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Abstract

We consider Graph-Constrained Coalition Formation (GCCF), a widely studied sub-
problem of coalition formation in which the set of valid coalitions is restricted by a graph.
We propose COP-GCCF, a novel approach that models GCCF as a COP, and we solve
such COP with a highly-parallel approach based on Bucket Elimination executed on the
GPU, which is able to exploit the high constraint tightness of COP-GCCF. Results show
that our approach outperforms state of the art algorithms (i.e., DyCE and IDPG) by at
least one order of magnitude on realistic graphs, i.e., a crawl of the Twitter social graph,
both in terms of runtime and memory.

1. Introduction

Coalition Formation (CF) (Sandholm, Larson, Andersson, Shehory, & Tohmé, 1999) is one
of the key approaches to establishing collaborations in multi-agent systems. It involves the
coming together of multiple agents in order to achieve either their individual or collective
goals. In particular, here we focus on the associated optimisation problem, denoted as
Coalition Structure Generation (CSG). The aim of CSG is partitioning the set of agents
(into disjoint coalitions) with the objective of maximising the sum of the values of the chosen
coalitions, provided by the so-called characteristic function (see Section 2.2).

Our work is positioned in a strand of literature, namely Graph-Constrained Coalition
Formation (GCCF), pioneered by Myerson (1977) and Demange (2004), and later developed
by Voice, Polukarov, and Jennings (2012a), Voice, Ramchurn, and Jennings (2012b), and
Bistaffa, Farinelli, Cerquides, Rodŕıguez-Aguilar, and Ramchurn (2017a). GCCF focuses
on a specific type of constraints that encodes synergies or relationships among the agents
and that can be expressed by a graph, where nodes represent agents and edges encode
the relationships between the agents. In this setting, edges enable connected agents to
form a coalition and a coalition is considered feasible only if its members represent the
vertices of a connected subgraph. Such constraints are present in several real-world scenarios,
such as social or trust constraints, e.g., energy consumers who prefer to group with their
acquaintances in forming energy cooperatives (Bistaffa et al., 2017a), or commuters sharing
rides with their friends (Bistaffa, Farinelli, Chalkiadakis, & Ramchurn, 2017b), and physical
constraints, e.g., emergency responders may join specific teams in disaster scenarios where
only certain routes are available. Unfortunately, State of the Art (SoA) algorithms for GCCF
are either characterised by exponential memory requirements (Voice et al., 2012b) or require
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some assumptions on the characteristic function (Voice et al., 2012a; Bistaffa et al., 2017a),
which limit their application.

Now, GCCF is essentially an optimisation problem (aiming at maximising the sum of
the coalitional values) subject to feasibility constraints (i.e., coalitions must be feasible and
disjoint). Nonetheless, to the best of our knowledge none of the constraint optimisation
techniques in the literature (Dechter, 2003) has ever been applied to GCCF.

Against this background, in this paper we propose COP-GCCF, the first approach that
models GCCF as a Constrained Optimisation Problem (COP). COP-GCCF does not re-
quire to know the structure of the characteristic function. We remark that, in such general
case, GCCF is NP-Hard, hence computing an optimal solution requires a significant compu-
tational effort. Nonetheless, exploiting the structure of the characteristic function is often
very difficult or impossible, since it could be not known and/or hard to formalise. Moreover,
even if the structure of the characteristic function is known, it could be difficult to exploit
from the algorithmic point of view. As an example, in the work by Bistaffa et al. (2017b)
the structure is well-known, but a complex, ad-hoc technique to compute an upper-bound
on the characteristic function is needed to exploit such a structure within the branch-and-
bound CSG algorithm. This is far from trivial and not easily applicable to scenarios different
from ridesharing. Along these lines, having a solution technique that does not require any
property on the characteristic function is important.

To achieve this objective, within COP-GCCF we exploit the structure of the graph so as
to achieve a model of manageable complexity. Specifically, we propose a COP formalisation
that builds a hierarchy of agents resulting in a linear number of constraints (wrt the num-
ber of agents). COP-GCCF is based on constraints represented as incomplete tables (i.e.,
unfeasible assignments are not represented in memory), so as to exploit the high constraint
tightness inherent in GCCF. This allows us to reduce the number of rows in each constraint
function from exponential to linear wrt the number of variables in the scope. We employ
a GPU version of Bucket Elimination (BE) provided by Bistaffa, Bombieri, and Farinelli
(2016), since, to the best of our knowledge, it is the only one able to exploit incomplete
tables so as to obtain an approach with manageable memory requirements (see Section 3.4).
In fact, SoA COP solution algorithms (Marinescu & Dechter, 2007; Fioretto, Le, Pontelli,
Yeoh, & Son, 2015) that do not exploit incomplete tables could only solve problems with
up to 5 agents in our tests. Our work confirms that BE can be a practical solution approach
if the problem is appropriately modelled as a COP, as also shown by Larrosa, Morancho,
and Niso (2005). Finally, we exploit highly-parallel architectures (i.e., GPUs). This choice
is motivated by the successful use of cloud-based (Malapert, Régin, & Rezgui, 2016) and
GPU-based (Greengard, 2016) parallel approaches to speed-up the solution of problems that
exhibit a high level of parallelism, particularly in the field of AI.

In more detail, we advance the SoA in the following ways:

• We propose COP-GCCF, the first COP model to solve GCCF, which requires a linear
number of constraints to formalise such problem. We establish a new link between
GCCF and COPs, which opens a new line of research focusing on the use of COP
methods for GCCF.

• We evaluate COP-GCCF both on realistic and synthetic graphs. Results show that
our approach does not provide any advantage with dense graphs, but it outperforms
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SoA algorithms (i.e., DyCE and IDPG) on sparse graphs, both in terms of runtime
and memory. COP-GCCF is at least one order of magnitude faster than counterpart
approaches using Twitter (Kwak, Lee, Park, & Moon, 2010) as a realistic graph topol-
ogy. Results confirm that, even without exploiting the structure of the characteristic
function, COP-GCCF improves upon SoA GCCF solution algorithms, by correctly
exploiting the structure of the graph.

2. Background

In what follows, we first define COPs in Section 2.1 and GCCF in Section 2.2. Then, in
Section 2.3 we position our work wrt the existing literature.

2.1 COPs

A COP is defined upon a Constraint Network (CN), a theoretical model that encodes a
knowledge-base theory as several functions or relations over subsets of discrete variables
(e.g., clauses for propositional satisfiability, constraints, or conditional probability matrices
for belief networks). In this paper we adopt the definitions provided by Dechter (2003).

Definition 1 (constraint network). A constraint network consists of a set X = {x1, . . . , xn}
of n discrete variables such that x1 ∈ D1, . . . , xn ∈ Dn, where Di represents the domain of
the variable xi, together with a set of m constraints {C1, . . . , Cm}.

Definition 2 (constraint). A constraint Ci is a relation defined on a set Xi = {xi1 , . . . , xih}
of h discrete variables, called the scope of the constraint, such that Xi ⊆ X. Such a relation
denotes the variables simultaneous legal assignments. Non-legal assignments are denoted as
unfeasible.

A particular CN corresponds to a Constraint Satisfaction Problem (CSP), which can be
generalised obtaining a COP.

Definition 3 (constraint satisfaction problem). Given a CN, the corresponding constraint
satisfaction problem requires to find a variable assignment ā∗ = (a∗1, . . . , a

∗
n) satisfying all

the constraints in the CN.

Definition 4 (constraint optimisation problem). A constraint optimisation problem is a
CN augmented with a set of functions. Let F1, . . . , Fl be l real-valued functional components
defined over the scopes Q1, . . . , Ql, Qi ⊆ X, let ā = (a1, . . . , an) be an assignment of the
variables, where ai ∈ Di. The global cost function F is defined by F (ā) =

∑l
i=1 Fi(ā), where

Fi(ā) means Fi applied to the assignments in ā restricted to the scope of Fi. Solving the COP
requires to find ā∗ = (a∗1, . . . , a

∗
n), satisfying all the constraints, such that F (ā∗) = maxāF (ā)

(or F (ā∗) = mināF (ā), in case of a minimisation problem).

Cost functions are usually encoded as tables (Dechter, 2003), in which each row repre-
sents a variable assignment and its resulting value.

Definition 5 (complete (resp. incomplete) tables). A cost function Fi is complete if un-
feasible assignments are explicitly represented with −∞ (+∞ in case of a minimisation
problem) values. In contrast, if unfeasible assignments are not represented at all, Fi is said
to be incomplete.
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COPs can be solved both with Dynamic Programming (DP) algorithms and with search-
based approaches. On the one hand, BE (Dechter, 1999, 2003) is the most important DP
algorithm that solves COPs, which has been recently implemented on GPUs (Bistaffa et
al., 2016; Fioretto et al., 2015). BE has been successfully employed in practical applica-
tions (Larrosa et al., 2005), showing that it can be a viable solution approach if the prob-
lem is appropriately modelled as a COP. On the other hand, Marinescu and Dechter (2007)
proposed a best-first search approach that adopts BE-based heuristics to guide the traversal
of a particular AND/OR search tree. Both the above approaches have been considered as
solvers for our model (see Section 3.4).

2.2 The GCCF Problem

The CSG problem (Shehory & Kraus, 1998; Sandholm et al., 1999) takes as input a finite
set of n agents A = {a1, . . . , an} and a characteristic function v : 2A → R, that maps each
coalition S ∈ 2A to its value, describing how much collective payoff a set of players can
gain by forming a coalition. A coalition structure CS is a partition of the set of agents
into disjoint coalitions. The set of all coalition structures is Π(A). The value of a coalition
structure CS is assessed as the sum of the values of its composing coalitions, i.e.,

V (CS) =
∑
S∈CS

v(S).

The CSG problem aims at identifying CS∗, the most valuable coalition structure, i.e.,

CS∗ = arg max
CS∈Π(A)

V (CS).

Given a connected1 graph G = (A,E), where E ⊆ A× A is a set of edges between agents,
representing their relationships (i.e., friendship), Myerson (1977) considers a coalition S to
be feasible if all of its members are connected in the subgraph of G induced by S. That is,
if for each pair of players from a, b ∈ S there is a path in G that connects them without
going out of S. Given G, the set of feasible coalitions is

FC(G) = {S ⊆ A | The subgraph induced by S on G is connected} .

A GCCF problem (Voice et al., 2012b; Bistaffa et al., 2017a) is a CSG problem together
with a graph G, where a coalition S is considered feasible if S ∈ FC(G). In GCCF a coalition
structure CS is considered feasible if each of its coalitions is feasible, i.e., CS(G) = {CS ∈
Π(A) | CS ⊆ FC(G)}. Hence, the goal in GCCF is to identify CS∗, which is the most
valuable feasible coalition structure, i.e.,

CS∗ = arg max
CS∈CS(G)

V (CS).

Voice et al. (2012a) show that GCCF is NP-Hard.

2.3 Related Work

A number of approaches have been developed to solve the GCCF problem. The SoA al-
gorithm that solves general2 GCCF is based on DP (Yeh, 1986). Specifically, Voice et al.

1. A graph G with c components corresponds to c GCCF problems that can be solved independently.
2. A GCCF problem in which we do not make any particular assumption on the characteristic function.
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(2012b) proposed the DyCE algorithm, a modified version of Yeh’s approach that represents
the SoA algorithm to solve general GCCF. For this reason, we consider DyCE as a sequen-
tial benchmark for our GPU approach. GCCF can also be solved as a CSG problem in
which unfeasible coalitions have a value of −∞. As such, SoA CSG algorithms based on DP
can also be applied. Since we propose a GPU algorithm that solves GCCF, we compare it
against IDPG (Pawlowski et al., 2014), the only GPU version of a CSG algorithm. Existing
DP approaches cannot scale over ∼25 agents (Michalak, Rahwan, Elkind, Wooldridge, &
Jennings, 2016), as they require to store the value of each possible coalition in memory. In
addition, DyCE does not take advantage of the presence of the graph to reduce its memory
consumption, hence its memory requirements are Θ(2n).

In order to deal with such drawbacks, a strand of literature (Voice et al., 2012a; Bistaffa
et al., 2017a; Ohta et al., 2009; Ueda, Kitaki, Iwasaki, & Yokoo, 2011) has proposed to avoid
storing each coalitional value in memory by exploiting some particular assumptions on the
function v(·). Unfortunately, these approaches are not suitable for scenarios in which making
assumptions on the characteristic function is not possible. On the one hand, the approach by
Voice et al. (2012a) is not applicable if the Independence of Disconnected Members (IDM)3

property does not hold. On the other hand, the approach by Bistaffa et al. (2017a) has the

unpractical worst-case time complexity of Ω
(

n
ln(n)

n
)

, i.e., the number of coalition structures

when G is a complete graph (Berend & Tassa, 2010). Finally, approaches based on compact
characteristic functions representations (Ohta et al., 2009; Ueda et al., 2011) require strict
assumptions on the characteristic function in order to be expressive and succinct. Such
assumptions do not hold in many realistic application scenarios (e.g., collective energy
purchasing or ridesharing) (Bistaffa et al., 2017a), as well as random functions, which we
employ in our experiments. Hence, we do not compare against such approaches.

Constrained CF has also been investigated by Rahwan et al. (2011), but their solution
algorithm only applies to Basic Constrained CF (BCCF), which cannot be used to represent
GCCF (Bistaffa et al., 2017a).

In the field of operations research, the CSG problem has been tackled as the equivalent
Set Partitioning (SP) problem (Yeh, 1986) with an Integer Linear Programming (ILP)
formalisation (Rahwan, Michalak, Wooldridge, & Jennings, 2015). Such an approach has
been shown to be inefficient if solved to optimality, e.g., even an industrial-strength solver
such as ILOG’s CPLEX was shown to be significantly slower than IDP (Rahwan et al., 2015).
This discussion further motivates the choice of IDPG as a benchmark for our approach.

Column Generation (CG) (Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998)
has been widely adopted in the operations research literature in order to solve very large
integer programs, including the SP problem. However, in practical implementations, CG
approaches typically do not generate guaranteed optimal solutions (Bredström, Jörnsten,
Rönnqvist, & Bouchard, 2014), as we do in this paper. Furthermore, to the best of our
knowledge, ILP with CG has been used to (sub-optimally) solve SP problems with up to
500000 variables (Zaghrouti, Soumis, & El Hallaoui, 2014), which, in the case of GCCF,
corresponds approximately to a problem with 25 agents, i.e., smaller than the problems we
solve in this paper.

3. The IDM property requires that, given two disconnected agents ai and aj , the presence of ai does not
affect the contribution of aj .
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Finally, we remark that, despite the constrained optimisation nature of CF, the only
work that links CF with COPs is by Ueda et al. (2010). In this work, however, the authors
tackle a problem of different nature wrt our work. In fact, we consider the standard CSG
definition adopted in the AI literature, i.e., each feasible coalition is associated to a value
by a characteristic function (see Section 2.2). Moreover, we use one COP to solve the
CSG problem (see Section 3). In contrast, in the work by Ueda et al. (2010) the value of
each coalition is not given by a characteristic function, but it is the “optimal solution of a
Distributed Constrained Optimisation Problem (DCOP) among the agents of the coalition”
(Ueda et al., 2010), i.e., one DCOP for each coalition. This is clearly different than optimally
solve the CSG problem (like we do) and it requires to “solve an NP-hard problem just to
obtain the value of a single coalition” (Ueda et al., 2010), i.e., an exponential number of NP-
hard problems. To combat this complexity, Ueda et al. (2010) use an approximate algorithm
that solves CSG with quality guarantees. Since we are interested in computing the optimal
solution of the GCCF problem, we do not compare with this approach.

3. COP-GCCF

In this section we discuss COP-GCCF, our COP formalisation of the GCCF problem. Our
COP comprises |FC(G)| binary variables, i.e., one per feasible coalition. In our model,
xS = 1 does not necessarily mean that S is part of the final coalition structure, since
a variable can be activated because it is required by another variable (see Section 3.1).
Intuitively, only active variables that correspond to maximal coalitions are part of the final
coalition structure. In the example in Figure 2, if x13 = 1 in the solution of the COP, then
x3 = 1 since x3 is required by x13, but only {a1, a3} is part of the final coalition structure.

Formally, X = {xS | S ∈ FC(G)}. The computation of X is equivalent to the enumera-
tion of all the subgraphs of G and can be solved using one of the existing algorithms in the
literature (Moerkotte & Neumann, 2006; Voice et al., 2012b). We use SlyCE by Voice et al.
(2012b), which also provide a parallelised version, i.e., D-SlyCE.

A set of coalitions S is a partition of A if each agent is part of exactly one coalition, i.e.,

Property 1. There are no overlapping coalitions in S, i.e., 6 ∃S, S′ ∈ S : S ∩ S′ 6= ∅.

Property 2. Each agent in A is part of a coalition in S, i.e.,
⋃

S∈S = A.

The above properties enforce constraints that determine the solution space of valid
variable assignments for our COP. Within COP-GCCF, we exploit the structure of the
graph G in order to express such constraints.

As a first step, we construct a pseudotree PT (G) (Petcu, 2007) from G, establishing a
partial order among the agents in A.

Definition 6 (pseudotree). A pseudotree PT (G) of a graph G is a rooted tree with the same
nodes as G and the property that adjacent nodes from the original graph fall in the same
branch of PT (G). Throughout this paper we assume that PT (G) is constructed by means of
a depth-first search (DFS) on G, i.e., PT (G) is always a DFS-tree.

PT (G) is a graph in which edges are directed from children nodes to parent ones (Fig-
ure 1). Back-edges, i.e., edges present in G but not explicitly present in its tree representa-
tion, are marked with a dashed line. It is crucial to note that back-edges cannot be removed
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a3

a4

a1

a2

a3

a4

Figure 1: Example graph G and the corresponding PT (G).

from the graph, as they must be considered in order to have a complete and correct GCCF
algorithm. Specifically, the information expressed by back-edges is inherently maintained
by the variables in the model. As an example, the information of (a1, a3) is maintained by
x13 and x134, which would correspond to unfeasible coalitions without such edge.4

Then, we partition the set of variables X in n sets Xi, each corresponding to ai ∈ A,
such that Xi = {xS | S contains only ai or ai with a subset of its descendants in PT (G)}.
Each Xi represents the set of local variables to the agent ai. In the above example, X1 =
{x1, x12, x13, x123, x14, x124, x134, x1234}, X2 = {x2, x23}, X3 = {x3}, and X4 = {x4}.

As stated above, Properties 1 and 2 must be ensured in order to correctly represent the
GCCF problem. Property 1 requires that the activation of a particular variable/coalition
excludes the activation of incompatible variables, i.e., variables whose concurrent activation
would generate overlapping coalitions. Now, since in COP-GCCF we construct n constraint
functions Fi, each responsible for the variables in Xi (see Section 3.2), Property 2 can be
easily achieved for such variables by allowing only the assignments in which exactly one
local variable is activated. On the other hand, Property 1 cannot be directly enforced for
variables that are local to different agents, i.e., that belong to different Xi, and hence, to
different constraint functions. Notice that introducing additional binary constraints between
overlapping variables would result in

(|X|
2

)
constraints. In contrast, we achieve this exploiting

the concept of required variables.

3.1 Required Variables

The main idea behind required variables is that the formation of a variable/coalition xS ∈ Xi

can be achieved exploiting the hierarchy induced by PT (G). Intuitively, the agent ai can
negotiate the formation process only with its children nodes, allowing a more succinct
representation of the problem and saving computational resources. As an example, x1234

(local to a1) requires the participation of a2, a3, and a4, but a1 can force the participation
of a3 through a2. In other words, x1234 requires x4 and x23, which indirectly requires x3

through a2. Formally, we represent such dependencies with the requires relation, denoted
as req(PT (G)) ⊆ X2, i.e., a set of couples of variables. Figure 2 illustrates such relation
corresponding to the above example. Intuitively, if (xS , xS′) ∈ req(PT (G)), it means that xS
requires xS′ . In terms of variable assignments, the requires relation acts as an implication,
i.e., xS = 1 =⇒ xS′ = 1. Notice that, as a consequence, if xS requires xS′ and xS′ requires
xS′′ , the activation of xS results in the activation of xS′′ , i.e.,

∀xS , xS′ , xS′′ ∈ X : (xS , xS′) ∈ req(PT (G)) and

(xS′ , xS′′) ∈ req(PT (G)), xS = 1 =⇒ xS′′ = 1. (1)

4. In our examples, each xS will be named using indexes of agents in S, e.g., xa1,a3 will be named x13.
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x1 x13 x123 x1234 x12 x124 x134 x14

x23 x2
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Figure 2: The requires relation (indirect requirements drawn as dash-dotted lines).

Due to the above property, requires exhibits a property similar to transitivity. On the
other hand, we construct such a relation in a way such that if (xS , xS′) ∈ req(PT (G))
and (xS′ , xS′′)∈req(PT (G)), then (xS , xS′′) 6∈ req(PT (G)), hence, strictly speaking, re-
quires is not a transitive relation. This choice is motivated by the fact that the amount
of required variables directly determines the scopes of the constraints within COP-GCCF
(see Section 3.2), hence including the additional couple (xS , xS′′) in req(PT (G)) would be
redundant, since the relation between such variables is still expressed by the property in
Equation 1. We characterise this property related to transitivity by means of the concept
of indirect requirement.

Definition 7 (indirect requirement). A variable xS ∈ X indirectly requires xS′′ ∈ X if
∃xS′ ∈ X such that (xS , xS′) ∈ req(PT (G)) and (xS′ , xS′′) ∈ req(PT (G)).

Any required variable xS′ activated as a result of the requires relation does not corre-
spond to the formation of S′. Thus, once the optimal solution of the COP model has been
computed (see Section 3.4), such variables must be ignored when deriving the coalition
structure.

For any agent ai and any variable xS local to ai representing the coalition S, its required
variables are computed with Algorithm 1, which iterates over the children of ai (line 2) and
computes the required variables relative to each child with the recursive routine in Algo-
rithm 2. As an example, we compute the variables required by x1234 with such algorithms.
We denote as PTj the agents in the subtree of PT (G) rooted in aj . The first iteration of
the loop in Algorithm 1 refers to the first child of a1, i.e., a2. Within the corresponding
invocation of RecReq, S∗ = {a2, a3}, resulting in the required variable x23. Notice that
the inner RecReq call returns ∅, since {a1, a4} ∩ PT3 = ∅. Similarly, the second iteration
of the loop (i.e., the one for a4) yields the required variable x4. Note that x1234 indirectly
requires x3, since x23 requires such variable.

Algorithm 1 ComputeReq(S, ai, PT (G))

1: reqS ← ∅ {Initialise empty set of required variables}
2: for all aj children of ai do
3: reqS ← reqS ∪RecReq(S, aj , PT (G))

4: return reqS
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Algorithm 2 RecReq(S, aj , PT (G))

1: reqjS ← ∅
2: PTj ← agents in the subtree of PT (G) rooted in aj
3: if S ∩ PTj = ∅ then
4: return ∅
5: else
6: S∗ = arg max{xS̄∈Xj | S̄⊆(S∩PTj)}

∣∣S̄ ∩ S
∣∣

7: {xS∗ is the variable in Xj , strictly formed by agents}
8: {in S ∩ PTj , with the maximum intersection with S}
9: for all ak children of aj do

10: reqjS ← reqjS ∪ {xS∗} ∪RecReq(S \ S∗, ak, PT (G))

11: return reqjS

The crucial feature of required variables is that any two variables that require the same
variable cannot be enabled simultaneously. Since we cannot activate two variables both
local to the same agent, two variables that require variables local to the same agent cannot
be both active (Equation 2).

∀xS , xS′ ∈ X, ak ∈ A : ∃xS′′ , xS′′′ ∈ Xk : (xS , xS′′) ∈ req(PT (G)) and

(xS′ , xS′′′) ∈ req(PT (G)) =⇒ ¬(xS ∧ xS′). (2)

By enforcing Equation 2, we ensure that no overlapping variables local to different
agents are activated at the same time. Proposition 1 proves such property. As background
for such proof, we first prove Lemma 1, that ensures that any variable, local to an agent
ai, and involving an agent ak descendant of ai, requires a variable local to ak, possibly by
indirect requirement. In the example in Figure 2, x13 (local to a1) corresponds to a coalition
containing a3, which is a descendant of a1. As a consequence, x13 requires a variable local
to a3, i.e., x3. On the other hand, x123 indirectly requires x3 via x23.

Lemma 1. Given a variable xS ∈ Xi, i.e., local to ai, such that ak ∈ S, where ak is a
descendant of ai in PT (G), it exists a variable xS′ ∈ Xk, i.e., local to ak, such that xS
requires xS′, possibly by indirect requirement.

Proof. Let aj be the child of ai such that ak∈PTj , i.e., ak is a descendant of aj , and consider
the routine call RecReq(S, ai, PT (G)) at line 3 of Algorithm 1 corresponding to aj . We
now show that RecReq(S, aj , PT (G)) either falls into a base case (directly proving this
lemma), or into a recursive one. In such case, we show that one of the inner recursive calls
still verifies the hypotheses of this lemma, hence recursively applying this proof to such call.

• Base case (aj = ak): line 6 of RecReq(S, aj , PT (G)) results in a coalition S∗

containing ak as the highest agent in such coalition, considering the hierarchy induced
by PT (G). Hence, xS requires xS′ = xS∗ , local to ak.

• Recursive case (aj 6= ak): we distinguish between two cases:
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– aj ∈ S: line 6 of RecReq(S, aj , PT (G)) results in a coalition S∗ containing both
aj and ak, since aj ∈ S and ak ∈ PTj . Notice that S \ S∗ at line 10 does not
contain ak. Hence, xS requires xS′ = xS∗ , which is not local to ak, but to aj .
On the other hand, the recursive procedure that computes the variables required
by xS′ = xS∗ verifies the hypotheses of this lemma, since ak ∈ S∗ and ak is a
descendant of aj .

– aj 6∈ S: line 6 of RecReq(S, aj , PT (G)) results in ∅. In fact, since aj 6∈ S, then
aj 6∈ S ∩ PTj , and line 6 only considers coalitions local to aj (which all contain
aj) strictly composed of agents in S ∩ PTj , which does not contain aj . Then,
line 9 (which iterates over the children of aj) contains one iteration referring to a
child of aj who still is an ancestor of ak. Such iteration recursively calls RecReq
with the same S, since S∗ = ∅. Thus, the hypotheses of this lemma are verified.

Notice that both cases in the recursive step refer to agents aj (all ancestors of ak) that are
gradually closer to ak. Thus, the base case is eventually executed.

Proposition 1. Overlapping variables local to different agents cannot be activated together,
i.e., ∀xS ∈ Xi, xS′ ∈ Xj such that ai 6= aj, if S ∩ S′ 6= ∅, then ¬(xS ∧ xS′).

Proof. Let ak be an agent in S ∩ S′. Notice that ak always exists since S ∩ S′ 6= ∅. As
a direct consequence of how PT (G) is constructed, ak ∈ PTi and ak ∈ PTj , where PTh

represents the set of agents in the subtree of PT (G) rooted in ah. Now, since PT (G) is a
tree, it follows that either ai ∈ PTj or aj ∈ PTi. Without loss of generality, assume that
ai is an ancestor of aj , i.e., aj ∈ PTi, and thus, ak is a descendant of both ai and aj . By
applying Lemma 1 to xS and xS′ , it follows that xS and xS′ require variables both local to
ak. Finally, Equation 2 ensures that ¬(xS ∧ xS′).

As an example, our technique ensures that x13 and x23 cannot be both set to 1, since
they both require x3. In the next section, we show how to construct n constraint functions
that implement the above discussed concepts.

3.2 Constructing Constraint Functions

As mentioned in Section 3, COP-GCCF involves n constraint functions Fi, one for each
agent ai. Each Fi is constructed according to the following definition.

Definition 8 (Fi). Each Fi is responsible for the variables local to ai, hence we initialise
the scope Qi of each Fi to include Xi. To represent the requires relation, we include all
the non-local variables that require a variable in Xi, i.e., Qi = Xi ∪ {xS | ∃xS′ ∈ Xi :
(xS , xS′) ∈ req(PT (G))}. The scope Qi of each Fi comprises Xi, i.e., the variables local to
ai, plus all the non-local variables that require a variable in Xi. Each Fi contains |Qi| feasible
assignments, i.e., one for each variable in the scope. The variable assignment in each row
is constructed by activating the corresponding variable, namely xS. If xS is non-local, i.e.,
xS 6∈ Xi, we also activate the variable required by xS. Then, for each assignment in which
a local variable xS ∈ Xi is activated, we define the corresponding value equal to v(S), while
such value is 0 when a non-local variable is considered. This avoids the duplication of v(S)
when xS is propagated as a non-local variable across the constraint functions.
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Notice that, in our model, we do not explicitly represent unfeasible assignments, i.e.,
each Fi is an incomplete table. This is of utmost importance, since it allows us to reduce the
space required by each Fi to a tractable size. Specifically, within COP-GCCF each Fi has
|Qi| rows, as opposed to 2|Qi| rows, if we used complete tables with unfeasible assignments
represented as −∞. On the other hand, not all COP solution algorithms support incomplete
tables. Henceforth, is it also necessary to use a solver that is able to exploit this feature, as
discussed in detail in Section 3.4.

Figures 3–6 show an example of constraint functions (with non-local variables high-
lighted in grey) corresponding to the example in Figure 1. Notice that, at the moment, our
model propagates several variables down the pseudotree. As an example, X4 contains only
one variable, but Q4 = X4∪{x1234, x124, x134, x14}. We will show how to reduce this amount
in the next section.

x1 x12 x13 x14 x123 x124 x134 x1234 Value

1 0 0 0 0 0 0 0 v({a1})
0 1 0 0 0 0 0 0 v({a1, a2})
0 0 1 0 0 0 0 0 v({a1, a3})
0 0 0 1 0 0 0 0 v({a1, a4})
0 0 0 0 1 0 0 0 v({a1, a2, a3})
0 0 0 0 0 1 0 0 v({a1, a2, a4})
0 0 0 0 0 0 1 0 v({a1, a3, a4})
0 0 0 0 0 0 0 1 v({a1, a2, a3, a4})

Local

Figure 3: Constraint function F1.

x2 x23 x12 x124 x123 x1234 Value

1 0 0 0 0 0 v({a2})
0 1 0 0 0 0 v({a2, a3})
1 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 0 0 1 0

Local

Non-local

Figure 4: Constraint function F2.

x3 x134 x13 x23 Value

1 0 0 0 v({a3})
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0

Local

Non-local

Figure 5: Constraint function F3.
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x4 x1234 x124 x134 x14 Value

1 0 0 0 0 v({a4})
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0

Local

Non-local

Figure 6: Constraint function F4.

We now formally prove that COP-GCCF is correct, i.e., that the optimal solution of
COP-GCCF is the optimal solution of the corresponding GCCF problem (Proposition 2).
First, we prove two necessary lemmas for such proposition.

Lemma 2. Property 1 holds within COP-GCCF.

Proof. Definition 8 guarantees that exactly one local variable is activated, and that overlap-
ping variables local to different agents are not enabled at the same time, as a consequence
of Proposition 1. As such, Property 1 holds.

Lemma 3. Property 2 holds within COP-GCCF.

Proof. Each Fi only contains variable assignments in which exactly one local variable is
enabled. As such, assignments in which ai is not part of any coalition, i.e., the ones violating
Property 2, are unfeasible and cannot be a solution.

Proposition 2. The optimal solution of COP-GCCF is the optimal solution of the corre-
sponding GCCF problem.

Proof. COP-GCCF ensures that the variable assignment produced as solution satisfies Prop-
erties 1 and 2. Furthermore, such an assignment maximises the sum of the values of the
constraints, which, in COP-GCCF, is the sum of the values of the corresponding coalitions.
As such, the solution of COP-GCCF represents the solution of the GCCF problem.

In what follows, we improve our model by discussing how to reduce the scope of con-
straint functions, so to improve the memory requirements while maintaining the correctness.

3.3 Reducing the Size of Constraint Functions

Our method of constructing each Fi involves the addition to its scope of every non-local
variable that requires a local one. Now, line 6 of Algorithm 2 implies that the set of required
variables of a particular variable xS local to the agent ai contains variables that are local
to ai’s descendants, i.e., agents lower than ai in the hierarchy induced by PT (G). As a
consequence, the requires relation never involve variables that are local to the same agent.
In contrast, if we could express the same dependencies by using variables that are also local
to ai, we could reduce the amount of variables added to the scope of Fi, and hence, its size.

In our improved model, we achieve this by introducing a slight modification in how the
requires relation is expressed. As an example, notice that x1234, local to a1, requires x23

and x4 in our original model, which belong to different branches in PT (G) (Figure 7(a)).
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When this happens, we can augment each required variable adding a1, and obtaining x123

and x14 as new required variables (Figure 7(b)).

This method is applicable only when we have more than one required variable. In fact,
if we applied it to the only required variable of x123, i.e., x23, we would re-obtain x123. This
modification allows us to greatly reduce the scope of the constraint functions in COP-GCCF.
In fact, notice that the new required variables of x1234, i.e., x123 and x14, are both local to
a1, in contrast with the original ones that were local to a2 and a4. Thus, we can avoid adding
x1234 to the scope of F2 and F4, since it no longer requires x23 and x4. Furthermore, this
improvement does not affect the correctness of our model, since the new requires relation
is equivalent to the original one, as proven by the following proposition.

Proposition 3. The requires relation obtained with our improved technique is equivalent
to the original one.

Proof. Let xS ∈ Xi be a variable local to ai, and xS′ ∈ Xj a variable local to aj child of
ai, such that xS requires xS′ in our original model. Assume that, in our improved model,
(xS , xS′′) ∈ req(PT (G)), where S′′ = {ai} ∪ S′ is equal to S′ augmented with ai, as a
consequence of our improved technique of constructing required variables. Notice that, since
S′′ contains {ai}, it is local to such agent. Furthermore, S′′ cannot contain agents (apart from
ai) that are not part of PTj , i.e., agents outside the subtree of PT (G) rooted in aj . Hence, aj
is the only child of ai that does not result in ∅ at line 4 of Algorithm 2 when we construct the
required variables for xS′′ . Instead, the invocation of RecReq(S′′, aj , PT (G)) yields S∗ = S′

as the result of the operation at line 6, since S′ is precisely the coalition, strictly composed of
agents in S′′∩PTj , with the maximum intersection with S′′. Thus, (xS′′ , xS′) ∈ req(PT (G)).
Now, since xS requires xS′′ , and xS′′ requires xS′ , then xS indirectly requires xS′ (see
Definition 7) in our improved model. Therefore, the requires relation obtained with our
improved technique is equivalent to the original one.

As an example, Figure 8 shows that we indirectly achieve the original dependency be-
tween x1234 and x23 by means of a dependency with x123, since the relation between x123 and
x23 is unchanged. Figures 9–12 show the constraint functions obtained with our improved
model considering the above example. It is clear that our technique allows to greatly reduce
the number of non-local variables (cf. Figures 3–6), reducing the total number of columns
from 23 to 17 (i.e., −26%).

a1

a2

a3

a4

(a)

a1

a2

a3

a4

(b)

x1234

Original

Improved

Figure 7: Required variables for x1234 (original vs. improved).
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x1234 x123 x23

Original

Improved

Figure 8: Relationships among x1234, x123, and x23.

x1 x12 x13 x14 x123 x124 x134 x1234 Value

1 0 0 0 0 0 0 0 v({a1})
0 1 0 0 0 0 0 0 v({a1, a2})
0 0 1 0 0 0 0 0 v({a1, a3})
0 0 0 1 0 0 0 0 v({a1, a4})
0 0 0 0 1 0 0 0 v({a1, a2, a3})
0 1 0 1 0 1 0 0 v({a1, a2, a4})
0 0 1 1 0 0 1 0 v({a1, a3, a4})
0 0 0 1 1 0 0 1 v({a1, a2, a3, a4})

Local

Figure 9: Improved constraint function F1.

x2 x23 x12 x123 Value

1 0 0 0 v({a2})
0 1 0 0 v({a2, a3})
1 0 1 0 0
0 1 0 1 0

Local

Non-local

Figure 10: Improved constraint function F2.

x3 x13 x23 Value

1 0 0 v({a3})
1 1 0 0
1 0 1 0

Local

Non-local

Figure 11: Improved constraint function F3.

x4 x14 Value

1 0 v({a4})
1 1 0

Local

Non-local

Figure 12: Improved constraint function F4.
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In what follows, we discuss how we compute the optimal variable assignment of the
above defined COP.

3.4 Solving the COP

As previously discussed, COPs can be solved both with BE and with search-based ap-
proaches. However, a fundamental feature of COP-GCCF is the high constraint tightness
(i.e., a lot of variable assignments in each Fi table are unfeasible, see Section 3.2). Hence,

Remark 1. Using a solver that is able to internally represent constraints as incomplete
tables, which allow to significantly reduce memory requirements, is a crucial aspect in the
choice of the COP solution algorithm. This feature should not be confused with the ability
of the solver of reading problem instances in a format that allows to specify constraints as
incomplete tables (e.g., the WCSP format). In fact, several solvers (see below) can read prob-
lem instances with incomplete tables, which are then converted and internally represented
as complete ones, thus still incurring high memory requirements.5

The SoA search-based solution approach (Marinescu & Dechter, 2007) adopts BE-based
heuristics to guide the traversal of a particular AND/OR search tree. Such an algorithm
can read problem instances with incomplete tables, which are then internally converted
to complete ones, i.e., with each unfeasible assignment associated to −∞ (see Remark 1).
This results in a huge consumption of memory (see Section 3.2), since each Fi has to
contain 2|Qi| rows, 2|Qi| − |Qi| of which are associated to −∞. We tested Marinescu and
Dechter’s approach on problem instances expressed using incomplete tables (i.e., in WCSP
format). Our results show that this approach could not solve COPs representing GCCF
problems with > 5 agents, due to high memory requirements. We obtained similar results
with ToulBar2 (Allouche, de Givry, & Schiex, 2010).6 For this reason, we do not report
these results in our experimental evaluation.

To the best of our knowledge, the only COP solution approach that internally represents
constraints as incomplete tables is CUBE, i.e., the GPU version of BE by Bistaffa et al.
(2016). Fioretto et al. (2015) also proposed a GPU version of BE, which, on the other
hand, does not internally employ incomplete tables, and hence, would incur in the same
drawbacks discussed above. As a consequence, we adopt Bistaffa et al.’s approach to solve
COP-GCCF.

4. Experimental Evaluation

The main goals of our empirical analysis are i) to evaluate the performance of COP-GCCF
in terms of runtime and memory requirements and ii) to compare it with DyCE, i.e., the
SoA algorithm to solve general GCCF, and with IDPG, i.e., the only GPU implementation
of an algorithm that solves CSG.

5. Adapting existing approaches to internally support incomplete tables would require deep changes to the
implementation. Making such changes is out of the scope of the paper.

6. Topology-aware solvers are not effective for our model, since the constraint graph has usually a very high
treewidth (i.e., 20–30).
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4.1 Experimental Methodology

We generate random GCCF instances considering three different network topologies, i.e.,
scale-free networks obtained with the Albert and Barabási (2002) model with the m param-
eter equal to 1 and 2, and subgraphs of a large crawl of the Twitter social graph (Kwak et
al., 2010). G is obtained by means of a breadth-first traversal starting from a random node
of the whole graph, adding each node and the corresponding arcs to G, until the desired
number of nodes is reached (Russell, 2013). The number of edges is m · n − m·(m+1)

2 and
∼1.6 · n for scale-free networks and Twitter subgraphs respectively. Each feasible coalition
has an uniformly distributed random value within [−10, 10], while, for IDPG, unfeasible
coalitions have a value of −∞. We vary n within [20, 30],7 generating 20 random instances
for each of the above network topologies and solving each of them with the three considered
algorithms. For each n, we report the average and the standard error of the mean of such
20 repetitions. All our experiments are run on a machine with a 3.40GHz CPU, 16GB of
memory and a GeForce GTX 680 GPU. The building phase of COP-GCCF is sequential
and has been implemented in C++, while CUBE has been implemented in CUDA. See
(Bistaffa et al., 2016) for a detailed analysis of the parallel speed-up of CUBE. For DyCE
and IDPG, we used the implementations provided by the respective authors.

4.2 Runtime

In order to fully understand our results, it is important to notice that the complexity of any
GCCF problem is significantly influenced by the density of the graph G, as a larger number
of connections results in a larger number of feasible coalitions, and, therefore, a larger
solution space. For scale-free networks, density is directly determined by the parameter m,
which represents the number of edges incident to each newly added node using the Barabási-
Albert generation model. For Twitter subgraphs, we verified that such topology results in a
density equivalent to a scale-free network with 1 ≤ m ≤ 2. Figures 13–15 show the runtime
needed to solve8 the GCCF problems considering the above discussed network topologies.
Our approach outperforms DyCE and IDPG on scale-free networks with m = 1 and Twitter
subgraphs, computing solutions up to 4 orders of magnitude faster than counterparts in the
former scenario, and 1 order of magnitude faster than IDPG in the latter one. For scale-free
networks with m = 2, our approach is one order of magnitude slower than IDPG, but it
computes solutions 2 times faster than DyCE for 30 agents. In general, our results show
that COP-GCCF outperforms DyCE in all the considered network topologies, and it is one
order of magnitude faster than IDPG when considering a realistic dataset, i.e., Twitter.

4.3 Memory

Figures 16–18 show the memory requirements of the considered approaches. For COP-
GCCF, we measure the size of the largest table generated during the entire execution of the
algorithm, while the memory requirements of DyCE and IDPG are both Θ(2n), regardless
of the network topology. Specifically, DyCE and IDPG require 4 · 2n bytes, since coalitional
values are stored as float values.

7. DyCE and IDPG cannot solve instances larger than 30 agents due to their memory requirements.
8. Runtime values include the building phase of COP-GCCF, which is negligible wrt the solution time.
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Figure 13: Runtime for scale-free networks with m = 1.
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Figure 14: Runtime for Twitter subgraphs.
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Figure 15: Runtime for scale-free networks with m = 2.
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Figure 16: Memory for scale-free networks with m = 1.

20 21 22 23 24 25 26 27 28 29 30
10−1

100

101

102

103

104

Number of agents

M
em

or
y

(M
B

)

Figure 17: Memory for Twitter subgraphs.
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Figure 18: Memory for scale-free networks with m = 2.
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Our results follow the behaviour discussed in the previous section, i.e., the memory re-
quirements of COP-GCCF are lower with respect to DyCE and IDPG for scale-free networks
with m = 1 and Twitter subgraphs. Specifically, the memory consumption of our approach
is 2 orders of magnitude lower in the former case, and 1 order of magnitude lower in the
latter one. For scale-free networks with m = 2, COP-GCCF requires twice as much memory
with respect to DyCE and IDPG, due to the higher density of G that results in a larger
number of variables.

5. Conclusions

We propose COP-GCCF, a novel approach that models the GCCF problem as a COP,
and we solve such COP with a GPU algorithm based on BE. Our results show that our
approach outperforms SoA algorithms on a realistic dataset, both in terms of runtime and
memory. Moreover, we establish a clear link between GCCF and COPs, which, to the best
of our knowledge, has never been proposed before in the literature. Future work will aim
at applying our model to realistic scenarios, such as Collective Energy Purchasing (Bistaffa
et al., 2017a) and Social Ridesharing (Bistaffa et al., 2017b).
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