chamberlin—Courant
election as follows: Each set S; € S is a candidate, each element from N is a voter, and
each element e “approves” those sets S; that include it. Choosing a set \S; to be included in
the winning committee means “covering” all the elements that belong to it. Thus a winning
size-K committee directly corresponds to a solution for the MaxCover instance. In the
technical part of the paper we focus on studying the more abstract MaxCover problem, but
we explain our various assumptions in terms of the Chamberlin-Courant voting rule.

The standard greedy algorithm for MaxCover that iteratively picks sets that cover
most yet-uncovered elements has an approximation ratio 1 — /e and this is optimal un-
less P = NP—see, e.g., the textbook of Hochbaum (1996) for the algorithm and the work of
Feige (1998) for the approximation lower bound. Thus in our work we focus on exponential-
time algorithms that, on one hand, achieve arbitrarily good approximation ratios (i.e., are
approximation schemes) and, on the other hand, have running times significantly better
than the known exact algorithms—indeed, we are primarily interested in fixed-parameter
tractable (FPT) approximation schemes, parameterized by the number of sets allowed in
the solution.

Due to the motivations stemming from voting, we found three domain restrictions for
the MaxCover problem, which, on the one hand, are quite natural and well-motivated, and,
on the other hand, allow us to design better approximation algorithms, though running in

689

SKOWRON & FALISZEWSKI

super-polynomial time. We consider three variants of the MaxCover problem, depending
on the restrictions regarding elements’ frequencies (an element’s frequency is the number of
sets it belongs to; in the voting domain, it corresponds to the number of candidates a voter
approves):

Upper-bounded frequencies. In this variant we assume that there is some constant p
such that each element appears in at most p sets. This variant corresponds to winner
determination under the Chamberlin—Courant rule where each voter approves of at
most p candidates (this is quite a natural restriction; often the voters have energy to
express approvals for a small set of candidates only, and sometimes such upper bounds
are even put forward by election laws!). For this case we show FPT approximation
schemes (deterministic and randomized) with respect to the parameter K + p.

Lower-bounded frequencies. In this variant we require that there is some constant p
such that each element belongs to at least p sets. This corresponds to a setting where
each voter is required to approve of at least p candidates. For this case we show a
slightly improved analysis of the standard, polynomial-time, greedy algorithm.

Unrestricted case. In this variant we put no restrictions on the MaxCover inputs. While
we were unable to find FPT approximation schemes in this case (randomized or
not), using an approach introduced by Cygan, Kowalik and Wykurz (2009), we show
exponential-time approximation schemes that seamlessly exchange running time for
the quality of the approximation.

We conclude the paper by discussing the consequences of our results from the point
of view of winner determination under the Chamberlin—Courant rule. We also provide a
number of interesting research questions that stem from our work.

1.4 Related Work

Chamberlin and Courant (1983) proposed their rule for votes expressed in the form of
preference rankings. Later, based on their work, Procaccia et al. (2008) suggested the
approval-based variant. Recently it became known that, in fact, the approval-based variant
was already mentioned as an appealing tool for selecting representative bodies already in
the 19th century, by Thiele (1895).

Winner determination under the Chamberlin—-Courant rule received quite a lot of atten-
tion in recent years. Its worst-case complexity was studied by Procaccia et al. (2008) (for the
case of approval utilities) and by Lu and Boutilier (2011) (for the case of Borda utilities). Lu
and Boutilier have also shown the greedy polynomial-time (1—1/e)-approximation algorithm
for the rule. Skowron et al. (2015a) have shown a polynomial-time approximation scheme
for the case of Borda utilities and evaluated it empirically. Other authors have studied
the parameterized complexity of the rule and its complexity in restricted domains (Bet-

zler et al., 2013; Yu, Chan, & Elkind, 2013; Skowron, Yu, Faliszewski, & Elkind, 2015b;

1. Indeed, the ballots in Polish parliamentary elections require each voter to provide three candidates that
this voter approves of. While Polish parliamentary elections are not based on the Chamberlin-Courant
rule itself, this shows that our assumptions are realistic.

690

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

Talmon, 2017) as well as in online settings (Oren & Lucier, 2014; Dey, Talmon, & Han-
del, 2017), or using heuristic algorithms (Faliszewski, Slinko, Stahl, & Talmon, 2016; Fal-
iszewski, Skowron, Slinko, & Talmon, 2017b).

The Chamberlin—-Courant rule is not the only natural way of selecting committees based
on approval information. Various such rules are reviewed by Kilgour (2010) and are studied
algorithmically, e.g., by LeGrand, Markakis and Mehta (2007), Caragiannis, Kalaitzis and
Markakis (2010), Aziz, Gaspers, Gudmundsson, Mackenzie, Mattei and Walsh (2015), and

Skowron et al. (2016). Naturally, there are also many other multiwinner voting rules.

On the technical side, our work provides parameterized complexity analysis of the Max-
Cover problem. Somewhat surprisingly. this problem received relatively little attention in
the literature. Independently from our work, Bonnet, Paschos and Sikora (2016) also studied
its complexity. In particular, they showed that under the standard complexity assumptions,
for any constant ¢ > 1 the MaxCover problem cannot be approximated within ratio 1 — =,
where n is the number of elements to be covered, in time parameterized by the size of the
solution K. On the other hand, they provided an algorithm that for each pu > Z%f and each
€ > (1 — %) pu? - (1 - %) 1 approximates MaxCover with ratio 1 — % + ¢, in an FPT time
for a parameter (K, A), where A is the maximum cardinality of a set. It is also known that
there exists an FPT algorithm for MaxCover parameterized by the number of elements to
cover (Blaser, 2003).

On the other hand, researchers often consider MaxVertexCover, a much-restricted variant
of MaxCover in which we are given a graph G = (V| F) and an integer K, and we ask for at
most K vertices that jointly cover as many edges as possible (i.e., it is a “Max” variant of
the standard VertexCover problem). We stress that MaxVertexCover is considerably simpler
even than MaxCover with frequencies bounded by two (we will explain this in more detail
in the discussion below Proposition 4.1 in Section 4.1). Currently the best polynomial-time
approximation algorithm for MaxVertexCover, due to Ageev and Sviridenko (1999), has an
approximation ratio of 3/4. Parameterized complexity of MaxVertexCover was first studied
by Guo, Niedermeier and Wernicke (2007). The problem was also studied by Cai (2008),
who gave the currently best exact algorithm for it, and by Marx (2008), who gave an FPT
approximation scheme; interestingly, our more general algorithm is faster than that of Marx
(see the discussion after Proposition 4.1).

Leaving the realm of FPT running time, Croce and Paschos (2012) provided an
exponential-time approximation strategy for MaxVertexCover, based on combining exact
(exponential-time) algorithms with (polynomial-time) approximation ones. We use a sim-
ilar idea—also based on the work of Cygan et al. (2009)—for the case of the unrestricted
MaxCover problem and compare it to their approach.

2. Preliminaries

In the introduction we have presented a natural one-to-one correspondence between the
Chamberlin—Courant rule and the MaxCover problem. Thus, throughout the paper, we fo-
cus on the MaxCover problem as this way our results are useful both to people interested
in multiwinner voting and to those interested in the abstract MaxCover problem only. We
assume familiarity with standard notions regarding (approximation) algorithms and (pa-

691

SKOWRON & FALISZEWSKI

rameterized) complexity theory, but we provide a brief review. For each positive integer n,
we write [n] to mean {1,...,n}.

Let P be an algorithmic problem where, given some instance I, the goal is to find a
solution s that maximizes a certain function f. Given an instance I of P, we refer to the value
f(s) of an optimal solution s as OPT(I) (or simply as OPT if the instance I is clear from
the context). Let v, 0 < v < 1, be some fixed constant. An algorithm A that given instance
I returns a solution s’ such that f(s") > yOPT(I) is called a y-approximation algorithm for
P. Analogously, we define OPT(I) and the notion of a y-approximation algorithm, v > 1,
for the case of a problem P’, where the task is to find a solution that minimizes a given
goal function g. Given instance I of some algorithmic problem, we write |I| to denote the
length of the standard, efficient encoding of I. In this paper we focus on the following two
problems (the former directly models winner determination under the Chamberlin—Courant
rule, whereas the latter models a variant of the rule where we measure voter’s dissatisfaction;
the number of voters that are not represented by someone they approve of).

Definition 2.1. An instance I = (N, S, K) of the MaxCover problem consists of a set N of
n elements, a collection S = {S1,...,Sm} of m subsets of N, and nonnegative integer K.
The goal is to find a subcollection C of S of size at most K that mazimizes | Ugee S|

Definition 2.2. The MinNonCovered problem is defined in the same way as the MaxCover
problem, but the goal is to find a subcollection C such that |N| — |Ugee S| is minimal.

In the decision variant of MaxCover (of MinNonCovered) we are additionally given an
integer T (an integer 7”) and we ask if there is a collection of up to K sets from S that
cover at least T elements (that leave at most 7" elements uncovered). MaxVertexCover is
a variant of MaxCover where we are given a graph G = (V, E), the edges are the elements
to be covered, and vertices define the sets that cover them (a vertex covers all the incident
edges). SetCover and VertexCover are special cases of the decision variants of MaxCover
and MaxVertexCover, where we have to cover all the elements (all the edges).

MaxCover and MinNonCovered are equivalent as far as optimal solutions go, but they
are quite different in terms of their approximation properties. For example, if there is a
solution that covers all the elements, then a y-approximation algorithm for MaxCover can
cover a v fraction of them, but a y-approximation algorithm for MinNonCovered has to
cover them all.

Given an instance I of MaxCover (MinNonCovered), we say that an element e has fre-
quency t if it appears in exactly ¢t sets. We mostly focus on the variants of MaxCover and
MinNonCovered where there is a given constant p such that each element’s frequency is at
most p. We refer to these problems as variants with upper-bounded frequencies. (It is tempt-
ing to think that MaxCover with frequencies equal to two is simply MaxVertexCover, but
in fact it is a considerably richer problem. In the former, two sets can share many elements,
while in the latter two vertices may be connected by at most one edge. Thus, MaxCover
with frequencies equal to two is closer in spirit to MaxVertexCover on multigraphs.)

Our focus is on (approximation) algorithms that run in FPT time—see the books of
Downey and Fellows (2013), Niedermeier (2006), Flum and Grohe (2006), and Cygan, Fomin,
Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk and Saurabh (2015) for details on param-
eterized complexity theory and fixed-parameter tractable algorithms. To speak of an FPT

692

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

algorithm for a given problem, we declare a part of the problem as the so-called parameter.
Here, for MaxCover and MinNonCovered problems, we take the parameter to be the num-
ber K of sets that we are allowed to use in the solution (in Section 3 we briefly consider
MaxCover /MinNonCovered with parameters 7', T/, and their combinations with K). Given
an instance I of a problem with parameter K, an FPT algorithm is required to run in time
f(K)poly(|I|), where f is some computable function and poly(-) is some polynomial.

We say that an algorithm is an FPT approximation scheme for a maximization problem
P, if for each fixed v € (0,1) it finds y-approximate solutions for instances of P in FPT
time. An FPT approximation scheme for a minimization problem is defined analogously.

From the point of view of parameterized complexity, FPT is seen as the class of tractable
problems. There is also a whole hierarchy of hardness classes, FPT C W[1] C W[2] C

--WI[P] C ---. The standard definitions of W[1], W[2],... are quite involved; we point

interested readers to appropriate overviews (Cygan et al., 2015; Downey and Fellows, 2013;
Flum and Grohe, 2006; Niedermeier, 2006). We use equivalent definitions that use an
appropriate reduction notion and these classes’ complete problems.

Definition 2.3. Let P and P’ be two decision problems. For given parameters of P and
P’, we say that P reduces to P’ through a parameterized reduction if there exist a mapping
F: P — P (computable in FPT time) and two computable functions, g: Ry — Ry and
h:Ry — Ry, such that:

(i) for each instance I € P the answer to I is “yes” if and only if the answer to F(I) =1’
s “yes”,

(1) K and K' are the values of the parameters for instances I and I', respectively,
(i) |I'| < g(K)poly(|1]), and
(iv) K' < h(K).

WI1] is the class of all problems for which there is a parameterized reduction to the Clique
problem (i.e., the problem where we ask if a given graph G = (V, E) has a clique of size at
least K, where K is the parameter). W[2] is the class of all problems with parameterized
reductions to SetCover (with parameter K). Interestingly, VertexCover is well-known to be
in FPT, but MaxVertexCover is W[1]-complete (Guo et al., 2007).

There are several standard techniques for showing membership in W[1], W[2], etc. In
some of our proofs we show W[1]- and W[2]-membership. To show W]2]-membership, we
reduce our problem to SetCover. For W[1]-membership, we reduce to the Short-Nondeter-
ministic-Turing-Machine-Computation problem, shown to be W[1]-complete for parameter
k by Cesati (2003).

Definition 2.4. In the Short-Nondeterministic- Turing-Machine-Computation problem we
are given a single-tape nondeterministic Turing machine M (described as a tuple including
the input alphabet, the work alphabet, the set of states, the transition function, the initial
state and the accepting/rejecting states), a string x over M ’s input alphabet, and an integer
k. The question is whether there is an accepting computation of M that accepts x within k
steps.

693

SKOWRON & FALISZEWSKI

The Bounded-Nondeterministic-Turing-Machine-Computation problem is defined simi-
larly, but in addition we are also given an integer m, and we ask if M accepts its input within
m steps, of which at most k are nondeterministic. Cesati has shown that this problem is
W[P]-complete (Cesati, 2003); we omit the exact definition of W[P]; the reader can think of
WI[P] as the set of problems that have parameterized reductions to the Bounded-Nondeter-
ministic-Turing-Machine-Computation problem.

3. Worst-Case Complexity Results

To justify seeking FPT approximation algorithms, we first investigate the parametrized
complexity of the MaxCover problem. For upper-bounded frequencies, the problem is W/[1]-
hard—this follows from the fact that MaxVertexCover is W[1]-hard (Guo et al., 2007)—and
we show that it, indeed, is W[1]-complete. For lower-bounded frequencies it is W[2]-hard
and in WIP].

Theorem 3.1. (1) For each constant p greater or equal to 2, the MaxzCover problem with
frequencies upper-bounded by p is W[1]-complete (when parameterized by the number of sets
in the solution). (2) For each constant p, p > 1, MaxCover where each element belongs to
at least p sets is W|[2]-hard and belongs to W[P] (when parameterized by the number of sets
in the solution).

Proof. Let us consider part (1) first. The hardness follows directly from the W]1]-hardness
of the MaxVertexCover problem (Guo et al., 2007). We prove membership in W[1] by re-
ducing MaxCover with bounded frequencies to the Short-Nondeterministic-Turing-Machine-
Computation problem.

Let p be some fixed constant and let I = (N, S, K,T) be our input instance, where N
is a set of elements, S = {S1,...,5,} is a family of subsets of N (each element from N
appears in at most p sets from §), and K and 7" are two integers. This is the decision variant
of the problem, thus we have T in the input; we ask if there is a collection of up to K sets
from S that jointly cover at least T’ elements. W.l.o.g., we assume that K < m. We form
a single-tape nondeterministic Turing machine M to execute the following algorithm (on
empty input string); the idea of the algorithm is to employ the standard inclusion-exclusion
principle:

1. Guess the indices i1,...,ix of K sets from S.
2. Set b=0.

3. For each subset A of {i1,...,ix} of size up to p, do the following: If |A| is odd, add
| MNica Sil to b, and otherwise subtract |(7),c 4 S;| from b.

4. If b > T then we accept and otherwise we reject.

It is easy to see that this algorithm can indeed be implemented on a single-tape nondeter-
ministic Turing machine with a sufficiently large (but polynomially bounded) work alphabet
and state space (recall that we treat p as a constant). The only issue that might require a
comment is the computation of | (), 4 Si|. Since sets A contain at most p elements, we can
precompute these values and store them in M’s transition function.

694

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

The correctness of the algorithm follows directly from the inclusion-exclusion principle
and the fact that each element appears in at most p sets:

|Si1 USZ'Q U"'USiK| = Z |Siz|

Le[K]
- Z ‘Sil/ N Sil//’ + Z ’SZ'Z/ N SZ'Z// N Sil///‘ -
V'EK] Ue[K]
"€[K] {"e[K]
él#é// é///E[K}
40"
£/¢£lll
oy

In general, the above formula should include intersections of up to K sets. However, since
in our case each element appears in at most p sets, the intersection of more than p sets are
always empty. This shows that the algorithm is correct and concludes the proof.

Let us now consider part (2) of the theorem. To show W/2]-hardness, we give a reduction
from SetCover. In the SetCover problem we ask whether there exist K subsets that cover
all the elements (we give a reduction for the parameter K). Let I = (N,S) be an input
instance of SetCover. W.l.o.g., we can assume that each element from N belongs to at least
one set in S. We form an instance I’ of MaxCover which is identical to I, except (a) for each
e € N, we modify S to additionally include p — 1 copies of set {e}, and (b) we require all
elements to be covered (i.e., we set T'= |N|). Clearly, in I’ each element belongs to at least
p sets and I’ is a yes-instance of MaxCover if and only if I is a yes-instance of SetCover.

To show WI[P]-membership, we give a reduction from MaxCover to the Bounded-
Nondeterministic-Turing-Machine-Computation problem. On input I = (N, S, K, T'), where
N, S, and K are as usual and T is the lower bound on the number of elements that we
should cover, we produce a machine that on empty input executes the following algorithm:

1. It nondeterministically guesses up to K names of sets from S and writes these names
on the tape (each name of a set from § is a single symbol).

2. Deterministically, for each name of the set produced in the previous step, the machine
writes on the tape the names of those elements from this set that have not been written
on the tape yet.

3. The machine counts the number of names of elements written on the tape. If there
were at least T of them, it accepts. Otherwise it rejects.

It is easy to see that we can produce a description of such a machine in polynomial time
with respect to |I|. Further, it is clear that its nondeterministic running time is bounded
by some polynomial of || and that it makes at most K nondeterministic steps. O

For parameter T', the number of elements that we should cover, Blaser (2003) gave an
FPT algorithm for MaxCover. On the other hand, for parameter 77 = n—T, i.e., the number
of elements we can leave uncovered (this means considering the MinNonCovered problem),
we show that the problem is para-NP-complete (i.e., it is NP-complete even for a constant
value of the parameter), but becomes W[2]-complete for the joint parameter (K,T").

695

SKOWRON & FALISZEWSKI

Theorem 3.2. (1) The MazCover problem is para-NP-complete when parameterized by
the number T' of elements that can be left uncovered. This holds even if each element’s
frequency is upper-bounded by some constant p, p > 2. (2) MaxCover is W[2]-complete
when parameterized by both the number K of sets that can be used in the solution and the
number T" of elements that can be left uncovered.

Proof. We start with part (1). The following trivial reduction from SetCover to MinNon-
Covered suffices: Given an input instance I = (N, S, K), output an instance (N, S, K,0),
i.e., an identical one, where we require that the number of elements left uncovered is zero.
Since the reduction is clearly correct and works for the constant value of the parameter, we
get para-NP-completeness. To obtain the result for upper-bounded frequencies, simply use
VertexCover instead of SetCover in the reduction.

We now consider part (2) of the theorem. We obtain W|[2]-hardness by simply observing
that the reduction given in part (1) suffices. To prove W[2]-membership, we give a reduction
from MaxCover (with parameter (K,T")) to SetCover (with parameter K).

Let I = (N,S,K,T’) be an input instance of MaxCover. We form an instance I’ =
(N, 8", K +T") of SetCover as follows: Let N' = N UD'UD", where D' = {d},...,d}}
and D" = {df,...,d7,}. We set &' = S U S}, where:

(a) S; ={SU{di}: (SeS)A(d, € D)}, and
(b) S, ={{e,d!}:ec N,d! € D"}.

We observe that if I is a yes-instance of MaxCover then I’ is a yes-instance of SetCover:
If for I it is possible to cover n — T” elements of N using K sets, then for I it is possible to
(a) use K sets from S] to cover n — T” elements from N and all the elements from D’, and
(b) use T" sets from S} to cover all the elements from D” and the remaining 7" elements
from N. For the other direction, assume that I’ is a yes-instance of SetCover. We will
show that covering the elements from D’ requires one to use at least K sets from] (which
correspond to the sets from §) and that covering the elements in D” requires at least T’
sets from S5. Since each set from S covers exactly one element from N, we see that if I’ is
a yes-instance, then it must be possible to cover at least |[N| — T elements from N using K
sets from S. O

The results from this section are summarized in Table 1. Indeed, our problems are hard
from the parameterized complexity point of view and, thus, it is reasonable to seek FPT
approximation algorithms for them (which we do in the next section).

From the point of view of the approval-based Chamberlin—Courant rule, our results say
that: (a) computing small winning committees is computationally hard, even if we put upper
bounds on the number of candidates approved by each voter (hardness for MaxCover with
parameter K), (b) computing committees that are satisfying to almost all voters also is
computationally difficult (hardness for MinNonCovered with parameter T"), even if these
committees are small (hardness for MinNonCovered with joint parameter K,7”), but (c)
computing committees that are satisfying for few voters only is tractable (FPT result for
MaxCover with parameter T'; this is hardly an appealing setting, though). This reinforces
our desire to find FPT approximation algorithms.

696

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

the complexity for the case of
parameter | unrestricted frequencies upper-bounded frequencies
K W[2]-hard, in W[P] W]/1]-complete
T FPT (Bliser, 2003) FPT (Bliser, 2003)
T para-NP-complete para-NP-complete
(K,T") W[2]-complete W]1]-complete

Table 1: Parameterized worst-case complexity results for unrestricted MaxCover and Min-
NonCovered. The parameters are as follows: K is the number of sets we can use in
the solution, 7" is the number of elements we are required to cover, and 7" =n —T
is the number of elements we can leave uncovered (considering this parameter, in
essence, means considering the MinNonCovered problem).

4. Algorithms for the Bounded Frequencies Cases

In this section we present our approximation algorithms for the MaxCover and MinNonCov-
ered problems, for the case where we either upper-bound or lower-bound the frequencies of
the elements. We first consider the MaxCover problem, both with upper-bounded frequen-
cies and with lower-bounded frequencies, and then move on to the MinNonCovered problem
with upper-bounded frequencies.

4.1 The MaxCover Problem with Upper Bounded Frequencies

We start by presenting an FPT approximation scheme for MaxCover with upper-bounded
frequencies. While Marx (2008) has already shown an FPT approximation scheme for
MaxVertexCover, his approach cannot be generalized to the MaxCover problem with
bounded frequencies (it relies on the fact that two sets can have at most one element in
common, which is not true in our case). Also, when we consider inputs from the MaxVer-
texCover only, our algorithm turns out to be faster than his. We give a more detailed
comparison of the two algorithms after presenting our approach.

Our algorithm works in a very simple way. Given an instance I = (N, S, K) of MaxCover
(with frequencies bounded by some constant p) and a required approximation ratio ~y, the
algorithm simply picks some of the sets from S with highest cardinalities (the exact number
of these sets depends only on K, p, and 7), tries all K-element subcollections of sets from
this group, and returns the best one. This approach is formalized as Algorithm 1. The
following theorem explains that indeed the algorithm achieves the required approximation
ratio.

Theorem 4.1. Fiz a positive integer p. For each instance I = (N,S,K) of MazCover,
where each element from N appears in at most p sets in S, for each v € (0,1), Algorithm 1
2pK

outputs a y-approximate solution in time poly(|I]) - ((1*}>(+K),

Proof. Establishing the running time is immediate and so we focus on showing the approxi-
mation ratio. Consider an input instance I. Let C be the solution returned by Algorithm 1
and let C* be some optimal solution. Let ¢ be an arbitrary function such that for each
element e for which there is some S € C* containing e, c(e) is some S € C* containing e. We

697

SKOWRON & FALISZEWSKI

Algorithm 1: An algorithm for the MaxCover problem with upper-bounded frequencies.

Parameters:
(N, S, K) — input MaxCover instance
p — bound on the number of sets each element can belong to
v — the required approximation ratio of the algorithm

A+ (&pflﬂi) + K| sets from S with highest cardinalities ;

return K -element subset of A that covers the largest number of elements ;

refer to ¢ as the coverage function. Intuitively, the coverage function assigns to each element
covered under C* (by, possibly, many different sets) a set “responsible” for covering it. We
say that S covers e if and only if ¢(e) = S. Let OPT be the number of elements covered
by C*.

We will show that C covers at least YyOPT elements. Naturally, the reason why C might
cover fewer elements than C* is that some sets from C* may not be present in A, the set of
the subsets considered by the algorithm. We will show an iterative procedure that starts
with C* and, step by step, replaces those members of C* that are not present in A with
the sets from A. The idea of the proof is to show that each such replacement decreases the
number of covered element by at most a small amount.

Let £ = |C* \ A|. Our procedure will replace the ¢ sets from C* that do not appear
in A with ¢ sets from .A. We rename the sets so that C*\ A = {S1,...,S,}. We will
replace the sets {S1,..., S} with sets {S],...,S)} defined through the following algorithm.
Assume that we have already computed sets S7,...,S,_; (thus for i = 1 we have not yet
computed anything). We take S} to be a set from A\ (C*U{S],...,S/_;}) such that the set
(C*\{S1,...,Si}) U{S],...,S!} covers as many elements as possible. During the ¢’th step
of this algorithm, after we replace S; with S, we modify the coverage function as follows:
(1) for each element e such that c(e) = S;, we set c(e) to be undefined; (2) for each element
e € S, if ¢(e) is undefined then we set c(e) = S.

After replacing S; with S/, it may be the case that fewer elements are covered by the
resulting collection of sets. Let x; denote the difference between the number of elements
covered by (C*\ {S1,...,S:}) U{S],...,Si} and by (C*\ {S1,...,Si—1}) U{St,...,S/_,}
(or 0, if by a fortunate coincidence there are more elements covered after replacing S;
with S/). By the construction of the set A and the fact that S; ¢ A, each set from A
contains more elements than S;. We infer that every set from A\ (C* U {S{,...,S/_;})
must contain at least x; elements covered by (C*\ {S1,...,Si—1}) U{S],...,S/_;}. Indeed,
if some set S" € A\ (C* U {S],...,S/_;}) contained fewer than z; elements covered by
(C*\ {S1,...,Si—1}) U{St,...,S._1}, S’ would have to cover at least |S'| — (z; — 1) >
|Si| — (x; — 1) elements uncovered by (C*\ {S1,...,Si—1}) U{S],...,S,_;}. But this would
mean that after replacing S; with S/, the difference between the number of covered elements
would be at most (z; — 1).

Let C5 denote the set obtained after the above-described ¢ iterations. Since for each
i the set (C*\ {S1,...,Si—1}) U{S],...,S/_;} is a subset of C* UC3, we know that for
each ¢ each set from A\ (C* U{S],...,S}}) (there are |A] — K such sets) must contain at
least z; elements covered by C* UC; (there are at most 20PT such elements). Since each
element is contained in at most p sets, we infer that for each i, z;(|.A| — K) < 20PTp and,

698

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

 _ 20PTp _ 20PTp(1—y) a- .
as a consequence, r; < Ak = STy Since ¢ < K, we conclude that), ;z; <

QOPTpK(;;—KV) = (1 —~)OPT. That is, after replacing the sets from C* that do not appear
in A with sets from A, at most (1 —y)OPT elements fewer are covered. This means that
there are K sets in A that together cover at least YyOPT elements. Since the algorithm tries

all size-K subsets of A, it finds a solution that covers at least YyOPT elements. O

A natural question is whether our analysis of approximation ratio is tight. Below we
present a family of parameters v and instances of MaxCover with upper-bounded frequencies
on which our algorithm achieves approximation ratio (% + iy).

Proposition 4.1. There is a family T of pairs (I,7v), where I is an instance of MaxCover
with bounded frequencies and v is a real number, 0 < v < 1, such that for each (I,7) € Z,
if we use Algorithm 1 to find a y-approximate solution for I, it outputs an at-most (% +
+7)OPT(I)-approzimate one.

Proof. We describe how to construct pairs (I,v) from the set Z. We let p be the bound of
the frequencies of elements in I and we let K be the number of sets that we can use in the
solution. We choose p and K to be sufficiently large, and 7 to be sufficiently close to 1 (the
exact meaning of “sufficiently large” and “sufficiently close to 1” will become clear at the end
of the proof; elements of Z differ in the particular choices of p, K, and). We require that
ﬁ is an integer and that p divides K.

We now proceed with the construction of instance I = (N, S, K) for our choice of p,
K, and v. We set x = % + K; x is the number of highest-cardinality sets from & that
Algorithm 1 will consider on instance I. By our choice of v and K, x is an integer and
is divisible by p. We form N, the set of elements to be covered, to consist of two disjoint
subsets, N1 and Na, such that |Ni| = (;) and |No| = (m)ﬁ We form the family S to

p/ x
consist of two subfamilies, S; and Ss, defined as follows:

1. There are = subsets in 81, S; = {S1,...,5,}. We form the sets in S; so that: (a) sets
from &; are subsets of Ny, (b) each element from N belongs to exactly p different
sets from Sy, and (¢) no two elements from Nj belong to the same p sets from Sj.
Specifically, we build sets (St,...,Sy,) as follows. Let f be some one-to-one mapping
between elements in N; and p-element subsets of [z]. For each e € Nj, e belongs

exactly to the sets S;,...,S;, such that f(e) = {i1,...,i,}. Note that each set

S; € 81 contains exactly (2:1) = (i)g elements.

2. 8y contains K sets, each covering exactly (;)% different elements from Ny (and no

other elements) so that no two sets from S overlap.

This completes our description of I. It is easy to see that each optimal solution for I covers
exactly K (Z)g elements; each set from S contains exactly (z)g elements and there are (more
than) K sets that are pairwise disjoint (for example the K sets in Sg).

Nonetheless, Algorithm 1 is free to choose any z sets from S to include within A, the

collection of sets from which it forms the solution. In particular, it is free to pick the x sets
from S;.?

2. We could also ensure that each set in S; contained one of % additional elements, forcing the algorithm
to pick exactly the sets from Si, but that would obscure the presentation of our argument.

699

SKOWRON & FALISZEWSKI

Let us fix some arbitrary collection S’ of K sets from S;. For each j, 0 < j < K, let
h(j) be the number of elements from N that belong to exactly j sets in §’. The number
of elements covered by &' is exactly K(;)% - 25-12(]' — 1)h(j). How to compute h(j)?
Using mapping f, it suffices to count the number of p-element subsets of [z] that contain
the indices of exactly j sets from &’. In effect, we have h(j) = (I]() (2__?{) We upper-bound
the number of sets covered by S’ with:

k()i = ()i-(2)62)

Consequently, Algorithm 1 achieves the following approximation ratio on instance I:

KQE-()GS) (65 OO ermiterrm
K()s K()% K()% |

Now, if x is large in comparison with p and K (which happens for sufficiently large 7), then

(3°)

) ~ 1. Also, for sufficiently large = and p (and for = > p, K') we have #110—1—2 ~ L and

#_pﬂ ~ . Finally, for sufficiently large K we have (I;) ~ %2 Thus, for large values of
v, K, and p, we can approximate the above ratio with the following expression:

Q

oi
-2

xT

K2 p?
2

I
—_
|

Q
—_
|

I
—
|
N = T ST
]
S
=

This completes our argument. O

Let us now restrict the setting to the MaxVertexCover problem and compare our algo-
rithm to that of Marx (2008). Briefly put, the idea behind Marx’s algorithm is as follows:
Consider vertices in the order of nonincreasing degrees. If the degree of the vertex with
the highest degree is large enough, then K vertices with the highest degrees already cover
sufficiently many edges to give a desired approximate solution. If the highest degree is not
large enough, then there is an exact color-coding-based FPT algorithm that solves the prob-
lem optimally. Our algorithm is similar in the sense that we also focus on a group of sets
with highest cardinalities (sets’ cardinalities in MaxCover correspond to vertex degrees in
MaxVertexCover). However, instead of simply picking K largest ones, we make a careful
decision as to which exactly to take. Marx’s approach works for the case of MaxVertex-
Cover but it seems that it cannot be easily adapted to the case of MaxCover with bounded
frequencies (even if the frequencies are bounded by two). The reason is that in the former
problem each two sets have at most one element in common (i.e., each two vertices share
at most one edge), whereas in the latter one the cardinality of an intersection of two sets
can be of an arbitrary size. In effect, it is not easy to accurately estimate the number of
elements covered by simply picking some sets with highest cardinalities; there can be very

700

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

many overlaps among them. An algorithm that focuses on picking sets with highest car-
dinalities has to minimize the number of such overlaps and our algorithm achieves exactly
that by considering all possible K-element groups of large sets from the instance.

Further, our algorithm has a better running time than that of Marx. To achieve approx-

: k
imation ratio v, the algorithm presented by Marx requires at least time Q((%)(ﬁ)) For

us, the exponential factor in the running time is (%HK). On the other hand, we should
point out that Marx’s algorithm’s running time stems mostly from the exact part and the
algorithm given there is interesting in its own right.

To conclude the discussion of Algorithm 1, let us consider it in the context of the
approval-based Chamberlin-Courant rule. The assumption that elements’ frequencies are
upper-bounded by p means that each voter can approve of up to p candidates. The algorithm
chooses a group of most-often approved candidates and from them chooses a committee such
that as many voters as possible approve at least one of its members. Our results show that
this committee is very good (though not optimal) and that it can be found efficiently, pro-
vided that the committee is small. In practice, however, for v = 0.9, the algorithm would
be feasible only for K = 4,5 and p of similar value. Thus it should be viewed mostly as a
theoretical result.

4.2 The MaxCover Problem with Lower-Bounded Frequencies

Let us now move on to the case of MaxCover with lower-bounded frequencies. In this case
the standard algorithm (to which we refer as “the greedy algorithm”) which in each iteration
greedily extends the solution with a set that contains the most yet-uncovered elements, can
achieve a better approximation ratio than in the unrestricted case (and our analysis is tight).

_ pK . .
max(£ 1)> -approximation

Theorem 4.2. The greedy algorithm is a polynomial-time (1 —e
algorithm for the MaxCover problem with frequencies lower-bounded by p, on instances with

m sets where we can pick up to K of them.

Proof. The algorithm clearly runs in polynomial time and so we show it’s approximation
ratio. Let I = (N, S, K) be an input instance of MaxCover and let p be an integer such that
each element from N belongs to at least p sets from S.

We prove by induction that for each ¢, 0 <+¢ < K, after the ¢’th iteration of the greedy
algorithm’s main loop, the number of uncovered elements is at most n(1— %)Z Naturally, for
1 = 0 the number of uncovered elements is exactly n, the total number of elements. Suppose
that the inductive assumption holds for some (i — 1), 1 < i < K, and let « be the number
of elements still uncovered after the (i — 1)’th iteration (by the inductive assumption, we
have z < n(1 — £)=1). Since each element belongs to at least p sets and neither of the
sets containing the uncovered elements is yet selected, by the pigeonhole principle there is a
not-yet-selected set that contains at least [2£] of the uncovered elements. In consequence,
the number of elements still uncovered after the i’th iteration is at most:

a;—xg:a:(l—£>§n(l—£)z.
m m m

Thus after K iterations the number of uncovered elements is at most:
m pK

K
n<1—£> :n<1—£>pm§n6_%.
m m

701

SKOWRON & FALISZEWSKI

. _pK . .
That is, at least n — ne™ m elements are covered. Since the number of covered elements in
pK

the optimal solution is at most n, the algorithm’s approximation ratio is 1 —e™ m .
Naturally, the standard approximation ratio of (1 —e™!) of the greedy algorithm still

K
applies and we get approximation guarantee of 1 — e~ max(%.1), O

The analysis given in Theorem 4.2 is tight. Below we present a family of instances on
which the algorithm reaches exactly the promised approximation ratio.

Proposition 4.2. For each rational o, a« > 1, there is an instance I(a) of MaxCover (with

m sets, element frequencies lower-bounded by p, K sets to use, and % = «) such that on
pK

input I(«v), the greedy algorithm achieves approximation ratio no better than 1 — e~ m .

Proof. Let us fix some o, o > 1. We choose integers p, K, and m so that: (a) p = G2, (b)
m > K (and, thus, p > K), and (c) p, m, and K are sufficiently large (the exact meaning
of “sufficiently large” will become clear at the end of the proof).

We form the instance I(a) = (N, S, K) as follows. We let N = N; U --- U Nk, where
N1, ..., Nk are pairwise-disjoint sets, each of cardinality (TZ:{{) (thus [N| = K(Tg:f)) The
family S consists of two subfamilies, S; and Ss:

1. &7 consists of m— K sets, S1, ..., Sm—K, constructed as follows. For each ¢, 1 <i < K|
let f; be some one-to-one mapping from N; to (p — 1)-element subsets of [m — K. For
each i, 1 < i < K, and each e € N, if fi(e) = {j1,...,Jp—1} then we include e in

sets Sj,Sj,,.--,5;j, ;.- Note that for each S; in S1, |S;| = K(m;g_l); for each 1,

1 <i< K, S; contains (mié{) elements from N;; to see this, it suffices to count how
many (p — 1)-element subsets of [m — K] there are that contain j (the number of ways
in which we can complement j with p — 2 elements).

2. Sy = {Ni,...,Ng}.

Note that, by our construction, each element from N belongs to exactly p sets from S
(namely, p — 1 from S; and one from Sy).

Naturally, the K disjoint sets from Sy form the optimal solution and cover all the ele-
ments. We will now analyze the operation of the greedy algorithm on input I(«).

We claim that the greedy algorithm will select sets from S only. We show this by
induction. Fix some ¢, 1 < ¢ < K, and suppose that until the beginning of the £’th iteration
the algorithm chose sets from S; only. This means that, for each i, 1 < i < K, each

set N; contains exactly (m;ﬁ_z) uncovered elements. Why is this the case? Assume that

the algorithm selected sets Sj,,...,S5j,. An element e € N; is uncovered if and only if

file)n{g1, ..., je} = 0; (m;ﬁ_g) is the number of (p— 1)-element subsets of [m — K] that do

not contain any members of {j1,...,j¢}. So, if in the £’th iteration the algorithm chose some

set from &s, it would cover these additional (m;ﬁ_é) elements. On the other hand, if it chose

a set from &1, it would additionally cover Kx elements, where x = (m;ﬁ_é) — (m_ff_ _15_1)
m—K

By our choice of p, K and m, we have pK > m and, thus, K > 1 (we use this fact in
the final line of the calculations below). We see that the following holds:

(5 (05T)

702

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

:K<m—K—€—1>
p—2

_ Kp-1) (m-K-/
C m—K—/ p—1

2Kp—l m—K—/ o m—K —1/ '
m—K p—1 p—1
That is, in the ¢’th iteration the greedy algorithm picks a set from &;. This proves our
claim.

Let us now assess the approximation ratio the greedy algorithm achieves on I(«). By
m__zK) uncovered elements in each N;, 1 <7 <

the above reasoning, we know that it leaves (
K. Thus the ratio of the uncovered elements to all elements is bounded by the following
expression (see the explanation below):

E(M72E) (m—2K)(m —p— K +1)!

K(TZ:{() (m—K)!(m—p-2K +1)!

(m-—p-K+1)m—-—p—-—K)---(m—p—2K +2)
B (m—K)(m—-—K—-1)---(m—2K +1)

L (m—2K —p+?2 K . p—1 *
=\ m-2K+1 m— 2K + 1

The first inequality holds by iterative application of the simple observation that if 1 <z <y
then % < % To obtain the final estimate, we observe that for sufficiently large p and m

(where m > K), we have #I%H ~ L = £ For sufficiently large K, (1 — 2)8 me™ =

e 5 (by the fact that p = %Z'). Since the optimal solution covers all the elements, we

have that the greedy algorithm on input I(«) achieves approximation ratio no better than
pK

1l—e"m. U

Theorem 4.2 has some interesting implications. For each o, 0 < a < 1, let a-MaxCover
be a variant of MaxCover where for each instance the ratio % is at least «.. This problems
arises, e.g., if we use the approval-based variant of the Chamberlin-Courant rule with the
requirement that each voter must approve at least some constant fraction of the candidates
(e.g., 10%). There exists a polynomial-time approximation scheme (PTAS) for this version
of the problem.

Theorem 4.3. For each o, 0 < o < 1, there is a PTAS for a-MaxCover.

Proof. Fix some o, 0 < o < 1. Let I = (N,S,K) be an input instance of a-MaxCover
and let v be our desired approximation ratio. We let m be the number of sets in & and
we let p be the lower bound on the element frequencies. By definition, we have £ > a. If
K > —% In(1 —) then we can run the greedy algorithm and, by Theorem 4.2, we obtain
approximation ratio . Otherwise, K is bounded by a constant and enumerating all K-

element subsets of S gives a polynomial-time exact algorithm for the problem. O

The exact complexity of a-MaxCover is quite interesting. Using the greedy algorithm,
we can show that it belongs to the second level of Kintala and Fisher’s g-hierarchy of limited

703

SKOWRON & FALISZEWSKI

nondeterminism (Kintala & Fisher, 1980). (A problem belongs to the class 32 if it can be
solved using at most O(log? n) nondeterministic bits, where n is the size of the input.) In
effect, it is unlikely that a-MaxCover is NP-complete.

Theorem 4.4. For each o, 0 < a < 1, a-MazCover is in (2.

Proof. Fix some o, 0 < o < 1. We give a f%algorithm for a-MaxCover. Let I =
(N,S,K,T) be an instance of a-MaxCover (recall that T is the number of elements we
are required to cover). We let p be the lower bound on elements’ frequencies in I, we let
m = |S|, and we let n = |[N|. By definition, we have £ > o. W.lo.g., we assume that
lI| > n+m.

Our algorithm works as follows. If K > 1/aIn(n) then we run the greedy algorithm and
output its solution. Otherwise, we nondeterministically guess K names of the sets from &
and check if these sets cover at least T' elements. If so, we accept and otherwise we reject
on this computation path.

First, it is clear that the algorithm uses at most O(log? |I|) nondeterministic bits. We
execute the nondeterministic part of the algorithm only if K < 1/aln(n) < 1/aln|I| and
each set’s name requires at most log m < log |I| bits. Altogether, we use at most O(log? ||)
bits of nondeterminism.

Second, we need to show the correctness of the algorithm. Clearly, if the algorithm uses
the nondeterministic part then certainly it finds an optimal solution. Thus consider the
case that the algorithm uses the deterministic part, based on the greedy algorithm. In this
case we know that K > /aln(n). Thus, the approximation ratio of the greedy algorithm is
greater than: 1 — e @K > (1 —e~?n) =1 — % That is, the algorithm returns a solution
that covers more than OPT(1— 1) elements and, since OPT < n and the number of covered

n
elements is integer, the algorithm must find an optimal solution. O

So far, we were not able to show 32-hardness of a-MaxCover. We leave establishing the
exact complexity of of a-MaxCover as an interesting open problem.

4.3 The MinNonCovered Problem with Upper-Bounded Frequencies

In this section we consider the MinNonCovered problem, that is, a version of MaxCover
where the goal is to minimize the number of elements left uncovered. In this case we give a
randomized FPT approximation scheme (presented as Algorithm 2).

Intuitively, the idea behind our approach is to extend a simple bounded-search-tree
algorithm for SetCover with upper-bounded frequencies to the case of MaxCover. An FPT
algorithm for SetCover with frequencies upper-bounded by some constant p could work
recursively as follows: If there still is some uncovered element e, then nondeterministically
guess one of the at-most-p sets that contain e and recursively solve the smaller problem.
The recursion tree would have at most K levels and at most p leaves. The same approach
does not work directly for MaxCover because we do not know which element e to pick (in
SetCover the choice is irrelevant because we have to cover all the elements). However, it
turns out that if we choose e randomly then, in expectation, we achieve a good result. It
remains an open question whether our algorithm can be efficiently derandomized.

704

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

Algorithm 2: Algorithm for the MinNonCovered problem with frequencies upper-bounded
by p.
Parameters:
(N, S, K) — input MinNonCovered instance
p — upper bound on the number of sets each element can belong to
v — the required approximation ratio of the algorithm
€ — the allowed probability of achieving worse than -y approximation ratio

Search (s, partial):
if s =0 then return partial ;
e < randomly select element not-yet covered by partial;
best + {};
foreach S € S such that e € S do

sol < Search((s — 1), partial U {S});

if sol is better than best then best + sol ;
return best;

=

ain():
run Search (K, {}) for (—lne/('VTfl)KW times;
return the best solution;

Theorem 4.5. Fiz a positive integer p. For each instance I = (N, S, K) of MinNonCovered,
where each element from N appears in at most p sets in S, for each v > 1, and each
e € (0,1), Algorithm 2 outputs a y-approzimate solution with probability (1 — €) in time
poly(|1]) - [=Ine/(5)KT - p.

Proof. Let I = (N,S,K) be an input instance of MinNonCovered and fix some 7, v > 1,
and €, 0 < € < 1. Each element from N appears in at most p sets from S.

By ps we denote the probability that a single invocation of the function Search (from
the Main function) returns a y-approximate solution. We will first show that py is at least
(=K and then we will use the standard argument that if we make [%1 calls to Search,
then the best output is a y-approximate solution with probability (1 — €).

Let C* be some optimal solution for I, let N* C N be the set of elements covered by C*,
and let U* = N \ N* be the set of the remaining, uncovered elements. Consider a single
call to Search from the “for” loop within the function Main. Let EFv denote the event that
during such a call, at the beginning of each recursive call, at least a =L fraction of the
elements not covered by the constructed solution (i.e., the solution denoted partial in the
algorithm) belongs to N*. Note that if the complementary event, denoted Ev, occurs, then
Search definitely returns a y-approximate solution. Why is this the case? Consider some
tree of recursive invocations of Search, and some invocation of Search within this tree. Let
X be the number of elements not covered by partial at the beginning of this invocation. If
at most ”’T_lX of the not-covered elements belong to N*, then—of course—the remaining at
least %X of them belong to U*. In other words, then we have %X < |U*| and, equivalently,
X < ~|U*|. This means that partial already is a y-approximate solution, and so the solution
returned by the current invocation of Search will be y-approximate as well. (Naturally, the
same applies to the solution returned at the root of the recursion tree.)

705

SKOWRON & FALISZEWSKI

Now, consider the following random process P. (Intuitively, P models a particular branch
of the Search recursion tree.) We start from the set N’ of all the elements, N’ = N, and
in each of the next K steps we execute the following procedure: We randomly select an
element e from N’ and if e belongs to N*, we remove from N’ all the elements covered by
the first® set from C* that covers e. Let Popt be the probability that a call to Search (within
Main) finds an optimal solution for I, and let pop g, be the same probability, but under the
condition that Ev takes place. It is easy to see that popt is greater than or equal to the
probability that in each step P picks an element from N*. Let pp; be the probability that
in each step P picks an element from N*, under the condition that at the beginning of every
step more than %;” fraction of the elements in N’ belong to N*. Again, it is easy to see

that Popt|Ev = Phit- Further, it is immediate to see that pp;; > (VVI)K
Altogether, combining all the above findings, we get that the probability that Recur-
siveSearch returns a y-approximate solution is at most
> P(Ev) + P(E > > (=
ps > P(Ev) + ('U)popt|Ev 2 Popt|Ev _(~)
(That is, either the event Ev does not take place and Search definitely returns a -
approximate solution, or Fv does occur, and then we lower-bound the probability of finding
a 7y-approximate solution by the probability of finding the optimal one.) To conclude, the
probability of finding a ~-approximate solution in one of the z = [—Ine/ (’YT_I)K | indepen-

dent invocations of Search from Main is at least 1 — (1 — (“’T_I)K)”” >1—ene=1—¢
Establishing the running time is clear. O

Algorithm 2 is very useful, especially in conjunction with Algorithm 1. The former one
has to provide a very good solution if it is possible to cover almost all the elements and the
latter one has to provide a very good solution if in every solution many elements must be
left uncovered. Given some input instance, we can run both these algorithms and pick the
better solution.

Algorithm 2 has very desirable properties from the point of view of the Chamberlin—
Courant rule. For small committee sizes K it finds committees that (approximately) min-
imize the number of voters that do not approve any of the committee members. Further,
as opposed to Algorithm 1, its running time is far more manageable. A single execution of
function Search requires time O(p’), which is feasible for some realistic values of p and K.
Running this function [—Ine/ (7—;1)1{ | times may be challenging, but in practice one can
break the algorithm after any number of Search executions (this, of course, would deteri-
orate the approximation guarantee, but the computed committee may still be sufficiently
good).

5. Algorithms for the Unrestricted Variant

So far we have focused on the MaxCover problem where element frequencies were either
upper- or lower-bounded. Now we consider the completely unrestricted variant of the prob-
lem. In this case we give exponential-time approximation schemes that, unfortunately, are

not FPT.

3. We assume the sets in C* are ordered in some arbitrary way.

706

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

Algorithm 3: An approximation algorithm for the unrestricted MaxCover problem.

Parameters:
(N, S, K) — input MaxCover instance
X — a parameter of the algorithm
A(-) — an exact algorithm for MaxCover (returns the set of sets to be used in the cover)
C={k
for i < 1 to X do
Cov + {e € N :3gcce € S} ;
Shest +— argmaxgerg, s, neol{e € N\ Cov:e€ St;
C + CU{Spest}
uCov + N\ {e € N :Jgcce € S} ;
C' + A(uCov, (K — X),S\ C) ;
return C U C’

The main idea, which is similar to that of Cygan et al. (2009) and of Croce and
Paschos (2012), is to solve part of the problem using an exact algorithm and to solve the re-
maining part using the greedy algorithm (i.e., the algorithm that we focus on in Section 4.2).
There are two possible ways in which this idea can be implemented: Either we can first run
the exact algorithm and then solve the remaining part of the instance using the greedy
algorithm, or the other way round. We consider both approaches, though a variant of the
“brute-force-first-then-greedy” approach appears to be superior (at least as long as we do
not have exact algorithms that are significantly faster than a brute-force approach). We
start with an analysis of Algorithm 3, which first runs the greedy part and then completes
it using an exact algorithm.

Theorem 5.1. Let A be an exact algorithm for the MaxCover problem with time com-

plezity f(K,n,m). For each instance I = (N,S,K) of MaxCover and for each X,
X

0 < X < K, Algorithm 8 returns an (1 — %e‘ﬁ -approzimate solution for I and runs

in time f(K — X,|N|,|S]) + poly(|]).

Proof. Establishing the running time of the algorithm is immediate and, thus, below we
focus on showing the approximation ratio.

Let I = (N,S,K) be an instance of MaxCover and let X be an integer, 1 < X < K.
We rename the sets in S so that S = {S,...,S5,,} and Si,...Sx are the consecutive sets
selected in the for loop in Algorithm 3 (i.e., in the greedy part of the algorithm). For each 4,
1<i<m,let ¢; =|S;\ (S1U---US;_1)|- Let Nopr denote the set of elements covered by
some optimal solution and set OPT = |Nopt|. Let Cov; denote the set S;U---US;_1. (That
is, Cov; is the set of elements in the variable Cov in Algorithm 3 right before executing the
i’th iteration of the for loop. Of course, Cov; = ().) Naturally, for each i, 1 < i < m, we
have |Cov;| = 23;11 Ci.

We claim that for each i, 1 <7 < X, there exist (K — i) sets from S\ {S1,...S;—1} that
cover at least KI; ¢ fraction of the elements from Nopr \ Cov;—1. Why is this the case? First,
note that there are some K sets from S\ {S1,...S;—1} that cover Nopr \ Cov;_1 (it suffices
to take the K sets from some optimal solution, if need be, replace those that belong to
{S1,...,S;—1} with some arbitrarily chosen ones from S\ {S1,...,5;-1}). Let Q1,...,Qxk
be these K sets. Consider some arbitrary assignment of the elements from Nopt \ Cov,;_; to

707

SKOWRON & FALISZEWSKI

the sets @1, ..., Qk, such that each element is assigned to exactly one set. Further, consider

an ordering of these sets according to the increasing number of assigned elements. If the
1’th set in the ordering is assigned at most fraction % of the elements, then each of the sets
preceding the i’th one in the ordering also is assigned at most fraction % of the elements.

In consequence, the last K — i sets from the ordering cover at least a fraction K[; ¢ of the
elements. On the other hand, if the i’th set in the order is assigned more than fraction %
of the elements then the following sets also are and, once again, the last K — i sets cover at

least a fraction KK_ ¢ of the elements.

In consequence, we see that for each i, 1 <i < X, ¢; > %(OPT — Z;_:ll ¢j). The reason

is that since there are K —i sets among S\{S1,...,S;_1} that cover fraction % of elements
from Nopr \ Cov;, at least one of them must cover %(OPT — |Cov;|) such elements. S;
is chosen as a set that covers the largest number of elements from N — Cov;. It covers ¢;

elements from N — Cov;, and, thus:
1 1 i—1
¢; > 72 (OPT — | Covi|) = = (OPT — Z;cj).
]:
We can now proceed with computing the algorithm’s approximation ratio. By the above
reasoning, we observe that the solution provided by Algorithm 3 covers at least

X

X X
K-X X K-X
c:g ¢+ e (OPT—E ci):Eg ¢+ % OPT
i=1 i=1 i=1

elements. Now, we assess the minimal value of Zfi 1 ¢;- Minimization of Zfi 1 ¢ can be
viewed as a linear programming task with the following constraints: for each i, 1 <4 < X
¢ > +(OPT — Z;;ll ¢;). Since we have X variables and X constraints, we know that the
minimum is achieved when each constraint is satisfied with equality—see, e.g., the textbook
of Vazirani (2001). Thus a solution to our linear program consists of values ¢1 min; - - - » €X,min
that, for each i, 1 <i < X, satisfy ¢; min = %(OPT — 23;11 ¢jmin). By induction, we show

that for each i, 1 <i < X, ¢; min = % (%)i_l OPT. Indeed, the claim is true for ¢ = 1:

1
min — 7~ PT
C1, KO
For the inductive step, let us assume that our claim holds for ¢i min;---;¢imin. We show
that it also holds for ¢(;41) min:
1 i
c(i—i—l),min = E OPT — Z Cj min
j=1
1 1 (K-1)""
=—=0PT[|1-—= A
7ot [1- £ 3 (55
1 1 _ (E)Z>
=—OPT(1-— K
K—1
K (K 1- (%)

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

Algorithm 4: An approximation algorithm for the MaxCover problem.

Parameters:
(N, S, K) — input MaxCover instance
X — the parameter of the algorithm
C={}
Cbest = {}a
foreach (K — X)-element subset C of S do
fori+ (K- X+1) to K do
Cov < {e € N : Jgcce € S}
C CU{Shest} ’
Chpest < better solution among Chs; and C

return Cpes:
1 K—1\' 1 K-—1\'

Thus we can lower-bound the number of elements covered by Algorithm 3 as follows:

i

I
=
NE
>
N
o
S
H

.
Il

|

o
!
=

Sk
N\
7N\
‘N
=|
N
g
‘N
= |
=
N——

X -5 K-x
RO K
X K -1\~ K—-X
X
K

Y
O
)
—
—
|
=

o

Il

@)

o]

—
N~/ —
S~~~

This completes the proof. O

The idea of the proof of Theorem 5.1 is similar to that used by Cygan et al. (2009) for
the problem of weighted set cover. Theorem 5.1 gives a good-quality result provided that we
know an optimal algorithm with better time complexity than exhaustive search. Otherwise,
we can obtain even better results using Algorithm 4, which first performs brute-force search
and then completes it using the greedy algorithm.

Theorem 5.2. For each instance I = (N,S,K) of MaxCover and each integer X,
0 < X < K, Algorithm 4 computes an (1 — %e‘l)-approm‘mate solution for I in time
(x"x) + poly(|T]).

Proof. Let I = (N, S, K) be our input instance and let C*, C* C S, denote some optimal
solution. Let C% denote a subset of (K — X)-elements from C* that together cover the

709

SKOWRON & FALISZEWSKI

largest number of elements. Thus the sets from C% cover at least a fraction KX of all the
elements covered by the optimal solution. Consider the problem of covering the elements
uncovered by C% with X sets from (S\ C%). We know that (C*\ C%) is an optimal solution
for this problem. On the other hand, we also know that the greedy algorithm achieves
approximation ratio (1 — 1/e) for the problem (Hochbaum, 1996). Thus, the approximation
ratio for the original problem is:

(R () (-3

It is immediate to establish the running time of the algorithm and so the proof is complete.

O

If we wish to solve MaxVertexCover rather than MaxCover, then in Algorithm 4 we
should replace the greedy approximation algorithm with the %-approximation algorithm of
Ageev and Sviridenko (1999).

Corollary 5.1. There exists an algorithm that given an instance I = (G, K) of MaxVer-
texCover and an integer X, 1 < X < K, outputs a (1 — %)-appm:m’mate solution for I in

time (") + poly(|I|), where m is the number of vertices of graph G.

It is quite evident that as long as algorithm A used within Algorithm 3 is the simple
brute-force algorithm that tries all possible solutions, then Algorithm 4 is superior; in the
same time it achieves a better approximation ratio. It turns out that, for the case of
MaxVertexCover, Algorithm 4 (in the variant from Corollary 5.1) is also better than the
algorithm of Croce and Paschos (2012).%

The idea behind the algorithm of Croce and Paschos (2012) for MaxVertexCover is similar
to that behind our Algorithm 4. Specifically, given two algorithms for MaxVertexCover, an
approximation algorithm A, and an exact algorithm A., for a given value X it first uses
A, to find an optimal solution that uses K — X vertices (out of the K vertices that we are
allowed to use in the full solution), then it removes these K — X vertices and solves the

remaining part of the problem using A,. Assuming that 7, is the approximation ratio of the

algorithm A,, this approach results in the approximation ratio equal to <% + Ya (1 — %)2)

Below we compare Algorithm 4 (version from Corollary 5.1) with the algorithm of Croce
and Paschos (2012). As the components A, and A, we use, respectively, the %—approximation
algorithm of Ageev and Sviridenko (1999) and the brute-force algorithm that tries all possible
solutions. The best known exact algorithm for MaxVertexCover is due to Cai (2008) and has
the complexity O(m0'792K), but this algorithm uses an exponential amount of space. Since
exponential space complexity might be much less practical than exponential time complexity,
we decided to use the brute-force approach (to the best of our knowledge, there is no better
exact algorithm running in polynomial space). We present our comparison in Figure 1. The

4. Algorithm 3 cannot be directly compared to the algorithm of Croce and Paschos (2012) for the following
reason. Algorithm 3 uses specifically a greedy algorithm which is the best known approximation algo-
rithm for MaxCover, but which is suboptimal for MaxVertexCover. In contrast, the algorithm of Croce
and Paschos (2012) can use, e.g., the %-approximation algorithm of Ageev and Sviridenko (1999). One
could, of course, try to use the algorithm of Ageev and Sviridenko in Algorithm 3, but our analysis does
not work for this case.

710

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

2 08|
S e
506"
=
204
8 — Algorithm 4
202} —- Croce and Paschos
z
O L L L L
0 0.2 0.4 0.6 0.8 1
(K — X)/K

Figure 1: Comparison of the approximation ratios of Algorithm 4 and the algorithm of Croce
and Paschos (2012) for MaxVertexCover.

x-axis represents the parameter K;{X , measuring the fraction of the solution obtained using

the exact algorithm (for 0 we use the approximation algorithm alone and for 1 we use the
exact algorithm alone). On the y-axis we give the guaranteed approximation ratios. In other
words, for each point on the z-axis we set the X parameters of the algorithms to be equal,
so that their running times are the same, and we compare their approximation guarantees.

We conclude that, as long as we use the brute-force algorithm as the exact one,
Algorithm 4 gives considerably better approximation guarantees than that of Croce and
Paschos. Figure 1 also exposes one potential weakness of the algorithm of Croce and Paschos.
Apparently, for some cases increasing the complexity of the algorithm results in the decrease
of its approximation guarantee.

It is quite interesting to understand the reasons behind the differing performance of
Algorithm 4 and that of Croce and Paschos. In some sense, the algorithms are very similar.
If we use the brute-force algorithm as the exact one in the algorithm of Croce and Paschos,
then the main difference is that our algorithm runs the approximation algorithm for each
possible solution tried by the brute-force algorithm, and Croce and Paschos’s algorithm only
runs the approximation algorithm once, for the best partial solution. In effect, our algorithm
can exploit situations where it is better when the exact algorithm does not find an optimal
solution for the subproblem, but rather leaves ground for the approximation algorithm to
do well. Naturally, such strategy is only possible if we have additional knowledge of the
structure of the exact algorithm (here, the brute-force algorithm). The result of Croce and
Paschos pays the price for being more general and being able to use any combination of the
approximation algorithm and the exact algorithm.

6. Conclusions and Future Work

We have studied approximation algorithms for the Chamberlin-Courant voting rule, for the
case of approval utilities. We have phrased our technical results in terms of the MaxCover
problem, but now we take a step back and consider the results from the point of view of
multiwinner voting: As long as the elected committee is small (that is, the value K in the
given MaxCover instance is small) and each voter approves of a small, bounded, number of

711

SKOWRON & FALISZEWSKI

candidates, the Chamberlin-Courant rule can be very well approximated (the exponential
parts of the running times of our algorithms are low in this setting; at least from a theoretical
perspective). If we require that each voter approves of some fraction of the candidates,
the standard greedy algorithm becomes a polynomial-time approximation scheme. For the
completely unrestricted case, we gave an exponential approximation scheme, in which it
is possible to seamlessly exchange the quality of the solution for the running time. While
the reader may feel queasy about using approximation algorithms in place of an election
rule, Skowron et al. (2015a) give several examples where this indeed would be practical
and desirable; Faliszewski et al. (2016) also discuss this issue carefully. For example, the
use of approximation algorithms can be easily justified for applications reaching beyond the
political domain (e.g., for using election rules in recommendation systems or as a tool in
resource allocation), where it is important to find as good a solution as possible, but it is
not crucial to find exactly the best one. For the high-stake domains, including, e.g., political
elections, it is sometimes appealing to view approximation algorithms as full-fledged election
rules. Indeed, it is common to consider greedy algorithms for known rules as new election
methods. Further, such algorithms often share good properties of the original rules, and
sometimes even exhibit new desired characteristics (Elkind et al., 2017).

There are several interesting directions for future research that stem from our work. For
example, is it possible to obtain FPT approximation schemes for MaxCover with lower-
bounded element frequencies? What is the exact parameterized complexity of MaxCover
(with or without lower-bounded frequencies; we have quickly observed its W|[2]-hardness and
its membership in W[P])? We are also interested in the exact complexity of MaxCover with
frequencies lower-bounded by p, for the case where we require the ratio /m to be at least
some given value o, 0 < a < 1 (this corresponds to the scenario where we require each voter
to approve of at least a certain fraction of the candidates)? We have given a PTAS for this
variant of the problem (see Theorem 4.3) and have shown its membership in 2, but we did
not manage to prove its completeness for any particular complexity class.

Acknowledgements

We would like to thank the very helpful reviewers who commented on the early version of
this paper. The authors were supported by the National Science Centre, Poland, under
project 2012/06/M/ST1/00358. During the later parts of the project, Piotr Faliszewski
was supported by AGH grant 11.11.230.337 (statutory research) and Piotr Skowron was
supported by a Humboldt Research Fellowship for Postdoctoral Researchers.

References

Ageev, A. and Sviridenko, M. (1999). Approximation algorithms for maximum coverage and
max cut with given sizes of parts. In Proceedings of Integer Programming and Combina-
torial Optimization, pages 17-30. Springer Berlin Heidelberg.

Aragones, E., Gilboa, 1., and Weiss, A. (2011). Making statements and approval voting.
Theory and decision, 71(4):461-472.

712

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

Aziz, H., Gaspers, S., Gudmundsson, J., Mackenzie, S., Mattei, N., and Walsh, T. (2015).
Computational aspects of multi-winner approval voting. In Proceedings of the 14th Inter-
national Conference on Autonomous Agents and Multiagent Systems, pages 107-115.

Betzler, N., Slinko, A., and Uhlmann, J. (2013). On the computation of fully proportional
representation. Journal of Artificial Intelligence Research, 47:475-519.

Blaser, M. (2003). Computing small partial coverings. Information Processing Letters,

85(6):327-331.

Bonnet, E., Paschos, V., and Sikora, F. (2016). Parameterized exact and approximation al-
gorithms for maximum k-set cover and related satisfiability problems. RAIRO-Theoretical
Informatics and Applications, 50(3):227-240.

Brams, S. J. and Fishburn, P. C. (2010). Going from theory to practice: The mixed success
of approval voting. In Laslier, J.-F. and Sanver, M. R., editors, Handbook on Approval
Voting, pages 19-37. Springer.

Brams, S. J. and Herschbach, D. R. (2001). The science of elections. Science, 292(5521):1449.

Cai, L. (2008). Parameterized complexity of cardinality constrained optimization problems.
The Computer Journal, 51(1):102-121.

Caragiannis, 1., Kalaitzis, D., and Markakis, E. (2010). Approximation algorithms and mech-
anism design for minimax approval voting. In Proceedings of the 24th AAAI Conference
on Artificial Intelligence, pages 7T37-742. AAAI Press.

Cesati, M. (2003). The Turing way to parameterized complexity. Journal of Computer and
System Sciences, 67(4):654—685.

Chamberlin, B. and Courant, P. (1983). Representative deliberations and representative
decisions: Proportional representation and the Borda rule. American Political Science
Review, 77(3):718-733.

Croce, F. and Paschos, V. (2012). Efficient algorithms for the max k-vertex cover problem.
Theoretical Computer Science, 28(3):295-309.

Cygan, M., Fomin, F., Kowalik, .., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M.,
and Saurabh, S. (2015). Parameterized Algorithms. Springer.

Cygan, M., Kowalik, L., and Wykurz, M. (2009). Exponential-time approximation of
weighted set cover. Information Processing Letters, 109(16):957-961.

Dey, P., Talmon, N., and Handel, O. (2017). Proportional representation in vote streams. In
Proceedings of the 16th International Conference on Autonomous Agents and Multiagent
Systems, pages 15-23.

Downey, R. and Fellows, M. (2013). Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer.

713

SKOWRON & FALISZEWSKI

Elkind, E., Faliszewski, P., Skowron, P., and Slinko, A. (2017). Properties of multiwinner
voting rules. Social Choice and Welfare, 48(3):599-632.

Faliszewski, P., Sawicki, J., Schaefer, R., and Smotka, M. (2017a). Multiwinner voting in
genetic algorithms for solving ill-posed global optimization problems. IEEFE Intelligent
Systems, 32(1):40-48.

Faliszewski, P., Skowron, P., Slinko, A., and Talmon, N. (2017b). Multiwinner rules on
paths from k-Borda to Chamberlin—Courant. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence. To appear.

Faliszewski, P., Skowron, P., Slinko, A., and Talmon, N. (2017c). Multiwinner voting: A
new challenge for social choice theory. In Endriss, U., editor, Trends in Computational
Social Choice. Al Access. To appear.

Faliszewski, P., Slinko, A., Stahl, K., and Talmon, N. (2016). Achieving fully proportional
representation by clustering voters. In Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems, pages 296-304.

Feige, U. (1998). A threshold of Inn for approximating set cover. Journal of the ACM,
45(4):634-652.

Flum, J. and Grohe, M. (2006). Parameterized Complexity Theory. Springer-Verlag.

Guo, J., Niedermeier, R., and Wernicke, S. (2007). Parameterized complexity of vertex cover
variants. Theoretical Computer Science, 41(3):501-520.

Hochbaum, D. (1996). Approximating covering and packing problems: Set cover, vertex
cover, independent set, and related problems. In Hochbaum, D., editor, Approximation

Algorithms for NP-Hard Problems, pages 94-143. PWS Publishing.

Kilgour, D. (2010). Approval balloting for multi-winner elections. In Laslier, J. and Sanver,
R., editors, Handbook on Approval Voting, pages 105-124. Springer.

Kintala, C. and Fisher, P. (1980). Refining nondeterminism in relativized polynomial-time
bounded computations. SIAM Journal on Computing, 9(1):46-53.

Kuo, T., Lin, K. C., and Tsai, M. (2015). Maximizing submodular set function with con-
nectivity constraint: Theory and application to networks. IEEE/ACM Transactions on
Networking, 23(2):533-546.

Lackner, M. and Skowron, P. (2017). Consistent approval-based multi-winner rules. Tech-
nical Report arXiv:1704.02453 [cs.DS], arXiv.org.

Laslier, J.-F. and Van der Straeten, K. (2016). Strategic voting in multi-winners elec-
tions with approval balloting: a theory for large electorates. Social Choice and Welfare,

47(3):559-587.

LeGrand, R., Markakis, E., and Mehta, A. (2007). Some results on approximating the mini-
max solution in approval voting. In Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 1193-1195.

714

APPROXIMATING THE MAXCOVER PROBLEM WITH BOUNDED FREQUENCIES IN FPT TIME

Lu, T. and Boutilier, C. (2011). Budgeted social choice: From consensus to personalized
decision making. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, pages 280-286.

Lu, T. and Boutilier, C. (2015). Value directed compression of large-scale assignment prob-
lems. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, pages 1182—
1190.

Marx, D. (2008). Parameterized complexity and approximation algorithms. The Computer
Journal, 51(1):60-78.

Monroe, B. (1995). Fully proportional representation. American Political Science Review,

89(4):925-940.
Niedermeier, R. (2006). Invitation to Fized-Parameter Algorithms. Oxford University Press.

Oren, J. and Lucier, B. (2014). Online (budgeted) social choice. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence, pages 1456—1462.

Procaccia, A., Rosenschein, J., and Zohar, A. (2008). On the complexity of achieving
proportional representation. Social Choice and Welfare, 30(3):353-362.

Sawicki, J., Smotka, M., Los, M., Schaefer, R., and Faliszewski, P. (2017). Multiwinner vot-
ing in genetic algorithms for solving ill-posed global optimization problems. In Proceedings
of the 20th International Conference on the Applications of FEvolutionary Computation,
pages 266-281.

Skowron, P., Faliszewski, P., and Lang, J. (2016). Finding a collective set of items: From pro-
portional multirepresentation to group recommendation. Artificial Intelligence, 241:191—
216.

Skowron, P., Faliszewski, P., and Slinko, A. (2015a). Achieving fully proportional represen-
tation: Approximability results. Artificial Intelligence, 222:67-103.

Skowron, P., Lackner, M., Brill, M., Peters, D., and Elkind, E. (2017). Proportional rankings.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence. To
appear.

Skowron, P., Yu, L., Faliszewski, P., and Elkind, E. (2015b). The complexity of fully
proportional representation for single-crossing electorates. Theoretical Computer Science,
569:43-57.

Talmon, N. (2017). Structured proportional representation. In Proceedings of the 16th
International Conference on Autonomous Agents and Multiagent Systems, pages 633—641.

Thiele, T. N. (1895). Om flerfoldsvalg. In Oversigt over det Kongelige Danske Videnskabernes
Selskabs Forhandlinger, pages 415-441.

Vandin, F., Upfal, E., and Raphael, B. J. (2011). Algorithms for detecting significantly
mutated pathways in cancer. Journal of Computational Biology, 18(3):507-522.

715

SKOWRON & FALISZEWSKI

Vazirani, V. (2001). Approxzimation Algorithms. Springer-Verlag.

Yu, L., Chan, H., and Elkind, E. (2013). Multiwinner elections under preferences that are
single-peaked on a tree. In Proceedings of the 23rd International Joint Conference on
Artificial Intelligence, pages 425-431. AAAI Press.

716

	1 Introduction
	1.1 Applications of the Chamberlin–Courant Rule
	1.2 Approval Ballots
	1.3 Our Contribution
	1.4 Related Work

	2 Preliminaries
	3 Worst-Case Complexity Results
	4 Algorithms for the Bounded Frequencies Cases
	4.1 The MaxCover Problem with Upper Bounded Frequencies
	4.2 The MaxCover Problem with Lower-Bounded Frequencies
	4.3 The MinNonCovered Problem with Upper-Bounded Frequencies

	5 Algorithms for the Unrestricted Variant
	6 Conclusions and Future Work

