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Abstract

Extracting information about entities remains an important research area. This paper addresses
the problem of corpus-level entity typing, i.e., inferring from a large corpus that an entity is a
member of a class, such as “food” or “artist”. The application of entity typing we are interested
in is knowledge base completion, specifically, to learn which classes an entity is a member of. We
propose FIGMENT to tackle this problem. FIGMENT is embedding-based and combines (i) a global
model that computes scores based on global information of an entity and (ii) a context model that
first evaluates the individual occurrences of an entity and then aggregates the scores.

Each of the two proposed models has specific properties. For the global model, learning high-
quality entity representations is crucial because it is the only source used for the predictions. There-
fore, we introduce representations using the name and contexts of entities on the three levels of
entity, word, and character. We show that each level provides complementary information and a
multi-level representation performs best. For the context model, we need to use distant supervision
since there are no context-level labels available for entities. Distantly supervised labels are noisy
and this harms the performance of models. Therefore, we introduce and apply new algorithms for
noise mitigation using multi-instance learning. We show the effectiveness of our models on a large
entity typing dataset built from Freebase.

1. Introduction

Knowledge about entities is essential for natural language understanding (NLU). This knowledge
includes facts about entities, such as their names, properties, relations and types. This data is usu-
ally stored in large-scale structures called knowledge bases (KBs) and therefore building and main-
taining KBs is very important. Examples of such KBs are Freebase (Bollacker, Evans, Paritosh,
Sturge, & Taylor, 2008), YAGO (Suchanek, Kasneci, & Weikum, 2007) and Wikidata (Vrandečić
& Krötzsch, 2014) . KB structure is usually equivalent to a graph in which entities are nodes and
edges are relations between entities. Each node is also associated with one or more semantic classes,
called types.
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Incompleteness is a crucial challenge for KBs because the world is changing – new entities
are emerging, and existing entities are getting new properties. Therefore, there is always the need
to update KBs. To do so, we propose an information extraction method that processes large raw
corpora in order to gather knowledge about entities. Most prior work tries to complete relations
between entities. In contrast, the focus of this work is on the completion of entity types in KBs. For
example, given a large corpus and the entity “Barack Obama” we need to find all his types including
“person”, “politician”, and “author”.

We define our problem as follows. Let K be a knowledge base that models a set E of entities,
a set T of fine-grained classes or types and a membership function m : E × T 7→ {0, 1} such that
m(e, t) = 1 iff entity e has type t. Let C be a large corpus of text. Then, the problem we address in
this paper is corpus-level fine-grained entity typing: For a given pair of entity e and type t determine
– based on the evidence available in C – whether e is a member of type t (i.e., m(e, t) = 1) or not
(i.e.,m(e, t) = 0) and update the membership relationm ofK with this information. We investigate
two approaches to entity typing: a global model and a context model.

The global model aggregates all information about an entity from the corpus and its name,
and then predicts the type based on that. We represent necessary information about the entity in a
multi-level representation. This representation is global, meaning that it does not describe a specific
context or mention of an entity but rather the aggregated information about it. One important source
to compute the entity representations is the contexts in which the entity is used. We take the stan-
dard method of learning embeddings for words and extend it to learning embeddings for entities.
This requires the use of an entity linker and can be implemented by replacing all occurrences of
the entity by a unique token (e.g., Wang, Zhang, Feng, & Chen, 2014; Yaghoobzadeh & Schütze,
2015; Yaghoobzadeh & Schütze, 2017). We refer to entity embeddings as entity-level representa-
tions. Entity-level representations are often uninformative for rare entities, so relying only on entity
embeddings is likely to produce poor results. In this paper, we use entity names as a source of in-
formation that is complementary to entity embeddings. We define an entity name as a noun phrase
that is used to refer to an entity. We learn character-level and word-level representations of entity
names.

For the character-level representation, we adopt different character-level neural network archi-
tectures. Our intuition is that there is sub/cross-word information (e.g., orthographic patterns) that
is helpful to get better entity representations, especially for rare entities. A simple example is that a
three-token sequence containing an initial like “P.” surrounded by two capitalized words (“Rolph P.
Kugl”) is likely to refer to a person.

We compute the word-level representation as the sum of the embeddings of the words that make
up the entity name. The sum of the embeddings accumulates evidence for a type/property over all
constituents, e.g., a name containing “stadium”, “lake” or “cemetery” is likely to refer to a location.
In this paper, we compute our word-level representation with two types of word embeddings: (i)
using only contextual information of words in the corpus, e.g., by WORD2VEC (Mikolov, Chen,
Corrado, & Dean, 2013) and (ii) using subwords as well as contextual information of words, e.g.,
by Facebook’s recently released FASTTEXT (Bojanowski, Grave, Joulin, & Mikolov, 2017).

The context model first scores each individual context of e as expressing type t or not. The
final value of m(e, t) is then computed based on the distribution of context scores. One difficulty of
this model is that it is too expensive to label each entity context with its labels. Distant supervision
(Mintz, Bills, Snow, & Jurafsky, 2009) is used to reduce the need for manually labelling contexts.
Distant supervision assumes that if an entity has a type in the KB, then all contexts mentioning
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that entity express that type. However, this assumption is too strong and gives rise to many noisy
labels. Different techniques to deal with that problem have been investigated. The main technique
is multi-instance (MI) learning (Riedel, Yao, & McCallum, 2010). It relaxes the distant supervi-
sion assumption to the assumption that at least one instance of a bag (collection of all sentences
containing the given entity) expresses the type given in the KB. Multi-instance multi-label (MIML)
learning is a generalization of MI in which one bag can have several labels (Surdeanu, Tibshirani,
Nallapati, & Manning, 2012).

Most MI and MIML methods are based on hand-crafted features. Recently, Zeng, Liu, Chen,
and Zhao (2015) introduced an end-to-end approach to MI learning based on neural networks. Their
MI method takes the most confident instance as the prediction of the bag. Lin, Shen, Liu, Luan, and
Sun (2016) further improved that method by taking other instances into account as well; they pro-
posed MI learning based on selective attention as an alternative way of relaxing the impact of noisy
labels on relation extraction. In selective attention, a weighted average of instance representations
is calculated first and then used to compute the prediction of a bag.

In this paper, we introduce four multi-label versions of MI. (i) MIML-MAX takes the maximum
of instance scores for each label. (ii) MIML-MEAN takes the mean of instance scores for each label.
(iii) MIML-MAX-MEAN takes the maximum and the mean of instance scores in training and testing,
respectively. (iv) MIML-ATT applies, for each label, selective attention to the instances. We apply
these MIML algorithms to fine-grained entity typing and show that MIML-ATT deals well with
noise in this task and gives clear improvements for the distantly supervised models.

The global model is potentially more robust compared to the context model since it takes into
account all the available information at once. In contrast, the context model has the advantage that it
can correctly predict types for which there is only a small number of reliable contexts. For example,
in a large corpus, it is likely to find a few reliable contexts indicating that “Barack Obama” is a
best-selling author even though this evidence may be obscured in the global distribution because the
vast majority of mentions of “Obama” does not occur in author contexts.

We implement the global model and the context model as well as a simple combination of
the two and call the resulting system FIGMENT: FIne-Grained eMbedding-based ENtity Typing.
A key feature of FIGMENT is that it makes extensive use of distributed vector representations or
embeddings.

The contributions in this paper include the following: (i) We address fine-grained entity typing
by using text corpora for the application in knowledge base completion. (ii) We build a dataset
for this task from Freebase entities and their fine-grained types. (iii) We introduce, implement and
compare two types of models for the task, global and context models, and a joint model of them.
(iv) We represent entities using novel distributed representations on the three levels of entity, word
and character. (v) We introduce new algorithms for multi-instance learning in neural networks and
apply them for the first time to the task of fine-grained entity typing.

2. Related Work

Our task is fine-grained entity typing. Neelakantan and Chang (2015), Suzuki, Matsuda, Sekine,
Okazaki, and Inui (2016) and Xie, Liu, Jia, Luan, and Sun (2016) also address a similar task, but
they rely on entity descriptions in KBs. Thus, in contrast to our approach, their system is not able
to type entities that are not covered by existing KBs. We infer classes for entities from a large
corpus and do not assume that these entities occur in the KB. The problem of fine-grained mention
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typing (FGMT) (Yosef, Bauer, Hoffart, Spaniol, & Weikum, 2012; Ling & Weld, 2012; Yogatama,
Gillick, & Lazic, 2015; Del Corro, Abujabal, Gemulla, & Weikum, 2015; Shimaoka, Stenetorp,
Inui, & Riedel, 2016; Ren, He, Qu, Voss, Ji, & Han, 2016; Rabinovich & Klein, 2017; van Erp &
Vossen, 2017; Shimaoka, Stenetorp, Inui, & Riedel, 2017) is related to our task. FGMT classifies
single mentions of named entities to their context-dependent types whereas we attempt to identify
all types of a KB entity from the aggregation of all its mentions. FGMT can still be evaluated in our
task by aggregating the mention-level decisions.

Entity set expansion (ESE) is the problem of finding entities in a class (e.g., medications) given
a seed set (e.g., {“Ibuprofen”, “Maalox”, “Prozac”}). The standard solution is pattern-based boot-
strapping (Thelen & Riloff, 2002; Gupta & Manning, 2014). ESE is different from the problem
we address because ESE starts with a small seed set whereas we assume that a large number of
examples from a knowledge base (KB) is available. Initial experiments with the system of Gupta
and Manning (2014) show that it was not performing well for our task – this is not surprising given
that it is designed for a task with properties quite different from entity typing.

Fine-grained entity typing can be used for knowledge base completion (KBC). Most KBC sys-
tems focus on relations between entities, not on types as we do. Some generalize the patterns of re-
lationships within the KB (Nickel, Tresp, & Kriegel, 2012; Bordes, Usunier, Garcı́a-Durán, Weston,
& Yakhnenko, 2013), while others use a combination of within-KB generalization and information
extraction from text (Weston, Bordes, Yakhnenko, & Usunier, 2013; Socher, Chen, Manning, & Ng,
2013; Jiang, Tresp, Huang, & Nickel, 2012; Riedel, Yao, McCallum, & Marlin, 2013; Wang et al.,
2014).

We also introduce methods for noise mitigation in distant supervision. Distant supervision can
be used to train information extraction systems, e.g., in relation extraction (e.g., Mintz et al., 2009;
Riedel et al., 2010; Hoffmann, Zhang, Ling, Zettlemoyer, & Weld, 2011; Zeng et al., 2015; Adel,
Roth, & Schütze, 2016) and entity typing (e.g., Ling & Weld, 2012; Yogatama et al., 2015; Dong,
Wei, Sun, Zhou, & Xu, 2015). To mitigate the noisy label problem, multi-instance (MI) learning has
been introduced and applied in relation extraction (Riedel et al., 2010; Ritter, Zettlemoyer, Mausam,
& Etzioni, 2013). Surdeanu et al. (2012) introduce multi-instance multi-label (MIML) learning
to extend MI learning for multi-label relation extraction. Those models are based on manually
designed features. Zeng et al. (2015) and Lin et al. (2016) introduce MI learning methods for neural
networks. We introduce MIML algorithms for neural networks. In contrast to most MI/MIML
methods, which are applied in relation extraction, we apply MIML to the task of fine-grained entity
typing. Ritter et al. (2013) apply MI on a Twitter dataset with ten types. Our dataset has a larger
number of classes or types (namely 102) and input examples, compared to that Twitter dataset
and also to the most widely used datasets for evaluating MI (cf., Riedel et al., 2010). This makes
our setup more challenging because of different dependencies and the multi-label nature of the
problem. Also, there seems to be a difference in how entity relations and entity types are mentioned:
expressing the entity relations is more likely to be explicit than entity types in many text genres.
This means we usually need to look at many entity contexts for reliable type predictions. This can
influence the choice of MIML algorithms since some of them just pick one context (instance) for
prediction. Our experimental results confirm this hypothesis.
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3. Motivation and Background

In this section, we provide motivation and background information for our work, including Free-
base, incompleteness of knowledge bases, entity linking and FIGER types.

3.1 Freebase

Large scale knowledge bases (KBs) like Freebase (Bollacker et al., 2008), YAGO (Suchanek et al.,
2007) and Wikidata (Vrandečić & Krötzsch, 2014) are designed to store world knowledge. KB
structure is usually graph-based and with different schemas. Here in this work, we use Freebase.
Freebase is a labeled graph, with nodes and directed edges. Topics (or entities) are the essential
part of Freebase, which are represented as graph nodes. These topics can be named entities (like
“Germany”) or abstract concepts (like “love”). In this work, we refer to Freebase topics as entities.
Apart from entities, Freebase uses types like “city”, “country”, “book subject”, “person”, etc. Each
entity can have one or many types, e.g., “Arnold Schwarzenegger” is a “person”, “actor”, “politi-
cian”, “sports figure”, etc. There are about 1,500 types in Freebase, organized by domains; e.g.,
the domain “food” has types like “food”, “ingredient” and “restaurant”. Each type contains some
specific properties about entities, e.g., the “actor” type contains a property that lists all films that
“Arnold Schwarzenegger” has acted in. In other words, entities are connected to each other by
properties because they are in certain types. For example, “Arnold Schwarzenegger” is connected
to “California” with property “governor of” which is a property defined for the type “politician”.

3.2 Incompleteness of Knowledge Base

Even though Freebase is the largest publicly available KB of its kind, it still has significant coverage
problems. For example, 78.5% of persons in Freebase do not have a nationality (Min, Grishman,
Wan, Wang, & Gondek, 2013), or in our test set, 12% of persons do not have a finer grained type.

This is unavoidable partly because Freebase is user-generated and partly because the world
changes constantly and Freebase has to be updated to reflect those changes. All existing KBs that
attempt to model a large part of the world suffer from this incompleteness problem. Incompleteness
is likely to become an even bigger problem in the future as the number of types covered by KBs
increases. As more and more fine-grained types are added, achieving good coverage for these new
types using only human editors will become impossible.

The approach we adopt in this paper to address incompleteness of KBs is extraction of infor-
mation from large text corpora. Text is arguably the main repository for the type of knowledge
represented in KBs, and thus it is reasonable to attempt completing them based on text. There is a
significant body of work on corpus-based methods for extracting knowledge from text. However,
most of the work has addressed relation extraction, and not the acquisition of type information –
roughly corresponding to unary relations (see Section 2). In this paper, we focus on typing entities.

3.3 Entity Linking

The first step in extracting information about entities from text is to reliably identify mentions of
these entities. This problem of entity linking has some mutual dependencies with our task, entity
typing. Indeed, some recent work demonstrates large improvements when entity typing and linking
are jointly modeled (Ling, Singh, & Weld, 2015b; Durrett & Klein, 2014). However, there are
constraints that are important for high-performance entity linking but are of little relevance to entity
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typing. For example, there is large body of literature on entity linking that deals with coreference
resolution and inter-entity constraints – e.g., “Naples” is more likely to refer to a US (resp. an Italian)
city in a context mentioning “Fort Myers” (resp. “Sicily”). Therefore, we only address entity typing
in this paper and consider entity linking as an independent module that provides contexts of entities
for FIGMENT. (A similar problem definition is used in relation extraction, cf., Zeng et al., 2015; Lin
et al., 2016.) More specifically, we build FIGMENT on top of the output of an existing entity linking
system and use FACC1 (Gabrilovich, Ringgaard, & Subramanya, 2013), an automatic Freebase
annotation of ClueWeb (ClueWeb-URL, 2012). According to the FACC1 distributors, precision of
annotated entities is around 80-85% and recall is around 70-85%.

3.4 FIGER Types

Our goal is fine-grained typing of entities. However, there are types which are too fine-grained,
such as “Vietnamese urban district”. To create a reliable setup for evaluation and to make sure that
all types have a reasonable number of instances, we adopt the FIGER type set (Ling & Weld, 2012)
that was created with the same goals in mind. FIGER consists of 113 tags and was created in an
attempt to preserve the diversity of Freebase types while consolidating infrequent and unusual types
through filtering and merging. For example, the Freebase types “dish”, “ingredient”, “food” and
“cheese” are mapped to one type “food” (for a complete list of FIGER types, see Ling & Weld,
2012.). We use “type” to refer to FIGER types in the rest of the paper.

4. Global, Context, and Joint Models

E100	gave	his	speech	at	the	UN.	

In	his	book,	E100	talked	about	different	
issues.	

Nobel	prize	winner,	E100,	was	in	the	last	
session.		

I	had	dinner	with	E100	yesterday.		

Poli>cian	Author	

Award	
winner	

Person	

Athlete	 Musician	

Men)ons	 En)ty	 Types	

Engineer	

En>ty	Linked	
Corpus	

find	men>ons	

Barack	Obama	
ID:	E100	

Figure 1: An example for corpus-level fine-grained entity typing. Given Barack Obama with ID of
E100 from a KB, and an entity linked corpus with some mentions of E100, the task is to
predict the correct fine-grained types of E100 : “person”, “politician”, and “author”, and
“award-winner”.

Given (i) a KB with a set of entities E, (ii) a set of types T , and (iii) a large corpus C in which
mentions of E are linked, we address the task of corpus-level fine-grained entity typing: predicting
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whether entity e is a member of type t or not. We show an example diagram of our task in Figure 1.
We use a set of training examples to learn P (t|e): the probability that entity e has type t. These
probabilities can be used to assign new types to entities covered in the KB as well as typing new
or unknown entities – i.e., entities not covered by the KB. For new or unknown entities, an entity
linking system would be necessary that identifies and clusters entity mentions. Examples for those
systems are the ones participating in TAC KBP (McNamee & Dang, 2009).

In this section, we introduce our two models, global and context, as well as their combination
(joint model). In Table 1, we provide a brief overview of the models. Details are given in the
following sections.

Notations and definitions. Lowercase letters (e.g., e) refer to variables. Bold lowercase letters
(e.g., e) are vectors and bold uppercase letter (e.g., W) are matrices. We define BCE, the binary
cross entropy between two variables, as follows where y is a binary variable and ŷ is a real valued
variable between 0 and 1.

BCE(y, ŷ) = −
(
y log(ŷ) + (1− y)(1− log(ŷ))

)

Global Model Context Model
PGM(t|e) = score(e)

Entity-level:
e = distributed embedding of e

Word-level:
e = g(words of the name of e)

Character-level:
e = g(characters of the name of e)

MIML-ATT:
PCM(t|e) = score(at)
at =

∑
i αici

MIML-MAX/MEAN:
PCM(t|e) = max/meaniP (t|ci)
P (t|ci) = score(ci)

ci = g(words of ci)

Joint Model
P (t|e) = 1

2

(
PGM(t|e) + PCM(t|e)

)
Table 1: An overview of our global, context and joint models. g is a neural network function, e.g., a

feed-forward neural network. e is an entity. ci is the i-th context of e. αi is a scalar. In our
setup, we take the most frequent mention of e in the corpus as the name of e. MIML-ATT
and MIML-MAX/MEAN are our different multi-instance multi-label models.

4.1 Global Model

In the global model, we learn P (t|e) by first learning a distributed representation e of entity e. Then,
a multi-layer perceptron (MLP) with one hidden layer is applied with the output layer of size |T |.
The schematic diagram of the MLP is shown in Figure 2. Unit t of this layer outputs the probability
for type t:

PGM(t|e) = σ
(
Woutf

(
Wine

))
(1)

where Win ∈ Rh×d is the weight matrix from e ∈ Rd to the hidden layer with size h. f is the
rectifier function. Wout ∈ R|T |×h is the weight matrix from hidden layer to output layer of size |T |.
σ is the sigmoid function: σ(x) = 1/(1 + e−x) that converts the value x to a value in [0, 1]. Our
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objective is binary cross entropy summed over types:

L =
∑
t

BCE(yt,pt)

where yt is the truth and pt the prediction for type t.

Figure 2: In the global model, a multi-layer perceptron is applied on the entity representation
learned from contexts or/and name of the entity.

The key difficulty when computing P (t|e) is in learning a good representation for entity e. We
make use of contexts and name of e to represent its feature vector on the three levels of entity, word
and character.

4.1.1 ENTITY-LEVEL REPRESENTATION

Distributional representations or embeddings are commonly used for words. The underlying hy-
pothesis is that words with similar meanings tend to occur in similar contexts (Harris, 1954) and
therefore cooccur with similar context words. We can extend the distributional hypothesis to en-
tities (cf., Wang et al., 2014): entities with similar meanings tend to have similar contexts. Thus,
we can learn a d dimensional embedding e of entity e from a corpus in which all mentions of the
entity have been replaced by a special identifier. We refer to these entity vectors as the entity-level
representation (ELR).

In previous work, order information of context words (relative position of words in the contexts)
was generally ignored and objectives similar to the SkipGram (henceforth: SKIP) model were used
to learn e. However, the bag-of-word context is difficult to distinguish for pairs of types that have
similar context words like (“restaurant”, “food”) and (“author”, “book”). This suggests that using
order aware embedding models is important for entities. Therefore, we apply Ling, Dyer, Black,
and Trancoso’s (2015a) extended version of SKIP, Structured SKIP (SSKIP). It incorporates the
order of context words into the objective and outperforms SKIP in entity typing (Yaghoobzadeh &
Schütze, 2016; Yaghoobzadeh & Schütze, 2017).

4.1.2 WORD-LEVEL REPRESENTATION

Words inside entity names are important sources of information for typing entities. We define the
word-level representation (WLR) as the average of the embeddings of the words that constitute the
entity name e = 1/n

∑n
i=1wi where wi is the embedding of the ith word of an entity name of
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length n. We consider the canonical name of an entity in the KB to compute this representation.
We opt for simple averaging since entity names often consist of a small number of words with
clear semantics. Thus, averaging is a promising way of combining the information that each word
contributes.

The word embedding, w, itself can be learned from models with different granularity levels.
Embedding models that consider words as atomic units in the corpus, e.g., SKIP and SSKIP, are
word-level. On the other hand, embedding models that represent words with their character ngrams,
e.g., FASTTEXT (Bojanowski et al., 2017), are subword-level. Based on this, we consider and
evaluate word-level WLR (WWLR) and subword-level WLR (SWLR) in this paper.1

4.1.3 CHARACTER-LEVEL REPRESENTATION

For computing the character-level representation (CLR), we design models that type an entity based
on the sequence of characters of its name. Our hypothesis is that names of entities of a specific type
often have similar character patterns. Entities of type “ethnicity” often end in “ish” and “ian”,
e.g., “Spanish” and “Russian”. Entities of type “medicine” often end in “en”: “Lipofen”, “ac-
etaminophen”. Also, some types tend to have specific cross-word shapes in their entities, e.g., “per-
son” names usually consist of two or three words, or “music” names are usually long, containing
several words.

The first layer of the character-level models is a lookup table that maps each character to an
embedding of size dc. These embeddings capture similarities between characters, e.g., similarity in
the type of phoneme encoded (consonant/vowel) or similarity in the case (lower/upper). The output
of the lookup layer for an entity name is a matrix C ∈ Rl×dc where l is the maximum length of a
name and all names are padded to length l. This length l includes special start/end characters that
bracket the entity name.

We experiment with two architectures to produce character-level representations in this paper:
fully connected feed-forward (FF) and convolutional neural networks (CNNs).

FF simply concatenates all rows of matrix C; thus, e ∈ Rdc.l.
The CNN uses n filters of different window widths w to narrowly convolve C. For each filter

H ∈ Rdc×w, the result of the convolution of H over matrix C is feature map m ∈ Rl−w+1:

m[i] = g(C[:,i:i+w−1] �H+ b)

where g is the rectifier function (g(x) = max(0, x)), b is the bias, C[:,i:i+w−1] are the columns i to
i + w − 1 of C, 1 ≤ w ≤ k are the window widths we consider and � is the Frobenius product.
Max pooling then gives us one feature for each filter. The concatenation of all these features is our
representation: e ∈ Rn. An example CNN architecture is shown in Figure 3.

4.1.4 MULTI-LEVEL REPRESENTATIONS

Our different levels of representations can provide complementary information about entities.
WLR and CLR. Both WLR models, SWLR and WWLR, do not have access to the cross-word

character ngrams of entity names while CLR models do. Also, CLR is task specific by training

1. Subword models have properties of both character-level models (subwords are character ngrams) and of word-level
models (they do not cross boundaries between words). They probably could be put in either category, but in our
context fit the word-level category better because we see the level of granularity with respect to the entities and not
words.
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Figure 3: Example architecture for the character-level CNN with max pooling. The input is “New
Times”. Start and end symbols are appended to the input and it is padded by the pad
symbol to a fixed size (here it is 15). Character embedding size is three. There are three
filters of width 3 and four filters of width 6.

on the entity typing dataset while WLR is generic. On the other hand, WWLR and SWLR models
have access to information that CLR ignores: the tokenization of entity names into words and
embeddings of these words. It is clear that words are particularly important character sequences
since they often correspond to linguistic units with clearly identifiable semantics – which is not
true for most character sequences. For many entities, their constituting words are a better basis for
typing than the character sequence. For example, even if “nectarine” and “compote” did not occur
in any names in the training corpus, we can still learn good word embeddings from their non-entity
occurrences. This might allow us to correctly type the entity “Aunt Mary’s Nectarine Compote” as
“food” based on the sum of the word embeddings.

WLR/CLR and ELR. Representations from entity names, i.e., WLR and CLR, by themselves
are limited because many classes of names can be used for different types of entities; e.g., person
names do not contain hints as to whether they are referring to a politician or athlete. In contrast, the
ELR embedding is based on the contexts on an entity, which are often informative for each entity
and can distinguish politicians from athletes. On the other hand, not all entities have sufficiently
many informative contexts in the corpus. For these entities, their name can be a complementary
source of information and character/word-level representations can increase typing accuracy.

Thus, we introduce multi-level models that use combinations of the three levels. Each multi-
level model concatenates several levels. We train the constituent embeddings as follows. WLR and
ELR are computed as described above and are not changed during training. CLR – produced by
one of the character-level networks described above – is initialized randomly and then tuned during
training. Thus, it can focus on complementary information related to the task that is not already
present in the other levels. The schematic diagram of our multi-level representation is shown in
Figure 4.
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Figure 4: Multi-level representations of entities are the concatenation of a subset of character, word
and entity-level representations. These representations are then given to the MLP in Fig-
ure 2.

4.2 Context Model

For the context model (CM), we first learn a probability function P (t|c) for individual contexts c in
the corpus. P (t|c) is the probability that an entity occurring in context c has type t. For example,
consider the contexts c1 = “he served SLOT cooked in wine” and c2 = “she loves SLOT more than
anyone”. SLOT marks the occurrence of an entity and it also shows that we do not care about
the entity mention itself but only its context. For the type t = “food”, P (t|c1) is high whereas
P (t|c2) is low. This example demonstrates that some contexts of an entity like “beef” allow specific
inferences about its type whereas others do not. Based on the context probability function P (t|c),
we then compute the entity-level CM probability function P (t|e).

More specifically, consider B = {c1, c2, . . . , cq} as the set of q contexts of e in the corpus.
Each ci is an instance of e and since e can have several labels, it is a multi-instance multi-label
(MIML) learning problem. We address MIML using neural networks by representing each context
as a vector ci ∈ Rh, and learn P (t|e) from the set of contexts of entity e. In the following, we
describe our MIML algorithms that work on the contexts representations to compute P (t|e).

4.2.1 DISTANT SUPERVISION

The basic way to estimate P (t|e) is based on distant supervision with learning the type probability
of each ci individually, by making the assumption that each ci expresses all labels of e. Therefore,
we define the context-level probability function as:

P (t|ci) = σ(wT
t ci + bt) (2)

where wt ∈ Rh is the output weight vector and bt is the bias scalar for type t. The cost function is
defined based on binary cross entropy:

L(θ) =
∑
c

∑
t

BCE(yt, P (t|c)) (3)

where yt is 1 if entity e has type t and 0 otherwise. To compute P (t|e) at prediction time, i.e.,
P

pred
CM (t|e), the context-level probabilities need to be aggregated. Average is the usual way of doing

that:

P
pred
CM (t|e) = 1

q

q∑
i=1

P (t|ci) (4)
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4.2.2 MULTI-INSTANCE MULTI-LABEL (MIML)

The distant supervision assumption is that all contexts of an entity with type t are contexts of t;
e.g., we label all contexts mentioning “Barack Obama” with all of his types. Obviously, the labels
are incorrect or noisy for some contexts. Multi-instance multi-label (MIML) learning addresses this
problem. We apply MIML to fine-grained ET for the first time. Our assumption is: if entity e has
type t, then there is at least one context of e in the corpus in which e occurs as type t. So, we apply
this assumption during training with the following estimation of the type probability of an entity:

PCM(t|e) = max
1≤i≤q

P (t|ci) (5)

which means we take the maximum probability of type t over all contexts of entity e as P (t|e). We
call this approach MIML-MAX.

c2

CNN

+MLP

p(tj|c2)

c3

CNN

+MLP

p(tj|c3)

p(tj|e)

cn

CNN

+MLP

p(tj|cn)
.....

.....

.....

max or avg

Context-level 

probabilities

Corpus-level probability

c1

CNN

+MLP

p(tj|c1)

Figure 5: The context model with distant supervision, MIML-MAX, or MIML-AVG. It uses maxi-
mum or average to compute corpus-level type probabilities for an entity from its context-
level probabilities. In the case of multi-instance multi-label learning (MIML-MAX or
MIML-AVG), the aggregation function (max or avg) is applied in both training and pre-
diction, otherwise (i.e., distant supervision) it is only applied at the prediction time.

Distant supervision makes the assumption that each instance is relevant. In MIML-MAX, we
correct this by changing this assumption to “one instance is relevant”. This means that MIML-MAX
selects the most confident context for prediction of each type. Apart from missing information, this
can be especially harmful if the entity annotations in the corpus are the result of an entity linking
system. In that case, the most confident context might be wrongly linked to the entity. So, it can be
beneficial to leverage all contexts into the final prediction. Averaging the type probabilities of all
contexts of entity e is the simplest way of doing this (cf. Eq. 4):

PCM(t|e) = 1

q

q∑
i=1

P (t|ci) (6)
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We call this approach MIML-AVG. We also propose a combination of the maximum and average,
which uses MIML-MAX (Eq. 5) in training and MIML-AVG (Eq. 6) in prediction. We call this
approach MIML-MAX-AVG. An illustration of these MIML approaches is depicted in Figure 5.

MIML-AVG treats every context equally which might be problematic since many contexts are
irrelevant for a particular type. A better way is to weight the contexts according to their similarity
to the types. Therefore, we propose using selective attention over contexts as follows and call
this approach MIML-ATT. MIML-ATT is the multi-label version of the selective attention method
proposed by Lin et al. (2016). To compute the type probability for e, we define:

PCM(t|e) = σ(wt
Tat + bt) (7)

where wt ∈ Rh is the output weight vector and bt the bias scalar for type t, and at is the aggregated
representation of all contexts ci of e for type t, computed as follows:

at =
∑
i

αi,tci (8)

where αi,t is the attention score of context ci for type t and at ∈ Rh can be interpreted as the
representation of entity e for type t. αi,t is defined as:

αi,t =
exp(ci

TMt)∑q
j=1 exp(cj

TMt)
(9)

where M ∈ Rh×dt is a weight matrix that measures the similarity of c and t. t ∈ Rdt is the
representation of type t. Figure 6 illustrates MIML-ATT.

Table 2 summarizes the differences of our MIML methods with respect to the aggregation func-
tion they use to get corpus-level probabilities. For optimization of all MIML methods, we use the
binary cross entropy loss function,

L(θ) =
∑
e

∑
t

BCE(yt, P (t|e)) (10)

In contrast to the loss function of distant supervision in Eq. 3, which iterates over all contexts, we
iterate over all entities here.

Model Train Prediction
MIML-MAX MAX MAX
MIML-AVG AVG AVG
MIML-MAX-AVG MAX AVG
MIML-ATT ATT ATT

Table 2: Different MIML algorithms for entity typing, and the aggregation function they use to get
corpus-level probabilities.
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Figure 6: The context model with MIML-ATT. The corpus-level probability of a type is computed
from type specific aggregated representation of the entity, which is computed using atten-
tion weights of the type on each of entity contexts.

4.2.3 CONTEXT REPRESENTATION

To produce a high-quality context representation c, we use two neural network architectures, fully
connected feed-forward (FF) and convolutional neural networks (CNNs). The first layer of both
architectures is a lookup table that maps each word in c to an embedding of size d. If there is another
training entity in the context, we replace it with its notable type to get better generalization. The
output of the lookup layer is a matrix E ∈ Rd×s (the embedding layer), where s is the context size
(a fixed number of words). FF then simply concatenates all rows of matrix E; thus, φ(c) ∈ Rd∗s.

CNN uses n filters of different window widths w to narrowly convolve E. For each of the n
filters H ∈ Rd×w, the result of applying H to matrix E is a feature map m ∈ Rs−w+1:

m[i] = g(E:,i:i+w−1 �H) (11)

where g is the rectifier function,� is the Frobenius product, E:,i:i+w−1 are the columns i to i+w−1
of E and 1 ≤ w ≤ k are the window widths we consider. Max pooling then gives us one feature
for each filter and the concatenation of those features is the CNN representation of c. We apply the
CNN to the left and right context of the entity mention and the concatenation φ(c) ∈ R2n is the
output of the CNN layer.

φ(c) is then fed into a multi-layer perceptron (MLP) for both architectures (FF and CNN) to get
the final context representation c ∈ Rh:

c = tanh
(
Whφ(c)

)
(12)
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4.3 Joint Model

Global model and context model have complementary strengths and weaknesses.
The strength of CM is that it is a direct model of the contexts in which the entity occurs. This

is also the way a human would ordinarily do entity typing for an unknown entity: they would
determine if a specific context in which the entity occurs implies that the entity is, say, an author
or a musician and type it accordingly. The order of words is of critical importance for the accurate
assessment of a context and CM takes it into account. A well-trained CM will also work for cases
for which GM is not applicable. In particular, if the KB contains only a small number of entities of
a particular type, but the corpus contains a large number of contexts of these entities, then CM is
more likely to generalize well.

One notable weakness of CM is that a large proportion of contexts does not contain sufficient
information to infer all types of the entity. For example, based on our distantly supervised training
data, we label every context of “Obama” with “politician” and “author” and Obama’s other types in
the KB. Multi-instance learning algorithms mitigate this weakness to some degree, but at the extra
cost of more model parameters.

The main strength of GM is that it bases its decisions on the entire evidence available in the
corpus. This makes it more robust. Also, GM models the problem as a supervised task and its
dataset consists of labeled entities with their types. This makes it more efficient compared to the
distantly supervised approach used in CM.

The disadvantage of GM is that it is less likely to work well for non-dominant types of an entity
that might be swamped by dominant types. For example, the author contexts of “Obama” may be
swamped by the politician contexts and the overall context signature of the entity “Obama” may
not contain enough signal to infer that he is an author. Also for an unknown entity, the embedding
learning model needs to be retrained to get the entity-level representation, which makes the GM
application less efficient for new or emerging entities.

Since GM and CM models are complementary, we expect a combined model to work better. We
test this hypothesis for the simplest possible joint model (JM), which averages the type probabilities
of the two individual models for each entity as:

P JM(t|e) = PGM(t|e) + PCM(t|e)
2

(13)

5. Experimental Setup and Results

In this section, we first describe the different setups we use to do our experiments. Next, we present
the results of our models followed by further analysis.

5.1 Setup

In this section, we explain the datasets, evaluation metrics and other setups we follow to do our
experiments. We also describe the baselines, which we compare our models against.

5.1.1 CORPUS

We select a subset of about 7.5 million web pages, taken from the first segment of ClueWeb12
(ClueWeb-URL, 2012), from different crawl types: 1 million Twitter links, 120,000 WikiTravel
pages and 6.5 million web pages. This corpus is preprocessed by eliminating HTML tags, replacing
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all numbers with “7” and all web links and email addresses with “HTTP”, filtering out sentences
with length less than 40 characters, and finally doing a simple tokenization. We merge the text with
the FACC1 annotations. The resulting corpus has 4 billion tokens and 950,000 distinct entities. We
use the 2014-03-09 Freebase data dump as our KB.

5.1.2 ENTITY DATASETS

We consider all entities in the corpus whose notable types can be mapped to one of the 113 FIGER
types, based on the mapping provided by FIGER. 750,000 such entities form our set of entities. 10
out of 113 FIGER types have no entities in this set.2 We then select a subset of 200,000 entities
in a process which is explained by Yaghoobzadeh and Schütze (2015). We split the entities into
train (50%), dev (20%) and test (30%) sets. The average and median number of FIGER types of the
training entities are 1.8 and 2, respectively.3

5.1.3 CONTEXT SAMPLING

For the context model, we create train’, dev’ and test’ sets of contexts that correspond to train, dev
and test sets of entities. Because the number of contexts is unbalanced for both entities and types
and also to accelerate training and testing, we downsample contexts. For the set train’, we use the
notable type feature of Freebase: For each type t, we take contexts from the mentions of t.

Next, if the number of contexts for t is larger than a minimum, we sample the contexts based
on the number of training entities of t. We set the minimum to 10,000 and constrain the number of
samples for each t to 20,000. Also, to reduce the effect of distant supervision, entities with fewer
distinct types are preferred in sampling to provide discriminative contexts for their notable types.
For test’ and dev’ sets, we sample 300 and 200 random contexts, respectively, for each entity.

5.1.4 BASELINES

We extend our previous work in corpus-level fine-grained entity typing. JOINT-BASE1, JOINT-
BASE2 and ELR+SWLR+CLR(CNN) correspond to the best models by Yaghoobzadeh and Schütze
(2015), Yaghoobzadeh, Adel, and Schütze (2017) and Yaghoobzadeh and Schütze (2017), respec-
tively. We also add some hand-crafted feature-based baselines.

We implement the following two feature sets from the literature as a hand-crafted baseline for
our character-level and word-level GM models. (i) BOW: individual words of entity name (both as-
is and lowercased); (ii) NSL (ngram-shape-length): shape and length of the entity name (cf., Ling &
Weld, 2012), character n-grams, 1 ≤ n ≤ nmax, nmax = 5 (we also tried nmax = 7, but results were
worse on dev) and normalized character n-grams: lowercased, digits replaced by “7”, punctuation
replaced by “.”. These features are represented as a sparse binary vector e that forms the input to
the architecture in Figure 2.

The other baseline is using an existing mention-level entity typing system, FIGER (Ling &
Weld, 2012). FIGER uses a wide variety of features on different levels (including parsing-based
features) from contexts of entity mentions as well as the mentions themselves and returns a score
for each mention-type instance in the corpus. We provide the ClueWeb/FACC1 segmentation of

2. The reason is that the FIGER mapping uses Freebase user-created classes. The 10 missing types are not the notable
type of any entity in Freebase.

3. The entity datasets are available at http://cistern.cis.lmu.de/figment.
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entities, so FIGER does not need to recognize entities.4 We use the trained model provided by the
authors and normalize FIGER scores using softmax to make them comparable for aggregation. We
experimented with different aggregation functions (including maximum and k-largest scores for a
type). The average of scores gave us the best result on dev. We call this baseline AGG-FIGER:
aggregated version of FIGER (Ling & Weld, 2012).

5.1.5 EVALUATION METRICS

Evaluation of multi-label classification is more complicated than the common single-label setting
because each example can belong to several labels at the same time. To address this, we use two
types of metrics for evaluation: example-based and label-based. In the example-based measures, an
average value is computed based on the evaluation values of each test example. In the label-based
measures, the performance of a classifier is evaluated for each label and then averaged over all labels.
Each measure can further be categorized into ranking or classification. In the ranking measures, the
evaluation shows how well the models rank labels for examples (for the example-based measures),
or, rank examples for labels (for the label-based measures).

Since our problem is multi-label classification, we adapt some of the measures from the litera-
ture. In our setting, entities are examples and types are the labels. The classification metrics measure
the quality of the thresholded assignment decisions produced by the models. These measures more
directly express how well FIGMENT would succeed in enhancing the KB with new information since
for each pair (e, t), we have to make a binary decision about whether to put it in the KB or not. The
decisions are then compared to the gold KB information, with the assumption that KB information
is incomplete. The assignment decision is made based on thresholds, one per type, for each P (t|e).
We select the threshold that maximizes F1 of entities assigned to the type on dev. In the following,
we define the metrics.

Example-based metrics: Two ranking and three classification measures are considered for the
example-based evaluation. The ranking measures are (i) precision at 1 (P@1): percentage of enti-
ties whose top-ranked type is correct; (ii) breakeven point (BEP, Boldrin & Levine, 2008): F1 at
the point in the ranked list at which precision and recall have the same value. The classification
measures are (i) accuracy: an entity is correct if all its types and no incorrect types are assigned to
it; (ii) micro average: F1 of all type-entity assignment decisions; (iii) entity macro average F1: F1

of types assigned to an entity, averaged over entities.
Label-based metrics: The ranking measures are (i) mean average precision (MAP): mean of the

averaged precision of each type; (ii) average precision at k (P@k): average of each type’s precision
in the top k ranked entities. The classification measure is: (i) type macro average F1: F1 of entities
assigned to a type, averaged over types.

5.1.6 DISTRIBUTIONAL EMBEDDINGS

For WWLR and ELR, we use the Structured SkipGram (SSKIP) model in WANG2VEC (Ling et al.,
2015a) to learn the embeddings for words, entities and types. To obtain embeddings for all three in
the same space, we process ClueWeb/FACC1 as follows. For each sentence s, we add three copies:
s itself, a copy of s in which each entity is replaced with its Freebase identifier (MID) and a copy in
which each entity (not test entities though) is replaced with an ID indicating its notable type. The
resulting corpus contains around 4 billion tokens and 1.5 million types.

4. Mention typing is separated from recognition in FIGER model. So it can use our segmentation of entities.

851



YAGHOOBZADEH, ADEL, & SCHÜTZE

We run SSKIP with the setup (100 dimensions, 10 negative samples, window size 5, and word
frequency threshold of 100)5 on this corpus to learn embeddings for words, entities and FIGER
types. For SWLR, we use FASTTEXT (Bojanowski et al., 2017) to learn word embeddings from the
ClueWeb/FACC1 corpus. We use similar settings as our WWLR SKIP and SSKIP embeddings and
keep the defaults of other hyperparameters. Since the trained model of FASTTEXT is applicable for
new words, we apply the model to get embeddings for the filtered rare words as well.

5.1.7 HYPERPARAMETER VALUES

Our hyperparameter values are optimized on dev. We use AdaGrad (Duchi, Hazan, & Singer, 2011)
and minibatch training. For each experiment, we select the best model on dev. The values of our
hyperparameters are shown in Table 7 in the appendix.

5.2 Results

We evaluate our different models using the mentioned measures. For the global model, we explore
different entity representations including multi-level ones as described in Section 4.1. For the con-
text model, we analyze the performance of the baseline AGG-FIGER and different models including
the mentioned MIML methods on two architectures (FF and CNN) as described in Section 4.2. For
the joint model, we show the combination of our best global and context models, as well as the
combination of our baseline models.

Results for the example-based measures on the test entities for all (about 60,000 entities), head
(frequency > 100; about 12,200) and tail (frequency < 5; about 10,000) are shown in Table 3. Each
row represents one of the models. If not mentioned explicitly, the micro F1 (Micro in Table 3) is
the measure we talk about when comparing models.

Line 1 is the most frequent baseline, which assigns “person” to each entity. Lines 2-12 are
different global models (GMs). For the character-level representation of entities, CNN (line 4)
works clearly better than FF (line 3). This was expected as CNNs are good architectures to find
position-independent local features for classification. NSL, the ngram baseline, works better than
CNN in P@1 and BEP for all entities and macro F1 for the tail entities. But for all other measures,
CNN is better than NSL. CNN is learning the features automatically and this is another benefit of
CNN over NSL. In word-level models (lines 5-8), SWLR (line 7) is better than WWLR (line 6)
on the tail entities and worse on the head entities. Both are better than the BOW baseline, because
BOW cannot deal well with sparseness. SWLR and WWLR are better than all CLR models (lines
2-4) because of their access to the word embeddings trained on the whole corpus. SWLR (line 7)
has access to the subword information, and therefore has an embedding for each word, resulting
in better embeddings for the tail entities. Since SWLR is better than WWLR for acc, we pick
SWLR as our best WLR model. SWLR+CLR(CNN) (line 8) improves SWLR (line 7) by around
2%, implying that character-level representation add complementary information to the word-level
models.

The entity-level representation, ELR (line 9), is the most important source of information for
entities. Figure 7 provides a t-SNE (Van der Maaten & Hinton, 2008) visualization of ELR embed-
dings of a subset of the entities in our dataset. Different colors denote different entity types. The
figure shows that entities of the same type are clustered together. The results confirm this: ELR is
clearly better than character-level and word-level representations (line 9 > lines 1-8). Adding CLR

5. The threshold does not apply for MIDs.
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all entities head entities tail entities
P@1 BEP acc mic mac P@1 BEP acc mic mac P@1 BEP acc mic mac

gl
ob

al
m

od
el

(G
M

)

1 MFT .101 .406 .000 .036 .036 .111 .406 .000 .040 .039 .097 .394 .000 .032 .032
2 CLR(NSL) .643 .690 .167 .447 .438 .615 .665 .154 .438 .425 .633 .696 .180 .439 .437
3 CLR(FF) .552 .618 .032 .345 .313 .530 .592 .032 .351 .313 .543 .621 .031 .330 .304
4 CLR(CNN) .628 .679 .170 .471 .431 .598 .649 .166 .474 .423 .618 .685 .180 .458 .429
5 BOW .560 .636 .080 .311 .370 .512 .591 .075 .301 .354 .566 .654 .088 .318 .376
6 WWLR .691 .727 .168 .553 .500 .767 .785 .246 .634 .610 .635 .684 .125 .497 .444
7 SWLR .702 .733 .178 .552 .525 .761 .782 .238 .625 .599 .651 .696 .150 .509 .488
8 SWLR+CLR(CNN) .710 .754 .248 .578 .539 .754 .795 .312 .658 .618 .669 .729 .230 .529 .499
9 ELR .851 .890 .494 .781 .740 .901 .922 .541 .831 .802 .732 .802 .381 .648 .581

10 ELR+CLR(CNN) .873 .905 .538 .804 .766 .906 .928 .569 .840 .812 .784 .841 .453 .713 .648
11 ELR+SWLR .877 .907 .532 .804 .769 .906 .856 .556 .836 .810 .802 .856 .466 .727 .668
12 ELR+SWLR+CLR(CNN) .881 .911 .548 .812 .776 .907 .929 .567 .841 .813 .812 .862 .484 .738 .678

co
nt

ex
tm

od
el

(C
M

)

13 FF .753 .791 .341 .697 .665 .781 .806 .415 .757 .722 .639 .705 .151 .529 .493
14 FF+MIML-MAX .757 .806 .230 .602 .562 .777 .809 .063 .518 .537 .660 .738 .210 .479 .345
15 FF+MIML-MAX-AVG .763 .807 .369 .721 .686 .774 .803 .442 .774 .745 .668 .741 .189 .568 .519
16 FF+MIML-AVG .779 .826 .369 .714 .685 .794 .830 .425 .760 .731 .674 .749 .204 .566 .531
17 FF+MIML-ATT .820 .855 .403 .730 .701 .874 .889 .454 .781 .767 .681 .757 .283 .596 .553
18 CNN .784 .820 .394 .722 .693 .818 .840 .461 .773 .747 .657 .726 .210 .563 .523
19 CNN+MIML-MAX .786 .825 .262 .622 .584 .811 .831 .084 .535 .561 .678 .752 .227 .497 .357
20 CNN+MIML-MAX-AVG .799 .834 .417 .743 .708 .818 .839 .484 .792 .839 .687 .757 .260 .598 .541
21 CNN+MIML-AVG .808 .847 .418 .735 .711 .829 .856 .472 .777 .757 .693 .763 .257 .592 .558
22 CNN+MIML-ATT .837 .869 .460 .753 .730 .894 .903 .504 .796 .792 .699 .771 .335 .626 .584
23 AGG-FIGER .811 .847 .440 .740 .686 .843 .882 .530 .815 .763 .738 .784 .322 .627 .579
24 JOINT-BASE1 .857 .889 .507 .789 .746 .902 .920 .558 .836 .807 .735 .80 .380 .662 .591
25 JOINT-BASE2 .876 .904 .534 .803 .769 .923 .937 .585 .848 .830 .756 .820 .415 .685 .622
26 JOINT .885 .911 .563 .819 .785 .912 .929 .586 .848 .820 .812 .858 .487 .747 .694

Table 3: Example-based measures: P@1, BEP, acc (accuracy), mic (micro F1) and mac (macro F1)
on test for all, head and tail entities. Largest numbers in each column for each section
separated with dotted lines are in bold font.

or SWLR to ELR (lines 10-11), improves ELR (line 9), especially for tail entities (around 7% in
micro F1). This demonstrates that for rare entities, contextual information is often not sufficient
for an informative representation; hence, name features are helpful. Combination of all these three
levels (line 12) is the best GM. This confirms our intuition that the levels are complementary.

The results of context models (CMs) are presented in lines 13-23. CNN (line 18) is better than
FF (line 13); this result for context models mirrors the result we earlier obtained for global models
(line 4 vs. line 3). Lines 14-17 and 19-22 show the results of different MIML algorithms for FF
and CNN, respectively. The order of MIML methods is consistent in both FF and CNN: ATT >
MAX-AVG > AVG > MAX.

MAX (lines 14 and 19) is worse than its basic distantly supervised model version (lines 13 and
18). MAX predictions are based on only one context of each entity (for each type), and the results
suggest that this is harmful for entity typing. This is in contradiction with the previous results in
RE (cf., Zeng et al., 2015) and suggests that there is a difference between corpus evidence about
the types of entities on the one hand and about relations between entities on the other. Related to
this, MAX-AVG (lines 15 and 20) which averages the type probabilities at prediction time improves
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Figure 7: t-SNE result of entity-level representations.

MAX (lines 14 and 19) by a large margin. Averaging the context probabilities seems to be a way
to smooth the entity type probabilities. MAX-AVG (lines 15 and 20) models are also better than
the corresponding models with AVG (lines 16 and 21) which train and predict with averaging. This
is due to the fact that AVG gives equal weights to all context probabilities in both training and
prediction. ATT (lines 17 and 22) uses weighted contexts in both training and prediction and that is
probably the reason for its effectiveness over all other MIML algorithms. Overall, using attention
(ATT) consistently improves the results of both FF and CNN models.

In line 23, we show the results of AGG-FIGER. Compared to the neural network context models
(lines 13-22), it is worse than CNN+MIML-ATT (line 22) in general, but better on head entities.
AGG-FIGER (line 23) has access to the features extracted from the mentions of entities as well.
This gives it more information than our context models have which only use the contexts of entities.
AGG-FIGER is trained using distant supervision and its results could be improved by using our
MIML methods. We leave this for future work. Nevertheless, all GM models with ELR (lines 9-
12) are clearly better than CM models (lines 13-23) and this shows the effectiveness of entity-level
embeddings for corpus-level entity typing.

Finally, lines 24-26 show the results for three joint models. JOINT-BASE1 (line 24) is the joint
model of the GM model in line 9 (ELR) and the CM model in line 13 (FF) and, as we already
mentioned, JOINT-BASE1 corresponds to our best model in Yaghoobzadeh and Schütze (2015).
JOINT-BASE2 (line 25) is the joint model of the GM model in line 9 (ELR) and the CM model in
line 22 (CNN+MIML-ATT). JOINT-BASE2 corresponds to our best model in Yaghoobzadeh et al.
(2017). JOINT (line 26) is joining the best GM (line 12) and the best CM (line 22) and is the
best in all of the measures, on the whole dataset, across all of the models. For the head entities,
JOINT-BASE2 is slightly better. All joint models are better than their single counterparts. This
confirms our intuition that GM and CM have complementary information. Compared to JOINT-
BASE1, JOINT-BASE2 improves CM by using CNN instead of FF and applying MIML. Compared
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all types head types tail types
MAP Macro F1 P@50 Macro F1 P@50 Macro F1 P@50

gl
ob

al
m

od
el

1 MFT .018 .032 .016 .172 .084 .002 .001
2 CLR(NSL) .277 .320 .506 .448 .771 .203 .241
3 CLR(FF) .153 .194 .515 .374 .639 .115 .131
4 CLR(CNN) .274 .325 .515 .439 .784 .252 .276
5 BOW .246 .315 .504 .427 .759 .233 .272
6 WWLR .356 .395 .619 .520 .916 .308 .367
7 SWLR .374 .412 .627 .527 .925 .339 .384
8 SWLR+CLR(CNN) .392 .420 .640 .530 .908 .322 .375
9 ELR .631 .599 .788 .773 .988 .465 .527

10 ELR+SWLR .671 .632 .813 .792 .993 .500 .579
11 ELR+CLR(CNN) .679 .646 .824 .789 .992 .524 .597
12 ELR+SWLR+CLR(CNN) .685 .650 .820 .798 .989 .523 .593

co
nt

ex
tm

od
el

13 FF .434 .468 .561 .688 .829 .332 .362
14 FF+MIML-MAX .432 .422 .667 .602 .944 .314 .398
15 FF+MIML-MAX-AVG .489 .510 .641 .704 .883 .363 .422
16 FF+MIML-AVG .470 .499 .595 .700 .853 .349 .400
17 FF+MIML-ATT .514 .530 .678 .712 .915 .407 .452
18 CNN .478 .507 .603 . 709 .856 .367 .417
19 CNN+MIML-MAX .466 .450 .697 .618 .967 .358 .454
20 CNN+MIML-MAX-AVG .542 .552 .691 .725 .895 .425 .494
21 CNN+MIML-AVG .509 .534 .625 .723 .843 .394 .453
22 CNN+MIML-ATT .561 .561 .723 .736 .951 .436 .496
23 AGG-FIGER .59 .592 .756 .705 .909 .495 .570

24 JOINT-BASE1 .641 .611 .794 .779 .961 .479 .547
25 JOINT-BASE2 .685 .637 .830 .790 .991 .515 .597
26 JOINT .703 .658 .826 .805 .969 .527 .607

Table 4: Label-based measures for all, head and tail types. Largest numbers in each column for
each section separated with dotted lines are in bold font.

to JOINT-BASE2, JOINT improves GM by adding word-level and character-level representations
to the entity-level embeddings. The JOINT model is our FIGMENT system.

Table 4 shows the results for label-based measures for all (102 types), head (frequency > 3000;
15 types) and tail (frequency < 200; 36 types) types. Each row represents one of the models. If
not mentioned explicitly, the macro F1 for all types (macro in Table 4) is the measure we talk about
when comparing models.

Overall, we see a similar trend as in Table 3. The only exception is that AGG-FIGER (line
23) is better here than CNN+MIML-ATT (line 22). JOINT (line 26) is also worse than JOINT-
BASE2 (line 25) in P@50 measures in all and head types. The main points are still valid: (i)
CNN is better for learning representations than FF; (ii) different levels of entity representations
are complementary; (iii) ELR is very powerful; (iv) MIML is very effective in mitigating noise
of distant supervision and MIML-ATT is the best algorithm in this regard; (v) CM and GM have
complementary properties and their joint model performs the best.
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5.3 Analysis

Adding another source: description-based embeddings. While in this paper, we focus on the
contexts and names of entities, there is a textual source of information about entities in KBs which
we can also make use of: descriptions of entities. We extract Wikipedia descriptions of FIGMENT

entities filtering out the entities without description (∼40,000 out of ∼200,000).
We then build a simple entity representation by averaging the embeddings of the top k words

(w.r.t. tf-idf) of the description (henceforth, AVG-DES).6 This representation is used similar to our
embeddings in Section 4.1 to train a GM. We also train our best GM model
ELR+SWLR+CLR(CNN) and our best CM model CNN+MIML-ATT, as well as a combination
(concatenation) of GM and AVG-DESC (GM+ACG-DES), a joint model of CM and GM (CM+GM),
and finally a joint model of all three models (GM+CM+AVG-DES) on this smaller dataset. Since
the descriptions are coming from Wikipedia, we use 100-dimensional Glove (Pennington, Socher,
& Manning, 2014) embeddings pretrained on Wikipdia+Gigaword to get a good coverage of words.
For our CM and GM models, we still use the embeddings we trained before.

Results are shown in Table 5. We only show the micro F1, the most represenative measure.
GM works better than AVG-DES, again showing the power of global models in this task. The
joint model, GM+CM, again improves over each single model. A more important result is that
adding AVG-DESC to GM is very effective, especially for the tail entities for which the micro F1

is improved by 9%. This suggests that for tail entities, the contextual and name information is not
enough by itself and some keywords from descriptions can be really helpful. Integrating more com-
plex description-based embeddings, e.g., by using CNN (Xie et al., 2016), may improve the results
further. We leave this for future work. The best model here is the joint model (GM+CM+AVG-
DES), with slight improvements over GM+AVG-DES.

entities
all head tail

AVG-DES .760 .786 .722
GM .817 .842 .741
CM .759 .755 .632
GM+CM .827 .854 .748
GM+AVG-DES .858 .870 .830
GM+CM+AVG-DES .865 .878 .834

Table 5: Micro average F1 results on the dataset of entities with Wikipedia description.

Comparison of character/word-level GM models on unknown vs. known entities. To do
a more fine-grained comparison between GM models that are based on an entity’s name and the
feature-based baselines, we do a further analysis. We divide test entities into known entities – at least
one word of the entity’s name appears in a train entity – and unknown entities (the complement).
There are 45,000 (resp. 15,000) known (resp. unknown) test entities.

Table 6 shows that NSL works worse than CNN on known entities (1.2%) but it is much worse on
unknown entities (by 5.8%), justifying our preference for deep learning CLR models. As expected,
BOW works relatively well for known entities and really poorly for unknown entities. Basically,

6. k = 20 gives the best results on dev.
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BOW has no clue for the unknown entities. For WWLR and SWLR in our setup, word embeddings
are induced on the entire corpus using an unsupervised algorithm. Thus, even for many words that
did not occur in train, they have access to informative representations of words. SWLR does not
have OOVs and therefore works better than WWLR on the unknown entities. For the known entities,
WWLR works better.

all known unknown
CLR(NSL) .447 .485 .309
CLR(CNN) .471 .497 .367
BOW .311 .470 .093
WWLR .553 .581 .424
SWLR .552 .574 .468

Table 6: Micro F1 on the test entities of character and word-level models for all, known and un-
known entities.

Assumptions that result in errors. The performance of all models suffers from a number of
assumptions we made in our training / evaluation setup that are only approximately true.

The first assumption is that FACC1, the entity annotations in Clueweb corpus, is correct. How-
ever, as mentioned before, it has a precision of only 80-85% and this causes errors. An example
is the lunar crater “Buffon” in Freebase, a “location”. Its predicted type is “author” because some
FACC1 annotations of the crater link it to the Italian goalkeeper.

The second assumption of our evaluation setup is the completeness of Freebase. There are
21,378 entities with type “person” in the test set and among them 2,600 entities (12%) do not have
any finer grained type.

This is potentially due to the incompleteness of entity types in Freebase, because if a person
does not have a more fine-grained type, she/he is probably not sufficiently famous to be in Freebase.
To confirm this hypothesis, we examine the output of FIGMENT on this subset of entities. For 62%
of the errors, the top predicted type is a subtype of person: “author”, “artist” etc. We manually typed
a random subset of 50 and found that the predicted type is actually correct for 44 of these entities,
but missing in Freebase.

The last assumption is the mapping from Freebase to FIGER. Some common Freebase types
like “award-winner” are not mapped. This negatively affects evaluation measures for many entities.
On the other hand, the resulting types do not have a balanced number of instances. Based on our
training entities, 11 types (e.g., “law”) have less than 50 instances while 26 types (e.g., “software”)
have more than 1000 instances. Even sampling the contexts could not resolve this problem and this
led to low performance on tail types.

6. Conclusion

We presented FIGMENT, a corpus-level system that uses textual information for fine-grained entity
typing. We designed two scoring models for pairs of entities and types: a global model that com-
putes type scores based on aggregated entity information and a context model that aggregates the
type scores of individual entity contexts. We used embeddings of characters, words, entities and
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types to represent entity names and contexts. Our experimental results showed that the global and
the context models provide complementary information for entity typing. As a result, a joint model
performed the best.
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Appendix A. Hyperparameters

model hyperparameters

GM

CLR(FF) dc = 15, hmlp = 600
CLR(CNN) dc = 10, w = [1, .., 8]

n = 100, hmlp = 800
WWLR hmlp = 400
SWLR hmlp = 400
SWLR+CLR(CNN) w = [1, ..., 7]

dc = 10, n = 50, hmlp = 700
ELR hmlp = 400
ELR+SWLR hmlp = 600
ELR+CLR(CNN) dc = 10, w = [1, ..., 7]

n = 100, hmlp = 700
ELR+SWLR+CLR dc = 10, w = [1, ..., 7]

n = 50, hmlp = 700
FF hmlp = 500, cs = 10
CNN w = [1, 2, 3, 4], n = 300, hmlp = 600
AVG-DES hmlp = 600
GM+AVG-DES dc = 10, w = [1, ..., 8]

n = 100, hmlp = 1500

CM FF cs = 10, hmlp = 500
CNN cs = 10, hmlp = 600, w = [1, 2, 3, 4]

Table 7: Hyperparameters of different models. w is the CNN filter size. n is the number of feature
maps for each filter size. dc is the character embedding size. dh is the LSTM hidden state
size. hmlp is the number of hidden units in the output MLP. cs is the context size.
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