
Journal of Artificial Intelligence Research 61 (2018) 523-562 Submitted 9/17; published 3/18

Revisiting the Arcade Learning Environment:
Evaluation Protocols and Open Problems for General Agents

Marlos C. Machado machado@ualberta.ca
University of Alberta, Edmonton, Canada

Marc G. Bellemare bellemare@google.com
Google Brain, Montréal, Canada

Erik Talvitie erik.talvitie@fandm.edu
Franklin & Marshall College, Lancaster, USA

Joel Veness aixi@google.com
DeepMind, London, United Kingdom

Matthew Hausknecht matthew.hausknecht@microsoft.com
Microsoft Research, Redmond, USA

Michael Bowling mbowling@ualberta.ca

University of Alberta, Edmonton, Canada

DeepMind, Edmonton, Canada

Abstract

The Arcade Learning Environment (ALE) is an evaluation platform that poses the
challenge of building AI agents with general competency across dozens of Atari 2600 games.
It supports a variety of different problem settings and it has been receiving increasing
attention from the scientific community, leading to some high-profile success stories such as
the much publicized Deep Q-Networks (DQN). In this article we take a big picture look at
how the ALE is being used by the research community. We show how diverse the evaluation
methodologies in the ALE have become with time, and highlight some key concerns when
evaluating agents in the ALE. We use this discussion to present some methodological best
practices and provide new benchmark results using these best practices. To further the
progress in the field, we introduce a new version of the ALE that supports multiple game
modes and provides a form of stochasticity we call sticky actions. We conclude this big
picture look by revisiting challenges posed when the ALE was introduced, summarizing the
state-of-the-art in various problems and highlighting problems that remain open.

1. Introduction

The Arcade Learning Environment (ALE) is both a challenge problem and a platform
for evaluating general competency in artificial intelligence (AI). Originally proposed by
Bellemare, Naddaf, Veness, and Bowling (2013), the ALE makes available dozens of Atari
2600 games for agent evaluation. The agent is expected to do well in as many games
as possible without game-specific information, generally perceiving the world through a
video stream. Atari 2600 games are excellent environments for evaluating AI agents for
three main reasons: 1) they are varied enough to provide multiple different tasks, requiring
general competence, 2) they are interesting and challenging for humans, and 3) they are
free of experimenter’s bias, having been developed by an independent party.

c©2018 AI Access Foundation. All rights reserved.

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

The usefulness of the ALE is reflected in the amount of attention it has received from
the scientific community. The number of papers using the ALE as a testbed has exploded
in recent years. This has resulted in some high-profile success stories, such as the much
publicized Deep Q-Networks (DQN), the first algorithm to achieve human-level control in
a large fraction of Atari 2600 games (Mnih et al., 2015). This interest has also led to
the first dedicated workshop on the topic, the AAAI Workshop on Learning for General
Competency in Video Games (Albrecht et al., 2015). Several of the ideas presented in this
article were first discussed at this workshop, such as the need for standardizing evaluation
and for distinguishing open-loop behaviours from closed-loop ones.

Given the ALE’s increasing importance in the AI literature, this article aims to be a
“check-up” for the Arcade Learning Environment, taking a big picture look at how the ALE
is being used by researchers. The primary goal is to highlight some subtle issues that are
often overlooked and propose some small course corrections to maximize the scientific value
of future research based on this testbed. The ALE has incentivized the AI community to
build more generally competent agents. The lessons learned from that experience may help
further that progress and may inform best practices as other testbeds for general competency
are developed (e.g., Beattie et al., 2016; Brockman et al., 2016; Johnson, Hofmann, Hutton,
& Bignell, 2016; Levine et al., 2013).

The main contributions of this article are: 1) To discuss the different evaluation methods
present in the literature and to identify, for the typical reinforcement learning setting, some
methodological best practices gleaned from experience with the ALE (Sections 3 and 4).
2) To address concerns regarding the deterministic dynamics of previous versions of the
platform, by introducing a new version of the ALE that supports a form of stochasticity we
call sticky actions (Section 5). 3) To provide new benchmark results in the reinforcement
learning setting that ease comparison and reproducibility of experiments in the ALE. These
benchmark results also encourage the development of sample efficient algorithms (Section 6).
4) To revisit challenges posed when the ALE was introduced, summarizing the state-of-the-
art in various problems and highlighting problems that are currently open (Section 7). 5) To
introduce a new feature to the platform that allows existent environments to be instantiated
in multiple difficult levels and game modes (Section 7.4.1)

2. Background

In this section we introduce the formalism behind reinforcement learning (Sutton & Barto,
1998), as well as how it is instantiated in the Arcade Learning Environment. We also
present the two most common value function representations used in reinforcement learning
for Atari 2600 games: linear approximation and neural networks. As a convention, we
indicate scalar-valued random variables by capital letters (e.g., St, Rt), vectors by bold
lowercase letters (e.g., θ,φ), functions by non-bold lowercase letters (e.g., v, q), and sets
with a calligraphic font (e.g., S,A).

2.1 Setting

We consider an agent interacting with its environment in a sequential manner, aiming to
maximize cumulative reward. It is often assumed that the environment satisfies the Markov
property and is modeled as a Markov decision process (MDP). An MDP is formally defined

524

Revisiting the ALE: Evaluation Protocols and Open Problems

as a 4-tuple (S,A, p, r). Starting from state S0 ∈ S, at each step the agent takes an action
At ∈ A, to which the environment responds with a state St+1 ∈ S, according to a transition
probability kernel p(s′ | s, a)

.
= Pr(St+1 = s′ |St = s,At = a), and with a reward Rt+1 ∈ R,

where r(s, a) indicates the expected reward for a transition from state s under action a,
that is, r(s, a)

.
= E[Rt | St = s,At = a].

In the context of the ALE, an action is the composition of a joystick direction and an
optional button press. The agent observes a reward signal, which is typically the change in
the player’s score (the difference in score between the previous time step and the current
time step), and an observation Ot ∈ O of the environment. This observation can be a
single 210 × 160 image and/or the current 1024-bit RAM state. Because a single image
typically does not satisfy the Markov property, we distinguish between observations and the
environment state, with the RAM data being the real state of the emulator.1 A frame (as a
unit of time) corresponds to 1/60th of a second, the time interval between two consecutive
images rendered to the television screen. The ALE is deterministic: given a particular
emulator state, s, and a joystick input, a, there is a unique resulting next state, s′. In other
words, p(s′ | s, a) = 1. We will return to this important characteristic in Section 5.

Agents interact with the ALE in an episodic fashion. An episode begins by resetting the
ALE to its initial configuration, and ends at a natural endpoint of a game’s playthrough
(this often corresponds to the player losing their last life). The primary measure of an
agent’s performance is the score achieved during an episode, namely the undiscounted sum
of rewards for that episode. While this performance measure is quite natural, it is important
to realize that score, in and of itself, is not necessarily an indicator of AI progress. In some
games, agents can maximize their score by “getting stuck” in a loop of “small” rewards,
ignoring what human players would consider to be the game’s main goal. Nevertheless,
score is currently the most common measure of agent performance so we focus on it here.

Beyond the minimal interface described above, almost all agents designed for the ALE
implement some form of reward normalization. The magnitude of rewards can vary wildly
across games; transforming the reward to fit into a roughly uniform scale makes it more fea-
sible to find game-independent meta-parameter settings. For instance, some agents divide
every reward by the magnitude of the first non-zero reward value encountered, implicitly as-
suming that the first non-zero reward is “typical” (Bellemare, Naddaf, et al., 2013). Others
account only for the sign of the reward, replacing each reward value with -1, 0, or 1, accord-
ingly (Mnih et al., 2015). Most agents also employ some form of hard-coded preprocessing
to simplify the learning and acting process. We briefly review the three most common
preprocessing steps as they will play a role in the subsequent discussion. 1) Frame skip-
ping (Naddaf, 2010) restricts the agent’s decision points by repeating a selected action for k
consecutive frames. Frame skipping results in a simpler reinforcement learning problem and
speeds up execution; values of k = 4 and k = 5 have been commonly used in the literature.
2) Color averaging (Bellemare, Naddaf, et al., 2013) and frame pooling (Mnih et al., 2015)
are two image-based mechanisms to flatten two successive frames into a single one in order
to reduce visual artifacts resulting from limitations of the Atari 2600 hardware – by lever-
aging the slow decay property of phosphors on 1970s televisions, objects on the screen could
be displayed every other frame without compromising the game’s visual aspect (Montfort

1The internal emulator state also includes registers and timers, but the RAM information and joystick
inputs are sufficient to infer the next emulator state.

525

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

& Bogost, 2009). Effectively, color averaging and frame pooling remove the most benign
form of partial observability in the ALE. Finally, 3) frame stacking (Mnih et al., 2015) con-
catenates previous frames with the most recent in order to construct a richer observation
space for the agent. Frame stacking also reduces the degree of partial observability in the
ALE, making it possible for the agent to detect the direction of motion in objects.

2.2 Control in the Arcade Learning Environment

The typical goal of reinforcement learning (RL) algorithms is to learn a policy π : S×A→
[0, 1] that maps each state to a probability distribution over actions. Ideally, following the
learned policy will maximize the discounted cumulative sum of rewards.2 Many RL algo-
rithms accomplish this by learning an action-value function qπ : S×A→ R, which encodes
the long-range value of taking action a in state s and then following policy π thereafter.
More specifically, qπ(s, a)

.
= Eπ,p

[∑∞
i=1 γ

i−1Rt+i | St = s,At = a
]
, the expected discounted

sum of rewards for some discount factor γ ∈ [0, 1], where the expectation is with respect to
both the policy π and the probability kernel p. However, in the ALE it is not feasible to learn
an individual value for each state-action pair due to the large number of possible states. A
common way to address this issue is to approximate the action-value function by parame-
terizing it with a set of weights θ. We write q̂(s, a,θ) ≈ qπ(s, a) for the approximate value
of the state-action given the weights θ. We discuss below two approaches to value function
approximation that have been successfully applied to the games available in the ALE. We fo-
cus on these particular methods because they are by now well-established, well-understood,
achieve a reasonable level of performance, and reflect the issues we study here.

The first approach is to design a function that, given an observation, outputs a vector,
φ(s, a), that denotes a feature-based representation of the state s when taking action a.
With this approach, qπ is estimated through a linear function approximator such that
q̂(s, a,θ) = θ>φ(s, a). Sarsa(λ) (Rummery & Niranjan, 1994) is a control algorithm that
learns an approximate action-value function of a sequence of improving policies. As states
are visited and rewards are observed, q̂ is updated and an improved policy, which the agent
then follows, is obtained from these estimates. The update equations are:

δt = Rt+1 + γθ>t φ(St+1, At+1)− θ>t φ(St, At),

et = γλet−1 + φ(St, At),

θt+1 = θt + αδtet,

where α denotes the step-size and et the eligibility trace vector (e−1
.
= 0). The first bench-

marks in the ALE applied this approach with a variety of simple feature representations
(e.g., Bellemare, Naddaf, et al., 2013; Bellemare, Veness, & Bowling, 2012b; Naddaf, 2010).
Recently, Liang, Machado, Talvitie, and Bowling (2016) introduced a feature representation
(Blob-PROST) that allows Sarsa(λ) to achieve comparable performance to DQN (described
below) in several Atari 2600 games. We refer to such an approach as Sarsa(λ) + Blob-

2We use the discounted sum of rewards in our formalism because this is commonly employed by agents
in the ALE. Empirical evidence has shown that agents generally perform better when maximizing the
discounted cumulative sum of rewards, even though they are actually evaluated in the undiscounted case.
This formulation disincentivizes agents to postpone scoring.

526

Revisiting the ALE: Evaluation Protocols and Open Problems

PROST. Recently, Martin, Sasikumar, Everitt, and Hutter (2017) combined Sarsa(λ) and
the Blob-PROST features with a method for incentivizing exploration in hard games.

A recent trend in reinforcement learning is to use neural networks to estimate qπ(s, a),
substituting the requirement of a good handcrafted feature representation with the require-
ment of an effective network architecture and algorithm. Mnih et al. (2015) introduced
Deep Q-Networks (DQN), an algorithm that learns representations in a neural network
composed of three hidden convolutional layers followed by a fully-connected hidden layer.
The network weights are updated through backpropagation with the following update rule:

θt+1 = θt + α
[
Rt+1 + γmax

a∈A
q(St+1, a,θ

−
t)− q(St, At,θt)

]
∇θt q(St, At,θt),

where θ−t denotes the weights of a duplicate network, which are updated less often for
stability purposes:

θ−t =

{
θt, if t mod C = 0,

θ−t−1, otherwise,

with C being a parameter, the target network update frequency. Additional components of
the algorithm include clipping the rewards (as described above) and the use of experience
replay (Lin, 1993) to decorrelate observations. DQN has inspired much follow-up work com-
bining reinforcement learning and deep neural networks (e.g., Jaderberg et al., 2017; Mnih
et al., 2016; Schaul, Quan, Antonoglou, & Silver, 2016; van Hasselt, Guez, & Silver, 2016).

3. Divergent Evaluation Methodologies in the ALE

The ALE has received significant attention since it was introduced as a platform to evaluate
general competency in AI. Hundreds of papers have used the ALE as a testbed, employing
many distinct experimental protocols for evaluating agents. Unfortunately, these differ-
ent evaluation protocols are often not carefully distinguished, making direct comparisons
difficult or misleading. In this section we discuss a number of methodological differences
that have emerged in the literature. In subsequent sections we give special focus to two
particularly important methodological issues: 1) different metrics for summarizing agent
performance, and 2) different mechanisms for injecting stochasticity in the environment.

The discussion about the divergence of evaluation protocols and the need for standard-
izing them first took place at the AAAI Workshop on Learning for General Competency
in Video Games. One of the reasons that authors compare results generated with differing
experimental protocols is the high computational cost of evaluating algorithms in the ALE –
it is difficult to re-evaluate existing approaches to ensure matching methodologies. For that
reason it is perhaps especially important to establish a standard methodology for the ALE
in order to reduce the cost of principled comparison and analysis. One of the main goals
of this article is to propose such a standard, and to introduce benchmark results obtained
under it for straightforward comparison to future work.

3.1 Methodological Differences

To illustrate the diversity in evaluation protocols, we discuss some methodological differ-
ences found in the literature. While these differences may be individually benign, they

527

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

are frequently ignored when comparing results, which undermines the validity of direct
comparisons.

3.1.1 Episode Termination

In the initial ALE benchmark results (Bellemare, Naddaf, et al., 2013), episodes terminate
when the game is over. However, in some games the player has a number of “lives” which
are lost one at a time. Terminating only when the game is over often makes it difficult
for agents to learn the significance of losing a life. Mnih et al. (2015) terminated training
episodes when the agent lost a life, rather than when the game is over (evaluation episodes
still lasted for the entire game). While this approach has the potential to teach an agent to
avoid “death,” Bellemare et al. (2016b) noted that it can in fact be detrimental to an agent’s
performance. Currently, both approaches are still common in the literature. We often see
episodes terminating when the game is over (e.g., Hausknecht, Lehman, Miikkulainen, &
Stone, 2014; Liang et al., 2016; Lipovetzky, Ramirez, & Geffner, 2015; Martin et al., 2017),
as well as when the agent loses a life (e.g., Nair et al., 2015; Schaul et al. 2016; van Hasselt
et al., 2016). Considering the ideal of minimizing the use of game-specific information and
the questionable utility of termination using the “lives” signal, we recommend that only the
game over signal be used for termination.

3.1.2 Setting of Hyperparameters

One of the primary goals of the ALE is to enable the evaluation of agents’ general ability
to learn in complex, high-dimensional decision-making problems. Ideally agents would be
evaluated in entirely novel problems to test their generality, but this is of course imprac-
tical. With only 60 available games in the standard suite there is a risk that methods
could “overfit” to the finite set of problems. In analogy to typical methodology in super-
vised learning, Bellemare, Naddaf, et al. (2013) split games into “training” and “test” sets,
only using results from training games for the purpose of selecting hyperparameters, then
fully evaluating the agent in the test games only once hyperparameters have been selected.
This methodology has been inconsistently applied in subsequent work – for example, hy-
perparameters are sometimes selected using the entire suite of games, and in some cases
hyperparameters are optimized on a per-game basis (e.g., Jaderberg et al., 2017).3 For the
sake of evaluating generality, we advocate for a train/test game split as a way to evaluate
agents in problems they were not specifically tuned for.

3.1.3 Measuring Training Data

The first benchmarks in the ALE (Bellemare, Naddaf, et al., 2013) trained agents for a fixed
number of episodes before evaluating them. This can be misleading since episode lengths
differ from game to game. Worse yet, in many games the better an agent performs the
longer episodes last. Thus, under this methodology, agents that learn a good policy early
receive more training data overall than those that learn more slowly, potentially magnifying

3The methodology based on the train/test split, as well as most of the other methodologies applied to
the ALE, assume that hyperparameters can be tuned without consequences. Therefore, despite being a very
interesting problem, in this paper we will not discuss the setting in which the cost associated with finding
hyperparameters is taken into consideration.

528

Revisiting the ALE: Evaluation Protocols and Open Problems

their differences. Recently it has become more common to measure the amount of training
data in terms of the total number of frames experienced by the agent (Mnih et al., 2015),
which aids reproducibility, inter-game analysis, and fair comparisons. That said, since
performance is measured on a per-episode basis, it may not be advisable to end training in
the middle of an episode. For example, Mnih et al. (2015) interrupt the training as soon as
the maximum number of frames is reached, while Liang et al. (2016) pick a total number
of training frames, and then train each agent until the end of the episode in which the
total is exceeded. This typically results in a negligible number of extra frames of experience
beyond the limit. Another important aspect to be taken into consideration is frame skipping,
which is a common practice in the ALE but is not reported consistently in the literature.
We advocate evaluating from full training episodes from a fixed number of frames, as was
done by Liang et al. (2016), and we advocate taking the number of skipped frames into
consideration when measuring training data, as the time scale in which the agent operates
is also an algorithmic choice.

3.1.4 Summarizing Learning Performance

When evaluating an agent in 60 games, it becomes necessary to compactly summarize the
agent’s performance in each game in order to make the results accessible and to facilitate
comparisons. Authors have employed various statistics for summarizing agent performance
and this diversity makes it difficult to directly compare reported results. We recommend
reporting training performance at different intervals during learning. We discuss this issue
in more detail in Section 4.

3.1.5 Injecting Stochasticity

The original Atari 2600 console had no source of entropy for generating pseudo-random
numbers. The Arcade Learning Environment is also fully deterministic – each game starts
in the same state and outcomes are fully determined by the state and the action. As such, it
is possible to achieve high scores by learning an open-loop policy, i.e., by simply memorizing
a good action sequence, rather than learning to make good decisions in a variety of game
scenarios (Bellemare, Naddaf, Veness, & Bowling, 2015). Various approaches have been
developed to add forms of stochasticity to the ALE dynamics in order to encourage and
evaluate robustness in agents (e.g., Brockman et al., 2016; Hausknecht & Stone, 2015; Mnih
et al., 2015; Nair et al., 2015). Our recommendation is to use sticky actions, implemented
in the latest version of the ALE. We discuss this issue in more detail in Section 5.

4. Summarizing Learning Performance

One traditional goal in reinforcement learning is for agents to continually improve their
performance as they obtain more data (Hutter, 2005; Ring, 1997; Singh, Barto, & Chen-
tanez, 2004; Sutton et al., 2011; Thrun & Mitchell, 1993; Wilson, 1985). Measuring the
extent to which this is the case for a given agent can be a challenge, and this challenge is
exacerbated in the Arcade Learning Environment, where the agent is evaluated across 60
games. When evaluating an agent in only a few problems, it is common practice to plot
learning curves, which provide a rich description of the agent’s performance: how quickly it

529

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

learns, the highest performance it attains, the stability of its solutions, whether it is likely
to continue to improve with more data, etc.

While some have reported results in the ALE using learning curves (e.g., Mnih et al. 2016;
Ostrovski, Bellemare, van den Oord, & Munos 2017; Schaul et al. 2016), it is difficult to even
effectively display, let alone comprehend and compare, 60 learning curves. For the sake of
comparison and compact reporting, most researchers have applied various approaches to nu-
merically summarize an agent’s performance in each game (e.g., Bellemare, Naddaf, et al.,
2013; Hausknecht et al., 2014; Munos, Stepleton, Harutyunyan, & Bellemare, 2016; Nair
et al., 2015). Unfortunately, the variety of different summary statistics in results tables
makes direct comparison difficult. In this section we consider some common performance
measures seen in the literature and ultimately identify one as being particularly in line with
the continual learning goal and advocate for it as the standard for reporting learning results
in the ALE.

4.1 Common Performance Measures

Here we discuss some common summary statistics of learning performance that have been
employed in the Arcade Learning Environment in the past.

4.1.1 Evaluation after Learning

In the first ALE benchmark results, Bellemare, Naddaf, et al. (2013) trained agents for a
fixed training period, then evaluated the learned policy using the average score in a number
of evaluation episodes with no learning. Naturally, a number of subsequent studies used this
evaluation protocol (e.g., Defazio & Graepel, 2014; Liang et al., 2016; Martin et al., 2017).
One downside to this approach is that it hides issues of sample efficiency, since agents are not
evaluated during the entire training period. Furthermore, an agent can receive a high score
using this metric without continually improving its performance. For instance, an agent
could spend its training period in a purely exploratory mode, gathering information but
performing poorly, and then at evaluation time switch to an exploitative mode. While the
problem of developing a good policy during an unevaluated training period is an interesting
one, in reinforcement learning the agent is typically expected to continually improve with
experience. Importantly, ε-greedy policies tend to perform better than greedy policies in
the ALE (Bellemare, Naddaf, et al., 2013; Mnih et al., 2015). Therefore, this protocol does
not necessarily benefit from turning off exploration during evaluation. In fact, often the
reported results under this protocol do use ε-greedy policies during evaluation.

4.1.2 Evaluation of the Best Policy

When evaluating Deep Q-Networks, Mnih et al. (2015) also trained agents for a fixed
training period. Along the way, they regularly evaluated the performance of the learned
policy. At the end of the training period they evaluated the best policy in a number of
evaluation episodes with no learning. A great deal of follow-up work has replicated this
methodology (e.g., Schaul et al., 2016; van Hasselt et al., 2016). This protocol retains the
downsides of evaluation after learning, and adds an additional one: it does not evaluate
the stability of the agent’s learning progress. Figure 1 illustrates the importance of this
issue by showing different learning curves in the game Centipede. On one hand, Sarsa(λ)

530

Revisiting the ALE: Evaluation Protocols and Open Problems

50M 100M 150M 200M

Timestep

0

5000

10000

15000

20000

S
co

re

(a) Sarsa(λ) + Blob-PROST

50M 100M 150M 200M

Timestep

0

500

1000

1500

2000

2500

3000

3500

S
co

re

(b) DQN

Figure 1: Comparison between learning curves of DQN and Sarsa(λ) + Blob-PROST in
Centipede. Notice the y-axes are not on the same scale. Each point corresponds to the
average performance over the last one hundred episodes. Grey curves depict individual
trials. The red curve depicts the average over all trials.

+ Blob-PROST achieves a high score early on but then becomes unstable and fails to
retain this successful policy. DQN’s best score is much lower but it is also more stable
(though not perfectly so). Reporting the performance of the best policy fails to recognize
the plummeting behavior of both algorithms and DQN’s more stable performance. Note
also that the best score achieved across training is a statistically biased estimate of an
agent’s best performance: to avoid this bias, one should perform a second, independent
evaluation of the agent at that particular point in time, as reported by Wang et al. (2016).

4.1.3 Area Under the Learning Curve

Recently, eschewing an explicit evaluation phase, Stadie, Levine, and Abbeel (2015) pro-
posed the area under the learning curve as an evaluation metric. Intuitively, the area under
the learning curve is generally proportional to how long a method achieves “good” perfor-
mance, i.e., the average performance during training. Methods that only have performance
spikes and methods that are unstable generally perform poorly under such metric. However,
area under the learning curve does not capture the “plummeting” behavior illustrated in
Figure 1. For example, in this case, Sarsa(λ) + Blob-PROST looks much better than DQN
using this metric. Furthermore, area under the curve cannot distinguish a high-variance,
unstable learning process from steady progress towards a good policy, even though we typ-
ically prefer the latter.

4.2 Proposal: Performance During Training

The performance metric we propose as a standard is simple and has been adopted before
(e.g., Bellemare, Veness, & Bowling, 2012a). At the end of training (and ideally at other
points as well) report the average performance of the last k episodes. This protocol does
not use the explicit evaluation phase, thus requiring an agent to perform well while it is
learning. This better aligns the performance metric with the goal of continual learning while
also simplifying experimental methodology. Unstable methods that exhibit spiking and/or

531

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

plummeting learning curves will score poorly compared to those that stably and continually
improve, even if they perform well during most of training.

Another advantage is that this metric is well-suited for analysis of an algorithm’s sample
efficiency. While the agent’s performance near the end of training is typically of most
interest, it is also straightforward to report the same statistic at various points during
training, effectively summarizing the learning curve with a few selected points along the
curve. Furthermore, if researchers make their full learning curve data publicly available,
others can easily perform post-hoc analysis for the sake of comparison for any amount
of training without having to fully re-evaluate existing methods. Currently, it is fairly
standard to train agents for 200 million frames, in order to facilitate comparison with the
DQN results reported by Mnih et al. (2015). This is equivalent to approximately 38 days
of real-time gameplay and even at fast frame rates represents a significant computational
expense. By reporting performance at multiple points during training, researchers can
easily draw comparisons earlier in the learning process, reducing the computational burden
of evaluating agents.

In accordance with this proposal, the benchmark results we present in Section 6 report
the agent’s average score of the last 100 episodes before the agent reaches 10, 50, 100, and
200 million frames4 and our full learning curve data is publicly available.5 We chose to
average over 100 episodes in an attempt to obtain a reliable statistic that would not vary
too much in case a small number of episodes present scores that are outliers. This number
should also guarantee that the scores obtained in the oldest episodes being averaged still
describe the performance of the current policy. This evaluation protocol allows us to derive
insights regarding the learning rate and stability of the algorithms and will offer flexibility
to researchers wishing to compare to these benchmarks in the future.

5. Determinism and Stochasticity in the Arcade Learning Environment

In almost all games, the dynamics within Stella itself (the Atari 2600 VCS emulator embed-
ded within the ALE) are deterministic given the agent’s actions. The agent always starts
at the same initial state, and a given sequence of actions always leads to the same out-
come. Bellemare et al. (2015) and Braylan, Hollenbeck, Meyerson, and Miikkulainen (2015)
showed that this determinism can be exploited by agents that simply memorize an effective
sequence of actions, attaining state-of-the-art scores while ignoring the agent’s perceived
state altogether. Such an approach is not likely to be successful beyond the ALE – in most
problems of interest it is difficult, if not impossible, to exactly reproduce a specific state-
action sequence, and closed-loop decision-making is required. An agent that relies upon
the determinism of the ALE may achieve high scores, but may also be highly sensitive to
small perturbations. For example, Hausknecht and Stone (2015) analyzed the role of deter-
minism in the success of HyperNEAT-GGP (Hausknecht et al., 2014). Figure 2 shows that
memorizing-NEAT (solid boxes) performs significantly worse under multiple forms of mild

4By reporting results this way we explicitly count the number of actions taken by the agent in the
environment, making the timescale agents operate a parameter that does not impact the total number of
interactions the agent will have with the environment. Mnih et al. (2015), in their seminal paper, reported
their results with respect to the the number of decisions made by the agent. Their results obtained after 50
million agent steps, with a frame skip of 4, is equivalent to what we call 200 million frames.

5http://www.marcgbellemare.info/static/data/machado17revisiting.zip

532

Revisiting the ALE: Evaluation Protocols and Open Problems

Figure 1: Effects of random initialization on memorizing-
NEAT (solid rectangular boxplots) and randomized-NEAT
(pinched hollow boxplots). Reference scores of each agent
are provided in a fully deterministic environment and a fully
random environment (enforced ✏ = 1 greedy action selec-
tion). Higher aggregate Z-Scores are better.

Epsilon-Greedy Action Selection
✏-greedy action selection chooses a random legal action at
each frame with probability ✏. (Bellemare et al. 2013; Mnih
et al. 2013) used ✏-greedy action selection with ✏ = .05.

Enforcing an ✏-greedy action selection step in ALE would
be difficult to implement in an algorithm-friendly manner.
Two main factors to consider: 1) should ALE overwrite a re-
quested action with a random one or simply insert a random
action after a requested action? and 2) Should ALE report
back to the algorithm that it overwrote/inserted a random
action or should it silently take the random action and re-
port the resulting reward and next state as if nothing spe-
cial happened? The former would require a more complex
agent/ALE interface, while the latter would hide potentially
important information from the agent. Given the dissatisfy-
ing qualities of both options, perhaps the least of all evils is
to encourage some standard value of ✏ and rely on practi-
tioners to implement and self-report.

Figure 2: ✏-Greedy Action Selection: Even small values of
✏ drastically reduce memorizing-NEAT’s performance. ✏ =
0 corresponds to the entirely deterministic agent while ✏ = 1
is a completely random agent.

Figure 2 indicates that ✏-greedy action selection is effec-
tive at derailing memorizing-NEAT even at small values of
✏ such as 0.005. Perhaps the prior practice of using ✏ = .05
could be relaxed, leading to increased agent performance.

Figure 3: ✏-Repeat Action Selection has the most detrimen-
tal effects towards memorizing-NEAT and the least effect on
randomized-NEAT.

Epsilon-Repeat Action Selection
Rather than choosing an entirely random action with prob-
ability ✏, ALE could instead repeat the last requested action
for an extra frame. This would have a randomizing effect for
all but the most degenerate of policies.1 Additionally, as Fig-
ure 3 shows, repeating a selected action is less detrimental
than selecting an action entirely at random. Implementation-
wise, enforcing randomized action repeats in ALE would
have the same complications as enforcing ✏-greedy action
selection. Figure 3 confirms that ✏-repeat action selection is
just as effective as ✏-greedy action selection at degrading
memorizing-NEAT’s performance but has very little effect
on randomized-NEAT.

Discussion
Any form of forced randomness that does not come from the
environment will necessarily degrade the performance of a
learning agent. Of the different methods for adding stochas-
ticity to Atari 2600 games, ✏-repeat action selection best fits
the desired criteria: it has the most detrimental effects to-
wards memorizing agents and is the least detrimental to al-
ready randomized agents.

In the future, perhaps the best way to overcome the Atari
2600’s determinism is through two-player games (or com-
petitions) in which randomness stems from the other player.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. J. Artif. Intell. Res. (JAIR) 47:253–
279.
Hausknecht, M.; Lehman, J.; Miikkulainen, R.; and Stone,
P. 2013. A neuroevolution approach to general atari game
playing. In IEEE Transactions on Computational Intelli-
gence and AI in Games.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing atari with deep reinforcement learning. CoRR
abs/1312.5602.

1A policy that only selects a single action would be unaffected.

20

Figure 1: Effects of random initialization on memorizing-
NEAT (solid rectangular boxplots) and randomized-NEAT
(pinched hollow boxplots). Reference scores of each agent
are provided in a fully deterministic environment and a fully
random environment (enforced ✏ = 1 greedy action selec-
tion). Higher aggregate Z-Scores are better.

Epsilon-Greedy Action Selection
✏-greedy action selection chooses a random legal action at
each frame with probability ✏. (Bellemare et al. 2013; Mnih
et al. 2013) used ✏-greedy action selection with ✏ = .05.

Enforcing an ✏-greedy action selection step in ALE would
be difficult to implement in an algorithm-friendly manner.
Two main factors to consider: 1) should ALE overwrite a re-
quested action with a random one or simply insert a random
action after a requested action? and 2) Should ALE report
back to the algorithm that it overwrote/inserted a random
action or should it silently take the random action and re-
port the resulting reward and next state as if nothing spe-
cial happened? The former would require a more complex
agent/ALE interface, while the latter would hide potentially
important information from the agent. Given the dissatisfy-
ing qualities of both options, perhaps the least of all evils is
to encourage some standard value of ✏ and rely on practi-
tioners to implement and self-report.

Figure 2: ✏-Greedy Action Selection: Even small values of
✏ drastically reduce memorizing-NEAT’s performance. ✏ =
0 corresponds to the entirely deterministic agent while ✏ = 1
is a completely random agent.

Figure 2 indicates that ✏-greedy action selection is effec-
tive at derailing memorizing-NEAT even at small values of
✏ such as 0.005. Perhaps the prior practice of using ✏ = .05
could be relaxed, leading to increased agent performance.

Figure 3: ✏-Repeat Action Selection has the most detrimen-
tal effects towards memorizing-NEAT and the least effect on
randomized-NEAT.

Epsilon-Repeat Action Selection
Rather than choosing an entirely random action with prob-
ability ✏, ALE could instead repeat the last requested action
for an extra frame. This would have a randomizing effect for
all but the most degenerate of policies.1 Additionally, as Fig-
ure 3 shows, repeating a selected action is less detrimental
than selecting an action entirely at random. Implementation-
wise, enforcing randomized action repeats in ALE would
have the same complications as enforcing ✏-greedy action
selection. Figure 3 confirms that ✏-repeat action selection is
just as effective as ✏-greedy action selection at degrading
memorizing-NEAT’s performance but has very little effect
on randomized-NEAT.

Discussion
Any form of forced randomness that does not come from the
environment will necessarily degrade the performance of a
learning agent. Of the different methods for adding stochas-
ticity to Atari 2600 games, ✏-repeat action selection best fits
the desired criteria: it has the most detrimental effects to-
wards memorizing agents and is the least detrimental to al-
ready randomized agents.

In the future, perhaps the best way to overcome the Atari
2600’s determinism is through two-player games (or com-
petitions) in which randomness stems from the other player.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. J. Artif. Intell. Res. (JAIR) 47:253–
279.
Hausknecht, M.; Lehman, J.; Miikkulainen, R.; and Stone,
P. 2013. A neuroevolution approach to general atari game
playing. In IEEE Transactions on Computational Intelli-
gence and AI in Games.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing atari with deep reinforcement learning. CoRR
abs/1312.5602.

1A policy that only selects a single action would be unaffected.

20

Figure 1: Effects of random initialization on memorizing-
NEAT (solid rectangular boxplots) and randomized-NEAT
(pinched hollow boxplots). Reference scores of each agent
are provided in a fully deterministic environment and a fully
random environment (enforced ✏ = 1 greedy action selec-
tion). Higher aggregate Z-Scores are better.

Epsilon-Greedy Action Selection
✏-greedy action selection chooses a random legal action at
each frame with probability ✏. (Bellemare et al. 2013; Mnih
et al. 2013) used ✏-greedy action selection with ✏ = .05.

Enforcing an ✏-greedy action selection step in ALE would
be difficult to implement in an algorithm-friendly manner.
Two main factors to consider: 1) should ALE overwrite a re-
quested action with a random one or simply insert a random
action after a requested action? and 2) Should ALE report
back to the algorithm that it overwrote/inserted a random
action or should it silently take the random action and re-
port the resulting reward and next state as if nothing spe-
cial happened? The former would require a more complex
agent/ALE interface, while the latter would hide potentially
important information from the agent. Given the dissatisfy-
ing qualities of both options, perhaps the least of all evils is
to encourage some standard value of ✏ and rely on practi-
tioners to implement and self-report.

Figure 2: ✏-Greedy Action Selection: Even small values of
✏ drastically reduce memorizing-NEAT’s performance. ✏ =
0 corresponds to the entirely deterministic agent while ✏ = 1
is a completely random agent.

Figure 2 indicates that ✏-greedy action selection is effec-
tive at derailing memorizing-NEAT even at small values of
✏ such as 0.005. Perhaps the prior practice of using ✏ = .05
could be relaxed, leading to increased agent performance.

Figure 3: ✏-Repeat Action Selection has the most detrimen-
tal effects towards memorizing-NEAT and the least effect on
randomized-NEAT.

Epsilon-Repeat Action Selection
Rather than choosing an entirely random action with prob-
ability ✏, ALE could instead repeat the last requested action
for an extra frame. This would have a randomizing effect for
all but the most degenerate of policies.1 Additionally, as Fig-
ure 3 shows, repeating a selected action is less detrimental
than selecting an action entirely at random. Implementation-
wise, enforcing randomized action repeats in ALE would
have the same complications as enforcing ✏-greedy action
selection. Figure 3 confirms that ✏-repeat action selection is
just as effective as ✏-greedy action selection at degrading
memorizing-NEAT’s performance but has very little effect
on randomized-NEAT.

Discussion
Any form of forced randomness that does not come from the
environment will necessarily degrade the performance of a
learning agent. Of the different methods for adding stochas-
ticity to Atari 2600 games, ✏-repeat action selection best fits
the desired criteria: it has the most detrimental effects to-
wards memorizing agents and is the least detrimental to al-
ready randomized agents.

In the future, perhaps the best way to overcome the Atari
2600’s determinism is through two-player games (or com-
petitions) in which randomness stems from the other player.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. J. Artif. Intell. Res. (JAIR) 47:253–
279.
Hausknecht, M.; Lehman, J.; Miikkulainen, R.; and Stone,
P. 2013. A neuroevolution approach to general atari game
playing. In IEEE Transactions on Computational Intelli-
gence and AI in Games.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing atari with deep reinforcement learning. CoRR
abs/1312.5602.

1A policy that only selects a single action would be unaffected.

20

Figure 2: Final performance of a HyperNEAT agent under various models of stochastic-
ity in ALE. Each plot corresponds to a different stochasticity model. Retangular boxplots
correspond to memorizing-NEAT while hollow, pinched boxplots correspond to randomized-
NEAT (Hausknecht et al., 2014). Each boxplot represents a single evaluation of 61 Atari
2600 games. Z-Score normalization is applied to normalize the per-game scores. The agent’s
overall performance is depicted in the y-axis while the amount of stochasticity in the envi-
ronment increases along the x-axis. The first figure depicts the impact of random no-ops
at the beginning of the game. Reference scores for a fully deterministic and fully random
environments are provided. The second graph depicts the performance of both algorithms
when forced to select actions ε-greedily for different values of ε. The third graph depicts the
performance of both algorithms when forced to repeat the previous action with probability ε
(equivalent to sticky actions). Reproduced from the work of Hausknecht and Stone (2015).

stochasticity, whereas randomized-NEAT (hollow, pinched boxes), which is trained with
some stochastic perturbations, performs worse in the deterministic setting, but is more ro-
bust to various forms of stochasticity. As an evaluation platform, the deterministic ALE
does not effectively distinguish between agents that learn robust, closed-loop policies from
brittle memorization-based agents.

Recognizing this limitation in earlier versions of the ALE, many researchers have aug-
mented the standard behavior of the ALE to evaluate the robustness of their agents and
to discourage memorization (e.g., random frame skips, Brockman et al., 2016; injecting
stochasticity, Hausknecht & Stone, 2015; no-ops, Mnih et al., 2015; human starts, Nair
et al., 2015). Again, this wide range of experimental protocols makes direct comparison
of results difficult. We believe the research community would benefit from a single stan-
dard protocol that empirically distinguishes between brittle, open-loop solutions and robust,
closed-loop solutions.

In this section we discuss the Brute (first briefly introduced by Bellemare et al., 2015)
as an example of an algorithm that explicitly and effectively exploits the environment’s de-
terminism. We present results in five Atari 2600 games comparing the Brute’s performance
with traditionally successful reinforcement learning methods. We then introduce the sticky
actions method for injecting stochasticity into the ALE and show that it effectively distin-
guishes the Brute from methods that learn more robust policies. We also discuss pros and
cons of several alternative experimental protocols aimed at discouraging open-loop policies,
ultimately proposing sticky actions as a standard training and evaluation protocol, which
is already incorporated in the latest versions of the Arcade Learning Environment.

533

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

Game The Brute Sarsa(λ) + Blob-PROST DQN

Asterix 6,909 (1,018) 4,173 (872) 3,501 (420)
Beam Rider 1,132 (178) 2,098 (508) 4,687 (704)
Freeway 1.1 (0.4) 32.1 (0.4) 32.2 (0.1)
Seaquest 621 (192) 1,340 (245) 1,397 (215)
Space Invaders 1,432 (226) 723 (86) 673 (18)

Table 1: The Brute’s performance compared to Sarsa(λ) + Blob-PROST and DQN in the
deterministic Arcade Learning Environment. Standard deviation over trials is reported
between parenthesis (we evaluated 24 trials for Sarsa(λ) + Blob-PROST and the Brute,
and 5 trials for DQN). See text for details.

5.1 The Brute

The Brute is an algorithm designed to exploit features of the original Arcade Learning
Environment. Although developed independently by some of this article’s authors, it shares
many similarities with the trajectory tree method of Kearns, Mansour, and Ng (1999). The
Brute uses the agent’s trajectory ht = a1, o1, a2, o2, . . . , ot as state representation, assigning
individual values to each state. Because of the ALE’s determinism, a single sample from
each state-action pair is sufficient for a perfect estimate of the agent’s return up to that
point. The Brute maintains a partial history tree that contains all visited histories. Each
node, associated with a history, maintains an action-conditional transition function and a
reward function. The Brute estimates the value for any history-action pair using bottom-up
dynamic programming. The agent follows the best trajectory found so far, with infrequent
random actions used to search for better trajectories.

In order to be able to apply the Brute to stochastic environments, our implementation
maintains the maximum likelihood estimate for both transition and reward functions. We
provide a full description of the Brute in Appendix A.

5.1.1 Empirical Evaluation

We evaluated the performance of the Brute on the five training games proposed by Belle-
mare, Naddaf, et al. (2013). The average score obtained by the Brute, as well as of DQN
and Sarsa(λ) + Blob-PROST, are presented in Table 1. Agents interacted with the en-
vironment for 50 million frames and the numbers reported are the average scores agents
obtained in the last 100 episodes played while learning. We discuss our experimental setup
in Appendix B.

The Brute is crude but we see that it leads to competitive performance in a number of
games. In fact, Bellemare et al. (2015), using a different evaluation protocol, report that
the Brute outperformed the best learning method at the time on 45 out of 55 Atari 2600
games. However, as we will see, this performance critically depends on the environment’s
determinism. In the next section we discuss how we modified the ALE to introduce a form
of stochasticity we call sticky actions; and we show that the Brute fails when small random
perturbations are introduced.

534

Revisiting the ALE: Evaluation Protocols and Open Problems

Input

Execution
!

1 - !

! !

1 - !

Figure 3: Left. Interaction between the environment’s input and the action it executes.
Different colors represent different actions, boldface arrows indicate time steps at which
past execution and input disagree. With probability ς, the agent’s input is ignored and
the immediately preceding action is instead repeated. Vertical dotted lines indicate frame
skipping boundaries; note that these are for illustration only, as our approach does not
depend on frame skipping. Right. Q*bert is one game where different stochasticity
models have significantly different effects.

5.2 Sticky Actions

This section introduces sticky actions, our approach to injecting stochasticity into the ALE.
This approach also evaluates the robustness of learned policies. Its design is based on the
following desiderata:

• the stochasticity should be minimally non-Markovian with respect to the environment,
i.e., the action to be executed by the emulator should be conditioned only on the action
chosen by the agent and on the previous action executed by the emulator;

• the difficulty of existing tasks should not be changed, i.e., algorithms that do not rely
on the environment’s determinism should not have their performance hindered by the
introduction of stochasticity; and

• it should be easy to implement in the ALE, not requiring changes inside the Stella
emulator, but only on the framework itself.

In sticky actions there is a stickiness parameter ς, the probability at every time step
that the environment will execute the agent’s previous action again, instead of the agent’s
new action. More specifically, at time step t the agent decides to execute action a; however,
the action At that the environment in fact executes is:

At =

{
a, with prob. 1− ς,

at−1, with prob. ς.

In other words, if ς = 0.25, there is 25% chance the environment will not execute the desired
action right away. Figure 3 (left) illustrates this process.

Notice that if an agent decides to select the same action for several time steps, the time
it will take to have this action executed in the environment follows a geometric distribution.
The probability the previous action is executed k times before the new action is executed
is ςk(1− ς).

Sticky actions are different from random delays because, in the former, the agent can
change its mind at any time by sending a new action to the emulator. To see why this mat-
ters, consider the game Q*bert, where a single wrong action may cause the agent to jump

535

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

Game
The Brute Sarsa(λ) + Blob-PROST DQN

Determin. Stochast. Determin. Stochast. Determin. Stochast.

Asterix 6909 (1018) 308 (31) 4173 (872) 3411 (414) 3501 (420) 3123 (96)
Beam Rider 1132 (178) 428 (18) 2098 (508) 1851 (407) 4687 (704) 4552 (849)
Freeway 1.1 (0.4) 0.0 (0.0) 32.1 (0.4) 31.8 (0.3) 32.2 (0.1) 31.6 (0.7)
Seaquest 621 (192) 81 (7) 1340 (245) 1204 (190) 1397 (215) 1431 (162)
Space Invaders 1432 (226) 148 (11) 723 (86) 583 (31) 673 (18) 687 (37)

Table 2: The impact of stochasticity on different algorithms. We report the average over 24
trials for Sarsa(λ) + Blob-PROST and the Brute, and the average over 5 trials for DQN.
Standard deviation over trials is within parentheses. The deterministic setting uses ς = 0.0
while the stochastic setting uses ς = 0.25. See text for details.

off the pyramid and lose a life (Figure 3, right). Under sticky actions, the agent can switch
to a no-op before landing on the edge, knowing that with high probability the action will
not be continued up to the point it pushes the agent off the pyramid. With random delays,
the previous action will be executed until the delay is passed, even if the agent switched to
a no-op before landing on the edge. This increases the likelihood the agent will be forced
to continue moving once it lands on the edge, making it more likely to fall off the pyramid.

Sticky actions also interplay well with other aspects of the Arcade Learning Environ-
ment. Most Atari 2600 games are deterministic and it would be very hard to change their
dynamics. Our approach only impacts which actions are sent to be executed. Sticky ac-
tions also interacts well with frame skipping (c.f. Section 2). With sticky actions, at each
intermediate time step between the skipped frames there is a probability ς of executing
the previous action. Obviously, this applies until the current action is executed, when the
previous action taken and the current action become the same. Figure 3 depicts the process
for a frame skip of 4.

5.2.1 Evaluating the Impact of Sticky Actions

We now re-evaluate the performance of the Brute, DQN and Sarsa(λ) + Blob-PROST under
the sticky actions protocol. The intuition is that the Brute, which exploits the assumption
that the environment is deterministic, should perform worse when stochasticity is intro-
duced. We repeated the experiments from Section 5.1.1, but with ς = 0.25. Table 2 depicts
the algorithms’ performance in both the stochastic environment and in the deterministic
environment.

We can see that the Brute is the only algorithm substantially impacted by the sticky
actions. These results suggest that sticky actions enable us to empirically evaluate an
agent’s robustness to perturbation.

5.3 Alternative Forms of Stochasticity

To conclude this section, we briefly discuss some alternatives to sticky actions, listing their
pros (+) and cons (−). These alternatives fall in two broad categories: start-state methods
and stochastic methods. In start-state methods, the first state of an episode is chosen
randomly, but the deterministic dynamics remain unchanged. These approaches are less
intrusive as the agent retains full control over its actions, but do not preclude exploiting the
environment’s determinism. This may be undesirable in games where the agent can exploit

536

Revisiting the ALE: Evaluation Protocols and Open Problems

game bugs by executing a perfectly timed sequence of actions, as in, for example, the game
Q*bert (Z. Wang, personal communication, 2016). On the other hand, stochastic methods
impact the agent’s ability to control the environment uniformly throughout the episode, and
thus its performance. We believe our proposed method minimizes this impact.

5.3.1 Initial No-ops

When evaluating the agent, begin the episode by taking from 0 to k no-op actions, selected
uniformly at random (Mnih et al., 2015). By affecting the initial emulator state, this
prevents the simplest form of open-loop control.

+ No interference with agent action selection.

− Impact varies across games. For example, initial no-ops have no effect in the game
Freeway.

− The environment remains deterministic beyond the choice of starting state.

− Brute-like methods still perform well.

5.3.2 Random Human Starts

When evaluating the agent, randomly pick one of k predetermined starting states. Nair
et al. (2015), for example, sampled starting states at random from a human’s gameplay.

+ Allows evaluating the agent in very different situations.

− The environment remains deterministic beyond the choice of starting state.

− Brute-like methods still perform well.

− It may be difficult to provide starting states that are both meaningful and free of
researcher bias. For example, scores as reported by Nair et al. (2015) are not compa-
rable across starting states: although in a full game of Pong an agent can score 21
points, from a much later starting state this score is unachievable.

5.3.3 Uniformly Random Action Noise

With a small probability ς, the agent’s selected action is replaced with another action drawn
uniformly from the set of legal actions.

+ Matches the most commonly used form of exploration, ε-greedy.

− May significantly interfere with agent’s policy, for example, when navigating a narrow
cliff such as in the game Q*bert.

5.3.4 Random Frame Skips

This approach, implemented in OpenAI’s Gym (Brockman et al., 2016), is closest to our
method. Each action randomly lasts between k1 and k2 frames.

+ Does not interfere with action selection, only the timing of action execution.

− This restricts agents to using frame skip. In particular, the agent cannot react to
events occurring during an action’s period.

537

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

− Discounting must also be treated more carefully, as this makes the effective discount
factor random.

− The agent has perfect reaction time since its actions always have an immediate effect.

5.3.5 Asynchronous Environment

More complex environments might involve unpredictable communication delays between the
agent and the environment. This is the case in Minecraft (Project Malmo; Johnson et al.,
2016), Starcraft (Ontañón et al., 2013), and robotic RL platforms (Sutton et al., 2011).

+ This setting naturally discourages agents relying on determinism.

− Lacks reproducibility across platforms and hardware.

− With sufficiently fast communications, reverts to a deterministic environment.

5.3.6 Overall Comparison

Our proposed solution, sticky actions, leverages some of the main benefits of other ap-
proaches without most of their drawbacks. It is free from researcher bias, it does not inter-
fere with agent action selection, and it discourages agents from relying on memorization.
The new environment is stochastic for the whole episode, generated results are reproducible,
and our approach interacts naturally with frame skipping and discounting.

6. Benchmark Results in the Arcade Learning Environment

In this section we introduce new benchmark results for DQN and Sarsa(λ) + Blob-PROST
in 60 different Atari 2600 games using sticky actions. It is our hope that future work will
adopt the experimental methodology described in this paper, and thus be able to directly
compare results with this benchmark.

6.1 Experimental Method

We evaluated DQN and Sarsa(λ) + Blob-PROST in 60 different Atari 2600 games. We
report results using the sticky actions option in the new version of the ALE (ς = 0.25),
evaluating the final performance while learning, at 10, 50, 100 and 200 million frames.
We computed score averages of each trial using the 100 final episodes until the specified
threshold, including the episode in which the total is exceeded. We report the average
over 5 trials for DQN and the average over 24 trials for Sarsa(λ) + Blob-PROST. To ease
reproducibility, we listed all the relevant parameters used by Sarsa(λ) + Blob-PROST and
DQN in Appendix B. We encourage researchers to present their results on the ALE in the
same reproducible fashion.

6.2 Benchmark Results

We present excerpts of the obtained results for Sarsa(λ) + Blob-PROST and DQN in
Tables 3 and 4. These tables report the obtained scores in the games we used for training.
These games were originally proposed by Bellemare, Naddaf, et al. (2013). The complete
results are available in Appendix C.

538

Revisiting the ALE: Evaluation Protocols and Open Problems

Game 10M frames 50M frames 100M frames 200M frames

Asterix 2,088.3 (302.5) 3,411.0 (413.5) 3,768.1 (312.5) 4,395.2 (460.7)
Beam Rider 1,149.1 (235.2) 1,851.2 (406.7) 2,116.4 (516.0) 2,231.9 (470.5)
Freeway 28.7 (5.1) 31.8 (0.3) 31.9 (0.2) 31.8 (0.2)
Seaquest 747.9 (222.2) 1,204.2 (189.8) 1,327.1 (337.9) 1,403.1 (301.7)
Space Invaders 458.2 (23.8) 582.9 (30.7) 661.6 (51.4) 759.7 (43.9)

Table 3: Results on the ALE’s original training set using Sarsa(λ) + Blob-PROST. Av-
erages over 24 trials are reported and standard deviation over trials is presented between
parenthesis.

Game 10M frames 50M frames 100M frames 200M frames

Asterix 1,732.6 (314.6) 3,122.6 (96.4) 3,423.4 (213.6) 2,866.8 (1,354.6)
Beam Rider 693.9 (111.0) 4,551.5 (849.1) 4,977.2 (292.2) 5,700.5 (362.5)
Freeway 13.8 (8.1) 31.7 (0.7) 32.4 (0.3) 33.0 (0.3)
Seaquest 311.5 (36.9) 1,430.8 (162.3) 1,573.4 (561.4) 1,485.7 (740.8)
Space Invaders 211.6 (14.8) 686.6 (37.0) 787.2 (173.3) 823.6 (335.0)

Table 4: Results on the ALE’s original training set using DQN. Averages over 5 trials are
reported and standard deviation over trials is presented between parenthesis.

Because we report the algorithms’ performance at different points in time, these results
give us insights about learning progress made by each algorithm. Such analysis allows us to
verify, across 60 games, how often an agent’s performance plummets; as well as how often
agents reach their best performance before 200 million frames.

In most games, Sarsa(λ) + Blob-PROST’s performance steadily increases for the whole
learning period. In only 10% of the games the scores obtained with 200 million frames are
lower than the scores obtained with 100 million frames. This difference is statistically signif-
icant in only 3 games:6 Carnival, Centipede, and Wizard of Wor. However, in most
games we observe diminishing improvements in an agent’s performance. In only 22 out of
60 games we observe statistically significant improvements from 100 million frames to 200
million frames.6 In several games such as Montezuma’s Revenge this stagnation is due to
exploration issues; the agent is not capable of finding additional rewards in the environment.

DQN has much higher variability in the learning process and it does not seem to benefit
much from additional data. DQN obtained its highest scores using 200 million frames in
only 35 out of 60 games. Agents’ performance at 200 million frames was statistically better
than agents’ performance at 100 million frames in only 18 out of 60 games.7 In contrast,
Sarsa(λ) + Blob-PROST achieves its highest scores with 200 million samples in 50 out
of 60 games. We did not observe statistically significant performance decreases for DQN
when comparing agents’ performance at 100 and 200 million samples.7 It is important to
add a caveat that the lack of statistically significant results may be due to our sample
size (n = 5). The t-test’s power may still be too low to detect significant differences in
DQN’s performance. It is worth pointing out that when DQN was originally introduced,
its results consisted of only one independent trial. Despite its high computational cost
we evaluated it on 5 trials in an attempt to evaluate such an important algorithm more

6Welch’s t-test (p < 0.05; n = 24).
7Welch’s t-test (p < 0.05; n = 5).

539

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

thoroughly, addressing the methodological concerns we discussed above and offering a more
reproducible and statistically comparable DQN benchmark.

We also compared the performance of both algorithms in each game to understand
specific trends such as performance plummeting and absence of learning. Performance drops
seem to be algorithm dependent, not game dependent. Centipede is the only game in which
plummeting performance was observed for both DQN and Sarsa(λ) + Blob-PROST. The
decrease in performance we observe in other games occurs only for one algorithm. On the
other hand, we were able to identify some games that seem to be harder than others for
both algorithms. Both algorithms fail to make much progress on games such as Asteroids,
Pitfall, and Tennis. These games generally pose hard exploration tasks to the agent; or
have complex dynamics, demanding better representations capable of accurately encoding
value function approximations.

We can also compare our results to previously published results to verify the impact our
proposed evaluation protocol has in agents’ performance. This new setting does not seem
to benefit a specific algorithm. Sarsa(λ) + Blob-PROST and DQN still present comparable
performance, with each algorithm being better in an equal number of games, as suggested by
Liang et al. (2016). As we already discussed in Section 5, using sticky actions seems to only
substantially hinder the performance of the Brute agent, not having much impact in the
performance of DQN and Sarsa(λ) + Blob-PROST. We observed decreased performance for
DQN and Sarsa(λ) + Blob-PROST only in three games: Breakout, Gopher, and Pong.

7. Open Problems and the Current State-of-the-Art in the ALE

To provide a complete big picture of how the ALE is being used by the research community,
it is also important to discuss the variety of research problems for which the community has
used the ALE as a testbed. In the past few years we have seen several successes showcased
in the ALE, with new results introduced at a rapid pace.

We list five important research directions the community has worked on using the ALE,
and we use current results in the literature to argue that while there has been substantial
progress these problems still remain open. These research directions are:

• representation learning,

• exploration,

• transfer learning,

• model learning, and

• off-policy learning.

7.1 Representation Learning

The ALE was originally introduced to pose the problem of general competency: expecting
a single algorithm to be capable of playing dozens of Atari 2600 games. Therefore, agents
must either use generic encodings capable of representing all games (e.g., Liang et al., 2016),
or be able to automatically learn representations. The latter is obviously more desirable for

540

Revisiting the ALE: Evaluation Protocols and Open Problems

50M 100M 150M 200M

Timestep

0

500

1000

1500

2000

2500

S
co

re

(a) Sarsa(λ) + Blob-PROST

50M 100M 150M 200M

Timestep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
co

re

(b) DQN

Figure 4: Comparison between learning curves of DQN and Sarsa(λ) + Blob-PROST in
Montezuma’s Revenge. Notice the y-axes are not on the same scale. Each point corre-
sponds to the average performance over the last one hundred episodes. Grey curves depict
individual trials. The red curve depicts the average over all trials.

the potential of discovering better representations while alleviating the burden of having
handcrafted features.

Deep Q-Networks (DQN) of Mnih et al. (2015) demonstrate it is possible to learn rep-
resentations jointly with control policies. However, reinforcement learning methods based
on neural networks still have a high sample complexity, requiring at least dozens of mil-
lions of samples before achieving good performance, in part due to the need for learning
this representation. In the results we report, DQN’s performance (Table 9) is better than
Sarsa(λ) + Blob-PROST’s (Table 8) in less than 20% of the games when evaluated at
10 million frames, and achieves comparable performance at 100 million frames. The high
sample complexity also seems to hinder the agents’ performance in specific environments,
such as when non-zero rewards are very sparse. Figure 4 illustrates this point by showing
how DQN sees non-zero rewards occasionally while playing Montezuma’s Revenge (Fig-
ure 4b), but it does not learn to obtain non-zero rewards consistently. Recently, researchers
have tried to address this issue by weighting samples differently, prioritizing those that seem
to provide more information to the agent (Schaul et al., 2016). Another approach is to use
auxiliary tasks that allow agents to start learning a representation before the first extrinsic
reward is observed (Jaderberg et al., 2017); the distributions output by the C51 algorithm
of Bellemare, Dabney, and Munos (2017) may be viewed as a particularly meaningful set of
auxiliary tasks. Finally, intrinsically generated rewards (Bellemare et al., 2016b) may also
provide a useful learning signal which the agent can use to build a representation.

Despite this high sample complexity, DQN and DQN-like approaches remain the best
performing methods overall when compared to simple, hand-coded representations (Liang
et al., 2016). However, these improvements are not as dramatic as they are in other ap-
plications (e.g., computer vision; Krizhevsky, Sutskever, & Hinton, 2012). Furthermore,
this superior performance often comes at the cost of additional tuning, as recently reported
by Islam, Henderson, Gomrokchi, and Precup (2017) in the context of continuous control.
This suggests that there is still room for significant progress on effectively learning good
representations in the ALE.

541

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

Different approaches that learn an internal representation in a sample efficient way have
also been proposed (Veness, Bellemare, Hutter, Chua, & Desjardins, 2015), although they
have not yet been fully explored in this setting. Other directions the research community
has been looking at are the development of better visualization methods (Zahavy, Ben-
Zrihem, & Mannor, 2016), the proposal of algorithms that alleviate the need for specialized
hardware (Mnih et al., 2016), and genetic algorithms (Kelly & Heywood, 2017).

7.2 Planning and Model-Learning

Despite multiple successes of search algorithms in artificial intelligence (e.g., Campbell,
Hoane, & Hsu, 2002; Schaeffer et al., 2007; Silver et al., 2016), planning in the Arcade
Learning Environment remains rare compared to methods that learn policies or value func-
tions (but see the papers by Bellemare, Naddaf, et al., 2013; Guo, Singh, Lee, Lewis,
& Wang, 2014; Jinnai & Fukunaga, 2017; Lipovetzky et al., 2015; Shleyfman, Tuisov, &
Domshlak, 2016, for published planning results in the ALE). Developing heuristics that
are general enough to be successfully applied to dozens of different games is a challenging
problem. The problem’s branching factor and the fact that goals are sometimes thousands
of steps ahead of the agent’s initial state are also major difficulties.

Almost all successes of planning in the ALE use the generative model provided by the
Stella emulator, and so have an exact model of the environment. Learning generative
models is a very challenging task (Bellemare, Veness, & Bowling, 2013; Bellemare, Veness,
& Talvitie, 2014; Chiappa, Racaniere, Wierstra, & Mohamed, 2017; Oh, Guo, Lee, Lewis,
& Singh, 2015) and so far, there has been no clear demonstration of successful planning
with a learned model in the ALE. Learned models tend to be accurate for a small number of
time steps until errors start to compound (Talvitie, 2014). As an example, Figure 5 depicts
rollouts obtained with one of the first generative models trained on the ALE (Bellemare,
Veness, & Bowling, 2013). In this figure we can see how the accuracy of rollouts start to drop
after a few dozen time steps. Probably the most successful example of model learning in
the ALE is due to Oh et al. (2015) who designed an algorithm capable of learning multistep
models that, up to one hundred time steps, appear accurate. These models are able to assist
with exploration, an indication of the models’ accuracy. However, because of compounding
errors, the algorithm still needs to frequently restore its model to the real state of the game.
More recently, Chiappa et al. (2017) showed significant improvements over this original
model, including the ability to plan with the internal state. In both cases, however, the
models are much slower than the emulator itself; designing a fast, accurate model remains
an open problem.

A related open problem is how to plan with an imperfect model. Although an error-free
model might be unattainable, there is plenty of evidence that even coarse value functions
are sufficient for the model-free case (Veness et al., 2015), raising the question of how to
compensate for a model’s flaws. Training set augmentation (Talvitie, 2014, 2017; Venka-
traman, Hebert, & Bagnell, 2015) has shown that it is possible to improve an otherwise
limited model. Similarly, Farahmand, Barreto, and Nikovski (2017) showed that better
planning performance could be obtained by using a value-aware loss function when training
the model. We believe this to be a rich research direction.

542

Revisiting the ALE: Evaluation Protocols and Open Problems

t t + 15 t + 30 t + 60 t + 120

Figure 5: Top row: Rollout obtained with a learned model of the game Freeway. Bottom
row: Ground truth. Small errors can be noticed (t + 15) but major errors are observed
only when the chicken crosses the street (t + 30), as depicted in frame t + 60. The score
is not updated and the chicken does not respawn at the bottom of the screen. Later, cars
start to disappear, as shown in the frame t+ 120. This model was learned using quad-tree
factorization (Bellemare, Veness, & Bowling, 2013).

7.3 Exploration

Most approaches for exploration focus on the tabular case and generally learn models of the
environment (e.g., Brafman & Tennenholtz, 2002; Kearns & Singh, 2002; Strehl & Littman,
2008). The community is just beginning to investigate exploration strategies in model-free
settings when function approximation is required (e.g., Bellemare et al., 2016b; Machado,
Bellemare, & Bowling, 2017; Martin et al., 2017; Osband, Blundell, Pritzel, & Roy, 2016;
Ostrovski et al., 2017; Vezhnevets et al., 2017). This is the setting in which the ALE
lies. Visiting every state does not seem to be a feasible strategy given the large number of
possible states in a game (potentially 21024 different states since the Atari 2600 has 1024 bits
of RAM memory). In several games such as Montezuma’s Revenge and Private Eye
(see Figure 6) even obtaining any feedback is difficult because thousands of actions may
be required before a first positive reward is seen. Given the usual sample constraints (200
million frames), random exploration is highly unlikely to guide the agent towards positive
rewards. In fact, some games such as Pitfall! and Tennis (see Figure 6) pose an even
harder challenge: random exploration is more likely to yield negative rewards than positive
ones. In consequence, many simpler agents learn that staying put is the myopically best
policy, although recent state-of-the-art agents (e.g., Bellemare et al., 2017; Jaderberg et al.,
2017) can sometimes overcome this negative reward gradient.

543

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

(a) Mont. Revenge (b) Private Eye (c) Pitfall! (d) Tennis

Figure 6: Challenging games in the ALE due to poor exploration.

Some researchers recently started trying to address the exploration problem in the ALE.
Machado, Srinivasan, and Bowling (2015) extended optimistic initialization to function
approximation. Oh et al. (2015) and Stadie et al. (2015) learned models to predict which
actions lead the agent to frames observed least often, or with more uncertainty. Bellemare
et al. (2016b), Martin et al. (2017) and Ostrovski et al. (2017) extended state visitation
counters to the case of function approximation. Osband et al. (2016) used randomized
value functions to better explore the environment. Machado et al. (2017) and Vezhnevets
et al. (2017) proposed the use of options to generate decisive agents, avoiding the dithering
commonly observed in random walks. However, despite successes in individual games, such
as Bellemare et al.’s (2016b) success in Montezuma’s Revenge, none of these approaches
has been able to improve, in a meaningful way, agents’ performance in games such as
Pitfall!, where the only successes to date involve some form of apprenticeship (e.g., Hester
et al., 2017).

There is still much to be done to narrow the gap between solutions applicable to the
tabular case and solutions applicable to the ALE. An aspect that still seems to be missing
are agents capable of committing to a decision for extended periods of time, exploring in a
different level of abstraction, something that humans frequently do. Maybe agents should
not be exploring in terms of joystick movements, but in terms of object configurations
and game levels. Finally, for intrinsically difficult games, agents may need some form of
intrinsic motivation (Barto, 2013; Oudeyer, Kaplan, & Hafner, 2007) to keep playing despite
the apparent impossibility of scoring in the game.

7.4 Transfer Learning

Most work in the ALE involves training agents separately in each game, but many Atari
2600 games have similar dynamics. We can expect knowledge transfer to reduce the required
number of samples needed to learn to play similar games. As an example, Space Invaders
and Demon Attack (Figure 7) are two similar games in which the agent is represented by
a spaceship at the bottom of the screen and it is expected to shoot incoming enemies. A
more ambitious research question is how to leverage general video game experience, sharing
knowledge across games that are not directly analogous. In this case, more abstract concepts
could be learned, such as “sometimes new screens are seen when the avatar goes to the edge
of the current screen”.

There are attempts to apply transfer learning in the ALE (Parisotto, Ba, & Salakhut-
dinov, 2016; Rusu et al., 2016). Such attempts are restricted to a dozen games that tend

544

Revisiting the ALE: Evaluation Protocols and Open Problems

(a) Space Invaders (b) Demon Attack

Figure 7: Very similar games in the ALE.

to be similar and generally require an “expert” network first, instead of learning how to
play all games concurrently. Taylor and Stone (2009) have shown one can face negative
transfer depending on the similarity between the tasks being used. It is not clear how this
should be addressed in the ALE. Ideally one would like to have an algorithm automatically
deciding which games are helpful and which ones are not. Finally, current approaches are
only based on the use of neural networks to perform transfer, conflating representation and
policy transfer. It may be interesting to investigate how to transfer each one of these entities
independently. To help explore these issues, the most recent version of the ALE supports
game modes and difficulty settings.

7.4.1 Modes and Difficulties in the Arcade Learning Environment

Originally, many Atari 2600 games had a default game mode and difficulty level that could
be changed by changing physical switches on the console. These mode/difficulty switches
had different consequences such as changing the game dynamics or introducing new actions
(see Figure 8). Until recently, the ALE allowed agents to play games only in their default
mode and difficulty. The newest version of the ALE allows one to select among all different
game modes and difficulties that are single player games. We call each mode-difficulty
pair a flavor.

This new feature opens up research avenues by introducing dozens of new environments
that are very similar. Because the underlying state representations across different flavors
are probably highly related, we believe negative transfer is less likely, giving an easier setup
for transfer. The list of such games the ALE will initially support, and their number of
flavors, is available in Appendix D.

7.5 Off-Policy Learning

Off-policy learning algorithms seem to be brittle when applied to the ALE. Defazio and
Graepel (2014) have reported divergence when using algorithms such as GQ(λ), without
the projection step, and Q-learning.

Besides the proposal of new algorithms that are theoretically better behaved (e.g., Maei
& Sutton, 2010), attempts to reduce divergence in off-policy learning currently consist of
heuristics that try to decorrelate observations, such as the use of an experience replay
buffer and the use of a target network in DQN (Mnih et al., 2015). Recent papers introduce

545

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

(a) Mode 1 (b) Mode 2 (c) Mode 4

Figure 8: Different modes of the game Freeway.

changes in the update rules of Q-Learning to reduce overestimation of value functions (van
Hasselt et al., 2016), new operators that increase the action-gap of value function esti-
mates (Bellemare, Ostrovski, Guez, Thomas, & Munos, 2016a), and more robust off-policy
multi-step algorithms (Harutyunyan, Bellemare, Stepleton, & Munos, 2016; Munos et al.,
2016). However, besides a better theoretical understanding about convergence, stable (and
practical) off-policy learning algorithms with function approximation are still an incom-
plete piece in the literature. So far, the best empirical results reported in the ALE were
obtained with algorithms whose performance is not completely explained by current the-
oretical results. A thorough empirical evaluation of recent off-policy algorithms, such as
GTD (Sutton, Szepesvári, & Maei, 2008), remains lacking.

Addressing the aforementioned issues, either through a convincing demonstration of the
efficacy of the current theoretically sound algorithms for off-policy learning, or through
some of the improvements described above may free us from the increased complexity of
using experience replay and/or target networks. Also, this would allow us to better reuse
samples from policies that are very different from the one being learned.

8. Conclusion

In this article we took a big picture look at how the Arcade Learning Environment is being
used by the research community. We discussed the different evaluation methodologies that
have been employed and how they have been frequently conflated in the literature. To
further the progress in the field, we presented some methodological best practices and a
new version of the Arcade Learning Environment that supports stochasticity and multiple
game modes. We hope such methodological practices, with the new ALE, allow one to
clearly distinguish between the different evaluation protocols. Also, we provide benchmark
results following these methodological best practices that may serve as a point of comparison
for future work in the ALE. We evaluated reinforcement learning algorithms that use linear
and non-linear function approximation, and we hope to have promoted the discussion about
sample efficiency by reporting algorithms’ performance at different moments of the learning
period. In the final part of this paper we concluded the big picture look we took by revisiting
the challenges posed in the ALE’s original article. We summarized the current state-of-the-
art and we highlighted five problems we consider to remain open: representation learning,
planning and model-learning, exploration, transfer learning, and off-policy learning.

546

Revisiting the ALE: Evaluation Protocols and Open Problems

Acknowledgements

The authors would like to thank David Silver and Tom Schaul for their thorough feedback
on an earlier draft, and Rémi Munos, Will Dabney, Mohammad Azar, Hector Geffner, Jean
Harb, and Pierre-Luc Bacon for useful discussions. We thank the anonymous reviewers
for their feedback, which improved the clarity of the paper. We would also like to thank
the several contributors to the Arcade Learning Environment GitHub repository, specially
Nicolas Carion for implementing most of the mode and difficult selection and Ben Goodrich
for providing a Python interface to the ALE. Yitao Liang implemented, with Marlos C.
Machado, the Blob-PROST features. This work was supported by grants from Alberta
Innovates – Technology Futures (AITF), through the Alberta Machine Intelligence Institute
(Amii), and by the NSF grant IIS-1552533. Computing resources were provided by Compute
Canada through CalculQuébec. Marc G. Bellemare performed this work while at DeepMind.

Appendix A. The Brute

The Brute is an algorithm designed to exploit features of the original Arcade Learning
Environment. Although developed independently by some of the authors, it shares many
similarities with the trajectory tree method by Kearns et al. (1999). The Brute relies on
the following observations:

• The ALE is deterministic, episodic, and guarantees a unique starting state, and

• in most Atari 2600 games, purpose matters more than individual actions, i.e., most
Atari 2600 games have important high-level goals, but individual actions have little
impact.

This algorithm is crude but leads to competitive performance in a number of games.

A.1 Determinism and Starting Configurations

A history is a sequence of actions and observations ht = a1, o1, a2, o2, . . . , ot, with the reward
rt included in the observation ot.

8 Histories describe sequential interactions between an
agent and its environment. Although most of reinforcement learning focuses on a Markov
state, a sufficient statistic of the history, we may also reason directly about this history. This
approach is particularly convenient when the environment is partially observable (Even-
Dar, Kakade, & Mansour, 2005; Kearns et al., 1999) or non-Markov (Hutter, 2005). Given
a history ht, the transition function for an action a and subsequent observation o is

Pr(Ht+1 = ht, a, o |Ht = ht, At = a) = Pr(Ot+1 = o |Ht = ht, At = a).

This transition function induces a Markov decision process over histories. This MDP is an
infinite history tree (Figure 9) whose states correspond to distinct histories.

An environment is deterministic if taking action a from history h always produces the
same observation. It is episodic when we have zero-valued, absorbing states called terminal
states. In the episodic setting learning proceeds by means of resets to one or many start

8In the interest of legibility and symmetry, we follow here the convention of beginning histories with an
action. Note, however, that the ALE provides the agent with an initial frame o0.

547

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

O1

A1

A2

O2

H1

H0 = ε

H2

Figure 9: History tree representation of an environment.

O1

A1

A2

O2

H1

H0 = ε

H2

RESET

Figure 10: In the episodic setting, the agent is reset after reaching a terminal state (repre-
sented by a square). We equate this reset with the empty history.

states. Since the agent is informed of this reset, we equate it with the empty history
ε (Figure 10). The Stella emulator is deterministic and, by the nature of Atari 2600 games,
defines an episodic problem.

Depending on the game, both software and hardware resets of the emulator may leave
the system in a number of initial configurations. These different configurations arise from
changing timer values, registers, and memory contents at reset. However, these effects are
game-dependent and difficult to control. In fact, the ALE contains code to avoid these
effects and guarantee a unique starting configuration. We will use the term reproducible
to describe an environment like the ALE that is deterministic, episodic, and has a unique
starting configuration.

Determinism simplifies the learning of an environment’s transition model: a single sam-
ple from each state-action pair is sufficient. Reproducibility allows us to effectively perform
experiments on the history tree, answering questions of the form “what would happen if I
performed this exact sequence of actions?” Not unlike Monte-Carlo tree search in a deter-
ministic domain, each experiment begins at the root of the history tree and selects actions
until a terminal state is reached, observing rewards along the way. Although it is possible to
do the same in any episodic environment, learning stochastic transitions and reward func-
tions is harder, not only because they require more samples but also because the probability
of reaching a particular state (i.e., a history) is exponentially small in its length.

A.2 Value Estimation in a History Tree

According to Bellman’s optimality equation (Bellman, 1957), the optimal value of executing
action a in state s is

q∗(s, a) = r(s, a) + γ
∑
s′

p(s′ | s, a) max
b∈A

q∗(s
′, b).

548

Revisiting the ALE: Evaluation Protocols and Open Problems

H0 = ε

HT

Figure 11: A partially known history tree. Filled gray circles represent actions not yet taken
by the agent, large gray circles unseen observations (when the environment is stochastic).
The most recent episode is highlighted in red. The lower bound q̂(h, a) is updated by
starting at HT and following the path back to the root.

Given a full history tree of finite depth, estimating the value for any history-action pair
is simply a matter of bottom-up dynamic programming, since all states (i.e., histories)
are transient. We can in fact leverage an important property of history trees: Consider a
partially known history tree for a deterministic environment and define q̂(h, a) = −∞ for
any unknown history-action pair. Then the equation

q̂(h, a) = r(h, a) + γ
∑
h′

p(h′ |h, a) max
b∈A

q̂(h′, b)

defines a lower bound on q∗(h, a).

When learning proceeds in episodes, we can update the lower bound q̂(h, a) iteratively.
We begin at the terminal node hT corresponding to the episode just played. We then follow
the episode steps aT−1, hT−1, aT−2, hT−2, . . . in reverse, updating q̂(ht, at) along this path,
up to and including the starting history-action pair (ε, a1). Since no information has been
gathered outside of this path, all other action-values must remain unchanged, and this
procedure is correct. If π(h)

.
= arg maxa∈A q̂(h, a) is stored at each node, then updating

one episode requires time O(T). Figure 11 illustrates the inclusion of a new episode into a
partial history tree.

The Brute maintains a partial history tree that contains all visited histories. Each node,
associated with a history, maintains an action-conditional transition function and reward
function. Our implementation maintains the maximum likelihood estimate for both func-
tions. This allows us to apply the Brute to stochastic environments, although q̂(h, a) is only
guaranteed to be a proper lower bound if the subtree rooted at h is fully deterministic. This
allowed us to apply the exact same algorithm in the context of sticky actions (Section 5).
The value q̂(h, a) is maintained at each node and updated from the maximum likelihood
estimates at the end of each episode, as described above.

549

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

A.3 Narrow Exploration

In Atari 2600 games, most actions have little individual effect. An agent can thus be
more efficient if it focuses on a few narrow, promising trajectories rather than explore every
detail of its environment. We may think of this focus as emphasizing purpose, i.e., achieving
specific goals. The sequence of actions which maximizes the lower bound q̂(h, a) at each
node is one such purposeful path. Since exploration is less relevant at nodes which have
been visited often, we also progressively reduce the rate of exploration in the upper parts
of the history tree.

To encourage the exploration of the most promising trajectory, the Brute’s policy is an
ε-greedy policy over q̂(h, a): with probability 1− ε, we choose one of the maximum-valued
actions (breaking ties uniformly at random), and with probability ε we select an action
uniformly at random. To encourage the exploration of narrow paths, ε is decreased with
the number of visits n(h) to a particular node in the history tree. Specifically,

ε(h) = min

{
0.05

log(n(h) + 1)
, 1.0

}
.

Appendix B. Experimental Setup

We used the same evaluation protocol, and parameters, in all experiments discussed in
this article. In the next section we list the parameters used when defining the task in
the Arcade Learning Environment. Later we discuss the parameters used by the Brute,
Sarsa(λ) + Blob-PROST, and DQN.

B.1 Evaluation Protocol and Arcade Learning Environment Parameters

We report our results aiming at evaluating the robustness of the learned policy and of the
learning algorithm. All results we report for the Brute and for Sarsa(λ) + Blob-PROST
are averaged over 24 trials, and all results we report for DQN are averaged over 5 trials.
We evaluated DQN fewer times because its empirical validation is more expensive due to
its requirement for specialized hardware (i.e., GPUs). We obtained the result of each trial
by averaging over the last 100 episodes that led the agent to observe a total of k frames.
Along this article we reported results for k equals to 10, 50, 100, and 200 million frames.

The unique parameter in the Arcade Learning Environment that is not fixed across all
sections in this article is ς, i.e., the amount of stochasticity present in the environment. We
set ς to 0.0 in Section 5.1.1 while we set ς to 0.25 in the rest of the article. We do not
use game-specific information. Episodes terminate after 5 minutes of gameplay or when
the agent has lost all of its lives. Agents have access to all 18 primitive actions available
in the ALE, not knowing if specific actions have any effect in the environment. Finally,
all algorithms used a frame skip equals to 5 when playing the games. We summarize all
parameters that are shared across all methods in Table 5.

B.2 Parameters used by the Brute

The Brute has only two parameters to be set: γ and ε. We defined γ = 1.0 and ε =
0.005/ log(ni + 2), where ni denotes the number of times we have seen the history hi (see

550

Revisiting the ALE: Evaluation Protocols and Open Problems

Hyperparameter Value Description

Action set Full 18 actions are always available to the agent.
Max. episode length 18,000 Each episode lasts, at most, 5 minutes (18,000 frames).
Frame skip 5 Each action lasts 5 time steps. See Section 2 for details.

Stochasticity (ς) 0.0 or 0.25
We used ς = 0.25 for all experiments, except for those in
Section 5.1.1, in which we used ς = 0.0.

Lives signal used False
We did not use the game-specific information about the
number of lives the agent has at each time step.

Number of episodes
used for evaluation

100
In the continual learning setting, we report the average
score obtained in the last 100 episodes used for learning.

Number of frames
used for learning

10, 50, 100 and
200 million

We report scores obtained after each one of these four
milestones.

Number of trials ran 24 or 5
The Brute and Sarsa(λ) + Blob-PROST were evaluated in
24 trials, DQN was evaluated in 5 trials.

Table 5: Parameters used to evaluate the Brute, DQN, and Sarsa(λ) + Blob-PROST.

Appendix A for details). An important implementation detail is that we used Spooky
Hash9 as our hashing function. We do not average current and previous ALE screens as
other methods do.

B.3 Parameters used by DQN

DQN was ran using the same parameters used in its original paper (Mnih et al., 2015), with
the exception of the frame skip, which we set to 5 after preliminary experiments, and ε,
which we set to 0.01 due to the absence of an evaluation phase. Also, we did not use game-
specific information and we evaluated DQN in the continual learning setting, as discussed
in Section B.1. Table 6 lists the values of all DQN parameters used throughout this article.

We report the parameters the same way Mnih et al. (2015) reported, with an agent-
centric perspective. Thus, the value of the parameters Final expl. frame, Replay memory,
and Replay start size are being reported in terms of the rate at which the agent operates,
regardless of the frame skip value. We use the rate at which the environment operates (i.e.,
200 million frames) to count the number of interactions the agent had with the environment
to allow a fair comparison across algorithms.

B.4 Parameters used by Sarsa(λ) + Blob-PROST

We evaluated Sarsa(λ) + Blob-PROST using α = 0.5, λ = 0.9, and γ = 0.99. Agents
followed an ε-greedy policy (ε = 0.01). We did not sweep most of the parameters, using
the parameters reported by Liang et al. (2016). However, we did verify, in preliminary
experiments, the impact different values of frame skip have in this algorithm. We also
verified whether color averaging impacts agents’ performance. We decide to use a frame skip
of 5 and to average colors. For most games, averaging screen colors significantly improves
the results, while the impact of different number of frames to skip varies across games.
Table 7 summarizes, for Sarsa(λ) + Blob-PROST, all the parameters we use throughout
this article.

9http://burtleburtle.net/bob/hash/spooky.html

551

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

Hyperparameter Value Description

Step-size (α) 0.00025 Step-size used by RMSProp.
Gradient momentum 0.95 Gradient momentum used by RMSProp.
Squared gradient
momentum

0.95
Squared gradient (denominator) momentum used by
RMSProp.

Min squared
gradient

0.01
Constant added to the denominator of the RMSProp
update.

Discount factor (γ) 0.99
Discount factor used in Q-Learning update rule. Rewards
are discounted by how far they are in time.

Initial expl. rate (ε) 1.0 Probability a random action will be taken at each time step.
Final expl. rate (ε) 0.01 Probability a random action will be taken at each time step.
Final expl. frame 1,000,000 Number of steps over which ε is linearly annealead.
Minibatch size 32 Number of samples over which each update is computed.

Replay memory 1,000,000
The samples used in the algorithm’s updates are drawn
from the last 1 million recent frames.

Replay start size 50,000
Number of steps over which a random policy is executed to
first populate the replay memory.

Agent history length 4
Number of most recent frames the agent observed that are
given as input to the network.

Update frequency 4 Frequency with which the target network is updated.

Update frequency of
target network

10,000
Number of actions the agent selects between successive
updates.

Frame pooling True
The observation received consists of the maximum pixel
value between the previous and the current frame.

Number of different
colors

8
NTSC is the color palette in which each screen is encoded
but at the end only the luminance channel is used.

Table 6: Parameters used in the experiments evaluating DQN (Mnih et al., 2015). We report
the parameters the same way Mnih et al. (2015) reported, with an agent-centric perspective.
Thus, the value of the parameters Final expl. frame, Replay memory, and Replay start size
are being reported in terms of the rate at which the agent operates, regardless of the frame
skip value. See reference for more details about the parameters listed below.

Appendix C. Complete Benchmark Results

We extend the results presented in Section 6 (Tables 3 and 4) by reporting algorithms’
performance in 60 games supported by the ALE. We used the evaluation protocol described
in Appendix B when generating the results below. Table 8 summarizes the performance
of Sarsa(λ) + Blob-PROST and Table 9 summarizes DQN’s performance. The games
originally used as training games by each method are highlighted with the † symbol. In
Table 8, the list of games we used for training Sarsa(λ) + Blob-PROST is longer than the
one in Table 9 because we are reporting the training games used by Liang et al. (2016),
which was the setting we initially replicated. We put an asterisk on the results of Sarsa(λ) +
Blob-PROST in the game Journey Escape because it is the average over 23 trials instead
of the regular 24 trials. One of our executions crashed and this particular result might be
slightly biased in the event that the crash was correlated with the agent’s performance in
the episode.

552

Revisiting the ALE: Evaluation Protocols and Open Problems

Hyperparameter Value Description

Step-size (α) 0.50

Step-size used in Sarsa(λ) update rule. At every time step
we divide α by the largest number of active features we
have seen so far. This reduces the step-size, avoiding
divergence, while ensuring the step-size will never increase.

Discount factor (γ) 0.99
Discount factor used in Sarsa(λ) update rule. Rewards are
discounted by how far they are in time.

Exploration rate (ε) 0.01 Probability a random action will be taken at each time step.
Eligibility traces
decay rate (λ)

0.90
Used in Sarsa(λ) update rule. Encodes the trade-off
between bias and variance.

Eligibility threshold 0.01
We set to 0 any value in the eligibility trace vector that
becomes smaller than this threshold.

Feature set Blob-PROST
Originally introduced by Liang et al. (2016), Blob-PROST
stands for Blob Pairwise Relative Offsets in Space and
Time.

Color Averaging True
The observation received is the average between the
previous and the current frame.

Grid width 4
Each row of the game screen is divided into 40 tiles that
are 4 pixels wide each.

Grid height 7
Each column of the game screen is divided into 30 tiles that
are 7 pixels high each.

Neighborhood size 6 Tolerance used to detect blobs.
Number of different
colors

128 NTSC is the color palette in which each screen is encoded.

Table 7: Parameters used in the experiments evaluating Sarsa(λ) + Blob-PROST (Liang
et al., 2016). See reference for more details about the parameters listed below.

553

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

Game 10M frames 50M frames 100M frames 200M frames

Alien 1,910.2 (557.4) 3,255.3 (562.8) 3,753.5 (712.0) 4,272.7 (773.2)
Amidar 210.4 (42.6) 332.3 (64.6) 414.6 (84.2) 411.4 (177.4)
Assault 435.9 (94.8) 651.9 (148.7) 851.7 (185.4) 1,049.4 (182.7)

Asterix† 2,146.8 (364.8) 3,417.8 (445.3) 3,767.8 (354.9) 4,358.0 (431.6)
Asteroids 1,350.1 (259.5) 1,378.1 (233.0) 1,443.4 (218.1) 1,524.1 (191.2)
Atlantis 39,731.2 (8,187.9) 41,833.5 (23,356.0) 36,289.2 (8,868.5) 38,057.5 (8,455.2)
Bank Heist 256.2 (66.6) 357.6 (72.1) 394.8 (64.8) 419.7 (60.5)
Battle Zone 11,009.2 (4,417.2) 19,178.3 (3,293.4) 22,419.2 (4,204.4) 25,089.6 (4,845.9)

Beam Rider† 1,200.2 (242.9) 1,859.2 (391.9) 2,126.1 (523.7) 2,234.0 (471.5)
Berzerk 473.5 (82.1) 542.5 (84.4) 572.1 (70.2) 622.3 (70.1)
Bowling 62.2 (5.7) 61.7 (3.5) 62.9 (3.5) 64.4 (4.3)
Boxing 34.8 (13.4) 70.1 (15.2) 79.1 (9.7) 78.1 (16.5)

Breakout† 12.3 (1.5) 16.8 (1.5) 18.6 (1.7) 20.2 (1.9)
Carnival 2,206.2 (855.7) 4,207.5 (857.7) 4,959.7 (935.9) 3,489.8 (2,621.5)
Centipede 8,226.7 (950.4) 12,968.2 (1,492.9) 15,599.6 (1,341.1) 1,189.3 (1,040.4)
Chopper Comm. 1,647.5 (389.2) 2,080.9 (562.3) 2,319.8 (725.7) 2,402.8 (806.5)
Crazy Climber 32,518.8 (3,868.1) 49,041.2 (5,015.8) 55,184.2 (5,559.2) 60,471.0 (5,534.9)
Defender 5,775.3 (890.9) 7,343.6 (1,607.2) 8,863.3 (1,380.2) 10,778.6 (1,509.0)
Demon Attack 385.4 (144.8) 628.9 (96.9) 921.5 (91.5) 1,272.2 (253.6)
Double Dunk -10.6 (1.4) -8.5 (0.8) -7.6 (0.6) -6.9 (0.5)
Elevator Action 3,228.9 (4,415.4) 8,797.3 (5,832.1) 9,981.8 (5,310.2) 11,147.8 (4,291.3)

Enduro† 120.3 (49.8) 241.3 (28.6) 275.1 (13.0) 294.0 (8.0)
Fishing Derby -87.4 (4.9) -76.5 (6.3) -73.2 (6.7) -69.2 (8.9)

Freeway† 29.9 (1.6) 31.8 (0.3) 31.9 (0.3) 31.8 (0.3)
Frostbite 1,375.0 (939.1) 2,470.7 (1,241.6) 2,815.3 (1,218.0) 3,207.2 (1,040.4)
Gopher 2,961.1 (495.3) 4,631.9 (454.0) 5,259.9 (535.2) 5,555.4 (594.1)
Gravitar 629.8 (201.5) 863.5 (255.6) 979.5 (340.1) 1,150.0 (397.5)
H.E.R.O. 9,452.6 (2,433.1) 12,909.6 (2,686.0) 14,072.7 (3,382.5) 14,910.2 (3,887.6)
Ice Hockey -2.2 (1.2) 3.5 (2.1) 8.2 (3.1) 12.6 (3.5)
James Bond 461.1 (187.4) 599.1 (230.2) 659.1 (243.5) 719.8 (292.0)
Journey Escape -5,592.9∗ (1,253.2)∗ -5,121.6∗ (5,952.6)∗ -4,654.0∗ (5,446.3)∗ -2,338.9∗ (952.8)∗

Kangaroo 1,305.6 (555.7) 2,442.5 (1,282.4) 3,152.8 (1,546.3) 4,225.8 (2,046.9)
Krull 4,922.1 (1,703.7) 6,762.2 (5,168.9) 7,491.5 (5,823.9) 8,894.9 (8,482.7)
Kung-Fu Master 20,679.3 (2,246.8) 23,548.3 (2,926.8) 26,745.6 (3,281.5) 29,915.5 (3,647.5)
Mont. Revenge 117.1 (175.3) 520.8 (486.7) 567.7 (588.9) 574.2 (590.1)
Ms. Pac-Man 2,626.7 (521.1) 3,446.0 (462.9) 3,916.6 (542.5) 4,440.5 (616.4)
Name This Game 4,626.2 (284.3) 6,164.2 (357.0) 6,219.8 (1,821.2) 6,750.3 (1,376.5)
Phoenix 2,319.4 (534.0) 4,579.9 (303.9) 4,247.3 (1,360.1) 5,197.0 (374.5)
Pitfall! -0.3 (1.2) -0.1 (0.3) 0.0 (0.0) 0.0 (0.0)

Pong† 1.8 (3.9) 10.9 (3.3) 12.6 (2.8) 14.5 (2.0)
Pooyan 1,347.2 (121.5) 1,820.5 (107.5) 2,006.7 (159.4) 2,197.8 (133.7)
Private Eye 36.7 (46.3) 36.2 (49.2) 27.9 (44.9) 44.2 (49.3)

Q*bert† 3,535.9 (745.2) 4,605.7 (567.3) 5,931.9 (1,174.4) 6,992.9 (1,479.0)
River Raid 4,141.9 (574.4) 7,399.5 (492.5) 8,988.3 (1,154.3) 10,639.2 (1,882.6)
Road Runner 18,258.0 (2,876.9) 23,380.2 (5,940.3) 28,453.4 (3,227.4) 31,493.9 (4,160.7)
Robotank 21.3 (3.4) 25.0 (2.8) 26.3 (2.7) 27.3 (2.3)

Seaquest† 788.2 (225.2) 1,201.6 (178.4) 1,319.2 (356.5) 1,402.9 (328.3)
Skiing -29,965.4 (59.9) -29,955.6 (50.7) -29,955.9 (57.7) -29,940.2 (102.2)
Solaris 480.9 (185.1) 585.5 (213.3) 704.2 (264.3) 807.3 (216.2)

Space Invaders† 466.2 (30.4) 579.1 (36.5) 656.7 (67.6) 759.4 (58.7)
Star Gunner 1,002.1 (64.6) 1,014.1 (72.7) 1,058.1 (101.0) 1,107.6 (125.6)
Tennis -0.1 (0.1) -0.1 (0.0) -0.1 (0.0) -0.1 (0.0)
Time Pilot 3,439.5 (503.4) 3,997.8 (436.4) 4,112.0 (289.4) 4,221.5 (402.1)
Tutankham 122.2 (3.5) 152.7 (16.0) 88.9 (64.1) 91.5 (63.3)
Up and Down 10,580.2 (3,446.4) 10,049.1 (9,340.7) 11,514.5 (11,988.8) 15,400.1 (14,864.6)
Venture 0.0 (0.0) 0.0 (0.0) 53.8 (263.7) 139.3 (323.2)
Video Pinball 11,271.1 (1,142.7) 13,259.3 (1,327.2) 14,334.7 (1,097.4) 13,398.0 (3,643.7)
Wizard of Wor 1,975.9 (471.4) 2,738.8 (613.3) 3,247.5 (713.0) 2,043.5 (801.3)
Yar’s Revenge 4,961.2 (1,200.2) 5,460.2 (1,145.0) 6,073.9 (1,052.9) 7,257.8 (1,884.8)
Zaxxon 1,180.9 (618.8) 4,539.6 (1,401.0) 6,701.4 (1,974.3) 8,166.8 (3,979.8)

Table 8: Sarsa(λ) + Blob-PROST results across 60 games. See Appendix B for details.

554

Revisiting the ALE: Evaluation Protocols and Open Problems

Game 10M frames 50M frames 100M frames 200M frames

Alien 600.5 (23.6) 1,426.6 (81.6) 1,952.6 (216.0) 2,742.0 (357.5)
Amidar 91.6 (10.5) 414.2 (53.6) 621.6 (92.6) 792.6 (220.4)
Assault 688.9 (16.0) 1,327.5 (83.9) 1,433.9 (126.6) 1,424.6 (106.8)

Asterix† 1,732.6 (314.6) 3,122.6 (96.4) 3,423.4 (213.6) 2,866.8 (1,354.6)
Asteroids 301.4 (14.3) 458.1 (28.5) 458.0 (18.9) 528.5 (37.0)
Atlantis 6,639.4 (208.4) 51,324.4 (8,681.7) 291,134.7 (31,575.2) 232,442.9 (128,678.4)
Bank Heist 32.3 (6.5) 448.2 (104.8) 740.7 (130.6) 760.0 (82.3)
Battle Zone 2,428.3 (200.4) 10,838.4 (1,807.6) 15,048.5 (2,372.0) 20,547.5 (1,843.0)

Beam Rider † 693.9 (111.0) 4,551.5 (849.1) 4,977.2 (292.2) 5,700.5 (362.5)
Berzerk 434.5 (51.2) 457.5 (9.4) 470.0 (24.5) 487.2 (29.9)
Bowling 28.7 (0.8) 29.4 (1.8) 32.8 (3.6) 33.6 (2.7)
Boxing 18.6 (3.8) 71.7 (2.7) 77.9 (0.5) 72.7 (4.9)
Breakout 14.2 (1.2) 75.1 (4.3) 57.9 (14.6) 35.1 (22.6)
Carnival 588.5 (47.0) 2,131.6 (534.3) 4,621.9 (191.0) 4,803.8 (189.0)
Centipede 3,075.2 (381.1) 2,280.0 (184.2) 2,555.2 (195.1) 2,838.9 (225.3)
Chopper Comm. 841.4 (144.3) 2,104.8 (327.7) 3,288.1 (339.2) 4,399.6 (401.5)
Crazy Climber 43,716.6 (2,571.2) 80,599.6 (4,209.8) 64,807.3 (26,100.0) 78,352.1 (1,967.3)
Defender 2,409.9 (78.6) 2,525.7 (124.0) 2,711.6 (96.8) 2,941.3 (106.2)
Demon Attack 154.8 (11.5) 3,744.6 (688.9) 4,556.5 (947.2) 5,182.0 (778.0)
Double Dunk -20.9 (0.3) -18.4 (1.2) -15.6 (1.6) -8.7 (4.5)
Elevator Action 6.7 (13.3) 4.5 (9.0) 4.7 (9.4) 6.0 (10.4)
Enduro 473.2 (22.3) 578.0 (79.6) 597.4 (153.1) 688.2 (32.4)
Fishing Derby -63.1 (7.8) 7.5 (4.1) 12.2 (1.4) 10.2 (1.9)

Freeway† 13.8 (8.1) 31.7 (0.7) 32.4 (0.3) 33.0 (0.3)
Frostbite 241.8 (30.8) 292.5 (28.8) 274.3 (8.8) 279.6 (13.9)
Gopher 679.6 (35.2) 2,233.7 (123.1) 2,988.8 (514.4) 3,925.5 (521.4)
Gravitar 79.5 (8.0) 109.3 (3.1) 118.5 (22.0) 154.9 (17.7)
H.E.R.O. 1,667.9 (1,107.8) 11,564.0 (3,722.4) 14,684.7 (1,840.6) 18,843.3 (2,234.9)
Ice Hockey -15.1 (0.3) -8.9 (1.7) -4.4 (2.0) -3.8 (4.7)
James Bond 30.7 (6.0) 191.4 (144.9) 517.2 (35.8) 581.0 (21.3)
Journey Escape -2,220.0 (176.1) -2,409.7 (341.2) -2,959.0 (383.9) -3,503.0 (488.5)
Kangaroo 298.6 (56.1) 8,878.8 (2,886.1) 12,846.9 (688.3) 12,291.7 (1,115.9)
Krull 4,424.7 (492.7) 6,035.6 (248.6) 6,589.8 (264.4) 6,416.0 (128.5)
Kung-Fu Master 9,468.1 (1,975.9) 17,537.4 (1,128.8) 17,772.3 (3,423.3) 16,472.7 (2,892.7)
Mont. Revenge 0.2 (0.4) 0.2 (0.4) 0.0 (0.0) 0.0 (0.0)
Ms. Pac-Man 1,675.5 (41.9) 2,626.1 (139.8) 2,964.9 (100.8) 3,116.2 (141.2)
Name This Game 2,265.6 (171.0) 4,105.4 (932.3) 4,105.6 (653.5) 3,925.2 (660.2)
Phoenix 1,501.2 (278.1) 3,174.0 (543.5) 2,607.1 (644.1) 2,831.0 (581.0)
Pitfall! -24.9 (14.8) -28.2 (13.0) -23.3 (9.6) -21.4 (3.2)
Pong -15.9 (1.0) 12.2 (1.0) 15.2 (0.7) 15.1 (1.0)
Pooyan 2,278.9 (273.7) 3,528.9 (256.3) 3,387.8 (182.8) 3,700.4 (349.5)
Private Eye 81.6 (15.6) 60.4 (92.4) 1,447.4 (2,567.9) 3,967.5 (5,540.6)
Q*bert 674.7 (53.6) 3,142.1 (1,238.7) 7,585.4 (2,787.4) 9,875.5 (1,385.3)
River Raid 3,166.2 (125.2) 8,738.1 (500.0) 10,733.1 (229.9) 10,210.4 (435.0)
Road Runner 14,742.2 (1,553.4) 37,271.7 (1,234.5) 41,918.4 (1,762.5) 42,028.3 (1,492.0)
Robotank 4.1 (0.3) 28.4 (1.4) 38.0 (1.6) 58.0 (6.4)

Seaquest† 311.5 (36.9) 1,430.8 (162.3) 1,573.4 (561.4) 1,485.7 (740.8)
Skiing -20,837.5 (1,550.2) -17,545.5 (4,041.5) -13,365.1 (800.7) -12,446.6 (1,257.9)
Solaris 1,030.2 (40.3) 977.7 (112.5) 783.4 (55.3) 1,210.0 (148.3)

Space Invaders† 211.6 (14.8) 686.6 (37.0) 787.2 (173.3) 823.6 (335.0)
Star Gunner 603.0 (28.0) 1,492.3 (79.7) 11,590.5 (4,658.9) 39,269.9 (5,298.8)
Tennis -23.8 (0.1) -23.9 (0.1) -23.9 (0.0) -23.9 (0.0)
Time Pilot 1,078.8 (60.3) 1,068.1 (138.8) 1,330.7 (177.1) 2,061.8 (228.8)
Tutankham 56.5 (10.0) 64.9 (12.6) 65.1 (11.9) 60.0 (12.7)
Up and Down 4,378.4 (172.5) 6,718.3 (671.2) 5,962.8 (618.7) 4,750.7 (1,007.5)
Venture 24.4 (46.9) 21.4 (15.1) 4.4 (5.4) 3.2 (4.7)
Video Pinball 4,009.3 (271.9) 7,817.0 (1,884.4) 16,626.2 (3,740.6) 15,398.5 (2,126.1)
Wizard of Wor 184.2 (22.0) 1,377.4 (71.0) 1,440.6 (237.3) 2,231.1 (820.8)
Yar’s Revenge 7,261.4 (777.1) 10,344.8 (452.4) 10,312.3 (528.9) 13,073.4 (1,961.8)
Zaxxon 53.5 (51.0) 672.3 (748.5) 1,638.2 (784.0) 3,852.1 (1,120.7)

Table 9: DQN results across 60 games. See Appendix B for details.

555

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

Appendix D. Number of Game Modes and Difficulties in the Games
Supported by the Arcade Learning Environment

Game # Modes # Diffic. Game # Modes # Diffic.

Alien 4 4 Journey Escape 1 2
Amidar 1 2 Kangaroo 2 1
Assault 1 1 Krull 4 1
Asterix 1 1 Kung Fu Master 1 1
Asteroids 33 2 Montezuma Revenge 1 1
Atlantis 4 1 Ms. Pac-Man 4 1
Bank Heist 8 4 Name this Game 3 2
Battle Zone 3 1 Phoenix 1 1
Beam Rider 1 2 Pitfall 1 1
Berzerk 12 1 Pong 2 2
Bowling 3 2 Pooyan 4 1
Boxing 1 4 Private Eye 5 4
Breakout 12 2 Q*bert 1 2
Carnival 1 1 River Raid 1 2
Centipede 2 1 Road Runner 1 1
Chopper Command 2 2 Robot Tank 1 1
Crazy Climber 4 2 Seaquest 1 2
Defender 10 2 Skiing 10 1
Demon Attack 4 2 Solaris 1 1
Double Dunk 16 1 Space Invader 16 2
Elevator Action 1 1 Star Gunner 4 1
Enduro 1 1 Tennis 2 4
Fishing Derby 1 4 Time Pilot 1 3
Freeway 8 2 Tutankham 4 1
Frostbite 2 1 UpNDown 1 4
Gopher 2 2 Venture 1 4
Gravitar 5 1 Video Pinball 2 2
Hero 5 1 Wizard Of Wor 1 2
Ice Hockey 2 4 Yar’s Revenge 4 2
James Bond 2 1 Zaxxon 4 1

Table 10: Atari 2600 games supported by the Arcade Learning Environment and the re-
spective number of modes and difficulties available in each game. Modes only playable by
two-players have been excluded.

556

Revisiting the ALE: Evaluation Protocols and Open Problems

References

Albrecht, S. V., L., J. C., Buckeridge, D. L., Botea, A., Caragea, C., Chi, C., Damoulas,
T., Dilkina, B. N., Eaton, E., Fazli, P., Ganzfried, S., Lindauer, M. T., Machado,
M. C., Malitsky, Y., Marcus, G., Meijer, S., Rossi, F., Shaban-Nejad, A., Thiebaux,
S., Veloso, M. M., Walsh, T., Wang, C., Zhang, J., & Zheng, Y. (2015). Reports on
the 2015 AAAI Workshop Program. AI Magazine, 36 (2), 90–101.

Barto, A. G. (2013). Intrinsic Motivation and Reinforcement Learning. In Intrinsically
Motivated Learning in Natural and Artificial Systems, pp. 17–47. Springer.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq,
A., Green, S., Valdés, V., Sadik, A., Schrittwieser, J., Anderson, K., York, S., Cant,
M., Cain, A., Bolton, A., Gaffney, S., King, H., Hassabis, D., Legg, S., & Petersen, S.
(2016). DeepMind Lab. CoRR, abs/1612.03801.

Bellemare, M. G., Dabney, W., & Munos, R. (2017). A Distributional Perspective on
Reinforcement Learning. In Proceedings of the International Conference on Machine
Learning (ICML), pp. 449–458.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial In-
telligence Research, 47, 253–279.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2015). The Arcade Learning
Environment: An Evaluation Platform for General Agents (Extended Abstract). In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pp. 4148–4152.

Bellemare, M. G., Ostrovski, G., Guez, A., Thomas, P. S., & Munos, R. (2016a). Increasing
the Action Gap: New Operators for Reinforcement Learning. In Proceedings of the
Conference on Artificial Intelligence (AAAI), pp. 1476–1483.

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., & Munos, R. (2016b).
Unifying Count-Based Exploration and Intrinsic Motivation. In Advances in Neural
Information Processing Systems (NIPS), pp. 1471–1479.

Bellemare, M. G., Veness, J., & Bowling, M. (2012a). Investigating Contingency Awareness
using Atari 2600 Games. In Proceedings of the Conference on Artificial Intelligence
(AAAI), pp. 864–871.

Bellemare, M. G., Veness, J., & Bowling, M. (2012b). Sketch-Based Linear Value Function
Approximation. In Advances in Neural Information Processing Systems (NIPS), pp.
2222–2230.

Bellemare, M. G., Veness, J., & Bowling, M. (2013). Bayesian Learning of Recursively
Factored Environments. In Proceedings of the International Conference on Machine
Learning (ICML), pp. 1211–1219.

Bellemare, M. G., Veness, J., & Talvitie, E. (2014). Skip Context Tree Switching. In
Proceedings of the International Conference on Machine Learning (ICML), pp. 1458–
1466.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.

557

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX - A General Polynomial Time Algorithm
for Near-Optimal Reinforcement Learning. Journal of Machine Learning Research, 3,
213–231.

Braylan, A., Hollenbeck, M., Meyerson, E., & Miikkulainen, R. (2015). Frame Skip is a
Powerful Parameter for Learning to Play Atari. In AAAI Workshop on Learning for
General Competency in Video Games.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). OpenAI Gym. CoRR, abs/1507.04296.

Campbell, M., Hoane, Jr., A. J., & Hsu, F.-h. (2002). Deep Blue. Artificial Intelligence,
134 (1-2), 57–83.

Chiappa, S., Racaniere, S., Wierstra, D., & Mohamed, S. (2017). Recurrent Environment
Simulators. In Proceedings of the International Conference on Learning Representa-
tions (ICLR).

Defazio, A., & Graepel, T. (2014). A Comparison of Learning Algorithms on the Arcade
Learning Environment. CoRR, abs/1410.8620.

Even-Dar, E., Kakade, S. M., & Mansour, Y. (2005). Reinforcement Learning in POMDPs
Without Resets. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pp. 690–695.

Farahmand, A.-M., Barreto, A., & Nikovski, D. (2017). Value-Aware Loss Function for
Model-based Reinforcement Learning. In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS), pp. 1486–1494.

Guo, X., Singh, S., Lee, H., Lewis, R. L., & Wang, X. (2014). Deep Learning for Real-Time
Atari Game Play Using Offline Monte-Carlo Tree Search Planning. In Advances in
Neural Information Processing Systems (NIPS), pp. 3338–3346.

Harutyunyan, A., Bellemare, M. G., Stepleton, T., & Munos, R. (2016). Q(λ) with Off-
Policy Corrections. In Proceedings of the International Conference on Algorithmic
Learning Theory (ALT), pp. 305–320.

Hausknecht, M., & Stone, P. (2015). The Impact of Determinism on Learning Atari 2600
Games. In AAAI Workshop on Learning for General Competency in Video Games.

Hausknecht, M. J., Lehman, J., Miikkulainen, R., & Stone, P. (2014). A Neuroevolution
Approach to General Atari Game Playing. IEEE Transactions on Computational
Intelligence and AI in Games, 6 (4), 355–366.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan,
J., Sendonaris, A., Dulac-Arnold, G., Osband, I., Agapiou, J., Leibo, J., & Gruslys,
A. (2018). Deep Q-learning from Demonstrations. In Proceedings of the Conference
on Artificial Intelligence (AAAI).

Hutter, M. (2005). Universal Artificial Intelligence: Sequential Decisions based on Algorith-
mic Probability. Springer.

Islam, R., Henderson, P., Gomrokchi, M., & Precup, D. (2017). Reproducibility of Bench-
marked Deep Reinforcement Learning Tasks for Continuous Control. In ICML Work-
shop on Reproducibility in Machine Learning.

558

Revisiting the ALE: Evaluation Protocols and Open Problems

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., &
Kavukcuoglu, K. (2017). Reinforcement Learning with Unsupervised Auxiliary Tasks.
In Proceedings of the International Conference on Learning Representations (ICLR).

Jinnai, Y., & Fukunaga, A. (2017). Learning to Prune Dominated Action Sequences in
Online Black-Box Planning. In Proceedings of the Conference on Artificial Intelligence
(AAAI), pp. 839–845.

Johnson, M., Hofmann, K., Hutton, T., & Bignell, D. (2016). The Malmo Platform for Artifi-
cial Intelligence Experimentation. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pp. 4246–4247.

Kearns, M. J., Mansour, Y., & Ng, A. Y. (1999). Approximate Planning in Large POMDPs
via Reusable Trajectories. In Advances in Neural Information Processing Systems
(NIPS), pp. 1001–1007.

Kearns, M. J., & Singh, S. P. (2002). Near-Optimal Reinforcement Learning in Polynomial
Time. Machine Learning, 49 (2-3), 209–232.

Kelly, S., & Heywood, M. I. (2017). Emergent Tangled Graph Representations for Atari
Game Playing Agents. In European Conference on Genetic Programming (EuroGP),
pp. 64–79.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. In Advances in Neural Information Processing Sys-
tems (NIPS), pp. 1106–1114.

Levine, J., Congdon, C. B., Ebner, M., Kendall, G., Lucas, S. M., Miikkulainen, R., Schaul,
T., & Thompson, T. (2013). General Video Game Playing. In Dagstuhl Follow-Ups.

Liang, Y., Machado, M. C., Talvitie, E., & Bowling, M. H. (2016). State of the Art Con-
trol of Atari Games Using Shallow Reinforcement Learning. In Proceedings of the
International Conference on Autonomous Agents & Multiagent Systems (AAMAS),
pp. 485–493.

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. Tech. rep.,
Carnegie Mellon University, School of Computer Science.

Lipovetzky, N., Ramirez, M., & Geffner, H. (2015). Classical Planning with Simulators: Re-
sults on the Atari Video Games. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pp. 1610–1616.

Machado, M. C., Bellemare, M. G., & Bowling, M. (2017). A Laplacian Framework for
Option Discovery in Reinforcement Learning. In Proceedings of the International
Conference on Machine Learning (ICML), pp. 2295–2304.

Machado, M. C., Srinivasan, S., & Bowling, M. (2015). Domain-Independent Optimistic
Initialization for Reinforcement Learning. In AAAI Workshop on Learning for General
Competency in Video Games.

Maei, H. R., & Sutton, R. S. (2010). GQ(λ): A General Gradient Algorithm for Temporal-
Difference Prediction Learning with Eligibility Traces. In Proceedings of the Confer-
ence on Artificial General Intelligence (AGI), pp. 719–726.

559

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

Martin, J., Sasikumar, S. N., Everitt, T., & Hutter, M. (2017). Count-Based Exploration in
Feature Space for Reinforcement Learning. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pp. 2471–2478.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., &
Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning.
In Proceedings of the International Conference on Machine Learning (ICML), pp.
1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015).
Human-level Control through Deep Reinforcement Learning. Nature, 518 (7540), 529–
533.

Montfort, N., & Bogost, I. (2009). Racing the Beam: The Atari Video Computer System.
MIT Press.

Munos, R., Stepleton, T., Harutyunyan, A., & Bellemare, M. G. (2016). Safe and Efficient
Off-Policy Reinforcement Learning. In Advances in Neural Information Processing
Systems (NIPS), pp. 1046–1054.

Naddaf, Y. (2010). Game-independent AI Agents for Playing Atari 2600 Console Games.
Master’s thesis, University of Alberta.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., Maria, A. D., Panneershelvam,
V., Suleyman, M., Beattie, C., Petersen, S., Legg, S., Mnih, V., Kavukcuoglu, K., &
Silver, D. (2015). Massively Parallel Methods for Deep Reinforcement Learning. In
ICML Deep Learning Workshop.

Oh, J., Guo, X., Lee, H., Lewis, R. L., & Singh, S. P. (2015). Action-Conditional Video
Prediction using Deep Networks in Atari Games. In Advances in Neural Information
Processing Systems (NIPS), pp. 2863–2871.

Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., & Preuss, M. (2013).
A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft.
IEEE Transactions on Computational Intelligence and AI in Games, 5, 293–311.

Osband, I., Blundell, C., Pritzel, A., & Roy, B. V. (2016). Deep Exploration via Boot-
strapped DQN. In Advances in Neural Information Processing Systems (NIPS), pp.
4026–4034.

Ostrovski, G., Bellemare, M. G., van den Oord, A., & Munos, R. (2017). Count-Based Ex-
ploration with Neural Density Models. In Proceedings of the International Conference
on Machine Learning (ICML), pp. 2721–2730.

Oudeyer, P., Kaplan, F., & Hafner, V. (2007). Intrinsic Motivation Systems for Autonomous
Mental Development. IEEE Transactions on Evolutionary Computation, 11 (2), 265–
286.

Parisotto, E., Ba, L. J., & Salakhutdinov, R. (2016). Actor-Mimic: Deep Multitask and
Transfer Reinforcement Learning. In Proceedings of the International Conference on
Learning Representations (ICLR).

560

Revisiting the ALE: Evaluation Protocols and Open Problems

Ring, M. (1997). CHILD: A First Step Towards Continual Learning. Machine Learning,
28 (1), 77–104.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-Learning using Connectionist Systems.
CUED/F-INFENG/TR 166, Cambridge University Engineering Department.

Rusu, A. A., Colmenarejo, S. G., Gucehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R.,
Mnih, V., Kavukcuoglu, K., & Hadsell, R. (2016). Policy Distillation. In Proceedings
of the International Conference on Learning Representations (ICLR).

Schaeffer, J., Burch, N., Bjrnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., & Sut-
phen, S. (2007). Checkers is Solved. Science, 317 (5844), 1518–1522.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2016). Prioritized Experience Replay.
In Proceedings of the International Conference on Learning Representations (ICLR).

Shleyfman, A., Tuisov, A., & Domshlak, C. (2016). Blind Search for Atari-Like Online
Planning Revisited. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pp. 3251–3257.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu,
K., Graepel, T., & Hassabis, D. (2016). Mastering the Game of Go with Deep Neural
Networks and Tree Search. Nature, 529, 484–503.

Singh, S., Barto, A. G., & Chentanez, N. (2004). Intrinsically Motivated Reinforcement
Learning. In Advances in Neural Information Processing Systems (NIPS), pp. 1281–
1288.

Stadie, B. C., Levine, S., & Abbeel, P. (2015). Incentivizing Exploration in Reinforcement
Learning With Deep Predictive Models. CoRR, abs/1507.00814.

Strehl, A. L., & Littman, M. L. (2008). An Analysis of Model-Based Interval Estimation
for Markov Decision Processes. Journal of Computer and System Sciences, 74 (8),
1309–1331.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Sutton, R. S., Szepesvári, C., & Maei, H. R. (2008). A Convergent O(n) Temporal-difference
Algorithm for Off-policy Learning with Linear Function Approximation. In Advances
in Neural Information Processing Systems (NIPS), pp. 1609–1616.

Sutton, R., Modayil, J., Delp, M., Degris, T., Pilarski, P., White, A., & Precup, D. (2011).
Horde: A Scalable Real-Time Architecture for Learning Knowledge from Unsuper-
vised Sensorimotor Interaction. In Proceedings of the International Conference on
Autonomous Agents & Multiagent Systems (AAMAS), pp. 761–768.

Talvitie, E. (2014). Model Regularization for Stable Sample Rollouts. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), pp. 780–789.

Talvitie, E. (2017). Self-Correcting Models for Model-Based Reinforcement Learning. In
Proceedings of the Conference on Artificial Intelligence (AAAI), pp. 2597–2603.

Taylor, M. E., & Stone, P. (2009). Transfer Learning for Reinforcement Learning Domains:
A Survey. Journal of Machine Learning Research, 10, 1633–1685.

561

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

Thrun, S., & Mitchell, T. M. (1993). Lifelong Robot Learning. In Robotics and Autonomous
Systems.

van Hasselt, H., Guez, A., & Silver, D. (2016). Deep Reinforcement Learning with Double
Q-Learning. In Proceedings of the Conference on Artificial Intelligence (AAAI), pp.
2094–2100.

Veness, J., Bellemare, M. G., Hutter, M., Chua, A., & Desjardins, G. (2015). Compress
and Control. In Proceedings of the Conference on Artificial Intelligence (AAAI), pp.
3016–3023.

Venkatraman, A., Hebert, M., & Bagnell, J. A. (2015). Improving Multi-Step Prediction of
Learned Time Series Models. In Proceedings of the Conference on Artificial Intelli-
gence (AAAI), pp. 3024–3030.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., &
Kavukcuoglu, K. (2017). FeUdal Networks for Hierarchical Reinforcement Learn-
ing. In Proceedings of the International Conference on Machine Learning (ICML),
pp. 3540–3549.

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., & De Freitas, N. (2016).
Dueling Network Architectures for Deep Reinforcement Learning. In Proceedings of
the International Conference on Machine Learning (ICML), pp. 1995–2003.

Wilson, S. (1985). Knowledge Growth in an Artificial Animal. In Proceedings of the Inter-
national Conference on Genetic Algorithms (ICGA), pp. 16–23.

Zahavy, T., Ben-Zrihem, N., & Mannor, S. (2016). Graying the Black Box: Understanding
DQNs. In Proceedings of the International Conference on Machine Learning (ICML),
pp. 1899–1908.

562

