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Abstract

In this paper, we extend a symbolic association framework for being able to handle
missing elements in multimodal sequences. The general scope of the work is the symbolic
associations of object-word mappings as it happens in language development in infants.
In other words, two different representations of the same abstract concepts can associate
in both directions. This scenario has been long interested in Artificial Intelligence, Psy-
chology, and Neuroscience. In this work, we extend a recent approach for multimodal
sequences (visual and audio) to also cope with missing elements in one or both modali-
ties. Our method uses two parallel Long Short-Term Memories (LSTMs) with a learning
rule based on EM-algorithm. It aligns both LSTM outputs via Dynamic Time Warping
(DTW). We propose to include an extra step for the combination with the max operation
for exploiting the common elements between both sequences. The motivation behind is
that the combination acts as a condition selector for choosing the best representation from
both LSTMs. We evaluated the proposed extension in the following scenarios: missing
elements in one modality (visual or audio) and missing elements in both modalities (visual
and sound). The performance of our extension reaches better results than the original
model and similar results to individual LSTM trained in each modality.

1. Introduction

A striking feature of the human brain is to link abstract concepts and sensory input signals,
such as visual and audio. As a result of this multimodal association, an abstract concept
that has several representations (i.e., visual and audio) maps from one modality to another
modality, and vice versa. For example, the abstract concept “ball” from the sentence
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“John plays with a ball” can be associated with several instances of different spherical
shapes (visual input) and sound waves (audio input). Several fields, such as Neuroscience,
Psychology, and Artificial Intelligence, are interested in determining all factors that are
involved in binding semantic concepts and the physical world. This scenario is known as
Symbol Grounding Problem (Harnad, 1990) and is still an open problem (Steels, 2008).

With this in mind, infants start learning the binding between abstract concepts and the
real world in a multimodal scenario. Gershkoff-Stowe and Smith (2004) found the initial
set of words in infants is mainly nouns, such as dad, mom, cat, and dog. In contrast, the
lack of stimulus can limit the language development (Andersen, Dunlea, & Kekelis, 1993;
Spencer, 2000), i.e., deafness, blindness. Asano et al. (2015) found two different patterns in
the brain activity of infants depending on the semantic correctness between a visual and an
audio stimulus. In simpler terms, the brain activity is pattern ‘A’ if the visual and audio
signals represent the same semantic concept. Otherwise, the pattern is ‘B’.

Related work has been proposed, in which one model combines the Symbol Ground-
ing Problem and the association learning. Yu and Ballard (2004) explored a framework
that learns the association between objects and their spoken names in day-to-day tasks.
Nakamura et al. (2011) introduced a multimodal categorization applied to robotics. Their
framework exploited the relation of concepts in different modalities (visual, audio and hap-
tic) using a Multimodal latent Dirichlet allocation.

Previous approaches have focused on associating isolated elements. This work pro-
poses another approach, where multimodal sequences are the input of the association task.
Text line classification in OCR (Breuel, Ul-Hasan, Al-Azawi, & Shafait, 2013) and image
segmentations (Byeon, Breuel, Raue, & Liwicki, 2015) are two successful examples that
handle images as sequences. In this paper, the association task is between two multimodal
sequences that present semantic concepts in one or two sequences. Moreover, we are inter-
ested in semantic concept sequences represented by information from two or more modalities
with the constraint that some elements are not part of all modalities; for instance, an el-
ement may be unique in one modality. For instance, one modality sequence (text lines of
digits) is represented by ‘2 4 6’, and the other modality (spoken words) is represented by
‘two five six’; where ‘4’ is unique to the text modality, and ‘five’ is unique to the spoken
modality. The missing elements can be interpreted as a scenario where some words are not
linked directly to a visual representation, such as verbs are connected to actions instead of
a specific object.

In this work, we investigate the multimodal association of weakly labeled sequences
based on the alignment between two latent spaces. In more detail, some elements of the
sequence in one modality are not present in the other modality. Note that presented model is
an extension of the work introduced by Raue et al. (2015) where both modalities represent
the same semantic sequence (no missing elements). Similarly to their model, two Long
Short-Term Memories (LSTMs) are the main components of the presented model where the
output vectors are aligned on the time axis using Dynamic Time Warping (DTW) (Berndt
& Clifford, 1994). Our contributions in this paper are the following

• We propose a novel model for the cognitive multimodal association task (without
claiming that being cognitively plausible). Moreover, our model handles multimodal
sequences where the semantic concepts can be in one or both modalities. Also, a max
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Figure 1: Comparison of components between the traditional setup and our setup for asso-
ciating two multimodal signals. Note that our task has an extra learnable com-
ponent (relation between semantic concepts and their representations), whereas
the traditional scenario is already predefined (red box). Moreover, the final goal
is to agree on the same coding scheme for each modality.

operation in the time-axis is novel in the architecture, and the motivation is to exploit
the cross-modality of the shared semantic concepts.

• We evaluate the presented model in two scenarios. In the first scenario, the missing
semantic concepts can be in any modality. In the second scenario, the semantic
concepts are missing only in one modality. For example, the visual sequence ‘1 2
3 4 5 6’ and the audio sequence ‘two four’. The visual and audio modalities share
the semantic concepts two and four. In contrast, the semantic concepts one, three,
five, and six are presented only in the visual sequence. In both cases, our model
performances better than the model proposed by Raue et al. (2015).

This paper is organized as follows. We shortly describe Long Short-Term Memory
networks that are a recurrent neural network in Section 2. Section 3 explains how LSTM
can be trained based on weakly labeled sequences. Section 4 describes the original model
for the object-word association. Section 5 presents the novel model for handling missing
elements. Section 6 shows a new dataset of multimodal sequences with missing elements.
In Section 7, we compare the performance of the proposed extension, the original model,
and a single LSTM network trained on one modality in the traditional setup (predefined
coding scheme).

1.1 Symbol Grounding and Association Learning in Neural Networks

In this work, we are interested in unifying the Symbol Grounding Problem and the asso-
ciation Learning in a neural network architecture. For example, de Penning et al. (2011)
proposed a model that combines neural networks with temporal rules. Consider the cross-
modal scenario, in which an isolated object and a spoken word represent the same Semantic
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Concept. One option for learning the association is to have two neural networks: one net-
work for the visual channel and another for the audio channel. It is safe to assume that
the raw output vectors of neural networks carry attributes or discriminant information of
input samples. Thus, the raw output vectors can be considered as a numerical, symbolic
feature. With this in mind, we can define the association task inspired by the Symbol
Grounding Problem as follows. The symbolic features (raw output vectors) and semantic
vectors are not binding initially. This decision is usually taken before training and external
to the network. In contrast, the presented task requires that the model learn the binding.
Figure 1 shows a comparison between the traditional association task and the presented
task (inspired by the Symbol Grounding Problem). It can be observed that the traditional
association has already defined two elements (red line - traditional association): a) the asso-
ciation is between two samples and b) the binding between semantic concepts and symbolic
features. Those elements are defined semantic concepts and the network output using the
same one hot scheme. On the other hand, the training algorithm includes the previous two
elements (red line - cognitive association). In this case, the network training incorporates
two tasks. First, each neural network learns the binding between semantic concepts and
symbolic features. Second, both neural networks are learning to agree to the same binding
between symbolic features and semantic concepts.

1.2 Multimodal Tasks in Machine Learning

Machine Learning has been applied successfully to several scenarios where the architecture
exploits the multimodal relation between input samples. In the following, we want to
indicate the differences between previous multimodal tasks and our work.

Multimodal Feature Fusion The task is to combine features of different modalities for
creating a better feature. In this manner, the generated feature exploits the best quali-
ties of each modality. Deep Boltzmann Machines have been used to combine different
modalities in unsupervised environments (Srivastava & Salakhutdinov, 2012; Sohn,
Shang, & Lee, 2014). Iqbal and Silver (2016) proposed an architecture that combined
three modalities, where the previous approaches combine only two modalities.

Image Captioning The task is to generate a textual description given images as input. In
other words, this task can be seen as a machine translation from images to captions.
One of the approaches to solving image captioning is a combination of Convolutional
Neural Networks (CNN) and LSTM, where CNN encodes images and LSTM generates
the textual descriptions (Vinyals, Toshev, Bengio, & Erhan, 2014; Karpathy, Joulin,
& Fei-Fei, 2014).

Weakly Labeled Association This task is related to learn the association between two
parallel sequences that represent the same order of semantic concepts. One essential
requirement is that both sequences are weakly labeled. The two scenarios (image
captioning and feature fusion) require that words must be already segmented (more
details in Section 3). Raue et al. (2015) proposed a model that has two parallel LSTM
networks that exploit the multimodal latent space produced by LSTM networks. Both
LSTMs align with each other for training. The goal is that one LSTM of one modality
learns with the latent space produced by the other modality (more details in Section 5).
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2. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a recurrent neural network that handles the vanishing
gradient problem in long sequences (Hochreiter & Schmidhuber, 1997; Hochreiter, 1998).
LSTM solves the vanishing gradient problem based on a set of gates that manages the flow
information in three aspects: input, reset, and output. More formally, this architecture is
defined by

it = σ(Wxixt +Whiht−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 + bf ) (2)

ot = σ(Wxoxt +Whoht−1 + bo) (3)

gt = tanh(Wxcxt +Whcht−1 + bc) (4)

ct = ftct−1 + itgt (5)

ht = ot tanh(ct) (6)

zt = softmax(Whzht + bz) (7)

where xt ∈ Rn is the input vector at time step t, zt ∈ Rc is the output vector at time
step t, and W∗ and b∗ are the weight matrices and bias, respectively.

LSTM is trained following similar steps of any other gradient-based method. Moreover,
one of the most common approaches for training has been proposed by Werbos (1990). He
defined an algorithm, called Backpropagation Through Time (BPTT), which updates the
network parameters from the last time step to the first time step. In other words, the
algorithm describes the loss function as follows

E(t) = yt − zt, t = T, . . . , 1 (8)

∂

∂W∗
E =

T∑
t=1

∂

∂W∗
E(t) (9)

where yt ∈ Rc is the target vector, θ is the network parameters, ∂E(t)/∂W∗ is the
derivative of the loss function w.r.t. to the network parameters.

So far, we have explained only one LSTM. Additionally, another approach combines two
LSTMs in the following manner. One LSTM runs from 1 to T, and another LSTM runs
from T to 1. This setup is called Bidirectional LSTM, and the motivation is to exploit the
surrounded context of a specific position (i.e., before and after).

3. Weak Label Training for LSTM

LSTM has been successfully applied to several scenarios, such as image captioning (Karpa-
thy et al., 2014), machine translation (Sutskever, Vinyals, & Le, 2014), and texture classi-
fication (Byeon et al., 2015). All previous examples require segmented data. For example,
words in sentences show a type of segmentation based on spaces (image captioning and
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Text line of digits

3 8 3 2 1
Target Sequence

Alignment

Figure 2: Example of alignment between an input sequence and weakly labeled target se-
quence. Note that the input sequence does not require to have a bounding box
for each character.

machine translation tasks). In this previous example, the segmentation of words is a rela-
tively easy task. In contrast, the segmentation in Speech Recognition and Optical Character
Recognition (OCR) requires a vast human effort. For example, consider the human effort
of annotating bounding boxes for each character on this page.

In this work, we are interested in exploiting a training algorithm where LSTM can align
an input sequence and target sequence. For example, the input sequence can be a text line
(e.g., a sequence of hand-written digits) that represents the number “38321”, and the target
sequence is the string “38321”. Figure 2 shows an example of the weakly labeled sequence. It
can be observed the length of the input sequence is larger than the target sequence. Graves
et al. (2006) proposed Connectionist Temporal Classification (CTC). The authors have
included an extra class, called blank class (b). So, the target sequence is re-written with the
blank class ”b3b8b3b2b1b”. The intuition of blank class is to learn the transition between
digits (for example, from 3 to 8 ) and to handle repeated characters (ll from the word
“hello”). After extending the target sequence, CTC layer exploits the similarities between
LSTM and Hidden Markov Models (HMM). In this case, LSTM uses a forward-backward
procedure that is similar to HMM training algorithm. CTC-forward-backward step requires
two recursive variables forward (fw) and backward (bw) for generating the target vector
yt. A forward-backward algorithm employs the output vectors of LSTM. The idea is to
propagate the forward and backward the probabilities on the target sequence. Finally, the
output of the forward-backward algorithm is a target sequence for training LSTM. The final
step of the CTC training is to predict the label sequence given an unknown input sequence.
This step is called decoding, and two methods have been proposed: Best Path Decoding and
Prefix Search Decoding. Figure 3 shows an example of LSTM classification. Please refer to
the original paper for more

4. Multimodal Symbolic Association

The multimodal scenario is defined by a multimodal sequence (visual and audio). Both
channels represent the same sequence of semantic concepts and are defined by
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Figure 3: Example of the LSTM classification based on CTC training. The blank class is
represented by the index zero. Note that the output classification is the same as
the input sequence.

Xv = {xv,1, . . . ,xv,t1}, (10)

Xa = {xa,1, . . . ,xa,t2}, (11)

where xv,∗ ∈ Rn1 and xa,∗ ∈ Rn2 are the input vectors for the (v)isual and (a)udio
modalities (respectively). The semantic concepts are represented by SeC = {s1, . . . , sc}
where c is the vocabulary size. Thus, the ordered sequence for each input sequence is
defined by

SeCv = {s1, . . . , sk} (12)

SeCa = {s1, . . . , sk} (13)

where SeCv ∩ SeCa = {s1, . . . , sk}. The association proposed by Raue et al. (2015)
exploits the benefits of CTC training where both sequences align to the same semantic
sequence. With this in mind, two bidirectional LSTM networks are defined for each modality
LSTMv and LSTMa. In this manner, the training of LSTMv uses the latent space produced
by LSTMa, and vice versa. The model has two components. The first component is to
learn the binding between semantic concepts and symbolic features (Section 4.1). The
other component is the alignment between the multimodal space produced by both LSTMs
(Section 4.2).

In general, the model works as follows. Initially, LSTMv and LSTMa receive as an input
the visual and audio components of the multimodal sequence (respectively) Consequently,
each network produces the output vectors of both modalities after the last time step
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Zv = {zv,1, . . . ,zv,t1}, (14)

Za = {za,1, . . . ,za,t2}, (15)

where zv,∗ and za,∗ ∈ Rc are the output vectors. At this point, each output sequence
contributes for finding the most likely binding between semantic concepts and symbolic
features. Additionally, the indexes 4 or 10 (via one-hot coding vector) can represent the
semantic concept duck. This decision is made internally by the model. Therefore, two sets
of concept vectors are introduced to each modality γvi and γai ∈ Rc, where i = 1, . . . , c. The
motivation behind is to implement a winning-take-all rule where all semantic concepts and
symbolic features have different binding relations between them (more details in Section 4.1).
After determining the most likely binding, LSTM output of each modality and the binding
are fed to CTC forward-backward step (c.f. Section 3). Consequently, the output of each
modality are

Yv = {yv,1, . . . ,yv,t1}, (16)

Ya = {ya,1, . . . ,ya,t2}, (17)

So far, the described steps are applied independently to each modality. For learning
the association and exploiting the multimodal latent space, both output vectors from CTC
are aligned between them in the time-axis by Dynamic Time Warping (DTW) (Berndt &
Clifford, 1994). Hence, training on one modality uses the latent space of the other modality,
and vice versa. Figure 5 illustrates the training algorithm with an example.

4.1 Statistical Constraint for Semantic Binding

In this association scenario, one crucial constraint is related to the binding between seman-
tic concepts and symbolic features, which is not defined before training. As mentioned,
the binding between the semantic concepts and the output vectors is learned based a novel
set of concept vectors. To be clear, note that two or more concepts cannot have the same
vectorial representations. This component employs an EM-style algorithm. For explana-
tion purposes, it is described considering only one LSTM and one set of concept vectors
γ1, . . . , γc ∈ Rc. However, it can be applied to two LSTM networks independently.

The E-step predicts the mapping between semantic concepts in the sequence and the
symbolic representation given the LSTM output and the concept vectors. The first step is
to combine the weighting vectors with the output sequence, which is defined by

ẑi =
1

T

T∑
t=1

power
(
zt,γi

)
, i = 1, . . . , c (18)

where zt is the LSTM output vector at time t, γi is the concept vector, T is the number
of time steps of the sequence, and power(zt,γi) is the element-wise power operation between
the output vector zt at time step t and the concept vector γi. Then, a matrix is assembled by
concatenating ẑ1, . . . , ẑc. As a result, the assembled matrix represents the relation between
semantic concepts (column) and the symbolic features (row).
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Figure 4: Association model based on two parallel bidirectional LSTM networks, which is
proposed by Raue et al. (2015). Note that each semantic concept is presented
in both channels. It can be observed that DTW module aligns the CTC layer
produces by LSTMa to the CTC layer produces by LSTMv. As a result, the
target vector for training LSTMv is purely obtained from LSTMa. The training
of LSTMa based on LSTMv follows a similar process.

Ẑ =
[
ẑ1, . . . , ẑc

]
(19)

e1, . . . , ec = g(Ẑ) (20)

where g(Ẑ) is a row-column elimination, and e1, . . . , ec ∈ Rc are column vectors of a
permutation of the identity matrix. For simplicity, the column vector ei can represent j-th
identity vector where i and j can or cannot be the same. In other words, the column vector e4

can represent the 1-st identity vector (e.g., e4 = [1 0 0 . . .]T ). The row-column elimination
procedure ranks all values in the matrix. Next, the position (col, row), where the maximum
value is found and determines the row-th identity column vector ecol. For example, the
maximum value is found at (2, 5), and its correspondence vector is e2 = [0 0 0 0 1 0 . . .]T .
All values of the previous column and the previous row are set to zero. This column-
row elimination is applied c times. Hence, the vectors e1, . . . , ec are the mapping between
semantic concepts (columns) and their symbolic feature (rows).

The M-step updates the concept vectors given the LSTM output and the statistical
distribution target. Hence, the cost function is defined by

costi =

(
ẑi −

1

c
ei

)2

, i = 1, . . . , c (21)

795



Raue, Dengel, Breuel & Liwicki

γi = γi − α ∗ ∇γicosti, i = 1, . . . , c (22)

where ei is a column vector of the identity matrix that represents the semantic concept,
α is the learning rate, and ∇γicosti is the derivative w.r.t γi.

4.2 Dynamic Time Warping (DTW)

In this module, the goal is to combine both LSTMs in the latent space. This combination is
possible because the multimodal sequence represents the same sequence of semantic concepts
and the monotonic behavior of LSTM. The alignment is between CTC output of both
modalities. Moreover, Berndt and Clifford (1994) proposed DTW for aligning two signals.
Similarly, DTW can also utilize LSTM output sequences. DTW requires two steps for
alignment of two signals. The first step is to calculate a cost matrix with the following
relation

DTW [i, j] = dist[i, j] +min


DTW [i− 1, j − 1]
DTW [i− 1, j]
DTW [i, j − 1]

(23)

where dist[i, j] is the Euclidean distance between output vectors at timestep i of LSTMv

and at timestep j of LSTMa. The Second step is the alignment path between both LSTMs.
In this case, the path is a set of tuples that maps one time step of one LSTM to another
time step of the other LSTM. In other words, there is a function f(s1, s2) : s1→ s2, where
s1 is the source sequence and s2 is the target sequence. Afterwards, the loss function of
one modality can use the other modality as a target, and vice versa. Hence, the losses are
defined by

Ev(t) = fa→v

(
ya,t′

)
t
− zv,t, where t = 1, . . . , t1 (24)

Ea(t) = fv→a

(
yv,t′

)
t
− za,t, where t = 1, . . . , t2 (25)

where fa→v and fv→a are the alignment path from audio to visual and from visual to
audio (respectively), zv,t and za,t are LSTM output vector at time t, yv,t′ and ya,t′ are the

CTC-forward-backward steps. Note that t
′

is the time step in the source modality and time
step t is the time step in the target modality.

5. Handling Missing Elements

The previous section described a multimodal association model that exploits weakly la-
beled samples based on CTC training. The initial assumption is that each channel in the
multimodal sequence represents the same ordered sequence of semantic concepts. However,
the initial assumption is a limitation. In this paper we present, an extension that handles
missing elements in the sequences. The goal is to exploit semantic concepts that are pre-
sented in both modalities. Additionally, the multimodal combination can be boosted using
a max operation that combines the best of each modality, whereas the previous model only
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exploits one modality. More formally, the association task can be rewritten as follows

Xv = {xv,1, . . . ,xv,t1}, (26)

Xa = {xa,1, . . . ,xa,t2}, (27)

SeCv = {s1, . . . , sk1}, (28)

SeCa = {s1, . . . , sk2} (29)

where SeCv ∩ SeCa 6= {∅} and |SeCv ∩ SeCa| ≤ min(|SeCv|, |SeCa|).
The coupling of both LSTMs occurs in DTW module. Similar to Section 4, this model

follows the same procedure until DTW step. As a reminder, the output of DTW is an
alignment function from one modality to the other modality. In other words, a function
f(s1, s2) : s1 → s2 that maps the closest signal to s2 (target) based on the values of s1
(source).

The two main differences with the model proposed by Raue et al. (2015) relies on two
parts. The first part is to combine only semantic concepts that are shared between both
channels because the probability distribution produced by LSTMs should be similar (even if
different input feature space produces them). Furthermore, the max operation is a common
approach for combining two vectors. The second part is related to the semantic concepts
that are presented only in one channel. In this case, it is not required to use another
modality. Thus, this step can be formulated as follows

ŷa→v,t =

{
max

(
yk
a,t′
, ykv,t

)
semantic concept k is presented in both modalities

ykv,t otherwise
(30)

ŷv→a,t =

{
max

(
yk
v,t′
, yka,t

)
semantic concept k is presented in both modalities

yka,t otherwise
(31)

where ykv,t and yka,t are the probabilities of semantic concept k at time step t, yk
v,t

′ and

yk
a,t′

are the latent space produced by CTC layer for each modality, and function max is

the element-wise maximum operation. Note that the goal is to assemble the vectors ŷa→v,t

and ŷv→a,t, which combine shared and non-shared semantic concepts using the scalar values
ykv,t, y

k
a,t, y

k
v,t′

, and yk
a,t′

. Afterwards, the target vectors are used based on this operation.

The Equations 24 and 25 are updated

Ev(t) = ŷa→v,t − zv,t, where t = 1, . . . , t1 (32)

Ea(t) = ŷv→a,t − za,t, where t = 1, . . . , t2 (33)

6. Experimental Design

The goal of our paper is to evaluate the association between different channels of a multi-
modal sequence. One significant constraint is the weakly annotation of each channel. With
this in mind, we generated a multimodal dataset, which is described in Section 6.1. Addi-
tionally, a description of input features and model parameters is mentioned in Section 6.2
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Figure 5: The new model can handle semantic concepts that are presented in one or two
modalities. In this work, we include a module that combines the audio and
visual information based on the presence of semantic concepts. Moreover, both
channels are combined if they have the same semantic concept.Otherwise, there
is no combination. Also, the max operation improves the combination of the
channels.

6.1 Datasets

We generated several multimodal datasets where the elements of the sequence are missing
in one or both modalities, but the relative order between the elements is the same. For
example, a visual semantic concept sequence is a text line of digits “2 4 7”, and an audio
semantic concept sequence can be represented by “two seven”. In this case, we assumed
a simplified scenario of symbol grounding, where the continuity of semantic concepts is
different on each modality. The visual component is a horizontal arrangement of isolated
objects, and the audio component is spoken semantic concepts of some elements of the visual
component, and vice versa. We want to point out that the visual component is similar to
a panorama view. The procedure for generating the multimodal datasets is explained.

6.1.1 Generating Semantic Sequences

Two scenarios are considered for generating the semantic sequences for each modality:
missing elements in both modalities and one modality. For the first scenario, we generated
a sequence of ten semantic concepts. Later, we randomly remove between zero and five
elements from each sequence. As a result, two different sequences for two different modalities
were obtained with few common elements between them. For the second scenario, we
follow a similar procedure. In that case, one modality has a sequence with ten semantic
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concepts, and the other modality has missing elements. For example, |Sa| = 10 and |Sv| =
Sa−missing elements. In addition, our vocabulary has 30 semantic concepts in Spanish: oso,
bote, botella, bol, caja, carro, gato, queso, cigarrillo, gaseosa, bebida, pato, cara, comida,
hamburguesa, higiene, liquido, loción, cebolla, pimentón, pera, redondo, sanduche, cuchara,
té, teléfono, tomate, florero, veh́ıculo, madera.

6.1.2 Visual Component

We used a subset of 30 objects from COIL-100 (Nene, Nayar, & Murase, 1996) that is a
standard dataset of 100 isolated objects. Each isolated object has 72 views at different
angles with a black background. After selecting the object for the sequence, each object
was converted to grayscale and re-scaled to 32 x 32 pixels. The visual components are
composed by horizontally stacking isolated objects. Moreover, a random noise was added
(as a background) to the final image to increase the difficulty of segmenting it. While the
training set contains images of odd angles, the testing set has images of even angles.

6.1.3 Audio Component

We recorded each semantic concept two times from twelve different subjects who are Spanish
native speakers (five female and seven male speakers) from different countries of Center and
South America. Afterwards, concatenating isolated semantic concepts generates the audio
sequences. The training set contains eleven voices for training, whereas the testing set
contains two.

6.1.4 Training and Testing Multimodal Datasets

We have generated three different multimodal configurations for evaluating our model. The
first setup has missing elements in both modalities. While the second setup has ten se-
mantic concepts in the visual component, the audio modality has a fixed number of missing
elements. Thus, we can evaluate the impact of the missing elements. This setup covers from
zero to five missing semantic concepts. The third dataset has a similar idea concerning the
second dataset. In this case, we are testing an audio sequence with ten semantic concepts,
but the visual component has a fixed number of missing elements. Additionally, 1,000 mul-
timodal sequences have been generated for each subject in each setup. We follow a 5-fold
cross-validation scheme where for each run eleven subjects are selected for training and the
remaining two subjects are used for testing. One example with both elements missing from
both modalities is shown in Figure 6.

6.2 Input Features and LSTM Setup

We did not apply any pre-processing step for the visual component. In contrast, the au-
dio component was converted to Mel-Frequency Cepstral Coefficient (MFCC) using HTK
toolkit1. The audio representation is a vector of 123 components: a Fourier filter-bank with
40 coefficients (plus energy), including the first and second derivatives. All audio and visual
components were normalized to have zero mean and standard deviation one.

1. http://htk.eng.cam.ac.uk
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botella, comida, gato, hamburguesa, redondo

loción, gato, hamburguesa, pera, redondo

Visual Sequence

Audio Sequence

Shared Semantic Concepts:
gato, hamburguesa, redondo

Figure 6: Example of the multimodal dataset. It can be observed that only three elements
are the same on both modalities.

Also, the presented extension was compared against the original model introduced by
Raue et al. (2015). Additionally, we compared the extension against LSTM with CTC layer
and a predefined coding scheme. The parameters of the visual LSTM were: 40 memory
cells, learning rate 0.0001, and momentum 0.9. On the other hand, the audio LSTM had
100 memory cells, and the learning rate and momentum are the same as in the visual LSTM.
Furthermore, the learning rate in the statistical constraint was set to 0.001. The parameters
are selected based on the best performance of LSTM that is trained independently on each
modality.

7. Results and Discussion

As mentioned previously, the assumption of the original model was to represent the same
semantic concept sequence in both modalities. In other words, a one-to-one relationship
exists between modalities. In contrast, in this work, our assumption is more challenging
because the semantic concept in one modality can be or cannot be present in the other
modality. We evaluate the multimodal association task using Association Accuracy (AAcc),
which is defined by the following equation

AAcc =

∑N
i=1 LCS(outputa,i, outputv,i, gta,i, gtv,i)∑N

i=1 LCS(gta,i, gtv,i)
, (34)

where LCS is the length of the longest common sequence, outputa,i and outputv,i are
the output classification of each modality, gta,i and gtv,i are the ground-truth labels of each
modality, and N is the number of elements in the dataset. Therefore, we evaluate the
association between the common elements. Our model not only learns the association but
also learns to classify each modality. With this in mind, we also reported the Label Error
Rate (LER) as a performance metric, which is defined by
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Table 1: Association Accuracy (%) and Label Error Rate (%) from the multimodal dataset
that has missing elements in both modalities. It can be seen that the original
model performs worse than the proposed combination. Furthermore, the presented
extension reached similar results to LSTM (trained for the easier classification task,
and not for association) and under some conditions reaches better results (audio
component).

Model Association Label Error Rate (%)
Accuracy (%) visual audio

LSTM + CTC (baseline) 70.68± 6.12 0.14± 0.14 35.84± 5.35
Original Model (Raue et al. (2015)) 19.59± 8.90 7.00± 2.42 79.01± 9.51
Our work 71.52± 11.85 0.97± 1.58 33.09± 10.38

LER =
1

N

N∑
i=1

ED(outputi, gti)

|gti|
(35)

where outputi is the output classification, gti is the ground-truth, and ED(outputi, gti) is
the edit distance between the output classification and the ground-truth. As a reminder, the
training set has 11,000 multimodal sequences, whereas the testing set has 2,000 multimodal
sequences. In this work, we have reported the average results.

Table 1 summarizes the performance of LSTM trained with a predefined coding scheme,
the original model, and the presented extension. Those results are divided into two parts
as follows. First, the proposed extension handles missing elements in multimodal sequences
better than the original model. It can be inferred that the max operation keeps the strongest
of the common semantic concepts between modalities. Note that the representations update
the weights in the backward step. Second, the proposed extension reaches similar results to
the standard LSTM. In this case, LSTM was trained in each modality independently. As
a reminder, we mentioned two setups for classification tasks: the traditional setup and the
setup used in this work. We want to point out that the visual LSTM boost the performance
of audio sequences compared to LSTM. As a result, our model reaches lower Label Error
Rate in the audio sequences than the standard LSTM trained only in audio sequence.

Another outcome of this work is the conformity of the symbolic structure in both modal-
ities, even with missing elements. In this case, the model does not know the relationship
between semantic concepts and symbolic features before training. As a result, both LSTM
networks learn to agree that the same semantic concepts require the same coding scheme
regardless of the modalities. Figure 7 shows examples of the coding scheme agreement.
It can be observed that both LSTM networks learn to classify the object-word relation in
weakly labeled multimodal sequences. Moreover, the common concepts in both modalities
are represented by a similar symbolic feature and located at the right position in the se-
quence. For example, the semantic concept “madera” (first element at the visual and audio
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Figure 7: Several examples of the output classification and DTW cost matrices. The first
multimodal sequence shows an example, in which both output classifications are
correct (solid green square). The second multimodal sequence shows one correct
and one incorrect output classification (dashed red square).

components) is represented by the index “10” in both modalities2. Note that not only the
common elements but also the missing elements are classified correctly. Furthermore, the
common semantic concepts are correctly classified even if LSTM does not correctly classify
all semantic concepts of the sequence. The second example in Figure 7 shows the semantic
concept “loción” is represented by index “25”.

In addition to the considerations we made so far, we were also interested in the robustness
of the presented model against the number of missing elements. With this in mind, we
generated several datasets where one modality has ten semantic concepts, and the other
has only a fixed number of missing elements from the ten semantic concepts. Figure 8
shows the Association Accuracy of the original model and the presented model for handling
missing elements. First, the original model (solid blue line) decreases its performance when

2. There are some cases that represent one semantic concept with two different coding vectors for each
network. However, both networks retrieve correctly the same concept regardless of the different coding
scheme.
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Figure 8: Association of two multimodal setups. In this case, one modality has ten semantic
concepts, and the other modality has a fixed number of missing elements. The
presented model (triangle) outperforms to the original model (circle) regardless
of the modality and number of missing elements.

the number of missing elements increases in both modalities. These results were expected
because the original model relies on the one-to-one relation between modalities. Second, we
recognize that the presented model (dashed red line) shows a better performance compared
to the original model (solid blue line) in both modalities. Thus, we may conclude that the
presented model does not reduce its performance even if 50% of elements are missing in one
of the modalities. Note that the max operation boosts the performance of our model when
there are zero missing elements.

Figure 9 shows that Label Error Rate of each modality. One pattern appears at zero
missing elements. Our model reaches better performance than the original model because
of the audio modality. In this case, the combination of audio and visual latent spaces
helps to reduce the error. Moreover, it can be observed that the error of our model does
not increase the same rate as the original model. Another setup was also evaluated where
the training set has sequences with missing elements whereas the testing set does not have
missing ones. The results are similar to Figures 8 and 9. These results are expected because
LSTM network has already learned the discriminant information during training and does
not require the condition of missing elements in the prediction step.

8. Conclusions

In summary, we have presented a solution inspired by the symbol grounding problem for the
object-word association problem. Additionally, the model relies on multimodal sequences
(visual and audio) where the semantic elements can be presented in one or both modalities.
Note that the cognitive association adds a new aspect to neural network architectures
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Figure 9: Label Error Rate (%) of each modality for each multimodal setup. It can be
observed that the presented model (visual-triangle and audio-X) keeps similar
performances across the number of missing elements. In contrast, the original
model (visual-circle and audio-square) increases the error w.r.t. the number of
missing elements.

because of the Symbolic Feature axis. In this case, each LSTM network learn to agree on
the same relationship between semantic concepts and symbolic features (represented by the
output vectors). However, we believe that one interesting direction is to analyze in more
detail if the model is cognitive plausible. Further work is planned for more realistic scenarios
where the visual component is not segmentable. Moreover, we are interested in extending
the word-association problem between a two-dimensional image and speech. With this in
mind, we will incorporate visual attention mechanism in synchronization with speech. In the
future, the model will be evaluated to add more modalities, for instance visual, audio, and
motor sensors, the three modalities can be aligned between them. Note that each sensorial
input collects data of the same action. Two approaches can be considered for the alignment
step. One option is to apply DTW for three dimensions (similar to Wöllmer et al., 2009).
The other approach is to align between each pair signals and evaluate the most suitable
relation. For example, visual-audio, motor-visual, and audio-motor. Finally, the human
language development relies on the relationship between abstract concepts and the real
world collected by the sensory input. The scenario of the symbol grounding problem might
be considered as simple. However, many questions remain still open (Needham, Santos,
Magee, Devin, Hogg, & Cohn, 2005; Steels, 2008).
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