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Abstract

This paper surveys the current state of the art in Natural Language Generation (nlg),
defined as the task of generating text or speech from non-linguistic input. A survey of nlg
is timely in view of the changes that the field has undergone over the past two decades,
especially in relation to new (usually data-driven) methods, as well as new applications of
nlg technology. This survey therefore aims to (a) give an up-to-date synthesis of research
on the core tasks in nlg and the architectures adopted in which such tasks are organised;
(b) highlight a number of recent research topics that have arisen partly as a result of
growing synergies between nlg and other areas of artificial intelligence; (c) draw attention
to the challenges in nlg evaluation, relating them to similar challenges faced in other areas
of nlp, with an emphasis on different evaluation methods and the relationships between
them.

1. Introduction

In his intriguing story The Library of Babel (La biblioteca de Babel , 1941), Jorge Luis
Borges describes a library in which every conceivable book can be found. It is probably
the wrong question to ask, but readers cannot help wondering: who wrote all these books?
Surely, this could not be the work of human authors? The emergence of automatic text
generation techniques in recent years provides an interesting twist to this question. Consider
Philip M. Parker, who offered more than 100.000 books for sale via Amazon.com, including
for example his The 2007-2012 Outlook for Tufted Washable Scatter Rugs, Bathmats, and
Sets That Measure 6-Feet by 9-Feet or Smaller in India. Obviously, Parker did not write
these 100,000 books by hand. Rather, he used a computer program that collects publicly
available information, possibly packaged in human-written texts, and compiles these into a
book. Just like the library of Babel contains many books that are unlikely to appeal to a
broad audience, Parker’s books need not find many readers. In fact, even if only a small
percentage of his books get sold a few times, this would still make him a sizeable profit.

Parker’s algorithm can be seen to belong to a research tradition of so-called text-to-text
generation methods, applications that take existing texts as their input, and automatically
produce a new, coherent text as output. Other example applications that generate new texts
from existing (usually human-written) text include:
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• machine translation, from one language to another (e.g., Hutchins & Somers, 1992;
Och & Ney, 2003);

• fusion and summarization of related sentences or texts to make them more concise
(e.g., Clarke & Lapata, 2010);

• simplification of complex texts, for example to make them more accessible for low-
literacy readers (e.g., Siddharthan, 2014) or for children (Macdonald & Siddharthan,
2016);

• automatic spelling, grammar and text correction (e.g., Kukich, 1992; Dale, Anisimoff,
& Narroway, 2012);

• automatic generation of peer reviews for scientific papers (Bartoli, De Lorenzo, Med-
vet, & Tarlao, 2016);

• generation of paraphrases of input sentences (e.g., Bannard & Callison-Burch, 2005;
Kauchak & Barzilay, 2006); and

• automatic generation of questions, for educational and other purposes (e.g., Brown,
Frishkoff, & Eskenazi, 2005; Rus, Wyse, Piwek, Lintean, Stoyanchev, & Moldovan,
2010).

Often, however, it is necessary to generate texts which are not grounded in existing ones.
Consider, as a case in point, the minor earthquake that took place close to Beverly Hills,
California on March 17, 2014. The Los Angeles Times was the first newspaper to report it,
within 3 minutes of the event, providing details about the time, location and strength of the
quake. This report was automatically generated by a ‘robo-journalist’, which converted the
incoming automatically registered earthquake data into a text, by filling gaps in a predefined
template text (Oremus, 2014).

Robo-journalism and associated practices, such as data journalism, are examples of what
is usually referred to as data-to-text generation. They have had a considerable impact
in the fields of journalism and media studies (van Dalen, 2012; Clerwall, 2014; Hermida,
2015). The technique used by the Los Angeles Times was not new; many applications have
been developed over the years which automatically generate text from non-linguistic data
including, but not limited to, systems which produce:

• soccer reports (e.g., Theune, Klabbers, de Pijper, Krahmer, & Odijk, 2001; Chen &
Mooney, 2008);

• virtual ‘newspapers’ from sensor data (Molina, Stent, & Parodi, 2011) and news re-
ports on current affairs (Lepp, Munezero, Granroth-wilding, & Toivonen, 2017);

• text addressing environmental concerns, such as wildlife tracking (Siddharthan, Green,
van Deemter, Mellish, & van der Wal, 2013; Ponnamperuma, Siddharthan, Zeng, Mel-
lish, & van der Wal, 2013), personalised environmental information (Wanner, Bosch,
Bouayad-Agha, & Casamayor, 2015), and enhancing engagement of citizen scientists
via generated feedback (van der Wal, Sharma, Mellish, Robinson, & Siddharthan,
2016);
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• weather and financial reports (Goldberg, Driedger, & Kittredge, 1994; Reiter, Sripada,
Hunter, Yu, & Davy, 2005; Turner, Sripada, Reiter, & Davy, 2008; Ramos-Soto,
Bugarin, Barro, & Taboada, 2015; Plachouras, Smiley, Bretz, Taylor, Leidner, Song,
& Schilder, 2016);

• summaries of patient information in clinical contexts (Hüske-Kraus, 2003; Harris,
2008; Portet, Reiter, Gatt, Hunter, Sripada, Freer, & Sykes, 2009; Gatt, Portet,
Reiter, Hunter, Mahamood, Moncur, & Sripada, 2009; Banaee, Ahmed, & Loutfi,
2013);

• interactive information about cultural artefacts, for example in a museum context
(e.g., O’Donnell, 2001; Stock, Zancanaro, Busetta, Callaway, Krüger, Kruppa, Kuflik,
Not, & Rocchi, 2007); and

• text intended to persuade (Carenini & Moore, 2006), or motivate behaviour modifi-
cation (Reiter, Robertson, & Osman, 2003).

These systems may differ considerably in the quality and variety of the texts they
produce, their commercial viability and the sophistication of the underlying methods, but
all are examples of data-to-text generation. Many of the systems mentioned above focus
on imparting information to the user. On the other hand, as shown by the examples cited
above of systems focussed on persuasion or behaviour change, informing need not be the
exclusive goal of nlg. Nor is it a trivial goal in itself, since in order to successfully impart
information, a system needs to select what to say, distinguishing it from what can be easily
inferred (possibly also depending on the target user), before expessing it coherently.

Generated texts need not have a large audience. There is no need to automatically gen-
erate a report of, say, the Champions League European football final, which is covered by
many of the best journalists in the field anyway. However, there are many other games, less
important to the general public (but presumably very important to the parties involved).
Typically, all sports statistics (who played?, who scored? etc.) for these games are stored,
but such statistics are not as a rule perused by sport-reporters. Companies like Narrative
Science1 fill this niche by automatically generating sport reports for these games. Auto-
mated Insights2 even generates reports based on user-provided ‘fantasy football’ data. In a
similar vein, the automatic generation of weather forecasts for offshore oil platforms (Sri-
pada, Reiter, & Davy, 2003), or from sensors monitoring the performance of gas turbines
(Yu, Reiter, Hunter, & Mellish, 2006), has proven to be a fruitful application of data-to-text
techniques. Such applications are now the mainstay of companies like Arria-NLG.3

Taking this idea one step further, data-to-text generation paves the way for tailoring
texts to specific audiences. For example, data from babies in neonatal care can be converted
into text differently, with different levels of technical detail and explanatory language, de-
pending on whether the intended reader is a doctor, a nurse or a parent (Mahamood &
Reiter, 2011). One could also easily imagine that different sport reports are generated for
fans of the respective teams; the winning goal of one team is likely to be considered a lucky

1. https://www.narrativescience.com

2. https://automatedinsights.com

3. http://www.arria.com
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one from the perspective of the losing team, irrespective of its ‘objective’ qualities (van der
Lee, Krahmer, & Wubben, 2017). A human journalist would not dream of writing separate
reports about a sports match (if only for lack of time), but for a computer this is not an issue
and this is likely to be appreciated by a reader who receives a more personally appropriate
report.

1.1 What is Natural Language Generation?

Both text-to-text generation and data-to-text generation are instances of Natural Lan-
guage Generation (nlg). In the most widely-cited survey of nlg methods to date (Reiter
& Dale, 1997, 2000), nlg is characterized as ‘the subfield of artificial intelligence and com-
putational linguistics that is concerned with the construction of computer systems than can
produce understandable texts in English or other human languages from some underlying
non-linguistic representation of information’ (Reiter & Dale, 1997, p.1). Clearly this defini-
tion fits data-to-text generation better than text-to-text generation, and indeed Reiter and
Dale (2000) focus exclusively on the former, helpfully and clearly describing the rule-based
approaches that dominated the field at the time.

It has been pointed out that precisely defining nlg is rather difficult (e.g., Evans, Piwek,
& Cahill, 2002): everybody seems to agree on what the output of an nlg system should
be (text), but what the exact input is can vary substantially (McDonald, 1993). Examples
include flat semantic representations, numerical data and structured knowledge bases. More
recently, generation from visual input such as image or video has become an important
challenge (e.g., Mitchell, Dodge, Goyal, Yamaguchi, Stratos, Han, Mensch, Berg, Han,
Berg, & Daume III, 2012; Kulkarni, Premraj, Ordonez, Dhar, Li, Choi, Berg, & Berg, 2013;
Thomason, Venugopalan, Guadarrama, Saenko, & Mooney, 2014, among many others).

A further complication is that the boundaries between different approaches are them-
selves blurred. For example, text summarisation was characterized above as a text-to-text
application. However, many approaches to text-to-text generation (especially abstractive
summarisation systems, which do not extract content wholesale from the input documents)
use techniques which are also used in data-to-text, as when opinions are extracted from re-
views and expressed in completely new sentences (e.g., Labbé & Portet, 2012). Conversely, a
data-to-text generation system could conceivably rely on text-to-text generation techniques
for learning how to express pieces of data in different or creative ways (McIntyre & Lapata,
2009; Gatt et al., 2009; Kondadadi, Howald, & Schilder, 2013).

Considering other applications of nlg similarly highlights how blurred boundaries can
get. For example, the generation of spoken utterances in dialogue systems (e.g., Walker,
Stent, Mairesse, & Prasad, 2007; Rieser & Lemon, 2009; Dethlefs, 2014) is another applica-
tion of nlg, but typically it is closely related to dialogue management, so that management
and realisation policies are sometimes learned in tandem (e.g., Rieser & Lemon, 2011).

The position taken in this survey is that what distinguishes data-to-text generation is
ultimately its input. Although this varies considerably, it is precisely the fact that such
input is not – or isn’t exclusively – linguistic that is the main challenge faced by most of
the systems and approaches we will consider. In what follows, unless otherwise specified in
context, the terms ‘Natural Language Generation’ and ‘nlg’ will be used to refer to systems
that generate text from non-linguistic data.
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1.2 Why a Survey on Natural Language Generation?

Arguably Reiter and Dale (2000) is still the most complete available survey of nlg. However,
the field of nlg has changed drastically in the last 15 years, with the emergence of successful
applications generating tailored reports for specific audiences, and with the emergence of
text-to-text as well as vision-to-text generation applications, which also tend to rely more
on statistical methods than traditional data-to-text. None of these are covered by Reiter
and Dale (2000). Also notably absent are discussions of applications that move beyond
standard, ‘factual’ text generation, such as those that account for personality and affect, or
creative text such as metaphors and narratives. Finally, a striking omission by Reiter and
Dale (2000) is the lack of discussion of evaluation methodology. Indeed, evaluation of nlg
output has only recently started to receive systematic attention, in part due to a number
of shared tasks that were conducted within the nlg community.

Since Reiter and Dale (2000) published their book, various other nlg overview texts
have also appeared. Bateman and Zock (2005) cover the cognitive, social and computational
dimensions of nlg. McDonald (2010) offers a general characterization of nlg as ‘the process
by which thought is rendered into language’ (p. 121). Wanner (2010) zooms in on automatic
generation of reports, while Di Eugenio and Green (2010) look at specific applications,
especially in education and health-care. Various specialized collections of articles have also
been published, including that by Krahmer and Theune (2010), which targets data-driven
approaches; and by Bangalore and Stent (2014), which focusses on interactive systems.
The web offers various unpublished technical reports, such as the survey by Theune (2003)
on dialogue systems; the reports by Piwek (2003) and Belz (2003) on affective nlg; and
the survey by Gkatzia (2016) on content selection. While useful, these resources do not
discuss recent developments or offer a comprehensive review. This indicates that a new
state-of-the-art survey is highly timely.

1.3 Goals of this Survey

The goal of the current paper is to present a comprehensive overview of nlg developments
since 2000, both in order to provide nlg researchers with a synthesis and pointers to relevant
research, and to introduce the field to researchers who are less familiar with nlg. Though
nlg has been a part of ai and nlp from the early days (see e.g., Winograd, 1972; Appelt,
1985), as a field it has arguably not been fully embraced by these broader communities, and
has only recently began to take full advantage of recent advances in data-driven, machine
learning and deep learning approaches.

Following Reiter and Dale (2000), our main focus, especially in the first part of the
survey, will be on data-to-text generation. In any case, doing full justice to recent devel-
opments in the various text-to-text generation applications is beyond the scope of a single
survey, and many of these are covered in other surveys, including those by Mani (2001)
and Nenkova and McKeown (2011) for summarisation; Androutsopoulos and Malakasiotis
(2010) on paraphrasing; and Piwek and Boyer (2012) on automatic question generation.
However, we will in various places discuss connections between data-to-text and text-to-
text generation, both because – as noted above – the boundaries are blurred, but also,
and perhaps more importantly, because text-to-text systems have long been couched in the
data-driven frameworks that are becoming increasingly popular in data-to-text generation,
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also giving rise to some hybrid systems that combine rule-bused and statistical techniques
(e.g., Kondadadi et al., 2013).

Our review will start with an updated overview of the core nlg tasks that were intro-
duced by Reiter and Dale (2000), followed by a discussion of architectures and approaches,
where we pay special attention to those not covered in the Reiter and Dale (2000) sur-
vey. These two sections constitute the ‘foundational’ part of the survey. Beyond these, we
highlight several new developments, including approaches where the input data is visual;
and research aimed at generating more varied, engaging or creative and entertaining texts,
taking nlg beyond the factual, repetitive texts it is sometimes accused of producing. We
believe that these applications are not only interesting in themselves, but may also inform
more ‘utility’-driven text generation application. For example, by including insights from
narrative generation we may be able to generate more engaging reports and by including
insights from metaphor generation we may be able to phrase information in these reports
in a more original manner. Finally, we will discuss recent developments in evaluation of
natural language generation applications.

In short, the goals of this survey are:

• To give an up-to-date synthesis of research on the core tasks in nlg, as well as the
architectures adopted in the field, especially in view of recent developments exploiting
data-driven techniques (Sections 2 and 3);

• To highlight a number of relatively recent research issues that have arisen partly as a
result of growing synergies between nlg and other areas of artificial intelligence, such
as computer vision, stylistics and computational creativity (Sections 4, 5 and 6);

• To draw attention to the challenges in nlg evaluation, relating them to similar chal-
lenges faced in other areas of nlp, with an emphasis on different evaluation methods
and the relationships between them (Section 7).

2. NLG Tasks

Traditionally, the nlg problem of converting input data into output text was addressed by
splitting it up into a number of subproblems. The following six are frequently found in
many nlg systems (Reiter & Dale, 1997, 2000); their role is illustrated in Figure 1:

1. Content determination: Deciding which information to include in the text under
construction,

2. Text structuring : Determining in which order information will be presented in the
text,

3. Sentence aggregation: Deciding which information to present in individual sentences,

4. Lexicalisation: Finding the right words and phrases to express information,

5. Referring expression generation: Selecting the words and phrases to identify domain
objects,
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(a) Content Determination

tsequence

bradycardia
(17:06:03)

bradycardia
(17:03:57)

bradycardia
(17:01:15)

(b) Text Structuring
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min-val 69

]


(c) Lexicalisation etc.

S
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NPpl
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V

be

PRO
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(d) Realisation

Figure 1: Tasks in nlg, illustrated with a simplified example from the neonatal intensive
care domain. First the system has to decide what the important events are in the data (a,
content determination), in this case, occurrences of low heart rate (bradycardias). Then it
has to decide in which order it wants to present data to the reader (b, text structuring) and
how to express these in individual sentence plans (c, aggregation, lexicalisation, reference).
Finally, the resulting sentences are generated (d, linguistic realisation).

6. Linguistic realisation: Combining all words and phrases into well-formed sentences.

These tasks could be thought of in terms of ‘early’ decision processes (which information
to convey to the reader?) to ‘late’ ones (which words to use in a particular sentence, and
how to put them in their correct order?). Here, we refer to ‘early’ and ‘late’ tasks by way of
distinguishing between choices that are more oriented towards the data (such as what to say)
and choices that are of an increasingly linguistic nature (e.g., lexicalisation, or realisation).
This characterization reflects a long-running distinction in nlg between strategy and tactics
(a distinction that goes back at least to Thompson, 1977). This distinction also suggests a
temporal order in which the tasks are executed, at least in systems with a modular, pipeline
architecture (discussed in Section 3.1): for example, the system first needs to decide which
input data to express in the text, before it can order information for presentation. However,
such ordering of modules is nowadays increasingly put into question in the data-driven
architectures discussed below (Section 3).

In this section, we briefly describe these six tasks, illustrating them with examples,
and highlight recent developments in each case. As we shall see, while the ‘early’ tasks
are crucial for the development of nlg systems, they are often intimately connected to the
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specific application. By contrast, ‘late’ tasks are more often investigated independently of an
application, and hence have resulted in approaches that can be shared between applications.

2.1 Content Determination

As a first step in the generation process, the nlg system needs to decide which information
should be included in the text under construction, and which should not. Typically, more
information is contained in data than we want to convey through text, or the data is more
detailed than we care to express in text. This is clear in Figure 1a, where the input signal –
a patient’s heart rate – only contains a few patterns of interest. Selection may also depend
on the target audience (e.g. does it consist of experts or novices, for example) and on the
overall communicative intention (e.g. should the text inform the reader or convince him to
do something).

Content determination involves choice. In a soccer report, we may not want to verbalise
each pass and foul committed, even though the data may contain this information. In the
case of neonatal care, data might be collected continuously from sensors measuring heart
rate, blood pressure and other physiological parameters. Data thus needs to be filtered
and abstracted into a set of preverbal messages, semantic representations of information
which are often expressed in a formal representation language, such as logical or database
languages, attribute-value matrices or graph structures. They can express, among other
things, which relations hold between which domain entities, for example, expressing that
player X scored the first goal for team Y at time T.

Though content determination is present in most nlg systems (cf. Mellish, Scott, Cahill,
Paiva, Evans, & Reape, 2006), approaches are typically closely related to the domain of ap-
plication. A notable exception is the work of Guhe (2007), which offers a cognitively plausi-
ble, incremental account of content determination based on studies of speakers’ descriptions
of dynamic events as they unfold. This work belongs to a strand of research which consid-
ers nlg first and foremost as a methodology eminently suitable for understanding human
language production.

In recent years, researchers have started exploring data-driven techniques for content
determination (see e.g., Barzilay & Lee, 2004; Bouayad-Agha, Casamayor, Wanner, & Mel-
lish, 2013; Kutlak, Mellish, & van Deemter, 2013; Venigalla & Di Eugenio, 2013). Barzilay
and Lee (2004), for example, used Hidden Markov Models to model topic shifts in a par-
ticular domain of discourse (say, earthquake reports), where the hidden states represented
‘topics’, modelled as sentences clustered together by similarity. A clustering approach was
also used by Duboue and McKeown (2003) in the biography domain, using texts paired
with a knowledge base, from which semantic data was clustered and scored according to its
occurrence in text. In a similar vein Barzilay and Lapata (2005) use a database of American
football records and corresponding text. Their aim was not only to identify bits of infor-
mation that should be mentioned, but also dependencies between them, since mentioning
a certain event (say, a score by a quarterback) may warrant the mention of another (say,
another scoring event by a second quarterback). The solution proposed by Barzilay and
Lapata was to compute both individual preference scores for events, and a link preference
score.
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More recently, various researchers have addressed the question of how to automatically
learn alignments between data and text, also in the broader context of grounded language
acquisition, i.e., modelling how we learn language by looking at correspondences between
objects and events in the world and the way we refer to them in language (Roy, 2002;
Yu & Ballard, 2004; Yu & Siskind, 2013). For example, Liang, Jordan, and Klein (2009)
extended the work by Barzilay and Lapata (2005) to multiple domains (soccer and weather),
relying on weakly supervised techniques; in a similar vein, Koncel-Kedziorski, Hajishirzi,
and Farhadi (2014) presented a weakly supervised multilevel approach, to deal with the
fact that there is no one-to-one correspondence between, for example, soccer events in data
and sentences in associated soccer reports. We shall return to these methods as part of a
broader discussion of data-driven approaches below (Section 3.3).

2.2 Text Structuring

Having determined what messages to convey, the nlg system needs to decide on their order
of presentation to the reader. For example, Figure 1b shows three events of the same type
(all bradycardia events, that is, brief drops in heart rate), selected (after abstraction) from
the input signal and ordered as a temporal sequence.

This stage is often referred to as text (or discourse or document) structuring. In the case
of the soccer domain, for example, it seems reasonable to start with general information
(where and when the game was played, how many people attended, etc.), before the goals are
described, typically in temporal order. In the neonatal care domain, a temporal order can be
imposed among specific events, as in Figure 1b, but larger spans of text may reflect ordering
based on importance, and grouping of information based on relatedness (e.g. all events
related to a patient’s respiration) (Portet et al., 2009). Naturally, alternative discourse
relations may exist between separate messages, such as contrasts or elaborations. The
result of this stage is a discourse, text or document plan, which is a structured and ordered
representation of messages.

These examples again imply that the application domain imposes constraints on ordering
preferences. Early approaches, such as McKeown (1985), often relied on hand-crafted,
domain-dependent structuring rules (which McKeown called schemata). To account for
discourse relations between messages, researchers have alternatively relied on Rhetorical
Structure Theory (rst; e.g., Mann & Thompson, 1988; Scott & Sieckenius de Souza, 1990;
Hovy, 1993), which also typically involved domain-specific rules. For example, Williams and
Reiter (2008) used rst relations to identify ordering among messages that would maximise
clarity to low-skilled readers.

Various researchers have explored the possibilities of using machine learning techniques
for document structuring (e.g., Dimitromanolaki & Androutsopoulos, 2003; Althaus, Kara-
manis, & Koller, 2004), sometimes doing this in tandem with content selection (Duboue
& McKeown, 2003). General approaches for information ordering (Barzilay & Lee, 2004;
Lapata, 2006) have been proposed, which automatically try to find an optimal ordering of
‘information-bearing items’. These approaches can be applied to text structuring, where
the items to be ordered are typically preverbal messages; however, they can also be applied
in (multidocument) summarisation, where the items to be ordered are sentences from the
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input documents which are judged to be summary-worthy enough to include (e.g., Barzilay,
Elhadad, & McKeown, 2002; Bollegala, Okazaki, & Ishizuka, 2010).

2.3 Sentence Aggregation

Not every message in the text plan needs to be expressed in a separate sentence; by com-
bining multiple messages into a single sentence, the generated text becomes potentially
more fluid and readable (e.g., Dalianis, 1999; Cheng & Mellish, 2000), although there are
also situations where it has been argued that aggregation should be avoided (discussed in
Section 5.2). For instance, the three events selected in Figure 1b are shown as ‘merged’
into a single pre-linguistic representation, which will be mapped to a single sentence. The
process by which related messages are grouped together in sentences is known as sentence
aggregation.

To take another example, from the soccer domain, one (unaggregated) way to describe
the fastest hat-trick in the English Premier League would be:

(1) Sadio Mane scored for Southampton after 12 minutes and 22 seconds.

(2) Sadio Mane scored for Southampton after 13 minutes and 46 seconds.

(3) Sadio Mane scored for Southampton after 15 minutes and 18 seconds.

Clearly, this is rather redundant, not very concise or coherent, and generally unpleasant
to read. An aggregated alternative, such as the following, would therefore be preferred:

(4) Sadio Mane scored three times for Southampton in less than three minutes.

In general, aggregation is difficult to define, and has been interpreted in various ways,
ranging from redundancy elimination to linguistic structure combination. Reape and Mellish
(1999) offer an early survey, distinguishing between aggregation at the semantic level (as
illustrated in Figure 1c) and at the level of syntax, illustrated in the transition from (1-3)
to (4) above.

It is probably fair to say that much early work on aggregation was strongly domain-
dependent. This work focussed on domain- and application-specific rules (e.g. ‘if a player
scores two consecutive goals, describe these in the same sentence’), that were typically
hand-crafted (e.g., Hovy, 1988; Dalianis, 1999; Shaw, 1998). Once again, more recent work
is gradually moving towards data-driven approaches, where aggregation rules are acquired
from corpus data (e.g., Walker, Park, Rambow, & Rogati, 2001; Cheng & Mellish, 2000).
Barzilay and Lapata (2006) present a system that learns how to aggregate on the basis of a
parellel corpus of sentences and corresponding database entries, by looking for similarities
between entries. As was the case with the content selection method of Barzilay and Lapata
(2005), Barzilay and Lapata (2006) view the problem in terms of global optimisation: an
initial classification is done over pairs of database entries which determines whether they
should be aggregated or not on the basis of their pairwise similarity. Subsequently, a glob-
ally optimal set of linked entries is selected based on transitivity constraints (if 〈ei, ej〉 and
〈ej , ek〉 are linked, then so should 〈ei, ek〉) and global constraints, such as how many sen-
tences should be aggregated in a document. Global optimisation is cast in terms of Integer
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Linear Programming, a well-known mathematical optimization technique (e.g., Nemhauser
& Wolsey, 1988).

With syntactic aggregation, it is arguably more feasible to define domain-independent
rules to eliminate redundancy (Harbusch & Kempen, 2009; Kempen, 2009). For example,
converting (5) into (6) below

(5) Sadio Mane scored in the 12th minute and he scored again in the 13th minute.

(6) Sadio Mane scored in the 12th minute and again in the 13th.

could be achieved by identifying the parallel verb phrases in the two conjoined sentences
and eliding the subject and verb in the second. Recent work has explored the possibility
of acquiring such rules from corpora automatically. For example, Stent and Molina (2009)
describe an approach to the acquisition of sentence-combining rules from a discourse tree-
bank, which are then incorporated into the sparky sentence planner described by Walker
et al. (2007). A more general approach to the same problem is discussed by White and
Howcroft (2015).

Arguably, aggregation on the syntactic level can only account for relatively small reduc-
tions, compared to aggregation at the level of messages. Furthermore, syntactic aggrega-
tion assumes that the sentence planning process (which includes lexicalisation) is complete.
Hence, while traditional approaches to nlg view aggregation as part of sentence planning,
which occurs prior to syntactic realisation, the validity of this claim depends on the type of
aggregation being performed (see also Theune, Hielkema, & Hendriks, 2006).

2.4 Lexicalisation

Once the content of the sentence has been finalised, possibly also as a result of aggregation at
the message level, the system can start converting it into natural language. In our example
(Figure 1c), the outcome of aggregation and lexicalisation are shown together: here, the
three events have been grouped, and mapped to a representation that includes a verb (be)
and its arguments, though the arguments themselves still have to be rendered in a referring
expression (see below). This reflects an important decision, namely, which words or phrases
to use to express the messages’ building blocks. A complication is that often a single event
can be expressed in natural language in many different ways. A scoring event in a soccer
match, for example, can be expressed as ‘to score a goal’, ‘to have a goal noted’, ‘to put the
ball in the net’, among many others.

The complexity of this lexicalisation process critically depends on the number of alter-
natives that the nlg system can entertain. Often, contextual constraints play an important
role here as well: if the aim is to generate texts with a certain amount of variation (e.g.,
Theune et al., 2001), the system can decide to randomly select a lexicalisation option from
a set of alternatives (perhaps even from a set of alternatives not used earlier in the text).
However, stylistic constraints come into play: ‘to score a goal’ is an unfortunate way of
expressing an own goal, for example. In other applications, lexical choice may even be
informed by other considerations, such as the attitude or affective stance towards the event
in question (e.g., Fleischman & Hovy, 2002, and the discussion in Section 5). Whether or
not nlg systems aim for variation in their output or not depends on the domain. For exam-
ple, variation in soccer reports is presumably more appreciated by readers than variation in
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weather reports (on which see Reiter et al., 2005); it may also depend on where in a text the
variation occurs. For example, variation in expressing timestamps may be less appreciated
than variation in referential forms (Castro Ferreira, Krahmer, & Wubben, 2016).

One straightforward model for lexicalisation – the one assumed in Figure 1 – is to op-
erate on preverbal messages, converting domain concepts directly into lexical items. This
might be feasible in well-defined domains. More often, lexicalisation is harder, for at least
two reasons (cf. Bangalore & Rambow, 2000): First, it can involve selection between seman-
tically similar, near-synonymous or taxonomically related words (e.g. animal vs dog; Stede,
2000; Edmonds & Hirst, 2002). Second, it is not always straightforward to model lexicali-
sation in terms of a crisp concept-to-word mapping. One source of difficulty is vagueness,
which arises, for example, with terms denoting properties that are gradable. For example,
selecting the adjectives ‘wide’ or ‘tall’ based on the dimensions of an entity requires the
system to reason about the width or height of similar objects, perhaps using some standard
of comparison (since a ‘tall glass’ is shorter than a ‘short man’; cf. Kennedy & McNally,
2005; van Deemter, 2012). A similar issue has been noted in the context of presenting
numerical information, such as timestamps and quantities (Reiter et al., 2005; Power &
Williams, 2012). For example, Reiter et al. (2005) discussed time expressions in the context
of weather-forecast generation, pointing out that a timestamp 00:00 could be expressed as
late evening, midnight, or simply evening (Reiter et al., 2005, p. 143). Not surprisingly, hu-
mans (including the professional forecasters that contributed to Reiter et al.’s evaluation),
show considerable variation in their lexical choices.

It is interesting to note that many issues related to lexicalisation have also been dis-
cussed in the psycholinguistic literature on lexical access (Levelt, 1989; Levelt, Roelofs, &
Meyer, 1999). Among these is the question of how speakers home in on the right word and
under what conditions they are liable to make errors, given that the mental lexicon is a
densely connected network in which lexical items are connected at multiple levels (semantic,
phonological, etc). This has also been a fruitful topic for computational modelling (e.g.,
Levelt et al., 1999). In contrast to cognitive modelling approaches, however, research in nlg
increasingly views lexicalisation as part of surface realisation (discussed below) (a similar
observation is made by Mellish & Dale, 1998, p.351). A fundamental contribution in this
context is by Elhadad, Robin, and McKeown (1997), who describe a unification-based ap-
proach, unifying conceptual representations (i.e., preverbal messages) with grammar rules
encoding lexical as well as syntactic choices.

2.5 Referring Expression Generation

Referring Expression Generation (reg) is characterised by Reiter and Dale (1997, p.11) as
“the task of selecting words or phrases to identify domain entities”. This characterisation
suggests a close similarity to lexicalisation, but Reiter and Dale (2000) point out that the
essential difference is that referring expression generation is a “discrimination task, where
the system needs to communicate sufficient information to distinguish one domain entity
from other domain entities”. reg is among the tasks within the field of automated text gen-
eration that has received most attention in recent years (Mellish et al., 2006; Siddharthan,
Nenkova, & McKeown, 2011). Since it can be separated relatively easily from a specific
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(a) Visual domain from the gre3d corpus
(Viethen & Dale, 2008)

Domain objects
Attr d1 d2 d3

Color blue green blue
Shape ball cube ball
Size small large large
Rel bef(d2) beh(d1) nt(d2)

(b) Table of objects and attributes. beh: ‘be-
hind’; bef: ‘before’; nt: ‘next to’

Figure 2: Visual domain and corresponding tabular representation

application domain and studied in its own right, various ‘standalone’ solutions for the reg
problem exist.

In our running example, the three bradycardia events shown in Figure 1b are later
represented as a set of three entities under the theme argument of be, following lexicalisation
(Figure 1c). How the system refers to them will depend, among other things, on whether
they’ve already been mentioned (in which case, a pronoun or definite description might
work) and if so, whether they need to be distinguished from any other similar entities (in
which case, they might need to be distinguished by some properties, such as the time when
they occurred).

The first choice is therefore related to referential form: whether entities are referred to
using a pronoun, a proper name or an (in)definite description, for example. This depends
partly on the extent to which the entity is ‘in focus’ or ‘salient’ (see e.g., Poesio, Stevenson,
Di Eugenio, & Hitzeman, 2004) and indeed such notions underlie many computational
accounts of pronoun generation (e.g., McCoy & Strube, 1999; Callaway & Lester, 2002;
Kibble & Power, 2004). Choosing referential forms has recently been the topic of a series
of shared tasks on the Generation of Referring Expressions in Context (grec; Belz, Kow,
Viethen, & Gatt, 2010), using data from Wikipedia articles, which included choices such as
reflexive pronouns and proper names. Many systems participating in this challenge framed
the problem in terms of classification among these many options. Still, it is probably fair to
say that much work on referential form has focussed on when to use pronouns. Forms such as
proper names remain understudied, although recently various researchers have highlighted
the problems of proper name generation (Siddharthan et al., 2011; van Deemter, 2016;
Castro Ferreira, Wubben, & Krahmer, 2017).

Determining the referential content usually comes into play when the chosen form is a
description. Typically, there are multiple entities which have the same referential category
or type in a domain (more than one player, for example, or several bradycardias). As a
result, other properties of the entity will need to be mentioned if it is to be identified by
the reader or hearer. Earlier reg research often worked with simple visual domains, such
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as Figure 2a or its corresponding tabular representation, taken from the gre3d corpus
(Viethen & Dale, 2008). In this example, the reg content selection problem is to find a set
of properties for a target (say d1) that singles it out from its two distractors (d2 and d3).

reg content determination algorithms can be thought of as performing a search through
the known properties of the referent for the ‘right’ combination that will distinguish it in
context. What constitutes the ‘right’ combination depends on the underlying theory. Too
much information in the description (as in the small blue ball before the large green cup)
might be misleading or even boring; too little (the ball) might hinder identification. Much
work on reg has appealed to the Gricean maxim stating that speakers should make sure
that their contributions are sufficiently informative for the purposes of the exchange, but
not more so (Grice, 1975). How this is interpreted has been the subject of a number of
algorithmic interpretations, including:

• Conducting an exhaustive search through the space of possible descriptions and choos-
ing the smallest set of properties that will identify the target referent, the strategy
incorporated by the Full Brevity procedure (Dale, 1989). In our example domain, this
would select size.

• Selecting properties incrementally, but choosing the one which rules out most dis-
tractors at each step, thereby minimising the possibility of including information that
isn’t directly relevant to the identification task. This is the underlying idea of the
Greedy Heuristic algorithm (Dale, 1989, 1992), and it has more recently been revived
in stochastic utility-based models such as Frank, Goodman, and Tenenbaum (2009).
In our example scene, such an algorithm would once again consider size first.

• Selecting properties incrementally, but based on domain-specific preference or cogni-
tive salience. This is the strategy incorporated in the Incremental Algorithm (Dale
& Reiter, 1995), which would predict that color should be preferred over size in our
example.

While these heuristics focus exclusively on the requirement that a referent be unambigu-
ously identified, research on reference in dialogue (e.g., Jordan & Walker, 2005) has shown
that under certain conditions, referring expressions may also include ‘redundant’ properties
in order to achieve other communicative goals, such as confirmation of a previous utterance
by an interlocutor. Similarly, White, Clark, and Moore (2010) present a system which gen-
erates user-tailored descriptions in spoken dialogue, arguing that, for example, a frequent
flyer would prefer different descriptions of flights than a student who only flies occasionally.

These various algorithms compute (possibly different) distinguishing descriptions for
target referents (more precisely: they select sets of properties that distinguish the target,
but that still need to be expressed in words; see Section 2.6 below). Various strands of
more recent work can be distinguished (surveyed in Krahmer & van Deemter, 2012). Some
researchers have focussed on extending the expressivity of the ‘classical’ algorithms, to in-
clude plurals (the two balls) and relations (the ball in front of a cube) (e.g., Horacek, 1997;
Stone, 2000; Gardent, 2002; Kelleher & Kruijff, 2006; Viethen & Dale, 2008, among many
others). Other work has cast the problem in probabilistic terms; for example, FitzGerald,
Artzi, and Zettlemoyer (2013) frame reg as a problem of estimating a log-linear distribu-
tion over a space of logical forms representing expressions for sets of objects. Other work
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has concentrated on evaluating the performance of different reg algorithms, by collecting
controlled human references and comparing these with the references predicted by various
algorithms (e.g., Belz, 2008; Gatt & Belz, 2010; Jordan & Walker, 2005, again among many
others). In a similar vein, researchers have also started exploring the relevance of reg algo-
rithms as psycholinguistic models of human language production (e.g., van Deemter, Gatt,
van Gompel, & Krahmer, 2012b).

A different line of work has moved away from the separation between content selection
and form, performing these tasks jointly. For example, Engonopoulos and Koller (2014)
use a synchronous grammar that directly relates surface strings to target referents, using
a chart to compute the possible expressions for a given target. This work bears some
relationship to planning-based approaches we discuss in Section 3.2 below, which exploit
grammatical formalisms as planning operators (e.g. Stone & Webber, 1998; Koller & Stone,
2007), solving realisation and content determination problems in tandem (including reg as
a special case).

Finally, in earlier work visual information was typically ‘simplified’ into a table (as we
did above), but there has been substantial progress on reg in more complex scenarios. For
example, the give challenge (Koller, Striegnitz, Gargett, Byron, Cassell, Dale, Moore, &
Oberlander, 2010), provided impetus for the exploration of situated reference to objects
in a virtual environment (see also Stoia & Shockley, 2006; Garoufi & Koller, 2013). More
recent work has started exploring the interface between computer vision and reg to pro-
duce descriptions of objects in complex, realistic visual scenes, including photographs (e.g.,
Mitchell, van Deemter, & Reiter, 2013; Kazemzadeh, Ordonez, Matten, & Berg, 2014; Mao,
Huang, Toshev, Camburu, Yuille, & Murphy, 2016). This forms part of a broader set of
developments focussing on the relatonship between vision and language, which we turn to
in Section 4.

2.6 Linguistic Realisation

Finally, when all the relevant words and phrases have been decided upon, these need to
be combined to form a well-formed sentence. The simple example in Figure 1d shows the
structure underlying the sentence there were three successive bradycardias down to 69 , the
linguistic message corresponding to the portion selected from the original signal in Figure
1a.

Usually referred to as linguistic realisation, this task involves ordering constituents of a
sentence, as well as generating the right morphological forms (including verb conjugations
and agreement, in those languages where this is relevant). Often, realisers also need to
insert function words (such as auxiliary verbs and prepositions) and punctuation marks. An
important complication at this stage is that the output needs to include various linguistic
components that may not be present in the input (an instance of the ‘generation gap’
discussed in Section 3.1 below); thus, this generation task can be thought of in terms of
projection between non-isomorphic structures (cf. Ballesteros, Bohnet, Mille, & Wanner,
2015). Many different approaches have been proposed, of which we will discuss

1. human-crafted templates;

2. human-crafted grammar-based systems;
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3. statistical approaches.

2.6.1 Templates

When application domains are small and variation is expected to be minimal, realisation is
a relatively easy task, and outputs can be specified using templates (e.g., Reiter, Mellish,
& Levine, 1995; McRoy, Channarukul, & Ali, 2003), such as the following.

(7) $player scored for $team in the $minute minute.

This template has three variables, which can be filled with the names of a player, a team,
and the minute in which this player scored a goal. It can thus serve to generate sentences
like:

(8) Ivan Rakitic scored for Barcelona in the 4th minute.

An advantage of templates is that they allow for full control over the quality of the
output and avoid the generation of ungrammatical structures. Modern variants of the
template-based method include syntactic information in the templates, as well as possibly
complex rules for filling the gaps (Theune et al., 2001), making it difficult to distinguish
templates from more sophisticated methods (van Deemter, Krahmer, & Theune, 2005).
The disadvantage of templates is that they are labour-intensive if constructed by hand
(though templates have recently been learned automatically from corpus data, see e.g.,
Angeli, Manning, & Jurafsky, 2012; Kondadadi et al., 2013, and the discussion in Section
3.3 below). They also do not scale well to applications which require considerable linguistic
variation.

2.6.2 Hand-Coded Grammar-Based Systems

An alternative to templates is provided by general-purpose, domain-independent realisation
systems. Most of these systems are grammar-based, that is, they make some or all of their
choices on the basis of a grammar of the language under consideration. This grammar can
be manually written, as in many classic off-the-shelf realisers such as fuf/surge (Elhadad
& Robin, 1996), mumble (Meteer, McDonald, Anderson, Forster, Gay, Iluettner, & Sibun,
1987), kpml (Bateman, 1997), nigel (Mann & Matthiessen, 1983), and RealPro (Lavoie
& Rambow, 1997). Hand-coded grammar-based realisers tend to require very detailed
input. For example, kpml (Bateman, 1997) is based on Systemic-Functional Grammar
(sfg; Halliday & Matthiessen, 2004), and realisation is modelled as a traversal of a network
in which choices depend on both grammatical and semantico-pragmatic information. This
level of detail makes these systems difficult to use as simple ‘plug-and-play’ or ‘off the shelf’
modules (e.g., Kasper, 1989), something which has motivated the development of simple
realisation engines which provide syntax and morphology apis, but leave choice-making up
to the developer (Gatt et al., 2009; Vaudry & Lapalme, 2013; Bollmann, 2011; de Oliveira
& Sripada, 2014; Mazzei, Battaglino, & Bosco, 2016).

One difficulty for grammar-based systems is how to make choices among related options,
such as the following, where hand-crafted rules with the right sensitivity to context and input
are difficult to design:

80



Natural Language Generation

(9) Ivan Rakitic scored for Barcelona in the 4th minute.

(10) For Barcelona, Ivan Rakitic scored in minute four.

(11) Barcelona player Ivan Rakitic scored after four minutes.

2.6.3 Statistical Approaches

Recent approaches have sought to acquire probabilistic grammars from large corpora, cut-
ting down on the amount of manual labour required, while increasing coverage. Essentially,
two approaches have been taken to include statistical information in the realisation process.
One approach, introduced by the seminal work of Langkilde and Knight (Langkilde-Geary,
2000; Langkilde-Geary & Knight, 2002) on the halogen/nitrogen systems, relies on a
two-level approach, in which a small, hand-crafted grammar is used to generate alternative
realisations represented as a forest, from which a stochastic re-ranker selects the optimal
candidate. Langkilde and Knight rely on corpus-based statistical knowledge in the form
of n-grams, whereas others have experimented with more sophisticated statistical models
to perform reranking (e.g., Bangalore & Rambow, 2000; Ratnaparkhi, 2000; Cahill, Forst,
& Rohrer, 2007). The second approach does not rely on a computationally expensive
generate-and-filter approach, but uses statistical information directly at the level of gener-
ation decisions. An example of this approach is the pcru system developed by Belz (2008),
which generates the most likely derivation of a sentence, given a corpus, using a context-free
grammar. In this case, the statistics are exploited to control the generator’s choice-making
behaviour as it searches for the optimal solution.

In both approaches, the base generator is hand-crafted, while statistical information is
used to filter outputs. An obvious alternative would be to also rely on statistical infor-
mation for the base-generation system. Fully data-driven grammar-based approaches have
been developed by acquiring grammatical rules from treebanks. For example, the Openccg
framework (Espinosa, White, & Mehay, 2008; White & Rajkumar, 2009, 2012) presents a
broad coverage English surface realizer, based on Combinatory Categorial Grammar (ccg;
Steedman, 2000), relying on a corpus of ccg representations derived from the Penn Tree-
bank (Hockenmaier & Steedman, 2007) and using statistical language models for re-ranking.
There are several other approaches to realisation that adopt a similar rationale, based on
a variety of grammatical formalisms, including Head-Driven Phrase Structure Grammar
(hpsg; Nakanishi, Miyao, & Tsujii, 2005; Carroll & Oepen, 2005), Lexical-Functional
Grammar (lfg; Cahill & Van Genabith, 2006) and Tree Adjoining Grammar (tag; Gar-
dent & Narayan, 2015). In many of these systems, the base generator uses some variant
of the chart generation algorithm (Kay, 1996) to iteratively realise parts of an input spec-
ification and merge them into one or more final structures, which can then be ranked (see
Rajkumar & White, 2014, for further discussion). The existence of stochastic realisers with
wide-coverage grammars has motivated a greater focus on subtle choices, such as how to
avoid structural ambiguity, or how to handle choices such as explicit complementiser in-
sertion in English (see e.g., Rajkumar & White, 2011). In a somewhat similar vein, the
statistical approach to microplanning proposed by Gardent and Perez-Beltrachini (2017)
focuses on interactions between surface realization, aggregation, and sentence segmentation
in a joint model.
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Other approaches to realisation also rely on one or more classifiers to improve outputs.
For example, Filippova and Strube (2007, 2009) describe an approach to linearisation of
constituents using a two-step approach with Maximum Entropy classifiers, first determining
which constituent should occupy sentence-initial position, then ordering the constituents in
the remainder of the sentence. Bohnet, Wanner, Mille, and Burga (2010) present a realiser
using underspecified dependency structures as input, in a framework based on Support
Vector Machines, where classifiers are organised in a cascade. An initial classifier decodes
semantic input into the corresponding syntactic features, while two subsequent classifiers
first linearise the syntax and then render the correct morphological realisation for the com-
ponent lexemes.

Modelling choices using classifier cascades is not restricted to realisation alone. Indeed,
in some cases, it has been adopted as a model for the nlg process as a whole, a topic we
will return to in Section 3.3.3. One outcome of this view of nlg is that the nature of the
input representation also changes: the more decisions that are made within the statistical
generation system, the less linguistic and more abstract the input representation becomes,
paving the way for integrated, end-to-end stochastic generation systems, such as Konstas
and Lapata (2013), which we also discuss in the next section.

2.7 Discussion

This section has given an overview of some classic tasks that are found in most nlg systems.
One of the common trends that can be identified in each case is the steady move from early,
hand-crafted approaches based on rules, to the more recent stochastic approaches that rely
on corpus data, with a concomitant move towards more domain-independent approaches.
Historically, this was the case already for individual tasks, such as referring expression
generation or realisation, which became topics of intensive research in their own right.
However, as more and more approaches to all nlg tasks begin to take a statistical turn,
there is increasing emphasis on learning techniques; the domain-specific aspect is, as it were,
incidental, a property of the training data itself. As we shall see in the next section, this
trend has also influenced the way different nlg tasks are organised, that is, the architecture
of systems for text generation from data.

3. NLG Architectures and Approaches

Having given an overview of the most common sub-tasks that nlg systems incorporate, we
now turn to the way such tasks can be organised. Broadly speaking, we can distinguish
between three dominant approaches to nlg architectures:

1. Modular architectures: By design, such architectures involve fairly crisp divisions
among sub-tasks, though with significant variations among them;

2. Planning perspectives: Viewing text generation as planning links it to a long tradition
in ai and affords a more integrated, less modular perspective on the various sub-tasks
of nlg;

3. Integrated or global approaches: Now the dominant trend in nlg (as it is in nlp
more generally), such approaches cut across task divisions, usually by placing a heavy
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Figure 3: Classical three-stage NLG architecture, after Reiter and Dale (2000). Darker
segments illustrate the three main modules; lighter segments show the outputs.

reliance on statistical learning of correspondences between (non-linguistic) inputs and
outputs.

The above typology of nlg is based on architectural considerations. An orthogonal
question concerns the extent to which a particular approach relies on symbolic or knowledge-
based methods, as opposed to stochastic, data-driven methods. It is important to note that
none of the three architectural types listed above is inherently committed to one or the
other of these. Thus, it is possible for a system to have a modular design but incorporate
stochastic methods in several, or even all, sub-tasks. Indeed, our survey of the various tasks
in Section 2 included several examples of stochastic approaches. Below, we will also discuss
a number of data-driven systems whose design is arguably modular. Similarly, it is possible
for a system to take a non-modular perspective, but eschew the use of data-driven models
(this is a feature of some planning-based nlg systems discussed in Section 3.2 below, for
instance).

The fact that many modular nlg systems are not data-driven is largely due to historical
reasons since, of the three designs outlined above, the modular one is the oldest. As we
will show below, however, challenges to the classical modular pipeline architecture – once
designated by Reiter (1994) as the consensus at the time – have included blackboard and
revision-based architectures that were not stochastic. At the same time, it must be ac-
knowledged that the large-scale adoption of integrated, non-modular approaches has been
impacted significantly by the uptake of data-driven techniques within the nlg community
and the development of repositories of data to support training and evaluation.

In summary, there are at least two orthogonal ways of classifying nlg systems, based
on their design or on the methods adopted in their development. Our survey in this section
follows the typology outlined above for convenience of exposition. The caveats raised here
should, however, be borne in mind by the reader, and will in any case be brought up
repeatedly in what follows, as we discuss different approaches under each heading.

3.1 Modular Approaches

Existing surveys of nlg, including those by Reiter and Dale (1997, 2000) and Reiter (2010),
typically refer to some version of the pipeline architecture displayed in Figure 3 as the
‘consensus’ architecture in the field. Originally introduced by Reiter (1994), the pipeline
was a generalisation based on actual practice and was claimed to have the status of a ‘de
facto standard’. This, however, has been contested repeatedly, as we shall see.
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Different modules in the pipeline incorporate different subsets of the tasks described in
Section 2. The first module, the Text Planner (or Document Planner, or Macroplanner),
combines content selection and text structuring (or document planning). Thus, it is con-
cerned mainly with strategic generation (McDonald, 1993), the choice of ‘what to say’. The
resulting text plan, a structured representation of messages, is the input to the Sentence
Planner (or microplanner), which typically combines sentence aggregation, lexicalisation
and referring expression generation (Reiter & Dale, 2000). If text planning amounts to
deciding what to say , sentence planning can be understood as deciding how to say it. All
that remains then is to actually say it, i.e., generate the final sentences in a grammatically
correct way, by applying syntactic and morphological rules. This task is performed by the
Linguistic Realiser. Together, sentence planning and realisation encompass the set of tasks
traditionally referred to as tactical generation.

The pipeline architectures shares some characteristics with a widely-used architecture
in text summarisation (Mani, 2001; Nenkova & McKeown, 2011), where the process is sub-
divided into (a) analysis of source texts and selection of information; (b) transformation of
the selected information to enhance fluency; and (c) synthesis of the summary.

A second related architecture, which was also noted by Reiter (1994), is that proposed in
psycholinguistics for human speech production, where the most influential psycholinguistic
model of language production, proposed by Levelt (1989, 1999), makes a similar distinction
between deciding what to say and determining how to say it. Levelt’s model allows for a
limited degree of self-monitoring through feedback loops, a feature that is absent in Reiter’s
nlg pipeline, but continues to play an important role in psycholinguistics (cf. Pickering
& Garrod, 2013), though here too there has been increasing emphasis on more integrated
models.

A hallmark of the architecture in Figure 3 is that it represents clear-cut divisions among
tasks that are traditionally considered to belong to the ‘what’ (strategic) and the ‘how’
(tactical). However, this does not imply that this division is universally accepted in prac-
tice. In an earlier survey, Mellish et al. (2006) concluded that while several nlg systems
incorporate many of the core tasks outlined in Section 2, their organisation varies consid-
erably from system to system. Indeed, some tasks may be split up across modules. For
example, the content determination part of referring expression generation might be placed
in the sentence planner, but decisions about form (such as whether to use an anaphoric np,
and if so, what kind of np to produce) may have to wait until at least some realisation-
related decisions have been taken. Based on these observations, Mellish et al. proposed
an alternative formalism, the ‘objects-and-arrows’ framework, within which different types
of information flow between nlg sub-tasks can be accommodated. Rather than offering a
specific architecture, this framework was intended as a formalism within which high-level
descriptions of different architectures can be specified. However, it retains the principle that
the tasks, irrespective of their organisation, are relatively well-defined and distinguished.

Another recent development in relation to the pipeline architecture in Figure 3 is a
proposal by Reiter (2007) to accommodate systems in which input consists of raw (often
numeric) data that requires some preprocessing before it can undergo the kind of selection
and planning that the Text Planner is designed to execute. The main characteristic of these
systems is that input is unstructured, in contrast to systems which operate over logical
forms, or database entries. Examples of application domains where this is the case include
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weather reporting (e.g., Goldberg et al., 1994; Busemann & Horacek, 1997; Coch, 1998;
Turner et al., 2008; Sripada et al., 2003; Ramos-Soto et al., 2015), where the input often
takes the form of numerical weather predictions; and generation of summaries from patient
data (e.g., Hueske-Kraus, 2003; Harris, 2008; Gatt et al., 2009; Banaee et al., 2013). In
such cases, nlg systems often need to perform some form of data abstraction (for example,
identifying broad trends in the data), followed by data interpretation. The techniques used
to perform these tasks range from extensions of signal processing techniques (e.g., Portet
et al., 2009) to the application of reasoning formalisms based on fuzzy set theory (e.g.,
Ramos-Soto et al., 2015). Reiter’s (2007) proposal accommodates these steps by extending
the pipeline ‘backwards’, incorporating stages prior to Text Planning.

Notwithstanding its elegance and simplicity, there are challenges associated with a
pipeline nlg architecture, of which two are particularly worth highlighting:

• The generation gap (Meteer, 1991) refers to mismatches between strategic and tactical
components, so that early decisions in the pipeline have unforeseen consequences
further downstream. To take an example from Inui, Tokunaga, and Tanaka (1992), a
generation system might determine a particular sentence ordering during the sentence
planning stage, but this might turn out to be ambiguous once sentences have actually
been realised and orthography has been inserted;

• Generating under constraints: Itself perhaps an instance of the generation gap, this
problem can occur when the output of a system has to match certain requirements,
for example, it cannot exceed a certain length (see Reiter, 2000, for discussion). For-
malising this constraint might appear possible at the realisation stage – by stipulating
the length constraint in terms of number of words or characters, for instance – but it
is much harder at the earlier stages, where the representations are pre-linguistic and
their mapping to the final text are potentially unpredictable.

These, and related problems, motivated the development of alternative architectures.
For instance, some early nlg systems were based on an interactive design, in which a
module’s initially incomplete output could be fleshed out based on feedback from a later
module (the pauline system is an example of this; Hovy, 1988). An even more flexible stance
is taken in blackboard architectures, in which task-specific procedures are not rigidly pre-
organised, but perform their tasks reactively as the output, represented in a data structure
shared between tasks, evolves (e.g., Nirenburg, Lesser, & Nyberg, 1989). Finally, revision-
based architectures allow a limited form of feedback between modules under monitoring,
with the possibility of altering choices which prove to be unsatisfactory (e.g., Mann &
Moore, 1981; Inui et al., 1992). This has the advantage of not requiring ‘early’ modules
to be aware of the consequences of their choices for subsequent modules, since something
that goes wrong can always be revised (Inui et al., 1992). Revision need not be carried out
exclusively to rectify shortcomings. For instance, Robin (1993) used revision in the context
of sports summaries; an initial draft was revised to add historical background information
that was made relevant by the events reported in the draft, also taking decisions as to
where to place them in relation to the main text. The price that all of these alternatives
potentially incur is, of course, a reduction in efficiency, as noted by De Smedt, Horacek,
and Zock (1996).
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Despite early criticisms of the modular approach, the strategic versus tactical division
continues to influence recent data-driven approaches to nlg, including a number of those
discussed in Sections 3.3 and 3.3.5 below (e.g. Dušek & Jurč́ıček, 2015, 2016, among others).

However, other alternatives to pipelines often end up blurring the boundaries between
modules in the nlg system. This is a feature that is more evident in some planning-based
and integrated approaches proposed in recent years. It is to these that we now turn.

3.2 Planning-Based Approaches

In ai, the planning problem can be described as the process of identifying a sequence of one
or more actions to satisfy a particular goal. An initial goal can be decomposed into sub-
goals, satisfied by actions each of which has its preconditions and effects. In the classical
planning paradigm (strips; Fikes & Nilsson, 1971), actions are represented as tuples of
such preconditions and effects.

The connection between planning and nlg lies in that text generation can be viewed as
the execution of planned behaviour to achieve a communicative goal, where each action leads
to a new state, that is, a change in a context that includes both the linguistic interaction
or discourse history to date, but also the physical or situated context and the user’s beliefs
and actions (see Lemon, 2008; Rieser & Lemon, 2009; Dethlefs, 2014; Garoufi & Koller,
2013; Garoufi, 2014, for some recent perspectives on this topic). This perspective on nlg
is therefore related to the view of ‘language as action’ (Clark, 1996), itself rooted in a
philosophical tradition inaugurated by the work of Austin (1962) and Searle (1969). Indeed,
some of the earliest ai work in this tradition (especially Cohen & Perrault, 1979; Cohen
& Levesque, 1985) sought an explicit formulation of preconditions (akin to Searle’s felicity
conditions) for speech acts and their consequences.

Given that there is in principle no restriction on what types of actions can be incorpo-
rated in a plan, it is possible for plan-based approaches to nlg to cut across the boundaries
of many of the tasks that are normally encapsulated in the classic pipeline architecture,
combining both tactical and strategic elements by viewing the problems of what to say and
how to say it as part and parcel of the same set of operations. Indeed, there are important
precedents in early work for a unified view of nlg as a hierarchy of goals, the kamp system
(Appelt, 1985) being among the best known examples. For instance, to generate refer-
ring expressions in kamp, the starting point was reasoning about interlocutors’ beliefs and
mutual knowledge, whereupon the system generated sub-goals that percolated all the way
down to property choice and realisation, finally producing a referential np whose predicted
effect was to alter the hearer’s belief state about the referent (see Heeman & Hirst, 1995,
for a similar approach to the generation of referring expressions in dialogue).

One problem with these perspectives, however, is that deep reasoning about beliefs,
desires and intentions (or bdi, as it is often called following Bratman, 1987) requires highly
expressive formalisms and incurs considerable computational expense. One solution is to
avoid general-purpose reasoning formalisms and instead adapt a linguistic framework to the
planning paradigm for nlg.
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3.2.1 Planning through the Grammar

The idea of interpreting linguistic formalisms in planning terms is again prefigured in early
nlg work. For example, some early systems (e.g. kpml, which we briefly discussed in the
context of realisation in Section 2.6; Bateman, 1997) were based on Systemic-Functional
Grammar (sfg; Halliday & Matthiessen, 2004), which can be seen as a precursor to contem-
porary planning-based approaches, since sfg models linguistic constructions as the outcome
of a traversal through a decision network that extends backwards to pragmatic intentions.
In a similar vein, both Hovy (1991) and Moore and Paris (1993) interpreted the relations
of Rhetorical Structure Theory (Mann & Thompson, 1988) as operators for text planning.

Some recent approaches integrate much of the planning machinery into the grammar
itself, viewing linguistic structures as planning operators. This requires grammar formalisms
which integrate multiple levels of linguistic analysis, from pragmatics to morpho-syntax.
It is common for contemporary planning-based approaches to nlg to be couched in the
formalism of Lexicalised Tree Adjoining Grammar (ltag; Joshi & Schabes, 1997), though
other formalisms, such as Combinatory Categorial Grammar (Steedman, 2000) have also
been shown to be adequate to the task (see especially Nakatsu & White, 2010, for an
approach to generation using Discourse Combinatory Categorial Grammar).

In an ltag, pieces of linguistic structure (so-called elementary trees in a lexicon) can be
coupled with semantic and pragmatic information that specify (a) what semantic precon-
ditions need to obtain in order for the item to be felicitously used; and (b) what pragmatic
goals the use of that particular item will achieve (see Stone & Webber, 1998; Garoufi &
Koller, 2013; Koller & Striegnitz, 2002, for planning-based work using ltag). As an ex-
ample of how such a formalism could be deployed in a planning framework, let us focus on
the task of referring to a target entity. Koller and Stone (2007) formulated the task in a
way that obviates the need to distinguish between the content determination and realisa-
tion phases (an approach already taken in Stone & Webber, 1998). Furthermore, they do
not separate sentence planning, reg and realisation, as is done in the traditional pipeline.
Consider the sentence Mary likes the white rabbit. Simplifying the formalism for ease of
presentation, we can represent the lexical item likes as follows (this example is based on
Garoufi, 2014, albeit with some simplifications):

(12) likes(u, x, y) action:
preconditions:

• The proposition that x likes y is part of the knowledge base (i.e. the statement
is supported);

• x is animate;

• The current utterance u can be substituted into the derivation S under
construction;

effects:

• u is now part of S

• New np nodes for x in agent position and y in patient position have been set
up (and need to be filled).
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As in strips, an operator consists of preconditions and effects. Note that the precondi-
tions associated with the lexical item require support in the knowledge base (thus making
reference to the input kb, which normally would not be accessible to the realiser), and
include semantic information (such as that the agent needs to be animate). Having inserted
likes as the sentence’s main verb, we have two noun phrases which need to be filled by
generating nps for the arguments x and y. Rather than deferring this task to a separate
reg module, Koller and Stone build referring expressions by associating further pragmatic
preconditions on the linguistic operators (elementary trees) that will be incorporated in
the referential np. First, the entity must be part of the hearer’s knowledge state, since an
identifying description (say, to x) presupposes that the hearer is familiar with it. Second,
an effect of adding words to the np (such as the predicates rabbit or white) is that the phrase
excludes distractors, i.e. entities of which those properties are not true. In a scenario with
one human being and two rabbits, only one of which (the y in our example) is white, the
derivation would proceed by first updating the np corresponding to y with rabbit, thereby
excluding the human from the distractor set, but leaving the goal to distinguish y unsat-
isfied (since y is not the only rabbit). The addition of another predicate to the np (white)
does the trick.

A practical advantage to planning-based approaches is the availability of a significant
number of off-the-shelf planners. Once the nlg task is formulated in an appropriate plan
description language, such as the Planning Domain Definition Language (pddl; McDer-
mott, 2000), it becomes possible in principle to use any planner to generate text. However,
planners remain beset by problems of efficiency. In a set of experiments on nlg tasks of
differing complexity, Koller and Petrick (2011) noted that planners tend to spend significant
amounts of time on preprocessing, though solutions could often be found efficiently once
preprocessing was complete.

3.2.2 Stochastic Planning under Uncertainty using Reinforcement Learning

The approaches to planning we have discussed so far are largely rule-based and tend to
view the relationship between a planned action and its consequences (that is, its impact on
the context), as fixed (though exceptions exist, as in contingency planning, which generates
multiple plans to address different possible outcomes; Steedman & Petrick, 2007).

As Rieser and Lemon (2009) note, this view is unrealistic. Consider a system that
generates a restaurant recommendation. The consequences of its output (that is, the new
state it gives rise to) are subject to noise arising from several sources of uncertainty. In
part, this is due to trade-offs, for example, between needing to include the right amount of
information while avoiding excessive prolixity. Another source of uncertainty is the user,
whose actions may not be the ones predicted by the system. An instance of Meteer’s (1991)
generation gap can rear its head, for instance if a stochastic realiser renders the content
of a message in an ambiguous, or excessively lengthy utterance (Rieser & Lemon, 2009), a
problem that could be addressed by allowing different sub-tasks to share knowledge sources
and be guided by overlapping constraints (Dethlefs & Cuayáhuitl, 2015, discussed below).

In short, planning a good solution to reach a communicative goal could be viewed as
a stochastic optimisation problem (a theme we revisit in Section 3.3.3 below). This view
is shared by many recent approaches based on Reinforcement Learning (rl; Lemon, 2008;
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Rieser & Lemon, 2009, 2011), especially those that tackle nlg within a dialogue context.
In this framework, generation can be modelled as a Markov decision process where states
are associated with possible actions and each state-action pair is associated with a proba-
bility of moving from a state at time t to a new state at t + 1 via action a. Crucially for
the learning algorithm, transitions are associated with a reinforcement signal, via a reward
function that quantifies the optimality of the generated output. Learning usually involves
simulations in which different generation strategies or ‘policies’ – essentially, plans corre-
sponding to possible paths through the state space – come to be associated with different
rewards. The rl framework has been argued to be better at handling uncertainty in dy-
namic environments than supervised learning or classification, since these do not enable
adaptation in a changing context (Rieser & Lemon, 2009). Rieser, Keizer, Liu, and Lemon
(2011) showed that this approach is effective in optimising information presentation when
generating restaurant recommendations. Janarthanam and Lemon (2014) used it to opti-
mise the choice of information to select in a referring expression, given a user’s knowledge.
The system learns to adapt its user model as the user acquires new knowledge in the course
of a dialogue.

An important contribution of this work has been in exploring joint optimisation, where
the policy learned satisfies multiple constraints arising from different sub-tasks of the gen-
eration process, by sharing knowledge across the sub-tasks. Lemon (2011) showed that
joint optimisation can learn a policy that determines when to generate informative utter-
ances or queries to seek more information from a user. Similarly, Cuayáhuitl and Dethlefs
(2011) used hierarchical rl to jointly optimise the problem of finding and describing a
short route description, while adapting to a user’s prior knowledge, giving rise to a strat-
egy whereby the user is guided past landmarks that they are familiar with, while avoiding
potentially confusing junctions. Also in a route-finding setting, Dethlefs and Cuayáhuitl
(2015) develop a hierarchical model comprising a set of learning agents whose tasks range
from content selection through realisation. They show that a joint framework in which
agents share knowledge, outperforms an isolated learning framework in which each task
is modelled separately. For example, the joint policy learns to give high-level navigation
instructions, but switches to low-level instructions if the user goes off-track. Furthermore,
utterances produced by the joint policy are less verbose and lead to shorter interactions
overall.

The joint optimisation framework is of course not unique to Reinforcement Learning and
planning-based approaches. A number of approaches to content determination discussed
in earlier sections, including the work of Marciniak and Strube (2005) and Barzilay and
Lapata (2005), also use joint optimisation in their approach to content determination and
realisation (see Sections 2.1), as does the work of Lampouras and Androutsopoulos (2013).
We return to optimisation in Section 3.3.3 below.

In summary, nlg research within the planning paradigm has highlighted the desirability
of developing unified formalisms to represent constraints on the generation process at multi-
ple levels, whether this is done using ai-based planning formalisms (Koller & Petrick, 2011),
or stochastically via Reinforcement Learning. Among its contributions, the latter line of
work has shed light on the value of (a) hierarchical relationships among sub-problems; and
(b) joint optimisation of different sub-tasks. Indeed, the latter trend belongs to a much
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broader range of research on integrated approaches to nlg, to which we turn our attention
immediately below.

3.3 Other Stochastic Approaches to NLG

As we noted at the start of this section, whether a system is data-driven or not is independent
of its architectural organisation. Indeed, some of the earliest challenges to a modular or
pipeline approach described in Section 3.1 above, including revision-based and blackboard
architectures, were symbolic in their methodological orientation. At the same time, the
shift towards data-driven methods and the availability of data sources has given greater
impetus to integrated approaches to nlg, although this shift began somewhat later that in
other areas of nlp. As a result, a discussion of integrated approaches will necessarily tend
to emphasise statistical methods.

In the remainder of this section, we start with an overview of methods used to acquire
training data for nlg – in particular, pairings of inputs (data) and outputs (text) – before
turning to an overview of techniques and frameworks. One of the themes that will emerge
from this overview is that, as in the case of planning, statistical methods often take a unified
or ‘global’, rather than a modularised, view of the nlg process.

3.3.1 Acquiring Data

As noted in Section 2, some nlg tasks support the transition to a stochastic approach fairly
easily. For example, research on realisation often exploits the existence of treebanks from
which input-output correspondences can be learned. Similarly, the emergence of corpora of
referring expressions representing both input domains and output descriptions (e.g., Gatt,
van der Sluis, & van Deemter, 2007; Viethen & Dale, 2011; Kazemzadeh et al., 2014;
Gkatzia, Rieser, Bartie, & Mackaness, 2015) has facilitated the development of probabilistic
reg algorithms. Shared tasks have also contributed to the development of both data sources
and methods (see Section 7). As we show in Section 4 below, recent work on image-to-text
generation has also benefited from the availability of large datasets. For statistical, end-to-
end generation in other domains, there is less of an embarrassment of riches. However, this
situation is improving as methods to automatically align input data with output text are
developed. Still, it is worth emphasising that many of these alignment approaches use data
which is semi-structured, rather than the raw, numerical input (e.g., signals) used by the
data-to-text systems that Reiter (2007), among others, drew attention to.

Currently, there are a number of data-text corpora in specific domains, notably weather
forecasting (Reiter et al., 2005; Belz, 2008; Liang et al., 2009) and sports summaries (Barzi-
lay & Lapata, 2005; Chen & Mooney, 2008). These usually consist of database records
paired with free text. A promising recent trend is the introduction of statistical techniques
that seek to automatically segment and align such data and text (e.g., Barzilay & Lapata,
2005; Liang et al., 2009; Konstas & Lapata, 2013). In an influential paper, Liang et al.
(2009) described this framework in terms of a generative model that defines a distribution
p(w‖s), for sequences of words w and input states s, with latent variables specifying the
correspondence between w and s in terms of three main components: (i) the likelihood of
database records being selected, given s; (ii) the likelihood of certain fields being chosen
for some record; (iii) the likelihood that a string of a certain length is generated given the
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Events: skycover1 temperature1

Fields: percent=0-25 time=6am-9pm min=9 max=21

Text: cloudy, with temperatures between 10 20 degrees. [. . . ]

Events: winddir1 windspeed1

Fields: mode=S mean=20

Text: [. . . ] south wind around 20mph.

Figure 4: Database records aligned with text using minimal supervision (after Liang et al.,
2009).

records, fields and states. The parameters of the model can be found using the Expectation
Maximization (em) algorithm. An example alignment is shown in Figure 4.

These models perform alignment by identifying regular co-occurrences of segments of
data and text. Koncel-Kedziorski et al. (2014) go beyond this by proposing a model that
exploits linguistic structure to align at varying resolutions. For example, (13) below is
related to two observations in a soccer game log (an aerial pass and a miss), but can be
further analysed into two sub-parts (indicated by indices 1 and 2 in our example), which
individually map to these two sub-events.

(13) (Chamakh rises highest)1 and (aims a header towards goal which is narrowly wide)2.

A different approach to data acquisition is described by Mairesse and Young (2014), who
use crowd-sourcing techniques to elicit realisations for semantic/pragmatic inputs describing
dialogue acts in the restaurant domain (see Novikova & Rieser, 2016b, for another recent
approach to crowd-sourcing in a similar domain). The key to the success of this technique is
the development of a semantics that is sufficiently transparent for use with non-specialists.
In an earlier paper, Mairesse, Gasic, Jurcicek, Keizer, Thompson, Yu, and Young (2010)
describe a method to cut down on the amount of training data required for generation by
using uncertainty sampling (Lewis & Catlett, 1994), whereby a system can be trained on
a relatively small amount of input data; subsequently, the learned model is applied to new
data, from which the system samples the cases of which it is least certain, forwarding these
to a (possibly human) oracle for feedback, which potentially leads to a new training cycle.

Many of the stochastic end-to-end systems we discuss below rely on well-defined for-
malisms and typically need fairly precise alignments between inputs and portions of the
output. One of the limitations of these approaches is that the reliance on alignment makes
such systems highly domain-specific, as noted by Angeli, Liang, and Klein (2010).

More recent stochastic methods obviate the need for alignment between input data and
output strings. This is the case for many systems based on neural networks (e.g., Wen,
Gasic, Mrksić, Su, Vandyke, & Young, 2015; Dušek & Jurč́ıček, 2016; Lebret, Grangier,
& Auli, 2016; Mei, Bansal, & Walter, 2016, discussed in Section 3.3.5) as well as other
machine-learning approaches (e.g., Dušek & Jurč́ıček, 2015; Lampouras & Vlachos, 2016).
For example, Dušek and Jurč́ıček (2015) use the dialogue acts from the bagel dataset
(Mairesse et al., 2010) as meaning representations; the bagel reference texts are parsed
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using an off-the-shelf deep syntactic analyser. They define a stochastic sentence planner,
a variant of the A∗ algorithm, which builds optimal sentence plans using a base generator
and a scoring function to rank candidates. Realisation is conducted using a rule-based
realiser. The approach of Lampouras and Vlachos (2016), also uses unaligned mr-text pairs
from bagel, as well as the related sf hotel and restaurant dataset by Wen et al. (2015).
Here, content determination and realisation are both conceived as classification problems
(choosing an attribute from the mr, or choosing a word for the output), but are optimised
jointly in an iterative training algorithm using imitation learning.

3.3.2 NLG as a Sequential, Stochastic Process

Given an alignment between data and text, one way of modelling the nlg process is to
remain faithful to the division between strategic and tactical choices, using the statistical
alignment to inform content selection, while deploying nlp techniques to acquire rules,
templates or schemas (á la McKeown, 1985) to drive sentence planning and realisation.

Recall that the generative model of Liang et al. (2009) pairs data to text based on
a sequential, Markov process, combining strategic choices (of db records and fields) with
tactical choices (of word sequences) into a single probabilistic model. In fact, Markov-
based language modelling approaches continue to feature prominently in data-driven nlg.
One of the earliest examples is the work of Oh and Rudnicky (2002) in the context of
a dialogue system in the travel domain, where the input takes the form of a dialogue
act (e.g. a query that the system needs to make to obtain information about the user’s
travel plans) with the attributes to include (e.g. the departure city). Oh and Rudnicky’s
approach encompasses both content planning and realisation. It relies on dialogue corpora
annotated with utterance classes, that is, the type of dialogue act that each utterance
is intended to fulfil. On this basis, they construct separate n-gram language models for
each utterance class, as well as for word-classes that can appear in the input (for example,
words corresponding to departure city). Content planning is handled by a model that
predicts which attributes should be included in an utterance on the basis of recent dialogue
history. Realisation is handled using a combination of templates and n-gram models. Thus,
generation is conceived as a two-step (planning followed by realisation) process.

The reliance on standard language models has one potential drawback, in that such
models are founded on a local history assumption, limiting the extent to which prior se-
lections can influence current choices. An alternative, discriminative model (known to the
nlp community at least since Ratnaparkhi, 1996) is logistic regression (Maximum Entropy).
The foundations for this approach in nlg can be found in the work of Ratnaparkhi (2000),
who focussed primarily on realisation (albeit combined with elements of sentence planning).
He compared two stochastic nlg systems based on a maximum entropy learning framework,
to a baseline nlg system. The first of these (nlg2 in Ratnaparkhi’s paper) uses a condi-
tional language model that generates sentences in an incremental, left-to-right fashion, by
predicting the best word given both the preceding history (as in standard n-gram models)
and the semantic attributes that remain to be expressed. The second (nlg3) augments the
model with syntactic dependency relations, performing generation by recursively predicting
the left and right children of a given constituent. In an evaluation based on judgements of

92



Natural Language Generation

Figure 5: Tree structure for a dialogue act, after Mairesse and Young (2014). Leaves
correspond to word sequences. Non-terminal nodes are semantic attributes, shown at the
bottom as semantic stacks. Stacks in bold represent mandatory content.

correctness, Ratnaparkhi found that the system augmented with dependencies was generally
preferred.

In later work, Angeli et al. (2010) describe an end-to-end nlg system that maintains
a separation between content selection, sentence planning and realisation, modelling each
process as a sequence of decisions in a log-linear framework, where choices can be con-
ditioned on arbitrarily long histories of previous decisions. This enables them to handle
long-range dependencies, such as coherence relations, more flexibly (e.g., a model can in-
corporate the information that a weather report which describes wind speed should do so
after mentioning wind direction; see Barzilay & Lapata, 2005, for similar insights based
on global optimisation). The separation of tasks is maintained insofar as a different set of
features can be used to inform decisions at each stage of the process. Sentence planning
and realisation decisions are based on templates acquired from corpus texts: a template is
selected based on its likelihood given the database fields selected during content selection.

Mairesse and Young (2014) describe a different approach, which also relies on alignments
between database records and text, and seeks a global solution to generation, without a crisp
distinction between strategic and tactical components. In this case, the basic representa-
tional framework is a tree of the sort shown in Figure 5. The root indicates a dialogue
act type (in the example, the dialogue act seeks to inform). Leaves in the tree correspond
to words or word sequences, while nonterminals are semantic stacks, that is, the pieces of
input to which the words correspond. In this framework, content selection and realisation
can be solved jointly by searching for the optimal stack sequence for a given dialogue act,
and the optimal word sequence corresponding to that stack sequence. Mairesse and Young
use a factored language model (flm), which extends n-gram models by conditioning prob-
abilities on different utterance contexts, rather than simply on word histories. Given an
input dialogue act, generation works by applying a Viterbi search through the flm at each
of the following stages: (a) mandatory semantic stacks are identified for the dialogue act;
(b) these are enriched with possible non-mandatory stacks (those which are not in boldface
in Figure 5), usually corresponding to function words; (c) realisations are found for the
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stack sequence. The approach is also extended to deal with n−best realisations, as well as
to handle variation, in the form of paraphrases for the same input.

3.3.3 NLG as Classification and Optimisation

An alternative way to think about nlg decisions at different levels is in terms of classifi-
cation, already encountered in the context of specific tasks, such as content determination
(e.g., Duboue & McKeown, 2003) and realisation (e.g., Filippova & Strube, 2007). Since
generation is ultimately about choice-making at multiple levels, one way to model the pro-
cess is by using a cascade of classifiers, where the output is constructed incrementally, so
that any classifier Ci uses as (part of) its input the output of a previous classifier Ci−i.
Within this framework, it is still possible to conceive of nlg in terms of a pipeline. As
Marciniak and Strube (2005) note, an alternative way of thinking about it is in terms of a
weighted, multi-layered lattice, where generation amounts to a best-first traversal: at any
stage i, classifier Ci produces the most likely output, which leads to the next stage Ci+1

along the most probable path. This generalisation is conceptually related to the view of
nlg in terms of policies in the Reinforcement Learning framework (see Section 3.2.2 above),
which define a traversal through sequences of states which may be hierarchically organised
(as in the work of Dethlefs & Cuayáhuitl, 2015, for example).

Marciniak and Strube (2004) start from a small corpus of manually annotated texts of
route descriptions, dividing generation into a series of eight classification problems, from
determining the linear precedence of discourse units, to determining the lexical form of verbs
and the type of their arguments. Generation decisions are taken using the instance-based
KStar algorithm, which is shown to outperform a majority baseline on all classification
decisions. Instance-based approaches to nlg are also discussed by Varges and Mellish
(2010), albeit in an overgenerate-and-rank approach where rules overgenerate candidates,
which are then ranked by comparison to the instance base.

A similar framework was recently adopted by Zarrieß and Kuhn (2013), once again
taking as their starting point textual data annotated with a dependency representation,
as shown in (14) below, where referents are marked v and p and the implicit head of the
dependency is underlined.

(14) Junge
Young

Familiev:0

family
auf
on

dem Heimwegposs:v
the way home

ausgeraubtag:p

robbed

‘A young family was robbed on their way home.’

These authors use a sequence of classifiers to perform referring expression generation
and realisation. They use a ranking model based on Support Vector Machines which, given
an input dependency representation extracted from annotated text such as (14), performs
two tasks in either order: (a) mapping the input to a shallow syntactic tree for linearisation;
and (b) inserting referring expressions. Interestingly, Zarrieß and Kuhn (2013) observe that
the performance of either task is order-dependent, in that both classification tasks perform
worse when they are second in the sequence. They observe a marginal improvement when
the tasks are performed in parallel, but achieve the best performance in a revision-based
architecture, where syntactic mapping is followed by referring expression insertion, followed
by a revision of the syntax.
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Classification cascades for nlg maintain a clean separation between tasks, but research
in this area has echoed earlier concerns about pipelines in general (see Section 3.1), the main
problem being error propagation. Infelicitous choices will of course impact classification
further downstream, a situation analogous to the problem of the generation gap. The
conclusion by Zarrieß and Kuhn (2013) in favour of a revision-based architecture, brings
our account full circle, in that a well-known solution is shown to yield improvements in a
new framework.

Our discussion so far has repeatedly highlighted the fact that a sequential organisation of
nlg tasks is susceptible to error propagation, whether this takes the form of classifier errors,
or decisions in a rule-based module that have a negative impact on downstream components.
A potential solution is to view generation as an optimisation problem, where the best com-
bination of decisions is sought in an exponentially large space of possible combinations. We
have encountered the use of optimisation techniques, such as Integer Linear Programming
(ilp) in the context of aggregation and content determination (Section 2.3). For example,
Barzilay and Lapata (2006) group content units based on their pairwise similarity, with
an optimisation step to identify a set of pairs that are maximally similar. ilp has also
been exploited by Marciniak and Strube (2004, 2005), as a means to counteract the error
propagation problem in their original classification-based approach. Similar solutions have
been undertaken by Lampouras and Androutsopoulos (2013), in the context of generating
text from owl ontologies. Lampouras and Androutsopoulos show that joint optimization
using Integer Linear Programming to jointly determine content selection, lexicalisation and
aggregation produces more compact verbalisations of ontology facts, compared to a pipeline
system (which the authors presented earlier in Androutsopoulos, Lampouras, & Galanis,
2013).

Conceptually, the optimisation framework is simple:

1. Each nlg task is once again modelled as classification or label-assignment, but this
time, labels are modelled as binary choices (either a label is assigned or not), associated
with a cost function, defined in terms of the probability of a label in the training data;

2. Pairs of tasks which are strongly inter-dependent (for example, syntactic choices and
reg realisations, in the example from Zarrieß & Kuhn, 2013) have a cost based on
the joint probability of their labels;

3. An ilp model seeks the global labelling solution that minimises the overall cost, with
the added constraint that if one of a pair of correlated labels 〈li, lj〉 is selected, the
other must be too.

Optimisation solutions have been shown to outperform different versions of the classifi-
cation pipeline (e.g., that of Marciniak & Strube, 2004), much as the results of Dethlefs and
Cuayáhuitl (2015), discussed above, showed that reinforcement learning of a joint policy
produces better dialogue interactions than learning isolated policies for separate nlg tasks.
The imitation learning framework of Lampouras and Vlachos (2016) (discussed earlier in
Section 3.3.1), which seeks to jointly optimise content determination and realisation, was
also shown to achieve competitive results, approaching the performance of the systems of
Wen et al. (2015) on sf and of Dušek and Jurč́ıček (2015) on bagel.
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3.3.4 NLG as ‘Parsing’

In recent years, there has been a resurgence of interest in viewing generation in terms of
probabilistic context-free grammar (cfg) formalisms, or even as the ‘inverse’ of semantic
parsing. For example, Belz (2008) formalises the nlg problem entirely in terms of cfgs:
a base generator expands inputs (bits of weather data in this case) by applying cfg rules;
corpus-derived probabilities are then used to control the choice of which rules to expand at
each stage of the process. The base generator in this work is hand-crafted. However, it is
possible to extract rules or templates from corpora, as has been done for aggregation rules
(Stent & Molina, 2009; White & Howcroft, 2015, and Section 2.3), and also for more general
statistical approaches to sentence planning and realisation in a text-to-text framework (e.g.,
Kondadadi et al., 2013). Similarly, approaches to nlg from structured knowledge bases,
expressed in formalisms such as rdf, have described techniques to extract lexicalised gram-
mars or templates from such inputs paired with textual descriptions (Ell & Harth, 2014;
Duma & Klein, 2013; Gyawali & Gardent, 2014).

The work of Mooney and colleagues (Wong & Mooney, 2007; Chen & Mooney, 2008; Kim
& Mooney, 2010) has compared a number of different generation strategies inspired by the
wasp semantic parser (Wong & Mooney, 2007), which uses probabilistic synchronous cfg
rules learned from pairs of utterances and their semantic representations using statistical
machine translation techniques. Chen and Mooney (2008) use this framework for generation
both by adapting wasp in a generation framework, and by further adapting it to produce
a new system, wasper-gen. While wasp seeks to maximise the probability of a meaning
representation (mr) given a sentence, wasper-gen does the opposite, seeking the maximally
probable sentence given an input mr, as it were, learning a translation model from meaning
to text. When trained on a dataset of sportscasts (the robocup dataset), wasper-gen
outperforms wasp on corpus-based evaluation metrics, and is shown to achieve a level of
fluency and semantic correctness which approaches that of human text, based on subjective
judgements by experimental participants. Note, however, that this framework focusses
mainly on tactical generation. Content determination is performed separately, using a
variant of the em-algorithm to converge on a probabilistic model that predicts which events
or predicates should be mentioned.

By contrast, the work of Konstas and Lapata (2012, 2013), which also relies on cfgs,
uses a unified framework throughout. The starting point is an alignment of text with
database records, extending the proposal by Liang et al. (2009). The process of converting
input data to output text is modelled in terms of rules which implicitly incorporate different
types of decisions. For example, given a database of weather records, the rules might take
the (somewhat simplified) form shown below:

(15) R(windSpeed)→ FS(temperature), R(rain)

(16) FS(windSpeed,min)→ F (windSpeed,max)FS(windSpeed,max)

(17) FS(windSpeed,min)→W (windSpeed,min)

where R stands for a database record, FS is a set of fields, F (x, y) stands for field y in
record x, W is a word sequence, and all rules have associated probabilities that condition
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the rhs on the lhs, akin to the pcfgs used in parsing. These rules specify that a descrip-
tion of windSpeed (15) should be followed in the text by a temperature and a rain report.
According to rule (16), minimum windspeed should be followed by a mention of the maxi-
mum windspeed with a certain probability. Rule (17) expands the minimum windspeed rule
to a sequence of words according to a bigram language model (Konstas & Lapata, 2012).
Konstas and Lapata (2012) pack the set of rules acquired from the alignment stage into a
hypergraph, and treat generation as decoding to find the maximally likely word sequence.

Under this view, generation is akin to inverted parsing. Decoding proceeds using an
adaptation of the cyk algorithm. Since the model defining the mapping from input to
output does not incorporate fluency heuristics, the decoder is interleaved with two further
sources of linguistic knowledge by Konstas and Lapata (2013): (a) a weighted finite-state
automaton (representing an n-gram language model); and (b) a dependency model (cf.
Ratnaparkhi, 2000, , also discussed above).

3.3.5 Deep Learning Methods

We conclude our discussion of data-driven nlg with an overview of applications of deep
neural network (nn) architectures. The decision to dedicate a separate section is warranted
by the recent, renewed interest in these models (see Goldberg, 2016, for an nlp-focussed
overview), as well as the comparatively small (but steadily growing) range of nlg models
couched within this framework to date. We will also revisit nn models for nlg under more
specific headings in the following sections, especially in discussing stylistic variation (Section
5) and the image captioning (Section 4), where they are now the dominant approach.

As a matter of fact, applications of nns in nlg hark back at least to Kukich (1987),
though her work was restricted to small-scale examples. Since the early 1990s, when interest
in neural approaches waned in the nlp and ai communities, cognitive science research has
continued to explore their application to syntax and language production (e.g., Elman, 1990,
1993; Chang, Dell, & Bock, 2006). The recent resurgence of interest in nns is in part due to
advances in hardware that can support resource-intensive learning problems (Goodfellow,
Bengio, & Courville, 2016). More importantly, nns are designed to learn representations at
increasing levels of abstraction by exploiting backpropagation (LeCun, Bengio, & Hinton,
2015; Goodfellow et al., 2016). Such representations are dense, low-dimensional, and dis-
tributed, making them well-suited to capturing grammatical and semantic generalisations
(see Mikolov, Chen, Corrado, & Dean, 2013; Luong, Socher, & Manning, 2013; Pennington,
Socher, & Manning, 2014, inter alia). nns have also scored notable successes in sequen-
tial modelling using feedforward networks (Bengio, Ducharme, Vincent, & Janvin, 2003;
Schwenk & Gauvain, 2005), log-bilinear models (Mnih & Hinton, 2007) and recurrent neu-
ral networks (rnns, Mikolov, Karafiat, Burget, Cernocky, & Khudanpur, 2010), including
rnns with long short-term memory units (lstm, Hochreiter & Urgen Schmidhuber, 1997).
The latter are now the dominant type of rnn for language modelling tasks. Their main
advantage over standard language models is that they handle sequences of varying lengths,
while avoiding both data sparseness and an explosion in the number of parameters through
the projection of histories into a low-dimensional space, so that similar histories share rep-
resentations.
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A demonstration of the potential utility of recurrent networks for nlg was provided
by Sutskever, Martens, and Hinton (2011), who used a character-level lstm model for the
generation of grammatical English sentences. This, however, focussed exclusively on their
potential for realisation. Models that generate from semantic or contextual inputs cluster
around two related types of models, descibed below.

3.3.6 Encoder-Decoder Architectures

An influential architecture is the Encoder-Decoder framework (Sutskever, Vinyals, & Le,
2014), where an rnn is used to encode the input into a vector representation, which serves
as the auxiliary input to a decoder rnn. This decoupling between encoding and decoding
makes it possible in principle to share the encoding vector across multiple nlp tasks in a
multi-task learning setting (see Dong, Wu, He, Yu, & Wang, 2015; Luong, Le, Sutskever,
Vinyals, & Kaiser, 2015, for some recent case studies). Encoder-Decoder architectures are
particularly well-suited to Sequence-to-Sequence (seq2seq) tasks such as Machine Transla-
tion, which can be thought of as requiring the mapping of variable-length input sequences in
the source language, to variable-length sequences in the target (e.g., Kalchbrenner & Blun-
som, 2013; Bahdanau, Cho, & Bengio, 2015). It is easy to adapt this view to data-to-text
nlg. For example, Castro Ferreira, Calixto, Wubben, and Krahmer (2017) adapt seq2seq
models for generating text from abstract meaning representations (amrs).

A further important development within the Encoder-Decoder paradigm is the use of
attention-based mechanisms, which force the encoder, during training, to weight parts of
the input encoding more when predicting certain portions of the output during decoding
(cf. Bahdanau et al., 2015; Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, & Bengio,
2015). This mechanism obviates the need for direct input-output alignment, since attention-
based models are able to learn input-output correspondences based on loose couplings of
input representations and output texts (see Dušek & Jurč́ıček, 2016, for discussion).

In nlg, many approaches to response generation in an interactive context (such as
dialogue or social media posts) adopt this architecture. For example, Wen et al. (2015) use
semantically-conditioned lstms to generate the next act in a dialogue; a related approach is
taken by Sordoni, Galley, Auli, Brockett, Ji, Mitchell, Nie, Gao, and Dolan (2015), who use
rnns to encode both the input utterance and the dialogue context, with a decoder to predict
the next word in the response (see also Serban, Sordoni, Bengio, Courville, & Pineau, 2016).
Goyal, Dymetman, and Gaussier (2016) found an improvement in the quality of generated
dialogue acts when using a character-based, rather than a word-based rnn.

Dušek and Jurč́ıček (2016) also use a seq2seq model with attention for dialogue gen-
eration, comparing an end-to-end model where content selection and realisation are jointly
optimised (so that outputs are strings), to a model which outputs deep syntax trees, which
are then realised using an off-the-shelf realiser (as done in Dušek & Jurč́ıček, 2015). Like
Wen et al. (2015), they use a reranker during decoding to rank beam search outputs, penalis-
ing those that omit relevant information or include irrelevant information. Their evaluation,
on bagel, shows that the joint optimisation setup is superior to the seq2seq model that
generates trees for subsequent realisation. Mei et al. (2016) also explicitly address the divi-
sion into content selection and realisation, using weathergov data (Angeli et al., 2010).
They use a bidirectional lstm encoder to map input records to a hidden state, followed
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by an attention-based aligner which models content selection, determining which records
to mention as a function of their prior probability and the likelihood of their alignment
with words in the vocabulary; a further refinement step weights the outcomes of the align-
ment with the priors, making it more likely that more important records will be verbalised.
In this approach, lstms are able to learn long-range dependencies between records and
descriptors, which the log-linear model of Angeli factored in explicitly (see Section 3.3.2
above). Comparable approaches are now also use for automatic generation of poetry (see
e.g., Zhang & Lapata, 2014), a topic to which we will return below.

3.3.7 Conditioned Language Models

A related view of the data-to-text process views the generator as a conditioned language
model, where output is generated by sampling words or characters from a distribution con-
ditioned on input features, which may include semantic, contextual or stylistic attributes.
For example, Lebret et al. (2016) restricts generation to the initial sentence of wikipedia
biographies from the corresponding wiki fact table and models content selection and realisa-
tion jointly in a feedforward nn (Bengio et al., 2003), conditioning output word probabilities
on both local context and global features obtained from the input table. This biases the
model towards full coverage of the contents of a field. For example, a field in the ta-
ble containing a person’s name typically consists of more than one word and the model
should concatenate the words making up the entire name. While simpler than some of the
models discussed above, this model can also be thought of as incorporating an attentional
mechanism. Lipton, Vikram, and McAuley (2016) use character-level rnns conditioned
on semantic information and sentiment, to generate product reviews, while Tang, Yang,
Carton, Zhang, and Mei (2016) generate such reviews using an lstm conditioned on input
‘contexts’, where contexts incorporate both discrete (user, location etc) and continuous in-
formation. Similar approaches have been adopted in a number of models for stylistic and
affective generation (see Li, Galley, Brockett, Spithourakis, Gao, & Dolan, 2016; Herzig,
Shmueli-scheuer, Sandbank, & Konopnicki, 2017; Asghar, Poupart, Hoey, Jiang, & Mou,
2017; Hu, Yang, Liang, Salakhutdinov, & Xing, 2017; Ficler & Goldberg, 2017, and the
discussion in Section 5 below).

3.4 Discussion

An important theme that has emerged from recent work is the blurring of boundaries be-
tween tasks that are encapsulated in traditional architectures. This is evident in planning-
based approaches, but perhaps the most radical break from this perspective arises in stochas-
tic data-to-text systems which capitalise on alignments between input data and output text,
combining content-oriented and linguistic choices within a unified framework. Among the
open questions raised by research on stochastic nlg is the extent to which sub-tasks need
to be jointly optimised and, if so, which knowledge sources should be shared among them.
This is also seen in recent work using neural models, where joint learning of content selec-
tion and realisation has been claimed to yield superior outputs, compared to models that
leave the tasks separate (e.g., Dušek & Jurč́ıček, 2016).

An outstanding issue is the balancing act between achieving adequate textual output
versus doing so efficiently and robustly. Early approaches that departed from a pipeline
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architecture tended to sacrifice the latter in favour of the former; this was the case in
revision-based and blackboard architectures. The same is to some extent true of planning-
based approaches which are rooted in paradigms with a long history in ai: As recent
empirical work has shown (Koller & Petrick, 2011), these too are susceptible to considerable
computational cost, though this comes with the advantage of a unified view of language
generation that is also compatible with well-understood linguistic formalisms, such as ltag.

Stochastic approaches present a different problem, namely, that of acquiring the right
data to construct the necessary statistical models. While plenty of datasets have become
available, for tasks such as recommendations in the restaurant or hotel domains, brief
weather reports, or sports summaries, it remains to be seen whether data-driven nlg models
can be scaled up to domains where large volumes of heterogeneous data (numbers, symbols
etc) are the norm, and where longer texts need to be generated. While such data is not
easy to come by, crowd-sourcing techniques can presumably be exploited (Mairesse & Young,
2014; Novikova & Rieser, 2016b).

As we have seen, systems vary in whether they require aligned data (by which we mean
data where strings are paired with the portion of the input to which they correspond), or
not. As deep learning approaches become more popular – and, as we shall see in the next
section, they are now the dominant approach in certain tasks, such as generating image
captions – the need for alignment is becoming less acute, as looser input-output couplings
can constitute adequate training data, especially in models that incorporate attentional
mechanisms. As these techniques become better understood, they are likely to feature
more heavily in a broader range of nlg tasks, as well as end-to-end nlg systems.

A second possible outcome of the renewed interest in deep learning is its impact on rep-
resentation learning and architectures. In a recent opinion piece, Manning (2015) suggested
that the contribution of deep learning to nlp has to date been mainly due to the power
of distributed representations, rather than the exploitation of the ‘depth’ of multi-layered
models. Yet, as Manning also notes, greater depth can confer representational advantages.
As researchers begin to define complex architectures that ‘self-organise’ during training by
minimising a loss function, it might turn out that different components of such architec-
tures acquire core representations pertaining to different aspects of the problem at hand.
This raises the question whether such representations could be reusable, in the same way
that the layers of deep convolutional networks in computer vision learn representations at
different levels of granularity which turn out to be reusable in a range of tasks (not just
object recognition, for instance, even though networks such as vgg are typically trained
for such tasks; see Simonyan & Zisserman, 2015). A related aim, suggested by recent at-
tempts at transfer learning, especially in the seq2seq paradigm, is to attempt to learn
domain-invariant representations that carry over from one task to another.

Could nlp, and the field of nlg in particular, be about to witness a renewed emphasis
on multi-levelled approaches to nlg, with ‘deep’ architectures whose components learn
optimal representations for different sub-tasks, perhaps along the lines detailed in Section
2 above? And to what extent would such representations be reusable? As a number of
other commentators have pointed out, the prospect of learning domain-invariant linguistic
representations that facilitate transfer learning in nlp, remains somewhat elusive, despite
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certain notable successes, not least those scored in the development of distributed word
representations.4 This could well be the next frontier in research on statistical nlg.

In the following sections, we turn our attention away from standard tasks and the way
they are organised, focussing on three broad topics – image-to-text generation, stylistic
variation and computational creativity – in which nlg research has also intersected with
research in other areas of Artificial Intelligence and nlp.

4. The Vision-Language Interface: Image Captioning and Beyond

Over the past few years, there has been an explosion of interest in the task of automatically
generating captions for images, as part of a broader endeavour to investigate the interface
between vision and language (Barnard, 2016). Image captioning is arguably a paradigm
case of data-to-text generation, where the input comes in the form of an image. The task has
become a research focus not only in the nlg community but also in the computer vision
community, raising the possibility of more effective synergies between the two groups of
researchers. Apart from its practical applications, the grounding of language in perceptual
data has long been a matter of scientific interest in ai (see Winograd, 1972; Harnad, 1990;
Roy & Reiter, 2005, for a variety of theoretical views on the computational challenges of
the perception-language interface).

Figure 6 shows some examples of caption generation, sampled from publications span-
ning approximately 6 years. Current caption generation research focusses mainly on what
Hodosh, Young, and Hockenmaier (2013) refer to as concrete conceptual image descriptions
of elements directly depicted in a scene. As Donahue, Hendricks, Rohrbach, Venugopalan,
Guadarrama, Saenko, and Darrell (2015) put it, image captioning is a task whose input
is static and non-sequential (an image, rather than, say, a video), whereas the output is
sequential (a multi-word text), in contrast to non-sequential outputs such as object labels
(e.g. Duygulu, Barnard, de Freitas, & Forsyth, 2002; Ordonez, Liu, Deng, Choi, Berg, &
Berg, 2016, among others).

Our discussion will be brief, since image captioning has recently been the subject of an
extensive review by Bernardi, Cakici, Elliott, Erdem, Erdem, Ikizler-Cinbis, Keller, Muscat,
and Plank (2016), and has also been discussed against the background of broader issues in
research on the vision-language interface by Barnard (2016). While the present section
draws upon these sources, it is organised in a somewhat different manner, also bringing out
the connections with nlg more explicitly.

4.1 Data

A detailed overview of datasets is provided by Bernardi et al. (2016). Ferraro, Mostafazadeh,
Huang, Vanderwende, Devlin, Galley, and Mitchell (2015) offer a systematic comparison of
datasets for both caption generation and visual question answering with an accompanying
online resource.5

Datasets typically consist of images paired with one or more human-authored captions
(mostly in English) and vary from artificially created scenes (Zitnick, Parikh, & Vander-

4. For some remarks on this topic, see for example the blog entry by Ruder (2017). A recent note of caution
against unrealistic claims of success of neural methods in nlg was sounded by Goldberg (2017).

5. The resource provided by Ferraro et al. (2015) can be found at http://visionandlanguage.net.
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(a) The man at bat readies
to swing at the pitch while
the umpire looks on (Human-
authored caption from the ms-
coco dataset Lin et al., 2014)

(b) This picture shows one
person, one grass, one chair,
and one potted plant. The
person is near the green grass,
and in the chair. The green
grass is by the chair, and
near the potted plant (Kulka-
rni et al., 2011)

(c) A person is playing a sax-
ophone (Elliott & De Vries,
2015)

(d) A bus by the road with a
clear blue sky (Mitchell et al.,
2012)

(e) A bus is driving down the
street in front of a building
(Mao et al., 2015a)

(f) A gecko is standing on a
branch of a tree (Hendricks
et al., 2016b)

Figure 6: Some caption generation examples

wende, 2013) to real photographs. Among the latter, the most widely used are Flickr8k
(Hodosh et al., 2013), Flickr30k (Young, Lai, Hodosh, & Hockenmaier, 2014) and ms-coco
(Lin et al., 2014). Datasets such as the sbu1m Captioned Photo Dataset (Ordonez, Kulka-
rni, & Berg, 2011) include naturally-occurring captions of user-shared photographs on sites
such as Flickr; hence the captions included therein are not restricted to the concrete concep-
tual. There are also a number of specialised, domain-specific datasets, such as the Caltech
ucsd Birds datast (cub; Wah, Branson, Welinder, Perona, & Belongie, 2011).

There have also been a number of shared tasks in this area, including the coco (‘Com-
mon Objects in Context’) Captioning Challenge6, organised as part of the Large-Scale Scene
Understanding Challenge (lsun)7 and the Multimodal Machine Translation Task (Elliott,

6. http://mscoco.org/dataset/#captions-challenge2015

7. http://lsun.cs.princeton.edu/2016/
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Frank, Sima’an, & Specia, 2016). We defer discussion of evaluation of image captioning
systems to Section 7 of this paper, where it is discussed in the context of nlg evaluation as
a whole.

4.2 The Core Tasks

There are two logically distinguishable sub-tasks in an image captioning system, namely,
image analysis and text generation. This is not to say that they need to be organised
separately or sequentially. However, prior to discussing architectures as such, it is worth
briefly giving an overview of the methods used to deal with these two tasks.

4.2.1 Image Analysis

There are three main groups of approaches to treating visual information for captioning
purposes.

Detection Some systems rely on computer vision methods for the detection and labelling
of objects, attributes, ‘stuff’ (typically mapped to mass nouns, such as grass), spatial re-
lations, and possibly also action and pose information. This is usually followed by a step
mapping these outputs to linguistic structures (‘sentence plans’ of the sort discussed in
Section 2 and 3), such as trees or templates (e.g. Kulkarni et al., 2011; Yang, Teo, Daume
III, & Aloimonos, 2011; Mitchell et al., 2012; Elliott & De Vries, 2015; Yatskar, Galley,
Vanderwende, & Zettlemoyer, 2014; Kuznetsova, Ordonez, Berg, & Choi, 2014). Since
performance depends on the coverage and accuracy of detectors (Kuznetsova et al., 2014;
Bernardi et al., 2016), some work has also explored generation from gold standard image
annotations (Elliott & Keller, 2013; Wang & Gaizauskas, 2015; Muscat & Belz, 2015) or
artificially created scenes in which the components are known in advance (Ortiz, Wolff, &
Lapata, 2015).

Holistic scene analysis Here, a more holistic characterisation of a scene is used, rely-
ing on features that do not typically identify objects, attributes and the like. Such fea-
tures include rgb histograms, scale-invariant feature transforms (sift; Lowe, 2004), or
low-dimensional representations of spatial structure (as in gist; Oliva & Torralba, 2001),
among others. This kind of image processing is often used by systems that frame the task
in terms of retrieval, rather than caption generation proper. Such systems either use a
unimodal space to compare a query image to training images before caption retrieval (e.g.
Ordonez et al., 2011; Gupta, Verma, & Jawahar, 2012), or exploit a multimodal space repre-
senting proximity between images and captions (e.g. Hodosh et al., 2013; Socher, Karpathy,
Le, Manning, & Ng, 2014).

Dense image feature vectors Given the success of convolutional neural networks (cnn)
for computer vision tasks (cf. e.g., LeCun et al., 2015), many deep learning approaches
use features from a pre-trained cnn such as AlexNet (Krizhevsky, Sutskever, & Hinton,
2012), vgg (Simonyan & Zisserman, 2015) or Caffe (Jia, Shelhamer, Donahue, Karayev,
Long, Girshick, Guadarrama, & Darrell, 2014). Most commonly, caption generators use an
activation layer from the pre-trained network as their input features (e.g. Kiros, Zemel, &
Salakhutdinov, 2014; Karpathy, Joulin, & Fei-Fei, 2014; Karpathy & Fei-Fei, 2015; Vinyals,
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Toshev, Bengio, & Erhan, 2015; Mao et al., 2015a; Xu et al., 2015; Yagcioglu, Erdem, &
Erdem, 2015; Hendricks et al., 2016b).

4.2.2 Text Generation or Retrieval

Depending on the type of image analysis technique, captions can be generated using a
variety of different methods, of which the following are well-established.

Using templates or trees Systems relying on detectors can map the output to linguistic
structures in a sentence planning stage. For example, objects can be mapped to nouns,
spatial relations to prepositions, and so on. Yao, Yang, Lin, Lee, and Zhu (2010) use
semi-supervised methods to parse images into graphs and then generate text via a simple
grammar. Other approaches rely on sequence classification algorithms, such as Hidden
Markov Models (Yang et al., 2011) and conditional random fields (Kulkarni et al., 2011,
2013). Kulkarni et al. (2013, see the example in Figure 6b) experiment with both templates
and web-derived n-gram language models, finding that the former are more fluent, but suffer
from lack of variation, an issue we also addressed earlier, in connection with realisation
(Section 2.6).

In the Midge system (Mitchell et al., 2012, see Figure 6d for an example caption), input
images are represented as triples consisting of object/stuff detections, action/pose detections
and spatial relations. These are subsequently mapped to 〈noun, verb, preposition〉 triples
and realised using a tree substitution grammar. This is further enhanced with the ability
to ‘hallucinate’ likely words using a probabilistic model, that is, to insert words which are
not directly grounded in the detections performed on the image itself, but have a high
probability of occurring, based on corpus data. In a human evaluation, Midge was shown to
outperform both the system by Kulkarni et al. (2011) and Yang et al. (2011) on a number
of criteria, including humanlikeness and correctness.

Elliott and Keller (2013) use visual dependency representations (vdr), a dependency
grammar-like formalism to describe spatial relations between objects based on physical
features such as proximity and relative position. Detections from an image are mapped to
their corresponding vdr relations prior to generation (see also Elliott & De Vries, 2015, and
the example in Figure 6c). Ortiz et al. (2015) use ilp to identify pairs of objects in abstract
scenes (Zitnick & Parikh, 2013) before mapping them to a vdr. Realisation is framed as
a machine translation task over vdr-text pairs. A similar concern with identifying spatial
relations is found in the work of Lin and Kong (2015), who use scene graphs as input to a
grammar-based realiser. Muscat and Belz (2015) propose a naive Bayes model to predict
spatial prepositions based on image features such as object proximity and overlap.

Using language models Using language models has the potential advantage of facilitat-
ing joint training from image-language pairs. It may also yield more expressive or creative
captions if it is used to overcome the limitations of grammars or templates (as shown by
the example of Midge; Mitchell et al., 2012). In some cases, n-gram models are trained
on out-of-domain data, the approach taken by Li, Kulkarni, Berg, Berg, and Choi (2011)
using web-scale n-grams, and by Fang, Gupta, Iandola, Srivastava, Deng, Dollár, Gao, He,
Mitchell, Platt, Zitnick, and Zweig (2015), who used a maximum entropy language model.
Most deep learning architectures use language models in the form of vanilla rnns or long
short-term memory networks (e.g. Kiros et al., 2014; Vinyals et al., 2015; Donahue et al.,
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2015; Karpathy & Fei-Fei, 2015; Xu et al., 2015; Hendricks et al., 2016b; Hendricks, Akata,
Rohrbach, Donahue, Schiele, & Darrell, 2016a; Mao et al., 2016). These architectures model
caption generation as a process of predicting the next word in a sequence. Predictions are
biased both by the caption history generated so far (or the start symbol for initial words)
and by the image features which, as noted above, are typically features extracted from a
cnn trained on the object detection task.

Caption retrieval and recombination Rather than generate captions, some systems
retrieve them based on training data. The advantage of this is that it guarantees flu-
ency, especially if retrieval is of whole, rather than partial, captions. Hodosh et al. (2013)
used a multimodal space to represent training images and captions, framing retrieval as a
process of identifying the nearest caption to a query image. The idea of ‘wholesale’ cap-
tion retrieval has a number of precedents. For example Farhadi, Hejrati, Sadeghi, Young,
Rashtchian, Hockenmaier, and Forsyth (2010) use Markov random fields to parse images
into 〈object,action, scene〉 triples, paired with parsed captions. A caption for a query image
is retrieved by comparing it to the parsed images in the training data, finding the most
similar based on WordNet. Similarly, the Im2Text (Ordonez et al., 2011) system ranks can-
didate captions for a query image. Devlin, Gupta, Girshick, Mitchell, and Zitnick (2015b)
use a k nearest neighbours approach, with caption similarity quantified using bleu (Pa-
pineni, Roukos, Ward, & Zhu, 2002) and cider (Vedantam, Zitnick, & Parikh, 2015). A
different view of retrieval is proposed by Feng and Lapata (2010), who use extractive sum-
marisation techniques to retrieve descriptions of images and associated narrative fragments
from their surrounding text in news articles.

A potential drawback of wholesale retrieval is that captions in the training data may
not be well-matched to a query image. For instance, Devlin et al. (2015b) note that the less
similar a query is to training images, the more generic the caption returned by the system.
A possible solution is to use partial matches, retrieving and recombining caption fragments.
Kuznetsova et al. (2014) use detectors to match query images to training instances, re-
trieving captions in the form of parse tree fragments which are then recombined. Mason
and Charniak (2014) use a domain-specific dataset to extract descriptions and adapt them
to a query image using a joint visual and textual bag-of-words model. In the deep learn-
ing paradigm, both Socher et al. (2014) and Karpathy et al. (2014) use word embeddings
derived from dependency parses, which are projected, together with cnn image features,
into a multimodal space. Subsequent work by Karpathy and Fei-Fei (2015) showed that
this fine-grained pairing works equally well with word sequences, eschewing the need for
dependency parsing.

Recently, Devlin, Cheng, Fang, Gupta, Deng, He, Zweig, and Mitchell (2015a) compared
nearest-neighbour retrieval approaches to different types of language models for caption gen-
eration, specifically, the Maximum Entropy approach of Fang et al. (2015), an lstm-based
approach and rnns which are coupled with a cnn for image analysis (e.g. Vinyals et al.,
2015; Donahue et al., 2015; Karpathy & Fei-Fei, 2015). A comparison of the linguistic
quality of captions suggested that there was a significant tendency for all models to repro-
duce captions observed in the training set, repeating them for different images in the test
set. This could be due to a lack of diversity in the data, which might also explain why the
nearest neighbour approach compares favourably with language model-based approaches.
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4.3 How is Language Grounded in Visual Data?

As the foregoing discussion suggests, views on the relationship between visual and linguistic
data depend on how each of the two sub-tasks is dealt with. Thus, systems which rely
on detections tend to make a fairly clear-cut distinction between input processing and
content selection on the one hand, and sentence planning and realisation on the other (e.g.
Kulkarni et al., 2011; Mitchell et al., 2012; Elliott & Keller, 2013). The link between
linguistic expressions and visual features is mediated by the outcomes of the detectors.
For example, Midge (Mitchell et al., 2012) uses the object detections to determine which
nouns to mention, before fleshing out the caption with attributes (mapped to adjectives)
and verbs. Similarly, Elliott and Keller (2013) uses vdrs to determine spatial expressions.

Retrieval-based systems relying on unimodal or multimodal similarity spaces represent
the link between linguistic expressions and image features more indirectly. Here, similarity
plays the dominant role. In a unimodal space (Ordonez et al., 2011; Gupta et al., 2012;
Mason & Charniak, 2014; Kuznetsova, Ordonez, Berg, Berg, & Choi, 2012; Kuznetsova
et al., 2014), it is images which are compared, with (partial) captions retrieved based
on image similarity. A number of deep learning approaches also broadly conform to this
scheme. For example, both Yagcioglu et al. (2015) and Devlin et al. (2015b) retrieve and
rank captions for a query image, using a cnn for the representation of the visual space. By
contrast, multimodal spaces involve a direct mapping between visual and linguistic features
(e.g. Hodosh et al., 2013; Socher et al., 2014; Karpathy et al., 2014), enabling systems to
map from images to ‘similar’ – that is, related or relevant – captions.

Much interesting work on vision-language integration is being carried out with deep
learning models. Kiros et al. (2014) introduced multimodal neural language models (mrnn),
experimenting with two main architectures. Their Modality-Biased Log-Bilinear Model
(mlbl-b) uses an additive bias to predict the next word in a sequence based on both
the linguistic context and cnn image features. The Factored 3-way Log-Bilinear Model
(mlbl-f) also gates the representation matrix for a word with image features. In a related
vein, Donahue et al. (2015) propose a combined cnn + lstm architecture (also used in
Venugopalan, Xu, Donahue, Rohrbach, Mooney, & Saenko, 2015b; Venugopalan, Rohrbach,
Darrell, Donahue, Saenko, & Mooney, 2015a, for video captioning) where the next word is
predicted as a function of both previous words and image features. In one version of the
architecture, they inject cnn features into the lstm at each time-step. In a second version,
they use two stacked lstms, the first of which takes cnn features and produces an output
which constitutes the input to the next lstm to predict the word. Finally, Mao et al.
(2015a) experiment with various mrnn configurations, obtaining their best results with an
architecture in which there are two word embedding layers preceding the recurrent layer,
which is in turn projected into a multimodal layer where linguistic features are combined
with cnn features. An example caption is shown in Figure 6e above.

These neural network models shed light on the consequences of combining the two
modalities at different stages, reflecting the point made by Manning (2015, cf. Section
3.3.5) that this paradigm encourages a focus on architectures and design. In particular,
image features can be used to bias the recurrent, language generation layer – at the start,
or at each time-step of the rnn – as in the work of Donahue et al. (2015). Alternatively,
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the image features can be combined with linguistic features at a stage following the rnn,
as in the work of Mao et al. (2015a).

4.4 Vision and Language: Current and Future Directions for NLG

Image to text generation is one area of nlg where there is a clear dominance of deep learning
methods. Current work focusses on a number of themes:

1. Generalising beyond training data is still a challenge, as shown by the work of Devlin
et al. (2015a). More generally, dealing with novel images remains difficult, though
experiments have been performed on using out-of-domain training data to expand
vocabulary (Ordonez, Deng, Choi, Berg, & Berg, 2013), learn novel concepts (Mao,
Xu, Yang, Wang, Huang, & Yuille, 2015b) or transfer features from image regions
containing known labels, to similar, but previously unattested ones (Hendricks et al.,
2016b, from which an example caption is shown in Figure 6f). Progress in zero-shot
learning, where the aim is to identify or categorise images for which little or no training
data is available, is likely to contribute to the resolution of data sparseness problems
(e.g. Antol, Zitnick, & Parikh, 2014; Elhoseiny, Elgammal, & Saleh, 2017).

2. Attention is also being paid to what Barnard (2016) refers to as localisation, that
is, the association of linguistic expressions with parts of images, and the ability to
generate descriptions of specific image regions. Recent work includes that of Karpathy
and Fei-Fei (2015), Johnson, Karpathy, and Fei-Fei (2016) and Mao et al. (2016),
who focus on unambiguous descriptions of specific image regions and/or objects in
images (see Section 2.5 above for some related work). Attention-based models are
a further development on this front. These have been exploited in various seq2seq
tasks, notably for machine translation (Bahdanau et al., 2015). In the case of image
captioning, the idea is to allocate variable weights to portions of captions in the
training data, depending on the current context, to reflect the ‘relevance’ of a word
given previous words and an image region (Xu et al., 2015).

3. Recent work has also begun to explore generation from images that goes beyond
the concrete conceptual, for instance, producing explanatory descriptions (Hendricks
et al., 2016a). A further development is work on Visual Question Answering, where
rather than descriptive captions, the aim is to produce responses to specific questions
about images (Antol, Agrawal, Lu, Mitchell, Batra, Zitnick, & Parikh, 2015; Geman,
Geman, Hallonquist, & Younes, 2015; Malinowski, Rohrbach, & Fritz, 2016; Barnard,
2016; Mostafazadeh, Misra, Devlin, Mitchell, He, & Vanderwende, 2016). Recently,
a new dataset was proposed providing both concrete conceptual and ‘narrative’ texts
coupled with images (Huang, Ferraro, Mostafazadeh, Misra, Agrawal, Devlin, Gir-
shick, He, Kohli, Batra, Zitnick, Parikh, Vanderwende, Galley, & Mitchell, 2016), a
promising new direction for this branch of nlg.

4. There is a growing body of work that generalises the task from static inputs to se-
quential ones, especially videos (e.g. Kojima, Tamura, & Fukunaga, 2002; Regneri,
Rohrbach, Wetzel, & Thater, 2013; Venugopalan et al., 2015b, 2015a). Here, the
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challenges include handling temporal dependencies between scenes, but also dealing
with redundancy.

5. Variation: Generating Text with Style, Personality and Affect

Based on the preceding sections, the reader could be excused for thinking that nlg is mostly
concerned with delivering factual information, whether this is in the form of a summary of
weather data, or a description of an image. This bias was also flagged in the Introduction,
where we gave a brief overview of some domains of application, and noted that informing
was often, though not always, the goal in nlg.

Over the past decade or so, however, there has been a growing trend in the nlg literature
to also focus on aspects of textual information delivery that are arguably non-propositional,
that is, features of text that are not strictly speaking grounded in the input data, but are
related to the manner of delivery. In this section, we focus on these trends, starting with
the broad concept of ‘stylistic variation’, before turning to generation of affective text and
politeness.

5.1 Generating with Style: Textual Variation and Personality

What does the term ‘linguistic style’ refer to? Most work on what we shall refer to as
‘stylistic nlg’ shies away from a rigorous definition, preferring to operationalise the notion
in the terms most relevant to the problem at hand.

‘Style’ is usually understood to refer to features of lexis, grammar and semantics that
collectively contribute to the identifiability of an instance of language use as pertaining to a
specific author, or to a specific situation (thus, one distinguishes between levels of stylistic
formality, or speaks of the distinctive characteristics of the style of William Faulkner). This
implies that any investigation of style must concern itself, at least in part, with variation
among the features that mark such authorial or situational variables. In line with this usage,
this section reviews developments in nlg in which variation is the key concern, usually at
the tactical, rather than the strategic, level, the idea being that a given piece of information
can be imparted in linguistically distinct, ways (cf. van der Sluis & Mellish, 2010). This
strategy was, for example, explicitly adopted by Power, Scott, and Bouayad-Agha (2003).

Given its emphasis on linguistic features, controlling style (however it is defined) is a
problem of great interest for nlg since it directly addresses issues of choice, which are
arguably the hallmark of any nlg system (cf. Reiter, 2010). Early contributions in this
area defined stylistic features using rules to vary generation according to pragmatic or
stylistic goals. For example, McDonald and Pustejovsky (1985) argued that “prose style
is a consequence of what decisions are made during the transition from the conceptual
representation level to the linguistic level” (p. 61), thereby placing the problem within the
domain of sentence planning and realisation. This stance was also adopted by DiMarco and
Hirst (1993), who focus on syntactic variation, proposing a stylistic grammar for English
and French. Sheikha and Inkpen (2011) proposed an adaptation of the SimpleNLG realiser
(Gatt et al., 2009) to handle formal versus informal language, via specific features, such as
contractions (are not vs. aren’t) and lexical choice.

A related perspective on stylistic variation was adopted by Walker, Rambow, and Rogati
(2002), in their description of how the spot sentence planner was adapted to learn strategies
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for different communicative goals, as reflected in the rhetorical and syntactic structures of
the sentence plans. The planner was trained using a boosting technique to learn correlations
between features of sentence plans and human ratings of the adequacy of a sample of outputs
for different communicative goals.

Like Walker et al. (2002), contemporary approaches to stylistic variation have tended
to eschew rules in favour of data-driven methods to identify relevant features and dimen-
sions of variation from corpora, in what might be thought of as an inductive view of style,
where variation is characterised by the distribution of whatever linguistic features are con-
sidered relevant. An important precedent for this view is Biber’s corpus-based multidimen-
sional approach to style and register variation (Biber, 1988), roughly a contemporary of the
grammar-inspired approach of DiMarco and Hirst (1993).

Biber’s model was at the heart of work by Paiva and Evans (2005), which exhibits
some characteristics in common with the ‘global’ statistical approaches to nlg discussed in
Section 3.3, insofar as it exploits statistics to inform decision-making at the relevant choice
points, rather than to filter the outputs of an overgeneration module. Paiva and Evans
(2005) used a corpus of patient information leaflets, conducting factor analysis on their
linguistic features to identify two stylistic dimensions. They then allowed their system to
generate a large number of texts, varying its decisions at a number of choice points (e.g.
choosing a pronoun versus a full np) and maintaining a trace. Texts were then scored on the
two stylistic dimensions, and a linear regression model was developed to predict the score
on a dimension based on the choices made by the system. This model was used during
testing to predict the best choice at each choice point, given a desired style. Style, however,
is a global feature of a text, though it supervenes on local decisions. These authors solved
the problem by using a best-first search algorithm to identify the series of local decisions
as scored by the linear models, that was most likely to maximise the desired stylistic effect,
yielding variations such as the following (examples from Paiva & Evans, 2005, p. 61):

(18) The dose of the patient’s medicine is taken twice a day. It is two grams.

(19) The two-gram dose of the patient’s medicine is taken twice a day.

(20) The patient takes the two-gram dose of the patient’s medicine twice a day.

Some authors (e.g., Mairesse & Walker, 2011, on which more below) have noted that
certain features, once selected, may ‘cancel’ or obscure the stylistic effect of other features.
This raises the question whether style can in fact be modelled as a linear, additive phe-
nomenon, in which each feature contributes to an overall perception of style independently
of others (modulo its weight in the regression equation).

A second question is whether stylistic variation could be modelled in a more specific
fashion, for example, by tailoring style to a specific author, rather than to generic dimen-
sions related to ‘formality’, ‘involvement’ and so on. For instance a corpus-based analysis of
human-written weather forecasts by Reiter et al. (2005) found that lexical choice varies in
part based on the author. One line of work has investigated this using corpora of referring
expressions, such as the tuna Corpus (van Deemter, Gatt, van der Sluis, & Power, 2012a),
in which multiple referring expressions by different authors are available for a given input
domain. For instance, Bohnet (2008) and Di Fabbrizio, Stent, and Bangalore (2008) explore
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statistical methods to learn individual preferences for particular attributes, a strategy also
used by Viethen and Dale (2010). Hervás, Francisco, and Gervás (2013) use case-based
reasoning to inform lexical choice when realising a set of semantic attributes for a referring
expression, where the case base differentiates between authors in the corpus to take indi-
vidual lexicalisation preferences into account (see also Hervás, Arroyo, Francisco, Peinado,
& Gervás, 2016).

A more ambitious view of individual variation is present in the work of Mairesse and
Walker (2010, 2011), in the context of nlg for dialogue systems. Here, the aim is to
vary the output of a generator so as to project different personality traits. Similar to
the model of Biber (1988), personality is here given a multidimensional definition, via the
classic ‘Big 5’ model (e.g., John & Srivastava, 1999), where personality is a combination
of five major traits (e.g. introversion/extraversion). However, while stylistic variation is
usually defined as a linguistic phenomenon, the linguistic features of personality are only
indirectly reflected in speaking or writing (a hypothesis underlying much work on detection
of personality and other features in text, including Oberlander & Nowson, 2006; Argamon,
Koppel, Pennebaker, & Schler, 2007; Schwartz, Eichstaedt, Kern, Dziurzynski, Ramones,
Agrawal, Shah, Kosinski, Stillwell, Seligman, & Ungar, 2013; Youyou, Kosinski, & Stillwell,
2015).

Mairesse and Walker’s personage system, originally based on rules derived from an
exhaustive review of psychological literature (Mairesse & Walker, 2010), was developed in
the restaurant domain. The subsequent, data-driven version of the system (Mairesse &
Walker, 2011) takes as input a pragmatic goal and, like the system of Paiva and Evans
(2005), a list of real-valued style parameters, this time representing scores on the five per-
sonality traits. The system estimates generation parameters for stylistic features based
on the input traits, using machine-learned models acquired from a dataset pairing sample
utterances with human personality judgements. For example, an utterance reflecting high
extraversion might be more verbose and involve more use of expletives (21), compared to
a more introverted style, which might demonstrate more uncertainty, for example through
the use of stammering and hedging (22).

(21) Kin Khao and Tossed are bloody outstanding. Kin Khao just has rude staff. Tossed
features sort of unmannered waiters, even if the food is somewhat quite adequate.

(22) Err... I am not really sure. Tossed offers kind of decent food. Mmhm... However,
Kin Khao, which has quite ad-ad-adequate food, is a thai place. You would probably
enjoy these restaurants.

An interesting outcome of the evaluation with human subjects reported by Mairesse
and Walker (2011) is that readers vary significantly in their judgements of what personality
is actually reflected by a given text. This suggests that the relationship between such
psychological features and their linguistic effects is far from straightforward. Walker, Lin,
Sawyer, Grant, Buell, and Wardrip-Fruin (2011b) compared the ‘Big 5’ model incorporated
in the rule-based version of personage, to a corpus-based model drawn from character
utterances in film scripts. These models were used to generate utterances for characters
in an augmented reality game; their main finding was that modelling characters’ style
directly using corpora of utterances results in more specific and easily perceived traits than
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using a model based on personality traits, where the relationship between personality and
individual style is more indirect. In another set of experiments on generating utterances for
characters in a role-playing game, Walker, Grant, Sawyer, Lin, Wardrip-Fruin, and Buell
(2011a) report the successful porting of personage to the new domain by tuning some
of its parameters on features identified in film dialogue. Models learned from film corpora
were found to be close in style to the characters they were actually based on.

5.2 Generating with Feeling: Affect and Politeness

Personality is usually thought of in terms of traits, which are relatively stable across time.
However, language use may vary not only across individuals, as a function of their stable
characteristics, but also within individuals across time, as a function of their more transient
affective states. ‘Affective nlg’ (a term due to De Rosis & Grasso, 2000) is concerned
with variation that reflects emotional states which, unlike personality traits, are relatively
transient. In this case, the goals can be twofold: (i) to induce an emotional state in the
receiver; or (ii) to reflect the emotional state of the producer.

As in the case of personality, the relationship between emotion and language is far from
clear, as noted by Belz (2003). For one thing, it isn’t clear whether only surface linguistic
choices need be affected. Some authors have argued that a text’s affective impact impinges
on content selection; this stance has been adopted, for example, in some applications in
e-health where reporting of health-related issues should be sensitive to their potential emo-
tional impact (DiMarco, Covvey, Bray, Cowan, DiCiccio, Hovy, Mulholland, & Lipa, 2007;
Mahamood & Reiter, 2011).

Most work on affective nlg has however focussed on tactical choices (e.g. Hovy, 1988;
Fleischman & Hovy, 2002; Strong, Mehta, Mishra, Jones, & Ram, 2007; van Deemter,
Krenn, Piwek, Klesen, Schröder, & Baumann, 2008; Keshtkar & Inkpen, 2011). Various
linguistic features that can have emotional impact have been identified, from the increased
use of redundancy to enhance understanding of emotionally laden messages (Walker, 1992;
De Rosis & Grasso, 2000), to the increased use of first-person pronouns and adverbs, as well
as sentence ordering to achieve emphasis or reduce adverse emotional impact (De Rosis &
Grasso, 2000).

This research on affective nlg relies on models of emotion of various degrees of complex-
ity and cognitive plausibility. The common trend underlying all these approaches however
is that emotional states should impact lexical, syntactic and other linguistic choices. The
question then is to what extent such choices are actually perceived by readers or users of a
system.

In an empirical study, van der Sluis and Mellish (2010) reported on two experiments
investigating the effect of various tactical decisions on the emotional impact of text on
readers. In one experiment, texts gave a (fake) report to participants on their performance
on an aptitude test, with manually induced variations, such as these:

(23) Positive slant: On top of this you also outperformed most people in your age group
with your exceptional scores for Imagination and Creativity (7.9 vs 7.2) and Logical-
Mathematical Intelligence (7.1 vs. 6.5).
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(24) Neutral/factual slant: You did better than most people in your age group with your
scores for Imagination and Creativity (7.9 vs 7.2) and Logical-Mathematical
Intelligence (7.1 vs. 6.5).

Evaluation of these texts showed that the extent to which affective tactical decisions
influence hearer’s emotional states is dependent on a host of other factors, including the
degree to which the reader is directly implicated in what the text says (in the case of an
aptitude test, the reader would be assumed to feel the outcomes have personal relevance).
An important question raised by this study is how affect should be measured: van der
Sluis and Mellish (2010) used a standardised self-rating questionnaire to estimate changes
in affect before and after reading a text, but the best way to measure emotion remains an
open question.

The emotional slant in the language used by an author or speaker may have implications
for the degree to which the listener or reader may feel ‘impinged upon’. This becomes
particularly relevant in interactive systems, where nlg components are generating language
in the context of dialogue. Consider, for example, the difference between these requests:

(25) Direct strategy: Chop the tomatoes!

(26) Approval strategy: Would it be possible for you to chop the tomatoes?

(27) Autonomy strategy: Could you possibly chop the tomatoes?

(28) Indirect strategy: The tomatoes aren’t chopped yet.

The four strategies exemplified above come across as having varying degrees of polite-
ness which, according to one influential account (Brown & Levinson, 1987), depends on
face. Positive face reflects the speaker’s desire that some of her goals be shared with her
interlocutors; negative face refers to the speaker’s desire not to have her goals impinged
upon by others. The connection with affect that we suggested above hinges on these dis-
tinctions: different degrees of politeness reflect different degrees of ‘threat’ to the listener;
hence, generating language based on the right face strategy could be seen as a branch of
affective nlg.

In an early, influential proposal, Walker, Cahn, and Whittaker (1997) proposed an
interpretation of the framework of Brown and Levinson (1987) in terms of the four dialogue
strategies exemplified in (25 – 28) above. Subsequently, Moore, Porayska-Pomsta, Zinn, and
Varges (2004) used this framework in the generation of tutorial feedback, where a discourse
planner used a Bayesian network to inform linguistic choices compatible with the target
politeness/affect value in a given context (see Johnson, Rizzo, Bosma, Kole, Ghijsen, &
Van Welbergen, 2004, for a related approach).

Gupta, Walker, and Romano (2007) also used the four dialogue strategies identified by
Walker et al. (1997) in the polly system, which used strips-based planning to generate
a plan distributed among two agents in a collaborative task (see also Gupta, Walker, &
Romano, 2008). An interesting finding in their evaluation is that perception of face-threat
depends on the speech act; for example, requests can be more threatening. Gupta et al.
(2007) also note possible cultural differences in perception of face threat (in this case,
between uk and Indian participants).
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5.3 Stylistic Control as a Challenge for Neural nlg

In the past few years, stylistic – and especially affective – nlg has witnessed renewed
interest by researchers working on neural approaches to generation. The trends that can
be observed here mirror those outlined in our general overview of deep learning approaches
(Section 3.3.5).

A number of models focus on response generation (in the context of dialogue, or social
media exchanges), where the task is to generate a response, given an utterance. Thus, these
models fit well within the seq2seq or Encoder-Decoder framework (see Section 3.3.5 for
discussion). Often, these models exploit social media data, especially from Twitter, a trend
which goes back at least to Ritter, Cherry, and Dolan (2011), who adapted a Phrase-Based
Machine Translation model to response generation. For example Li et al. (2016) proposed
a persona-based model in which the decoder lstm is conditioned on embeddings obtained
from tweets pertaining to individual speakers/authors. An alternative model conditions on
both speaker and addressee profiles, with a view to incorporating not only the ‘persona’ of
the generator, but its variability with respect to different interlocutors. Herzig et al. (2017),
also working on Twitter data, condition their decoder on personality features extracted from
tweets based on the ‘Big Five’ model, rather than on speaker-specific embeddings. This has
the advantage of not enabling the generator to be tuned to specific personality settings,
without re-training to adapt to a particular speaker style. While their personality-based
model does not beat Li et al.’s model, a human evaluation showed that judges were able
to identify high-trait responses as more expressive than low-trait responses, suggesting that
the conditioning was having a noticeable impact on style. In a dialogue context, Asghar
et al. (2017) proposed to achieve affective responses on three levels: (a) by augmenting word
embeddings with data from an affective dictionary; (b) by decoding with an affect-sensitive
beam search; and (c) by training with an affect-sensitive loss function.

On the other hand, a number of models condition an lstm on attributes reflecting
affective or personality traits, with a view to generating strings that express such traits.
Ghosh, Chollet, Laksana, Morency, and Scherer (2017) used lstms trained on speech cor-
pora conditioned on affect category and emotional intensity to drive lexical choice. Hu
et al. (2017) used variational auto-encoders and attribute discriminators, to control the
stylistic parameters of generated texts individually. They experimented on controlling sen-
timent and tense, but restricted the generation to sentences of up to 16 words. By contrast,
Ficler and Goldberg (2017) extend the range of parameters used to condition the lstm,
with two content-related attributes (sentiment and theme) and four stylistic parameters
(length, whether the text is descriptive, whether it has a personal voice, and whether the
style is professional). Their generator is trained on a corpus of movie reviews. Similarly,
Dong, Huang, Wei, Lapata, Zhou, and Xu (2017) propose an attribute-to-sequence model
for product review generation based on a corpus of Amazon user reviews (see also Lip-
ton et al., 2016; Tang et al., 2016, for neural models for product review generation). The
conditioning includes the reviewer id, reminiscent of the persona-based response model of
Li et al. (2016); however, they also include the rating, which functions to modulate the
affect in the output. Their model incorporates an attentional mechanism to concentrate on
different parts of the input encoding when predicting the next word during decoding. For
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example, for a specific reviewer and a specific product, changing the input rating from 1 to
5 yields the following difference:

(29) (Rating: 1) im sorry to say this was a very boring book. i didnt finish it. im not a
new fan of the series, but this was a disappointment

(30) (Rating: 5) this was a very good book. i enjoyed the characters and the story line.
im looking forward to reading more in this series.

5.4 Style and Affect: Concluding Remarks

Controlling stylistic, affective and personality-based variation in nlg is still in a rather
fledgling state, with several open questions of both theoretical and computational import.
Among these is the question of how best to model complex, multi-dimensional constructs
such as personality or emotion; this question speaks both to the cognitive plausibility of
the models informing linguistic choices, and to the practical viability of different machine
learning strategies that could be leveraged for the task (for example, linear, additive models
versus more ‘global’ models of personality or style). Also important here is the kind of data
used to inform generation strategies: as we have seen above, a lot of affective nlg work
relies on ratings by human judges. However, some recent work in affective computing has
questioned the use of ratings, comparing them to ranking-based and physiological methods
(e.g. Martinez, Yannakakis, & Hallam, 2014; Yannakakis & Mart́ınez, 2015). This and
similar research is probably of high relevance to nlg researchers. Some recent work relied on
automatic extraction of personality features using tools such as ibm’s Personality Insights
(Herzig et al., 2017). As such tools (another example of which is Lingustic Inquiry and
Wordcount or liwc, Pennebaker, Booth, & Francis, 2007) become more reliable and widely
available, we may see a turn towards less reliance on human elicitation.

A second important question is which linguistic choices truly convey the intended varia-
tion to the reader or listener. While current systems use a range of devices, from aggregation
strategies to lexical choice, it is not clear which ones are actually perceived as having the
desired effect.

A third important research avenue, which is especially relevant to interactive systems,
is adaptivity, that is, the way speakers (or systems) alter their linguistic choices as a result
of their interlocutors’ utterances (Clark, 1996; Niederhoffer & Pennebaker, 2002; Pickering
& Garrod, 2004), a theme that has also begun to be explored in nlg (Isard, Brockmann,
& Oberlander, 2006; Herzig et al., 2017).

6. Generating Creative and Entertaining Text

‘Good’ writers not only present their ideas in coherent and well-structured prose. They
also succeed in keeping the attention of the reader through narrative techniques, and in
occasionally surprising the reader, for example, through creative language use such as small
jokes or well-placed metaphors (see e.g., among many others, Flower & Hayes, 1981; Nau-
man, Stirling, & Borthwick, 2011; Veale & Li, 2015). The nlg techniques and applications
discussed so far in this survey arguably do not simulate good writers in this sense, and as a
result automatically generated texts can be perceived as somewhat boring and repetitive.
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This lack of attention to creative aspects of language production within nlg is not due to
a general lack of scholarly interest in these phenomena. Indeed, computational research into
creativity has a long tradition, with roots that go back to the early days of ai (as Gervás,
2013, notes, the first story generation algorithm on record, Novel Writer, was developed
by Sheldon Klein in 1973). However, it is fair to say that, so far, there has been little
interaction between researchers from the computational creativity and nlg communities
respectively, even though both groups in our opinion could learn a lot from each other.
In particular, nlg researchers stand to benefit from insights into what constitutes creative
language production, as well as structural features of narrative that have the potential
to improve nlg output even in data-to-text systems (see Reiter, Gatt, Portet, & van Der
Meulen, 2008, for an argument to this effect in relation to a medical text generation system).
At the same time, researchers in computational creativity could also benefit from the insights
provided by the nlg community where the generation of fluent language is concerned since,
as we shall see, a lot of the focus in this research, especially where narrative is concerned,
is on the generation of plans and on content determination.

In what follows, we give an overview of automatic approaches to creative language
production, starting from relatively simple jokes and metaphors to more advanced forms,
such as narratives.

6.1 Generating Puns and Jokes

Consider:

(31) What’s the difference between money and a bottom?
One you spare and bank, the other you bare and spank.

(32) What do you call a weird market?
A bizarre bazaar.

These two (pretty good!) punning riddles were automatically generated by the jape
system developed by Binsted and Ritchie (1994, 1997). Punning riddles form a specific
joke genre and have received considerable attention in the context of computational humor,
presumably because they are relatively straightforward to define, often relying on spelling
or word sense ambiguities. Many good, human-produced examples have been collected in
joke books and sites and may thus act as a source of inspiration or training data.

Simplifying somewhat, jape (Joke Analysis and Production Engine) relies on a template-
based nlg system, combining fixed text (What’s the difference between X and Y? or What
do you call X?) with slots, which are the source of the riddle. Various standard lexical
resources are used for joke production, including a British pronunciation dictionary (to find
different words with a similar pronunciation, such as ‘bizarre’ and ‘bazaar’) and WordNet
(Miller, 1995, to find words with a similar meaning, such as bazaar and market). jape uses
various techniques to create the punning riddles, such as juxtaposition, in which related
words are simply placed next to each other and treated as a normal construction, while
making sure that the combination is novel (i.e., not in the jape database already). It is
interesting to observe that in this way jape may automatically come up with existing jokes
(a quick Google search reveals that many bizarre bazaars, as well as bazaar bizarres, exist).
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Following the seminal work of Binsted and Ritchie, various other systems have been
developed which can automatically generate jokes, including for example the hahacronym
system of Stock and Strapparava (2005), which produces humorous acronyms, and the sys-
tem of Binsted, Bergen, and McKay (2003), which focusses on the generation of referential
jokes (“It was so cold, I saw a lawyer with his hands in his own pockets.”).

Petrovic and Matthews (2013) offer an interesting, unsupervised alternative to this ear-
lier work, which does not require labelled examples or hard-coded rules . Like their prede-
cessors, Petrovic and Matthews also start from a template – in their case I like my X like
I like my Y, Z – where X and Y are nouns (e.g., coffee and war) and Z is an attribute
(e.g., cold). Clearly, linguistic realisation is not an issue, but content selection – finding
‘funny’ triples X, Y and Z – is a challenge. Interestingly, the authors postulate a number
of guiding principles for ‘good’ triples. In particular, they hypothesize that (a) the joke
is funnier if the attribute Z can be used to describe both nouns X and Y ; (b) the joke is
funnier if attribute Z is both common and ambiguous;and (c) the joke is funnier the more
dissimilar X and Y are. These three statements can be quantified relying on standard re-
sources such as Wordnet and the Google n-gram corpus (Brants & Franz, 2006), and using
these measures their system outputs, for example:

(33) I like my relationships like I like my source, open.

It is probably fair to say that computational joke generation research to date has mostly
focussed on laying bare the basic structure of certain relatively simple puns and exploiting
these to good effect (e.g., Ritchie, 2009). However, many other kinds of jokes exist, often
requiring sophisticated, hypothetical reasoning. Presumably, many of the central problems
within ai need to be solved first before generation systems will be capable of producing
these kinds of advanced jokes.

6.2 Generating Metaphors and Similes

Whether you think something is funny or not may be subjective, but in any case insights
from joke generation can be useful as a stepping stone towards a better understanding of
creative language use, including metaphor, simile and analogy. In all of these, a mapping
is made between two conceptual domains, in such a way that terminology from the source
domain is used to say something about the target domain, typically in a nonliteral fashion,
which can be helpful in computer-generated texts to illustrate complex information. For
example, Hervás, Pereira, Gervás, and Cardoso (2006) study analogies in narrative con-
texts, such as Luke Skywalker was the King Arthur of the Jedi Knights, which immediately
clarifies an important aspect of Luke Skywalker for those not in the know. In a simile,
the two domains are compared (A ‘is like’ B); in a metaphor they are equated. Jokes and
metaphors/similes are related: the automatically generated jokes of Petrovic and Matthews
are comparable to similes, while Kiddon and Brun (2011), for example, frame the problem
of identifying double entendre jokes as a type of metaphor identification. Nevertheless, one
could argue that generating jokes is more complex because of the extra funniness constraint.

Like computational humor, the automatic recognition and interpretation of metaphori-
cal, non-literal language has received considerable attention since the early days of ai (see
Shutova, Teufel, & Korhonen, 2012, for an overview). Martin (1990, 1994), for example,
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focussed on the recognition of metaphor in the context of Unix Support, as in the following
examples:

(34) How can I kill a process?

(35) How can I enter lisp?

The first one, for example, makes a mapping between ‘life’ (source) and ‘processes’ (tar-
get), and is by now so common that is almost a dead metaphor, but this was not the case
in the early days of Unix. Clearly, understanding of the metaphors is a prerequisite for au-
tomatically answering these questions. Early research on the computational interpretation
of metaphor already recognised that metaphors rely on semantic conventions that are ex-
ploited (‘broken’) to express new meanings. A system for metaphor understanding, as well
as one for metaphor generation, therefore requires knowledge about what literal meanings
are, and how these can be stretched or translated into metaphoric meanings (e.g., Wilks,
1978; Fass, 1991).

Recent work by Veale and Hao (2007, 2008) has shown that this kind of knowledge
can be acquired from the web, and used for the generation of new metaphors and similes
(comparisons). Their system, called Sardonicus, is capable of generating metaphors for
user-provided targets (t), such as the following, expressing that Paris Hilton (“the person,
not the hotel, though the distinction is lost on Sardonicus”, Veale & Hao, 2007, p. 1474) is
skinny:

(36) Paris Hilton is a stick

Sardonicus searches the web for nouns (n) that are associated with skinniness, which
are included in a case-base and range from pole, pencil, and stick to snake and stick insect.
Inappropriate ones (like cadaver) are ruled out, based on the theory of category-inclusion
of Glucksberg (2001). This list of potential similes is then used to create Google queries,
inspired by the work of Hearst (1992), of the form n-like t (e.g., stick insect-like Paris
Hilton, which actually occurs on the web), giving a ranking of the potential similes to be
generated.

A comparable technique is used by Veale (2013) to generate metaphors with an affective
component, as in ‘Steve Jobs was a great leader, but he could be such a tyrant’. The Google
n-gram corpus is used to find stereotypes suitable for simile generation (e.g., ‘lonesome as a
cowboy’), a strategy reminiscent of the use of web-scale n−gram data to smooth the output
of image-to-text systems (see Section4). Next, an affective dimension is added, based on the
assumption that properties occurring in a conjunction (‘as lush and green as a jungle’) are
more likely to have the same affect than properties that do not. Using positive (e.g., ‘happy’,
‘wonderful’) and negative (e.g., ‘sad’, ‘evil’) seeds, coordination queries (e.g., ‘happy and X’)
are used to collect positive and negative labels for stereotypes, indicating, for instance, that
babies are positively associated with qualities such as ‘smiling’ and ‘cute’, and negatively
associated with ‘crying’ and ‘sniveling’. This enables the automatic generation of positive
(‘cute as a baby’) and negative (‘crying like a baby’) similes. Veale even points out that by
collecting, for example, a number of negative metaphors for Microsoft being a monopoly,
and using these in a set of predefined tropes, it becomes possible to automatically generate
a poem such as the following:
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No Monopoly Is More Ruthless
Intimidate me with your imposing hegemony
No crime family is more badly organized, or controls more ruthlessly
Haunt me with your centralized organization
Let your privileged security support me
O Microsoft, you oppress me with your corrupt reign

In fact, automatic generation of poetry is an emerging area at the crossroads of com-
putational creativity and natural language generation (see for example Lutz, 1959; Gervás,
2001; Wong, Hon, & Chun, 2008; Netzer, Gabay, Goldberg, & Elhadad, 2009; Greene, Ave,
Knight, & Rey, 2010; Colton, Goodwin, & Veale, 2012; Manurung, Ritchie, & Thompson,
2012; Zhang & Lapata, 2014, for variations on this theme). See the recent review by Goncalo
Oliveira (2017).

6.3 Generating Narratives

Computational narratology is concerned with computational models for the generation and
interpretation of narrative texts (e.g., Gervás, 2009; Mani, 2010, 2013). The starting point
for many approaches to narrative generation is a view of narrative coming from classical
narratology, a branch of literary studies with roots in the Formalist and Structuralist tra-
ditions (e.g., Propp, 1968; Genette, 1980; Bal, 2009). This field has been concerned with
analysing both the defining characteristics of narrative, such as plot or character, and more
subtle features, such as the handling of time and temporal shifts, focalisation (that is, the
ability to convey to the reader that a story is being recounted from a specific point of view),
and the interaction of multiple narrative threads, in the form of sub-plots, parallel narra-
tives, etc. An important recent development is the interest, on the part of narratologists,
in bringing to bear insights from Cognitive Science and ai on their literary work, making
this field ripe for multi-disciplinary interaction (see especially Herman, 1997, 2007; Meister,
2003, for programmatic statements to this effect, as well as theoretical contributions).

Classical narratology makes a fundamental distinction between the ‘story world’ and
the text that narrates the story. In line with the formalist and structuralist roots of this
tradition, the distinction is usually articulated as a dichotomy between fabula (or story)
and suzjet (or discourse). There is a parallel between this distinction and that between a
text plan in nlg, versus the actual text which articulates that plan. However, the crucial
difference is that in producing a plan for a narrative, a story generation system typically
does not use input data of the sort required by most of the nlg systems reviewed thus far,
since the story is usually fictional. On the other hand, narratological tools have also been
successfully applied to real-world narratives, including oral narratives of personal experience
(e.g., Herman, 2001; Labov, 2010).

The focus of most work on narrative generation has been on the pre-linguistic stage,
that is, on generating plans within a story world for fictional narratives, usually within a
specific genre whose structural properties are well-understood, for example, fairy tales or
Arthurian legends (see Gervás, 2013, for a review). There are however links between the
techniques used for such stories and those we have discussed above in relation to nlg (see
especially Section 3.2). Prominent among these are planning and reasoning techniques to
model the creative process as a problem-solving task. For example, minstrel (Turner,
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1992) uses reasoning to model creativity from the author’s perspective, producing narrative
plans based on authorial goals, such as the goal of introducing drama into a narrative, while
ensuring thematic consistency.

More recently, brutus (Bringsjord & Ferrucci, 1999) used a knowledge base of story
schemas, from which one is selected and elaborated using planning techniques to link causes
and effects (see also Young, 2008; Riedl & Young, 2010, among others, for recent examples
of the use of planning techniques to model the creative process in narrative generation).

John Bear is somewhat hungry. John
Bear wants to get some berries. John
Bear wants to get near the blueberries.
John Bear walks from a cave entrance
to the bush by going through a pass
through a valley through a meadow.
John Bear takes the blueberries. John
Bear eats the blueberries. The blue-
berries are gone. John Bear is not very
hungry.

(a) Excerpt from TaleSpin

Once upon a time a woodman and his
wife lived in a pretty cottage on the
borders of a great forest. They had one
little daughter, a sweet child, who was
a favorite with every one. She was the
joy of her mother’s heart. To please
her, the good woman made her a little
scarlet cloak and hood. She looked so
pretty in it that everybody called her
Little Red Riding Hood.

(b) Excerpt from storybook

Figure 7: Examples of automatically generated narratives. The left panel shows an excerpt
from a story produced by TaleSpin (Meehan, 1977); the right panel is an excerpt from
the Little Red Riding Hood fairy-tale, generated by the storybook system (Callaway &
Lester, 2002).

As Gervás (2010) notes, the focus on planning story worlds and modelling creativity has
often implied a sidelining of linguistic issues, so that rendering a story plan into text has
often been viewed as a secondary consideration. For example Figure 7a shows an excerpt of
a story produced by the talespin system (Meehan, 1977): here, the emphasis is on using
problem-solving techniques to produce a narrative in which events follow from each other in
a coherent fashion, rather than on telling it in a fluent way. An important exception to this
trend is the work of Callaway and Lester (2002), who explicitly addressed the gap between
computational narratology and nlg. Their system took a narrative plan as a starting point,
but focussed on the process of rendering the narrative in fluent English, handling time shifts,
aggregation, anaphoric nps and many other linguistic phenomena, as the excerpt in Figure
7b shows. It is worth noting that this system has since been re-used in the context of
generating interactive text for a portable museum guide by Stock et al. (2007).

In addition, there have been a number of contributions from the generation community
on more specific issues related to narrative, such as how to convey the temporal flow of
narrative discourse (Oberlander & Lascarides, 1992; Dorr & Gaasterland, 1995; Elson &
McKeown, 2010). This is a problem that deserves more attention in nlg, since texts with
a complex narrative structure often narrate events in a different order from which they
occurred. For example, a narrative or narrative-like text may recount events in order of
importance rather than in temporal order, even when they are grounded in real-world data
(e.g. Portet et al., 2009). This makes the use of the right choices for tense, aspect and

119



Gatt & Krahmer

temporal adverbials crucial to ensure clarity for the reader. This type of complexity in
narrative structure also emerges in interactive narrative fiction (for example, in games; cf.,
Montfort, 2007).

Beyond the focus on specific linguistic issues, there has also been some work that lever-
ages data-driven techniques to generate stories. For example, McIntyre and Lapata (2009)
propose a story generation system whose input is a database of entities and their interac-
tions, extracted from a corpus of stories by parsing them, retrieving grammatical depen-
dencies, and building chains of events in which specific entities play a role. The outcome is
a graph encoding a partial order of events, with edges weighted by mutual information to
reflect the degree of association between nodes. Sentence planning then takes place using
template-like grammar rules specifying verbs with subcategorisation information, followed
by realisation using realpro (Lavoie & Rambow, 1997). One of the most interesting
features of this work is the coupling of the generation model with an interest model to
predict which stories would actually be rated as interesting by readers. This was achieved
by training a kernel-based classifier on shallow lexical and syntactic features of stories, a
novel take on an old problem in narratology, namely, what makes a story ‘tellable’, thereby
distinguishing it from a mere report (e.g., Herman, 1997; Norrick, 2005; Bruner, 2011).

Most story generation work is restricted to (very) short stories. It is certainly true that
planning a book-length narrative along the lines sketched above is extremely challenging,
but researchers have recently started exploring the possibilities, for instance in the context of
NaNoGenMon (National Novel Generation Month), in which participants write a computer
program capable of generating a ’novel’. Perhaps the best known example is World Clock
(Montfort, 2013) which describes 1440 (24 × 60) events taking place around the world, one
randomly selected minute at a time. These are the first two:

It is now exactly 05:00 in Samarkand. In some ramshackle dwelling a person
who is called Gang, who is on the small side, reads an entirely made-up word
on a box of breakfast cereal. He turns entirely around.

It is now right about 18:01 in Matamoros. In some dim yet decent structure
a man named Tao, who is no larger or smaller than one would expect, reads a
tiny numeric code from a recipe clipping. He smiles a tiny smile.

The book was fully generated by 165 lines of Python code, written by the author in a
few hours, and later published (together with the software) by Harvard Book Store press.
There is even a Polish translation (by Piotr Marecki), created by translating the terms and
phrases used in the Python implementation of the original algorithm.

6.4 Generating Creative Language: Concluding Remarks

In this section we have highlighted recent developments in the broad area of creative lan-
guage generation, a topic which is rather understudied in nlg. Nevertheless, we would like
to argue that nlg researchers can improve the quality of their output by taking insights
from computational creativity on board.

Work that exploits corpora and other lexical resources for the automatic generation of
jokes, puns, metaphors and similes has revealed different ways in which words are related
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and can be juxtaposed to form unexpected and possibly even ‘funny’ or ‘poetic’ combina-
tions. Given that, for example, metaphor is pervasive in everyday language (as argued, for
example, by Lakoff & Johnson, 1980), not just in overtly creative uses, nlg researchers inter-
ested in enhancing the readability – and especially the variability – of the text-generating
capability of their models would benefit from a closer look at work in poetry, joke and
metaphor generation.

In a similar vein, work on narratology is rich in insights on the interaction of multiple
threads in a single narrative, and how the choice of events and their ordering can give rise
to interesting stories (e.g., Gervás, 2012). These insights are valuable, for example, in the
development of more elaborate text planners in domains where time and causality play
a role. Similarly, narratological work on character and focalisation can also help in the
development of better nlg techniques to vary output according to specific points of view,
an area that we touched on in Section 5,

We have deferred discussion of evaluation of creative nlg to Section 7, which deals with
evaluation in general. Anticipating some of that discussion, it is worth noting that evalu-
ation of creative language generation remains something of a bottleneck. In part, this is
because it is not always easy to determine the ‘right’ question to ask in an evaluation of
creative text. For instance, in the case of joke and poetry generators, demonstrating genre
compatibility and recognition (‘Is this a joke?’) is arguably already an achievement, insofar
as it suggests that a system is producing artefacts that conform to normative expectations
(this is discussed further in Section 7.1.3 below). In other types of creative language gen-
eration, evaluation is more challenging because it is difficult to carry out without ensuring
quality at all levels of the generation process, from planning to realisation. In the case of
narrative generation, for example, if the emphasis is placed entirely on story planning, the
perceived quality of the narrative will be compromised if story plans are rendered using a
an excessively simple realisation strategy (as is the case in Figure 7a). This is an area where
the consensus in the field is that much further research effort is required (see Zhu, 2012,
for a recent argument to this effect). It is also an area in which nlg can potentially offer
much to computational creativity researchers, including in the use of techniques to render
text fluently and consistently, facilitating the evaluation of generated artefacts with human
subjects.

7. Evaluation

Though we have touched on the subject of evaluation at various points, it deserves a full dis-
cussion as a topic which has become a central methodological concern in nlg. A factor that
contributed to this development was the establishment of a number of nlg shared tasks,
launched in the wake of an nsf-funded workshop held in Virginia in 2007 (Dale & White,
2007). These tasks have focussed on referring expression generation (Belz et al., 2010; Gatt
& Belz, 2010); surface realisation (Belz, White, Espinosa, Kow, Hogan, & Stent, 2011);
generation of instructions in virtual environments (Striegnitz, Gargett, Garoufi, Koller, &
Theune, 2011; Janarthanam & Lemon, 2011); content determination (Bouayad-Agha et al.,
2013; Banik, Gardent, & Kow, 2013); and question generation (Rus, Piwek, Stoyanchev,
Wyse, Lintean, & Moldovan, 2011). Recent proposals for new challenges extend these to
narrative generation (Concepción, Méndez, Gervás, & León, 2016), generation from struc-
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tured web data (Colin, Gardent, Mrabet, Narayan, & Perez-Beltrachini, 2016), and from
pairs of meaning representations and text (Novikova & Rieser, 2016a; May & Priyadarshi,
2017). In image captioning, shared tasks have helped the development of large-scale datasets
and evaluation servers such as ms-coco8 (cf. Section 4.1).

In general, however, nlg evaluation is marked by a great deal of variety and it is difficult
to compare systems directly. There are at least two reasons why this is the case.

Variable input There is no single, agreed-upon input format for nlg systems (McDonald,
1993; Mellish & Dale, 1998; Evans et al., 2002). Typically, one can only compare systems
against a common benchmark if the input is similar. Examples are the image-captioning
systems described in Section 4, or systems submitted to one of the shared tasks mentioned
above. Even in case a common ‘standard’ dataset is available for evaluation, comparison
may not be straightforward due to input variation, or due to implicit biases in the input
data. For example, Rajkumar and White (2014) observe that, despite many realisers being
evaluated against the Penn Treebank, they make different assumptions about the input
format, including how detailed the pre-syntactic input representation is, a problem also
observed in the first Surface Realisation shared task (Belz et al., 2011). As Rajkumar and
White (2014) note, a comparison of realisers on the basis of scores on the Penn Treebank
shows that the highest-ranking is the fuf/surge realiser (which is second in terms of
coverage), based on experiments by Callaway (2005). However, these experiments required
painstaking effort to extract the input representations at the level of detail needed by
fuf/surge; other realisers support more underspecified input. In a related vein, image
captioning evaluation studies have shown that many datasets contain a higher proportion
of nouns than verbs, and few abstract concepts (Ferraro et al., 2015), making systems that
generate descriptions emphasising objects more likely to score better. The relevance of
this observation is shown by Elliott and De Vries (2015), who note that the ranking of
their image captioning system based on visual dependency grammar depends in part on the
data it is evaluated on, with better performance on data containing more images depicting
actions (we return to this study below).

Multiple possible outputs Even for a single piece of input and a single system, the
range of possible outputs is open-ended, a problem that arguably holds for any nlp task
involving textual output, including machine translation and summarisation. Corpora often
display a substantial range of variation and it is often unclear, without an independent
assessment, which outputs are to be preferred (Reiter & Sripada, 2002). In the image
captioning literature, authors who have framed the problem in terms of retrieval have mo-
tivated the choice in part based on this problem, arguing that ‘since there is no consensus
on what constitutes a good image description, independently obtained human assessments
of different caption generation systems should not be compared directly’ (Hodosh et al.,
2013, p. 580). While capturing variation may itself be a goal (e.g., Belz, 2008; Viethen
& Dale, 2010; Hervás et al., 2013; Castro Ferreira et al., 2016), as we also saw in our
discussion of style in Section 5, this is not always the case. Thus, in a user-oriented evalua-
tion, the SumTime-mousam system weather forecasts were preferred by readers over those
written by forecasters because the latter’s lexicalisation decisions were susceptible to appar-
ently arbitrary variation (Reiter et al., 2005); similar outcomes were more recently reported

8. http://mscoco.org/dataset/#captions-upload
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Figure 8: Hypothetical evaluation scenario: a weather report generation system embedded
in an offshore oil platform environment. Possible evaluation methods, focussing on dif-
ferent questions, are highlighted at the bottom, together with the typical methodological
orientation (subjective/objective) adopted to address them.

for statistical nlg systems trained on the SumTime corpus (Belz, 2008; Angeli et al., 2010).

Rather than give an exhaustive review of nlg evaluation – hardly a realistic prospect given
the diversity we have pointed out – the rest of this section will highlight some topical issues
in current work. By way of an overview of these issues, consider the hypothetical scenario
sketched in Figure 8, which is loosely inspired by work on various weather-reporting sys-
tems developed in the field. This nlg system is embedded in the environment of an offshore
oil-rig; the relevant features of the setup (in the sense of Sparck Jones & Galliers, 1996) are
the system itself and its users, here a group of engineers. While the task of the system is to
generate weather reports from numerical weather prediction data, its ultimate purpose is to
facilitate users’ planning of drilling and maintenance operations. Figure 8 highlights some
of the common questions addressed in nlg evaluation, together with a broad typology of
the methods used to address them, in particular, whether they are objective – that is mea-
surable against an external criterion, such as corpus similarity or experimentally obtained
behavioural data – or subjective, requiring human judgements.

A fundamental methodological distinction, due to Sparck Jones and Galliers (1996),
is between intrinsic and extrinsic evaluation methods. In the case of nlg, an intrinsic
evaluation measures the performance of a system without reference to other aspects of the
setup, such as the system’s effectiveness in relation to its users. In our example scenario,
questions related to text quality, correctness of output and readability qualify as intrinsic,
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whereas the question of whether the system actually achieves its goal in supporting adequate
decision-making on the offshore platform is extrinsic.

7.1 Intrinsic Methods

Intrinsic evaluation in nlg is dominated by two methodologies, one relying on human
judgements (and hence subjective), the other on corpora.

7.1.1 Subjective (Human) Judgements

Human judgements are typically elicited by exposing naive or expert subjects to system
outputs and getting them to rate them on some criteria. Common criteria include:

• Fluency or readability, that is, the linguistic quality of the text (e.g., Callaway &
Lester, 2002; Mitchell et al., 2012; Stent, Marge, & Singhai, 2005; Lapata, 2006;
Cahill, 2009; Espinosa, Rajkumar, White, & Berleant, 2010, inter alia);

• Accuracy, adequacy, relevance or correctness relative to the input, reflecting the sys-
tem’s rendition of the content (e.g. Lester & Porter, 1997; Sripada, Reiter, & Hawizy,
2005; Hunter, Freer, Gatt, Reiter, Sripada, & Sykes, 2012), a criterion often used in
subjective evaluations of image-captioning systems as well (e.g. Kulkarni et al., 2011;
Mitchell et al., 2012; Kuznetsova et al., 2012; Elliott & Keller, 2013).

Though they are the most common, these two sets of criteria do not exhaust the possi-
bilities. For example, subjective ratings have also been elicited for argument effectiveness
in a system designed to generate persuasive text for prospective house buyers (Carenini &
Moore, 2006). In image captioning, at least one system was evaluated by asking users to
judge the creativity of the generated caption, with a view to assessing the contribution of
web-scale n-gram language models to the captioning quality (Li et al., 2011). Below, we also
discuss judgements of genre compatibility (Section 7.1.3). In the case of fictional narrative,
some evaluations have elicited judgments on qualities such as novelty (e.g., Pérez, Ortiz,
Luna, Negrete, Castellanos, Peñalosa, & Ávila, 2011) or believability of characters (e.g.,
Riedl & Young, 2005).

The use of scales to elicit judgements raises a number of questions. One has to do with
the nature of the scale itself. While discrete, ordinal scales are the dominant method, a
continuous scale – for example, one involving a visually presented slider (Gatt & Belz, 2010;
Belz & Kow, 2011) – might give subjects the possibility of giving more nuanced judgements.
For example, a text generated by our hypothetical weather report system might be judged
so disfluent as to be given the lowest rating on an ordinal scale; if the following text is
judged as being worse, a subject would have no way of indicating this. A related question
is whether subjects find it easier to compare items rather than judge each one in its own
right. This question has begun to be addressed in the nlp evaluation literature, usually with
binary comparisons, for example between the outputs of two mt systems (see Dras, 2015,
for discussion). In a recent study evaluating causal connectives produced by an nlg system,
Siddharthan and Katsos (2012) used Magnitude Estimation, whereby subjects are not given
a predefined scale, but are asked to choose their own and proceed to make comparisons of
each item to a ‘modulus’, which serves as a comparison point throughout the experiment
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(see Bard, Robertson, & Sorace, 1996).9 Belz and Kow (2010) compared a preference-based
paradigm to a standard rating scale to evaluate systems from two different domains (weather
reporting and reg), and found that the former was more sensitive to differences between
systems, and less susceptible to variance between subjects.

An additional concern with subjective evaluations is inter-rater reliability. Multiple
judgements by different evaluators may exhibit high variance, a problem that was encoun-
tered in the case of Question Generation (Rus et al., 2011). Recently, Godwin and Piwek
(2016) suggested that such variance can be reduced by an iterative method whereby train-
ing of judges is followed by a period of discussion, leading to the updating of evaluation
guidelines. This, however, is more costly in terms of time and resources.

It is probably fair to state that, these days, subjective, human evaluations are often
carried out via online platforms such as Amazon Mechanical Turk and CrowdFlower, though
this is probably more feasible for widely-spoken languages such as English. A seldom-
discussed issue with such platforms concerns their ethical implications (for example, they
involve large groups of poorly paid individuals; see Fort, Adda, & Bretonnel Cohen, 2011)
as well as the reliability of the data collected, though measures can be put in place to ensure,
for instance, that contributors are fluent in the target language (see e.g., Goodman, Cryder,
& Cheema, 2013; Mason & Suri, 2012).

7.1.2 Objective Humanlikeness Measures Using Corpora

Intrinsic methods that rely on corpora can generally be said to be addressing the question
of ‘humanlikeness’, that is, the extent to which the system’s output matches human output
under comparable conditions. From the developer’s perspective, the selling point of such
methods is their cheapness, since they are usually based on automatically computed met-
rics. A variety of corpus-based metrics, often used earlier in related fields such as Machine
Translation or Summarisation, have been used in nlg evaluation. Some of the main ones
are summarised in Table 1, which groups them according to their principal characteristics,
and for each adds a key reference.

Measures of n-gram overlap or string edit distance, usually originating in Machine Trans-
lation or Summarisation (with some exceptions, such as cider, Vedantam et al., 2015) are
frequently used for evaluating surface realisation (e.g., White, Rajkumar, & Martin, 2007;
Cahill & Van Genabith, 2006; Espinosa et al., 2010; Belz et al., 2011) and occasionally also
to evaluate short texts characteristic of data-driven systems in domains such as weather
reporting (e.g. Reiter & Belz, 2009; Konstas & Lapata, 2013) and image captioning (see
Bernardi et al., 2016; Kilickaya, Erdem, Ikizler-Cinbis, & Erdem, 2017). Edit distance met-
rics have been exploited for realisation (Espinosa et al., 2010), but also for reg (Gatt &
Belz, 2010).

The focus of these metrics is on the output text, rather than its fidelity to the input. In
a limited number of cases, surface-oriented metrics have been used to evaluate the adequacy
with which output text reflects content (Banik et al., 2013; Reiter & Belz, 2009). However,

9. The modulus is an item – a text, or a sentence – which is selected in advance and which subjects are
asked to rate first. All subsequent ratings or judgements are performed in comparison to this modus
item. Though subjects are able to use any scale they choose, this method allows all judgements to be
normalised by the judgement given for the modulus. Typically, normalised judgements are analysed on
a logarithmic scale.
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Metric Description Origins

N
-g

ra
m

ov
er

la
p

bleu Precision score over variable-length n-grams, with a length
penalty (Papineni et al., 2002) and, optionally, smoothing
(Lin & Och, 2004).

mt

nist A version of bleu with higher weighting for less fre-
quent n−grams and a different length penalty (Doddington,
2002).

mt

rouge Recall-oriented score, with options for comparing non-
contiguous n−grams and longest common subsequences
(Lin & Hovy, 2003).

as

meteor Harmonic mean of unigram precision and recall, with op-
tions for handling (near-synonymy) and stemming (Lavie
& Agarwal, 2007).

mt

gtm General Text Matcher. F-Score based on precision and
recall, with greater weight for contiguous matching spans
(Turian, Shen, & Melamed, 2003)

mt

cider Cosine-based n-gram similarity score, with n-gram weight-
ing using tf-idf (Vedantam et al., 2015).

ic

wmd Word-Mover Distance, a similarity score between texts,
based on the (semantic) distance between words in the
texts (Kusner, Sun, Kolkin, & Weinberger, 2015). For nlp,
distance is operationalised using normalised bag of words
(nbow) representations (Mikolov et al., 2013).

ds; ic

S
tr

in
g

d
is

ta
n

ce

Edit distance Number of insertions, deletions, substitutions and, possibly,
transposition required to transform the candidate into the
reference string (Levenshtein, 1966).

n/a

ter Translation edit rate, a version of edit distance (Snover,
Dorr, Schwartz, Micciulla, & Makhoul, 2006).

mt

terp Version of ter handling phrasal substitution, stemming
and synonymy (Snover et al., 2006).

mt

terpa Version of ter optimised for correlations with adequacy
judgements (Snover et al., 2006).

mt

C
on

te
n
t

ov
er

la
p

Dice/Jaccard Set-theoretic measures of overlap between two unordered
sets (e.g. of predicates or other content units)

n/a

masi Measure of agreement between set-valued items, a weighted
version of Jaccard (Passonneau, 2006)

as

pyramid Overlap measure relying on comparison of weighted Sum-
marization Content Units (SCUs) (Nenkova & Passonneau,
2004; Yang, Passonneau, & de Melo, 2016)

as

spice Measure of overlap between candidate and reference texts
based on propositional content obtained by parsing the text
into graphs representing objects and relations, by first pars-
ing captions into scene graphs representing objects and re-
lations (Anderson, Fernando, Johnson, & Gould, 2016)

ic

Table 1: Intrinsic, corpus-based metrics based on string overlap, string distance, or content
overlap. The last column indicates the nlp sub-discipline in which a metric originated,
where applicable. Legend: mt = Machine translation; as = automatic summarisation; ic
= image captioning; ds = document similarity.
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if content determination is the focus, a measure of surface overlap is at best a proxy, relying
on an assumption of a straightforward correspondence between input and output. This
assumption may be tenable if texts are brief and relatively predictable. In some cases,
it has been possible to use metrics to measure content determination directly, based on
semantically annotated corpora. For instance, reg algorithms have been evaluated in this
fashion using set overlap metrics (Viethen & Dale, 2007; van Deemter et al., 2012a). Also
relevant in this connection is the pyramid method (Nenkova & Passonneau, 2004) for
summarisation, which relies on the identification of the content units (which maximally
correspond to clauses) in multiple human summaries. These are weighted and ordered by
their frequency of mention by human summarises. A candidate summary is scored according
to the ratio between the weight of the content units it includes, compared to the weight
of an ideal summary bearing the same number of content units (see Nenkova & McKeown,
2011, for discussion).

Direct measurements of content overlap between generated and candidate outputs will
likely increase, as automatic data-text alignment techniques make such ‘semantically trans-
parent’ corpora more readily available for end-to-end nlg (see e.g., Chen & Mooney, 2008;
Liang et al., 2009, and the discussion in Section 3.3). An important development away
from pure surface overlap is the use of semantic resources (as in the case of meteor, Lavie
& Agarwal, 2007), or word embeddings (as in wmd, Kusner et al., 2015), to compute
the proximity of output to reference texts beyond literal string overlap. In a comparative
evaluation of metrics for image captioning, Kilickaya et al. (2017) found an advantage for
wmd compared to other metrics.

7.1.3 Evaluating Genre Compatibility and Stylistic Effectiveness

A slightly different question that has occasionally been posed in evaluation studies asks
whether the linguistic artefact produced by a system is a recognisable instance of a partic-
ular genre or style. As noted in Section 5, it is difficult to ascertain to what extent readers
actually perceive subtle stylistic variation. Thus, Mairesse and Walker (2011) found incon-
sistent perceptions of personality in the evaluation of personage, which was complicated
by the fact that stylistic features interact and may cancel each other out.

Genre perception is a central question for approaches to generating creative language (see
Section 6). For example, Hardcastle and Scott (2008) describe an evaluation of a generation
system for cryptic crossword clues based on a Turing test in which the objective was to
determine whether the system’s outputs were recognisably different from human-authored
clues. In a related vein, when evaluating the jape joke generation system, Binsted, Pain,
and Ritchie (1997, see Section 6.1) presented 120 8-11 year old children with a number of
punning riddles, some automatically generated by jape and some selected from joke books.
They also included a number of non-joke controls, such as:

(37) What do you get when you cross a horse and a donkey?
A mule

For each stimulus that they were exposed to, children were asked to indicate whether
they thought it was a joke, and how funny they considered it. The results revealed that
computer generated riddles were recognised as jokes, and considered funnier than non-jokes.
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Interestingly, the joke children rated highest was automatically generated by jape (we
urge the reader to inspect the original paper), although in general, human-produced jokes
were considered funnier by children than automatically generated ones. In this evaluation
study, therefore, an extrinsic aspect of the generated text, concerning its efficacy (here, its
‘funniness’) was found to be correlated with its recognisability as an instance of the target
genre.

Petrovic and Matthews (2013) evaluated their unsupervised approach to joke generation
by harvesting human-written jokes from Twitter, conforming to the I like my X . . . template
used by their system. Blind ratings by human judges of human-written and automatically
generated jokes showed that their best-performing model was rated as funny in 16% of
cases, compared to 33% of the human jokes (itself a relatively low rate).

While the questions posed in these studies clearly have an intrinsic orientation (‘Is the
text compatible with the expected genre conventions?’), they also have a bearing on extrinsic
factors, since the ability to recognise an artefact as an instance of a genre or as exhibiting
a certain style or personality is arguably one of the sources of its impact, which in turn
includes judgments of whether a text is funny or interesting, for example.

Of course, the intention behind variation in style, personality or affect may well be to
ultimately increase effectiveness in achieving some ulterior goal. Indeed, any nlg system
intended to be embedded in a specific environment will need to address stylistic and genre-
based issues. For example, our hypothetical weather report generator might use a very brief,
technical style given its professional pool of target users (as was the case with SumTime
Reiter et al., 2005); in contrast, weather reports intended for public consumption, such as
those in the WeatherGov corpus, would probably be longer and less technical (Angeli
et al., 2010).

However, there is a difference between evaluating whether genre constraints or stylistic
variation help contribute to a goal, and evaluating whether the text actually exhibits the
desired variation. For example, Mairesse and Walker (2011) evaluated the personage
system (see Section 5) by asking users to judge personality traits as reflected in generated
dialogue fragments (rather than, say, measuring whether users were more likely to eat at
a restaurant if this was recommended by a configuration of the system with a high degree
of extraversion). This is similar in spirit to the question about jokehood asked by Binsted
et al. (1997), in contrast to the more explicitly extrinsic evaluation of the standup joke
generator by Waller, Black, O’Mara, Pain, Ritchie, and Manurung (2009), which asked
whether the system actually helped users improve their interactions with peers.

7.2 Extrinsic Evaluation Methods

In contrast to intrinsic methods, extrinsic evaluations measure effectiveness in achieving
a desired goal. In the example scenario of Figure 8, such an evaluation might address
the impact on planning by the engineers who are the target users of the system. Clearly,
‘effectiveness’ is dependent on the application domain and purpose of a system. Examples
include:

• persuasion and behaviour change, for example, through exposure to personalised
smoking cessation letters (Reiter et al., 2003);
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• purchasing decision after presentation of arguments for and against options on the
housing market based on a user model (Carenini & Moore, 2006);

• engagement with ecological issues after reading blogs about migrating birds (Sid-
dharthan et al., 2013);

• decision support in a medical setting following the generation of patient reports (Portet
et al., 2009; Hunter et al., 2012);

• enhancing linguistic interaction among users with complex communication needs via
the generation of personal narratives (Tintarev, Reiter, Black, Waller, & Reddington,
2016);

• enhancing learning efficacy in tutorial dialogue (Di Eugenio, Fossati, Yu, Haller, &
Glass, 2005; Fossati, Di Eugenio, Ohlsson, Brown, & Chen, 2015; Boyer, Phillips,
Ingram, Ha, Wallis, Vouk, & Lester, 2011; Lipschultz, Litman, Jordan, & Katz, 2011;
Chi, Jordan, & VanLehn, 2014)

While questionnaire-based or self-report studies can be used to address extrinsic criteria
(e.g., Hunter et al., 2012; Siddharthan et al., 2013; Carenini & Moore, 2006), in many
cases evaluation relies on some objective measure of performance or achievement. This can
be done with the target users in situ, enhancing the ecological validity of the study, but
can also take the form of a task that models the scenarios for which the nlg system has
been designed. Thus, in the give Challenge (Striegnitz et al., 2011), in which nlg systems
generated instructions for a user to navigate through a virtual world, a large-scale task-
based evaluation was carried out by having users play the give game online, while various
indices of success were logged, including the time it took a user to complete the game. reg
algorithms whose goal was to generate identifying descriptions of objects in visual domains,
were evaluated in part based on the time it took readers to identify a referent based on a
generated description, as well as their error rate (Gatt & Belz, 2010). skillsum, a system
to generate feedback reports from literacy assessments, was evaluated by measuring how
user’s self-assessment of their own literacy skills improved after reading generated feedback,
compared to control texts (Williams & Reiter, 2008).

A potential drawback of extrinsic studies, in addition to time and expense, is a reliance
on an adequate user base (which can be difficult to obtain when users have to be sampled
from a specific population, such as the engineers in our hypothetical scenario in Figure 8)
and the possibility of carrying out the study in a realistic setting. Such studies also raise
significant design challenges, due to the need to control for intervening and confounding
variables, comparing multiple versions of a system (e.g. in an ablative design; see Section 7.3
below), or comparing a system against a gold standard or baseline. For example, Carenini
and Moore (2006) note that evaluating the effectiveness of arguments presented in text
needs to take into account aspects of a user’s personality which may impact how receptive
they are to arguments in the first place.

An example of the trade-off between design and control issues and ecological validity is
provided by the BabyTalk family of systems. A pilot system called bt-45 (Portet et al.,
2009), which generated patient summaries from 45-minute spans of historical patient data,
was evaluated in a task involving nurses and doctors, who chose from among a set of clinical
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actions to take based on the information given. These were then compared to ‘ground truth’
decisions by senior neonatal experts. This evaluation was carried out off-ward; hence,
subjects took clinical decisions in an artificial environment without direct access to the
patient. On the other hand, in the evaluation of bt-nurse, a successor to bt-45 which
summarised patient data collected over a twelve-hour shift (Hunter et al., 2012), the system
was evaluated on-ward using live patient data, but ethical considerations precluded a task-
based evaluation. For the same reasons, comparison to ‘gold standard’ human texts was
also impossible. Hence, the evaluation elicited judgements, both on intrinsic criteria such
as understandability and accuracy and on extrinsic criteria such as perceived clinical utility
(see Siddharthan et al., 2013, for a similarly indirect extrinsic measure of impact, this time
in an ecological setting).

7.3 Black Box Versus Glass Box Evaluation

With the exception of evaluations of specific modules or algorithms, as in the case of reg or
surface realisers, most of the evaluation studies discussed so far would be classified as ‘black
box’ evaluations of ‘end-to-end’, or complete, nlg systems. In a ‘glass box’ evaluation,
on the other hand, it is the contribution of individual components that is under scrutiny,
ideally in a setup where versions of a system with and without a component are evaluated
in the same manner. Note that the distinction between black box and glass box evaluation
is orthogonal to the question of which methods are used.

An excellent example of a glass-box evaluation is that by Callaway and Lester (2002),
who used an ablative design, eliciting judgements of the quality of the output of their nar-
rative generation system based on different configurations that omitted or included key
components. In a related vein, Elliott and Keller (2013) compared image-to-text models
that included fine-grained dependency representations of spatial as well as linguistic depen-
dencies, to models with a coarser-grained image representation, finding an advantage for
the former.

However, exhaustive component-wise comparisons are sometimes difficult to make and
may result in a combinatorial explosion of configurations, with a concomitant reduction
in data points collected per configuration (assuming subjects are limited and need to be
divided among different conditions) and a reduction in statistical power. Alternatives do
exist in the literature. Reiter et al. (2003) elicited judgements on weather forecasts using
human and machine-generated texts, together with a ‘hybrid’ version where the content
was selected by forecasters, but the language was automatically generated. This enabled
a comparison of human and automatic content selection. Angeli et al. (2010) used corpus-
based and subjective measures to assess linguistic quality, coupled with precision and recall-
based measures to assess content determination of their statistical system against human-
annotated texts. In bt-nurse (Hunter et al., 2012), nurses were prompted for free text
comments (in addition to answering a questionnaire targeting extrinsic dimensions), which
were then manually annotated and analysed to determine which elements of the system
were potentially problematic.
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7.4 On the Relationship Between Evaluation Methods

To what extent are the plethora of methods surveyed – from extrinsic, task-oriented to
intrinsic ones relying on automatic metrics or human judgements – actually related? It
turns out that multiple evaluation methods seldom give converging verdicts on a system,
or on the relative ranking of a set of systems under comparison.

7.4.1 Metrics Versus Human Judgements

Although corpus-based metrics used in mt and summarisation are typically validated by
demonstrating their correlation with human ratings, meta-evaluation studies in these fields
have suggested that the correspondence is somewhat weak (e.g., Dorr, Monz, Oard, Presi-
dent, Zajic, & Schwartz, 2004; Callison-Burch, Osborne, & Koehn, 2006; Caporaso, Desh-
pande, Fink, Bourne, Bretonnel Cohen, & Hunter, 2008). Similarly, shared task evaluations
on referring expression generation showed that corpus-based, judgement-based and exper-
imental or task-based methods frequently do not correlate (Gatt & Belz, 2010). In their
recent review Bernardi et al. (2016) note a similar issue in image captioning system eval-
uation. Thus, Kulkarni et al. (2013) found that their image description system did not
outperform two earlier methods (Farhadi et al., 2010; Yang et al., 2011) on bleu scores;
however, human judgements indicated the opposite trend, with readers preferring their sys-
tem (similar observations are made by Kiros et al., 2014). Hodosh et al. (2013) compared
the agreement (measured by Cohen’s κ) between human judgements and bleu or rouge
scores for retrieved captions, finding that outputs were not ranked similarly by humans and
metrics, unless the retrieved captions were identical to the reference captions.

On occasion, the correlation between a metric and human judgements appears to differ
across studies, suggesting that metric-based results are highly susceptible to variation due
to generation algorithms and datasets. For instance, Konstas and Lapata (2013) (discussed
in Section 3.3.4 above) find that on corpus-based metrics, the best-performing version of
their model does not outperform that of Kim and Mooney (2010) on the robocup domain,
or that of Angeli et al. (2010) on their weather corpus (weathergov), though it performs
better than Angeli et al.’s on the noisier atis travel dataset. However, an evaluation of
fluency and semantic correctness, based on human judgements, showed that the system
outperformed, by a small margin, both Kim and Mooney’s and Angeli et al.’s on both
measures in all domains with the exception of weathergov, where Angeli et al.’s system
did marginally better.

In a related vein, Elliott and De Vries (2015) compare their image captioning system,
based on visual dependency relations, to the Bidirectional rnn developed by Karpathy and
Fei-Fei (2015), on two different datasets. The two systems were close to each other on
the vlt2k dataset, but not on Pascal1k, a result that the authors claim is due to vlt2k
containing more pictures involving actions. As for the relationship between metrics and
human judgements, Elliott and Keller (2013) concluded that meteor correlates better
than bleu (see Elliott & Keller, 2014, for a systematic comparison of automatic metrics
in this domain), a finding also confirmed in their later work (Elliott & De Vries, 2015), as
well as in the ms-coco Evaluation Challenge, which found that meteor was more robust.
However, work by Kuznetsova et al. (2014) showed variable results; their highest-scoring
method as judged by humans, involving tree composition, was ranked higher by bleu than
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by meteor. In the ms-coco Evaluation Challenge, some systems outperformed a human-
human upper bound when compared to reference texts using automatic metrics, but no
system reached this level in an evaluation based on human judgements (see Bernardi et al.,
2016, for further discussion).

Some studies have explicitly addressed the relationship between methods as a research
question in its own right. An important contribution in this direction is the study by
Reiter and Belz (2009), which addressed the validity of corpus-based metrics in relation
to human judgements, within the domain of weather forecast generation (a similar study
has recently been conducted on image captioning; see Elliott & Keller, 2014). In a first
experiment, focussing on linguistic quality, the authors found a high correlation between
expert and non-expert readers’ judgements, but the correlation between human judgements
and the automatic metrics varied considerably (from 0.3 to 0.87), depending on the version
of the metric used and whether the reference texts were included in the comparison by
human judges. The second experiment evaluated both linguistic quality, by asking human
judges to rate clarity/readability; and content determination, by eliciting judgements of
accuracy/appropriateness (by comparing texts to the raw data). The automatic metrics
correlated significantly with judgements of clarity, but far less with accuracy, suggesting
that they were better at predicting the linguistic quality than correctness.

Other studies have yielded similarly inconsistent results. In a study on paraphrase gen-
eration, Stent et al. (2005) found that automatic metrics correlated highly with judgements
of adequacy (roughly akin to accuracy), but not fluency. By contrast, Espinosa et al. (2010)
found that automatic metrics such as nist, meteor and gtm correlate moderately well
with human fluency and adequacy judgements of English surface realisation quality, while
Cahill (2009) reported only a weak correlation for German surface realisation. Wubben,
van den Bosch, and Krahmer (2012), comparing text simplification strategies, found low,
but significant correlations between bleu and fluency judgements, and a very low, negative
correlation between bleu and adequacy. These contrasting findings suggest that the rela-
tionship between metrics may depend on purpose and genre of the text under consideration;
for example, Reiter and Belz (2009) used weather reports, while Wubben et al. (2012) used
Wikipedia articles.

Various factors can be adduced to explain the inconsistency of these meta-evaluation
studies:

1. Metrics such as bleu are sensitive to the length of the texts under comparison. With
shorter texts, n-gram based metrics are likely to result in lower scores.

2. The type of overlap matters: for example, many evaluations in image captioning rely
on bleu-1 (Elliott & Keller, 2013, 2014, was among the first to experiment with
longer n-grams), but longer n-grams are harder to match, though they capture more
syntactic information and are arguably better indicators of fluency.

3. Semantic variability is an important issue. Generated texts may be similar to reference
texts, but differ on some near-synonyms, or subtle word order variations. As shown
in Table 1, some metrics are designed to partially address these issues.

4. Many intrinsic corpus-based metrics are designed to compare against multiple refer-
ence texts, but this is not always possible in nlg. For example, while image captioning
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datasets typically contain multiple captions per image (typically, around 5), this is
not the case in other domains, like weather reporting or restaurant recommendations.

The upshot is that nlg evaluations increasingly rely on multiple methods, a trend that is
equally visible in other areas of nlp , such as mt (Callison-Burch, Fordyce, Koehn, Monz,
& Schroeder, 2007, 2008).

7.4.2 Using Controlled Experiments

A few studies have validated evaluation measures against experimental data. For exam-
ple, Siddharthan and Katsos (2012) compared the outcomes of their magnitude estimation
judgement study (see Section 7.1 above) to the results from a sentence recall task, finding
that the results from the latter are largely consistent with judgements and concluding that
they can substitute for task-based evaluations to shed light on breakdowns in comprehension
at sentence level. A handful of studies have also used behavioral experiments and compared
‘online’ processing measures, such as reading time of referring expressions, to corpus-based
metrics (e.g. Belz et al., 2010). Correlations with automatic metrics are usually poor. A
somewhat different use of reading times was made by Lapata (2006), who used them as
an objective measure against which to validate Kendall’s τ as a metric for assessing infor-
mation ordering in text (an aspect of text stucturing). In a recent study, Zarrieß, Loth,
and Schlangen (2015) compared generated texts to human-authored and ‘filler’ texts (which
were manually manipulated to compromise their coherence). They found that reading-time
measures were more useful to distinguish these classes of texts than offline measures based
on elicited judgements of fluency and clarity.

7.5 Evaluation: Concluding Remarks

Against the background of this section, three main conclusions can be drawn:

1. There is a widespread acceptance of the necessity of using multiple evaluation meth-
ods in nlg. While these are not always consistent among themselves, they are useful
in shedding light on different aspects of quality, from fluency and clarity of output,
to adequacy of semantic content and effectiveness in achieving communicative inten-
tions. The choice of method has a direct impact on the way in which results can be
interpreted.

2. Meta-evaluation studies have yielded conflicting results on the relationship between
human judgements, behavioural measures and automatically computed metrics. The
correlation among them varies depending on task and application domain. This is
a subject of ongoing research, with plenty of studies focussing on the reliabilty of
metrics and their relationship to other measures, especially human judgements.

3. A question that remains under-explored concerns the dimensions of quality that are
themselves the object of inquiry. (In this connection, it is worth noting that some
kindred disciplines have sought to de-emphasise their role on the grounds that they
are inconsistent; see Callison-Burch et al., 2008, among others). For example, what
are people judging when they judge fluency or adequacy and how consistently do they
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do so? It is far from obvious whether these judgements should really be expected to
correlate with other measures, given that the latter are producer-oriented, focussing on
output, while judgements are themselves often receiver-oriented, focussing on how the
output is read or processed (for a related argument, see Oberlander, 1998). Further-
more, while meta-linguistic judgements can be expected to reflect the impact of a text
on its readers, there is nevertheless the possibility that behavioural, online methods
designed to directly investigate aspects of processing would yield a different picture,
a result that has been obtained in some psycholinguistic studies (e.g. Engelhardt,
Bailey, & Ferreira, 2006).

In conclusion, our principal recommendation to nlg practitioners, where evaluation is
concerned, is to err in favour of diversity, by using multiple methods, as far as possible, and
reporting not only their results, but also the correlation between them. Weak correlations
need not imply that the results of a particular method are invalid. Rather, they may indicate
that measures focus on different aspects of a system or its output.

8. Discussion and Future Directions

Over the past two decades, the field of nlg has advanced considerably, and many of these
recent advances have not been covered in a comprehensive survey yet. This paper has
sought to address this gap, with the following goals:

1. to give an update of the core tasks and architectures in the field, with an emphasis
on recent data-driven techniques;

2. to briefly highlight recent developments in relatively new areas, incuding vision-to-
text generation and the generation of stylistically varied, engaging or creative texts;
and

3. to extensively discuss the problems and prospects of evaluating nlg applications.

Throughout this survey, various general, related themes have emerged. Probably the
central theme has been the gradual shift away from traditional, rule-based approaches to
statistical, data-driven ones, which, of course, has been taking place in ai in general. In
nlg, this has had substantial impact on how individual tasks are approached (e.g., moving
away from domain-dependent to more general, domain-independent approaches, relying on
available data instead) as well as on how tasks are combined in different architectures (e.g.,
moving away from modular towards more integrated approaches). The trade-off between
output quality of the generated text and the efficiency and robustness of an approach is
becoming a central issue: data-driven approaches are arguably more efficient than rule-based
approaches, but the output quality may be compromised, for reasons we have discussed.
Another important theme has been the increased interplay between core nlg research and
other disciplines, such as computer vision (in the case of vision-to-text) and computational
creativity research (in the case of creative language use).

At the conclusion of this comprehensive survey of the state of the art in nlg, and given
the fast pace at which developments occur both in industry and academia, we feel it is
useful to point to some potential future directions, as well as to raise a number of questions
which recent research has brought to the fore.
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8.1 Why (and How) Should NLG be Used?

Towards the beginning of their influential survey on nlg, Reiter and Dale (2000) recom-
mended to the developer that she pose this question before embarking on the design and
implementation of a system. Can nlg really help in the target domain? Does a cheaper,
more standard solution exist and would it work just as well? From the perspective of an
engineer or a company, these are obviously relevant questions. As recent industry-based
applications of nlg show, this technology is typically valuable whenever information that
needs to be presented to users is relatively voluminous, and comes in a form which is not
easily consumed and does not afford a straightforward mapping to a more user-friendly
modality without considerable transformation. This is arguably where nlg comes into its
own, offering a battery of techniques to select, structure and present the information.

However, the question whether nlg is worth using in a specific setting should also
be accompanied by the question of how it should be used. Our survey has focussed on
techniques for the generation of text, but text is not always presented in isolation. Other
important dimensions include document structure and layout, an under-studied problem
(but see Power et al., 2003). They also include the role of graphics in text, an area where
there is the potential for further interaction between the nlg and visualisation communities,
addressing such questions as which information should be rendered textually and which can
be made more accessible in a graphical modality (e.g., Demir, Carberry, & McCoy, 2012).
These questions are of great relevance in some domains, especially those where accurate
information delivery is a precursor to decision-making in fault-critical situations (for some
examples, see Elting, Martin, Cantor, & Rubenstein, 1999; Law, Freer, Hunter, Logie,
McIntosh, & Quinn, 2005; van der Meulen, Logie, Freer, Sykes, McIntosh, & Hunter, 2007).

8.2 Does NLG Include Text-to-Text?

In our introductory section, we distinguished text-to-text generation from data-to-text gen-
eration; this survey has focussed primarily on the latter. The two areas have distinguishing
characteristics, not least the fact that nlg inputs tend to vary widely, as do the goals
of nlg systems as a function of the domain under consideration. In contrast, the input
in text-to-text generation, especially Automatic Summarisation, is comparatively homoge-
neous, and while its goals can vary widely, the field has also been successful at defining tasks
and datasets (for instance, through the duc shared tasks), which have set the standard for
subsequent research.

Yet, a closer look at the two types of generation will show more scope for convergence
than the above characterisation suggests. To begin with, if nlg is concerned with going
from data to text, then surely textual input should be considered as one out of broad variety
of forms in which input data might be presented. Some recent work, such as that of Kon-
dadadi et al. (2013) (discussed in Section 3.3) and McIntyre and Lapata (2009) (discussed in
Section 6) has explicitly focussed on leveraging such data to generate coherent text. Other
approaches to nlg, including some systems that conform to a standard, modular, data-
to-text architecture (e.g., Hunter et al., 2012), have had to deal with text as one out of a
variety of input types, albeit using very simple techniques. Generation from heterogeneous
inputs which include text as one type of data is a promising research direction, especially
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in view of the large quantities of textual data available, often accompanied by numbers or
images.

8.3 Theories and Models in Search of Applications?

In their overview of the status of evaluation in nlg in the late 1990s, Mellish and Dale (1998)
discussed, among the possible ways of evaluating a system, its theoretical underpinnings
and in particular whether the theoretical model underlying an nlg system or one of its
components is adequate to the task and can generalise to new domains. Rather than
evaluating an nlg system as such, this question targets the theory itself, and suggests that
we view nlg as a potential testbed for such theories or models. But what are the theories
that underlie nlg?

The prominence of theoretical models in nlg tends to depend on the task under consid-
eration. For instance, many approaches to realisation discussed in Section 2.6 are based on a
specific theory of syntactic structure; research on reg has often been based on insights from
pragmatic theory, especially the Gricean maxims (Grice, 1975); and much research on text
structuring has been inspired by Rhetorical Structure Theory (Mann & Thompson, 1988).
Relatively novel takes on various sentence planning tasks – especially those concerned with
style, affect and personality – tend to have a theoretical inspiration, in the form of a model
of personality (John & Srivastava, 1999) or a theory of politenes (Brown & Levinson, 1987),
for example.

More often than not, such theories are leveraged in the process of formalising a par-
ticular problem to achieve a tractable solution. Treating their implementation in an nlg
system as an explicit test of the theory, as Mellish and Dale (1998) seem to suggest, happens
far less often. This is perhaps a reflection of a division between ‘engineering-oriented’ and
‘theoretically-oriented’ perspectives in the field: the former perspective emphasises work-
able solutions, robustness and output quality; the latter emphasises theoretical soundness,
cognitive plausibility and so forth. However, the theory/engineering dichotomy is arguably
a false one. While the goal of nlg research is often different from, say, that of cognitive mod-
elling (for example, few nlg systems seek to model production errors explicitly), it is also
true that theory-driven implementations are themselves worthy contributions to theoretical
work.

Recently, some authors have argued that nlg practitioners should pay closer attention
to theoretical and cognitive models. The reasons marshalled in favour of this argument are
twofold. First, psycholinguistic results and theoretical models can actually help to improve
implemented systems, as Rajkumar and White (2014) show for the case of realisation.
Second, as argued for example by van Deemter et al. (2012b), theoretical models can benefit
from the formal precision that is the bread-and-butter of computational linguistic research;
a concrete case in point in nlp is provided by Poesio et al. (2004), whose implementation of
Centering Theory (Grosz, Joshi, & Weinstein, 1995) shed light on a number of underspecified
parameters in the original model and subsequent modifications of it. Our argument here
is that nlg has provided a wealth of theoretical insights which should not be lost to the
broader research community; similarly, nlg researchers would undoubtedly benefit from an
awareness of recent developments in theoretical and experimental work.
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8.4 Where do We Go from Here?

Finally, we conclude with some speculations on some further directions for future research
for which the time seems ripe.

Within the field of Natural Language Processing as a whole, a remarkable recent de-
velopments is the explosion of interest in social media, including online blogs, micro-blogs
such as Twitter feeds, and social platforms such as Facebook. In one respect, interest in
social media could be seen as a natural extension of long-standing topics in nlp, including
the desire to deal with language ‘in the wild’. However, social media data has given more
impetus to the exploration of non-canonical language (e.g. Eisenstein, 2013); the impact of
social and demographic factors on language use (e.g. Hovy & Søgaard, 2015; Johannsen,
Hovy, & Søgaard, 2015); the prevalence of paralinguistic features such as affect, irony and
humour (Pang & Lee, 2008; Lukin & Walker, 2013); and other variables such as personality
(e.g. Oberlander & Nowson, 2006; Farnadi, Zoghbi, Moens, & De Cock, 2013; Schwartz
et al., 2013). Social media feeds are also important data streams for the identification of
topical and trending events (see Atefeh & Khreich, 2015, for a recent review). There is
as yet little work on generating textual or multimedia summaries of such data (but see,
for example, Wang, Raghavan, Cardie, & Castelli, 2014) or generating text in social media
contexts (exceptions include Ritter et al., 2011; Cagan, Frank, & Tsarfaty, 2014). Since
much of social media text is subjective and opinionated, an increased interest in social me-
dia on the part of nlg researchers may also give new impetus to research on the impact of
style, personality and affect on textual variation (discussed in Section 5), and on non-literal
language (including some of the phenomena discussed in Section 6).

A second potential growth area for nlg is situated language generation. The term
situated is usually taken to refer to language use in physical or virtual environments where
production choices explicitly take into account perceptual and physical properties. Research
on situated language processing has advanced significantly in the past several years, with
frameworks for language production and understanding in virtual contexts (e.g., Kelleher,
Costello, & Van Genabith, 2005), as well as a number of contributions within nlg, especially
for the generation of language in interactive environments (Kelleher & Kruijff, 2006; Stoia
& Shockley, 2006; Garoufi & Koller, 2013; Dethlefs & Cuayáhuitl, 2015). The popular
give Challenge added further impetus to this research (Striegnitz et al., 2011). Clearly,
this work is also linked to the enterprise of grounding generated language in the perceptual
world, of which the research discussed in Section 4 constitutes one of the current trends.
However, there are many fields where situatedness is key, in which nlg can still make
novel contributions. One of these is gaming. With the exception of a few endeavours to
enhance the variety of linguistic expressions used in virtual environments (e.g., Orkin & Roy,
2007), nlg technology is relatively unrepresented in research on games, despite significant
progress on dynamic content generation in game environments (e.g., Togelius, Yannakakis,
Stanley, & Browne, 2011). This may be due to the perception that linguistic interaction in
games is predictable and can rely on ‘canned’ text. However, with the growing influence of
gamification as a strategy for enhancing a variety of activities beyond entertainment, such
as pedagogy, as well as the development of sophisticated planning techniques for varying
the way in which game worlds unfold on the fly, the assumption of predictability where
language use is concerned may well be up for revision.
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Third, there is a growing interest in applying nlg techniques to generation from struc-
tured knowledge bases and ontologies (e.g. Ell & Harth, 2014; Duma & Klein, 2013; Gyawali
& Gardent, 2014; Mrabet, Vougiouklis, Kilicoglu, Gardent, Demner-Fushman, Hare, & Sim-
perl, 2016; Sleimi & Gardent, 2016, some of which were briefly discussed in Section 3.3.4).
The availability of knowledge bases such as dbpedia, or folksonomies such as Freebase, not
only constitute input sources in their own right, but also open up the possibility of exploring
alignments between structured inputs and text in a broader variety of domains than has
hitherto been the case.

Finally, while there has been a significant shift in the past few years towards data-
driven techniques in nlg, many of these have not been tested in commercial or real-world
applications, despite the growth in commercialisation of text generation services noted in
the introductory section. Typically, the arguments for rule-based systems in commercial
scenarios, or in cases where input is high-volume and heterogeneous, are that (1) their
output is easier to control for target systems; or (2) that data is in any case unavailable
in a given domain, rendering the use of statistical techniques moot; or (3) data-driven
systems have not been shown to be able to scale up beyond experimental scenarios (some
of these arguments are made, for instance, by Harris, 2008). A response to the first point
depends on the availability of techniques which enable the developer to ‘look under the
hood’ and understand the statistical relationships learned by a model. Such techniques
are, for example, being developed to investigate or visualise the representations learned
by deep neural networks. The second point calls for more investment in research on data
acquisition and data-text alignment. Techniques for generation which rely on less precise
alignments between data and text are also a promising future direction. Finally, scalability
remains an open challenge. Many of the systems we have discussed have been developed
within research environments, where the aim is of course to push the frontiers of nlg and
demonstrate feasibility or correctness of novel approaches. While in some cases, research
on data-to-text has addressed large-scale problems – notably in some of the systems that
summarise numerical data – a greater concern with scalability would also focus researchers’
attention on issues such as the time and resources required to collect data and train a system
and the efficiency of the algorithms being deployed. Clearly, developments in hardware will
alleviate these problems, as has happened with some statistical methods that have recently
become more feasible.

9. Conclusion

Recent years have seen a marked increase in interest in automatic text generation. Com-
panies now offer nlg technology for a range of applications in domains such as journalism,
weather, and finance. The huge increase in available data and computing power, as well
as rapid developments in machine-learning, have created many new possibilities and mo-
tivated nlg researchers to explore a number of new applications, related to, for instance,
image-to-text generation, while applications related to social media seem to be just around
the corner, as witness, for instance, the emergence of nlg-related techniques for automatic
content-creation as well as nlg for twitter and chatbots (e.g., Dale, 2016). With develop-
ments occurring at a steady pace, and the technology also finding its way into industrial
applications, the future of the field seems bright. In our view, research in nlg should be
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further strengthened by more collaboration with kindred disciplines. It is our hope that
this survey will serve to highlight some of the potential avenues for such multi-disciplinary
work.
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Theune, Kees van Deemter, Michael White and Sander Wubben. EK received support
from RAAK-PRO SIA (2014-01-51PRO) and The Netherlands Organization for Scientific
Research (NWO 360-89-050), which is gratefully acknowledged.

References

Althaus, E., Karamanis, N., & Koller, A. (2004). Computing locally coherent discourses.
In Proc. ACL’04, pp. 399–406.

Anderson, P., Fernando, B., Johnson, M., & Gould, S. (2016). SPICE: Semantic Proposi-
tional Image Caption Evaluation. In Proc. ECCV’16, pp. 1–17.

Androutsopoulos, I., Lampouras, G., & Galanis, D. (2013). Generating natural language
descriptions from OWL ontologies: The natural OWL system. Journal of Artificial
Intelligence Research, 48, 671–715.

Androutsopoulos, I., & Malakasiotis, P. (2010). A survey of paraphrasing and textual
entailment methods. Journal of Artificial Intelligence Research, 38, 135–187.

Angeli, G., Liang, P., & Klein, D. (2010). A Simple Domain-Independent Probabilistic
Approach to Generation. In Proc. EMNLP’10, pp. 502–512.

Angeli, G., Manning, C. D., & Jurafsky, D. (2012). Parsing time: Learning to interpret time
expressions. In Proc. NAACL-HLT’12, pp. 446–455.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., & Parikh, D. (2015).
VQA: Visual Question Answering. In Proc. ICCV’15, pp. 2425–2433.

Antol, S., Zitnick, C. L., & Parikh, D. (2014). Zero-shot learning via visual abstraction. In
Proc. ECCV’14, pp. 401–416.

Appelt, D. (1985). Planning English Sentences. Cambridge University Press, Cambridge,
UK.

Argamon, S., Koppel, M., Pennebaker, J. W., & Schler, J. (2007). Mining the Blogosphere:
Age, gender and the varieties of self-expression. First Monday, 12 (9).

Asghar, N., Poupart, P., Hoey, J., Jiang, X., & Mou, L. (2017). Affective Neural Response
Generation. CoRR, 1709.03968.

Atefeh, F., & Khreich, W. (2015). A survey of techniques for event detection in twitter.
Computational Intelligence, 31 (1), 132–164.

Austin, J. L. (1962). How to do things with words. Clarendon Press, Oxford.

139



Gatt & Krahmer

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation By Jointly
Learning To Align and Translate. In Proc. ICLR’15, pp. 1–15.

Bal, M. (2009). Narratology (Third edition). University of Toronto Press, Toronto.

Ballesteros, M., Bohnet, B., Mille, S., & Wanner, L. (2015). Data-driven sentence generation
with non-isomorphic trees. In Proc. NAACL-HTL’15, pp. 387–397.

Banaee, H., Ahmed, M. U., & Loutfi, A. (2013). Towards NLG for Physiological Data
Monitoring with Body Area Networks. In Proc. ENLG’13, pp. 193–197.

Bangalore, S., & Rambow, O. (2000). Corpus-based lexical choice in Natural Language
Generation. In Proc. ACL’00, pp. 464–471.

Bangalore, S., & Stent, A. (2014). Natural Language Generation in Interactive Systems.
Cambridge University Press.

Banik, E., Gardent, C., & Kow, E. (2013). The KBGen Challenge. In Proc. ENLG’13, pp.
94–97.

Bannard, C., & Callison-Burch, C. (2005). Paraphrasing with bilingual parallel corpora. In
Proc. ACL’05, pp. 597–604.

Bard, E. G., Robertson, D., & Sorace, A. (1996). Magnitude Estimation of Linguistic
Acceptability. Lamguage, 72 (1), 32–68.

Barnard, K. (2016). Computational Methods for Integrating Vision and Language. Morgan
and Claypool Publishers.

Bartoli, A., De Lorenzo, A., Medvet, E., & Tarlao, F. (2016). Your paper has been ac-
cepted, rejected, or whatever: Automatic generation of scientific paper reviews. In
International Conference on Availability, Reliability, and Security, pp. 19–28.

Barzilay, R., Elhadad, N., & McKeown, K. R. (2002). Inferring strategies for sentence
ordering in multidocument news summarization. Journal of Artificial Intelligence
Research, 17, 35–55.

Barzilay, R., & Lapata, M. (2005). Collective content selection for concept-to-text genera-
tion. In Proc. HLT/EMNLP’05, pp. 331–338.

Barzilay, R., & Lapata, M. (2006). Aggregation via Set Partitioning for Natural Language
Generation. In Proc. HLT-NAACL’06, pp. 359–366.

Barzilay, R., & Lee, L. (2004). Catching the Drift: Probabilistic Content Models, with
Applications to Generation and Summarization. In Proc. HLT-NAACL’04, pp. 113–
120.

Bateman, J. A. (1997). Enabling technology for multilingual natural language generation:
the KPML development environment. Natural Language Engineering, 3 (1), 15–55.

Bateman, J. A., & Zock, M. (2005). Natural Language Generation. In Mitkov, R. (Ed.),
The Oxford Handbook of Computational Linguistics. Oxford University Press, Oxford,
UK.

Belz, A. (2003). And Now with Feeling: Developments in Emotional Language Generation
(Technical Report No. ITRI-03-21). Tech. rep., University of Brighton, Brighton, UK.

140



Natural Language Generation

Belz, A. (2008). Automatic generation of weather forecast texts using comprehensive prob-
abilistic generation-space models. Natural Language Engineering, 14 (04).

Belz, A., & Kow, E. (2010). Comparing rating scales and preference judgements in language
evaluation. In Proc. INLG’10, pp. 7–15.

Belz, A., & Kow, E. (2011). Discrete vs . Continuous Rating Scales for Language Evaluation
in NLP. In Proc. ACL’11, pp. 230–235.

Belz, A., Kow, E., Viethen, J., & Gatt, A. (2010). Generating referring expressions in
context: The GREC task evaluation challenges. In Krahmer, E., & Theune, M. (Eds.),
Empirical Methods in Natural Language Generation. Springer, Berlin and Heidelberg.

Belz, A., White, M., Espinosa, D., Kow, E., Hogan, D., & Stent, A. (2011). The First Surface
Realisation Shared Task: Overview and Evaluation Results. In Proc. ENLG’11, pp.
217–226.

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A Neural Probabilistic Lan-
guage Model. Journal of Machine Learning Research, 3, 1137–1155.

Bernardi, R., Cakici, R., Elliott, D., Erdem, A., Erdem, E., Ikizler-Cinbis, N., Keller, F.,
Muscat, A., & Plank, B. (2016). Automatic Description Generation from Images: A
Survey of Models, Datasets, and Evaluation Measures. Journal of Artificial Intelli-
gence Research, 55, 409–442.

Biber, D. (1988). Variation Across Speech and Writing. Cambridge University Press, Cam-
bridge.

Binsted, K., Bergen, B., & McKay, J. (2003). Pun and non-pun humour in second-language
learning. In Proc. CHI’03 Workshop on Humor Modeling in the Interface.

Binsted, K., Pain, H., & Ritchie, G. D. (1997). Children’s evaluation of computer-generated
punning riddles. Pragmatics & Cognition, 5 (2), 305–354.

Binsted, K., & Ritchie, G. D. (1994). An implemented model of punning riddles. In Proc.
AAAI’94.

Binsted, K., & Ritchie, G. D. (1997). Computational rules for generating punning riddles.
Humor: International Journal of Humor Research, 10 (1), 25–76.

Bohnet, B. (2008). The fingerprint of human referring expressions and their surface real-
ization with graph transducers. In Proc. INLG’08, pp. 207–210.

Bohnet, B., Wanner, L., Mille, S., & Burga, A. (2010). Broad Coverage Multilingual Deep
Sentence Generation with a Stochastic Multi-Level Realizer. In Proc. COLING’10,
pp. 98–106.

Bollegala, D., Okazaki, N., & Ishizuka, M. (2010). A bottom-up approach to sentence
ordering for multi-document summarization. Information Processing & Management,
46 (1), 89–109.

Bollmann, M. (2011). Adapting SimpleNLG for German. In Proc. ENLG’11, pp. 133–138.

Bouayad-Agha, N., Casamayor, G., Wanner, L., & Mellish, C. (2013). Overview of the First
Content Selection Challenge from Open Semantic Web Data. In Proc. ENLG’11, pp.
98–102.

141



Gatt & Krahmer

Boyer, K. E., Phillips, R., Ingram, A., Ha, E. Y., Wallis, M., Vouk, M., & Lester, J. C. (2011).
Investigating the relationship between dialogue structure and tutoring effectiveness:
A hidden markov modeling approach. International Journal of Artificial Intelligence
in Education, 21 (1-2), 65–81.

Brants, T., & Franz, A. (2006). Web 1T 5-gram Version 1. Tech. rep., Linguistic Data
Consortium.

Bratman, M. E. (1987). Intentions, Plans and Practical Reason. CSLI, Stanford, CA.

Bringsjord, S., & Ferrucci, D. A. (1999). Artificial Intelligence and Literary Creativity:
Inside the Mind of BRUTUS, a Storytelling Machine. Lawrence Erlbaum Associates,
Hillsdale, NJ.

Brown, J. C., Frishkoff, G. A., & Eskenazi, M. (2005). Automatic question generation for
vocabulary assessment. In Proc. EMNLP’05, pp. 819–826.

Brown, P., & Levinson, S. C. (1987). Politeness: Some Universals in Language Usage.
Cambridge University Press, Cambridge, UK.

Bruner, J. (2011). The Narrative Construction of Reality. Critical Inquiry, 18 (1), 1–21.

Busemann, S., & Horacek, H. (1997). Generating Air Quality Reports From Environmental
Data. In Busemann, S., Becker, T., & Finkler, W. (Eds.), DFKI Workshop on Natural
Language Generation (DFKI Document D-97-06), pp. 1–7. DFKI, Saarbrücken.

Cagan, T., Frank, S. L., & Tsarfaty, R. (2014). Generating Subjective Responses to Opin-
ionated Articles in Social Media: An Agenda-Driven Architecture and a Turing-Like
Test. In Proc. Joint Workshop on Social Dynamics and Personal Attributes in Social
Media, pp. 58–67.

Cahill, A. (2009). Correlating Human and Automatic Evaluation of a German Surface
Realiser. In Proc. ACL-IJCNLP’09, pp. 97–100.

Cahill, A., Forst, M., & Rohrer, C. (2007). Stochastic realisation ranking for a free word
order language. In Proc. ENLG’07, pp. 17–24.

Cahill, A., & Van Genabith, J. (2006). Robust PCFG-Based Generation using Automatically
Acquired LFG Approximations. In Proc. COLING-ACL’06, pp. 1033–1040.

Callaway, C. B. (2005). The Types and Distributions of Errors in a Wide Coverage Surface
Realizer Evaluation. In Proc. ENLG’05, pp. 162–167.

Callaway, C. B., & Lester, J. C. (2002). Narrative prose generation. Artificial Intelligence,
139 (2), 213–252.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., & Schroeder, J. (2007). (Meta-)
evaluation of machine translation. In Proc. StatMT’07, pp. 136–158.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., & Schroeder, J. (2008). Further
Meta-Evaluation of Machine Translation. In Proc. StatMT’08, pp. 70–106.

Callison-Burch, C., Osborne, M., & Koehn, P. (2006). Re-evaluating the Role of BLEU in
Machine Translation Research. In Proc. EACL’06, pp. 249–256.

142



Natural Language Generation

Caporaso, J. G., Deshpande, N., Fink, J. L., Bourne, P. E., Bretonnel Cohen, K., & Hunter,
L. (2008). Intrinsic evaluation of text mining tools may not predict performance on
realistic tasks. Pacific Symposium on Biocomputing, 13, 640–651.

Carenini, G., & Moore, J. D. (2006). Generating and evaluating evaluative arguments.
Artificial Intelligence, 170 (11), 925–952.

Carroll, J., & Oepen, S. (2005). High efficiency realization for a wide-coverage unification
grammar. In Dale, R. (Ed.), Procedings of the 2nd International Joint Conference on
Natural Language Processing (IJCNLP’05), pp. 165–176. Springer.

Castro Ferreira, T., Calixto, I., Wubben, S., & Krahmer, E. (2017). Linguistic realisation
as machine translation: Comparing different MT models for AMR-to-text generation.
In Proc. INLG’17, pp. 1–10.

Castro Ferreira, T., Krahmer, E., & Wubben, S. (2016). Towards more variation in text
generation: Developing and evaluating variation models for choice of referential form.
In Proc. ACL’16, pp. 568 – 577.

Castro Ferreira, T., Wubben, S., & Krahmer, E. (2017). Generating flexible proper name
references in text: Data, models and evaluation. In Proc. EACL’17, pp. 655–664.

Chang, F., Dell, G. S., & Bock, K. (2006). Becoming syntactic. Psychological review, 113 (2),
234–72.

Chen, D. L., & Mooney, R. J. (2008). Learning to sportscast: a test of grounded language
acquisition. In Proc. ICML’08, pp. 128–135.

Cheng, H., & Mellish, C. (2000). Capturing the interaction between aggregation and text
planning in two generation systems. In Proc. INLG ’00, pp. 186–193.

Chi, M., Jordan, P. W., & VanLehn, K. (2014). When Is Tutorial Dialogue More Effective
Than Step-Based Tutoring?. In Proc. ITS’14, pp. 210–219.

Clark, H. H. (1996). Using Language. Cambridge University Press, Cambridge, UK.

Clarke, J., & Lapata, M. (2010). Discourse Constraints for Document Compression. Com-
putational Linguistics, 36 (3), 411–441.

Clerwall, C. (2014). Enter the Robot Journalist. Journalism Practice, 8 (5), 519–531.

Coch, J. (1998). Interactive generation and knowledge administration in MultiMeteo. In
Proc. IWNLG’98, pp. 300–303.

Cohen, P. R., & Levesque, H. J. (1985). Speech acts and rationality. In Proc. ACL’85, pp.
49–60.

Cohen, P. R., & Perrault, C. R. (1979). Elements of a plan-based theory of speech acts.
Cognitive Science, 3, 177–212.

Colin, E., Gardent, C., Mrabet, Y., Narayan, S., & Perez-Beltrachini, L. (2016). The
webNLG challenge: Generating text from dbpedia data. In Proc. INLG’16, pp. 163–
167.

Colton, S., Goodwin, J., & Veale, T. (2012). Full-FACE Poetry Generation. In Proc.
ICCC’12, pp. 95–102.

143



Gatt & Krahmer

Concepción, E., Méndez, G., Gervás, P., & León, C. (2016). A challenge proposal for
narrative generation using CNLs. In Proc. INLG’16, pp. 171–173.
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