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Abstract

In the last years, deep learning algorithms have highly revolutionized several areas
including speech, image and natural language processing. The specific field of Machine
Translation (MT) has not remained invariant. Integration of deep learning in MT varies
from re-modeling existing features into standard statistical systems to the development
of a new architecture. Among the different neural networks, research works use feed-
forward neural networks, recurrent neural networks and the encoder-decoder schema. These
architectures are able to tackle challenges as having low-resources or morphology variations.

This manuscript focuses on describing how these neural networks have been integrated
to enhance different aspects and models from statistical MT, including language modeling,
word alignment, translation, reordering, and rescoring. Then, we report the new neural
MT approach together with a description of the foundational related works and recent
approaches on using subword, characters and training with multilingual languages, among
others. Finally, we include an analysis of the corresponding challenges and future work in
using deep learning in MT.

1. Introduction

The information society is continuously evolving towards multilinguality: e.g. different
languages other than English are gainining more and more importance in the web; and
strong societies, like the European, are and will continue to be multilingual. Different
languages, domains, and language styles are combined as potential sources of information.
In such a context, Machine Translation (MT), which is the task of automatically translating
a text from a source language into a target language, is gaining more and more relevance.
Both industry and academy are strongly investigating in the field which is progressing at
an incredible speed. This progress may be directly attached to the introduction of deep
learning. Basically, deep learning is the evolution of neural networks composed by multiple-
layered models, and neural networks are machine learning systems capable of learning a task
by training from examples and without requiring being explicitly programmed for that task.
MT is just one of the applications where deep learning has succeeded recently. Although
neural networks were proposed for MT in late nineties (Forcada & Ñeco, 1997; Castaño
& Casacuberta, 1997), and have been integrated in different parts of statistical MT since
2006, it was not until 2013 and 2014 that first competitive neural MT systems were proposed
(Kalchbrenner & Blunsom, 2013; Sutskever, Vinyals, & Le, 2014; Cho, van Merrienboer,
Gulcehre, Bahdanau, Bougares, Schwenk, & Bengio, 2014b), and in 2015, that neural MT
reached the state-of-the-art (Bahdanau, Cho, & Bengio, 2015).
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1.1 MT Approaches before Deep Learning

MT has been approached mainly following a rule-based or corpus-based strategy. Rule-
based MT systems date back early 70s with the initiatives of Systran (Philipson, 2017) or
EUROTRA (Maegaard, 1989). The idea behind rule-based approaches is that transforma-
tion from source to target is done by means of performing an analysis of the source text,
transfering (with hand-crafted rules) this new source representation to a target representa-
tion and generating the final target text.

Corpus-based approaches learn from large amounts of text. One popular and successful
approach is the statistical one and, in particular, the phrase-based MT system (Koehn, Och,
& Marcu, 2003). This statistical approach benefits from being trained on large datasets.
Normally, statistical MT uses parallel texts at the level of sentences, it uses co-occurrences
to extract a bilingual dictionary, and finally, it uses monolingual text to compute a language
model which estimates the most fluent translation text in the target language.

The main limitations of statistical MT are that it relies on parallel corpora. In rule-based
MT, limitations are that it requires many linguistic resources, and a lot of human expert
time. There is a considerable amount of research trying to hybridize these two approaches
(Costa-jussà, 2015).

Another type of MT approaches, popular in the decade of the 80s, were interlingua-
based, which focus on finding a universal representation of all languages. However, these
approaches have fallen into disuse because it is very challenging and expensive to manually
find a universal representation for all languages.

1.2 MT and Deep Learning

Recent appearence of new training and optimization algorithms for neural networks, i.e.
deep learning techniques (Hinton, Osindero, & Teh, 2006; Bengio, 2009; Goodfellow, Ben-
gio, & Courville, 2016), the availability of large quantities of data and the increase of
computational power capacity have benefited the introduction of deep learning in MT.

Deep learning is about learning representations with multiple levels of abstraction and
complexity (Bengio, 2009). There has been a lot of excitement around deep learning because
of the achieved breakthroughs, e.g. the automatic extraction of composition of images
from lines to faces (Lee, Grosse, Ranganath, & Ng, 2009), the ImageNet classification
(Krizhevsky, Sutskever, & Hinton, 2012) or reducing the error rate in speech recognition by
around 10% (Graves, Mohamed, & Hinton, 2013). There has been a lot of recent activity
from the scientific community in using deep learning in MT refelected in, for example, an
explosion in the number of works in relevant conferences from 2014 up to date.

This manuscript presents an overview from the early stages of how deep learning has
started as a feature function in statistical MT (Schwenk, Costa-Jussà, & Fonollosa, 2006)
to become an entire new paradigm, which has achieved state-of-the-art results (Jean, Cho,
Memisevic, & Bengio, 2015) within one-year of development.
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1.3 Manuscript’s Contribution and Organization

This manuscript focuses on collecting and describing research done in introducing deep
learning in MT. Differently from previous surveys (Zhang & Zong, 2015), we do not de-
tail deep learning techniques, instead we just provide a briefly description to make this
manuscript self-contained. We center our attention on:

• Overviewing the integration of deep learning in MT and reporting the MT aspects
that have been improved with the different types of neural networks;

• Detailing the new neural MT architecture, citing its foundational works as well as
discussing recent advances that face challenging aspects encountered in the neural
MT architecture;

• Depicting an analysis of strengths and weaknesses of deep learning in MT.

The rest of this manuscript is organized as follows. Section 2 briefly defines the types
of neural networks that have been mostly used to enhance MT including feed-forward,
recurrent neural networks and the encoder-decoder schema. Then, section 3 classifies how
deep learning has been introduced in MT through enhancements in translation and language
modeling, word alignment, reordering and rescoring. Section 4 reviews the emergent deep
learning architecture for MT: neural MT together with the description of recent advances in
the area. Section 5 underlines the main challenges of using deep learning in MT by depicting
the main strengths and weaknesses. Finally, the last section brings discussion about the
role and future of deep learning in the MT field and points out further work directions.

2. Brief Description of Neural Networks Types

This section briefly describes the neural networks types used in MT, but for further details
on each of these neural network types refer to complete studies (Goodfellow et al., 2016).

Neural networks can be defined as a type of statistical learning algorithms used to
estimate functions that can have a large number of inputs. Neural networks are organised
in layers, including an input and an output layers and, in between, considering one or
several hidden layers. Each layer is composed by neurons which is the elementary unit of
the network. Each neuron receives one or several inputs for which the neuron performs a
weighted sum of the inputs and pass it through a non-linear function (activation) to produce
the output.

Among the main advantages, these algorithms:

• Extract abstractions from data and, currently, they are providing the best performance
in multiple domains and applications that learn from data;

• Do not require feature engineering since the algorithms learn them from data;

• Can easily be adapted to new problems, i.e. deep learning architectures which are ap-
plied to one particular application can be useful to other applications (Kaiser, Gomez,
Shazeer, Vaswani, Parmar, Jones, & Uszkoreit, 2017).

While among the main drawbacks, these algorithms:
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• Train complex models which require large amount of data, a huge number of param-
eters and a high computational cost;

• Require the challenging task of determining the right architecture or topology of the
network adequate to each task.

This section introduces the main neural network types that have been employed in
MT, either to complement statistical approaches or to be part of the new neural MT ap-
proach. Mainly they are feed-forward and recurrent neural networks and the encoder-
decoder schema. All of them can be extended with multiple hidden layers of units between
the input and the output layers constituting deep neural networks (DNNs). These networks
in the MT task are mostly trained under a supervised learning framework, where algorithms
learn from a huge collection of examples (i.e. parallel texts at the level of sentences). As a
consequence, one of the main big issues in deep learning architectures has been dealing with
large vocabularies. Training speed goes down when the vocabulary increases. Main reason
for this is that deep learning architectures used for MT (or related tasks) normally require
a softmax function to generate the final probabilities of output words. Computing this soft-
max function involves taking the sum of scores for all words in the vocabulary, which is not
feasible for large vocabularies. As we will see in sections 3 and 4, there have been mainly
two directions to face this problem: either reducing the vocabulary size by using characters
or subwords units instead of words; or use approximations and self-normalization to reduce
computation time, but not model size.

2.1 Feed-Forward Neural Networks

Feed-forward Neural Networks (FNNs), see Figure 1 (A), connect the inputs through hidden
nodes to the outputs without loops. Basically, these networks can be classified into single
and multi-layer perceptrons. The former consist of a function that maps its input to an
output value. The latter consist of several fully connected layers in a directed graph. Each
layer has several nodes, and each node is a neuron with a non-linear activation function.

2.1.1 Convolutional Neural Networks (CNNs)

A popular type of FNNs are CNNs, whose connectivity pattern between their neurons is
inspired by the overlapping of the individual neurons of the animal cortex (LeCun & Ben-
gio, 1998). A convolution operation is the mathematical way to describe this connectivity
pattern. Mentioning that there are 3 basic properties of CNNs on top of FNNs which are: lo-
cal connectivity (only adjacent neurons are connected), parameter sharing (replicated units
share the same parameterization) and maxpooling units which is a form on subsampling.

2.2 Recurrent Neural Network

Recurrent Neural Networks (RNNs), see Figure 1 (B), are another class of neural networks.
The main characteristic is that connections between units form a directed cycle, which
generates an internal state with dynamic temporal behavior. FNNs typically rely on a
fixed-size context window making the Markov assumption that a word only depends on n
previous words. On the other hand, RNNs are able to use the internal memory to get rid
of this Markov assumption and condition on all previous words, which is highly relevant in

950



Costa-jussà

language modeling and MT. There are different types of RNNs and, in this manuscript, we
focus on the most used in first neural MT systems. A much further detailed explanation
on this type of neural networks can be found in the work of Goodfellow et al. (2016).

2.2.1 Long Short Term Memory (LSTM)

The LSTM network (Hochreiter & Schmidhuber, 1997) has the directed cycle structure
with a different structure in the repeating cycle. The repeating cycle has three neural
network gates (input, memory/forget and output) which allow to discard or keep informa-
tion solving the problem RNN face on the vanishing gradient (Hochreiter, 1991; Bengio,
Simard, & Frasconi, 1994). Intuitevely, the vanishing gradient problem may appear when
using gradient-based and backpropagation methods. When training weights with these al-
gorithms, these weights are updated using the gradient of the error function. At this point,
and for RNNs, the chain rule is applied for the entire history of the sequence and applying
this many times may cause the gradients to tend to zero (specially, when using activation
functions as tanh or sigmoid). Since LSTM where initially proposed, they have successfully
been used in a wide range of sequence applications (Graves, 2013).

2.2.2 Gated RNN

An alternative to LSTMs are the Gated RNN (Chung, Gulcehre, Cho, & Bengio, 2015;
Cho et al., 2014b), which main difference is that instead of having three gates as LSTMs,
GRUs have two gates (reset and update). GRUs have less parameters to train compared
to LSTMs which may help in training faster and generalizing better with less data (Chung,
Gulcehre, Cho, & Bengio, 2014).

2.2.3 Bi-directional RNN

Bi-directional RNN uses a finite sequence to label each sequence’s element using the past
and the future context (Schuster & Paliwal, 1997). In this case, predictions are computed
by combining the RNN output of processing the sequence from left to right and the RNN
output of processing the sequence from right to left.

2.3 Encoder-Decoder

This type of architecture has been inspired in autoencoders which try to predict their
own input (Goodfellow et al., 2016). Encoder-decoder architecture generalizes the idea of
autoencoders allowing for having different input and output data. The encoder-decoder
architecture aims at learning a representation (encoding) of input data, and decodes this
representation while minimizing the amount of error for recovering the output data. The
main purpose of the internal representation is a dimensionality reduction capable of ex-
tracting relevant features from the dataset. A schematic representation is shown in Figure
1 (C).
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Figure 1: Feed-forward Neural Network (A); Recurrent Neural Network (B) and Encoder-
Decoder (C) schemas.

3. Statistical MT Systems with Deep Learning

Statistical MT (Lopez, 2008) focuses on finding the most probable target text given a
source text. In training, this approach uses parallel and monolingual corpus to extract
several models (i.e. translation, language and reordering) that in inference are combined
in a beam-search decoding. The translation model is a bilingual dictionary of words and
sequences that are scored based on co-ocurrences extracted from a parallel corpus, which has
been automatically aligned at the level of words, usually using IBM models (Brown, Pietra,
Pietra, & Mercer, 1993). The aim of this model is to provide accurate translations of source
sequences. The language model is a monolingual dictionary of words and sequences and its
objective is to model the probability of target sequences. Finally, the reordering model scores
changes of order between source and target. These models are assigned different weights
through an optimization procedure which maximises the translation quality, measured by
an automatic metric, e.g. BLEU (Papineni, Roukos, Ward, & Zhu, 2002). In addition, these
systems may benefit from rescoring n-best lists to deal with the decoding search errors.

Statistical MT has been enhanced with neural networks at different levels. This section
covers how neural networks have improved language modeling; word alignment; translation
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modeling; reordering; and rescoring. Figure 2 shows the proportion of works for each of
these models (note the source of this statistic are the cited papers by current manuscript).

As a summary of this section, Table 1 shows the main related works on introducing deep
learning on standard statistical MT.

3.1 Language Modeling

Language modeling is the task of scoring sequences of words. Approaches with neural net-
works to language modeling have a long history (Elman, 1990; Bengio, Ducharme, Vincent,
& Janvin, 2003). This subsection covers the way neural networks has enhanced monolingual
language modeling in statistical MT systems, while bilingual language modeling is reported
in the following section 3.3.

Schwenk et al. (2006) use a continuous space language model inspired in the classical
approaches (Bengio et al., 2003) to improve the N-gram-based MT system (Mariño, Banchs,
Crego, de Gispert, Lambert, Fonollosa, & Costa-jussà, 2006). The neural network is a multi-
layer perceptron, trained as a classifier, with input projection, hidden and output layers.
The projection layer of input words represents the distributed encoding of input words
and uses a linear activation function. The hidden layer uses a hyperbolic tangent as the
activation function and the output layer is a softmax layer. In this case, the continuous
space language model is used in rescoring for both a phrase-based and N-gram-based MT
system.

Following, Mikolov et al. (2012) use recurrent neural network language modeling to
rescore n-best lists. Regarding the problem of limited vocabulary (as mentioned in section
2), Hu et al. (2014) use two RNN-based minimum translation unit models. Authors focus
on addressing the issues of data sparsity and limited context sizes by leveraging continuous
representations and the unbounded history of the recurrent network. They frame the prob-
lem as a sequence modeling task over minimal units and, furthermore, model a minimum
translation unit as bag-of-words. Results show the approach is complementary to a very
strong RNN-based language model based solely on target words.

Niehues et al. (2012) propose a simplified neural language model based on restricted
boltzmann machines and integrate it in MT decoding. This fully integration leads to further
improvements than n-best rescoring. Also integrated in MT decoding, Vaswani et al. (2013)
use a FNN architecture using rectified linear units and noise-contrastive estimation, which
does not require repeated summations over the whole vocabulary and enables to train neural
networks on larger datasets.

Devlin et al. (2014) introduce a neural network joint language model which augments
an n-gram language model (Stolcke, 2002) with an m-word source window. Moreover, the
network can be self-normalized, which allows the increase in vocabulary size. Auli et al.
(2014) show how the RNN language model can be optimized using BLEU as a criterion.
In addition, authors efficiently integrate the RNN in decoding. Given that decoding speed
using n-gram LM is still state-of-the-art, some approaches calculate neural probabilities in
the n-gram format (Wang, Utiyama, Goto, Sumita, Zhao, & Lu, 2013). In the framework
of joint translation and reordering which consists in training sequences that encode trans-
lation and word reordering information at the same time, Guta et al. (2015) compare the
performance of n-gram, feedforward and recurrent neural networks directly in translation.
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In addition, and just recently, there have been studies that investigate the effectiveness
of several variations of the neural language model or information. Luong et al. (2015a)
investigate whether deep neural language models with three or four layers outperform those
with fewer layers in terms of translation quality, and they reach a significant improvement
when jointly condition on both the source and target contexts. Costa-jussà and Fonollosa
(2016) use character-aware language modeling (Kim, Jernite, Sontag, & Rush, 2016) to
rescoring of n-best lists outperforming results on an enhanced phrase-based system.

3.2 Word Alignment

Word alignment is a key task in statistical MT systems since it identifies word-by-word
relationships given pairs of sentences that are corresponding translations. IBM models
(Brown et al., 1993) are one of the most popular probabilistic formulation of this problem
and have been using successfully with the GIZA++ implementation (Och & Ney, 2003).

Recently, there have appeared some approaches that use deep learning to perform this
task. Yang et al. (2013) use the methodology of DNN used in speech recognition to learn to
extract lexical translation information. The model integrates a multi-layer neural network
into a Hidden Markov Model (HMM) framework, from where they extract context dependent
lexical translation. The model is trained on a bilingual corpus and use monolingual data to
pre-train word embeddings. They improve the quality over classical IBM models. Tamura et
al. (2014) improve the previous work by using a RNN which allows for unlimited alignment
history.

3.3 Translation Modeling

Given work in the literature, we distinguish studies done on bilingual translation models,
on phrase-based models and on syntax-based models. The main difference relies on the
fact that the bilingual translation models follow a language model structure with bilingual
units (Mariño et al., 2006), while the phrase-based models use bilingual units with no
context (Koehn et al., 2003), and, finally, the syntax-based models incorporate explicitly a
representation of syntax by parsing the sources and/or target sentences following a type of
grammar (Yamada & Knight, 2001).

3.3.1 The Bilingual Language Model

Early approaches in using neural networks in bilingual translation models are normally
two-step systems, which means that a n-best list is proposed in a traditionally way, and
then the continuous space modeling is used to rescore these lists. Schwenk et al. (2007)
propose to project bilingual units onto a continuous space as an extension from previous
work on monolingual language modeling (Schwenk et al., 2006). Then, this projection
allows to estimate the translation probabilities in this continuous representation. Bilingual
units act as neural network inputs. Again, authors face with the problem of computational
complexity which is solved by limiting the vocabulary. Zamora et al. (2010) apply the
same neural language model to both the bilingual and the monolingual language model
and, more relevant, the decoder is extended with neural language modeling during Viterbi,
which gives better results than rescoring. Leson et al. (2012) propose a similar architecture,
but authors use two vectors in the input layer coming from the source and target language.
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The two representations are combined in the hidden layer. Also in order to deal with a
larger vocabulary, the output is structured as a clustering tree, where each word belongs to
only one class and its associated sub-classes. Wu et al. (2014) tackle the sparsity problem
by factorizing bilingual tuples into source and target and using a recurrent model over them.

3.3.2 The Phrase-Based Translation Model

Schwenk et al. (2012) use FNNs to estimate the translation probabilities using a contin-
uous representation, again inspired in previous works (Schwenk et al., 2006, 2007), and
they discuss their fully integration in decoding. Gao et al. (2014) report a novel phrase
translation model which scores the bilingual phrase as the distance between their feature
vectors in a continuous space. This continuous space is learned with a multi-layer neural
network and weights are learned on the BLEU score. Sundermeyer et al. (2014) present
two word-based and phrase-based approaches to recurrent translation models. The former
assumes the one-to-one aligned source and target sentences. The latter models phrasal
translation probabilities while avoiding sparsity issues by using single words as input and
output units. Furthermore, in addition to the unidirectional formulation, authors experi-
ment with a bidirectional network which can take the full source sentence into account for
all predictions.

A particular relevant challenge for the phrase-based translation model is the fact of tak-
ing into account larger contexts while producing a translation. While standard translation
provide context to the translation, it is generally limited to short contexts. Therefore, in
the following we focus on works that aim at successfully employing larger contexts for the
phrase-based translation model.

Zou et al. (2013) learn bilingual embeddings from a large unlabeled corpus, while
utilizing MT word alignments to constrain translational equivalence. New embeddings are
added as a semantic feature in a phrase-based system and significantly outperform the
baseline system. Cui et al. (2014) propose to learn topic representation of parallel data
using an encoder-decoder and the techniques of pre-training and fine-tuning. Pre-training
and fine-tuning allow to partially initialize the error function in a point that it is easier
to train. España-i-Bonet et al. (2014) use distributed vector representations of words
(Mikolov, Le, & Sutskever, 2013) to handle ambiguous words. Authors identify content
words which have different translations. For each of these content words, authors take a
window of two previous and two following words and compute their vector representations.
They compute a linear combination of these vectors to obtain a context vector. Then, they
calculate a score based on the similarity among the vectors of every possible translation
option. Costa-jussà et al. (2014) use a deep learning encoder-decoder structure to learn
similarity correspondances between training and test sentences and integrate this similarity
measure as a new feature in the phrase-based system.

3.3.3 The Syntax-Based Translation Model

Meng et al. (2015) summarize the relevant source information through a convolutional
architecture, guided by the target information, and then, this architecture is integrated into
a dependency-to-string translation system (Xie, Mi, & Liu, 2011). Zhai et al. (2014) use
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a RNN to perform the structure prediction in a bracket transduction grammar MT system
(Wu, 1995).

3.4 Reordering

Word reordering responds to the phenomena that words can take different positions in the
source and target sentences involved in the translation. This has become one of the most
challenging aspects in MT and there is a large body of research works addressing this issue
(Bisazza & Federico, 2016). There are mainly two options to apply a reordering model
within a statistical MT framework which are integrating the model within the decoder or
formulating a preprocessing. The former performs reordering directly in search and in the
target language. The latter reorders source words in a way that better matches the target
word order (Costa-jussà & Fonollosa, 2006).

3.4.1 Reordering in Decoding

Li, Liu, Sun, Izuha, and Zhang (2014a) propose a recursive autoencoder-based for ITG-
based translation (Wu, 1995), which is a type of syntax-based model. Li, Liu, Sun, Izuha,
and Zhang (2014b) propose a neural reordering model that conditions reordering proba-
bilities on the words of both the current and previous phrase pairs. (Kanouchi, Sudoh, &
Komachi, 2016) use also a recursive autoencoder architecture but using phrase translation
and word alignment information and tested in a phrase-based system. Specifically, to alle-
viate the data sparsity problem, authors build one classifier for all phrase pairs using four
recursive autoencoders and a softmax layer. The phrase pairs are represented as continu-
ous space vectors using also a recursive autoencoder. Differently, Setiawan, Huang, Devlin,
Lamar, Zbib, Schwartz, and Makhoul (2015) develop new neural network features to model
non-local translation phenomena related to the word reordering and improve these features
with tensor neural networks. Authors use the hypothesis-enumerating features that esti-
mate the probability of each generated target word and source-enumerating features that
estimate the probability for each source word.

3.4.2 Reordering as Preprocessing

Valerio et al. (2015) propose a class of RNN models to exploit source dependency syntax.
Yu et al. (2015) propose a RNN-based rule sequence model to capture an arbitrary distance
of contextual information in estimating the probability of rule sequences. Cui et al. (2016)
present a LSTM-based neural reordering model that directly models word pairs and their
alignment.

3.5 Rescoring

Rescoring is the task of re-ranking a list of tentative translations (provided by the decoder)
using different knowledge information than the one used by the models in the decoder.
Research works in this area are previous and posterior to the neural MT system itself.
Previous to it, mostly use neural LM or TM to rescoring statistical-based systems and they
have been reported in section of language and translation modeling 3.1 and 3.3, respectively.
Posterior to it, refer to the use of a neural MT system (which will be detailed in next section)
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Figure 2: Introduction of neural networks in statistical MT. Most works are applied to main
translation and language models (based on the papers cited in this manuscript).

Table 1: Deep learning in Statistical MT: Main Related Works
System Model Main related works
Statistical-based Language Model (Schwenk et al., 2006; Schwenk, 2010)

(Niehues & Waibel, 2012; Vaswani et al., 2013)
(Wang et al., 2013; Luong et al., 2015a)
(Mikolov, 2012; Devlin et al., 2014)
(Auli & Gao, 2014; Hu et al., 2014)
(Guta et al., 2015; Costa-jussà et al., 2016)

Word Alignment (Yang et al., 2013)
(Tamura et al., 2014)

Translation (Schwenk et al., 2007; Zamora-Mart́ınez et al., 2010)
(Son et al., 2012; Schwenk, 2012)
(Gao et al., 2014; Meng et al., 2015)
(Sundermeyer et al., 2014)
(Zou et al., 2013; Mart́ınez et al., 2014)
(Mikolov et al., 2013; Cui et al., 2014)
(Costa-jussà et al., 2014)
(Wu et al., 2014; Zhai et al., 2014)

Reordering (Setiawan et al., 2015)
(Miceli Barone & Attardi, 2015)
(Yu & Zhu, 2015)
(Cui et al., 2016)
(Li et al., 2014a, 2014b; Kanouchi et al., 2016)
(Setiawan et al., 2015)

Rescoring (Neubig et al., 2015; Stahlberg et al., 2016a)

for the same purpose. In this direction, Neubig et al. (2015) rescore n-best lists of a syntax-
based system NMT while Stahlberg et al. (2016) improve this approach by using lattices
instead.
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4. Neural Machine Translation

Neural MT systems are neural networks trained to predict a target sentence given a source
sentence. This section inspired by Cho (2015), describes the probabilistic training frame-
work of this new approach, together with a review of the main foundational works and
recent advances on neural MT.

As a summary of this section, Table 2 shows the main related works on neural MT.

4.1 The Probabilistic Training Framework

The training framework of the core neural MT aims at maximizing the probability of the
target sentence given the source sentence. In particular, the neural MT system maps a
source sentence S = s1, ..., sI (with I words) into a target sentence T = t1, ..., tJ (with J
words) and parametrizes the conditional distribution p(Tn|Sn) for all training sentences in
the corpus set n = 1...N . Then, the learning algorithm maximizes the following objective
function:

argmaxθ
1

N

N∑
n=1

log pθ(Tn|Sn) (1)

where θ are different model parameters. To deal with variable-length input and output,
RNNs (see section 2.2) are able to maintain its internal state while reading a sequence of
inputs, which for translation will be a sequence of words, thereby allowing for an input of
any length.

4.2 Encoder-Decoder based on RNNs

As mentioned earlier, the neural MT system uses an encoder-decoder schema, which is
maximized as shown in Equation 1. This section describes how the explicit encoder and
decoder based on RNNs operate. The encoder follows the next steps:

1. Build a word to one-hot vector, which is a binary vector with a single element set to
1 (wi).

2. Project a one-hot vector into a continuous representation. The encoder projects this
vector with a matrix E whose columns are words from the source vocabulary and
rows are the number of dimensions chosen (mi = Ewi). This projection generates a
continuous vector for each source word, and each element of the vector is later updated
to maximize the log-probability of the correct output sentence.

3. Build the sequence summarization by a RNN, hi = φ0(hi−1,mi), where φ is the
activation function of the RNN with θ parameters. If visualizing this vector, it can be
seen that similar sentences are close together in the summary-vector space (Sutskever
et al., 2014).

The decoder, which is basically the inverse of the encoder, follows the next steps:

1. Compute the internal hidden state of the decoder zi = φθ′(hI , ui−1, zi−1), hI represents
the summary of the whole source sentence, being ui−1 the previous translated word,
zi−1 the previous hidden state of the decoder.
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2. Compute next word probability, by first scoring each word K given a hidden state zi
such that e(k) = wIkzi + bk, then, if simplifying the bias, the score can be normalized
to obtain the probability by using softmax.

3. Predict next word. After choosing the ith word, go back to the first step of computing
the decoder’s internal hidden state, scoring and normalizing the target words and
selecting the next (i+ 1)th word, repeating until selecting the end-of-sentence word.

Figure 3: Neural MT architecture.

This simple architecture has led to notable improvements and to achieve state-of-the-art
quality translation, as it is explained in the following section.

4.3 Foundational Works

Early research on this neural MT (Forcada & Ñeco, 1997; Castaño & Casacuberta, 1997)
were mainly limited by the computational power and short data. The former builds a state-
space representation of each input string and unfolds it to obtain the corresponding output
string. The latter uses an Elman simple RNN (Elman, 1990) to go from source to target.
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First proposed neural MT models mainly use the previous encoder-decoder architecture
(Sutskever et al., 2014; Cho et al., 2014b). As explained in previous section 4.2, this
architecture allows for encoding the source text into a fixed-length vector and decoding this
fixed-length vector into the target text. Both encoding and decoding are trained as a single
architecture on a parallel corpus. The main problem with this type of architecture is to
compress the source sentence into a fixed-length vector. Cho et al. (2014b) analyse this
new approach and show that neural MT performs relatively well on short sentences without
unknown words, but its performance degrades rapidly with the increment of sentence length
and number of unknown words.

To address the long sentence issues, i.e. mainly caused by encoding the input sentence
into a single fixed-lentgh vector, Bahdanau et al. (2015) propose a new mechanism where
the decoder decides which parts of the source sentence to pay attention to. This attention
mechanism relieves the encoder from having to compress all the source sentence into a fixed-
length vector, allowing the neural translation model to deal better with long sentences. See
schematic representation of the encoder-decoder with attention in Figure 3.

In the case of Pouget-Abadie et al. (2014), authors propose a way to address the
challenge of long sentences by automatically segmenting an input sentence into phrases
that can be easily translated by the neural network translation model.

4.4 Recent Advances

Since neural MT is a young paradigm, it still has large room for improvement. It seems
that performance on foundational neural MT works largely depended on language pair and
quantity of training resources. For example, in WMT 2015, neural MT beated phrase-based
systems for only one task (Bojar, Chatterjee, Federmann, Haddow, Huck, Hokamp, Koehn,
Logacheva, Monz, Negri, Post, Scarton, Specia, & Turchi, 2015). However, only one year
later, with the use of subword units (Sennrich, Haddow, & Birch, 2016b) and enlarging the
training data, neural MT systems outperformed phrase-based systems for a large number
of tasks (Bojar, Chatterjee, Federmann, Graham, Haddow, Huck, Jimeno Yepes, Koehn,
Logacheva, Monz, Negri, Neveol, Neves, Popel, Post, Rubino, Scarton, Specia, Turchi,
Verspoor, & Zampieri, 2016).

As follows we describe popular recent advances applied to neural MT that focus on solv-
ing big challenges in neural MT such as: covering translation of the entire source sentence;
high-inflected languages and large vocabularies; low-resourced languages; and efficiency in
training.

4.4.1 Encoder-Decoder Architectures

Encoders and decoders have been recently designed by means of three different successful
architectures. First, using RNNs (as mentioned in section 4.2) which use recurrence to
process sequences of variable lengths. The main disadvantage of these networks is they
process text in a strict order (either left-to-right or right-to-left) and this is computationally
expensive since it cannot be parallelized (Cho et al., 2014b). Second approach (convolutional
neural networks) overcome this limitation because these networks can process all elements at
the same time. These networks allow to compute a vector representation for each sequence
of words and their way of dealing with the input sentence allows to learn a hierarchical
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structure of the it (Gehring, Auli, Grangier, Yarats, & Dauphin, 2017). Finally, the third
approach uses only self-attention mechanisms which allows to model dependencies without
limitation to their position (Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, &
Polosukhin, 2017).

4.4.2 Attention Mechanism Variations

As mentioned in previous section 4.3 the attention-based mechanism solves the limitation of
having to encode in a fixed-length vector the entire input. There have been several proposals
to improve the original proposal from Bahdanau et al. (2015). Tu et al. (2016) propose
to maintain a coverage vector to keep track of attention history. This helps preventing
over-translation (words unnecessarily translated for multiple times) and under-translation
(words mistakenly untranslated). As a variation of this proposal, Yang et al. (2016) propose
to model the sequences of attention levels for each word with a RNN while checking a fixed
window of previous decisions. Given that attention to current time tends to be correlated
with previous attentions, Cohn et al. (2016) propose to add information about the last
attention when making the next decision. Attention can also be used for the same sentence
in which case it is called intra or self-attention. This type of attention has been used for
the first in translation in the work from Vaswani et al. (2017) with the new structure of
multi-headed attention which allows to focus attention on different parts of the sentence at
the same time.

4.4.3 Large Vocabularies, Subwords, Character-Based

As mentioned in section 2, computing the final probability of output words is costly for
larger vocabularies. Jean et al. (2015) propose a model to reduce the limitation on target
vocabulary using sampling to reduce the complexity of computing the normalization con-
stant of the output word probability in neural language models (Bengio & Senecal, 2008).
Luong et al. (2015b) address the problem with rare words by using a post-processing
step that translates all out-of-vocabulary words using a dictionary. Differently, other ap-
proaches, based on the intuition that various word classes are translateable via smaller units
than words, use word segmentation techniques and empirically show that subword models
improve over a back-off dictionary baseline for unknown words (Sennrich, Haddow, & Birch,
2016a). Furthermore, there are approaches that directly deal with characters (Costa-jussà
& Fonollosa, 2016; Lee, Cho, & Hofmann, 2016) or even bytes (Costa-jussà, Escolano, &
Fonollosa, 2017b) to reduce vocabulary to the minimum. These works use character-based
embeddings trained with convolutional networks and highway networks (Srivastava, Greff,
& Schmidhuber, 2015).

4.4.4 Multilinguality and Low-Resources

Having low-resources has always been a limitation to train competitive corpus-based MT
systems. Neural MT proposes several ways to tackle this problem. On the one hand, Zoph
and Knight (2016) propose to train a high-resource language pair and transfer the learned
parameters to the low-resource language pair. On the other hand, there are several proposals
to train the systems with multilingual resources. Relevant works in this direction include
systems trained from one-to-many languages (Dong, Wu, He, Yu, & Wang, 2015), which
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Table 2: Deep learning in Neural MT: Main Related Works
System Related Progress Main related works

Neural-based Foundational (Forcada & Ñeco, 1997; Castaño & Casacuberta, 1997)
(Sutskever et al., 2014; Cho et al., 2014a)
(Cho et al., 2014b; Bahdanau et al., 2015)
(Pouget-Abadie et al., 2014)

Enc-dec (Gehring et al., 2017; Vaswani et al., 2017)
Attention (Tu et al., 2016; Yang et al., 2016)

(Cohn et al., 2016; Vaswani et al., 2017)
Subwords (Jean et al., 2015; Luong et al., 2015b)

(Sennrich et al., 2016b; Costa-jussà et al., 2017b)
(Costa-jussà & Fonollosa, 2016; Lee et al., 2016)

Multilinguality (Zoph et al., 2016; Zoph & Knight, 2016; Firat et al., 2016)
(Johnson et al., 2016)

Linguistics (Eriguchi et al., 2016; Stahlberg et al., 2016a)
(Sennrich & Haddow, 2016)

Production (Crego et al., 2016; Wu et al., 2016; Levin et al., 2017)

simultaneously translate sentences from one source language to multiple target languages;
many-to-one languages (Zoph & Knight, 2016), in which a standard neural MT model is
trained with many sources and one single target language; or many-to-many (Firat, Cho,
& Bengio, 2016), in which the neural model is trained with many source and many target
languages. Most recent advances include systems which are able to do zero-shot translation
(Johnson, Schuster, Le, Krikun, Wu, Chen, Thorat, Viégas, Wattenberg, Corrado, Hughes,
& Dean, 2016), meaning that without parallel corpus from language A and B, the system is
able to learn translation among these languages. But, in general, phrase-based MT handles
low-resource settings better as shown in the work of Koehn et al. (2017) .

4.4.5 Adding Prior/Linguistic Knowledge

Although the idea of neural MT and deep learning in general is adding the minimum prior
knowledge possible in the systems, some approaches have shown that adding some kind of
linguistic knowledge is useful. Syntactical knowledge is added in the work of Eriguchi et al.
(2016) and Stahlberg et al. (2016) while Sennrich and Haddow (2016) train morphological
linguistic features for word embeddings in the neural MT model.

4.4.6 Systems In Production

Although efficiency in neural MT is a challenge since training a system may last for weeks
(specially when using RNNs), there are already successful neural MT systems in production
(Crego, Kim, Klein, Rebollo, Yang, Senellart, Akhanov, & et al., 2016; Wu, Schuster, Chen,
Le, Norouzi, & et al., 2016; Levin, Dhanuka, Khalil, Kovalev, & Khalilov, 2017).

5. Neural MT Analysis: Strengths and Weaknesses

Deep learning has been introduced in standard statistical MT systems (see section 3) and as
a new MT approach (see section 4). This section makes an analysis of the main strengths
and weaknesses of the neural MT approach (see a summary in Figure 5). This analysis
helps towards planning the future directions of neural MT.
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Figure 4: Strengths and Weaknesses analysis for Neural MT.

5.1 Strengths

The main inherent strength of neural MT is that all the model components are jointly
trained allowing for an end-to-end optimization.

Another relevant strength is that, given its architecture based on creating an interme-
diate representation, the neural model could eventually evolve towards a machine-learnt
interlingua approach (Johnson et al., 2016). This interlingua representation would be key
to outperform MT on low-resourced language pairs as well as to efficiently deal with MT
in highly multilingual environments.

In addition, neural MT has shown to be able to learn from different basic unit granulari-
ties. Subword-based representations (Sennrich et al., 2016b; Costa-jussà & Fonollosa, 2016;
Lee et al., 2016) allow neural MT models with open-vocabulary by translating segmented
words. Among the different alternatives to build subword units, the byte pair encoding,
which is a data compresion technique, has shown to perform efficiently (Sennrich et al.,
2016b). Characters allows to take advantage of intra-word information and they have been
implemented only in the source side (Costa-jussà & Fonollosa, 2016) and both in the source
and target sides (Lee et al., 2016).

Finally, the new paradigm allows for multimodal machine translation (Elliott, Frank,
& Hasler, 2015), allowing to take advantage of image information while translating and
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end-to-end speech translation architectures (Weiss, Chorowski, Jaitly, Wu, & Chen, 2017),
which reduces concatenating errors.

5.2 Weaknesses

The main inherent weaknesses of neural MT are the difficulty to trace errors, long training
time and high computational cost. Other weakness is the high computational cost of training
and testing the models. Training can only be faced with GPUs (Graphical Processing Units)
which are expensive.

Finally, an added weakness is related to interpretability of the model and the fact that
the model works with vectors, matrices and tensors instead of words or phrases. There-
fore, the ability to train these neural models from scratch requires background in machine
learning and computer science and it is not easy that users/companies are able to compre-
hend/interpret it. It is difficult to adopt the paradigm. Small companies may prefer other
more consolidated paradigms like the phrase and rule-based.

6. Summary, Conclusions and Future Work

Deep learning has been integrated in standard statistical MT systems at different levels
(i.e. into the language model, word alignment, translation, reordering and rescoring) from
different perspectives and achieving significant improvements in all cases. The field of deep
learning is advancing so quickly that it is worth noticing that neural-based techniques that
work today may be replaced by new ones in the near future.

In addition, an entire new paradigm has been proposed: neural MT. Curiously, this
approach has been proposed almost simultaneaously as the popular phrase-based system
(Forcada & Ñeco, 1997; Castaño & Casacuberta, 1997). The proposal was named differently
connectionist MT, and given that the computational power required was prohibitive at
that time and data available was not enough to train such complex systems, the idea was
abandoned. Nowadays, thanks to GPUs, the computational power is not such a limitation
and the information society is providing large quantities of data which allow to train the
large number of parameters that these models have.

It is difficult to quantify how much does MT improve with the neural approach. It varies
from language pair and task. For example, results on the WMT 2016 evaluation (Bojar
et al., 2016) show that neural MT achieved best results (in terms of human evaluation)
in some language directions such as German-English, English Romanian, English-German,
Czech-English, English-Czech; but not in others like Romanian-English, Russian-English,
English-Russian, English-Finnish. Neural MT may be more affected by large language
differences, low resources and variations in training versus test domain (Aldón, 2016; Costa-
jussà, Aldón, & Fonollosa, 2017a; Costa-jussà, 2017; Koehn & Knowles, 2017). Interpreting
MT systems has never before been more difficult. In the evolution of MT, we have first
lost rules (in the transition from the rule to the statistical-based approach) and recently,
we have lost translation units (in the transition from the statistical to the neural-based
approach). Nowadays, the new neural-based approaches to MT are opening new questions,
e.g. is it a machine-learnt interlingua something attainable? which are the minimal units
to be translated?
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This manuscript recompiles and systematizes the foundational works in using deep learn-
ing in MT which is progressing incredibly fast. Deep learning is influencing many areas in
natural language processing and the expectations on the use of these techniques are con-
troversial.

It is adventurous to envisage how neural algorithms are going to impact MT in the
future but it seems that they are here to stay as proven by recent news on big companies
adopting the neural MT approach e.g. Google (Johnson et al., 2016) and Systran (Crego
et al., 2016). Furthermore, deep learning is already taking the field dramatically further as
shown by the appearence of first end-to-end speech-to-text translation (Weiss et al., 2017)
and multimodal MT (Elliott et al., 2015), interlingua-based representations (Firat, Cho,
Sankaran, Vural, & Bengio, 2017) and unsupervised MT (Artetxe, Labaka, Agirre, & Cho,
2017; Lample, Denoyer, & Ranzato, 2017).
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Costa-jussà, M. R., Aldón, D., & Fonollosa, J. A. R. (2017a). Chinese-spanish neural
machine translation enhanced with character and word bitmap fonts. Machine Trans-
lation, Accepted for publication.
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Mikolov, T. (2012). Statistical language models based on neural networks..

Mikolov, T., Le, Q. V., & Sutskever, I. (2013). Exploiting similarities among languages for
machine translation. CoRR, abs/1309.4168.

Neubig, G., Morishita, M., & Nakamura, S. (2015). Neural reranking improves subjective
quality of machine translation: NAIST at WAT2015. In Proceedings of the 2nd Work-
shop on Asian Translation, WAT 2015, Kyoto, Japan, October 16, 2015, pp. 35–41.

Niehues, J., & Waibel, A. (2012). Continuous space language models using restricted boltz-
mann machines..

Och, F. J., & Ney, H. (2003). A systematic comparison of various statistical alignment
models. Computational Linguistics, 29 (1), 19–51.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pp. 311–318, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Philipson, J. (2014; accessed September 2017). Systran: A brief history of machine transla-
tion..

Pouget-Abadie, J., Bahdanau, D., van Merrienboer, B., Cho, K., & Bengio, Y. (2014). Over-
coming the curse of sentence length for neural machine translation using automatic
segmentation. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, pp. 78–85, Doha, Qatar. Association for Compu-
tational Linguistics.

Schuster, M., & Paliwal, K. (1997). Bidirectional recurrent neural networks. Trans. Sig.
Proc., 45 (11), 2673–2681.

Schwenk, H. (2010). Continuous-space language models for statistical machine translation.
Prague Bull. Math. Linguistics, 93, 137–146.

Schwenk, H. (2012). Continuous space translation models for phrase-based statistical ma-
chine translation. In COLING 2012, 24th International Conference on Computational
Linguistics, Proceedings of the Conference: Posters, 8-15 December 2012, Mumbai, In-
dia, pp. 1071–1080.
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