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Abstract

One of the fundamental research challenges in network science is centrality analysis, i.e.,
identifying the nodes that play the most important roles in the network. In this article,
we focus on the game-theoretic approach to centrality analysis. While various centrality
indices have been recently proposed based on this approach, it is still unknown how general
is the game-theoretic approach to centrality and what distinguishes some game-theoretic
centralities from others. In this article, we attempt to answer this question by providing the
first axiomatic characterization of game-theoretic centralities. Specifically, we show that
every possible centrality measure can be obtained following the game-theoretic approach.
Furthermore, we study three natural classes of game-theoretic centrality, and prove that
they can be characterized by certain intuitive properties pertaining to the well-known notion
of Fairness due to Myerson.

1. Introduction

Centrality analysis is one of the fundamental research problems in graph theory and net-
work science. It involves identifying the nodes that play the most important role in the net-
work (Brandes & Erlebach, 2005). On top of the already classic centrality indices (or, simply,
centralities) such as degree, closeness, betweenness, eigenvector, Katz, and PageRank cen-
tralities, various new concepts have been recently proposed in the literature (Koschützki,
Lehmann, Peeters, Richter, Tenfelde-Podehl, & Zlotowski, 2005).

One family of centralities that has recently attracted growing attention is based on
Cooperative, or “Coalitional”, Game Theory (Gomez, González-Arangüena, Manuel, Owen,
del Pozo, & Tejada, 2003; del Pozo, Manuel, González-Arangüena, & Owen, 2011; Michalak,
Aadithya, Szczepański, Ravindran, & Jennings, 2013; Szczepański, Michalak, & Rahwan,
2016). Here, the key idea is to analyse the topology of the network using the combinatorial
structure of a coalitional game. More in detail, in the first step, one has to define a function,
called a representation function, which evaluates the centrality of each subset of nodes.
Next, having evaluated all the subsets, one can evaluate the role of individual nodes by
applying payoff division schemes from cooperative game theory—such as the Shapley value
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or the Banzhaf power index (Chalkiadakis, Elkind, & Wooldridge, 2011)—which measures
the contribution of individual entities to the performance of the system as a whole.

Centrality indices built in such a way are called game-theoretic centralities. On the one
hand, they extend conventional centrality indices which solely focus on the performance of
individual nodes and neglect the performance of groups of nodes. On the other hand, game-
theoretic centralities take into account the role of a node not only in the whole network, but
also smaller parts formed by subset of nodes. In result, various centralities obtained using
the game-theoretic approach have been shown to outperform classic centralities in a number
of real-life applications, including information diffusion (Suri & Narahari, 2008), terrorist-
network analysis (Lindelauf, Hamers, & Husslage, 2013; Michalak, Rahwan, Skibski, &
Wooldridge, 2015), and genes and brain networks (Kötter, Reid, Krumnack, Wanke, &
Sporns, 2007; Moretti, Fragnelli, Patrone, & Bonassi, 2010).

One example is the work by Bianzino, Chaudet, Rossi, Rougier, and Moretti (2011) on
reducing the energy consumption in communication networks such as backbone IP-networks.
In particular, to enable entering the energy-saving sleep mode by some of the devices, the
authors studied a technique called resource consolidation that relies on concentrating the
workload of an infrastructure on a reduced set of devices. To decide which devices should
enter the sleep mode, the authors proposed using a game-theoretic centrality. First, for
each group of devices, the subgraph induced by them is analysed to compute the amount of
traffic that this group can effectively transport. Then, the Shapley value is used to assess
the importance of each device. Based on the numerical results obtained over a real network
topology and traffic matrix, the authors showed that using the new method leads to the
improvement of the network quality of service.

Despite the recent attention that game-theoretic centralities have received in the lit-
erature, their theoretical foundations and properties are not entirely understood to date.
Unfortunately, this problem, termed “theory gap”, concerns not only novel centrality indices
but also the classic ones, as well as many other concepts in social network analysis (Schoch
& Brandes, 2015). A few attempts to bridge this gap include the works by Sabidussi (1966),
Nieminen (1974), and Boldi and Vigna (2014), who provided axiomatic characterizations of
some of the classic centrality indices (see the next section for more details).

Meager axiomatic foundations are especially striking in the case of game-theoretic cen-
tralities. This is because the axiomatizations of the payoff division schemes upon which the
game-theoretic indices are built have been extensively studied in the literature. Perhaps the
most widely-acclaimed such division scheme is the Shapley value (Shapley, 1953) which has
been axiomatized in a variety of ways (Winter, 2002). For example, one of the celebrated
axiomatizations of the Shapley value is due to Myerson (1980) who showed that this payoff
division scheme is uniquely determined only by two basic axioms: Efficiency and Balanced
Contributions. The former axiom simply requires that the sum of all the players’ payoffs
is equal the total reward from cooperation, i.e., equal to the value of the grand coalition
(which is the coalition containing all the players in the game). The latter axiom requires
that the removal of player i from the game affects the payoff of player j in the same way
that the removal of player j affects the payoff of player i.

Unfortunately, despite the many axiomatizations that have been proposed for various
game-theoretic payoff division schemes to date, it turns out that developing axiomatizations
for game-theoretic centralities is far from straightforward. This is mainly because various
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axioms that are desirable in the context of cooperative games lose their attractiveness in
the context of network centrality. For instance, it is unclear why Efficiency should be met
by some game-theoretic centralities.1 Luckily, however, certain axioms from cooperative
games can be directly used in the centrality context. One such axiom that will play a
crucial role in this article is Fairness. This axiom was introduced by Myerson (1977) for
coalitional games in which cooperation between players is restricted by an underlying graph.
In essence, Fairness requires that each edge in the graph equally affects the payoff of both
adjacent players. This directly translates to the centrality context, by requiring that each
edge equally affects the centrality of both adjacent nodes. Indeed, such a direct translation
of Fairness constitutes one of the axioms used by Skibski, Rahwan, Michalak, and Yokoo
(2016), who proposed the first axiomatic characterization of a particular instantiation of
game-theoretic centrality.

Nevertheless, little is known to date about the axiomatic underpinnings of the game-
theoretic indices in general. Specifically, we still do not know the answers to the following
two fundamental questions:

1. How general is the game-theoretic approach to centrality?

2. What distinguishes some game-theoretic centrality indices from others?

In this article, we present the first attempt to tackle both questions. In particular, we
answer the first question by showing that every non game-theoretic centrality can also be
obtained using some game-theoretic centrality. This result is a testimony to the versatility of
the game-theoretic approach to centrality analysis. Indeed, each game-theoretic centrality is
a combination of a representation function and a payoff division scheme, and both of these
components can be chosen arbitrarily to suit the application at hand. We then extend
this result by showing that each payoff division scheme taken from a large class, called the
positive semivalues, can be used to obtain every possible centrality.

To answer the second question, we distinguish three natural classes from the set of all
game-theoretic centralities, and lay axiomatic foundations for each of them. The classes
differ in terms of the representation function and how it assigns values to subsets of nodes.
In particular, since the representation function in its general form is meant to express any
setting, it assigns a value to any subset of nodes arbitrarily, i.e., based on the topology of
the entire graph and not only on the subset itself. To put it differently, in the general case,
the value of the same subset of nodes can be arbitrarily different in one graph compared to
another graph, no matter how small the difference between the two graphs is.

However, various instantiations of game-theoretic centrality that were studied in the
literature assume some kind of dependency between the values of the same subset of nodes in
different graphs (see the next section for a number of examples). Driven by this observation,
we define the following three classes of representation functions and their corresponding
game-theoretic centrality indices:

1. One of the centralities for which Efficiency does not seem to be a suitable axiom is the game-theoretic
betweenness centrality as defined in the work by Szczepański et al. (2016), where the value of the grand
coalition happens to be 0.

35



Skibski, Michalak, & Rahwan

General

v

c

c

u

Separable

v

c

c

u

Induced

v

c

c

u

Edge-Induced

v

c

c

u

● Fairness ● Edge Balanced
Contributions

● Balanced Contributions
● Zero-Empty

Figure 1: Given a complete graph of 5 nodes, the figure illustrates how the value of {v, u} is
computed under a general, a separable, an induced, and an edge-induced representation
function. The gray boxes contain the edges and nodes that affect the value of {v, u}; all
remaining edges and nodes (i.e., the dashed ones) do not. Since there are 210 possible
graphs consisting of 5 nodes each, {v, u} may have at most 210 distinct values under a
general representation function, r. In contrast, if r is separable, then {v, u} may have
at most 24 distinct values, and if r is induced or edge-induced, then {v, u} may have at
most 21 distinct values. Below each graph, we list the axioms with which we characterise
centralities in each class; see subsequent sections for more details.

• Separable representation functions (which produce separable game-theoretic centrali-
ties): in this class, the value of every subset of nodes depends solely on the subgraph
induced by this subset and the subgraph induced by the remaining nodes in the graph.

• Induced representation functions (which produce induced game-theoretic centralities):
in this class, the value of every subset of nodes depends solely on the subgraph induced
by this subset. Hence, every induced game-theoretic centrality is also separable.

• Edge-induced representation functions (which produce edge-induced game-theoretic
centralities): in this class, the value of every subset of nodes depends solely on the
edges in the subgraph induced by this subset.2 Therefore, every edge-induced game-
theoretic centrality is also induced.

Given a complete graph of 5 nodes, Figure 1 illustrates the edges that affect the value of
a subset of nodes ({v, u}) under a general, a separable, an induced, and an edge-induced
representation function.

Our analysis shows that each of the above classes of game-theoretic centralities cap-
tures a particular subset of all centralities. In particular, we first prove that the subset of
all centralities that can be obtained using separable game-theoretic centralities is defined
by Myerson’s Fairness. In other words, every separable game-theoretic centrality satisfies
Fairness, and every (non-game-theoretic) centrality that satisfies Fairness can be obtained
with some separable game-theoretic centrality. Next, we extend Fairness to produce a new

2. Note that the difference between the induced and edge-induced representation functions is that the latter
does not depend on isolated nodes, unlike the former one.
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axiom—Edge Balanced Contributions—which is a network counterpart of the aforemen-
tioned game-theoretic axiom of Balanced Contributions. Analogously, we prove that the
subset of all centralities that can be obtained with induced game-theoretic centralities is
defined by Edge Balanced Contributions. Finally, we prove that the subset of all centrali-
ties that can be obtained using edge-induced game-theoretic centralities is defined by two
axioms: Myerson’s Balanced Contributions axiom, and an additional axiom—Zero-Empty—
which simply requires that the centrality of any node in an empty graph (with no edges) is
zero.

The remainder of the paper is structured as follows. Section 2 discusses the related works
in the literature. Section 3 presents the necessary notation and background. Sections 4
to 7 analyse the general, separable, induced, and edge-induced game-theoretic centralities,
respectively. Finally, Section 8 concludes the paper and presents some potential future
directions. A summary of the main notation can be found in the appendix.

2. Related Work

In this section, we briefly review the literature on game-theoretic centralities, indicating
which centralities could be classified as separable, induced, and edge-induced. We discuss, in
particular, Attachment centrality—to date the only game-theoretic centrality the axiomatic
foundations of which have been proposed. Finally, we comment on the characterisations of
other, non-game theoretic centrality measures and other examples of applying coalitional
games to networks.

2.1 Game-Theoretic Network Centralities

Game-theoretic centralities can be divided into two general types. In the first one, based
on the seminal work by Myerson (1977), there is an explicit distinction between connected
and disconnected coalitions. In the second type, there is no such distinction.

2.1.1 Game-Theoretic Network Centralities Based on Connectivity

For the first time coalitional games were considered on graphs in the seminal work by
Myerson (1977). In particular, Myerson proposed a model of a coalitional game in which
cooperation is restricted by a communication graph. The edges in this graph represent
communication channels between players. The key idea behind Myerson’s model is that only
connected coalitions—i.e., coalitions in which each pair of nodes can communicate either
directly (via an edge) or indirectly (via a path)—are able to coordinate their activities
and generate an arbitrary payoff. As for any disconnected coalition, since the connected
components therein cannot communicate with one another, the value of entire coalition is
simply the sum of the values of the connected components therein.

The Shapley value of Myerson’s graph-restricted game is called the Myerson value. The
payoff assigned by the Myerson value to each player reflects the importance of this player
in the graph-restricted game. Hence, it can be interpreted as a centrality index. Note that
such centrality is determined not only by the topology of the graph but also by the definition
of the coalitional game (i.e., the values of the different coalitions). For instance, Skibski,
Michalak, Rahwan, and Wooldridge (2014) studied a family of game-theoretic centralities
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whereby the value of a coalition, S, in unweighted graphs simplifies to |S|α|E(S)|β, where
α and β are constants, and E(S) is the set of edges in the subgraph induced by S. Note
that all centrality indices from this family belong to the class of induced game-theoretic
centralities. Moreover, if α = 0, then all the resulting centrality indices belong to the class
of edge-induced game-theoretic centralities.

Myerson (1977) proved that his value is characterised by two basic axioms: Fairness and
Efficiency. As mentioned earlier in the introduction, Fairness requires that each edge in the
graph equally affects the payoff of both adjacent players (see page 46 for a formal definition).
On the other hand, Efficiency requires that the payoff of each connected component of a
graph is entirely divided among the members of this component. While the former axiom
can be easily translated to the context of network centrality, the latter cannot.

The first axiomatization of a game-theoretic centrality was proposed by Skibski et al.
(2016). In their centrality, called Attachment centrality, the value of an arbitrary (not nec-
essarily connected) coalition, S, is: |S|−|K(G[S])|, where K(G[S]) is the set of components
of the subgraph induced by S. This implies that the value of a connected coalition, S, is:
|S| − 1. The authors proved that Attachment centrality is the only centrality satisfying
the following four axioms: Locality, Normalization, Gain-loss, and Myerson’s Fairness. In
more detail, Locality concerns connected components of the graph; it requires that the cen-
trality of a node depends solely on the connected component to which this node belongs.
Normalization is inspired by the observation that most centrality measures (e.g., Degree,
Closeness, and Betweenness) are minimized when the node is isolated (i.e., does not have
any neighbours), and maximized when the node happens to be the center of a star. Hence,
Normalization requires that a (normalized) centrality measure returns a minimum value
of 0, and a maximum value of n − 1 at these extreme cases, respectively. Gain-Loss, just
like Fairness, concerns the impact of adding an edge to the graph. However, while Fairness
focuses on how this addition affects both ends of the edge, the other axiom focuses on how
this addition affects every node other than the two ends of the edge. Specifically, accord-
ing to Gain-Loss, if adding an edge in a connected graph makes some nodes’ centrality
greater, then it must also make some other nodes’ centrality smaller, such that the sum
of centralities remains unchanged. Arguably, Gain-loss makes sense from the connectivity
point of view, since all nodes share the role of keeping the network connected. For exam-
ple, consider a situation in which the removal of a node, v, breaks a connected graph, G,
into two components, G1 and G2. Here, v obviously plays an important role in terms of
connectivity, since its presence is necessary to connect G1 with G2. Now suppose that the
edge between nodes u and w was added to G, where u belongs to G1 and w belongs to
G2. With this addition, it seems reasonable to claim that the role played by u and w grows
more important, whereas the role played by v diminishes, since its presence is no longer
necessary to connect G1 with G2. Finally, note that Attachment centrality belongs to the
class of edge-induced game-theoretic centralities.

Amer and Giménez (2004) proposed an alternative approach to the one proposed by
Myerson. Specifically, the authors considered a connectivity game in which the value of
each connected coalition is 1, and the value of each disconnected coalition equals 0. This
definition was generalized by Lindelauf et al. (2013), who allowed the connected coalitions
to have arbitrary values instead of just 1. As an application, the authors considered the
analysis of terrorist networks; here the value of every connected coalition was computed as

38



Axiomatic Characterization of Game-Theoretic Centrality

the sum of the node weights. Finally, note that the centrality measure proposed by Amer
and Giménez (2004), as well as all the centrality measures proposed by Lindelauf et al.
(2013), all belong to the class of induced game-theoretic centralities.

2.1.2 Game-Theoretic Network Centralities Not Requiring Connectivity

In an attempt to identify the k most influential nodes in the network, Narayanam and
Narahari (2011) proposed a new centrality measure based on coalitional games. In this
approach, the value of a coalition was given by the number of nodes in that coalition plus
the number of nodes that are immediately reachable from that coalition, i.e., the neighbours.
The centrality of each node was then computed as the Shapley value of that node in the
coalitional game. Later on, Michalak et al. (2013) extended this work by considering five
different functions for computing the value of each coalition; some of these functions deal
with weighted graphs whereas the rest deal with unweighted graphs. All of these functions
revolve around the idea that the value of a group is computed as the number of nodes in
the group plus the number of nodes in a certain subset of nodes reachable from the group.
Again, the centrality of each node was computed as the Shapley value of that node in
the corresponding coalitional game. The centrality measures proposed by Michalak et al.
(2013) and in the literature that followed (see www.game-theoretic-centrality.com) are not
captured by any class proposed in this article—these measures do not belong even to our
most general class, namely that of separable game-theoretic centralities.

Narayanam, Skibski, Lamba, and Michalak (2014) proposed two game-theoretic central-
ity measures in an attempt to determine the “gatekeepers” in a social network. In contrast
to all other game-theoretic centrality measures in the literature, the authors considered two
functions that compute the value of each coalition based on the network obtained by remov-
ing the coalition from the network. For instance, one such function computes the value of a
coalition, S, as: 1/

∑
C∈K(G[V \S]) |C|2, where V is the set of nodes, and K(G[V \ S]) is the

set of components of the subgraph induced by V \S. With either function, the centrality of
each node is computed as the Shapley value of that node in the corresponding coalitional
game. The resulting centrality measures belong to the class of separable game-theoretic
centralities, but do not belong to the class of induced game-theoretic centralities.

Moretti et al. (2010) considered a game-theoretic approach to measure the centrality of
genes in networks, taking into consideration certain gene interactions. However, in their
approach the value of a group of nodes depends not only on the graph itself, but also on
the additional information—the connections to certain key genes.

Finally, a number of authors considered game-theoretic centralities for directed graphs
(Gomez et al., 2003; del Pozo et al., 2011). However, no axiomatization has been proposed
for any such centrality measure.

2.2 Characterisations of Non Game-Theoretic Centralities

There have been several attempts to provide an axiomatic characterization of the standard
centrality measures. In this context, Sabidussi (1966) considered axiomatization of the class
of all centrality measures. Nieminen (1974) proposed an axiomatization of Degree centrality.
Boldi and Vigna (2014) derived an axiomatization of a certain version of Closeness centrality.
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More recently, Brandes et al. proposed an approach that can be positioned in-between the
purely axiomatic and the purely conceptual ones (Brandes, 2014; Schoch & Brandes, 2015).

There also exist some non-axiomatic characterizations of centrality measures. Two such
characterizations are due to Borgatti (2005) and Borgatti and Everett (2006). In more
detail, Borgatti (2005) focused on networks where something is flowing from node to node
across the edges. In this context, he characterized the centrality measures by two factors:

• the type of the flow, which may be indivisible (e.g., like transporting a certain physical
object), or simultaneous (e.g., like sending a message to all neighbours);

• the type of path, which may have repeating nodes, repeating edges, or no repetition.

Borgatti argued that all standard centrality measures can be classified according to these
two factors. In contrast, Borgatti and Everett (2006) characterized the centrality measures
in term of “cohesiveness”. Specifically, they classify the centrality measures based on:

• the type of path that the node is involved in; such a path can either be radial (i.e.,
starts from the node), or medial (i.e., goes through the node);

• the way in which the centrality of a node is affected by the paths it is involved in;
this can either be based on the number (or “volume”) of those paths, or the length of
those paths.

The above produces four classes of centrality measures. The authors show how many
centrality indices can be classified into those four classes.

2.3 Other Applications of Coalitional Games to Networks

There is a vast body of literature in which cooperative game theory intersects with network
theory which is not concerned with node centrality. For instance, Deng and Papadimitriou
(1994) proposed an induced subgraph representation in which the value of a coalition is
the sum of weights of edges between nodes from this coalition. Ieong and Shoham (2005)
introduced marginal-contribution networks which can be understood as the generalization of
induced subgraph representation to hypergraphs, i.e., graphs where edges can connect any
number of nodes. Elkind and Wooldridge (2009) extended this representation to hedonic
games. Brânzei and Larson (2009) proposed coalitional affinity games, where edges represent
affinity relation and the value of a player in a coalition is the sum of weights of edges to
other players from this coalition. Similarly, Brânzei and Larson (2011) considered social
distance games in which the utility of a player in a coalition is the harmonic centrality
(average inversed distance to others) in a graph induced by the coalition.

In all these concepts the value of a coalition depends solely on edges within the coalition,
as in induced game-theoretic centralities that we propose in this paper.

3. Preliminaries

In this section, we provide the necessary background and notation from both graph theory
and coalitional game theory. A summary of the main notation can be found in the appendix.
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3.1 Graph Theory

A graph (network) is a pair G = (V,E), where V is the set of nodes and E is the set of
edges. The edge between any two nodes, v, u ∈ V , will be denoted by {v, u}. We denote
by Ev the edges of node v in E, i.e., Ev = {{v, w} ∈ E : w ∈ V }. Given a set of nodes,
V , the set of all possible graphs will be denoted by GV . Furthermore, the set of all possible
edges will be denoted by EV , i.e., EV = {S ⊆ V : |S| = 2}. Note that we do not consider
self-loops, i.e., edges of the form (v, v) : v ∈ V .

For any subset of nodes, S ⊆ V , the subgraph of G induced by S is denoted by G[S] and
is defined as the graph whose set of nodes is S and whose set of edges consists of every edge
in E of which both ends belong to S. Formally:

G[S] =
(
S,
{
{v, u} ∈ E : v, u ∈ S

})
.

A subgraph is said to be connected if there exists a path between every pair of nodes in
that subgraph. Furthermore, any such connected subgraph, G[S], is said to be maximal if
G[S′] is disconnected for all S ⊂ S′. We will refer to each maximal connected subgraph as
a component of G. Also, we will denote by K(G) the partition of V in which every subset
induces a component of G.

A centrality index is a function, c : GV → RV , that assigns to every node v ∈ V a
real number reflecting the importance of v in G; this number is called the centrality of v.
Typically, the higher the centrality, the more important or central the node. Given a set of
nodes, V , the set of all possible centrality indices is denoted by CV . For every c ∈ CV and
every k ∈ R, we define the centrality index (k · c) as follows: (k · c)v(G) = k · cv(G) for all
G ∈ GV and v ∈ V . Similarly, for every c, c′ ∈ CV , we define the centrality index (c+ c′) as
follows: (c+ c′)v(G) = cv(G) + c′v(G) for all G ∈ GV and v ∈ V .

3.2 Coalitional Game Theory

A game is a pair, (N, f), where N is the set of players and f : 2N → R is the characteristic
function, which assigns to each subset of players a real number reflecting its importance.
Any subset of players, S ⊆ N , is called a coalition, and f(S) is called the value of coalition
S. Typically, f(∅) = 0. Given a set of players, N , the set of all possible games is denoted
by FN .

A solution concept, ϕ : FN → RN , is a function that assigns a payoff to each player, v,
in any given game (N, f); this payoff is denoted by ϕv(f). Given a set of players N , the set
of all possible solution concepts is denoted by ΦN .

A fundamental class of solution concepts is Semivalues (Dubey, Neyman, & Weber,

1981). Let β : {0, . . . , |N | − 1} → [0, 1] be a function such that
∑|N |−1

k=0 β(k) = 1. Every
such β defines a unique semivalue, ϕβ, based on which the payoff of a player v ∈ N is
computed as follows:

ϕβv (f) =
∑

S⊆N\{v}

β(|S|)(|N |−1
|S|
)(f(S ∪ {v})− f(S)). (1)

Here, the expression f(S ∪ {v}) − f(S) is known as the marginal contribution of player v

to coalition S. We will write β∗(k) as a shorthand notation for β(k)/
(|N |−1

k

)
. A semivalue
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Figure 2: An illustration of a game-theoretic centrality, (r, ϕ), on two sample networks, G1 and
G2. For instance, given the graph G1 = (V,E), the representation function, r, outputs a
coalitional game, (V, frG1

). Then, the solution concept ϕ assigns a payoff to every player
in V ; this payoff is interpreted as the centrality of the corresponding node.

is said to be positive if β(k) > 0 for every k ∈ {0, . . . , |N | − 1}. Given N , the set of all
semivalues is denoted by SVN , and the set of all positive semivalues is denoted by SVN+ .
Thus, SVN+ ⊆ SVN ⊆ ΦN .

Two well-known solution concepts, namely the Shapley value (Shapley, 1953) and the
Banzhaf index (Banzhaf III, 1965), are in fact positive semivalues, with βShapley(k) = 1/|N |,
and βBanzhaf (k) =

(|N |−1
k

)
/2|N |−1.

3.3 Game-Theoretic Centrality Indices

We begin with the definition of a representation function, r : GV → FV , which maps every
graph, G = (V,E), onto a cooperative game, r(G), whose set of players is V , and whose
characteristic function is denoted by f rG. That is to say, r(G) = (V, f rG). Given a set of
nodes V , the set of all possible representation functions will be denoted by RV .

A Game-Theoretic Centrality Index (GTC) is a pair, (r, ϕ), where r is a representation
function, and ϕ is a solution concept. We say that a game-theoretic centrality index, (r, ϕ),
generates a centrality index, [(r, ϕ)] ∈ CV , computed for every G ∈ GV and every v ∈ V as
follows:

[(r, ϕ)]v(G) = ϕv(f
r
G). (2)

In words, the centrality [(r, ϕ)] of node v in the graph G equals the payoff of player v in the
game r(G) according to the solution concept ϕ. Figure 2 illustrates the way this centrality
is generated. This figure will be used in subsequent examples in the article.
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We say that (r, ϕ) is based on ϕ. Given a set of nodes, V , the set of all game theoretic
centrality indices will be denoted by GT CV . Formally:

GT CV = {(r, ϕ) : r : GV → FV , ϕ ∈ ΦV }.

We will refer to GT CV as the general class of game-theoretic centrality indices. For any
given class, I ⊆ GT CV , we will write [I] to denote the set of centrality indices generated
by every (r, ϕ) ∈ I. For instance, we have:

[GT CV ] = {[(r, ϕ)] : (r, ϕ) ∈ GT CV }.

Furthermore, for any given class, I ⊆ GT CV , we will write I+ to denote the subclass of I for
which the solution concept happens to be a positive semivalue. Likewise, for any ϕ ∈ ΦV ,
we will write Iϕ to denote the subclass of I for which the solution concept happens to be
ϕ. For instance, we have:

GT CV+ = {(r, ϕ) : r : GV → FV , ϕ ∈ SVV+},
GT CVϕ = {(r, ϕ) : r : GV → FV }.

In this article, we focus on GT CV+. Furthermore, we restrict our attention to a fixed set of
nodes, V , and so will often omit V from notation such as EV , CV , ΦV , SVV , and GT CV .
Finally, a summary of the main notation can be found in the appendix.

4. General Class of Game-Theoretic Centralities

At first glance, it may seem that [GT C] ( C. However, as we will establish in Theorem 1, for
every centrality index, c ∈ C, there exists a game-theoretic centrality index, (r, ϕ), such that
[(r, ϕ)] = c. The theorem builds upon a dummy game—a standard concept in cooperative
game theory.

Theorem 1. For every positive semivalue ϕ ∈ SV+,

[GT Cϕ] = [GT C+] = [GT C] = C.

Proof. Since ϕ ∈ SV+, then GT Cϕ ⊆ GT C+. Based on this, as well as the fact that
[GT C] ⊆ C, we have:

[GT Cϕ] ⊆ [GT C+] ⊆ [GT C] ⊆ C.

It remains to prove that C ⊆ [GT Cϕ]. To put it differently, for every c ∈ C, it remains to
prove that there exists some r ∈ R such that [(r, ϕ)] = c. To this end, let c ∈ C be an
arbitrary centrality index, and let us define a representation function r(G) = (V, f rG) for
every G ∈ GV such that:

∀S ⊆ V, f rG(S) =
∑
v∈S

cv(G).

This is a dummy game—a game in which the value of every coalition is the sum of the
values of its members. In our case, we set the value of every v ∈ V to be equal to the
centrality of v in graph G according to c. More precisely, we set f rG({v}) = cv(G). Now
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since the marginal contribution of v to every coalition is equal to cv(G), then the definition
of semivalues (Equation 1) implies that:

∀v ∈ V, [(r, ϕ)]v(G) = ϕv(f
r
G) = cv(G).

This concludes the proof of Theorem 1.

Let us illustrate the construction used in the proof of Theorem 1 using the networks
from Figure 2 through the following example.

Example 1. Consider the degree centrality, cD, defined as:

cDv (G) = |{{v, u} ∈ E : u ∈ V }|.

Now, given the two possible graphs in G{v,u}, i.e., given G1 = ({v, u}, ∅) and G2 =
({v, u}, {{v, u}}), let us show how to generate cD using some GTC. First, let us deal with
G1. We need to specify f rG1

such that ϕv(f
r
G1

) = cDv (G1) = 0, and ϕu(f rG1
) = cDu (G1) = 0.

To this end, let us define a dummy game in which f rG1
({v}) = cDv (G1) = 0 and f rG1

({u}) =

cDu (G1) = 0. This implies that f rG1
({v, u}) = f rG1

({v})+f rG1
({u}) = 0. Since every marginal

contribution of v equals 0 (i.e., f rG1
({v}) − f rG1

(∅) = 0 and f rG1
({v, u}) − f rG1

({u}) = 0),
then from the definition of semivalues we get: ϕv(f

r
G1

) = 0. Following the same rea-
soning, we get: ϕu(f rG1

) = 0. Moving on to G2, we define a dummy game in which
f rG2

({v}) = f rG2
({u}) = 1, which implies that f rG2

({v, u}) = 1 + 1 = 2. Following the
above reasoning, we get: ϕv(f

r
G2

) = ϕu(f rG2
) = 1.

Next, we lay the theoretical foundation for the coming sections by showing that the
totality of all centrality indices form a vector space. To this end, we will introduce the class
of unanimity centrality indices.

Definition 1. (Unanimity Centrality Indices) Given a set of edges, E† ⊆ EV , and a set

of nodes, U ⊆ V , U 6= ∅, the unanimity centrality index c〈U,E
†〉 is defined for every G =

(V,E) ∈ GV and every v ∈ V as follows:

c〈U,E
†〉

v (G) =

{
1 if v ∈ U and E† ⊆ E,
0 otherwise.

As such, c〈U,E
†〉 assigns a value of 1 if and only if the node belongs to U and the graph

contains every edge from E†.

The set of all unanimity centrality indices will be denoted by UV , or simply U when there
is no risk of confusion.

The next lemma provides a sufficient condition for the linear independence of the class
of unanimity centrality indices.

Lemma 2. Let U∗ be a set of unanimity centrality indices such that for every set of edges,
E† ⊆ EV , and every pair, c〈U,E

†〉, c〈U
′,E†〉 ∈ U∗, we have: U = U ′ or U ∩ U ′ = ∅. Then, U∗

is linearly independent.
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Proof. If U∗ = ∅, then it is linearly independent. Now assume that U∗ 6= ∅ and that U∗
is not linearly independent, i.e., there exists a collection of coefficients, α〈U,E†〉 for every

c〈U,E
†〉 ∈ U∗, that are not all equal to zero, such that:∑

c〈U,E†〉∈ U∗

(
α〈U,E†〉 · c〈U,E

†〉
)
v

(G) = 0

for every v ∈ V and every G ∈ GV . This means that there exists a pair, (U0, E
†
0), such that

α〈U0,E
†
0〉
6= 0 and α〈U,E†〉 = 0 for every E† ( E†0. Then, for v ∈ U0, we have

∑
c〈U,E†〉∈U∗

(
α〈U,E†〉 · c〈U,E

†〉
)
v

((V,E†0)) =
∑

c〈U,E†〉∈U∗,E†⊆E†0

(
α〈U,E†〉 · c〈U,E

†〉
)
v

((V,E†0)) (3)

=
∑

c〈U,E
†
0〉∈U∗

(
α〈U,E†0〉

· c〈U,E
†
0〉
)
v

((V,E†0)) (4)

=
(
α〈U0,E

†
0〉
· c〈U0,E

†
0〉
)
v

((V,E†0)) 6= 0. (5)

Here, we used the fact that c
〈U,E†〉
v ((V,E)) = 0 if E† 6⊆ E (Equation 3) and the fact that

c
〈U,E†〉
v (G) = 0 if v 6∈ U (Equations 4 and 5). This way, we obtain the desirable contradiction

which concludes the proof of Lemma 2.

Next, we use Lemma 2 to characterize a basis of the class of all centrality indices, C.

Theorem 3. The class C is a vector space with the basis:

UVAll = {c〈{v},E†〉 : v ∈ V,E† ⊆ EV }.

Proof. Since C is closed under addition (for every c, c′ ∈ C we have c + c′ ∈ C) and closed
under scalar multiplication (for every c ∈ C and a scalar k ∈ R we have k · c ∈ C), then C is
a vector space. It remains to prove that UVAll is a basis of C. We know from Lemma 2 that
UVAll is linearly independent. Moreover, since |UVAll| = |V × E| = |V × G|, the size of UVAll is
the same as the dimension of C. This concludes the proof.

The above result comes in handy when proving that all centrality indices from a given
class can be generated with a subclass of GTCs. More in detail, the following lemma shows
that if the basis of a class can be generated, then the whole class can also be generated.

Lemma 4. Let C∗ be a class of centrality indices with a basis U∗, and let I ⊆ GT Cϕ be a
class of GTCs closed under addition and scalar multiplication. If U∗ ⊆ [I], then C∗ ⊆ [I].

Proof. Assume that U∗ = {c1, c2, . . . , cm}. Furthermore, for every ci ∈ U∗, let (ri, ϕ) denote
a centrality from I such that [(ri, ϕ)] = ci. Since U∗ is a basis of C∗, every centrality c ∈ C∗
is a linear combination of centralities from U∗, i.e., there exists a collection of coefficients,
αi for every ci, such that:

c =
∑
ci∈U∗

αici.
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From the additivity of semivalues, we have that [(r, ϕ)] + [(r′, ϕ)] = [(r + r′, ϕ)] and [(k ·
r, ϕ)] = k · [(r, ϕ)] for arbitrary representation functions r, r′, arbitrary scalar k ∈ R, and
arbitrary ϕ ∈ SV+. Therefore, we have:∑

ci∈U∗
αici, ϕ

 = c.

Since we assumed that I is closed under addition and scalar multiplication, we know that
this centrality belongs to I. This concludes the proof of Lemma 4.

In the general class of game-theoretic centrality indices, for any two distinct graphs,
G,G′ ∈ G, a representation function r may output two games, (V, f rG), (V, f rG′) ∈ F , that
are completely independent from one another. In other words, the value of every subset
of nodes S ⊆ V under f rG may be completely different than (or independent from) the
value of the same subset under f rG′ . This implies that in order to define a game-theoretic
centrality in the general form, one needs to specify all 2V values of f rG for every G ∈ G. Such
a centrality index would clearly be impractical. To overcome this limitation, every game-
theoretic centrality index studied in the literature to date assumes some kind of dependency
between f rG and f rG′ (see, e.g., Michalak et al., 2013). We follow this approach in the next
sections, where we define three classes of game-theoretic centralities by imposing some
natural requirements on the representation function.

5. Separable Game-Theoretic Centralities

The first subclass of GT C that we consider is the class of separable game-theoretic central-
ities, or separable GTCs.

Definition 2. (Separable GTC) A representation function, r, is separable if for every
coalition S ⊆ V and every two graphs G,G′ ∈ GV such that G[S] = G′[S] and G[V \ S] =
G′[V \ S] it holds that f rG(S) = f rG′(S). A GTC, (r, ϕ), is separable if r is separable. Given
a set of nodes, V , the set of all separable GTCs is denoted by SGT C.

In words, a game-theoretic centrality index is separable if the value of every coalition,
S ⊆ V , under the representation function, r, depends solely on the subgraph induced by S
and the subgraph induced by V \ S in G.

As we will show later on in this section, separable GTCs are related to the notion of
Fairness, proposed by Myerson (1977).

Fairness: For every G = (V,E) and every v, u ∈ V such that {v, u} 6∈ E,
adding the edge {v, u} to the graph G affects the centrality of v and u equally.
Formally:

cv((V,E ∪ {{v, u}}))− cv((V,E)) = cu((V,E ∪ {{v, u}}))− cu((V,E)).

The class of all centralities satisfying Fairness will be denoted by CVFair, or simply CFair
when there is no risk of confusion.
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For every node, v ∈ V , and edge, e ∈ E , we will use the notation:

∆c
v(e,G) = cv((V,E ∪ {e}))− cv((V,E)).

Note that, if e ∈ E, then ∆c
v(e, (V,E)) = 0. Using this notation, Fairness states that

∆c
v({v, u}, G) = ∆c

u({v, u}, G) for every graph G ∈ G and v, u ∈ V .
The following lemma states that any centrality index in CFair can be uniquely character-

ized by only specifying the sum of node-centralities in every component of the graph (i.e.,
there is no need to specify the centrality of every node).

Lemma 5. For every function, g : 2V ×GV → R, there exists at most3 one centrality index,
c ∈ CVFair, that satisfies

∑
v∈S cv(G) = g(S,G) for every G ∈ GV and S ∈ K(G).

Proof. Let c, c′ ∈ CV be two centrality indices such that for every graph G ∈ GV and every
S ∈ K(G) we have: ∑

v∈S
cv(G) = g(S,G) =

∑
v∈S

c′v(G).

Then, it suffices to prove that cv(G) = c′v(G) for every graph G ∈ GV and every v ∈ V .
The proof will proceed by contradiction. Specifically, let G = (V,E) be a graph with the
minimum number of links such that cv(G) 6= c′v(G). Furthermore, let e = {v, u} ∈ E be
an arbitrary edge, and assume that v, u belong to some S ∈ K(G). Based on Fairness, we
have:

cv(G)− cu(G) = cv((V,E \ {e}))− cu((V,E \ {e})) =

c′v((V,E \ {e}))− c′u((V,E \ {e})) = c′v(G)− c′u(G).

Now, let δv = cv(G)− c′v(G) for v ∈ V . We get:

δv = cv(G)− c′v(G) = cu(G)− c′u(G) = δu.

Consider a node w ∈ S. Since v and w are in the same component, then there exists a path
(v, u1, u2, . . . , uk, w) and we get:

δv = δu1 = . . . = δuk = δw.

Now, summing over all nodes from S we get:

|S| · δv =
∑
w∈S

δw =
∑
w∈S

(cw(G)− c′w(G)) =
∑
w∈S

cw(G)−
∑
w∈S

c′w(G) = 0.

Thus, cv(G) = c′v(G), which is a contradiction. This concludes the proof of Lemma 5.

It should be noted that our proof of Lemma 5 follows the reasoning of Myerson (1977,
Proof of Theorem, p.228). However, we could not use his result directly. In more details,
Myerson proved that for every characteristic function g : 2V → R there exists a unique

3. While the lemma states that there exist at most one such centrality index, in the proof of Theorem 6 we
prove that there exist exactly one. The same comment applies to Lemma 9 and Lemma 13 (in respect
to Theorem 10 and 14).
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function, c (in our work it is called “centrality”, in Myerson’s work it is called “allocation
rule”) that satisfies Fairness and satisfies:

∑
v∈S cv(G) = g(S) for every graph G and every

component S ∈ K(G). Our lemma shows that there is also at least one such function, if
g(S) depends on the graph.

Building upon Lemma 5, the following theorem identifies a basis of the class CFair.

Theorem 6. CFair is a vector space with the basis:

UVFair = {c〈U,E†〉 : U ∈ K((V,E†))}. (6)

Proof. We begin by showing that CFair is a vector space. To show that CFair is closed
under addition, it suffices to observe that ∆c+c′

v (e,G) = ∆c
v(e,G) + ∆c′

v (e,G) for every
v ∈ V , e ∈ E and c, c′ ∈ C. Therefore, if c and c′ satisfy Fairness, then c + c′ also satisfies
Fairness. Similarly, ∆k·c

v (e,G) = k ·∆c
v(e,G) for every v ∈ V , e ∈ E , k ∈ R and c ∈ C. Thus,

if c satisfies Fairness, then k · c also satisfies Fairness. We proved that CFair is closed under
addition and scalar multiplication, therefore it is a vector space.

It remains to prove that UFair forms a basis of CFair. To this end, we will show that
UFair ⊆ CFair, that UFair is linearly independent, and that |UFair| is equal to the dimension
of CFair.

First, let us show that UFair ⊆ CFair, i.e., the centralities from UFair satisfy Fairness. Let
c = c〈U,E

†〉 ∈ UFair be an arbitrary centrality from UFair. Observe that ∆c
v({v, u}, G) 6= 0 if

and only if v ∈ U and E†\E = {{v, u}} for G = (V,E). In such a case, since U ∈ K((V,E†))
induces a component of G and v ∈ U , then u ∈ U , and ∆c

u({v, u}, G) = 1 = ∆c
v({v, u}, G).

Therefore, for every graph G = (V,E) ∈ G such that {v, u} 6∈ E, we have ∆c
v({v, u}, G) =

∆c
u({v, u}, G) and Fairness is satisfied.

Next, to show that UFair is linearly independent, we use Lemma 2: if c〈U,E
†〉, c〈U

′,E†〉 ∈
UFair, then U,U ′ ∈ K((V,E†)), therefore U = U ′ or U ∩U ′ = ∅ and the condition sufficient
for linear independence is met.

Finally, we show that |UFair| is equal to the dimension of CFair. Let |K(GV )| denote the
number of components in all graphs from G, and let dim(CFair) denote the dimension of
CFair. From the definition, |UFair| = |K(GV )|. Since the centralities from UFair are linearly
independent, we have: dim(CFair) ≥ |K(GV )|. But from Lemma 5: dim(CFair) ≤ |K(GV )|.
Thus, dim(CFair) = |K(GV )| = |UFair|. This concludes the proof of Theorem 6.

Example 2. Consider the degree centrality cD from Example 1. Since adding an edge {v, u}
increases the centrality of both v and u by 1, then cD satisfies Fairness. Consequently, we
know from Theorem 6 that cD is a linear combination of unanimity centralities from UFair.
Let us generate cD using such a combination. To this end, consider c〈{v,u},{{v,u}}〉 ∈ UFair
for some arbitrary pair, v, u ∈ V, v 6= u. According to c〈{v,u},{{v,u}}〉, the centrality of v and
u equals 1 if the edge {v, u} belongs to the graph, otherwise the centrality of v and u equals
0. Summing over all such pairs, we get the degree centrality:

cD =
∑

v,u∈V :v 6=u
c〈{v,u},{{v,u}}〉.

Lemma 7. Every separable game-theoretic centrality from GT C+ satisfies Fairness.
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Proof. Let (r, ϕ) be an arbitrary GTC such that r is separable and ϕ is a positive semivalue,
based on function β. We will prove that [(r, ϕ)] satisfies Fairness.

Let G = (V,E) be an arbitrary graph and consider adding the edge e = {v, u} 6∈ E.
Since r is separable, f rG(S) does not depend on edges between S and V \ S. Thus, for a
coalition S ⊆ V , we have

f r(V,E∪{e})(S) = f r(V,E)(S) if |S ∩ {v, u}| = 1.

Using Equation (1) we get:

[(r, ϕ)]v((V,E ∪ {e}))− [(r, ϕ)]v((V,E)) =∑
S⊆V,v,u∈S

β∗(|S|−1)(f r(V,E∪{e})(S)−f r(V,E)(S))−
∑

S⊆V \{v,u}

β∗(|S|)(f r(V,E∪{e})(S)−f r(V,E)(S))

= [(r, ϕ)]u((V,E ∪ {e}))− [(r, ϕ)]u((V,E)).

This concludes the proof of Lemma 7.

We are ready to present our main result of this section. In the following theorem we
state that the class of separable positive-semivalue based GTCs is characterized by Fairness.

Theorem 8. For every positive semivalue, ϕ ∈ SV+,

CFair = [SGT Cϕ] = [SGT C+].

Proof. Since SGT Cϕ ⊆ SGT C+, Lemma 7 implies that:

[SGT Cϕ] ⊆ [SGT C+] ⊆ CFair.

It remains to prove that for every ϕ ∈ SV+, we have:

CFair ⊆ [SGT Cϕ].

In words, we need to prove that every centrality c that satisfies Fairness can be generated
by [(r, ϕ)] for some separable representation function, r. To this end, we first show that
every centrality from UFair can be generated by [(r, ϕ)] for some separable representation
function r.

Let c〈U,E
†〉 ∈ UFair and ϕ ∈ SV+ be an arbitrary positive semivalue based on weights

β. Consider a representation function, r∗, defined as follows:

f r
∗

(V,E)(S) =


1

β∗(|U |)+β∗(|U |−1) if S = U,E† ⊆ E,
β∗(|U |)

(β∗(|U |)+β∗(|U |−1))β∗(|V |−1) if S = V,E† ⊆ E,
0 otherwise.

First, we argue that r∗ is separable. To this end, let G = (V,E) and G′ = (V,E′) be two
graphs such that G[S] = G′[S] and G[V \S] = G′[V \S]. We will prove that f r

∗
G (S) = f r

∗
G′(S)

for every S ⊆ V .
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If f r
∗
G (S) 6= 0, then E† ⊆ E and either S = U , or S = V . If S = V , then G[S] = G′[S]

implies that G = G′ and f r
∗
G (S) = f r

∗
G′(S). Now assume that S = U and E† ⊆ E. We have

that G[U ] = G′[U ] and G[V \U ] = G′[V \U ]. Since U is a component in the graph (V,E†),
edges from E† are either in G[U ], or G[V \ U ]. Thus, they are also in G′[U ] and G′[V \ U ].
This implies that E† ⊆ E′. Thus, we get f r

∗
G′(S) = 1/(β∗(|U |) + β∗(|U | − 1)) = f r

∗
G (S).

We proved that if f r
∗
G (S) 6= 0, then f r

∗
G (S) = f r

∗
G′(S). Analogously, if f r

∗
G′(S) 6= 0, then

f r
∗
G (S) = f r

∗
G′(S). Therefore, f r

∗
G (S) = 0 ⇔ f r

∗
G′(S) = 0, which concludes the proof that

f r
∗
G (S) = f r

∗
G′(S) for every coalition S. Consequently, r∗ is separable.

Let us show that [(r∗, ϕ)] = c〈U,E
†〉. Let G = (V,E) be an arbitrary graph. If E† 6⊆ E,

then f r
∗
G (S) = 0 for every S ⊆ V , and [(r∗, ϕ)]v(G) = 0 = c

〈U,E†〉
v (G). Now assume that

E† ⊆ E. Let us calculate the centrality [(r∗, ϕ)] for node v ∈ U :

[(r∗, ϕ)]v(G) =
∑

S⊆V \{v}

β∗(|S|)(f r∗G (S ∪ {v})− f r∗G (S))

=
β∗(|U | − 1) + β∗(|V |−1)β(|U |)

β∗(|V |−1)

β∗(|U |) + β∗(|U | − 1)
= 1 = c〈U,E

†〉
v (G).

Analogously, we calculate the centrality [(r∗, ϕ)] for node v 6∈ U :

[(r∗, ϕ)]v(G) =
∑

S⊆V \{v}

β∗(|S|)(f r∗G (S ∪ {v})− f r∗G (S))

=
−β∗(|U |) + β∗(|V |−1)β(|U |)

β∗(|V |−1)

β∗(|U |) + β∗(|U | − 1)
= 0 = c〈U,E

†〉
v (G).

This concludes the proof that [(r∗, ϕ)] = c〈U,E
†〉.

To conclude, we showed that for every c〈U,E
†〉 ∈ UFair there exists a separable represen-

tation function r∗ such that [(r∗, ϕ)] = c〈U,E
†〉. The class of separable GTCs based on ϕ is

closed under addition and scalar multiplication, because if r, r′ are separable, then r + r′

and k · r for any k ∈ R are also separable. Thus, based on Lemma 4, every centrality
from CFair can be generated by some centrality from SGT Cϕ. This concludes the proof of
Theorem 8.

We end this section with an example showing how the degree centrality, cD, can be
generated from a separable GTC.

Example 3. The degree centrality satisfies Fairness, because ∆cD
v ({v, u}, (V,E)) = 1 for

every v ∈ V and every {v, u} 6∈ E. Therefore, we know from Theorem 8 that there exists a
separable game-theoretic centrality index that generates cD. Let us identify such a separable
index. Note that the one used in Example 1 is not separable, because f rG1

({v}) = 0 and
f rG2

({v}) = 1, while separability requires that f rG1
({v}) = f rG2

({v}). Instead, consider the

index [(rD, ϕShapley)], where ϕShapley is the Shapley value, and rD is defined as: f r
D

G (S) =
2 · |{{v, u} ∈ E : v, u ∈ S}|. Given this rD, we show that [(rD, ϕShapley)] = cD.

To this end, we will use the four widely-known axioms that define the Shapley value,
namely: Additivity, Null-player, Symmetry and Efficiency.4 First of all, observe that:

4. For more on the various axiomatizations of the Shapley value, see, e.g., the work by Maschler, Solan,
and Zamir (2013).
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f r
D

G (S) =
∑

e∈E f
rD

(V,{e})(S),∀S ⊆ V . Thus, based on the Additivity axiom, we have:

ϕShapleyv (G) =
∑
e∈E

ϕShapleyv ((V, {e})). (7)

This allows us to focus our analysis on a single-edge graph, (V, {e}). Let us focus on

G∗ = (V, {{v1, v2}}). Here, it is clear from the definition of f r
D

G∗ that the only two players
with non-zero marginal contributions are v1 and v2. Thus, based on the Null-player axiom:
ϕShapleyu (f r

D

G∗ ) = 0, ∀u ∈ V \ {v1, v2}. As for v1 and v2, since they are symmetric, then

based on the Symmetry axiom, we have: ϕShapleyv1 (f r
D

G∗ ) = ϕShapleyv2 (f r
D

G∗ ). Finally, since

f r
D

G∗ (V ) = 2, then based on the Efficiency axiom, we have:
∑

v∈V ϕ
Shapley
v (f r

D

G∗ ) = 2. We
have shown that the payoffs of all nodes in G∗ add up to 2, and that v1 and v2 have equal
payoffs, whereas the remaining nodes have zero payoff each, implying that ϕShapleyv1 (f r

D

G∗ ) =

ϕShapleyv2 (f r
D

G∗ ) = 1. This as well as Equation (7) imply that every edge in G increases
the payoff of each of its ends by 1, which is precisely what degree centrality does. Thus,
[(rD, ϕShapley)] = cD.

Note that rD in Example 3 depends solely on G[S]. Such representation functions are
the subject of the next section.

6. Induced Game-Theoretic Centralities

In this section, we define a subclass of separable GTCs which we call induced game-theoretic
centralities, or induced GTCs.

Definition 3. (Induced GTC) A representation function, r, is induced if for every coalition
S ⊆ V and every two graphs G,G′ ∈ GV such that G[S] = G′[S] it holds that f rG(S) =
f rG′(S). A GTC, (r, ϕ), is induced if r is induced. The set of all induced game-theoretic
centralities is denoted by IGT C.

In words, a GTC is induced if the value of a coalition S in the representation function
depends solely on the subgraph induced by S in G. Thus, every induced GTC is separable.

Given eight different graphs, G1, . . . , G8, consisting of three nodes each, Figure 3 illus-
trates the edges that affect the value of {v} under a general, a separable, and an induced
representation function.

To characterize the class of induced GTCs we introduce a new property that we call
Edge Balanced Contributions.

Edge Balanced Contributions: For every G = (V,E), and every e = {v, ṽ},
e′ = {u, ũ}, e, e′ 6∈ E, adding e′ affects the difference in centrality of v caused by
the addition of e in the same way that adding e affects the difference in centrality
of u caused by the addition of e′. More formally:

∆c
v(e, (V,E ∪ {e′}))−∆c

v(e, (V,E)) = ∆c
u(e′, (V,E ∪ {e}))−∆c

u(e′, (V,E)). (8)

Consider Equation (8) in more detail. Fix an edge e = {v, v̄} and a centrality measure
c. Let us associate with an edge the value ∆c

v(e, (V,E)), which is the effect of removing
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Figure 3: Given different graphs, G1, . . . , G8, consisting of three nodes each, the figure
illustrates how the value of {v} is computed under a general, a separable, and
an induced representation function. Specifically, the edges in the gray box affect
the value of {v}, whereas the remaining (dashed) edges do not. Thus, under a
general representation function, r, the coalition {v} may have 8 distinct values
in the graphs G1, . . . , G8. In contrast, if r is separable, then {v} may have at
most 2 distinct values: one in G1, . . . , G4; the other in G5, . . . , G8. Finally, if r is
induced, then {v} can only have 1 value across all 8 graphs.

this edge from (V,E) on the adjacent node. This value clearly depends on the graph; in
particular, an existence of some other edge, e′ = {u, ū}, may have an impact on this value.
This impact equals ∆c

v(e, (V,E ∪ {e′}))−∆c
v(e, (V,E)). Now, Edge Balanced Contribution

states that the impact of edge e′ on the value associated with edge e is equal to the impact
of edge e on the value associated with edge e′.

Given a set of nodes, V , the class of all centrality indices satisfying Edge Balanced
Contributions will be denoted by CVEBC , or just CEBC when V is clear from the context.

Recall from the introduction that this new property corresponds to the Balanced Con-
tributions property, introduced by Myerson in the context of coalitional games (Myerson,
1980). Specifically, the Balanced Contributions property states that removing player i from
the game affects the payoff of player j in the same way that removing player j affects the
payoff of player i. If we associate with removing of an edge the effect this removal has on
both adjacent nodes, then Edge Balanced Contributions is an edge counterpart of Balanced
Contributions.

Note that Edge Balanced Contributions implies Fairness. In particular, by setting u = ṽ
and ũ = v, we have e′ = e, and we get ∆c

v(e, (V,E∪{e′})) = 0. Then, Equation (8) simplifies
to: −∆c

v({v, u}, (V,E)) = −∆c
u({v, u}, (V,E)) for every {v, u} 6∈ E, which is equivalent to

Fairness.

Now, let Ks(G) be the set of isolated nodes, i.e., Ks(G) = {v ∈ V : {v} ∈ K(G)}, where
the “s” in Ks stands for “single-node”. The following lemma states that any centrality index
in CEBC can be uniquely characterized by specifying (1) the centrality of every single-node
component in G; and (2) the sum of node-centralities over all other components in G.
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Lemma 9. For every function, g : 2V ×GV → R, there exists at most one centrality index,
c ∈ CVEBC that satisfies

∑
v∈V \Ks(G) cv(G) = g(V \ Ks(G), G) and cv(G) = g({v}, G) for

every G ∈ GV and every v ∈ Ks(G).

Proof. Let c, c′ ∈ CV be two centrality indices such that for every graph G ∈ GV :

cv(G) = g({v}, G) = c′v(G) for every v ∈ Ks(G), and∑
v∈V \Ks(G)

cv(G) = g(V \ Ks(G), G) =
∑

v∈V \Ks(G)

c′v(G).

Then, it suffices to prove that cv(G) = c′v(G) for every graph G ∈ GV , v ∈ V .

Let G = (V,E) be a graph with the minimum number of links such that c(G) 6= c′(G).
If E = ∅ we get a contradiction, since Ks(G) = V and from the assumption cv(G) = c′v(G)
for every v ∈ Ks(G). Assume E 6= ∅. Let e = {v, ṽ}, e′ = {u, ũ} ∈ E be two arbitrary edges
(possible equal). Based on the Edge Balanced Contributions property of c, we have:

∆c
v(e, (V,E \ {e}))−∆c

u(e′, (V,E \ {e′})) = ∆c
v(e, (V,E \ {e, e′}))−∆c

u(e′, (V,E \ {e, e′})),

and further

cv(G)− cu(G) = cv((V,E \ {e}))− cu((V,E \ {e′}))
+ ∆c

v(e, (V,E \ {e, e′}))−∆c
u(e′, (V,E \ {e, e′})).

Performing the same calculations for c′, and using the assumption that G has a minimal
number of links such that c(G) 6= c′(G) we have that:

cv(G)− c′v(G) = cu(G)− c′u(G).

Now, let δv = cv(G)− c′v(G) for v ∈ V . Hence, we get δv = δu for arbitrary two nodes v, u
with an edge. Summing over all such nodes, i.e., nodes from V \ Ks(G), we get:

(|V | \ |Ks(G)|) · δv =
∑

w∈V \Ks(G)

δw =
∑

w∈V \Ks(G)

cw(G)−
∑

w∈V \Ks(G)

c′w(G) = 0.

Thus, δv = 0 and cv(G) = c′v(G) for every v ∈ V \ Ks(G). From the assumption that
cv(G) = c′v(G) for every v ∈ Ks(G) we get c(G) = c′(G), which is a contradiction. This
concludes the proof of Lemma 9.

Building upon the above lemma, the following theorem identifies a basis of the class
CEBC , i.e., the class of all centrality indices that satisfy Edge Balanced Contributions.

Theorem 10. CEBC is a vector space with the basis:

UEBC =
{
c〈{v},E

†〉 : v ∈ Ks((V,E†))
}
∪
{
c〈U,E

†〉 : U = V \Ks((V,E
†))
}
.
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Proof. Since ∆c
v(e,G) is a linear function, then if c and c′ satisfy Edge Balanced Contri-

butions, then c + c′ and k · c satisfies Edge Balanced Contributions, too, for every k ∈ R.
Thus, CEBC is a vector space.

To prove that UEBC forms a basis of CEBC we follow a reasoning similar to the one in
the proof of Theorem 6: we show that UEBC ⊆ CEBC , that UEBC is linearly independent,
and that |UEBC | is equal to the dimension of CEBC .

First, let us show that UEBC ⊆ CEBC , i.e., centralities from UEBC satisfy Edge Balanced
Contributions. To this end, let c = c〈U,E

†〉 ∈ UEBC be an arbitrary centrality from UEBC .
Consider the condition when:

∆c
v(e, (V,E ∪ {e′}))−∆c

v(e, (V,E)) 6= 0. (9)

The value ∆c
v(e, (V,E)) 6= 0 if and only if v ∈ U and e ∈ E† and (V,E) contains all

edges from E† apart of e, i.e., E† \ E = {e}. Therefore, Equation (9) holds only if v ∈ U ,
E†\(E∪{e′}) = {e}, but E†\E 6= {e}. It means that e′ ∈ E†. Summing up, Equation (9) is
satisfied if E†\E = {e, e′} and v ∈ U . In such a case, ∆c

v(e, (V,E∪{e′}))−∆c
v(e, (V,E)) = 1.

But from the definition of UEBC if v ∈ U and v has an edge in E†, then U = V \ Ks(G),
i.e., contains all nodes with edges. Thus, nodes from e′ also belong to U , and ∆c

u(e′, (V,E ∪
{e})) − ∆c

v(e
′, (V,E)) = 1 for u ∈ e′. Conversely, if Equation (9) does not hold, then

condition from Equation (8) is also satisfied. This concludes the proof that all centralities
from UEBC satisfy Edge Balanced Contributions.

To see that UEBC is linearly independent observe that if c〈U,E
†〉, c〈U

′,E†〉 ∈ UEBC (U 6=
U ′), then U ∩ U ′ = ∅. Therefore, Lemma 2 implies linear independence.

Finally, we show that |UEBC | is equal to the dimension of CEBC . Note that |UEBC |
equals the number of one-node components in all graphs from G plus the number of graphs
from G with at least one edge. Since the centralities from UEBC are linearly independent,
the dimension of the class CEBC is at least equal |UEBC |. But from Lemma 9 we know that
it is equal at most |UEBC |. Thus, the dimension of CEBC equals |UEBC |. This concludes
the proof of Theorem 10.

Lemma 11. Every induced game-theoretic centrality index in GT C+ satisfies Edge Balanced
Contributions.

Proof. Let (r, ϕ) be an arbitrary GTC such that r is induced and ϕ is a positive semivalue
based on some β. We will prove that [(r, ϕ)] satisfies Edge Balanced Contributions.

Let G = (V,E) be an arbitrary graph and consider adding the edge e = {v, ṽ} 6∈ E.
Since r is induced, f rG(S) does not depend on edges outside of G[S]. Thus, for a coalition
S ⊆ V , we have:

f r(V,E∪{e})(S) = f r(V,E)(S) if {v, ṽ} 6⊆ S.

Using Equation (1) we get:

∆[(r,ϕ)]
v (e, (V,E)) = [(r, ϕ)]v(V,E ∪ {e})− [(r, ϕ)]v(V,E)

=
∑

S⊆V :v,ṽ∈S
β∗(|S| − 1)

(
f r(V,E∪{e})(S)− f r(V,E)(S)

)
.
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Consider the left-hand side of the condition of Edge Balanced Contributions (Equation 8):

∆[(r,ϕ)]
v (e, (V,E ∪ {e′}))−∆[(r,ϕ)]

v (e, (V,E))

=
∑

S⊆V :v,ṽ∈S
β∗(|S| − 1)

(
f r(V,E∪{e,e′})(S)− f r(V,E∪{e′})(S)− f r(V,E∪{e})(S) + f r(V,E)(S)

)
.

Now, let e′ = {u, ũ}. Note that if u, ũ 6∈ S, then the following holds: f r(V,E∪{e,e′})(S) =

f r(V,E∪{e})(S) and f r(V,E∪{e′})(S) = f r(V,E)(S). Therefore:

∆[(r,ϕ)]
v (e, (V,E ∪ {e′}))−∆[(r,ϕ)]

v (e, (V,E))

=
∑

S⊆V :v,ṽ,u,ũ∈S
β∗(|S| − 1)

(
f r(V,E∪{e,e′})(S)− f r(V,E∪{e′})(S)− f r(V,E∪{e})(S) + f r(V,E)(S)

)
= ∆[(r,ϕ)]

u (e′, (V,E ∪ {e}))−∆[(r,ϕ)]
u (e′, (V,E)).

This concludes the proof of Lemma 11.

Finally, as the main result of this section, we prove that the class of induced positive
semivalue-based GTCs is characterized by the property of Edge Balanced Contributions.

Theorem 12. For every positive semivalue, ϕ ∈ SV+,

CEBC = [IGT Cϕ] = [IGT C+].

Proof. Since IGT Cϕ ⊆ IGT C+, Lemma 11 implies that:

[IGT Cϕ] ⊆ [IGT C+] ⊆ CEBC .

It remains to prove that for every ϕ ∈ SV+, we have:

CEBC ⊆ [IGT Cϕ],

i.e., that every centrality, c, satisfying Edge Balanced Contributions can be generated by
[(r, ϕ)] for some induced representation function, r.

We begin by showing that every unanimity centrality c〈U,E
†〉 such that every edge from

E† is between nodes from U (i.e., {v, u} ∈ E† implies v, u ∈ U) can be generated by an
induced game-theoretic centrality from GT C+.

Let ϕ ∈ SV+ be an arbitrary positive semivalue based on weights β. Consider a repre-
sentation function, r〈U,E

†〉, defined as follows:

f r
〈U,E†〉

(V,E) (S) =

{
(
∑|V |

k=|U |
(|V |−|U |
k−|U |

)
β∗(k − 1))−1 if U ⊆ S,E† ⊆ E,

0 otherwise.

Since all edges from E† are between nodes from U , and U ⊆ S, then f r
〈U,E†〉
G (S) depends

solely on G[S], which means that r〈U,E
†〉 is induced.

Now, let us show that [(r〈U,E
†〉, ϕ)] = c〈U,E

†〉. To this end, let G = (V,E) ∈ GV be an

arbitrary graph. If E† 6⊆ E, then r
〈U,E†〉
G (S) = 0 for every S ⊆ V , and [(r〈U,E

†〉, ϕ)]v(G) =
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0 = c
〈U,E†〉
v (G) for every v ∈ V . Now assume that E† ⊆ E. Let us calculate the centrality

[(r(〈U,E†〉, ϕ)] for node v ∈ U :

[(r〈U,E
†〉, ϕ)]v(G) =

∑
S⊆V \{v}

β∗(|S|)
(
f r
〈U,E†〉
G (S ∪ {v})− f r〈U,E†〉

G (S)

)

=
∑

S⊆V \{v}:U\{v}⊆S

β∗(|S|)

 |V |∑
k=|U |

(
|V | − |U |
k − |U |

)
β∗(k − 1)

−1

=

∑|V |
k=|U |

(|V |−|U |
k−|U |

)
β∗(k − 1)∑|V |

k=|U |
(|V |−|U |
k−|U |

)
β∗(k − 1)

= 1 = c〈U,E
†〉

v (G).

If v 6∈ U , then v has zero marginal contribution to every coalition and [(r〈U,E
†〉, ϕ)]v(G) =

0 = c
〈U,E†〉
v (G). This concludes the proof that [(r〈U,E

†〉, ϕ)] = c〈U,E
†〉.

Let us go back to showing that every unanimity centrality from UEBC can be generated
by [(r, ϕ)] for some induced representation function, r. Let (V,E†) ∈ GV be an arbitrary

graph. Recall that if c〈U,E
†〉 ∈ UEBC then either U = V \Ks(G), or U = {v} and v ∈ K(G).

In the first case, we already proved that [(r〈U,E
†〉, ϕ)] = c〈U,E

†〉. To generate c〈{v},E
†〉 we use

the following centrality:

[(r〈(V \Ks(G))∪{v},E†〉 − r〈(V \Ks(G)),E†〉, ϕ)] = [(r〈(V \Ks(G))∪{v},E†〉, ϕ)]− [(r〈V \Ks(G),E†〉, ϕ)]

= c〈V \Ks(G))∪{v},E†〉 − c〈V \Ks(G),E†〉 = c〈{v},E
†〉.

The class of induced GTCs based on ϕ is closed under addition and scalar multiplication,
because if r, r′ are induced, then r + r′ and k · r for every k ∈ R are also induced. This
concludes the proof that for every c〈U,E

†〉 ∈ UEBC there exists an induced GTCs that
generates it. This fact, combined with Lemma 4 imply that every centrality from CEBC can
be generated by some centrality from IGT Cϕ. This concludes the proof of Theorem 12.

We end this section with an example showing that the flow betweenness centrality can
be generated from a separable GTC.

Example 4. Consider the flow betwenness centrality (Freeman, Borgatti, & White, 1991)
defined as follows:

cFv (G) =
∑
s,t∈V

(
flows,t(G)− flows,t(G[V \ {v}])

)
,

where flows,t(G) is the maximal flow that can be transferred from node s to node t in graph
G—for an unweighted graph, this value is equal to the maximal number of edge-independent
paths from s to t in a graph. We assume that flows,t(V,E) = 0 if s 6∈ V or t 6∈ V . The
flow betweenness centrality satisfies Edge Balanced Contributions, as for each s, t ∈ V , the
impact of an edge e = {v, u} on the expression flows,t(G)−flows,t(G[V \{v}]) is non-zero if
and only if edge {v, u} increases flows,t(G); therefore, another edge, e′, affects this impact
if and only if both edges increase flows,t(G).

56



Axiomatic Characterization of Game-Theoretic Centrality

From Theorem 12, we know that there exists an induced game-theoretic centrality index
that generates cF . Let us identify such an induced index. Consider the index [(rF , ϕShapley)],

where ϕShapley is the Shapley value, and rF is defined as f r
F

G (S) = |V | · flows,t(G[S]) −∑
v∈V flows,t(G[S \ {v}]). For this rF , it is possible to show that [(rF , ϕShapley)] = cF .

With induced GTCs, the value of a coalition S in a representation function depends
both on the set of nodes, S, and the set of edges of the subgraph induced by S. However,
rF in Example 4 depends solely on the edges of the subgraph induced by S. In the next
section, we introduce our third class, namely Edge-Induced GTCs, characterized by such
representation functions.

7. Edge-Induced Game-Theoretic Centralities

In this section, we define a subclass of induced GTCs which we call edge-induced game-
theoretic centralities, or edge-induced GTCs.

Definition 4. (Edge-Induced GTC) A representation function, r, is edge-induced if for
every two coalitions S, S′ ⊆ V and every two graphs G = (V,E), G′ = (V,E′) ∈ GV such
that {{v, u} ∈ E : v, u ∈ S} = {{v, u} ∈ E′ : v, u ∈ S′} it holds that f rG(S) = f rG′(S

′). A
GTC, (r, ϕ), is edge-induced if r is edge-induced. The set of all edge-induced game-theoretic
centralities is denoted by EIGT C.

In words, a GTC is edge-induced if the value of a coalition S in the representation
function depends solely on the edges of the subgraph induced by S in G. Thus, every
edge-induced GTC is an induced GTC.

As we will show later on in this section, edge-induced GTCs are related to the notion of
Balanced Contributions, proposed by Myerson (1980). Recall that contributions are balanced
in a coalitional game if removing player i from the game affects the payoff of player j in
the same way that removing player j affects the payoff of player i. In the graph context,
removing a node from the graph is interpreted as removing all its edges. More formally:

Balanced Contributions: For every graph, G = (V,E), and every two nodes,
v, u ∈ V , removing the edges of v affects the centrality of u in the same way that
removing the edges of u affects the centrality of v. More formally:

cv((V,E))− cv((V,E \ Eu)) = cu((V,E))− cu((V,E \ Ev)). (10)

Given a set of nodes, V , the class of all centrality indices that satisfy the Balanced Contri-
butions property will be denoted by CVBC , or just CBC when V is clear from the context.

The following lemma states that any centrality index in CBC can be uniquely character-
ized by specifying (1) the centrality of every single-node in graph (V, ∅); and (2) the sum of
node-centralities in every other graph in GV .

Lemma 13. For every function, g : 2V ×GV → R, there exists at most one centrality index,
c ∈ CVBC , that satisfies:

∑
v∈V cv(G) = g(V,G) for every G ∈ GV \ {(V, ∅)} and satisfies:

cv((V, ∅)) = g({v}, (V, ∅)) for every v ∈ V .
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Proof. Let c, c′ ∈ CV be two centrality indices such that the following holds:

∀G ∈ GV \ {(V, ∅)},
∑
v∈V

cv(G) = g(V,G) =
∑
v∈V

c′v(G), (11)

∀v ∈ V, cv((V, ∅)) = g({v}, (V, ∅)) = c′v((V, ∅)). (12)

Then, to prove the correctness of the lemma, it suffices to prove that:

∀G ∈ GV , ∀v ∈ V, cv(G) = c′v(G). (13)

This proof will proceed by contradiction. To this end, let G = (V,E) be a graph with the
minimum number of links such that c(G) 6= c′(G). Now, if E = ∅, we get a contradiction
because of Equation (12). Next, let us assume that E 6= ∅, and let v ∈ V be an arbitrary
node in G. We will first show that Equation (13) holds when v has no edges in E (i.e.,
when Ev = ∅), and then show that it holds when v has edges in E (i.e., when Ev 6= ∅).

First, assume that Ev = ∅, and let u1, u2, . . . , un−1 denote the nodes in V \ {v}. Then,
based on the Balanced Contributions property of c, we have:

cv((V,E))− cv((V,E \ Eu1)) = cu1((V,E))− cu1((V,E \ Ev)) = 0;

cv((V,E \ Eu1))− cv((V,E \ Eu1 \ Eu2)) = cu2((V,E \ Eu1))− cu2((V,E \ Eu1 \ Ev)) = 0;

cv((V,E\Eu1 \Eu2))−cv((V,E\Eu1 \Eu2 \Eu3)) = cu3((V,E\Eu1 \Eu2))−cu3((V,E\Eu1 \Eu2 \Ev)) = 0;

. . .

cv((V,E\. . .\Eun−3))−cv((V,E\. . .\Eun−2)) = cun−2((V,E\. . .\Eun−3))−cun−2((V,E\. . .\Eun−3\Ev)) = 0;

cv((V,E\. . .\Eun−2))−cv((V,E\. . .\Eun−1)) = cun−1((V,E\. . .\Eun−2))−cun−1((V,E\. . .\Eun−2\Ev)) = 0.

Based on this, we have:

cv((V,E)) = cv((V,E\Eu1)) = cv((V,E\Eu1 \Eu2)) = . . . = cv((V,E\Eu1 . . .\Eun−1)) = cv((V, ∅)). (14)

By performing the same calculations for c′, we get:

c′v((V,E)) = c′v((V,E\Eu1)) = c′v((V,E\Eu1 \Eu2)) = . . . = c′v((V,E\Eu1 . . .\Eun−1)) = c′v((V, ∅)). (15)

Based on Equations (12), (14), and (15), we find that Equation (13) cv((V,E)) = c′v((V,E))
holds.

Having proved that Equation (13) holds when Ev = ∅, it remains to show that it also
holds when Ev 6= ∅. In this case, based on the Balanced Contributions property of c, the
following holds for every u ∈ V :

cv((V,E))− cv((V,E \ Eu)) = cu((V,E))− cu((V,E \ Ev)).

Summing over all u ∈ V (note that we consider also u = v), we get:

|V | · cv((V,E)) =
∑
u∈V

cv((V,E \ Eu)) +
∑
u∈V

cu((V,E))−
∑
u∈V

cu((V,E \ Ev)),

which simplifies to

(|V |−Ks((V,E)))·cv((V,E)) =
∑

u∈V :Eu 6=∅

cv((V,E\Eu))+
∑
u∈V

cu((V,E))−
∑
u∈V

cu((V,E\Ev)).
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Recall that Ks(G) denotes the set of nodes that have no edges in G. Now, by performing
the same calculations for c′, and using the assumption that G has a minimal number of
links such that c(G) 6= c′(G), we have that for every u ∈ V : Eu 6= ∅:

cv((V,E \ Eu)) = c′v((V,E \ Eu)).

and from Equation (11), we get:

(|V | − Ks((V,E))) · cv((V,E)) = (|V | − Ks((V,E))) · c′v((V,E)).

Consequently, cv((V,E)) = c′v((V,E)) for every v ∈ V , which is a contradiction. This
concludes the proof of Lemma 13.

Building upon the above lemma, the following theorem identifies a basis of the class CBC
(i.e., the class of all centrality indices that satisfy the Balanced Contributions property).

Theorem 14. CBC is a vector space with the basis:

UBC =
{
c〈{v},∅〉 : v ∈ V

}
∪
{
c〈U,E

†〉 : E† ⊆ EV , E† 6= ∅, U = V \Ks((V,E
†))
}
.

Proof. If c and c′ satisfy Balanced Contributions, then c + c′ and k · c satisfy Balanced
Contributions, too, for every k ∈ R. Thus, CBC is a vector space. To prove that UBC forms
a basis of CBC we show that UBC ⊆ CBC , that UBC is linearly independent, and that |UBC |
is equal to the dimension of CBC .

Let us show that UBC ⊆ CBC , i.e., centralities from UBC satisfy Balanced Contributions.
To this end, we will consider different types of centralities from UBC independently. Firstly,
consider c = c〈{v},∅〉 for arbitrary v ∈ V . Since cv(G) does not depend on edges in G,
i.e., cv((V,E1)) = cv((V,E2)) for every E1, E2 ⊆ EV , Balanced Contributions is trivially

satisfied. Secondly, consider c = c〈U,E
†〉 such that U = V \Ks

(
(V,E†)

)
, and let v, u ∈ V

be two arbitrary nodes. If one of these two nodes, say v, does not have edges in (V,E†)
(i.e., v ∈ Ks((V,E

†))), then cv((V,E)) = 0 = cv((V,E \ Eu)), and from Ev = ∅ we get
cu((V,E)) = cu((V,E \ Ev)) which implies that the Balanced Contributions condition is
satisfied. Assume otherwise, that v and u both have edges in (V,E†). From the definition
of unanimity centrality, we have that cv((V,E\Eu)) = 0, and cu((V,E\Ev)) = 0. Moreover,
cv((V,E)) = cu((V,E)) for every E ⊆ EV . Therefore:

cv((V,E))− cv((V,E \Eu)) = cv((V,E))− 0 = cu((V,E))− 0 = cu((V,E))− cu((V,E \Ev))

for every E ⊆ EV and thus Balanced Contributions is satisfied.

To show that UBC is linearly independent, we use Lemma 2: if c〈U,E
†〉, c〈U

′,E†〉 ∈ UBC
(U 6= U ′), then U ∩ U ′ = ∅ and the condition sufficient for linear independence is met.

Finally, we show that |UBC | is equal to the dimension of CBC . Note that |UBC | equals
|GV | − 1 + |V |. Since centralities from UBC are linearly independent, the dimension of the
class CBC is at least equal to |UBC |. But from Lemma 13 we know that it is at most equal
to |GV | − 1 + |V |. Thus, the dimension of CBC equals |UBC |. This concludes the proof of
Theorem 14.
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Unlike in the previous sections, Balanced Contributions is too weak to characterize the
class of Edge-Induced GTCs. To address this issue, we introduce a simple property called
Zero-Empty.

Zero-Empty: For every node v ∈ V , the centrality of v in an empty graph is
zero, i.e., cv((V, ∅)) = 0.

Given a set of nodes, V , the class of all centrality indices satisfying both Balanced Contri-
butions and Zero-Empty will be denoted by CVBC0

, or just CBC0 when V is clear from the
context.

Theorem 14 states that every centrality satisfying Balance Contribution is a linear com-
bination of centralities from UBC . Formally, there exists a collection of coefficients, α〈U,E†〉

for every c〈U,E
†〉 ∈ UBC , that are not all equal to zero, such that:

c =
∑
v∈V

α〈{v},∅〉c
〈{v},∅〉 +

∑
E⊆EV :E 6=∅,U=V \Ks((V,E†))

α〈U,E†〉c
〈U,E†〉.

From the definition of unanimity centrality we have that if E† 6= 0, then c
〈U,E†〉
v ((V, ∅)) = 0

for every v ∈ V . Therefore, cv((V, ∅)) = α〈{v},∅〉. We get that a centrality, c, satisfies
Zero-Empty if and only if α〈{v},∅〉 = 0 for every v ∈ V . This is formalized in the following
corollary.

Corollary 15. CBC0 is a vector space with the basis:

UBC0 =
{
c〈U,E

†〉 : E† ⊆ EV , E† 6= ∅, U = V \Ks

(
(V,E†)

)}
.

To show that the class of edge-induced positive semivalue-based GTCs, denoted by
EIGT C+, is characterized by the properties of Balanced Contributions and Zero-Empty, we
will first show that every centrality from EIGT C+ satisfies both properties.

Lemma 16. Every edge-induced game-theoretic centrality index in GT C+ satisfies Balanced
Contributions and Zero-Empty.

Proof. Let (r, ϕ) be an arbitrary GTC such that r is edge-induced and ϕ is a positive semi-
value based on some β. First, we will prove that [(r, ϕ)] satisfies Balanced Contributions.
Then, we will consider Zero-Empty.

Let G = (V,E) be an arbitrary graph and let v, u ∈ V be two arbitrary distinct nodes.
Considering the left-hand side of the condition of Balanced Contributions (Equation 10)
and using Equation (1), we get:

[(r, ϕ)]v((V,E))− [(r, ϕ)]v((V,E \ Eu))

=
∑

S⊆N,v∈S
β∗(|S| − 1)(f r(V,E)(S)− f r(V,E\Eu)(S)− f r(V,E)(S \ {v}) + f r(V,E\Eu)(S \ {v})).
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Since r is edge-induced, we know that if u 6∈ S, then f r(V,E)(S) = f r(V,E\Eu)(S). Therefore:

[(r, ϕ)]v((V,E))− [(r, ϕ)]v((V,E \ Eu))

=
∑

S⊆N,v,u∈S
β∗(|S| − 1)(f r(V,E)(S)− f r(V,E\Eu)(S)− f r(V,E)(S \ {v}) + f r(V,E\Eu)(S \ {v}))

=
∑

S⊆N,v,u∈S
β∗(|S| − 1)(f r(V,E)(S)− f r(V,E)(S \ {u})− f

r
(V,E)(S \ {v}) + f r(V,E)(S \ {v, u})).

Here, we again used the fact that r is edge-induced—since coalition S has the same set of
edges in (V,E \Eu) as coalition S \ {u} in (V,E), we have: f r(V,E\Eu)(S) = f r(V,E)(S \ {u}).
Analogously, we argue that f r(V,E\Eu)(S\{v})) = f r(V,E)(S\{v, u})). The expression obtained
above is symmetric for v and u. In other words, if we perform the same calculations for
the right-hand side of the condition of Balanced Contributions, we will get the same result.
Therefore:

[(r, ϕ)]v((V,E))− [(r, ϕ)]v((V,E \ Eu)) = [(r, ϕ)]u((V,E))− [(r, ϕ)]u((V,E \ Ev)).

This concludes the proof that (r, ϕ) satisfies Balanced Contributions.

Next, to see that (r, ϕ) satisfies Zero-Empty, consider f r(V,∅). Since r is edge-induced

we have that f r(V,∅)(S) = f r(V,∅)(∅) = 0 for every S ⊆ V . Therefore, f r(V,∅) is a zero game

and [(r, ϕ)]v((V, ∅)) = 0 for every v ∈ V , which means that Zero-Empty is satisfied. This
concludes the proof of Lemma 16.

Theorem 17. For every positive semivalue, ϕ ∈ SV+,

CBC0 = [EIGT Cϕ] = [EIGT C+].

Proof. Since EIGT Cϕ ⊆ EIGT C+, Lemma 16 implies that:

[EIGT Cϕ] ⊆ [EIGT C+] ⊆ CBC0 .

It remains to prove that for every ϕ ∈ SV+,

CBC0 ⊆ [EIGT Cϕ],

i.e., that every centrality, c, satisfying Balanced Contributions and Zero-Empty can be
generated by [(r, ϕ)] for some edge-induced representation function, r.

Based on Lemma 4, Theorem 14, and Corollary 15, we know that it suffices to prove
that every unanimity centrality c〈U,E

†〉 ∈ UBC0 can be generated by an edge-induced game-
theoretic centrality from GT C+.

To this end, we use the representation function r〈U,E
†〉 from the proof of Theorem 12,

defined as follows:

f r
〈U,E†〉

(V,E) (S) =

{
(
∑|V |

k=|U |
(|V |−|U |
k−|U |

)
β∗(k − 1))−1 if U ⊆ S,E† ⊆ E,

0 otherwise.
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We already showed in the proof of Theorem 12 that [(r〈U,E
†〉, ϕ)] = c〈U,E

†〉. Since for every

unanimity game c〈U,E
†〉 from the class UBC0 we have U = V \Ks((V,E

†)), then to generate
every unanimity centrality from UBC0 we use the following GTCs:

{(r〈U,E†〉, ϕ) : E† ⊆ EV , E† 6= ∅, U = V \Ks((V,E
†))}.

It remains to prove that, for every E† ⊆ EV , E† 6= ∅ and U = V \Ks((V,E
†)), the function

r〈U,E
†〉 is edge-induced. From the definition we have that f r

〈U,E†〉
G (S) for U = V \Ks((V,E

†))
does not equal zero if and only if the graph G contains all edges from E† and S contains
all nodes with edges in E†. Moreover, if the value of a coalition is not equal to zero, then
it depends solely on the size of |U |. Therefore, for every two graphs G,G′ ∈ GV , and every
two coalitions S, S′ ⊆ V such that G[S] contains exactly the same edges as G′[S′], the value

is equal. Thus, r〈U,E
†〉 is edge-induced. This concludes the proof of Theorem 17.

8. Discussion & Conclusion

We proposed an axiomatic characterization of game-theoretic centralities. Our results are
summarized in Figure 4. We showed that, while all centralities can be obtained by the game-
theoretic approach, some natural classes of game-theoretic centralities are characterized by
Fairness and its strengthenings—Edge Balanced Contributions and Balanced Contributions.

Our work has a number of implications.

• Where to use game-theoretic centralities: Our results suggest that the game-theoretic
approach is a good choice when the nodes are assessed based on some property that
adheres to Fairness. A good example of such a property is “connectivity” (Michalak,
Rahwan, Szczepański, Skibski, Narayanam, Wooldridge, & Jennings, 2013; Skibski
et al., 2016). In measuring connectivity, Fairness seems to be a reasonable assumption,
as both nodes connected by an edge should benefit the same from the fact this edge
increases connectivity, i.e., it is used to keep the graph connected. On the other hand,
in many settings Fairness may not be intuitive. In particular, in social networks, a
link between two people may be much more profitable for the one with a lower social
standing.

• Designing new, fair centrality measures: We proved that every centrality that satisfies
Fairness can be obtained from a separable game-theoretic centrality (Theorem 8).
This result suggests an appealing way to define fair centrality measures that rely on
assessing not nodes, but the subnetworks of the network—as in the representation
function. For example, let us consider in more detail the aforementioned notion of
connectivity. We already argued that it should satisfy Fairness. Now, we can assign
to each group a value that reflect how well-connected is the group. To this end, we
can assign value 0 to a group of nodes that form an independent set, value 1 to a
group with only two nodes connected to each other, and so on and so forth. More
formally, we can define a representation function as follows: f rG(S) = |S| − |K(G[S])|.
In this way, using the Shapley value as the solution concept, we obtain the Attachment
centrality (divided by 2), discussed in the related work section. We believe the same
method can be used to capture other properties of nodes.
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Figure 4: An illustration summarizing our results. Every small (dotted) arrow connects a
game-theoretic centrality, (r, ϕ), to the corresponding centrality c = [(r, ϕ)] (note
that all the game-theoretic centralities and centralities from this example, such
as (r3, ϕ3) and c2, are just for illustrative purposes and do not correspond to any
specific measures from the literature). Furthermore, every large arrow connects
some subclass of GTCs, I, to [I]—the class of centrality indices generated by
I. As we have shown in Theorem 1, [GT C+] encompasses all centralities, i.e.,
for every centrality, c, there is an incoming arrow from some game-theoretic
centrality (r, ϕ) ∈ GT C+. In Theorem 8, we proved that all arrows from Separable
GTCs go into centralities that satisfy Fairness, and that for every centrality
satisfying Fairness there exists an incoming arrow from some Separable GTC. In
Theorem 12, we showed that all arrows from Induced GTCs go into centralities
that satisfy Edge Balanced Contributions, and that for every centrality satisfying
Edge Balanced Contributions there exists an incoming arrow from some induced
game-theoretic centrality. In Theorem 17, we proved that all arrows from Edge-
Induced GTCs go into centralities that satisfy Balanced Contributions and Zero-
Empty, and that for every centrality satisfying Balanced Contributions and Zero-
Empty there exists an incoming arrow from some edge-induced game-theoretic
centrality. Note that it is possible that several game-theoretic centralities generate
the same centrality (e.g., [(r5, ϕ5)] = [(r6, ϕ6)]) or that a non-separable game-
theoretic centrality generates a centrality satisfying Fairness or Edge Balanced
Contributions (e.g., [(r1, ϕ1)] = c4).
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• Theoretical foundations of centrality measures: Finally, it is worth to highlight the
fact that some of the theoretical foundations introduced in this paper are applicable
not only to game-theoretic centrality measures but, more generally, to any centrality
measure. In particular, we defined a class of unanimity centralities (Definition 1) and,
building upon this definition, we specified the basis of the class of all centralities, and
of the centralities that satisfy Fairness and its extensions (Theorems 3, 6, 10, and 14).
To the best of our knowledge, the techniques proposed by us are new and they can be
used to further axiomatic analysis of centrality measures. In fact, the early versions
of these results were already used by us in the work on axiomatic foundations of the
Attachment centrality’s extension to weighted graphs (Sosnowska & Skibski, 2017).

In our future work, we plan to further study the class of game-theoretic centralities for
directed graphs. Also, we are interested in studying a link to the large class of vitality
indices, where the centrality of a node is a difference between the value of a network with
and without a node in question (Brandes & Erlebach, 2005).
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Appendix A. Summary of Notation

G=(V,E) A graph of which V is the set of nodes and E is the set of edges.

GV The set of all possible graphs, given V .

EV The set of all possible edges given V , i.e., EV = {S ⊆ V : |S| = 2}.

K(G)
The partition of V in which every subset induces a connected components
of G.

Ks(G) The set of isolated nodes of G, i.e., Ks(G) = {v ∈ V : {v} ∈ K(G)}.

S A coalition, i.e., a subset of nodes, or a subset of players.

G[S] The subgraph of G induced by S.

c A centrality index.
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cv(G) The centrality of v in G according to c.

CV The set of all centrality indices, given V .

CVFair The set of all centrality indices satisfying Fairness, given V .

CVEBC
The set of all centrality indices satisfying Edge Balanced Contributions,
given V .

CVBC The set of all centrality indices satisfying Balanced Contributions, given V .

CVBC0

The set of all centrality indices satisfying Balanced Contributions and Zero-
Empty, given V .

(N, f) A game of which N is the set of players and f is the characteristic function.

FN The set of all possible games, given N .

ϕ A solution concept.

ϕv(f) The payoff of v in game (N, f) according to ϕ.

ΦN The set of all solution concepts, given N .

β A function β : {0, . . . , |N | − 1} → [0, 1] such that
∑|N |−1

k=0 β(k) = 1.

ϕβ The semivalue defined by β.

β∗(k) A shorthand notation for β(k)/
(|N |−1

k

)
.

SVN The set of all semivalues, given N .

SVN+ The set of all positive semivalues, given N .

r
A representation function; it takes a graph, G = (V,E), and returns a game
(V, f rG).

RV The set of representation functions, given V .

(r, ϕ) A game-theoretic centrality index.

[(r, ϕ)]
The centrality generated by (r, ϕ), i.e., for every node, v ∈ V , we have:
[(r, ϕ)]v(G) = ϕv(fG).

GT CV The set of game-theoretic centrality indices, given V .

GT CV+
The set of game-theoretic centrality indices based on positive semivalues,
given V .

GT CVϕ The set of game-theoretic centrality indices based on ϕ, given V .

SGT CV The set of separable game-theoretic centrality indices, given V .

IGT CV The set of induced game-theoretic centrality indices, given V .

EIGT CV The set of edge-induced game-theoretic centrality indices, given V .

c〈U,E
†〉 A unanimity centrality index.

UV The set of all unanimity centrality indices, given V .
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