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Abstract

In this paper, we study several classes of satisfiability preserving assignments to the con-
straint satisfaction problem (CSP). In particular, we consider fixable, autark and satisfying
assignments. Since it is in general NP-hard to find a nontrivial (i.e., nonempty) satisfiability
preserving assignment, we introduce linear satisfiability preserving assignments, which are
defined by polyhedral cones in an associated vector space. The vector space is obtained by
the identification, introduced by Kullmann, of assignments with real vectors. We consider
arbitrary polyhedral cones, where only restricted classes of cones for autark assignments
are considered in the literature. We reveal that cones in certain classes are maximal as a
convex subset of the set of the associated vectors, which can be regarded as extensions of
Kullmann’s results for autark assignments of CNFs. As algorithmic results, we present a
pseudo-polynomial time algorithm that computes a linear fixable assignment for a given in-
teger linear system, which implies the well known pseudo-polynomial solvability for integer
linear systems such as two-variable-per-inequality (TVPI), Horn and q-Horn systems.

1. Introduction

We in this section introduce central concepts in the study and summarize our results.

1.1 Constraint Satisfaction Problem

The constraint satisfaction problem (CSP, in short) is given as a triple (V,D, C), where
V is a set of variables, D is a finite variable domain, and C is a set of constraints on
the variables that specify the permitted combinations of value assignments to variables.
A solution to a CSP instance is an assignment to all the variables that satisfies all the
constraints. The CSP is the problem of finding a solution to a given instance (V,D, C). The
CSP can express a number of problems in diverse fields, and is recognized as one of the
most fundamental problems in computer science (e.g., Tsang, 1993; Creignou, Khanna, &
Sudan, 2001; Dechter, 2003; Rossi, van Beek, & Walsh, 2006). The CSP has been studied
extensively from both theoretical and practical points of view. For example, it is known
that the CSP of a fixed finite constraint language has a dichotomy property (Schaefer, 1978;
Bulatov, 2006, 2017; Zhuk, 2017). Namely, it is polynomially solvable if all the constraints
satisfy a certain property, or otherwise NP-hard. Moreover, due to practical importance,
many heuristic algorithms have been proposed (Tsang, 1993; Dechter, 2003; Rossi et al.,
2006). In this paper, each constraint might involve a non-fixed number of variables, as is
often assumed in the literature (van Hoeve & Katriel, 2006).
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The Boolean satisfiability problem (SAT) can be regarded as a Boolean CSP, in which
each constraint is represented by a clause (i.e., disjunction of literals). SAT itself is an
important problem in computer science. It is well-known that SAT is NP-hard (Cook,
1971), but several restricted classes such as 2-SAT (Even, Itai, & Shamir, 1976), Horn SAT
(Henschen & Wos, 1974), renamable Horn SAT (Lewis, 1978), q-Horn SAT (Boros, Crama,
& Hammer, 1990), and LinAut SAT (Kullmann, 2000; van Maaren, 2000) are solvable in
polynomial time.

Integer linear systems are also formulated as a CSP. The problem is, given a matrix
G ∈ Zm×n, a vector h ∈ Zm, and a positive integer d, where Z denotes the set of all integers,
to compute an integer vector x ∈ {0, 1, . . . , d}n such that Gx ≥ h. It is a well-studied topic,
especially in the field of mathematical programming. The problem is strongly NP-hard,
but several (semi-)tractable subclasses are known to exist. For example, the problem can
be solved in polynomial time, if n is bounded by some constant (Lenstra, Jr., 1983), or
if G is totally unimodular (Hoffman & Kruskal, 1956). Moreover, it can be solved in
pseudo-polynomial time if (1) m is bounded by some constant (Papadimitriou, 1981), (2)
G corresponds to a two-variable-per-inequality (TVPI) system (i.e., each row of G contains
at most two nonzero elements) (Hochbaum, Megiddo, Naor, & Tamir, 1993; Bar-Yehuda &
Rawitz, 2001), (3) G is Horn (i.e., each row of G contains at most one positive element)
(Glover, 1964; van Maaren & Dang, 2002), or (4) G is q-Horn (Kimura & Makino, 2016). It
is also known that the problem is weakly NP-hard, even if m is bounded by some constant
or the system is TVPI and Horn (also called monotone quadratic) (Lagarias, 1985).

1.2 Satisfiability Preserving Assignments

As mentioned above, many practical algorithms have been proposed to solve CSPs (includ-
ing SAT and integer linear systems). One of the important methods is based on reducing the
problem size by partial variable assignments. For example, satisfiability preserving assign-
ments are used to reduce the problem size, where a partial assignment is called satisfiability
preserving if the satisfiability of the problem does not change after substituting it to the
corresponding variables. Once a satisfiability preserving assignment is available, instead of
solving the original problem instance, we may solve the problem instance obtained from the
original one by the partial assignment. Here we note that the size of the resulting problem
instance is smaller than the original one.

Satisfiability preserving assignments have been considered in many fields such as artifi-
cial intelligence and optimization. An important example is forced assignments, which are
essentially the same concepts as back bones (Monasson, Zecchina, Kirkpatrick, Selman, &
Troyansky, 1999), frozen variables (Jonsson & Krokhin, 2004), and implied values (Bor-
deaux, Cadoli, & Mancini, 2008). An assignment of a ∈ D to variable x is called forced
if x has to be set to a in all satisfying assignments. Unit clause propagation in SAT is
a prominent example of forced assignments. Pure literals in SAT can also be seen as an-
other example of satisfiability preserving assignments, where a literal ℓ is called pure if a
given CNF contains no ℓ (i.e., negation of ℓ). By definition, for a pure literal ℓ, an assign-
ment ℓ = 1 is satisfiability preserving. Pure literals, together with unit clause propagation,
are used by the Davis-Putnam-Logemann-Loveland (DPLL) algorithm (Davis & Putnam,
1960; Davis, Logemann, & Loveland, 1962) to reduce the search space. We note that the
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DPLL algorithm is a basis of many current SAT solvers. Also in practice, various types of
satisfiability preserving assignments are used, especially in branch-and-bound algorithms.
Among them, we consider three fundamental satisfiability preserving assignments, namely,
satisfying, fixable, and autark partial assignments. A satisfying partial assignment is a
straightforward example of satisfiability preserving assignments. A partial assignment is
satisfying if it satisfies all the constraints no matter what values are assigned to the unas-
signed variables. Clearly, satisfying partial assignments are satisfiability preserving. An
assignment A to variable set X ⊆ V is called fixable (Bordeaux et al., 2008; also called
safe by, e.g., Kleine Büning & Kullmann, 2009) if every satisfying total assignment stays
satisfying, even if the assignment to X is replaced by A, where the assignment to V \ X
remains unchanged. By definition, a fixable assignment is satisfiability preserving. Another
example is autark assignments, which play an important role in this paper and thus will be
stated in depth in the next paragraph.

For the SAT problem, autark assignments were introduced by Monien and Speckenmeyer
(1985) to provide a fast exponential time algorithm. A partial assignment is called autark
if it satisfies all the clauses that contain variables assigned by it. Later, Kullmann (2000)
investigated autark assignments in terms of resolution refutation. A CNF is lean if it does
not have a nontrivial autark assignment. Kullmann showed that a CNF is lean if and only
if every clause can be used by some resolution refutation. Moreover, it is shown that a
CNF, seen as a set of clauses, can be uniquely decomposed into two subsets of clauses: the
maximal autark subset and the maximal lean subset.

Although it is preferable to obtain these satisfiability preserving assignments, it is in gen-
eral NP-hard to find these partial assignments. Thus, local and linear types are studied by
Kullmann (2000) and Bordeaux et al. (2008), for example, where linear types are discussed
in the next subsection. Local types are defined in terms of constraints. More precisely, they
require a partial assignment to be satisfiability preserving for each constraint, when each
constraint itself is regarded as a problem instance. We note that an autark assignment is in
fact a local type, since it is defined in terms of constraints. A partial assignment is called
locally satisfying if it is satisfying for each constraint, and locally fixable if it is fixable for
each constraint. As seen in Section 3, the strength of locality depends on the constraint
classes.

Before discussing linear autark assignments, we state two concepts related to satisfia-
bility preserving assignments: symmetric breaking and backdoor sets. Symmetry breaking,
which can be regarded as a generalization of satisfiability preserving assignments, is also
widely used to reduce the search space in artificial intelligence (Freuder, 1991; Jeavons,
Cohen, & Cooper, 1994; Prestwich, 2004). A backdoor set is a subset of variables whose in-
stantiation leads a given formula to the one which is computationally easy to solve (Crama,
Ekin, & Hammer, 1997; Williams, Gomes, & Selman, 2003; Gaspers & Szeider, 2012).

1.3 Linear Autark Assignments

Since it is NP-hard to find an autark assignment, Kullmann (2000) introduced linear autark
assignments to efficiently find an autark assignment. Linear autark assignments can be seen
as polyhedral conic inner approximations of autark assignments in the sense that they cor-
respond to polyhedral cones, which are defined by systems of linear inequalities, contained
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in the set of vectors corresponding to the set of autark assignments. This implies that
they can be computed in polynomial time via solving linear programming problems (Kull-
mann, 2000). We note that the correspondence of partial assignments and vectors is also
introduced by Kullmann. Although autark assignments are not always linear, linearity can
be used to efficiently find autark assignments and have a possible application to speed up
heuristic SAT algorithms. Moreover, linear autark assignments provide a unifying algo-
rithm to solve well-known tractable subclasses of the SAT problem. For example, 2-, Horn
and q-Horn SAT problems are polynomially solvable by iteratively finding linear autark
assignments (Kullmann, 2000; van Maaren, 2000).

At first, Kullmann (2000) introduced unweighted linear autark assignments, namely,
those assignments that correspond to polyhedral cones defined by so-called clause-variable
matrices of CNFs. Later, Kullmann (2003) used qualitative matrix analysis (e.g., Brualdi
& Shader, 1995) to analyze autark assignments. For example, Kullmann (2003, Lemma
3.5) shows that any matrix in the qualitative class of the clause-variable matrix, i.e., matrix
that has the same sign pattern as the clause-variable matrix, defines polyhedral cones that
derive autark assignments (and such an assignment is sometimes called a weighted linear
autark assignment). Namely, it is shown that polyhedral cones defined by such matrices are
included in the set of vectors corresponding to the autark assignments. Kullmann (2003,
Lemma 3.5) also shows that any autark assignment can be obtained by linear inequalities
defined by some matrix in the qualitative class. However, it is not investigated which matri-
ces define a good polyhedral conic approximation nor can we do better if we consider general
convex inner approximation, i.e., convex sets contained in the set of vectors corresponding
to the autark assignments. In fact, the field of linear autark assignments appears largely
unexplored as pointed out by, e.g., Kleine Büning and Kullmann (2009, Section 11.11).
These motivate us to study convex inner approximations of autark assignments and espe-
cially general linear types, i.e., satisfiability preserving assignments that can be represented
by general linear programming problems.

We note that connection between linear programmings and SAT is explored by Chandru
and Hooker (1999). They investigate the power of a linear programming relaxation of an
integer programming formulation of SAT. Their work can be seen as an investigation of a
convex outer approximation of integral solutions in the sense that the feasible solution of
the relaxed problem subsume that of the original one. On the other hand, we investigate a
convex inner approximation of integral solutions (and satisfiability preserving assignments)
in the sense that the convex sets we consider are contained in the (transformed) feasible
solutions of the original problem.

1.4 The Results in this Paper

In this paper, we mainly deal with the Boolean CSP and investigate linear fixable, autark and
satisfying partial assignments, i.e., those satisfiability preserving assignments correspond-
ing to polyhedral cones in the associated vector space. Kullmann introduced linear autark
assignments, namely, satisfiability preserving assignments that can be obtained efficiently
via solving linear programming problems. These linear autark assignments correspond to
specific cones, i.e., cones defined by clause-variable matrices. It is important to consider
more general cones and convex sets dominating (namely, containing) these specific cones,
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since they might be more useful in practice. We hence consider general convex inner ap-
proximations of satisfying preserving assignments. We show that, even if viewed from the
generalized framework, Kullmann’s framework offers good approximations of satisfiability
preserving assignments.

1.4.1 Linear Satisfiability Preserving Assignments

We here describe our extensions of Kullmann’s work to general convex sets and cones. The
results stated below in this paragraph are for SAT instances, i.e., CNFs. We first show that
the weighted linear autark assignments introduced by Kullmann (2003) dominate general
polyhedral cones in term of the set of vectors for autark assignments (see Theorem 3 in
Section 3). Namely, no matter how complex a polyhedral cone is, it is contained in a
polyhedral cone defined by a matrix in the qualitative class of the clause-variable matrix.
This extends the result that any autark assignment can be obtained as a weighted linear
autark assignment (Kullmann, 2003, Lemma 3.5), since there always exists a polyhedral
cone containing a vector corresponding to the autark assignment. Moreover, we show that
the weighted linear autark assignments dominate general convex sets in terms of the set of
partial assignments (see Theorem 4). Namely, for any convex set contained in the set of
vectors corresponding to the autark assignments, there exists a matrix in the qualitative
class of the clause-variable matrix such that the set of the partial assignments corresponding
to the polyhedral cone defined by the matrix subsumes the set of the partial assignments
corresponding to the convex set. Furthermore, if the input is monotone, i.e., if the input
CNF contains no negative literal, then any matrix in the qualitative class of the clause-
variable matrix defines a polyhedral cone that contains all the autark assignments, which
shows the strength of linear autark assignments (see Theorem 5). Similar results hold
for satisfying partial assignments (see Theorems 3-5). Finally, if the input is monotone
and prime, then any matrix in the qualitative class of the clause-variable matrix defines
a polyhedral cone that is maximal as a convex set (see Theorem 6). Here, a CNF φ is
called prime if replacing a clause c ∈ φ by a proper subclause of c produces a CNF which
is not equivalent to φ. We note that such matrices were considered in relation with autark
and satisfying partial assignment (Kullmann, 2003), however, it is not investigated in the
literature how good the polyhedral cones that these matrices define are. We also note that
any Boolean CSP instance can be transformed to a (possibly exponential size) CNF, and
hence these results indicate how to find a good convex set for any Boolean CSP.

1.4.2 Algorithms of Finding Linear Satisfiability Preserving Assignments for
Integer Linear Systems

We consider computing linear satisfiability preserving assignments, especially linear locally
fixable assignments, of a given integer linear system. If each constraint is represented by a
prime CNF, then we can compute a linear locally fixable assignment by considering a linear
autark assignment, which can be easily formulated from given linear inequalities (Kullmann,
2000). Moreover, since each constraint of an integer linear system is monotone (unate, more
precisely), this ensures its dominance property by Theorems 5 and 6. However, it can be seen
that a prime CNF expression is in general exponentially larger than the input. Therefore,
instead of explicitly constructing the system of linear inequalities corresponding to a prime
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CNF expression φ, we solve it by using the ellipsoid method, where the separation problem
is solved by using a dynamic programming similar to the one for the Knapsack Problem.
Note that linear globally fixable or more general satisfiability preserving assignments cannot
be easily formulated as a linear programming problem from given linear inequalities.

In this paper, we obtain the following algorithmic results. First, we provide a pseudo-
polynomial time algorithm to find a linear locally-fixable assignment for the 0-1 integer linear
system. Here, a 0-1 integer linear system is an integer linear system such that D = {0, 1}.
An algorithm is called a pseudo-polynomial time algorithm if it runs in polynomial in the
length of the input and the magnitude of the largest integer occurring in the input (e.g.,
Garey & Johnson, 1979, Section 4). We also show that the problem can be solved in
polynomial time if every entry of the input matrix is contained in {0,−1,+1} (see Theorem 7
in Section 4).

By extending the first result, we provide a pseudo-polynomial time algorithm to find
a linear locally-fixable assignment for the (general) integer linear system (see Theorem 8
in Section 4). This is obtained by making use of the following encoding known as order
encoding (Tamura, Taga, Kitagawa, & Banbara, 2009) that transforms CSP instances with
D = {0, 1, . . . , d} to Boolean CSP instances. For each variable xj , we take d Boolean
variables xj1, . . . , xjd which guarantee that xj = p if and only if xj1 = · · · = xjp = 1 and
xj,p+1 = · · · = xjd = 0. We note that the number of clauses in the order encoding might
be exponential in d in general and hence we cannot construct the encoded CNF explicitly.
Here, the ellipsoid method again copes with this difficulty.

Similar to the results for SAT by Kullmann (2000) and van Maaren (2000), we show
that TVPI, Horn and q-Horn integer linear systems can be solved by repeatedly obtaining
a linear locally-fixable assignment (see Theorem 9).

The rest of the paper is organized as follows. In Section 2, we formally define the CSP
and introduce several (linear) satisfiability preserving assignments considered in the paper.
In Section 3, we investigate the maximality of linear satisfiability preserving assignments
in terms of the set of vectors and the set of partial assignments. Section 4 presents the
application of linear satisfiability preserving assignments to integer linear systems.

2. Preliminaries

In this section, we first fix the notation to represent the constraint satisfaction problem
(CSP), and define several satisfiability preserving assignments. We then introduce linear
satisfiability preserving assignments, and finally recall the equivalence of optimization and
separation on well-described polytopes.

2.1 Constraint Satisfaction Problem and Satisfiability Preserving Assignments

Let V denote a set of variables with size n = |V |. Let D denote the finite domain of
the variables in V , where |D| ≥ 2. For a subset X ⊆ V , a mapping A : X → D is
called a partial assignment on X. We denote by DX the set of partial assignments on
X. For convenience, we identify the variables and the indices in this paper. For a partial
assignment A : X → D, X is denoted by var(A). A partial assignment A is called a total
assignment if var(A) = V holds, and called a trivial assignment if var(A) = ∅ holds. For
notational simplicity, we identify a partial assignment A with a vector a ∈ (D ∪ {∗})n such
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that aj = A(xj) if xj ∈ var(A), and aj = ∗ otherwise (i.e., xj ̸∈ var(A)). For example,
if n = 3 and A : {x1, x3} → {0, 1, 2} such that A(x1) = 2 and A(x3) = 0, then we have
a = (2, ∗, 0). For an integer k ≥ 1, a k-ary relation on D is a subset of Dk. A constraint
C is a pair C = ⟨(xC1 , . . . , xCk

), R⟩, where xC1 , . . . , xCk
∈ V are variables and R is a k-

ary relation on D. (xC1 , . . . , xCk
) is called a scope of the constraint and {xC1 , . . . , xCk

} is
written as V (C). We denote by SC the set of the total assignments satisfying the constraint
C = ⟨(xC1 , . . . , xCk

), R⟩, that is, SC = {a ∈ Dn : (aC1 , . . . , aCk
) ∈ R}. An instance of the

constraint satisfaction problem (CSP) is defined by a triplet (V,D, C) such that C denotes
a set of constraints with m = |C|. A total assignment A ∈ DV is called a solution (or a
satisfying total assignment) to a CSP instance (V,D, C) if it satisfies every constraint, i.e.,
(aC1 , . . . , aCk

) ∈ R holds for every constraint ⟨(xC1 , . . . , xCk
), R⟩ ∈ C. Hence, A ∈ DV is a

solution if and only if A ∈
∩
C∈C SC holds. The CSP is the problem of finding a solution to

a given instance (V,D, C).
The Boolean satisfiability problem (SAT) is regarded as a special case of the CSP, in

which V = {x1, . . . , xn} denotes the set of propositional variables, i.e., D = {0, 1}, and
C is given by a conjunctive normal form (CNF) φ =

∧m
i=1(

∨
j∈J(i)

+

xj ∨
∨
j∈J(i)

−
xj), where

J
(i)
+ , J

(i)
− ⊆ {1, . . . , n} and J

(i)
+ ∩ J (i)

− = ∅ for all i = 1, . . . ,m. Namely, the constraints in C
correspond to the clauses in φ. The problem of solving an integer linear system (with finite
domain) is also contained in CSPs, where each constraint is given as a linear inequality.

For a partial assignment A and X ⊆ var(A), the restriction of A to X, denoted by A|X ,
is defined as a partial assignment in DX such that A|X(v) = A(v) for all v ∈ X. Let S be a
subset of DV . For a partial assignment A, let S[A] be the restriction to V \ var(A) of those
elements in S that are compatible with A, i.e., S[A] = {B|V \var(A) : B ∈ S,B|var(A) = A}.
For a CSP instance (V,D, C) with the solution set S ⊆ DV , a partial assignment A is called
satisfiability preserving if the satisfiability of the problem does not change after substituting
it to the corresponding variables, i.e., S[A] ̸= ∅ if and only if S ̸= ∅. In other words, a
satisfiability preserving assignment is a partial assignment which can be extended to a total
assignment in S, if S is not empty. For a CSP instance with S = ∅, any partial assignment
is satisfiability preserving.

We now introduce several (globally and locally) satisfiability preserving assignments.

Definition 1 (Globally satisfiability preserving assignment). Let (V,D, C) be a CSP in-
stance, and let A be a partial assignment.

(i) A is called globally satisfying for (V,D, C) if any extension of A to a total assignment
is a solution.

(ii) A is called globally fixable for (V,D, C) if any solution to (V,D, C) produces a solution
by replacing those assignments to var(A) by A.

Let S be a solution set to (V,D, C). By definition, a partial assignment A is globally
satisfying if and only if S[A] = DV \var(A) holds. Moreover, A is globally fixable if and only
if S[A] ⊇ S[B] holds for any partial assignment B such that var(B) = var(A).

Definition 2 (Locally satisfiability preserving assignment). Let (V,D, C) be a CSP instance,
and let A be a partial assignment.
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(i) A is called locally satisfying for (V,D, C) if for any constraint C ∈ C, it is globally
satisfying for (V,D, {C}).

(ii) A is called autark for (V,D, C) if for any constraint C ∈ C with a variable in var(A),
it is globally satisfying for (V,D, {C}).

(iii) A is called locally fixable for (V,D, C) if for any constraint C, it is globally fixable for
(V,D, {C}).

By definition, local fixability and autarky coincide for CNFs. See also the proof of
Theorem 2 in Section 3.

Example 1. Let (V = {x1, x2, x3}, D = {0, 1, 2}, C) be a CSP instance whose solution set
S is given as

S = {(0, 1, 1), (0, 2, 1), (1, 1, 0), (1, 1, 1), (1, 1, 2)}.

Then a partial assignment (1, 1, ∗) is globally satisfying for (V,D, C), since S[(1, 1, ∗)] =
D{x3} holds. Moreover, (0, ∗, 1) is globally fixable for (V,D, C), since for a partial as-
signment A with var(A) = {x1, x3}, we have S[A] = {(1), (2)} if A = (0, ∗, 1), {(1)} if
A = (1, ∗, 0), (1, ∗, 1) or (1, ∗, 2), and ∅ otherwise. We also see that (0, ∗, 1) is not globally
satisfying for (V,D, C) and that (1, ∗, 0) is not globally fixable for (V,D, C).

Example 2. Let (V = {x1, x2, x3}, D = {0, 1, 2, 3}, C) be a CSP instance, where C is given
by a linear system

2x1 + 3x2 − x3 ≥ 3
3x1 − 4x3 ≥ −2

− x2 − x3 ≥ −5.
(1)

As mentioned, each inequality corresponds to a constraint. We can see that the three partial
assignments (∗, 1, 0), (∗, 2, ∗), and (3, ∗, ∗) are respectively locally satisfying, autark, and lo-
cally fixable for (V,D, C). To see that (∗, 1, 0) is locally satisfying for (V,D, C), we substitute
it to the linear system:

2x1 ≥ 0
3x1 ≥ −2

0 ≥ −4.
(2)

Note that all inequalities in (2) are satisfied for any assignment to x1, which implies that
(∗, 1, 0) is locally satisfying. We next show that (∗, 2, ∗) is autark for (V,D, C). Note that
x2 is contained in the first and third constraints. We substitute it into those constraints to
obtain

2x1 − x3 ≥ −3
−x3 ≥ −3.

(3)

Both the constraints are satisfied for any assignment to x1 and x3, which implies that (∗, 1, 0)
is autark. Finally, (3, ∗, ∗) is locally fixable, since all the coefficients of x1 are nonnegative
in (1) and 3 is the maximum in D.

We remark that fixable assignments were introduced by Bordeaux et al. (2008) for
single variable assignments and are also known as safe assignments in the literature (e.g.,
Kleine Büning & Kullmann, 2009). The concept of autark assignments was introduced by
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Monien and Speckenmeyer (1985) for the Boolean case D = {0, 1} to construct fast exact
algorithms for SAT, and was investigated by Kullmann (2000). Autark assignments for
general constraints were studied by Kleine Büning and Kullmann (2009) and Kullmann
(2011).

Satisfiability preserving assignments are hereditary, i.e., if a partial assignment A is
satisfiability preserving, then A|X is also satisfiability preserving for any X ⊆ var(A).
However, no other concepts defined above are hereditary. For example, consider a CNF
φ = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3). Then a partial assignment (1, 0, ∗) is globally satisfying
for φ. On the other hand, neither (1, ∗, ∗) nor (∗, 0, ∗) is globally satisfying. Similarly,
this example shows that none of the concepts such that globally fixable, locally satisfying,
autark, and locally fixable assignments is hereditary.

Finally, we introduce notation to represent the sets of the satisfiability preserving as-
signments.

Definition 3. For a CSP instance I, we define Pg-sat(I), Pℓ-sat(I), Pautark(I), Pg-fix(I),
Pℓ-fix(I) and Ppresv(I) as the set of all the globally satisfying, locally satisfying, autark, glob-
ally fixable, locally fixable and satisfiability preserving partial assignments of I, respectively.

2.2 Linear Satisfiability Preserving Assignments

In this subsection, we introduce linear satisfiability preserving assignments after reviewing
several basic geometric concepts. In what follows 0 denotes the all-zero vector of appropriate
size.

Let R denote the set of reals. A subset Z ⊆ Rn is said to be convex if (1−λ)y+λz ∈ Z
holds for any y, z ∈ Z and 0 < λ < 1. A subset Z ⊆ Rn is a cone if λy ∈ Z holds
for any y ∈ Z and λ > 0. For a subset Z ⊆ Rn, its convex hull is the unique smallest
convex set containing Z and denoted by conv(Z). For a subset Z ⊆ Rn, its conic hull is
defined as {λy : λ > 0, y ∈ Z}. For a y ∈ Rn, let |y| denotes the Euclidean norm of y, i.e.,
|y| = (y21 + · · · + y2n)

1/2. For a vector y ∈ Rn and a real ε > 0, let B(y, ε) ⊆ R be the
ball with the center y and the radius ε, i.e., B(y, ε) = {z ∈ Rn : |z − y| ≤ ε}. For a subset
Z ⊆ Rn, its closure is defined as cl(Z) = {y ∈ Rn : ∀ε > 0, B(y, ε)∩Z ̸= ∅}, and its interior
is defined as int(Z) = {y ∈ Rn : ∃ε > 0, B(y, ε) ⊆ Z}.

For two vectors y and z ∈ Rn, we write y ≥ z, if yj ≥ zj holds for all j = 1, . . . , n, and
y ≫ z, if yj > zj holds for all j = 1, . . . , n. A subset Z ⊆ Rn is called a (closed) polyhedron
if it is the solution set of a system of linear inequalities, i.e., Z = {y ∈ Rn : My ≥ b}
holds for some m × n matrix M and a vector b ∈ Rm, and is called an open polyhedron if
Z = {y ∈ Rn : My ≫ b} holds for some matrix M and a vector b. A polyhedron Z that
is bounded, i.e., Z ⊆ B(0, γ) for some γ > 0, is called a polytope. For a matrix M , let
K≥(M) = {y ∈ Rn : My ≥ 0} and K≫(M) = {y ∈ Rn : My ≫ 0}. A subset Z ⊆ Rn
is called a (closed) polyhedral cone if Z = K≥(M) holds for some matrix M and open
polyhedral cone if Z = K≫(M) holds for some matrix M .

In order to define linear satisfiability preserving assignments for Boolean CSPs with
V = {x1, . . . , xn} and D = {0, 1}, we identify a vector y ∈ Rn with a partial assignment
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ay ∈ {0, 1, ∗}n such that

ayj =


1 if yj > 0,

0 if yj < 0,

∗ otherwise.

(4)

We note that the jth coordinate of Rn corresponds to Boolean variable xj . We also note
that this identification is introduced by Kullmann (2000). For Z ⊆ Rn, let P (Z) be the
set of partial assignments corresponding to the vectors in Z, i.e., P (Z) = {ay : y ∈ Z}.
Conversely, for a set of partial assignments P , we define the set of vectors corresponding to
P by Y (P ) = {y ∈ Rn : ay ∈ P}. Note that Y (P ) is a (not necessarily convex) cone.

Definition 4. Let (V,D = {0, 1}, C) be a Boolean CSP instance. A subset P of globally
satisfying (resp., globally fixable, locally satisfying, autark, locally fixable, and satisfiabil-
ity preserving) partial assignments of (V,D, C) is called linear if it corresponds to some
polyhedral cone K in Rn, i.e., P = P (K), and such a partial assignment in P is called
K-linear.

Example 3. Let I = (V = {x1, x2}, D = {0, 1}, C) be a SAT instance, where C is given by
a CNF φ = x1 ∨ x2. Then we have

Ppresv(I) = {0, 1, ∗}2 \ {(0, 0)},
Pautark(I) = Pℓ-fix(I) = Pg-fix(I) = {(0, 1), (1, 0), (1, 1), (1, ∗), (∗, 1), (∗, ∗)},
Pℓ-sat(I) = Pg-sat(I) = {(0, 1), (1, 0), (1, 1), (1, ∗), (∗, 1)}.

(5)

Consider the three polyhedral cones defined by linear systems:

K1 = {y ∈ R2 : y1 ≥ 0, y1 − y2 ≥ 0},
K2 = {y ∈ R2 : y1 + y2 ≥ 0},
K3 = {y ∈ R2 : y1 + y2 > 0},

(6)

where we note that the inequality in the third system is strict. Then we have

K1 ⊆ Y (Ppresv(I)), K2 ⊆ Y (Pautark(I)), and K3 ⊆ Y (Pℓ-sat(I)). (7)

In fact, we have

P (K1) ⊆ Ppresv(I), P (K2) = Pautark(I), and P (K3) = Pℓ-sat(I). (8)

Kullmann (2000) introduced unweighted linear autark assignments for the SAT prob-
lem1. Namely, for a CNF φ =

∧m
i=1 ci, let Mφ be a clause-variable matrix of φ, i.e., an

m × n matrix such that (i, j) entry is 1 if xj ∈ ci, −1 if xj ∈ ci, and 0 otherwise (i.e.,
xj ̸∈ V (ci)). Then an unweighted linear autark assignment is exactly a K≥(Mφ)-linear au-
tark assignment. We note that any partial assignment in P (K≥(Mφ)) is autark. Kullmann
(2003) implicitly studied unweighted linear globally satisfying partial assignments, which

1. More precisely, Kullmann referred to unweighted linear autark assignments as simple linear autark
assignments, and partial assignments defined by iteratively applying simple linear autark assignments as
linear autark assignments.
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are K≫(Mφ)-linear globally satisfying partial assignments. We again note that any partial
assignment in P (K≫(Mφ)) is globally satisfying.

Kullmann (2003) then introduced weighted linear autark and globally satisfying partial
assignments. For a real matrix M , let Q(M) denote the set of matrices N with its sign
pattern identical to M , i.e., Nij < 0 (resp., = 0, > 0) if and only if Mij < 0 (resp., = 0,
> 0). Q(M) is known as the qualitative class of matrix M (Brualdi & Shader, 1995). Then
a set P of partial assignments is called weighted linear autark if we have P = P (K≥(M))
for an M ∈ Q(Mφ), and weighted linear globally satisfying if we have P = P (K≫(M)) for
an M ∈ Q(Mφ). Kullmann characterizes autark and globally satisfying partial assignments
in terms of the qualitative class of the clause-variable matrix of a CNF. Namely, it is shown
that Pautark =

∪
M∈Q(Mφ)

P (K≥(M)) and Pg-sat =
∪
M∈Q(Mφ)

P (K≫(M)). We give more
detailed analyses in Section 3.

We here emphasize that (un)weighted linear autark and globally satisfying partial as-
signments introduced by Kullmann are special cases of linear autark and globally satisfying
partial assignments introduced in this paper. However, it turns out that they provide good
convex inner approximations for autark and globally satisfying partial assignments; see
Section 3 for more details.

Linear satisfiability preserving assignments for non-Boolean CSPs are defined via trans-
formations to Boolean CSPs, which can be found in Section 4.

2.3 Optimization and Separation

We here briefly summarize the relationship between optimization and separation via the
ellipsoid method (e.g., Grötschel, Lovász, & Schrijver, 1993), which will be used in Section
4.

Let Q denote the set of rationals.

Problem 1 (Optimization Problem for Polytopes). Given a polytope Z ⊆ Rn and a vector
α ∈ Qn, either

(i) assert that Z is empty, or

(ii) find a vector z ∈ Z that maximizes αy over Z.

Problem 2 (Separation Problem for Polytopes). Given a polytope Z ⊆ Rn and a vector
z ∈ Qn, decide whether z ∈ Z, and if not, find a hyperplane that separates z from Z; more
exactly, find a vector α ∈ Qn such that αz > max{αy : y ∈ Z}.

For a polytope Z ⊆ Rn and a positive integer ℓ, Z has facet-complexity at most ℓ if there
exists a system of inequalities with rational coefficients that has solution set Z and such
that the encoding length of each inequality of the system is at most ℓ. A well-described
polytope is a triple (Z;n, ℓ) where Z ⊆ Rn is a polytope with facet complexity at most ℓ.

Theorem 1 (Grötschel et al., 1993, Thm. 6.4.9). Each of the strong optimization and
separation problems can be solved in oracle-polynomial time for any well-described polytope
given by an oracle for the other problem.
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3. Properties of Satisfiability Preserving Assignments for the Boolean
CSP

In this section, we restrict our attention to the Boolean CSP and discuss several fundamental
properties of satisfiability preserving assignments. The main results of the section are
summarized as follows.

• The inclusion relationships between satisfiability preserving assignments including
their local variants (Subsection 3.1).

• Basic properties of the set of the vectors corresponding to satisfiability preserving
assignments (Subsection 3.2).

• Maximality of weighted linear satisfiability preserving assignments defined by matrices
in the qualitative classes of the clause-variable matrices (Subsections 3.3 and 3.4).

From these results we can define a large family of linear satisfiability preserving assign-
ments, from which we can compute in (pseudo-)polynomial time a satisfiability preserving
assignment for integer linear system; see Section 4.

3.1 Relationships between Satisfiability Preserving Assignments

In this subsection, we summarize in Theorem 2 the inclusion relationships between several
satisfiability preserving assignments. Recall that a CNF φ is prime if replacing a clause
c ∈ φ by a proper subclause of c produces a CNF which is not equivalent to φ.

Theorem 2. Let I be a CSP instance. Then the following relations hold.

Pℓ-sat(I) = Pg-sat(I) ⊆ Pautark(I) ⊆ Pℓ-fix(I) ⊆ Pg-fix(I) ⊆ Ppresv(I). (9)

Moreover, if the constraints are represented by a CNF, then we have

Pautark(I) = Pℓ-fix(I), (10)

and if the constraints are represented by a prime CNF, then we have

Pℓ-fix(I) = Pg-fix(I). (11)

By Theorem 2, in general, satisfiability preserving assignments considered in this paper
form a total preorder, where a binary relation is a preorder if it is reflexive and transitive,
and in addition total if any two elements are comparable. In the preorder, global fixability
is the largest notion of satisfiability preserving assignments and local satisfiability (i.e.,
satisfiability) is the smallest one. Moreover, autarky and local fixability coincide if the
constraints are given by a CNF, and local fixability and global fixability coincide if the
constraints are given by a prime CNF. Hence, autarky, local fixability, and global fixability
all coincide in a prime CNF.

We note that a part of Theorem 2 is folklore in the CSP community and are obtained
from basic observations. However, we cannot find this from any textbook, and it is impor-
tant to know it for the following reasons.
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In order to reduce the problem size by using satisfiability preserving assignment, it is
desired to find a satisfiability preserving assignment in the largest class: a globally fixable
assignment in general or in CNFs, and a globally fixable (i.e., locally fixable and autark)
assignment in prime CNFs. You might think that it is nonsense to deal with prime CNF
instances, since we can easily see satisfiability or unsatisfiability of the instance if it is
represented by a prime CNF. However, it will be used in Section 4 to compute a linear
locally fixable assignment of an integer linear system by implicitly constructing a prime
CNF expression for each linear inequality.

Before proving the theorem, we show by the following examples that no other relation
than (9) in Theorem 2 holds for the general CSP.

Example 4. Consider the following four Boolean CSP instances Ii = (V,D, Ci) (i =
1, 2, 3, 4) with two variables, i.e., V = {x1, x2} and D = {0, 1}.
(i) Let C1 be given as a CNF φ = x1x2, namely, C1 = {⟨(x1), {(1)}⟩, ⟨(x2), {(1)}⟩}. Then

(1, ∗) is contained in Pautark(I1), but not in Pg-sat(I1). Indeed, (1, ∗) is satisfying for
the first constraint, and the second constraint does not contain variable x1 that is fixed
by (1, ∗). Hence, it is autark. On the other hand, it is not globally satisfying for I1,
since (1, 0) is not a solution to I1.

(ii) Let C2 be given as a single inequality x1 + x2 ≥ 2, namely, C2 = {⟨(x1, x2), {(1, 1)}⟩}.
Then (1, ∗) is contained in Pℓ-fix(I2), but not in Pautark(I2). Indeed, for the solution
set S = {(1, 1)} to the unique constraint, we have S[(1, ∗)] ⊇ S[(0, ∗)] and thus (1, ∗)
is locally fixable. However, it is not autark, since (1, 0) is not contained in S.

(iii) Let C3 be given as a CNF φ = x1(x1∨x2), namely, C3 = {⟨(x1), {(1)}⟩, ⟨(x1, x2), {(0, 1),
(1, 0), (1, 1)}⟩}. Then (∗, 0) is contained in Pg-fix(I3), but not in Pℓ-fix(I3). Indeed, for
the solution set S = {(1, 0), (1, 1)} to the instance, we have S[(∗, 0)] ⊇ S[(∗, 1)] and
thus (∗, 0) is globally fixable. However, it is not locally fixable, since S′[(∗, 0)] ̸⊇
S′[(∗, 1)] holds for the solution set S′ to the second constraint.

(iv) Let C4 be given as a CNF φ = (x1∨x2), namely, C4 = {⟨(x1, x2), {(0, 1), (1, 0), (1, 1)}⟩}.
Then (0, ∗) is contained in Ppresv(I4), but not in Pg-fix(I4). Indeed, S[(0, ∗)] = {(1)} ̸=
∅ holds for the solution set S to the instance and hence it is satisfiability preserving.
However, it is not globally fixable, since S[(0, ∗)] ̸⊇ S[(1, ∗)] holds.

Proof of Theorem 2. We first show (9). It is not difficult from the definitions that

Pℓ-sat(I) = Pg-sat(I) ⊆ Pautark(I) and Pg-fix(I) ⊆ Ppresv(I). (12)

For Pautark(I) ⊆ Pℓ-fix(I), let A be an autark assignment. If var(A) ∩ V (C) ̸= ∅ for a
constraint C, then SC [A](= DV \var(A)) includes SC [B] for any B ∈ Dvar(A). On the other
hand, if var(A) ∩ V (C) = ∅ for a constraint C, then SC [A] = SC [B] for any B ∈ Dvar(A).
Thus, A is locally fixable and we have Pautark(I) ⊆ Pℓ-fix(I).

For Pℓ-fix(I) ⊆ Pg-fix(I), let A be a locally fixable assignment and S be the solution set
of I. Recall that S =

∩
C∈C SC holds. Hence we have S[A] =

∩
C∈C SC [A]. Since for any

B ∈ Dvar(A) we have SC [A] ⊇ SC [B], it holds that S[A] =
∩
C∈C SC [A] ⊇

∩
C∈C SC [B] =

S[B]. Hence A is globally fixable.
We then show (10). Let φ be a CNF and A be a locally fixable assignment. For a clause

c ∈ φ with V (c)∩var(A) ̸= ∅, there exists a partial assignment B such that c[B] = DV \var(A)
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holds. Since local fixability of A implies that c[A] ⊇ c[B] holds, we have c[A] = DV \var(A).
Hence A is autark.

We finally show (11). Let φ be a prime CNF that represents a Boolean CSP instance,
and let A be a partial assignment. Assuming that A is not locally fixable, we show that it
is not globally fixable.

Let S be the set of the solutions of φ. Since A is not locally fixable, there exists a clause
c in φ such that Sc[A] ̸⊇ Sc[B] for some partial assignment B. This implies that A is not a
satisfying partial assignment for c, i.e., Sc[A] ̸= {0, 1}V \var(A). Then, by primality of φ, there
exists a globally satisfying total assignment A∗ for φ that does not satisfy Sc[A], namely,
A∗|V \var(A) ̸∈ Sc[A]. This implies that A∗|V \var(A) ̸∈ S[A]. Since A∗|V \var(A) ∈ S[A∗|var(A)],
we have S[A] ̸⊇ S[A∗|var(A)]. Hence A is not globally fixable for S.

Since Pg-sat = Pℓ-sat holds for the general Boolean CSP in Theorem 2, we simply write
Psat, and also write a satisfying partial assignment without having “globally” nor “locally.”

Let us finally mention integer linear systems. Note that any CNF can be represented
by a 0-1 integer linear system, where we recall that a 0-1 integer linear system is an integer
linear system with D = {0, 1}. This is because a 0-1 assignment satisfies a clause c =
(
∨
j∈J+ xj ∨

∨
j∈J− xj) if and only if it satisfies

∑
j∈J+ xj +

∑
j∈J−(1 − xj) ≥ 1. Thus it

follows from Example 4 that there exists a 0-1 integer linear system such that either (10)
or (11) does not hold.

3.2 Characterizing Y (Ppresv(I)) and Y (Psat(I)) for Boolean CSP Instance I

Let I be an instance of the Boolean CSP, and let S be the solution set of I. We characterize
Y (Ppresv(I)) and Y (Psat(I)) in terms of interior and closure of Y (S). We first explain the
relation between S and Y (S) where I is given by a CNF. Let us see Y (S), cl(Y (S)), and
int(cl(Y (S))). Recall that n is the number of the variables. We write S(I) as the solution
set of a CSP instance I.

Example 5. Consider the three Boolean CSP instances Ii = (V = {x1, x2}, D = {0, 1}, Ci)
(i = 1, 2, 3), where I1 is given by a literal x1, I2 by a clause c = (x1 ∨x2), and I3 by a CNF
φ = x1 ∧ c. Let us see the difference between Y (S), cl(Y (S)), and int(cl(Y (S))).

Y (S(I1)) = {y ∈ R2 : (y1 > 0 and y2 > 0) or (y1 > 0 and y2 < 0)},
cl(Y (S(I1))) = {y ∈ R2 : y1 ≥ 0}, and

int(cl(Y (S(I1)))) = {y ∈ R2 : y1 > 0}.

From the above example, we can see that Y (S) only contains the vectors corresponding to
the solutions and hence we do not have the vectors corresponding to partial assignments. By
taking the closure of Y (S), we obtain the vector corresponding to partial assignments, and
in fact we have cl(Y (S)) = Y (Ppresv). However, it also contains vectors not corresponding
to satisfying partial assignments. By further taking the interior, we finally get the vectors
that correspond to satisfying partial assignments. Namely, we have int(cl(Y (S))) = Y (Psat).
We will show that these equations hold for the general Boolean CSP in the following.
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We also have

Y (S(I2)) = {y ∈ R2 : (y1 < 0 and y2 > 0), (y1 < 0 and y2 < 0),
or (y1 > 0 and y2 > 0)},

cl(Y (S(I2))) = {y ∈ R2 : y1 ≤ 0 or y2 ≥ 0}, and
int(cl(Y (S(I2)))) = {y ∈ R2 : y1 < 0 or y2 > 0},

and
Y (S(I3)) = {y ∈ R2 : y1 > 0 and y2 > 0},

cl(Y (S(I3))) = {y ∈ R2 : y1 ≥ 0 and y2 ≥ 0}, and
int(cl(Y (S(I3)))) = {y ∈ R2 : y1 > 0 and y2 > 0}.

Note that these examples show that Y (S), cl(Y (S)) and/or int(cl(Y (S))) might not be convex
in general.

In the above example, we have cl(Y (S(I1) ∩ S(I2))) ̸= cl(Y (S(I1))) ∩ cl(Y (S(I2))).
Therefore, we cannot compute cl(Y (S)) by simply taking the intersection of the closures of
the solutions to each constraint.

We now characterize satisfiability preserving and satisfying partial assignments of the
Boolean CSP.

Proposition 1. Let I = (V,D = {0, 1}, C) be a Boolean CSP instance with solution set S,
i.e., the set of satisfying total assignments. Then we have the following statements.

(i) If S ̸= ∅, then Y (Ppresv(I)) = cl(Y (S)).

(ii) Y (Psat(I)) = int(cl(Y (S))).

Proof. (i): For Y (Ppresv(I)) ⊆ cl(Y (S)), suppose that y is not contained in cl(Y (S)). We
show that y ̸∈ Y (Ppresv), i.e., a

y is not satisfiability preserving.
Since y ̸∈ cl(Y (S)), there exists an ε > 0 such that B(y, ε) ∩ cl(Y (S)) = ∅. Thus, for

sufficiently small ε′ > 0, we have y + ε′w ̸∈ Y (S) and ay+ε
′w

j = ayj (j ∈ var(ay)) for all
w ∈ {−1, 1}n. This implies that ay is not extendable to any satisfying total assignment.
Hence, ay is not satisfiability preserving.

For Y (Ppresv(I)) ⊇ cl(Y (S)), suppose that y is contained in cl(Y (S)). Then for suffi-
ciently small ε > 0, y + εz ∈ Y (S) and ay+εzj = ayj (j ∈ var(ay)) hold for some z ∈ B(0, 1).
Thus, ay is extendable to a satisfying total assignment, implying that ay is satisfiability
preserving.

(ii): If S = ∅, then there exits no satisfying partial assignment. Thus, Y (Psat(I)) = ∅.
We also have Y (S) = ∅ and thus int(cl(Y (S))) = ∅. Hence (ii) holds.

We then assume that S ̸= ∅. For Y (Psat(I)) ⊆ int(cl(Y (S))), assume that y ∈ Y (Psat(I)),
i.e., ay is satisfying. Let ε be a positive real such that ε < |yj | for any yj ̸= 0. We show that
B(y, ε) ⊆ cl(Y (S)), which implies that y ∈ int(cl(Y (S)). Let y′ ∈ B(y, ε) and let ε′ > 0.
We have to show that B(y′, ε′) ∩ Y (S) ̸= ∅ holds. Define z ∈ B(0, 1) as |zj | < (|yj | − ε)/ε′

if yj ̸= 0, zj/y
′
j > 0 if yj = 0 and y′j ̸= 0, and zj > 0 otherwise (i.e., yj = y′j = 0). Then

we have ay
′+ε′z
j = ayj (j ∈ var(A)) and var(ay

′+ε′z) = V . Since ay is satisfying, ay
′+ε′z is a

satisfying total assignment, i.e., a solution. Hence we have B(y′, ε′) ∩ Y (S) ̸= ∅.
For Y (Psat(I)) ⊇ int(cl(Y (S))), suppose that y is contained in the interior of the closure

of Y (S). Then for any w ∈ {−1, 1}n, by taking sufficiently small ε > 0, we have y + εw ∈
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int(cl(Y (S))), ay+εwj = ayj (j ∈ var(A)) and var(ay+εw) = V (i.e., (y + εw)j ̸= 0 for all j).

Note that cl(Y (S)) ∩ Y ({0, 1}V \ S) = ∅. Hence y + εw ∈ int(cl(Y (S))) and (y + εw)j ̸= 0
for all j imply that y+ εw ∈ Y (S). Therefore ay+εw is a satisfying total assignment. Thus,
ay is arbitrarily extendable to a satisfying total assignment and hence it is satisfying.

If S = ∅, then (i) does not hold, since every partial assignment is satisfiability preserving,
i.e., Y (Ppresv(I)) = Rn, and cl(Y (S)) = ∅, implying that Y (Ppresv(I)) ̸= cl(Y (S)).

Proposition 1 shows that Y (Ppresv) and Y (Psat) can be characterized by Y (S).
In this paper, we consider the vector space corresponding to partial assignments. Note

that we can obtain a satisfiability preserving or satisfying partial assignments by finding
a point in Y (Ppresv) or Y (Psat). However, these sets are non-convex in general and it is
hard to find a point in these sets. We thus consider convex inner approximations of these
sets, where convexity helps to find a point in these sets. We want to define “large” convex
inner approximations, and hence investigate maximal convex inner approximations in the
following two subsections.

3.3 Maximality of Weighted Linear Satisfiability Preserving Assignments for
General CNFs

We here investigate convex inner approximation of satisfiability preserving assignments for
general CNFs. Before stating the main results of this subsection, we state several auxiliary
results (Propositions 2-5).

The following proposition shows that we have only to consider convex cones to find large
convex subsets in terms of the set of vectors.

Proposition 2. Let I = (V,D = {0, 1}, C) be a Boolean CSP instance.

(i) For a closed subset Z ⊆ Y (Ppresv(I)), there exists a closed cone Z∗ such that Z ⊆
Z∗ ⊆ Y (Ppresv(I)). If Z is in addition convex (resp., polyhedral), then Z∗ can be taken
from convex (resp., polyhedral) cones.

(ii) For an open subset Z ⊆ Y (Psat(I)), there exists an open cone Z∗ such that Z ⊆ Z∗ ⊆
Y (Psat(I)). If Z is in addition convex (resp., polyhedral), then Z∗ can be taken from
convex (resp., polyhedral) cones.

Proof. (i): Let Z∗ be the closure of the conic hull of Z. Then we have Z∗ ⊆ Y (Ppresv(I)),
since Y (Ppresv(I)) is a closed cone by Proposition 1. It is well known that convexity and
polyhedrality are preserved by taking the closure of the conic hull (e.g., Rockafellar, 1970,
Thm. 19.7).

(ii): Let Z∗ be the conic hull of Z. Then Z∗ is open, and we have Z∗ ⊆ Y (Psat(I)),
since Y (Psat(I)) is a cone. Since convexity and polyhedrality are preserved by taking the
conic hull, the proof is completed.

By Proposition 1, Y (Ppresv(I)) and Y (Psat(I)) are closed and open, respectively. Hence,
the proposition above restricts attention to closed and open subsets of Y (Ppresv(I)) and
Y (Psat(I)), respectively. We note that the closedness condition of Z in (i) is not necessary.

We then show the following proposition on the clause-variable matrix.

Proposition 3. Let I = (V,D = {0, 1}, C) be a SAT instance, where C is given by a CNF
φ. Then we have
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(i) cl(K≫(Mφ)) ⊆ K≥(Mφ) ⊆ Y (Pautark(I)) ⊆ Y (Ppresv(I)),
(ii) K≫(Mφ) ⊆ Y (Psat(I)).

Proof. It is known by Kullmann that K≥(Mφ) is contained in Y (Pautark(I)) (Kullmann,
2000, Lemma 4.9) and K≫(Mφ) is contained in Y (Psat(I)) (Kullmann, 2003, Lemma 3.2).
Moreover, we have K≫(Mφ) ⊆ K≥(Mφ) by definition, and since taking the closure pre-
serves the inclusion relation, we have cl(K≫(Mφ)) ⊆ cl(K≥(Mφ)) = K≥(Mφ). The last
equality holds since K≥(Mφ) is a closed set. Finally, by Theorem 2, we have Y (Pautark(I)) ⊆
Y (Ppresv(I)).

We note that cl(K≫(Mφ)) ̸⊆ Y (Psat(I)) and/or cl(K≫(Mφ)) ̸= K≥(Mφ) might hold
in general. Let I1 = (V1 = {x1}, D = {0, 1}, F1), where C1 is given by φ1 = x1, and
I2 = (V2 = {x1, x2}, D = {0, 1}, F2), where C2 is given by φ2 = (x1 ∨ x2)(x1 ∨ x2). Then
we have cl(K≫(Mφ1)) = {y1 ∈ R : y1 ≥ 0} and Y (Psat(I1)) = {y1 ∈ R : y1 > 0}, which
implies that cl(K≫(Mφ1)) ̸⊆ Y (Psat(I1)) holds. Also, we have cl(K≫(Mφ2)) = ∅ and
K≥(Mφ2) = {y ∈ R2 : y1 = y2}, implying that cl(K≫(Mφ2)) ̸= K≥(Mφ2) holds.

By Proposition 3, an autark assignment A is called unweighted linear if A ∈ P (K≥(M))
holds, and a satisfying partial assignment A is called unweighted linear if A ∈ P (K≫(M))
holds.

Example 6. Let (V = {x1, x2, x3}, D = {0, 1}, C) be a SAT instance, where C is given
by a CNF φ = (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x3). Then an autark assignment (∗, ∗, 1) and a
satisfying partial assignment (1, 1, ∗) are unweighted linear, since (0, 0, 1) ∈ K≥(Mφ) and
(1, 2, 0) ∈ K≫(Mφ) hold.

We note that K≥(Mφ) = {0} and K≫(Mφ) = ∅ might hold in general as the next
example shows.

Example 7. Let I = (V = {x1, x2, x3}, D = {0, 1}, C) be a SAT instance, where C is given
by a CNF φ = (x1 ∨x2 ∨x3)(x1 ∨x2 ∨x3)(x1 ∨x2 ∨x3)(x1 ∨x2 ∨x3). It can be verified that

Ppresv(I) = {0, 1, ∗}3 \ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)},
Pautark(I) = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1), (∗, ∗, ∗)},
Psat(I) = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

(13)

On the other hand, there exists no nontrivial unweighted linear autark assignment nor un-
weighted linear satisfying partial assignment. We note that

Mφ =


1 1 1
1 −1 −1

−1 1 −1
−1 −1 1

 , (14)

and hence K≥(Mφ) = {0} and K≫(Mφ) = ∅ hold. Indeed, summing the inequalities y1 +
y2+y3 ≥ 0 and y1−y2−y3 ≥ 0 in Mφy ≥ 0 yields y1 ≥ 0. Similarly, from −y1+y2−y3 ≥ 0
and −y1 − y2 + y3 ≥ 0, we obtain −y1 ≥ 0. This implies y1 = 0. We can obtain y2 = y3 =
0 in a similar way. Hence, we have K≥(Mφ) = {0}. By replacing the inequalities by
strict inequalities in the above argument, we obtain y1 > 0 and y1 < 0. Hence, we have
K≫(Mφ) = ∅.
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We then consider weighted linear satisfiability preserving assignments for a CNF φ,
i.e., partial assignments defined by some matrix M in Q(Mφ) or Q0(Mφ). Here, Q0(M)
denotes the set of matrices N such that 1) Nij < 0 (resp., Nij > 0), only if Mij < 0 (resp.,
Mij > 0), and 2) each row contains at least one nonzero entry. Recall that Q(M) is defined
in Subsection 2.2.

Proposition 4. Let I = (V,D = {0, 1}, C) be a SAT instance, where C is given by a CNF
φ. Then we have the following 3 statements.

(i) cl(K≫(M)) ⊆ Y (Ppresv(I)) for all M ∈ Q0(Mφ).
(ii) K≥(M) ⊆ Y (Pautark(I)) for all M ∈ Q(Mφ).
(iii) K≫(M) ⊆ Y (Psat(I)) for all M ∈ Q0(Mφ).

Proof. Since (ii) is known by Kullmann (2003, Lemma 3.5), we show (i) and (iii) only. We
first show (iii).

(iii): Let y be a vector in K≫(M). Then for each c ∈ φ, there exists an element j such
that (xj ∈ c and yj > 0) or (xj ∈ c and yj < 0) hold. In either case, ay should satisfy c,
implying that it satisfies φ.

(i): We have K≫(M) ⊆ Y (Psat(I)) for any M ∈ Q0(Mφ) by (iii). By taking the
closure of K≫(M) and Y (Psat(I)), we obtain cl(K≫(M)) ⊆ cl(Y (Psat(I))). Note that
cl(Y (Psat(I))) ⊆ cl(Y (Ppresv)) = Y (Ppresv(I)) holds, where the last equality follows from
Proposition 1. Thus we have cl(K≫(M)) ⊆ Y (Ppresv(I)).

We note that the proof of (iii) in Proposition 4 is similar to the one that K≫(M) ⊆
Y (Psat(I)) for all M ∈ Q(Mφ) by Kullmann (2003, Lemma 3.2).

By Proposition 4, a set P of partial assignments is called weighted linear autark if
we have P = P (K≥(M)) for an M ∈ Q(Mφ), and weighted linear satisfying if we have
P = P (K≫(M)) for an M ∈ Q0(Mφ).

The next example shows that weighted linear satisfiability preserving assignments domi-
nate unweighted ones, which implies that weighed linear satisfiability preserving assignments
are more useful than unweighted ones.

Example 8. Consider again the CSP instance (V,D, C) given in Example 7, i.e., V =
{x1, x2, x3}, D = {0, 1} and C is given by a CNF φ = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨
x3)(x1 ∨ x2 ∨ x3). Recall that there exists no nontrivial unweighted linear autark assign-
ment nor unweighted linear satisfying partial assignment for φ. On the other hand, define
matrices M1 ∈ Q0(Mφ) and M2 ∈ Q(Mφ) by

M1 =


1 1 1
1 0 0
0 1 0
0 0 1

 and M2 =


1 1 1
2 −1 −1

−1 2 −1
−1 −1 2

 . (15)

Then we have

P (cl(K≫(M1))) = {(1, 1, 1), (1, 1, ∗), (1, ∗, 1), (1, ∗, ∗), (∗, 1, 1),
(∗, 1, ∗), (∗, ∗, 1), (∗, ∗, ∗)},

P (K≥(M2)) = P (K≫(M1)) = {(1, 1, 1), (∗, ∗, ∗)}.
(16)

These provide weighted linear satisfiability preserving assignments. For example, (1, 1, ∗) is
a cl(K≫(M1))-linear satisfiability preserving assignment.
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We note that we cannot replace cl(K≫(M)) with K≥(M) in Proposition 4 (i). Namely,
for a CNF φ and a matrix M ∈ Q0(Mφ), K≥(M) is not always contained in Y (Ppresv(I)).
For example, consider φ = (x1 ∨ x2)(x1 ∨ x2) and

M =

(
0 1
0 −1

)
∈ Q0(Mφ). (17)

(−1, 0) is clearly contained in K≥(M), while not in Ppresv(I), since (0, ∗) is not satisfiability
preserving. Therefore we have K≥(M) ̸⊆ Ppresv(I).

We also note that {cl(K≫(M)) : M ∈ Q0(Mφ)} and {K≥(M) : M ∈ Q(Mφ)} are incom-
parable in general. For example, for φ = (x1 ∨ x2) and

M =
(
1 0

)
∈ Q0(Mφ), (18)

there exists no matrix M ′ ∈ Q(Mφ) such that cl(K≫(M)) ⊆ K≥(M
′). Moreover, for

φ = (x1 ∨ x2)(x1 ∨ x2) and

M =

(
1 −1

−1 1

)
∈ Q(Mφ), (19)

there exists no matrix M ′ ∈ Q0(Mφ) such that K≥(M) ⊆ cl(K≫(M ′)).

The following proposition shows that the linear autark and satisfying partial assignments
in Proposition 4 are enough to find autark and satisfying partial assignments.

Proposition 5 (Kullmann, 2003, Lemmas 3.2 and 3.5). Let I = (V,D, C) be a SAT in-
stance, where C is given by a CNF φ.

(i) For any A ∈ Pautark(I), there exists a matrix M ∈ Q(Mφ) such that A is K≥(M)-linear.

(ii) For any A ∈ Psat(I), there exists a matrix M ∈ Q(Mφ) such that A is K≫(M)-linear.

We next study the maximality of these linear satisfiability preserving assignments, which
can be used to heuristically find a satisfiability preserving assignment.

Theorem 3. Let I = (V,D, C) be a SAT instance, where C is given by a CNF φ.

(i) Let N be a matrix that represents linear autark assignments, i.e., K≥(N) is contained
in Y (Pautark(I)). Then there exists a matrixM in Q(Mφ) such that K≥(N) ⊆ K≥(M).

(ii) Let N be a matrix that represents linear satisfying partial assignments, i.e., K≫(N) is
contained in Y (Psat(I)). Then there exists a matrixM in Q0(Mφ) such that K≫(N) ⊆
K≫(M).

Proof. (i): For a clause c =
∨
j∈J+ xj∨

∨
j∈J− xj in φ with J+∩J− = ∅, let Zc be a non-closed

cone defined by Zc = {y ∈ Rn : yj ≤ 0 (j ∈ J+), yj ≥ 0 (j ∈ J−),−
∑

j∈J+ yj +
∑

j∈J− yj >
0}. Then Zc contains no point in Y (Pautark(I)) and thus K≥(N)∩Zc = ∅ holds. Therefore,
there exists a separating hyperplane between K≥(N) and Zc, i.e., there exists a vector
α ∈ Rn such that K≥(N) ⊆ {y ∈ Rn : αy ≥ 0} and Zc ⊆ {y ∈ Rn : αy < 0} hold (e.g.,
Rockafellar, 1970, Thm. 11.7). We claim that αj > 0 for all j ∈ J+, αj < 0 for all j ∈ J−,
and αj = 0 for all j ̸∈ J+ ∪ J−.
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Let ej denote the jth unit vector. Since −ej and ej are respectively contained in Zc for
j ∈ J+ and j ∈ J−, we have α(−ej) < 0 and αej < 0 respectively, which proves the claim
for j ∈ J+ and j ∈ J−. For j ̸∈ J+ ∪ J−, define two vectors z and z′ by zj = 1, z′j = −1,
zk = z′k = 0 if k ̸∈ J+ ∪ J− ∪ {j}, zk = z′k = −ε if k ∈ J+, and zk = z′k = +ε if k ∈ J− for
an ε > 0. Then z and z′ are contained in Zc and hence we have αz < 0 and αz′ < 0. This
implies that −ε(

∑
k∈J+ αk −

∑
k∈J− αk) < αj < ε(

∑
k∈J+ αk −

∑
k∈J− αk). Since ε > 0 is

arbitrary, we have αj = 0.

Since c is arbitrary, the claim implies (i) in the theorem.

(ii): For a clause c =
∨
j∈J+ xj ∨

∨
j∈J− xj in φ with J+ ∩ J− = ∅, let Zc = {y ∈

Rn : yj ≤ 0 (j ∈ J+), yj ≥ 0 (j ∈ J−)}. Then Zc is a closed cone which contains no point
in Y (Psat(I)). This implies that K≫(N)∩Zc = ∅ holds. Since K≫(N) is open, there exists
a vector α ∈ Rn such that K≫(N) ⊆ {y ∈ Rn : αy > 0} and Zc ⊆ {y ∈ Rn : αy ≤ 0}. We
claim that αj ≥ 0 for all j ∈ J+, αj ≤ 0 for all j ∈ J−, and αj = 0 for all j ̸∈ J+ ∪ J−.

Since−ej , ej and±ej are respectively contained in Zc for j ∈ J+, j ∈ J− and j ̸∈ J+∪J−,
we have α(−ej) ≤ 0, αej ≤ 0 and α(±ej) ≤ 0 respectively. This proves the claim.

Since α ̸= 0 and c is arbitrary, the claim implies (ii) in the theorem.

Note that (i) in Theorem 3 extends Kullmann’s result (Proposition 5 (i)), since for any
autark assignment, there exists a polyhedral cone containing a vector corresponding to the
assignment.

By Theorem 3, {K≥(M) : M ∈ Q(Mφ)} and {K≫(M) : M ∈ Q0(Mφ)} represent families
of convex sets which are large in Y (Pautark(I)) and Y (Psat(I)). However, the polyhedral cones
respectively might not be maximal convex subsets of Y (Pautark(I)) and Y (Psat(I)), as the
next examples show. Here a convex subset Z ⊆ Y (P ) is called a maximal convex subset of
Y (P ) if there exists no distinct convex set Z ′ ⊆ Y (P ) that contains Z.

Example 9. Let I = (V = {x1, x2}, D = {0, 1}, C) be a SAT instance, where C is given
by a CNF φ = x1(x1 ∨ x2). For any M ∈ Q(Mφ), K≥(M) is not a maximal convex
subset of Y (Pautark(I)). Note that Y (Pautark(I)) = {y ∈ R2 : y1 > 0} ∪ {y ∈ R2 : y1 ≥
0, y2 ≥ 0} holds. For any M ∈ Q(Mφ), let y = (M22,−M21 − 1). Then y is contained
in Y (Pautark(I)), but not in K≥(M), since it violates M21y1 +M22y2 ≥ 0. Moreover, we
can see that conv(K≥(M)∪{y}) is contained in Y (Pautark(I)). Hence, there exists a convex
set contained in Y (Pautark(I)) that strictly contains K≥(M), implying that K≥(M) is not a
maximal convex set in Y (Pautark(I)).

We recall that, by Proposition 2 (i), for any matrix N that represents linear satisfiability
preserving assignments, there exists a matrixM such thatK≥(N) ⊆ K≥(M) ⊆ Y (Ppresv(I)).
Example 9 shows that this M does not belong to Q(Mφ) in general.

Example 10. Let I = (V = {x1, x2}, D = {0, 1}, C) be a SAT instance, where C is given
by a CNF φ = x1 ∨ x2. Then no M ∈ Q0(Mφ) produces a maximal convex set K≫(M) of
Y (Psat(I)). This is because conv(K≫(M)∪ {y}) ⊆ Y (Psat(I)) holds for y = (M12,−M11) ̸∈
K≫(M) if M12 ̸= 0, and y = (0, 1) ̸∈ K≫(M) if M12 = 0.

Note that Example 10 does not contradict Proposition 2 (ii), since Example 10 deals
with non-open convex sets.
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The next theorem shows that there exist maximal elements in {K≥(M) : M ∈ Q(Mφ)}
and {K≫(M) : M ∈ Q0(Mφ)} in terms of partial assignments, which contrasts with Exam-
ples 9 and 10.

Theorem 4. Let I = (V,D, C) be a SAT instance, where C is given by a CNF φ.

(i) For any convex set C contained in Y (Pautark(I)), there exists a matrix M ∈ Q(Mφ)
such that P (C) ⊆ P (K≥(M)).

(ii) For any convex set C contained in Y (Psat(I)), there exists a matrix M ∈ Q0(Mφ)
such that P (C) ⊆ P (K≫(M)).

Proof. Since we have 3n partial assignments, there exist finite points y(1), . . . , y(ℓ) ∈ C such
that P ({y(1), . . . , y(ℓ)}) = P (C).

For (i), let Z denote the convex cone closure of y(i) (i = 1, . . . , ℓ). It follows that
Z ⊆ Y (Pautark(I)), since C is convex and Y (Pautark(I)) is a cone. By Theorem 3, there
exists a matrix M ∈ Q(Mφ) such that Z ⊆ K≥(M) holds. Then we have P (C) ⊆ P (Z) ⊆
P (K≥(M)).

For (ii), let Z denote the convex hull of y(i) (i = 1, . . . , ℓ). It follows from convexity of
C that Z ⊆ C ⊆ Y (Psat(I)). By applying a similar argument in the proof of Theorem 3,
we have Z ⊆ K≫(M) for some M ∈ Q0(Mφ).

We remark that K≥(Mφ) or K≫(Mφ) might not be maximal as seen in Examples 7 and
8.

3.4 Maximality of Weighted Linear Satisfiability Preserving Assignments for
Monotone CNFs

In this subsection we investigate convex inner approximation of satisfiability preserving
assignments for monotone and prime monotone CNFs. We show that several interesting
properties hold for these CNFs, which are not satisfied for general CNFs.

Recall that a CNF φ is called monotone if it contains no negative literal.

Theorem 5. Let I = (V,D, C) be a monotone SAT instance, i.e., a SAT instance where C
is given by a monotone CNF φ. Then for any matrix M ∈ Q(Mφ), we have P (K≥(M)) =
Pautark(I) and P (K≫(M)) = Psat(I).

Proof. We first show the case of Psat(I). For a satisfying partial assignment A, let y be a
vector in Rn defined as yj = γ if aj = 1, yj = −1 if aj = 0, and yj = 0 otherwise (i.e.,
aj = ∗), where γ is a sufficiently large real. Then it is clear that partial assignment ay is
equal to A. Moreover, we have My ≫ 0.

We can similarly show the case of autark assignments.

Theorem 5 does not hold if we replace Q(Mφ) by Q0(Mφ) for satisfying partial assign-
ments. For example, for a monotone SAT instance I given by a monotone CNF φ = x1∨x2,
let M = (1 0) ∈ Q0(Mφ). Then we have P (K≫(M)) = {(1, 0), (1, 1), (1, ∗)} ⊊ Psat(I).

We also remark that by Examples 9 and 10, even if φ is a monotone CNF, there does
not always exist an M ∈ Q(Mφ) such that K≥(M) (resp., K≫(M)) is a maximal convex
subset of Y (Pautark(I)) (resp., Y (Psat(I))). This contrasts with Theorem 5.
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We next consider prime monotone CNFs. Recall that a CNF φ is prime if replacing a
clause c ∈ φ by a proper subclause of c produces a CNF which is not equivalent to φ. In
this case, for autark assignments, maximality holds in terms of not only partial assignments
but also convex sets in Y (Pautark(I)).

Theorem 6. Let I = (V,D, C) be a prime monotone SAT instance, i.e., a SAT instance,
where C is given by a prime monotone CNF φ. Then any M ∈ Q(Mφ) defines a maximal
convex subset K≥(M) of Y (Pautark(I)).

Proof. We claim that conv(K≥(M)∪ {y}) ̸⊆ Y (Pautark(I)) holds for any y ̸∈ K≥(M). Fix a
vector y ̸∈ K≥(M). Then

∑
xj∈ci Mijyj + ε = 0 holds for some ci ∈ φ and ε > 0. If |ci| = 1,

then Mijyj < 0 holds for the only xj ∈ ci, implying that yj < 0. Hence, ay does not satisfy
ci and y is not contained in Y (Pautark(I)), which proves the claim. We therefore assume
that |ci| ≥ 2.

Let z be a vector in Rn defined as zj = 1
Mij

(
∑

xk∈ci,k ̸=jMikyk + |ci|−1
|ci| ε) if xj ∈ ci,

and zj = γ otherwise, where γ is sufficiently large. We show that z ∈ K≥(M) and (y +
z)/2 /∈ Y (Pautark(I)) hold, which prove the claim since the former condition implies that
(y + z)/2 ∈ conv(K≥(M) ∪ {y}) holds.

In order to prove that z ∈ K≥(M) holds, we show that
∑

xj∈ci′
Mi′jzj ≥ 0 holds for

each ci′ ∈ φ. If ci′ = ci, we have∑
xj∈ci Mijzj =

∑
xj∈ci(

∑
xk∈ci,k ̸=jMikyk +

|ci|−1
|ci| ε)

=
∑

xj∈ci
∑

xk∈ci Mikyk −
∑

xj∈ci Mijyj + (|ci| − 1)ε

= (|ci| − 1)(
∑

xj∈ci Mijyj + ε)

= 0.

(20)

On the other hand, if ci′ ̸= ci, we have
∑

xj∈ci′
Mi′jzj ≥ 0, since ci′ contains at least one

variable not contained in V (ci) by primality of φ and γ is sufficiently large.

Next, we show that (y + z)/2 /∈ Y (Pautark(I)) holds. For each xj ∈ ci,

yj + zj = yj +
1
Mij

(
∑

xk∈ci,k ̸=jMikyk +
|ci|−1
|ci| ε)

= 1
Mij

(
∑

xj∈ci Mijyj +
|ci|−1
|ci| ε)

= 1
Mij

(−ε+ |ci|−1
|ci| ε)

< 0.

(21)

Hence, a partial assignment a(y+z)/2 does not satisfy ci, implying that (y + z)/2 is not
contained in Y (Pautark(I)). This completes the proof.

Different from Theorem 6, K≫(M) for M ∈ Q0(Mφ) is not always a maximal convex
subset of Psat(I), which follows from Example 10.

We also note that primality alone does not always yield maximality.

Example 11. Let I = (V = {x1, x2}, D = {0, 1}, C) be a SAT instance, where C is given
by a prime CNF φ = (x1 ∨ x2)(x1 ∨ x2). Then no M ∈ Q(Mφ) \ {Mφ} produces a maximal
convex subset K≥(M) of Y (Pautark(I)).
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Indeed, let Z+ = {y ∈ R2 : y1 > 0, y2 > 0} and Z− = {y ∈ R2 : y1 < 0, y2 < 0}.
Then we have Y (Pautark(I)) = Z+ ∪ Z− ∪ {0}. For any M ∈ Q(Mφ) \ {Mφ}, it holds that
K≥(M) ⊆ Z+ ∪ {0} or K≥(M) ⊆ Z− ∪ {0}. If K≥(M) ⊆ Z+ ∪ {0}, then there exists a
y ∈ Z+ which is not contained in K≥(M), since K≥(M) is closed and Z+ is open. It follows
from convexity of Z+ ∪ {0} that conv(K≥(M) ∪ {y}) ⊆ Z+ ∪ {0}. Hence, K≥(M) is not a
maximal convex subset of Y (Pautark(I)). The case of K≥(M) ⊆ Z− ∪ {0} can be treated in
a similar way.

We remark that maximality in Theorem 6 is used to heuristically compute a locally
fixable assignment, which can be found in the next section.

4. Computing a Satisfiability Preserving Assignment for CSPs Given by
Integer Linear Systems

In this section, we discuss how to compute a linear satisfiability preserving assignment of
CSPs given by integer linear systems. It is known that computing a nontrivial satisfiability
preserving assignment defined in Section 2 is NP-hard, since we can solve the CSP by
iteratively computing such partial assignments. We also note that it is still NP-hard to
compute a partial assignment which is contained in some linear satisfiability preserving
assignments, by Proposition 5. Hence, we consider restricting linear satisfiability preserving
assignments.

For CNFs φ, it is natural to consider linear autark assignments derived from matrices
in Q(Mφ), in particular, unweighted linear autark assignments. For the 0-1 integer linear
systems, we note that each constraint is unate (i.e., it can be represented by a monotone
CNF by changing the polarity of variables appropriately). By Theorems 5 and 6, unweighted
linear autark (i.e., globally fixable) assignments for its prime CNF expression are maximal
in terms of both the set of the corresponding vectors and partial assignments. We thus try to
use the prime CNF expression of each inequality to obtain a maximal linear globally fixable
assignment of each inequality. However, we note that a prime CNF of an inequality might
have exponentially many clauses with respect to the number of variables in the inequality.
This implies that we cannot explicitly have linear inequalities that represent unweighted
linear globally fixable assignments.

In this section, we study computing a linear locally fixable assignment which is contained
in the intersection of such unweighted linear globally fixable assignments. We show that
it can be computed in pseudo-polynomial time, even if some constraints have a non-fixed
number of variables. As a corollary, we show that TVPI, Horn, and q-Horn systems are
solvable in pseudo-polynomial time by repeatedly computing such linear partial assignments,
which is discussed in Subsection 4.2. We assume that d = |D| is a part of the input
throughout the section.

We first consider the Boolean case, i.e., 0-1 integer linear systems, and then turn to the
general case.

4.1 The Case of 0-1 Integer Linear Systems

In this subsection, we discuss the complexity of computing a satisfiability preserving assign-
ment of the Boolean CSP given by 0-1 integer linear systems.
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We consider a Boolean CSP instance I = (V,D = {0, 1}, C), where C is given by a linear
system

Gx ≥ h, (22)

where G is a matrix in Zm×n and h is a vector in Zm.
We note that each linear inequality in the system (22) is unate. To see this, consider a

vector α ≥ 0 and a real β. Then a linear inequality αx ≥ β is monotone since αx ≥ β and
x ≤ x′ clearly imply αx′ ≥ β. For a general α, by changing the polarity of the variables with
αj < 0, we obtain a monotone linear inequality, implying that αx ≥ β is unate. It is known
that every unate Boolean function has the unique prime CNF expression (e.g., Crama &
Hammer, 2011). Let Ii denote the CSP instance that has a single constraint given as the
ith inequality of (22). By Theorem 6, Y (Pg-fix(Ii)) is maximally (inner) approximated by
K≥(Mφi) for the unique prime CNF expression φi of Ii, where primality implies Pautark(Ii) =
Pg-fix(Ii) by Proposition 2.

Consider a single inequality: ∑
j∈J+

gjxj −
∑
j∈J−

gjxj ≥ η, (23)

where J+, J− ⊆ V , J+ ∩ J− = ∅, gj > 0 for j ∈ J+ ∪ J−, and η ∈ Z.
Let U denote the set of the extreme infeasible points of (23), i.e., u ∈ U satisfies that

u + ej is feasible to (23) if j ∈ J+ and uj = 0, and u − ej is feasible to (23) if j ∈ J− and
uj = 1. Then it is known by, e.g., the work of Crama and Hammer (2011, Thm. 1.27) that
φ =

∧
u∈U (

∨
j∈J+:uj=0 xj∨

∨
j∈J−:uj=1 xj) is the unique prime CNF representing (23), which

implies the following lemma.

Lemma 1. Let φ denote the unique prime CNF representing (23). Then we have

K≥(Mφ) =

y ∈ Rn
∣∣∣∣∣ ∑
j∈J+:uj=0

yj −
∑

j∈J−:uj=1

yj ≥ 0 (u ∈ U)

 . (24)

Let φi denote the unique prime CNF expression for the ith inequality in (22) for each
i. Then we note that

∩m
i=1K≥(Mφi) represents linear locally fixable assignments. We show

the following result for such assignments.

Theorem 7. We can find in pseudo-polynomial time a nontrivial linear locally fixable as-
signment in

∩m
i=1K≥(Mφi) for the 0-1 integer linear system (22), if it exists. Moreover, it

is possible in polynomial time, for the unit integer linear system, i.e., the input matrix G is
given by G ∈ {0,−1,+1}m×n.

In order to find a nontrivial partial assignment in
∩m
i=1K≥(Mφi), we solve the following

two linear programming (LP) problems P+
ℓ and P−

ℓ for each xℓ ∈ V :

Problem P+
ℓ

maximize yℓ
subject to Mφiy ≥ 0 (i = 1, . . . ,m)

−1 ≤ yj ≤ 1 (j = 1, . . . , n).

Problem P−
ℓ

maximize −yℓ
subject to Mφiy ≥ 0 (i = 1, . . . ,m)

−1 ≤ yj ≤ 1 (j = 1, . . . , n).
(25)
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The constraints −1 ≤ yj ≤ 1 for j = 1, . . . , n in (25) ensure that the solution space is
bounded. We note that the number of the inequalities in the LP problems (25) might be
exponential in the size of the input. For example, for a linear inequality

∑n
j=1 xj ≥ ⌊n/2⌋,

the set U of the extreme infeasible points is given by

U =

u ∈ {0, 1}n
∣∣∣∣∣
n∑
j=1

uj = ⌊n/2⌋ − 1

 . (26)

Hence |U | =
(

n
⌊n/2⌋−1

)
= Ω(2n/2−logn) holds, which implies that the LP problems (25)

have exponentially many inequalities. Instead of solving (25) directly, we make use of the
ellipsoid method described in Subsection 2.3. By Theorem 1 in Subsection 2.3, optimization
is polynomially equivalent to solving the separation problem. Namely, given a y ∈ Rn, we
compute an inequality in (25) that is violated by y, if y is infeasible. Since −1 ≤ yj ≤ 1
can be checked efficiently, we consider how to check if Mφiy ≥ 0 is satisfied for each i.

Let J
(i)
+ = {j ∈ V : Gij > 0}, J (i)

− = {j ∈ V : Gij < 0} and U (i) denote the set of extreme
infeasible points of the ith constraint in (22). Then by Lemma 1, the following integer LP
problem computes mink{(Mφi)ky}, where (Mφi)k denotes the kth row vector of Mφi .

minimize
∑

j∈J(i)
+

yj(1− uj)−
∑

j∈J(i)
−
yjuj

(= −
∑

j∈J(i)
+ ∪J(i)

−
yjuj +

∑
j∈J(i)

+

yj)

subject to u ∈ U (i).

(27)

Hence the optimal value of (27) is at least zero if and only if Mφiy ≥ 0 holds. It is easy to
see that u ∈ U (i) if and only if

1)
∑

j∈J(i)
+ ∪J(i)

−
Gijuj ≤ hi − 1,

2) u ∈ {0, 1}n,

3) u is extreme, i.e.,
∑

j∈J(i)
+ ∪J(i)

−
Gijuj +Gik ≥ hi (k ∈ J

(i)
+ , uk = 0),∑

j∈J(i)
+ ∪J(i)

−
Gijuj −Gik ≥ hi (k ∈ J

(i)
− , uk = 1).

Although the condition 3) seems to be difficult to deal with, we show that the following
dynamic programming approach can solve (27) in pseudo-polynomial time.

We assume that 0 < |Gi1| ≤ · · · ≤ |Gin| holds without loss of generality. For a vector

u ∈ {0, 1}n, we say that u chooses an element j if either (uj = 1 and j ∈ J
(i)
+ ) or (uj = 0 and

j ∈ J
(i)
− ) holds. Let k be the first element that is not chosen by u. Then we can see that u is

an extreme infeasible point of the ith constraint if and only if hi−Gik+1 ≤
∑n

j=1Gijuj ≤ hi

holds when k ∈ J
(i)
+ , and hi +Gik + 1 ≤

∑n
j=1Gijuj ≤ hi holds when k ∈ J

(i)
− . Therefore,

in order to solve (27), it is enough to solve the following integer LP problem for each
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k = 1, . . . , n+ 1.

maximize
∑n

j=1 yjuj
subject to hi −Gik + 1 ≤

∑n
j=1Gijuj ≤ hi

(resp., hi +Gik + 1 ≤
∑n

j=1Gijuj ≤ hi)

k is the first unchosen element by u
u ∈ {0, 1}n.

(28)

Here k = n+ 1 means that u chooses all the elements.
Let k ∈ {1, . . . , n}. For an integer ℓ with k ≤ ℓ ≤ n and an integer w ∈ Z, let v(ℓ, w)

denote the objective value of

maximize
∑ℓ

j=1 yjuj

subject to
∑ℓ

j=1Gijuj = w

k is the first unchosen element by u
u ∈ {0, 1}ℓ.

(29)

Let us consider the case in which k ∈ J
(i)
+ , since the case of k ∈ J

(i)
− can be treated similarly.

Then we have

v(k,w) =

{∑
j∈J(i)

+ : j≤ k−1
yj (w =

∑
j∈J(i)

+ : j≤ k−1
Gij),

−∞ (otherwise),

v(ℓ, w) = max{v(ℓ− 1, w), v(ℓ− 1, w −Giℓ) + yℓ} (ℓ = k + 1, . . . , n).

(30)

Hence, we can see that maxhi−Gik+1≤w≤hi v(n,w) is the optimal value of (28). Since the
dynamic programming algorithm requires O((n−k)nηi) time for each k, where ηi = max{hi,
|Gi1|, . . . , |Gin|}, we can solve the separation problem in O(n3mη) time, where η = maxi ηi.
Hence, by Theorem 1, we can find a nontrivial linear locally fixable assignment for the 0-1
integer linear system (22) in pseudo-polynomial time.

We next consider the unit integer linear system, i.e., the integer linear system such
that the input matrix G is given by G ∈ {0,−1,+1}m×n. Note that this includes global
cardinality constraints (van Hoeve & Katriel, 2006) and is related to MAX(MIN) ONES
(Creignou et al., 2001).

Let ∑
j∈J+

xj +
∑
j∈J−

(1− xj) ≥ k (31)

be an inequality in the system. Then it has the unique prime CNF representing φ defined
by

φ =
∧

I+⊆J+,I−⊆J−:

|I+|+|I−|=|J+|+|J−|−k+1

( ∨
j∈I+

xj ∨
∨
j∈I−

xj

)
. (32)

Thus, we have the following lemma.

Lemma 2. Let φ be the unique prime CNF representing (31). Then we have

K≥(Mφ) = {y ∈ Rn :
∑

j∈I+ yj −
∑

j∈I− yj ≥ 0,

I+ ⊆ J+, I− ⊆ J−, |I+|+ |I−| = |J+|+ |J−| − k + 1}. (33)
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Again the number of the constraints in the LP problems (25) might be exponential in
the size of the input. Hence we again use the ellipsoid method to solve the LP problems
(25).

Lemma 3. We can solve the separation problem for the LP problems (25) in polynomial
time if G ∈ {0,−1,+1}m×n.

Proof. Suppose that a vector y ∈ Rn is given. Then, we note that y ∈ K≥(Mφ1) ∩ · · · ∩
K≥(Mφm) holds if and only if

min{
∑

j∈I+ yj −
∑

j∈I− yj ≥ 0: I+ ⊆ J
(i)
+ , I− ⊆ J

(i)
− ,

|I+|+ |I−| = |J (i)
+ | − hi + 1} ≥ 0

(34)

holds for all i = 1, . . . ,m. The left hand side of (34) can be computed simply by sorting

the set {yj : j ∈ J
(i)
+ } ∪ {−yj : j ∈ J

(i)
− } and summing the smallest |J (i)

+ | − hi + 1 elements.
Hence, we can solve the separation problem in O(mn log n) time.

We therefore proved Theorem 7.

4.2 The Case of General Integer Linear Systems

In this subsection, we consider linear satisfiability preserving assignments for the non-
Boolean CSP given by integer linear systems.

Let
Gx ≥ h, x ∈ {0, 1, . . . , d}n (35)

denote an integer linear system such that the ith inequality is represented by∑
j∈J(i)

+

αijxj −
∑
j∈J(i)

−

αijxj ≥ hi, (36)

for αij > 0 (j ∈ J
(i)
+ ∪ J (i)

− ). Let Ui denote the set of the extreme infeasible points of (36),
i.e., u ∈ Ui satisfies that u+ ej is feasible to (36) if j ∈ J+ and uj ̸= d, and u− ej is feasible
to (36) if j ∈ J− and uj ̸= 0.

Recall the encoding that transform CSP instances with D = {0, 1, . . . , d} to Boolean
CSP instances in Section 1. Define a CNF φi by

φi =
∧
u∈Ui

 ∨
j∈J(i)

+ :uj ̸=d

xj,uj+1 ∨
∨

j∈J(i)
− :uj ̸=0

xj,uj

 . (37)

We note that Gx ≥ h and x ∈ Dn if and only if all φi (i = 1, . . . ,m) and xj,p ≥ xj,p+1 (j =
1, . . . , n; p = 1, . . . , d− 1) are satisfied. Since xj,p ≥ xj,p+1 can be represented by a CNF

ψj,p = (xj,p ∨ xj,p+1),

by applying the ellipsoid method proposed in the previous subsection, we have the following
result.
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Theorem 8. We can find in pseudo-polynomial time a nontrivial linear locally fixable as-
signment in

∩m
i=1K≥(Mφi) ∩

∩
j,pK≥(Mψj,p

) for the general integer linear system (22), if
it exists.

We then show that TVPI, Horn, and q-Horn systems are solvable in pseudo-polynomial
time by repeatedly computing linear partial assignments in Theorem 8. A system Gx ≥ h is
said to be TVPI if each row of G contains at most two nonzero elements, Horn if each row
of G contains at most one positive element, and q-Horn if the optimal value of the following
LP problem is at most one (Kimura & Makino, 2016).

minimize β
subject to

∑
j:Gij>0 αj +

∑
j:Gij<0(1− αj) ≤ β (i = 1, . . . ,m)

0 ≤ αj ≤ 1 (j = 1, . . . , n).

(38)

Also, a CNF φ =
∧m
i=1

(∨
j∈J(i)

+

xj ∨
∨
j∈J(i)

−
xj

)
is called 2-CNF if |J (i)

+ ∪ J (i)
− | ≤ 2 holds

for all i = 1, . . . ,m, Horn if |J (i)
+ | ≤ 1 holds for all i = 1, . . . ,m, and q-Horn if the optimal

value of the following LP problem is at most one (Boros et al., 1990).

minimize β
subject to

∑
j∈J(i)

+

αj +
∑

j∈J(i)
−
(1− αj) ≤ β (i = 1, . . . ,m)

0 ≤ αj ≤ 1 (j = 1, . . . , n).

(39)

We note that
∧m
i=1 φi ∧

∧
j=1,...,n;p=1,...,d−1 ψj,p is Horn (resp., TVPI (i.e., a 2-CNF) and

q-Horn) if so is the original integer linear system Gx ≥ h (Petke & Jeavons, 2011). It is
known by Kullmann (2000) and van Maaren (2000) that 2-, Horn and q-Horn CNFs can be
solved by repeatedly finding nontrivial unweighted linear autark assignments. Therefore,
we have the following result.

Theorem 9. If an integer linear system is TVPI, Horn or q-Horn, then it can be solved
in pseudo-polynomial time by repeatedly finding linear locally fixable assignments in

∩m
i=1

K≥(Mφi) ∩
∩
j,pK≥(Mψj,p

).

Finally, we note that the following naive encoding does not work, since TVPI (resp.,
Horn and q-Horn) systems does not always transformed to the 0-1 TVPI (resp., Horn and
q-Horn) systems.

G(
∑d

p=1 xp) ≥ h

xj,p ≥ xj,p+1 (j = 1, . . . , n; p = 1, . . . , d− 1)
xp ∈ {0, 1}n (p = 1, . . . , d),

(40)

where xp = (x1,p, . . . , xn,p) for p = 1, . . . , d.
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