Journal of Artificial Intelligence Research 62 (2018) 233-268 Submitted 12/2017; published 6/2018

Solving Large Problems with Heuristic Search:
General-Purpose Parallel External-Memory Search

Matthew Hatem MHATEM AT CS.UNH.EDU
Ethan Burns EABURNS AT CS.UNH.EDU
Wheeler Ruml RUML AT CS.UNH.EDU

Department of Computer Science
University of New Hampshire
Durham, NH 03824 USA

Abstract

Classic best-first heuristic search algorithms, like A*, record every unique state they
encounter in RAM, making them infeasible for solving large problems. In this paper, we
demonstrate how best-first search can be scaled to solve much larger problems by exploiting
disk storage and parallel processing and, in some cases, slightly relaxing the strict best-
first node expansion order. Some previous disk-based search algorithms abandon best-first
search order in an attempt to increase efficiency. We present two case studies showing that
A*, when augmented with Delayed Duplicate Detection, can actually be more efficient than
these non-best-first search orders. First, we present a straightforward external variant of
A*) called PEDAL, that slightly relaxes best-first order in order to be I/O efficient in both
theory and practice, even on problems featuring real-valued node costs. Because it is easy to
parallelize, PEDAL can be faster than in-memory IDA* even on domains with few duplicate
states, such as the sliding-tile puzzle. Second, we present a variant of PEDAL, called
PE2A*, that uses partial expansion to handle problems that have large branching factors.
When tested on the problem of Multiple Sequence Alignment, PE2A* is the first algorithm
capable of solving the entire Reference Set 1 of the standard BAIiBASE benchmark using a
biologically accurate cost function. This work shows that classic best-first algorithms like
A* can be applied to large real-world problems. We also provide a detailed implementation
guide with source code both for generic parallel disk-based best-first search and for Multiple
Sequence Alignment with a biologically accurate cost function. Given its effectiveness as a
general-purpose problem-solving method, we hope that this makes parallel and disk-based
search accessible to a wider audience.

1. Introduction

Best-first graph search algorithms such as A* (Hart, Nilsson, & Raphael, 1968) are widely
used for solving problems in artificial intelligence. Graph search algorithms typically main-
tain an open list, containing nodes that have been generated but not yet expanded, and
a closed list, containing all expanded nodes,' in order to prevent duplicated search effort
when the same state is generated via multiple paths. As the size of problems increases, the
memory required to maintain the open and closed lists makes algorithms like A* imprac-
tical. For example, an application of A* to random instances of the 15-puzzle using the

1. This data structure’s name is indeed unfortunate, as it often holds more than just “closed” nodes in
order to catch duplicates on the frontier and is rarely implemented as a list!

(©2018 AI Access Foundation. All rights reserved.

HATEM, BURNS, & RUML

Manhattan distance heuristic will exhaust 8 GB of RAM in approximately two minutes on
a modern computer (Burns, Hatem, Leighton, & Ruml, 2012).

The A* algorithm, as it is described in most literature, cannot scale beyond what are
considered easy problems today. This motivates linear-space variants of A* that are able
to solve problems that A* cannot solve while using only a fraction of the memory. It-
erative Deepening A* (IDA*, Korf, 1985) and Recursive Best-first Search (RBFS, Korf,
1993) achieve linear-space complexity by eliminating the open and closed lists. As a result,
they are limited to a narrow class of problems: those that do not form highly connected
spaces. Without a closed list, these algorithms are not able to detect duplicate paths to
the same state and are doomed to repeatedly explore the same states multiple times before
finding a solution. For example, a depth-first search to depth three on a grid with four-way
movement generates 52 states while a breadth-first search that recognizes duplicates gen-
erates only 26. Furthermore, in the absence of an open list these methods use a depth-first
search. For IDA*, this means a best-first search order is only possible if the heuristic is
admissible. RBFS simulates a best-first search order even with an inadmissible heuristic
but, like IDA*, it suffers from unbounded node regeneration overhead for problems that do
not exhibit a narrow range of edge costs (however see Hatem, Kiesel, & Ruml, 2015; Burns
& Ruml, 2013; Russell, 1992). IDA* and RBFS work well when there are few duplicates
and a narrow range of edge costs. However, real-world problems such as Multiple Sequence
Alignment form highly connected search spaces and require a wide range of edge costs to
model biologically plausible results.

In order to apply heuristic search to large problems that form highly connected spaces,
we need scalable techniques for processing duplicates. In this paper we define scalable
techniques as those that are capable of exploiting external memory and multiple CPUs
to solve larger problems efficiently. External memory search algorithms take advantage
of cheap secondary storage, such as magnetic disks, to solve much larger problems than
algorithms that only use main memory. A naive implementation of disk-based A* would
exhibit poor performance because it relies on random access in order to process duplicates.
The closed list, normally stored as a hash-table in RAM, provides quick random access to
states that have already been explored by the search. While sequential access to disk can
take upwards of two orders of magnitude longer than accessing RAM, random access to disk
can take several orders of magnitude more time than sequential access. Storing the closed
list as a hash table on disk is impractical. To implement an efficient disk-based best-first
search, great care must be taken to access data sequentially to minimize seeks and exploit
caching. The same techniques used by external search can be used to distribute search
effort across multiple CPUs.

This paper presents simple modifications to classic A* search and demonstrates that
they result in a general scalable algorithm: one that can exploit external storage and addi-
tional CPUs to solve larger problems efficiently. In section 2, we discuss the technique of
delayed duplicate detection in detail and present empirical results for an efficient external
memory variant of A* (A*-HBDDD). As far as we are aware, we are the first to present
results for HBDDD using A* search, other than the anecdotal results mentioned briefly by
Korf (2004). These results provide evidence that A*-HBDDD performs well on unit-cost
domains and that efficient parallel external memory search can surpass serial in-memory
search. Although many regard disk-based search as slow and unwieldy, we hope this result

234

SOLVING LARGE PROBLEMS WITH HEURISTIC SEARCH

encourages practitioners to take another look at these techniques. In section 3, we show
that previous approaches are unable to solve problems that exhibit a wide range of edge
costs. To this end, we introduce Parallel External Dynamic A* Layering (PEDAL Hatem,
Burns, & Ruml, 2011), an extension of A*-HBDDD that is able to solve problems with arbi-
trary costs. In section 4, we introduce the problem of Multiple Sequence Alignment (MSA).
Previous approaches do not scale to the hardest instances of a popular MSA benchmark.
In this section, we introduce a second extension to A*~-HBDDD that uses the technique of
partial expansions to solve the entire benchmark set.

This work demonstrates that parallel external-memory search does not need to com-
pletely abandon the best-first search principle. Instead only a small relaxation is needed to
significantly improve its efficiency. We hope that it demystifies scalable search and encour-
ages wider use of these techniques, which match so well with modern multi-core commodity
hardware.

2. External Memory Search

Delayed Duplicate Detection (DDD, Korf, 2003) is a simple way to make use of external
storage that places newly generated nodes in external memory and then processes them
at a later time. The original description of DDD, also referred to as sorting-based DDD
(SBDDD), divides the search process into two phases, an expand phase and a merge phase.
The expand phase writes newly generated nodes directly to a file on disk. The merge
phase performs a disk-based sort on the file so that duplicate nodes are brought together.
Duplicate merging is accomplished by performing a linear scan of the sorted file, writing
only unique nodes to a new file. This newly merged file becomes the search frontier for
the next expand phase. The search continues, interleaving expand and merge phases, until
a goal node is expanded. Files can in theory be made arbitrarily small and only one file
needs to be kept in memory at a time. Unfortunately, the time complexity of this technique
is O(n log n) where n is the total number of nodes encountered during search. For large
problems, this technique incurs more overhead than is desirable.

Structured Duplicate Detection (SDD, Zhou & Hansen, 2004) is an alternative to DDD
that exploits connectivity in the state space to avoid writing duplicates to disk. SDD
uses a projection function to localize memory references and performs duplicate merging
immediately in main memory. Unlike DDD, SDD does not store duplicate states to disk
and requires less external storage. However, this efficiency comes at the cost of increased
time complexity, as SDD can read and write the same states to disk multiple times during
duplicate processing (Zhou & Hansen, 2009). The benefits of SDD are limited to the amount
of main memory available on a single machine and it is not obvious how to deploy SDD in
a distributed setting. In this paper we focus on DDD because it is simple to implement and
has been shown to easily scale beyond a single machine.

External A* (Edelkamp, Jabbar, & Schrdl, 2004) combines A* with a variant of SBDDD
whereby nodes with the same g and h values are grouped together in a bucket which maps to
a file on external storage. The search proceeds by iteratively expanding layers of buckets for
which the g and h values sum to the minimum f value among the search frontier. Delayed
duplicate detection is performed by appending nodes to their respective buckets and later
sorting and scanning each bucket to eliminate duplicate nodes. In External A*, the g and h

235

HATEM, BURNS, & RUML

buckets must be expanded in lowest-g-value-first order which is equivalent to the A* search
order with worst-case tie breaking and can therefore result in many more node expansions
than a regular A* search. Moreover, because of the way buckets are organized according to
two values, it is not obvious how to dynamically relax the best-first search order.

To avoid the overhead of disk-based sorting, Korf (2004) presents an efficient form of
DDD called Hash-Based Delayed Duplicate Detection (HBDDD). HBDDD uses two hash
functions, one to assign nodes to buckets (which map to files on disk) and a second hash
function to identify duplicate states within a bucket. Because duplicate nodes will hash to
the same value, they will always be assigned to the same file. When removing duplicate
nodes, only those nodes in the same file need to be in main memory. This technique
increases the minimum memory requirements over SBDDD, requiring that the size of the
largest bucket fit in main memory. However, this is easily achieved by using a hash function
with an appropriate range. HBDDD has been shown to perform better than SBDDD when
a search is limited by time rather than available storage (Korf, 2016).

Korf (2008a) described how HBDDD can be combined with A* search (A*-HBDDD). A*-
HBDDD proceeds in two phases: an expansion phase and a merge phase. In the expansion
phase, all nodes that have an f that is equal to the minimum solution cost estimate f.;, of
all open nodes are expanded. Unlike External A* nodes are not grouped according to their
g and h values so each bucket containing qualifying nodes must be scanned. The expanded
nodes and the newly generated nodes are stored in their respective files. We define recursive
expansion to be an expansion that is performed immediately to a generated node, without
performing any duplicate checking. If a generated node has an f < f...., then it is recursively
expanded. Once all nodes within f,;, are expanded, the merge phase begins: each file is
read into a hash-table in main memory and duplicates are removed in linear time. During
the expand phase, HBDDD requires only enough memory to read and expand a single node
from the open file; successors can be stored to disk immediately. During the merge phase,
it is possible to process a single file at a time to reduce main memory requirements.

HBDDD may also be used as a framework to parallelize search (Korf, 2008a). Because
duplicate states will be located in the same file, the merging of delayed duplicates can be
done in parallel, with each file assigned to a different thread. Expansion may also be done
in parallel. As nodes are generated, they are stored in the file specified by the hash function.
It is possible that two threads might generate nodes that need to be placed in the same
file. Therefore, a lock (often provided by the OS) must be placed around each file so that
a thread can obtain exclusive access to the file while writing. A carefully constructed hash
function, one that bounds the number of buckets than need to be written to when expanding
a node, can help minimize lock contention. See literature on SDD, for example, the work
by Burns, Lemons, Ruml, and Zhou (2010) for discussion on abstraction based hashing and
balance between locality and parallelism. For our experiments we verified that a lock was
provided by examining the source code for the I/O modules. For example, the source code
for the Glibc standard library 2.12.90 does contain such a lock.

Because the main contributions of this paper build on the framework of A*-HBDDD.
We will discuss A*~-HBDDD in detail and present empirical results.

236

SOLVING LARGE PROBLEMS WITH HEURISTIC SEARCH

SEARCH (initial)

. bound < f(initial); bucket < hash(initial)
2. write(OpenFile(bucket), initial)

3. while Jbucket € Buckets : min_f (bucket) < bound

4. for each bucket € Buckets : min_f (bucket) < bound
5. ThreadExpand(bucket)

6. if incumbent break
7
8
9

[

for each bucket € Buckets : NeedsMerge(bucket)
ThreadMerge(bucket)
bound <— min_f (Buckets)

THREADEXPAND (bucket)

10. for each state € Read(OpenFile(bucket))
11. if f(state) < bound

12. RecurEzpand(state)

13. else append(NextFile(bucket), state)

RECUREXPAND(n)

14. if IsGoal(n) incumbent < n; return
15. for each succ € expand(n)

16. if f(succ) < bound

17. RecurExpand(succ)
18. else
19. append(NextF'ile(hash(succ)), succ)

20. append(ClosedFile(hash(n)), n)

THREADMERGE (bucket)

21. Closed < read(ClosedFile(bucket)); Open < ()

22. for each n € NextFile(bucket)

23. if n ¢ Closed U Open or g(n) < g(Closed U Open|n])
24. Open < (Open — Open|n]) U {n}

25. write(OpenFile(bucket), Open)

26. write(ClosedFile(bucket), Closed)

Figure 1: Pseudocode for A*~-HBDDD.

237

HATEM, BURNS, & RUML

2.1 A*-HBDDD in Detail

To understand the algorithm in more detail, we present pseudocode of A*~HBDDD in
Figure 1. Search nodes are mapped to buckets using a hash function. Each bucket is backed
by a set of three files 2 on disk: 1) a file of frontier nodes that have yet to be expanded, 2) a
file of newly generated nodes (and possibly duplicates) that have yet to be checked against
the closed list and 3) a file of closed nodes that have already been expanded.

A*-HBDDD begins by placing the initial node in its respective bucket based on the
supplied hash function (lines 1-2). The cost bound for the first iteration is set to the f
value of the initial state (line 1). All buckets that contain a state with f less than or equal
to the minimum bound are divided among a pool of threads to be expanded (lines 4-20).
Alternatively, references to these buckets can be stored in a work queue, guarded by a lock.
Free threads would acquire exclusive access to this queue for jobs.

Recall that each bucket is backed by three files: OpenFile, NextFile and ClosedFile.
The OpenFile contains all open nodes for a bucket. The set of OpenFliles among all buckets
collectively represent the open list for the search. When processing an expansion job for a
given bucket, a thread proceeds by expanding all of the frontier nodes with f values that
are within the current bound from the OpenFile of the bucket (lines 10-13). Nodes that
are chosen for expansion are appended to the ClosedFile for the current bucket (line 20).
The set of ClosedFiles among all buckets collectively represent the closed list for the search.
Nodes that were not chosen for expansion and successor nodes that exceed the bound are
appended to the NeztFile for the current bucket (lines 13 & 19). The set of NeztFiles
collectively represent the search frontier and require duplicate detection in the following
merge phase. Finally, if a successor is generated with an f value that is within the current
bound then it is expanded immediately as a recursive expansion (lines 12 & 17). To improve
efficiency, individual states are not written to disk immediately upon generation. Instead
each bucket has an internal buffer to hold states. When the buffer becomes full, the states
are written to disk.

If an expansion thread generates a goal state (line 15) within the bound (lines 16 and
11), a reference to the incumbent solution is updated (line 14) and (assuming the heuristic is
admissible) the search terminates (line 6). If the heuristic is admissible, then the incumbent
is admissible because of the strict best-first search order on f. Solution recovery is performed
by walking backward from the goal state using an inversion operator to generate each parent
state along the path to the initial state. This requires storing an inversion operator for each
node. Each parent state generated during this solution recovery process needs to be mapped
and loaded from its respective bucket. If a solution has not been found, then all buckets
that require merging are divided among a pool of threads to be merged in the next phase
(lines 7-8).

In order to process a merge job, each thread begins by reading the ClosedFile for its
bucket into a hash-table (line 21) called Closed. A*-HBDDD requires enough internal
memory to store all closed nodes and unique nodes on the frontier in all buckets currently
being merged by active threads. The size of a bucket can be easily tuned by varying the
granularity of the hash function. Next, all frontier nodes in the NextFile are streamed
in and checked for duplicates against the closed list (lines 22-26). The nodes that are not

2. With the exception of the init file our files roughly correspond to those described by Korf (2008b)

238

SOLVING LARGE PROBLEMS WITH HEURISTIC SEARCH

duplicates or that have been reached via a better path and therefore have a lower g value are
written back out to OpenFile so that they remain on the frontier for latter phases of search
(lines 23-25). The hash-table is updated to contain these nodes as well. All other duplicate
nodes are ignored. Finally, the open and closed nodes are flushed to disk (lines 25 and 26).

To save external storage, Korf (2008a) suggests that instead of proceeding in two phases,
merge jobs may be interleaved with expansion jobs. With this optimization, a bucket may
be merged if all of the buckets that contain its predecessor nodes have been expanded.
An undocumented ramification of this optimization for HBDDD, however, is that it does
not permit recursive expansions. Because of recursive expansions, one cannot determine
the predecessor buckets and therefore all buckets must be expanded before merges can
begin. Our variant of A*~HBDDD implements recursive expansions and therefore it does
not interleave expansions and merges. One technique for detecting when predecessor nodes
have been expanded is Structured Duplicate Detection (SDD, Zhou & Hansen, 2004). SDD
is an alternative to DDD that exploits connectivity in the state space to avoid writing
duplicates to disk.

2.2 Empirical Results

We evaluated the performance of A*-HBDDD on the sliding-tile puzzle. We compared A*-
HBDDD with highly optimized implementations of internal A*, IDA* and Asynchronous
Parallel IDA* (AIDA*, Reinefeld & Schnecke, 1994). AIDA* is a parallel version of IDA*
that works by performing a breadth-first search to some specified depth and the resulting
frontier is then divided evenly among all available threads. Threads perform an IDA*
search in parallel for each node in its queue. The upper bounds for all IDA* searches are
synchronized across all threads so that a strict best-first search order is achieved given an
admissible and consistent heuristic. AIDA* can be seen as a parallel approximation to
Simplified Memory-Bounded A* (SMA* Russell, 1992) with large f layers.

To verify that we had efficient implementations of these algorithms, we compared our
implementations (in Java) to highly optimized versions of A* and IDA* written in C++
(Burns et al., 2012). The Java implementations use many of the same optimizations. In
addition we use the High Performance Primitive Collection (HPPC) in place of the Java
Collections Framework (JCF) for many of our data structures. This improves both the time
and memory performance of our implementations (Hatem, Burns, & Ruml, 2013).

We also compared A*-HBDDD to an alternative external algorithm, breadth-first heuris-
tic search (BFHS, Zhou & Hansen, 2006) with delayed duplicate detection (BFHS-DDD).
BFHS attempts to reduce the memory requirement of search, in part by removing the need
for a closed list. BFHS proceeds in a breadth-first ordering by expanding all nodes within
a given upper bound on f at one depth before proceeding to the next depth. To prevent
duplicated search effort Zhou and Hansen (2006) use a strategy first introduced by Korf
(1999), which guarantees that, in an undirected graph, checking for duplicates against the
previous depth layer and the frontier is sufficient to prevent the search from leaking back
into previously visited portions of the space. While BFHS is able to do away with the
closed list, for many problems it will still require a significant amount of memory to store
the exponentially growing search frontier. This motivates combining BFHS with HBDDD.

239

HATEM, BURNS, & RUML

Machine Threads Time Expanded Nodes/Sec
A* (Java) A 1 925 1,557,459,344 1,683,739
A* (C++) A 1 516 1,557,459,344 3,018,332
IDA* (Java) B 1 1,104 18,433,671,328 16,697,166
IDA* (C++) B 1 634 18,433,671,328 29,075,191
AIDA* (Java) B 24 222 14,994,333,240 67,542,041
BFHS-DDD (Java) B 24 3,355 10,978,208,032 3,272,193
A*HBDDD (Java) B 24 1,014 3,492,457,298 3,444,237
A*HBDDDy, (Java) B 24 433 1,489,553,397 3,440,077

Table 1: Performance summary on the 100 random 15-puzzle instances from (Korf, 1985).
Times reported in wall clock seconds for solving all instances.

Like IDA*, BFHS uses an upper bound on f values to prune nodes. If a bound is
not available in advance, iterative deepening can be used. However, since BFHS does not
store a closed list, the full path to each node from the root is not maintained and it must
use divide-and-conquer solution reconstruction (Korf, Zhang, Thayer, & Hohwald, 2005) to
rebuild the solution path. Our implementation of BFHS-DDD does not perform solution
reconstruction and therefore the results presented give a lower bound on its actual solving
times.

The 15-puzzle is a standard search benchmark. We used the 100 instances from Korf
(1985) and the Manhattan distance heuristic. For the algorithms using HBDDD, we selected
a hash function that maps states to buckets by ignoring all except the position of the blank,
one and two tiles. This hash function results in 3,360 buckets and the number of buckets that
need to be considered for writing newly generated nodes when expanding a node is bound
by the maximum number of actions applicable in any given state. A random hash function
would probably provide even better load balancing among files. We use the minimum f
value of any generated node greater than the current bound to update the cost bounds for
both A*~HBDDD and BFHS-DDD.

The first set of rows in Table 1 summarizes the performance of internal A*, IDA* and
AIDA*. The results for A* were generated on Machine-A, a dual quad-core (8 cores)
machine with Intel Xeon X5550 2.66 GHz processors and 48 GB RAM. A* needs roughly
30 GB of RAM to solve all 100 instances. All other results were generated on Machine-B, a
dual hexa-core machine (12 cores) with Xeon X5660 2.80 GHz processors, 12 GB of RAM
and 12 320 GB disks. In-memory A* is not able to solve all 100 instances on this machine
due to memory constraints. Our version of AIDA* used 24 threads and generated a frontier
of 24,000 nodes, using an A* search, to seed the parallel phase of the search. From these
results, we see that the Java implementation of A* is just a factor of 1.7 slower than the
most optimized C++ implementation known. These results provide confidence that our
comparisons reflect the true ability of the algorithms rather than misleading aspects of
implementation details.

240

SOLVING LARGE PROBLEMS WITH HEURISTIC SEARCH

The second set of rows in Table 1 shows a summary of the performance results for
A*-HBDDD compared to in-memory search. We used 24 threads and the states generated
by the external algorithms were distributed across all 12 disks. A*-HBDDD outperforms
BFHS-DDD because it expands fewer nodes. We discuss this in more detail in section 3.
The results show that the base Java implementation of A*-HBDDD is just 1.7x slower
than the C++ implementation of IDA* but slightly faster than the Java implementation.
Note that A*~HBDDD expanded almost 3.5 billion nodes while A* expanded fewer than
1.6 billion. We believe this is due to duplicate states generated during recursive expansion,
when the closed list is not consulted. We can improve the performance of A*-HBDDD
by exploiting available RAM with the simple technique of using transposition tables to
avoid expanding duplicate states during recursive expansions (A*-HBDDDy;). With this
improvement, A*-HBDDD is 1.4x faster than the highly optimized C+-+ IDA* solver and
2.5 faster than the optimized Java IDA* solver. A*~-HBDDDy; is within a factor of two of
a highly optimized implementation of parallel AIDA*, which cannot cope with state spaces
with many duplicate nodes. Moreover, it is possible for AIDA* to expand more nodes than
serial IDA* since it can expand parts of the tree that would not be reached by serial IDA* if
serial IDA* finds a solution early, or it can expand fewer nodes than serial IDA* if the first
solution that serial IDA* would find comes late in the search. AIDA* is able to outperform
A*-HBDDD and A*-HBDDDy; even when it expands 5 to 10 times as many nodes because
node expansion in the sliding-tiles domain is cheap. For many practical problems node
expansion is much more expensive, and A*-HBDDD and A*-HBDDD;; may outperform
AIDA*. While A*-HBDDDtt running on 12 cores (last line of table) has only 2x speed up
over serial A* running on 1 core (first line of table), note that it is an external algorithm
that trades slow access to disk for the ability to solve problems beyond the confines of
RAM. Given that disk is millions of times slower than RAM, it is exciting to see that
external-memory search can be faster than internal-memory search.

While these results show that A*~-HBDDD performs well compared to IDA* on problems
like the sliding-tile puzzle, the strictly best-first layered search does not work well for other
domains, preventing it from serving as a general-purpose search method for large problems.
In the next two sections we discuss two important limitations of A*-HBDDD that motivate
the main contributions of this paper.

3. External Memory Search With Non-Uniform Edge Costs

A*-HBDDD achieves sequential I/O behavior by dividing the search into f layers. Each
layer refers to nodes with the same lower bound on solution cost f. At each iteration
of search, nodes are read sequentially from external memory and expanded only if their
f value is within the current lower bound on solution cost. Many real-world problems
have real-valued costs, giving rise to a large number of f layers with few nodes in each,
substantially eroding performance. A*~-HBDDD reads all open nodes from files on disk and
expands only the nodes within the current f bound. If there is only a small number of
nodes in each f layer, the algorithm pays the cost of reading the entire frontier only to
expand a few nodes. Then in the merge phase, the entire closed list is read only to merge
the same few nodes. Additionally, when there are many distinct f values, the successors
of each node tend to exceed the current f bound, resulting in fewer I/O-efficient recursive

241

HATEM, BURNS, & RUML

expansions. Korf (2004) speculated that the problem of many distinct f values could be
remedied by somehow expanding more nodes than just those with the minimum f value.
In this section we present an algorithm, Parallel External Dynamic A* Layering (PEDAL)
that does exactly this. PEDAL improves on A*~HBDDD by relaxing the strictly best-
first ordering of the search in order to perform a constant number of expansions per 1/O
operation.

We begin by reviewing previous work in section 3.1. In section 3.2 we describe PEDAL
in more detail and prove that it is I/O efficient. In an empirical evaluation in section 3.3,
we compare PEDAL to IDA* IDA*., (Sarkar, Chakrabarti, Ghose, & Sarkar, 1991), A*-
HBDDD and BFHS-DDD using a variant of the sliding-tile puzzle with non-unit edge costs
and a more realistic dockyard planning domain. The results show that PEDAL gives the
best performance on the sliding-tile puzzle and is the only practical approach for the real-
valued problems among the algorithms tested in our experiments. PEDAL demonstrates
that relaxed best-first heuristic search can be effective for large problems with arbitrary
costs.

3.1 Previous Work

In this section, we present relevant previous work that PEDAL builds on, as well as alter-
native techniques. IDA* and BFHS were introduced in a previous section but we include
descriptions here with further details.

3.1.1 ITERATIVE DEEPENING A*

Iterative-deepening A* (IDA*, Korf, 1985) is an internal memory technique that requires
memory only linear in the maximum depth of the search. This reduced memory complexity
comes at the cost of repeated search effort. IDA* performs iterations of a bounded depth-
first search where a path is pruned if f(n) becomes greater than the bound for the current
iteration. After each unsuccessful iteration, the bound is increased to the minimum f value
among the nodes that were generated but not expanded in the previous iteration.

Each iteration of IDA* expands a super-set of the nodes in the previous iteration. If the
number of nodes expanded in each iteration grows geometrically, then the total number of
nodes expanded by IDA* is O(n), where n is the number of nodes that A* would expand
(Sarkar et al., 1991). In domains with real-valued edge costs, there can be many unique f
values and the standard minimum-out-of-bound bound layering of IDA* may lead to only
a few new nodes being expanded in each iteration. Because of this, the number of nodes
expanded by IDA* can be O(n?) (Sarkar et al., 1991) in the worst case when the number
of new nodes expanded in each iteration is constant. To alleviate this problem, Sarkar
et al. introduce IDA*.x. IDA*y tracks the distribution of f values of pruned nodes (the
nodes that were generated but not expanded during an iteration of search). This distribution
used to find a good threshold for the next iteration. This is achieved by selecting the bound
that will cause the desired number of pruned nodes to be expanded in the next iteration.
To guarantee efficiency, the desired number must follow a geometric progression (at least
doubling). If the successors of these pruned nodes are not expanded in the next iteration
then this scheme is often able to accurately double the number of nodes between iterations.
If the successors do fall within the bound on the next iteration then more nodes may be

242

SOLVING LARGE PROBLEMS WITH HEURISTIC SEARCH

expanded than desired. Since the threshold is increased liberally, nodes are not expanded
in a strict best-first order. Therefore, branch-and-bound must be used on the final iteration
of search to ensure optimality. In branch-and-bound, we continue the search after finding a
solution until all nodes whose lower bounds are less than the incumbent solution cost have
been expanded, ensuring that the solution is optimal. Any nodes whose lower bound is
equal or greater than the incumbents cost can be pruned, as they cannot lead to a better
solution. IDA*.y is effective for problems that exhibit a wide range of f values but may
still achieve poor performance for domains where the branching does not allow for doubling
the number of expanded nodes for each iteration.

IDA* and IDA*.y suffer from an additional source of node regeneration overhead on
search spaces that form highly connected graphs. Because they use depth-first search, they
cannot detect duplicate search states except those that form cycles in the current search
path. Even with cycle checking, the search will perform extremely poorly if there are many
paths to each node in the search space. This motivates the use of a closed list in classic
algorithms like A*.

3.1.2 BREADTH-FIRST HEURISTIC SEARCH

In this section we provide more details for BFHS, introduced in section 2.2. BFHS attempts
to reduce the memory requirement of search by removing the need for a closed list. BFHS
proceeds in a breadth-first ordering by expanding all nodes within a given upper bound on
f at one depth before proceeding to the next depth. If a bound is not available in advance,
iterative deepening can be used, however, as discussed earlier, iterative-deepening fails on
domains with many distinct f values. To provide a suitable comparison to PEDAL, we
propose a novel variant of BFHS that uses the same technique of IDA*.y for updating
the upper bound at each iteration of search. One side effect of the breadth-first search
order is that BFHS is not able to break ties among nodes with the same f value. A* with
optimal tie-breaking (expanding nodes with highest g first) expands nodes with higher g
values first (deeper nodes first in domains with uniform edge costs). BFHS needs to expand
all nodes n with f(n) < C* at all depth-layers prior to the depth layer that contains the
goal. The search order of BFHS is equivalent to the search order of A* with worst-case tie
breaking (expanding nodes with lower g first) and can expand up to twice as many unique
nodes as A* with optimal tie breaking. When combined with iterative deepening, BFHS
can expand up to four times as many nodes as A* (Zhou & Hansen, 2006). Furthermore,
when combined with the bound setting technique of IDA*.g, it can expand many nodes
with f values greater than the optimal solution cost which are not strictly necessary for
optimal search. BFHS is not able to benefit substantially from branch-and-bound in the
final iteration because goal states are generated in the deepest layers of the search and it
must expand all nodes within the final inflated upper bound whose depths are less than the
goal depth.

3.2 Parallel External Dynamic A* Layering

A*-HBDDD suffers from excessive I/O overhead when there are a small number of nodes in
each f layer. PEDAL solves this problem by relaxing the best-first search order, allowing it
to solve problems with arbitrary f cost distributions. PEDAL can be seen as a combination

243

HATEM, BURNS, & RUML

SEARCH (initial)

27. bound <« f(initial); bucket < hash(initial)

28. write(OpenFlile(bucket), initial)

29. while Jbucket € Buckets : min_f (bucket) < bound
30. for each bucket € Buckets : min_f (bucket) < bound
31. ThreadExpand(bucket)

32. if incumbent break

33. for each bucket € Buckets : NeedsMerge(bucket)
34. ThreadMerge(bucket)

35. bound <+ NextBound(f _dist)

THREADMERGE (bucket)

36. Closed + read(ClosedFile(bucket)); Open < ()

37. for each n € NextFile(bucket)

38. if n ¢ Closed U Open or g(n) < g(Closed U Open|n])
39. Open < (Open — Open|n]) U {n}

40. f-distribution_add(f _dist, f(n))

41. write(OpenFile(bucket), Open)

42. write(ClosedFile(bucket), Closed)

Figure 2: Pseudocode for PEDAL.

of A**HBDDD and an estimation technique inspired by IDA*.; to dynamically layer the
search space.

Like HBDDD-A*, PEDAL proceeds in two phases: an expansion phase and a merge
phase. However, during the merge phase, it tracks the distribution of the f values of the
frontier nodes that were determined not to be duplicates. As we explain in detail below,
this distribution is used to select the f bound for the next expansion phase that will give
a constant number of expansions per node I/O. The pseudo-code for PEDAL, given in
Figure 2, is adapted from the pseudo-code for A*-HBDDD given in Figure 1. The main
difference is at lines 35 and 40 where PEDAL records the f value of all nodes that are
added to the frontier and uses this distribution to select the next bound for the following
expansion phase. Another critical difference is that, since PEDAL relaxes the best-first
search order, it must perform branch-and-bound after an incumbent solution is found.

3.2.1 OVERHEAD

PEDAL maintains a layering such that the number of nodes expanded in each layer is at
least a constant fraction of the amount of I/O (the number of nodes read and written to
external memory) at each iteration. It keeps a histogram of f values for all nodes on the
open list and a count of the total number of nodes on the closed list. The cost bound for
each layer is selected so that a constant fraction of the sum of nodes on the open and closed
lists will be expanded. We found a value of 1/2 worked well in practice for the domains
tested. Unlike IDA*.r which only provides a heuristic for the desired doubling behavior,
the technique used by PEDAL is guaranteed to give only bounded I/O overhead. That is,

244

SOLVING LARGE PROBLEMS WITH HEURISTIC SEARCH

f distribution

Closed List = 300 ‘ Open List =500

Expanded Nodes = 400

Figure 3: PEDAL keeps a histogram of f values on the open list and uses it to update the
threshold to allow for a constant fraction of the number of nodes on open and
closed to be expanded in each iteration.

the number of nodes expanded is at least a constant fraction of the number of nodes read
from and written to disk. We assume a constant branching factor b and that the number
of frontier nodes remaining after duplicate detection is always large enough to expand the
desired number of nodes. We begin with a few useful lemmata. Let o be the number of
nodes on the open list, ¢ be the number of nodes on the closed list, e be the number of
nodes expanded in an iteration and r be the number of recursively expanded nodes in an
iteration.

Lemma 1 The number of 1/0 operations during the expand phase is at most 20+eb+rb+r.

Proof: During the expand phase we read o open nodes from disk. We write at most eb
nodes plus the remaining o — e nodes, that were not expanded, to disk. We also write at
most rb recursively generated nodes and e + r expanded nodes to disk. ([l

Lemma 2 The number of 1/O operations during the subsequent merge phase is at most
c+e+2(r+eb+rb).

Proof: During the merge phase we read at most ¢ 4+ e + r nodes from disk and eb + rb
newly generated nodes from disk. We write at most r recursively expanded nodes to the
closed list and eb 4 rb new nodes to the open list. O]

Lemma 3 The total number of 1/0 operations is at most 20+ ¢+ e(3b+ 1) 4+ r(3b + 3).

Proof: From Lemma 1, Lemma 2 and

total 1/0
= expanded 1/0O + merged 1/0O
= (20+eb+rb+7)+ (c+e+2(r+eb+rd))
= (20+eb+rb+71)+ (c+ e+ 2r+2eb+2rb))
=20+ c+ (3eb+e)+ (3rb+3r)
=20+c+e(3b+1)+r(3b+3)

+
+

245

HATEM, BURNS, & RUML

Threads Time Expanded Nodes/Sec
IDA*p, 1 14,009 80,219,537,668 5,726,285
AIDA* g 24 1,052 48,744,622,573 46,335,192
BFHS-DDD 24 3,147 7,532,248,808 2,393,469
PEDAL 24 1,066 6,585,305,718 6,177,585

Table 2: Performance summary for 15-puzzle with square root costs. Times reported in
seconds for solving all instances.

Theorem 1 If the number of nodes expanded e is chosen to be k(o + c¢) for some