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Abstract

Multi-modal semantics, which aims to ground semantic representations in perception, has
relied on feature norms or raw image data for perceptual input. In this paper we examine
grounding semantic representations in raw auditory data, using standard evaluations for
multi-modal semantics. After having shown the quality of such auditorily grounded repre-
sentations, we show how they can be applied to tasks where auditory perception is relevant,
including two unsupervised categorization experiments, and provide further analysis. We
find that features transfered from deep neural networks outperform bag of audio words
approaches. To our knowledge, this is the first work to construct multi-modal models from
a combination of textual information and auditory information extracted from deep neural
networks, and the first work to evaluate the performance of tri-modal (textual, visual and
auditory) semantic models.

1. Introduction

Distributional models (Turney & Pantel, 2010; Clark, 2015) have proved useful for a variety
of core artificial intelligence tasks that revolve around natural language understanding. The
fact that such models represent the meaning of a word as a distribution over other words,
however, implies that they suffer from the grounding problem (Harnad, 1990); i.e. they
do not account for the fact that human semantic knowledge is grounded in the perceptual
system (Louwerse, 2008). Motivated by human concept acquisition, the field of multi-modal
semantics enhances linguistic or textual representations with extra-linguistic perceptual
input. Vision-based multi-modal semantic models have become increasingly popular over
recent years, and have been shown to outperform language-only models on a range of tasks,
including modeling semantic similarity and relatedness (Silberer & Lapata, 2012; Bruni,
Tran, & Baroni, 2014), lexical entailment (Kiela, Rimell, Vuli¢, & Clark, 2015a), predicting
compositionality (Roller & Schulte im Walde, 2013), bilingual lexicon induction (Kiela,
Vuli¢, & Clark, 2015b) and metaphor identification (Shutova, Kiela, & Maillard, 2016). In
fact, although surrogates of human semantic knowledge (i.e., feature norms elicited from
human subjects) have also been used, raw image data has become the de facto perceptual
modality in which to ground multi-modal models. See the review of Baroni (2016) for an
excellent overview of visually grounded multi-modal models.
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If the objective is to ground semantic representations in perceptual information, though,
why stop at image data? The meaning of wviolin is surely not only grounded in its visual
properties, such as shape, color and texture, but also in its sound, pitch and timbre. To
understand how perceptual input leads to conceptual representation, we should cover as
many perceptual modalities as possible. Recent preliminary studies have found that it is
possible to derive semantic representations from sound data and that these representations
can effectively be used in multi-modal models (Lopopolo & van Miltenburg, 2015; Kiela
& Clark, 2015). Inspired by the “bag of visual words” (BoVW) (Sivic & Zisserman, 2003)
approach in vision-based multi-modal semantics, these works make use of the so-called “bag
of audio words” (BoAW) algorithm to obtain auditory-grounded representations.

In this work, we extend these preliminary results in various new directions. First,
we introduce a deep convolutional neural network model for learning auditorily-grounded
representations, called “neural audio embeddings” (NAE), and compare it to BoAW. We
explore the transferability of NAE representations when trained on different types of data—
either data from a narrow set of categories, such as musical instruments, or a broader
set, such as naturally occurring environmental sounds (Section 5.1). We also provide a
qualitative analysis (Section 5.2) and examine whether pre-training the network architecture
on a much larger dataset improves performance (Section 5.3). Second, we show that the
learned representations can be fused with other modalities, and examine two well-known
deterministic multi-modal fusion methods (Section 5.4). We show that, in both cases,
auditorily-grounded representations outperform text-only representations on the well-known
MEN similarity and relatedness benchmark. In addition, we show that a tri-modal model,
that incorporates textual, visual and auditory information, works even better. Finally,
we show that the learned representations are valuable in downstream tasks that rely on
auditory information, in this case unsupervised categorization (Section 5.5).

To our knowledge, this is the first work to construct multi-modal models from a combina-
tion of textual information and auditory information extracted from deep neural networks,
and the first work to evaluate the performance of tri-modal (textual, visual and auditory)
semantic models.

2. Related Work

Information processing in the brain can be roughly described to occur on three levels: per-
ceptual input, conceptual representation and symbolic reasoning (Gazzaniga, 1995). Mod-
eling the latter has a long history in Al and sprang from its “good old fashioned” roots
(Haugeland, 1985), while the former has been advanced greatly through the application
of pattern recognition to perceptual input (e.g. LeCun, Bengio, & Hinton, 2015). Un-
derstanding the middle level is arguably more of an open problem (Bengio, Courville, &
Vincent, 2013): how is it that perceptual input leads to conceptual representations that
can be processed and reasoned with? A key observation is that conceptual representations
are, through perception, grounded in physical reality and sensorimotor experience (Harnad,
1990; Louwerse, 2008). There has been a surge of recent work on perceptually grounded
semantic models that try to account for this fact, which have outperformed state-of-the-art
text-based methods on a variety of natural language processing tasks.
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2.1 Perceptual Grounding

Perceptually grounded models learn semantic representations from both textual and percep-
tual input. One method for obtaining perceptual representations is to rely on direct human
semantic knowledge, in the shape of feature or association norms (e.g. Nelson, McEvoy, ,
& Schreiber, 2004; McRae, Cree, Seidenberg, & McNorgan, 2005), which have been used
successfully in a range of multi-modal models (Silberer & Lapata, 2012; Roller & Schulte im
Walde, 2013; Hill & Korhonen, 2014; Bulat, Kiela, & Clark, 2016). However, norms are
elicited from human annotators and as a consequence are limited in coverage and relatively
expensive to obtain. An alternative approach, that does not suffer from these limitations,
is to make use of raw data as the source of perceptual information (Feng & Lapata, 2010;
Leong & Mihalcea, 2011; Bruni et al., 2014). Raw data, for instance in the form of images,
is cheap, plentiful, easy to obtain and has much better coverage (Baroni, 2016).

A popular approach has been to collect images associated with a concept, and then lay
out each image as a set of keypoints on a dense grid, where each keypoint is represented
by a robust local feature descriptor such as SIFT (Lowe, 2004). These local descriptors are
subsequently clustered into a set of “visual words” using a standard clustering algorithm
such as k-means and then quantized into vector representations by comparing the descriptors
with the centroids. Kiela and Bottou (2014) introduced a more sophisticated approach that
obtains much better visual representations (i.e. they perform much better on similarity and
relatedness datasets) by transfering features from convolutional neural networks that were
pre-trained on object recognition and aggregating these into a single concept representation.
Various simple ways of aggregating image representations into visual representations for a
concept have been proposed, such as taking the mean or the elementwise maximum of the
individual image representations.

Ideally, one would jointly learn multi-modal representations from parallel multi-modal
data, such as text containing images (Feng & Lapata, 2010) or images described with
speech (Synnaeve, Versteegh, & Dupoux, 2014), but such data is hard to obtain, has limited
coverage and can be noisy. Hence, image representations are often learned independently.
Aggregated visual representations are subsequently combined with a traditional linguistic
distributional space to form a multi-modal model. Mixing can be done in a variety of ways,
ranging from simple concatenation to more sophisticated fusion methods (Bruni et al.,
2014).

2.2 Auditory Representations

As this work intends to show, the source of perceptual input need not to be limited to the
visual domain. Recent work in multi-modal semantics has started to go beyond vision as
the single source of raw perceptual input, with preliminary investigations of auditory and
even olfactory representations (Lopopolo & van Miltenburg, 2015; Kiela & Clark, 2015;
Kiela, Bulat, & Clark, 2015). Auditory grounding was achieved by dividing sound files into
frames, clustering these as “audio words” and subsequently quantizing them into represen-
tations by comparing frame descriptors with the centroids. More recently, Vijayakumar,
Vedantam, and Parikh (2017) proposed an embedding scheme that learns specialized word
embeddings grounded in sounds, using a variety of audio features. These techniques were
found to work well for modeling human similarity and relatedness judgments and related
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Dataset MEN | AMEN
Textual 3000 258
Auditory | 2590 233

Table 1: Number of concept pairs for which representations are available in each modality.

experiments. Here, we build on that work, using deep learning models that lead to auditory
representations of a higher quality.

Various methods for general-purpose (i.e., as opposed to feature-engineered) auditory
represention learning have been proposed in the literature. In a similar fashion to bag-
of-words in computational linguistics and bag-of-visual-words in computer vision, bag-of-
audio-words has successfully been applied in a variety of tasks, including e.g. event classifi-
cation (Pancoast & Akbacak, 2012), audio document retrieval (Chechik, Ie, Rehn, Bengio,
& Lyon, 2008), copy detection (Uchida, Sakazawa, Agrawal, & Akbacak, 2010) and emotion
in speech classification (Schmitt, Ringeval, & Schuller, 2016). Recently there has been more
interest in applying deep learning methods to auditory signal processing (Dahl, Yu, Deng,
& Acero, 2012), both in end-to-end systems (Trigeorgis, Ringeval, Brueckner, Marchi, Nico-
laou, Zafeiriou, et al., 2016) and with an explicit focus on representation learning (Hamel &
Eck, 2010). Such methods have been successful in a variety of tasks, including music recom-
mendation (Van den Oord, Dieleman, & Schrauwen, 2013), classification (Dieleman, Brakel,
& Schrauwen, 2011), annotation (Hamel, Lemieux, Bengio, & Eck, 2011) and retrieval (We-
ston, Bengio, & Hamel, 2011). In work that is most related to this article, auditory feature
extraction using deep learning was successfully applied to musical audio analysis (Dieleman,
2016). Here, we compare BoAW representations with convolutional neural network-derived
features on tasks in semantics and show how NAE-grounded representations work better
than the alternatives.

3. Evaluation

We evaluate on a standard similarity and relatedness dataset: the MEN test collection
(Bruni et al., 2014). This dataset consists of concept pairs together with a human-annotated
relatedness score. Relatedness here means that it assigns high scores to pairs such as teacher-
instructor and teacher-student but low scores to unrelated pairs such as jellyfish-bakery. The
human-assigned judgments were obtained by crowdsourcing using Amazon Mechanical Turk,
only accepting English native speakers as annotators. The full dataset consists of 3,000
word pairs, randomly selected from words that occur at least 700 times in the Wackypedia
corpora (Baroni, Bernardini, Ferraresi, & Zanchetta, 2009) and were used as tags for at
least 50 times in the ESP game dataset (Von Ahn & Dabbish, 2004). Inter-annotator
agreement was not calculated over all annotators, but was gauged separately by having
two annotators annotate the full dataset and examining their agreement!: the Spearman
correlation between their judgments was 0.68, while the correlation of their average ratings

1. https://staff.fnwi.uva.nl/e.bruni/MEN
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MEN human rating | relevant
automobile-car 1.00 v
rain-storm 0.98 v
sun-sunshine 0.94
bird-eagle 0.88 v
guitar-piano 0.86 v
colour-red 0.82
foliage-tulip 0.64
dessert-orange 0.5
hawk-insects 0.42 v
frozen-shop 0.26
monkeys-restaurant 0.1 v
cheetah-phone 0.06 v

Table 2: Illustrative examples of pairs in the datasets where auditory information is or is
not relevant, together with their corresponding similarity rating as provided by
human annotators.

with the MEN scores is at 0.84. These numbers serve as an indication of the upper bound
on the dataset.

Evidence suggests that the inclusion of visual representations only improves performance
for certain concepts, and that in some cases the introduction of visual information is detri-
mental to performance on similarity and relatedness tasks (Kiela, Hill, Korhonen, & Clark,
2014). The same is likely to be true for other perceptual modalities: in the case of compar-
isons such as guitar-piano, the auditory modality is certainly meaningful, whereas in the
case of democracy-anarchism it is probably less so. This is even more likely to be the case
for less dominant modalities such as auditory perception.

Therefore, we had two graduate students annotate the MEN dataset according to
whether auditory perception is relevant to the pairwise comparison. The annotation crite-
rion was as follows: if both concepts in a pairwise comparison have a distinctive associated
sound, the modality is deemed relevant. Inter-annotator agreement was high, with k = 0.93.
Some examples of relevant pairs can be found in Table 2. Hence, we now have two eval-
uation datasets for conceptual similarity and relatedness: the MEN test collection MEN,
and its auditory-relevant subset AMEN. Due to the nature of the auditory data sources,
it is not possible to build auditory representations for all concepts in the test sets. Hence,
we only evaluate on the covered subsets to ensure a fair comparison, that is, we only use
the comparisons that have coverage in both the textual and auditory modalities. Table 1
shows how much of the test sets are covered for each modality.
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4. Approach

One reason for using raw image data in multi-modal models is that there are many high
quality resources available that contain tagged images, such as ImageNet (Deng, Dong,
Socher, Li, Li, & Fei-Fei, 2009) and the ESP Game dataset (Von Ahn & Dabbish, 2004).
Such resources do not exist for audio files, so instead we use the online search engine
Freesound? (Font, Roma, & Serra, 2013) to obtain audio files. Freesound is a collaborative
database released under Creative Commons licenses, in the form of snippets, samples and
recordings, that is aimed at sound artists. The Freesound API allows users to easily search
for audio files that have been tagged using certain keywords. For each of the concepts in the
evaluation datasets, we used the Freesound API to obtain samples encoded in the standard
open source OGG format®. The Freesound API allows for various degrees of keyword
matching: we opted for the strictest keyword matching, in that the audio file needs to have
been purposely tagged with the given word (the alternative includes searching the text
description for matching keywords).

4.1 Auditory Representations

We experiment with two methods for obtaining auditory representations: bag-of-audio
words and transfering a layer from a trained convolutional neural network. The former
is a relatively simple approach that does not take into account any interdependencies be-
tween local feature descriptors, whereas the latter is more sophisticated and able to extract
more elaborate patterns and interactions. While these methods vary significantly, in that
they use different input features (local feature descriptors of frames versus spectrograms),
their representations are constructed from the same sound files, allowing us to compare the
two methods.

4.1.1 BAG oF Aupio WORDs (BOAW)

A common approach to obtaining acoustic features of audio files is the Mel-scale Frequency
Cepstral Coefficient (MFCC) (O’Shaughnessy, 1987). MFCC features are abundant in a
variety of applications in audio signal processing, ranging from audio information retrieval,
to speech and speaker recognition, and music analysis (Eronen, 2003). Such features are
derived from the mel-frequency cepstrum representation of an audio fragment (Stevens,
Volkmann, & Newman, 1937). In MFCC, frequency bands are spaced along the mel scale,
which has the advantage that it approximates human auditory perception more closely than
e.g. linearly-spaced frequency bands. Hence, MFCC takes human perceptual sensitivity to
audio frequencies into consideration, which makes it suitable for e.g. compression and
recognition tasks, but also for our current objective of modeling auditory perception.
After having obtained MFCC descriptors, we cluster them using mini-batch k-means
(Sculley, 2010) and quantize the descriptors into a “bag of audio words” (BoAW) (Foote,
1997) representation by comparing the MFCC descriptors to the cluster centroids. We set
k = 300 — a number which has been found to work well for such representations (see, e.g.
Kiela & Clark, 2015) — but do not apply any additional weighting. See Figure 1 for an

2. http://www.freesound.org.
3. http://www.vorbis.com.
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1 2 3 4

| Cluster assignment |

m

MFCC | MFCC | MFCC | MFCC | MFCC | MFCC | MFCC | MFCC | MFCC | MFCC | MFCC | MFCC |

Figure 1: Tlustration of the BoOAW method. Each of the MFCC descriptors is assigned
to a cluster. Assignments are subsequently quantized into a bag of audio words
representation. In this illustration, ¥ = 4 in k-means, which means there are
four clusters and the value for each of the k clusters is the number of datapoints
belonging to it. The colors in the diagram reflect the different clusters: for
instance, cluster 1 (color-coded in blue here) occurs 5 times in this case.

illustration of the process for a single audio file. Auditory representations for a concept are
obtained by taking the mean of the BoAW representations of the relevant audio files.

4.1.2 NEURAL AUDITORY EMBEDDINGS (NAE)

The work of Kiela and Bottou (2014) showed that it is possible to transfer and aggregate con-
volutional neural network layers in order to obtain a visual semantic representation. Their
network was an adaptation of the well-known AlexNet (Krizhevsky, Sutskever, & Hinton,
2012), trained on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Im-
age representations were obtained by extracting the penultimate, pre-softmax layer from the
network for each image, which were then aggregated into visual representations by taking
the mean or pointwise maximum of the image representations. They found that such CNN-
derived visual representations perform much better than traditional bag-of-visual-words-
based ones, with substantial increases in correlation with human similarity and relatedness
ratings.
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Figure 2: Examples of spectrograms, plotted for various musical instruments.

Here, we examine whether a similar methodology can be applied to auditory represen-
tations. The advantage of using a convolutional neural network instead of a recurrent one
(RNN) is that it requires less memory and suffers less from the vanishing or exploding
gradients problem (Pascanu, Mikolov, & Bengio, 2013). RNNs are especially susceptible
to this problem for the current study, given that sound files can vary considerably in the
number of frames (i.e., their duration in milliseconds), which means padding mini-batches
is cumbersome and training is difficult. We obtain sound file representations by transfering
the pre-softmax layer from a convolutional neural network trained on audio classification.
We use a standard AlexNet architecture (Krizhevsky et al., 2012), without modifying the
network to fit the auditory signal better (e.g. by adjusting the channels or color filtering),
to make reproduction of our results as easy as possible. The neural auditory embedding
approach can be summarized to comprise the following steps:

1. (train step) Train a neural network classifier C on the dataset {(f(s),Ls) | s € Sc},
where S¢ is a set of audio files, f is a pre-processing function and Ly is the label for
that file.

2. (transfer step) For each label L, (where L, is not necessarily also a label in S¢, but
may be):

(a) Retrieve a set of audio files S,
(b) For each file s € S,:

i. Obtain the auditory representation qs = ¢g(f(s)), where g is the neural
network C up to the penultimate pre-softmax layer.
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Figure 3: Tlustration of the Neural Auditory Embedding method, using a convolutional
neural network. The auditory signal is converted to a spectrogram which is fed
to the neural network for classification. The pre-softmax layer, FC7, is transferred
and taken as the neural audio embedding (NAE) for the given sound file.

(c) (aggregation) The overall representation for label L, is then obtained by ag-
gregating the per-file representations, that is, we take the mean of the relevant
auditory representations, i.e., r, = ﬁ > s;€8, Asi

We use a Mel-scale spectrogram (Flanagan, 2013) of the sound file as the input to the
network, i.e., the input sound file is converted (f in the algorithm above) into a three-
dimensional representation of the spectrum of frequencies as they vary with time. A spec-
trogram can be interpreted as a visual rendering of an auditory signal, which means that
we can apply a similar network architecture to deep neural networks used in computer vi-
sion, for classifying auditory patterns. Figure 2 shows how simple visual inspection already
reveals some clear patterns for certain musical instruments, which convolutional networks
are well-equipped to exploit.

Our architecture is as follows: the network consists of 5 convolutional layers, followed
by two fully connected rectified linear unit (ReLU) layers that feed into a softmax for
classification (Krizhevsky et al., 2012). The network learns through a multinomial logistic
regression objective:

K .
i exp(AF) T ()
J(0) = — 1{yD = k}log sl (1)
z‘z; k:zl Zszl exp(6U) T (0)

where 1{-} is the indicator function, 2@ is the input and D examples with K classes
are used for training. We obtain audio embeddings by performing a forward pass with a
given spectrogram and taking the 4096-dimensional fully connected layer that precedes the
softmax (called FCT) as the representation of that sound file (see Figure 3).

We experiment with training the network on either a narrow dataset of musical instru-
ments, or a broad dataset of naturally occurring environmental sounds; so one model has
to be good at fine-grained distinctions between similar sounds (e.g., distinguishing between
a mandolin, a ukelele and a banjo), while the other needs to be able to recognize general
sound categories that can vary substantially in their audio signatures (e.g. distinguishing
scissors from cows and airplanes). We use standard stochastic gradient descent (SGD) op-
timization, with an initial learning rate of 0.01. The learning rate was set to degrade in a
stepwise fashion by a factor of 0.1 every 1000 iterations, until convergence.

Instruments Classifier We obtain up to 1000 sound files for a set of 54 musical in-
struments, yielding a total of 25324 sound files. We divide the data into a training and a
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accordion bagpipe balalaika banjo baritone (sax.)
bass bassoon bell bongo bugle
carillon castanets celeste cello chimes
clarinet claves clavichord clavier conga
cornet cowbell cymbals didgeridoo drum
fiddle flute glockenspiel gong guitar
harmonica harp harpsichord horn keyboard
lute lyre mandolin maracas marimba
oboe organ piano piccolo saxophone
sitar tambourine  trombone trumpet tuba
ukulele violin xylophone zither

Table 3: Labels for the musical instruments classifier.

validation set, sampling 75% for the former and taking the remainder for the latter. Using
the training methodology described above, we obtain a classification accuracy of 92% on
the validation set. The instruments are listed in Table 3. Embeddings transferred from this
classifier are referred to as NAE-INST in what follows.

Environmental Sounds Classifier Gygi, Kidd, and Watson (2007) performed an ex-
tensive psychological study of auditory perception and its relation to environmental sound
categories. We obtain up to 2000 sound files for the 50 classes used in their acoustic similar-
ity and categorization experiments, which results in 31432 sound files. The classifier achieves
54% accuracy on the validation set. This number is substantially lower than the instruments
classifier, which indicates that it is a significantly harder problem. The environmental labels
(see Table 4) are much more varied and it is likely that FreeSound returns noisier sound
files for these categories. Ultimately, we are less interested in the performance of the trained
classifier, but more in the quality of the representations that can be extracted from that
classifier, in order to use them for downstream tasks or applications. The set of labels has
been specifically designed with the similarity and categorization of human auditory percep-
tion in mind, and hence it spans a wide range of sound categories and arguably reflects
human auditory perception better than the instruments dataset. Embeddings transferred
from this classifier are referred to as NAE-ENV.

4.1.3 PRE-TRAINING

One of the reasons behind the success of convolutional neural networks in computer vision
is that they can be trained on millions of images. This allows for the lower layers of
the network to become very good “edge detectors”, and to become more specific to the
final classification decision in higher layers, as shown by Zeiler and Fergus (2014). Since
there are fewer sound files available, we additionally experiment with applying a transfer
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airplane axe baby basketball bells
bird bowling bubbling car accelerating car start
cat claps clock cough cow
cymbals dog door drums footsteps
gallop  glass break gun harp helicopter
honking  ice drop keyboard laugh match
neigh phone ping pong rain rooster
saw scissors sheep siren sneeze
splash thunder toilet train typewriter
water wave whistle wipers zipper

Table 4: Labels for the environmental sound classifier, from Gygi et al. (2007).

learning technique, where we “finetune” a network that has already been trained on ILSVRC
2012. This means we can rely on the network to already perform well at recognizing visual
patterns. In particular, we set the learning rate to a small number for the first five layers,
and learn the fully connected weights that lead to the new softmax with different labels
from scratch with a higher learning rate. This allows the use of edge-detectors that were
trained on a massive dataset of images, but enables the fine-tuning of parameters for the
particular task at hand, in this case the classification of auditory signals as represented by
spectrograms. In this case, we set an initial learning rate of 0.01 for the fully connected
layers and 0.001 for the earlier convolutional layers and learn for up to 4000 iterations using
SGD. The learning rate was set to degrade in a stepwise fashion as above.

4.1.4 DURATION AND NUMBER

The method for obtaining the auditory representations for the conceptual similarity and
relatedness evaluations is as follows: For each word, we retrieve the first 100 sound samples
from FreeSound with a maximum duration of 1 minute. The rationale behind this decision
is that the duration of FreeSound samples varies significantly, with samples as short as one
second and as long as half an hour. The same sound files are used as input in all models
when extracting representations, to ensure direct comparability.

4.2 Textual Representations

We compare against textual representations, and combine auditory representations with
textual representations to obtain multi-modal representations. For the textual represen-
tations we use the continuous vector representations from the log-linear skip-gram model
of Mikolov, Chen, Corrado, and Dean (2013). Specifically, 300-dimensional vector repre-
sentations were obtained by training on a dump of the English Wikipedia plus newswire
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(8 billion words in total). We train a skip-gram model for a sequence of training words
w1y, Ws, ..., wr and a context size ¢ by maximizing:

T

T wy . Vw
Sy e

_
u! vy
=1 —c<j<ejt0  Dawew €XP v

where u,, and v, are the context and target vector representations for the word w re-
spectively, and W is the vocabulary. These types of representations have been found to
yield very good performance on a variety of semantic similarity tasks (Baroni, Dinu, &
Kruszewski, 2014).

4.3 Multi-modal Fusion Strategies

Since multi-modal semantics relies on two or more modalities, there are several ways of
combining or fusing linguistic and perceptual cues (Bruni et al., 2014). When computing
similarity scores, for instance, we can either jointly learn the representations (e.g. as in
Lazaridou, Pham, & Baroni, 2015); learn them independently, combine (e.g. concatenate)
them and compute similarity scores; or learn them independently, compute similarity scores
independently and combine the scores. These possibilities have been called early, middle
and late fusion, respectively. In this work, we restrict ourselves to middle and late fusion,
since these options are relatively easy to compute, are less susceptible to noise (primarily
because they do not force the model to learn to represent and to fuse at the same time)
and have fewer hyperparameters than early fusion methods.

4.3.1 MipDLE FUSION

Whereas early fusion requires a joint training objective that takes into account both modal-
ities, middle fusion allows for individual training objectives. Similarity between two multi-
modal representations is calculated as follows:

sim(u,v) = g(f(ul,u®), (0, 0v?))

where ¢ is some similarity function, u' and v' are textual representations, and u® and v®
are the auditory representations. We call this model MM-MIDDLE.

A typical formulation in multi-modal semantics for f(z,y) is az||(1 — a)y, where || is
concatenation (see, e.g. Bruni et al., 2014; Kiela & Bottou, 2014). The « parameter is a
global parameter that governs how much of a given modality gets incorporated into the
combined multi-modal representation. In what follows, we first keep « fixed, and then
experiment with tuning it on a held-out development set.

4.3.2 LATE FUSION

Late fusion can be seen as the converse of middle fusion, in that the similarity function is
computed first before the similarity scores are combined:

sim(u,v) = h(g(ul, Ul)7g(ua7va))

4. The demo-train-big-model-vl.sh script from https://code.google.com/archive/p/word2vec was used to
obtain this corpus.
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where ¢ is some similarity function and h is a way of combining similarities, in our case
a weighted arithmetic average: h(z,y) = az + (1 — «) y; and we use g = |;C|'|Z£’/| (cosine
similarity). We call this model MM-LATE.

4.3.3 TRI-MODAL FUSION

Multi-modal fusion need not be limited to just two modalities. We also experiment with
combining three modalities, i.e., combining textual, visual and auditory information. In that
case we introduce an additional mixing parameter 5 that determines the contribution of the
second modality. Applying that to the weighting functions f (for middle fusion) and h (for
late fusion) above, we get f(z,y,z) =az||(1 —a+ B)y | (1 — a — B)z and h(x,y,z) =
ar + (1 —-—a+p)y + (1 — a — f)z where (a+ 3 < 1).

5. Results

We evaluate auditory representation quality by calculating the Spearman pg correlation
between the ranking of the concept pairs produced by the automatic similarity metric (cosine
between the derived vectors) and that produced by the gold-standard similarity scores, the
standard metric for these types of evaluations. The two main questions we aim to examine
are: do NAEs outperform BoAW representations; and do auditorily-grounded multi-modal
representations perform better than text-only. In addition, we examine auditorily-grounded
representations qualitatively, experiment with pre-training, analyze fusion methods and
evaluate on an unsupervised categorization task.

5.1 Representational Quality

The results are reported in Table 5, according to whether they are (a) uni-modal rep-
resentations obtained from a single modality or (b) multi-modal representations that have
undergone multi-modal fusion. Because cosine similarity is the normalized dot-product, and
the uni-modal representations are themselves normalized, middle and late fusion are equiv-
alent if we take the unweighted average (i.e., « = 0.5, or a = = % in the tri-modal case).
Given this equivalence, we report one set of results in this experiment and omit whether
they use middle or late fusion. An examination of the type of fusion and associated mixing
parameters is provided in a later section.

In the uni-modal case, we compare auditory representations against those obtained from
textual and visual® sources. We find that both visual and textual representations outperform
auditory ones on the entire dataset (as we might have expected, given that audio is likely
not to be the most dominant modality in this dataset). On the auditory-relevant subset
AMEN, however, we observe that NAE-ENV representations outperform the visual model,
though by a small margin. Importantly, NAE-ENV performs significantly better than the
auditory BOAW alternative on both MEN (z = 3.51,p < 0.001) and AMEN (z = 1.85,p <
0.05). Embeddings extracted from the broad environmental sounds classifier (NAE-ENV)

5. Obtained by downloading 10 images from Google for each of the words, transferring the pre-softmax
FC7 layer and taking the mean of the image representations to obtain an overall visual representation,
as described in e.g. the work of Kiela and Bottou (2014).
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(b): Multi-modal

Model MEN AMEN

(a): Uni-modal TEXT+VISUAL 0.72 0.64
Model MEN  AMEN TEXT+BOAW 0.62 0.64
RANDOM 0.02 0.16 TEXT+NAE-INST 0.61 0.64
TEXT 0.69 0.59 TEXT-+NAE-ENV 0.63 0.67
VISUAL 0.52 0.55 VISUAL+BOAW 0.50 0.63
BOAW 0.23 0.43 VISUAL+NAE-INST 0.49 0.62
NAE-INST | 0.27 0.46 VISUAL+NAE-ENV 0.53 0.70
NAE-ENV 0.32 0.56 TEXT+VISUAL+BOAW 0.67 0.68
TEXT-+VISUAL+NAE-INST | (.67 0.67

TEXT-+VISUAL+NAE-ENV 0.68 0.70

Table 5: Spearman p; correlation of (a) uni-modal representations and (b) multi-modal
representations with untuned mixing parameters (in which case middle and late
fusion are equivalent and modalities contribute equally). See Table 8 for results
with tuned mixing parameters.

significantly outperform (z = 1.45,p < 0.1) embeddings extracted from the narrow musical
instruments classifier (NAE-INST), which does only slightly better than BOAW.

Focusing on the multi-modal results, we see a large increase in performance over uni-
modal representations, including over the textual model, for AMEN. The same effect is
not observed for MEN, which is understandable given how few pairwise comparisons are
auditory-relevant. In many cases we are still able to obtain sound files, but these tend
to be of poor quality and lead to noisy representations (e.g., what does “sunlight” sound
like?). As the results indicate, visual information is probably more useful in those cases. On
the auditory-relevant subset, however, we see that the best performing auditorily-grounded
multi-modal model TEXT+NAE-ENV performs significantly better (z = 1.46,p < 0.1) than
TEXT. Although the AMEN dataset has been tagged with auditory relevance in mind,
many of the selected comparisons (e.g. cat-kittens or car-automobile) are still dominated
by visual or linguistic information, which means that the auditory representations must be
of a high quality if they are able to mirror the human judgments, even in the uni-modal
case. When we combine the modalities into a tri-modal model that incorporates textual,
visual and auditory information, we see an even larger improvement over TEXT, with a
highest Spearman correlation of 0.70 (z = 2.09,p < 0.1).

5.2 Qualitative Analysis

We performed a small qualitative analysis of the auditory representations for the words in
the MEN dataset. As Table 6 shows, the nearest neighbors are remarkably semantically
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TEXT
engine monster | children | dinner splash weather | birds dawn
gasoline zombie kids lunch bucket rain mammals dusk
vehicle dragon girls wedding | skateboard | storm animals sunrise
airplane creatures | women | breakfast | ink fog rodents moon
aircraft clown people cocktail cocktail cold reptiles night
motor dog boys holiday dripping tropical | amphibians | misty
BOAW

engine monster | children | dinner splash weather | birds dawn
motor dead female eat wet storm fabric garden
car zombie cow food run cold summer sumimer
storm guitar kids tiles lake winter forest pond
drive ship animals | breakfast | wave ford village parrot
automobile | dark lady floor sea building | food birds

NAE-INST
engine monster | children | dinner splash weather | birds dawn
cold zombie farm school wet storm forest tropical
car dead sheep kitchen river flag summer parrot
automobile | dark animals | morning | lake interior | nature 700
motor ship COwW home run car morning morning
vehicle lion party coffee dripping aircraft | garden birds

NAE-ENV
engine monster | children | dinner splash weather | birds dawn
motor zombie protest | lunch wet storm morning tropical
automobile | dead kids coffee lake wind summer 700
drive guy party bar dripping alley forest birds
vehicle lion happy mug run rain tropical morning
car man women | rusty river ocean 700 dusk

Table 6: Example nearest neighbors in MEN for textual representations and auditory
BoAW and NAE representations.

coherent. For example, the auditory models group together sounds produced by cars and
engines. Nearest neighbors for the textual model tend to be of a more abstract nature:
where we find wet and lake as auditory neighbors for splash, the textual model gives us
concepts like bucket, which can make splashes but do not sound like them. While auditory
neighbors of dawn are related to sounds one might hear at that time of day (e.g. morning
birdsong), the textual model knows that dawns relate to night, moon and sunrise. We
observe that neighbors of birds in the textual model are all other types of animals—i.e.,
categorically related—while the auditory neighbors are related in a much more associative
manner.
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Model Uni-modal MM-*
NAE-IMAGENET 0.42 0.62
NAE-INST 0.46 0.64
NAE-INST-PRETRAINED 0.49 0.65
NAE-ENV 0.56 0.67
NAE-ENV-PRETRAINED 0.56 0.67

Table 7: Spearman p, correlation on AMEN for either only training on ImageNet, pre-
training on ImageNet and then on the auditory dataset, or only on the auditory
dataset.

5.3 Pre-training Effects

Since our network architecture is essentially the same as a regular convolutional neural
network used in computer vision tasks, except with spectrograms as inputs, it is natural
to ask whether pre-training the network—using e.g. ImageNet to learn so-called “edge
detectors”—improves results. It might be, for instance, that this results in finding different
optima, since the network is already adept at basic pattern recognition from the start
of training on the auditory data. Table 7 shows the results on AMEN for fine-tuning
the network as described in Section 4.1.3. First, we can see that training the network
specifically on auditory recognition yields benefits over simple visual recognition: in all
cases, the networks improve over the NAE-IMAGENET baseline, which consists simply of a
pre-trained network trained on ILSVRC-12. It is interesting to observe that that model
does quite well already. This shows that, without any training in spectrogram recognition,
we are still able to extract some relevant features due to the pattern recognition capabilities
that were developed on image recognition.

Pre-training helps in the case of instruments, but does not have an effect on NAE-ENV
representations. A possible explanation might be that the instruments domain is too narrow
for representing the relatedness of very diverse concepts, which is what MEN and AMEN
measure. In other words, we appear to get some additional generalization capability from
pre-training on a set of more diverse concepts. This appears to indicate that the (number
and variety of) classes used in the classifier are highly relevant for the transferability and
quality of the network’s representations. Since the MEN dataset comprises a wide variety of
concepts, one could argue that this observation makes sense, but it is nonetheless a question
that needs further investigation.

5.4 Fusion Strategies and Multi-modal Mixing

Even though auditorily-grounded multi-modal models performed reasonably well on the full
MEN dataset, they did not yet match the textual model (TEXT). It is natural to ask whether
it is possible to construct models such that including perceptual input is not detrimental
to the quality of representations that have no auditory relevance, or where it might even

1018



GROUNDING SEMANTICS IN AUDITORY PERCEPTION

Model Middle fusion Late fusion

TEXT .68+£.02 .68+.02
TEXT—+VISUAL 72+.02 a=.544.05 72£.02 a=.624.04
TEXT+BOAW .69£.02 a=.744.08 .69£.01 a=.844.05

TEXT-+NAE-INST
TEXT-+NAE-ENV

.691.02 a=.76+.08
.70+£.01 a=.70+.00

.691.02 a=.86+.05
.70+£.01 a=.80+.00

VISUAL+BOAW
VISUAL-+NAE-INST
VISUAL+NAE-ENV

.55£.01 a=.36+.05
.05£.01 a=.34+.05
.57+£.01 a=.40+.00

.56+£.01 a=.22+.04
.551+.00 a=.22+.04
.D74.01 a=.30+.00

TEXT-+VISUAL-+BOAW
TEXT-+VISUAL-+NAE-INST
TEXT-+VISUAL+NAE-ENV

734.02 a=.62+.04, B=.14+.08
734.02 a=.62+.04, B=.16+.08
.744.01 a=.60+.00, B=.10+.00

.734.01 a=.70£.00, B=.14+.05
734.02 a=.70+.00, B=.20%.06
734.01 a=.68+.04, B=.12+.04

Table 8: Cross-validated performance of middle and late multi-modal fusion models on the
MEN dataset, when varying the o mixing parameter.

improve performance. The mixing parameter « in the middle and late fusion models can be
used to govern the influence of a given modality on the overall representation. We kept it
fixed at 0.5 for the models in Table 5, but it is possible to use a development set to obtain
a more optimal weighting.

Hence, we do a five-way cross-validated comparison where we tune the a parameter
(and in the tri-modal case also the /) on a held-out validation set of 20% of the data
and obtain the Spearman ps correlation score for the other 80%. Since correlations cannot
be averaged directly, we average the Fisher-transform and take its inverse to obtain the
average correlation, i.e., ps = tanh(+ Zfi o arctanh(p’)) where N is the number of splits.
Table 8 reports the results. First, note that there are only minor differences between the
two fusion methods, which is likely a consequence of the tuning of the mixing parameter,
allowing us to select the optimal contribution-weight for each modality. All text-based
multi-modal models outperform the text-only representations. If the textual information
is omitted, and we only include visual and auditory information, performance drops. The
results show that the inclusion of auditory information is not detrimental to performance
when we select the mixing parameters in a more intelligent way: in fact, the TEXT+NAE-
ENV model significantly (z = 1.37,p < 0.1) outperforms the TEXT model, and the tri-
modal models do even better, with a maximum improvement of 0.06 over the TEXT model
(2 =4.36,p < 0.001).

The results also shed light on the question of how much input from a given modality
is most useful for predicting human similarity and relatedness ratings. That is, since the
mixing parameters are tuned, the results give insight into the relative contribution of each
modality. The results clearly show that textual information is the most important. The
better the auditory representation, the more we would want to include of it, which explains
the lower « for TEXT+NAE-ENV compared to the other two for both types of fusion, and the
lower « and (8 in the tri-modal model that incorporates that type of auditory embedding. In
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(a): Clustering instruments (b): Clustering environmental sounds
Model Mean Max Model Mean Max
TEXT 0.30 £ 0.06 | 0.42 TEXT 0.15 £ 0.08 | 0.34
BOAW 0.20 &£ 0.05 | 0.37 BOAW 0.24 £ 0.13 | 0.55
NAE-INST 0.25 £ 0.07 | 0.42 NAE-ENV 0.25 £ 0.09 | 0.45
MM-BOAW 0.32 £ 0.07 | 0.50 MM-BOAW 0.25 £ 0.11 | 0.62
MM-NAE-INST | 0.37 £ 0.07 | 0.54 MM-NAE-ENV | 0.26 £ 0.09 | 0.59

Table 9: V-measure performance for clustering (a) musical instruments and (b) environ-
mental sounds. Mean is over 100 runs of k-means.

the audio-visual case, visual information appears to be more informative of human similarity
and relatedness ratings than auditory information.

5.5 Unsupervised Categorization with Neural Auditory Embeddings

Categorization is a fundamental problem faced by the human cognitive system, and one
of the main focal points of investigation in psychology (Fountain & Lapata, 2011). While
the preceding experiments were applied to general semantic similarity and relatedness, in
this section we focus on two audio-specific tasks: musical instrument categorization for
NAE-INST and environmental sound categorization for NAE-ENV.

We explore categorization using an unsupervised clustering algorithm over the learned
representations. These experiments provide two contributions. First, they allow for another
test of whether NAEs outperform BoAW representations and whether auditorily-grounded
representations outperform text-only ones. Second, they shed light on the question of
whether the unsupervised categorization mirrors human categorization judgments. If this
is the case, it serves as a further corroboration of the value of multi-modal representations.

5.5.1 MUSICAL INSTRUMENT CATEGORIZATION

The set of instruments in Table 3 was manually divided into 5 classes, based on how
Wikipedia classified them: brass, percussion, piano-based, string and woodwind instru-
ments. For each of the instruments, as many audio files as available® were obtained from
FreeSound. We then performed k-means clustering over the aggregated auditory represen-
tations with five cluster centroids and compared results between textual, bag of audio words
and NAE representations. We experiment with the pre-trained NAE-INST embeddings that
were specialized for musical instrument identification.

This is an interesting problem because instrument classes are determined somewhat
by convention (is a sazophone a brass or a woodwind instrument?). What is more, how
instruments sound is rarely described in detail in text, so corpus-based linguistic represen-
tations cannot take this information into account. Table 9(a) shows the mean and standard

6. We did not restrict the set of retrieved audio files to exclude files used for training the classifier.
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TEXT NAE-INST
1 | piccolo 1 | accordion, balalaika
2 | flute, lute, harpsichord, marimba, zither, harp, 2 | trombone, piano, cello, violin, saxophone,
clavichord, sitar, didgeridoo, carillon, lyre, flute, banjo, oboe, tuba, mandolin, clarinet,
keyboard harmonica, guitar, harpsichord, bassoon, cor-
3 | harmonica, mandolin, banjo, guitar, accor- net, trumpet, marimba, sitar, harp, lute,
dion, ukulele, fiddle, bass ukulele, zither, didgeridoo, clavichord, fiddle,
4 | xylophone, tambourine, glockenspiel, claves, horn, bugle, baritone, bass
maracas, castanets, cymbals, celeste, horn, 3 | xylophone, glockenspiel, celeste, claves, car-
balalaika, clavier, cowbell, bongo, bugle, illon, clavier, chimes, cowbell, piccolo, key-
drum, conga, chimes, bell, gong board, bongo, lyre, bell, conga
5 | clarinet, trombone, bassoon, cello, saxophone, 4 | gong
piano, violin, oboe, tuba, trumpet, cornet, 5 | tambourine, cymbals, drum, castanets, mara-
baritone cas
BOAW MM-NAE-INST
1 | xylophone, glockenspiel, cowbell, tambourine, 1 | glockenspiel, xylophone, celeste, zither
chimes, celeste, maracas, bell, conga 2 | trombone, cello, violin, clarinet, flute, saxo-
2 | flute, piano, violin, clarinet, saxophone, man- phone, oboe, tuba, cornet, bassoon, trumpet,
dolin, harmonica, harp, oboe, banjo, lute, harmonica, accordion, piccolo, fiddle, horn,
trumpet, zither, harpsichord, sitar, marimba, balalaika, bugle
accordion, cornet, ukulele, clavichord, fiddle, 3 | chimes, bell
horn, cymbals, balalaika, claves, lyre, key- 4 | piano, guitar, mandolin, banjo, lute, harp-
board, castanets, bugle, drum sichord, marimba, ukulele, harp, clavichord,
3 | trombone, tuba, cello, guitar, bassoon, bari- sitar, didgeridoo, bongo, keyboard, bass, lyre,
tone, didgeridoo, bass, piccolo, carillon, bongo carillon, clavier, baritone, conga, cowbell,
4 | gong drum, gong
5 | clavier 5 | maracas, tambourine, castanets, claves, cym-
bals

Table 10: Musical instruments closest to cluster centroid for various models.

deviation of V-measure scores, a well-known clustering evaluation metric (Rosenberg &
Hirschberg, 2007)7, obtained by applying the clustering algorithm a total of 100 times in
order to mitigate differences due to the random seeding phase in k-means. The V-measure
is the harmonic mean between a clustering’s homogeneity and completeness: the former
reflects to what extent clusters contain only data points which are members of a single
class, the latter reflects to what extent data points that are members of a given class are
elements of the same cluster. The results clearly show that the multi-modal representation,
which utilizes both linguistic information and auditory input, performs better on this task
than the uni-modal representations.

It is interesting to observe that the textual representations perform better than the
auditory ones: a possible explanation for this result is that audio files in FreeSound are
in some cases samples of multiple instruments, so if a bass is often accompanied by a
drum this might affect the overall representation. The clusters that were obtained by the
maximally performing model are reported in Table 10: for the 5 clusters under the three
uni-modal models, it shows the nearest instruments to the cluster centroids, qualitatively
demonstrating the greater cluster coherence for the multi-modal models, in particular the
one based on NAEs. Percussive instruments appear relatively easy to pick out using the
auditory signal (e.g. cluster 5 for NAE-INST), except for some of the obvious ones (drums,
bongos, gongs). Piano-based instruments (e.g. cluster 1 for BOAW and cluster 3 for NAE-
INST) are also grouped together, but that cluster interestingly never includes piano.

7. We find the same patterns in the results with other clustering metrics such as purity and B-cubed.
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Figure 4: Multi-dimensional scaling of instrument representations.

The differences between the representations, together with the cluster assignments, can
be visualized through multi-dimensional scaling (Hout, Papesh, & Goldinger, 2013): Figure
4 shows the instruments over the first two components, which shows that some of the

instruments are clustered neatly by category.

5.5.2 ENVIRONMENTAL SOUNDS CATEGORIZATION

According to work by Gygi et al. (2007), a central challenge in the study of auditory
perception and cognition is “to find the invariant acoustic information that specifies each
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TEXT

NAE-ENV

sneeze, cough, laugh, bubbling, splash

dog, cat, cow, toilet, rooster, baby, bird, air-
plane, typewriter, scissors, sheep, zipper, gun,
helicopter, door, train, phone, wipers, water,
clock, match, basketball, bowling

cymbals, thunder, claps, drums, bells, harp,
whistle, honking, siren, neigh, keyboard, gal-
lop, rain, wave, footsteps, saw

harp, bells, keyboard, drums, cymbals, whis-
tle, clock, siren, phone

splash, toilet, claps, laugh, =zipper, water,
rain, match, door, wipers, bowling, bubbling,
sneeze, airplane, gun, cough, thunder, gallop,
scissors, typewriter, helicopter, train, basket-
ball, wave, saw

cat, dog, sheep, rooster, cow, bird, baby, neigh,
honking, footsteps

BOAW

MM-NAE-ENV

whistle, siren, bird, laugh, bells, cat, baby,
phone, sheep, harp, rooster, neigh, bubbling,
keyboard, cow, dog

splash, rain, toilet, drums, saw, cymbals, wa-
ter, scissors, match, gun, typewriter, zipper,
wave, sneeze, claps, cough, clock, honking,
footsteps, gallop, door, basketball

airplane, helicopter, train, wipers, thunder,
bowling

harp, bells, keyboard, drums, cymbals, whis-
tle, clock, siren, phone

splash, toilet, claps, laugh, zipper, water,
rain, match, door, wipers, bowling, bubbling,
sneeze, airplane, gun, cough, thunder, gallop,
scissors, typewriter, helicopter, train, basket-
ball, wave, saw

cat, dog, sheep, rooster, cow, bird, baby, neigh,
honking, footsteps

Table 11: Environmental sound representations closest to cluster centroid for various mod-
els.

object or event”, or alternatively “to determine how objects and events are identified in the
absence of acoustic specificity”. Here, we aim to show that learned auditory representations
can be useful for examining these types of questions from a computational perspective: high-
quality representations allow for clear differentiation between the acoustic information of
objects.

To illustrate this, we compare our auditory representations with an experiment from
Gygi et al. (2007). They collected similarity ratings from annotators for all classes in the
dataset of 50 environmental sound categories. The similarity ratings were averaged to form
a similarity matrix, after which they apply multi-dimensional scaling to examine catego-
rizations of environmental sounds. They find some clearly defined groupings of environment
sounds in their study: impacts, continuous sounds, and vocalizations and signals. We ex-
amine whether the same grouping are identifiable if we apply multi-dimensional scaling to
representations learned from multi-modal data (rather than human similarity ratings).

Figure 5 plots the first two components in multi-dimensional scaling for both the textual
and the NAE representations. The NAE-ENV classifier was trained on the same set of sound
labels, so we can study how sounds are categorized with such representations and whether
this matches the cognitive sound groups. It can be seen that the textual model clusters
neatly in terms of relatedness—e.g., for instruments and animal sounds. Such a clustering,
however, does not apply to auditory perception: a gallop and a neigh do not at all sound
similar. The NAE representations are much more intuitive in that sense: a sneeze and a
cough sound similarly, a baby’s sound is a laugh which (arguably) sounds quite similar to a
sheep’s “baa’”.

Groupings similar to those found by Gygi et al. (2007) can be discerned in the figure:
while impact sounds are not clustered for textual representations, they are clearly grouped
in the bottom left corner for NAEs. In a similar fashion, signals and vocalizations (which
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Figure 5: Multi-dimensional scaling of environmental sounds

include animal sounds) are grouped at the top. The set of continuous sounds is harder
to identify, but there is a clear group of machine/tool sounds at the bottom of the center
(tracing from trains and airplanes through to typewriters and scissors).

Gygi et al. (2007) do not provide an explicit categorization that directly allows for a
quantitative evaluation. They do, however, list the categorization obtained from applying
hierarchical clustering to the human similarity ratings®. They distinguish between three
classes: continuous sounds, distinct sounds and harmonious sounds. Using this categoriza-
tion, we can evaluate the clustering of neural auditory embeddings based on environmental
sounds as well. Table 9(b) shows the mean and standard deviation of the V-measure scores
when clustering the various models using k-means.

In short, the groupings in this preliminary multi-dimensional scaling analysis show re-
markable similarity to Gygi et al.’s findings. We take this to indicate that auditory repre-
sentations are not only useful for improving representations to be used in semantics tasks,
but may also be useful for cognitive science experiments that involve auditory data, as was
the case with the work of Gygi et al. (2007). A natural avenue for further exploration in this
respect is examining the categorical knowledge transfer across auditory and visual domains,
as recently demonstrated by Yildirim and Jacobs (2015).

8. See Figure 2 in Gygi et al. (2007).
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6. Discussion

In these experiments we have relied on FreeSound as our source of sound files. Although
the queries were restricted to a degree, we are ultimately dependent on FreeSound and its
community efforts in uploading and tagging sound files, which may explain some of our
findings. The fact that gong is in its own cluster for BOAW and NAE-INST representations
seems to indicate that the audio samples on FreeSound already make it an outlier, as opposed
to gongs having some special properties. In that respect, it is all the more interesting that
such relatively noisy sound signals lead to improvements on semantic tasks, especially on
auditory-relevant ones. A better, or more cleaned up, source of auditory data (e.g., with
more stringent labelling or with outliers removed) might increase representational quality
further.

The auditory representations learned here could be used in a variety of audio-related
tasks that are not necessarily related to semantics, from musical preference prediction to
identifying environmental background noise in video. We chose to evaluate on semantic
relatedness here, because it shows how well the learned representations reflect human simi-
larity and relatedness judgments. This type of intrinsic evaluation has been frequently used
as an indicator of representation quality. However, such similarity and relatedness judg-
ment datasets are not modality-specific, which means that they are susceptible to priming;
i.e., if a previous comparison was clearly visual, e.g. bright-light, subjects might rely more
on the visual modality for judging the next comparison. Furthermore, the dominance of
vision in perceptually grounded cognition (Gazzaniga, 1995) probably biases similarity and
relatedness judgments of concrete word pairs towards that modality. This might explain
why visual grounding yields higher relative improvements than auditory grounding. Includ-
ing auditory information, however, is not detrimental, as we have shown. In cases where
auditory information is relevant, auditory grounding leads to large improvements, which
merits further exploration of this particular modality.

The idea that learned representations can also shed light on cognitive questions goes
back at least to the work of Landauer and Dumais (1997), and was reiterated in work
by Lenci (2008) specifically for distributional semantics models. This is probably even
more the case for grounded distributional models such as discussed here. In particular,
multi-modal representations open up interesting possibilities for interdisciplinary studies
between psychological, neurological and computational representation learning approaches
(Kriegeskorte, Mur, & Bandettini, 2008).

7. Conclusions

We have studied grounding semantic representations in raw auditory perceptual informa-
tion, using a bag-of-audio-words model and neural audio embeddings (NAEs) transferred
from a convolutional neural network. NAEs were obtained by extracting the final layer
from networks trained on audio recognition tasks, using spectrogram images. The audi-
tory representations were compared to textual representations and combined with them
using two standard fusion strategies. We evaluated on a well-known semantic similarity
and relatedness benchmark and performed a detailed analysis of our findings. To show the
applicability of auditory representations to auditory-relevant tasks, we examined musical
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instrument clustering. To show how such auditory representations mirror findings in cogni-
tive science studies, we performed a preliminary analysis comparing learned representations
with psychological acoustic similarity experiments. We found that multi-modal representa-
tions perform much better than auditory or textual representations on musical instrument
clustering, and that NAEs are useful for cognitive modeling of auditory perception, closely
mirroring human categorizations of audio signals.

It may well be the case that the auditory modality is better suited for other evaluations
or particularly useful in specific downstream tasks, but we have chosen to follow standard
evaluations in multi-modal semantics to allow for a direct comparison. As indicated in the
introduction, why stop at the visual modality? We hope to have shown that similar advances
to those achieved by visually grounded models may be possible with non-visually grounded
models as well. Our findings point toward fruitful applications of grounded representations
in downstream tasks that relate to audio, as well as to the relatively unexplored area of
linking grounded representations with cognitive studies. We hope that this will ultimately
lead to perceptually grounded models in artificial intelligence that rely on data from all
modalities, as a unified model that captures human semantic knowledge and experience.
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