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Abstract
Much of the literature on suboptimal, polynomial-time algorithms for multi-agent path finding

focuses on undirected graphs, where motion is permitted in both directions along a graph edge.
Despite this, traveling on directed graphs is relevant in navigation domains, such as path finding in
games, and asymmetric communication networks.

We consider multi-agent path finding on strongly biconnected directed graphs. We show that all
instances with at least two unoccupied positions have a solution, except for a particular, degenerate
subclass where the graph has a cyclic shape. We present diBOX, an algorithm for multi-agent
path finding on strongly biconnected directed graphs. diBOX runs in polynomial time, computes
suboptimal solutions and is complete for instances on strongly biconnected digraphs with at least
two unoccupied positions. We theoretically analyze properties of the algorithm and properties of
strongly biconnected directed graphs that are relevant to our approach. We perform a detailed
empirical analysis of diBOX, showing a good scalability. To our knowledge, our work is the first
study of multi-agent path finding focused on directed graphs.

1. Introduction

Multi-agent path finding (MAPF) is an important computational problem, with applications in areas
such as robotics, traffic optimization, vessel navigation and computer games. Not surprisingly, the
problem has received a considerable attention in computer science areas such as artificial intelli-
gence, robotics and graph theory. In a common problem formulation, coined as cooperative path
finding (Silver, 2005), the purpose is to have every agent navigate from its original location to its
target location, while avoiding collisions and deadlocks. The navigation environment is typically
represented as a gridmap (Silver, 2005) or as a more generic graph (Ryan, 2008).

One important category of scalable approaches to MAPF is represented by suboptimal rule-
based algorithms. These approaches work under the key assumption that the underlying graph is
undirected. For instance, rule-based algorithms Push and Swap (Luna & Bekris, 2011) and Push
and Rotate (de Wilde, ter Mors, & Witteveen, 2013) implement a core primitive, called swap, where
agents must move in both directions along some graph edges. Among other moves, the swap prim-
itive involves moving an agent to an adjacent node, to allow another agent to pass through, after
which the first agent comes back to its former location, traversing the graph edge in the opposite
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Figure 1: An example of unidirectional road network and its abstraction as a digraph.

direction. The MAPP algorithm (Wang & Botea, 2011) relies on reverting part of the recently per-
formed moves, after an agent reaches its target. Using edges in both directions is also employed in
algorithms such as TASS (Khorshid, Holte, & Sturtevant, 2011) and BIBOX (Surynek, 2009). In
the latter, agents in a cycle are rotated in order to relocate a selected agent, and eventually rotated
back after the agent gets out of the cycle.

In navigation domains, unidirectional edges can arise from the properties of the environment,
such as the existence of one-way entrances, exits, escalators, bridges and roads. Some agents could
be able to travel down the hill or float down the river, but not the other way around. Furthermore, the
literature shows approaches where unidirectional traffic is imposed on purpose on a game map, with
the goal of avoiding head-to-head collisions between mobile agents (Wang & Botea, 2008). Motion
in directed graphs is also important in asymmetric communication networks (Marina & Das, 2002;
Jetcheva & Johnson, 2006; Wu & Grumbach, 2010). Unidirectional networks also appear in traffic
domains such as road maps. See Figure 1 for an illustration.

We contribute the first tractability analysis of multi-agent path finding on directed graphs (di-
graphs). We focus on strongly biconnected digraphs, i.e., strongly connected digraphs where the
undirected graphs obtained by ignoring the edge orientations have no cut vertices.1 We demonstrate
that all instances with at least two unocuppied vertices (blanks) can be solved in polynomial time,
except for the particular case of graphs with a cyclic shape, where instances may or may not have
a solution. We introduce diBOX, a suboptimal algorithm, and formally discuss its completeness,
correctness, and complexity. We present formal properties of strongly biconnected digraphs that
are relevant to our approach. We provide a detailed empirical analysis of diBOX, showing that it
scales convincingly beyond the capabilities of an optimal solver. On small instances where an opti-
mal solver can succeed, the quality of solutions computed with diBOX ranges from nearly optimal
to a deviation from optimal values by a factor of at most 4.5. To our knowledge, this is the first
theoretical study of the multi-agent path finding problem on any kind of directed graphs.

Part of our theoretical results have previously been reported in a short conference paper (Botea
& Surynek, 2015). Compared to that, we extend the contents substantially. We have implemented
our algorithm and performed an empirical evaluation. We present techniques for improving the
performance of diBOX in terms of running time and solution quality. The presentation of the theo-
retical results is extended with additional proofs, examples and details. The steps of the algorithms
are also presented in more detail, with additional pseudocode and discussions. Part of the additional
material has been included in a Master thesis (Bonusi, 2015). We fix an error present in the original

1. A cut vertex is a vertex whose removal from the graph would separate the graph into two or more disjoint subgraphs.
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paper (Botea & Surynek, 2015). As presented in that paper, the algorithm has a worst-case com-
plexity of O(n4), instead of the O(n3) claimed (where n is the number of graph nodes). A fairly
minor modification of the algorithm ensures that the complexity is indeed O(n3).

Section 2 overviews related work. This is followed by a background section. We point out a par-
titioning of the class of strongly biconnected digraphs into two disjoint categories in Section 4. This
separation is leveraged in our approach to solving multi-agent path finding on strongly bi-connected
digraphs, presented in Sections 5 and 6. Section 7 focuses on a path finding problem on strongly
biconnected digraphs where one agent has to reach a given target from a given starting position.
Other agents may exist on the map, but their final positions are irrelevant. This is both an important
building block to our multi-agent path finding approach, and an interesting problem on its own (Wu
& Grumbach, 2010). Our algorithm for multi-agent path finding on strongly biconnected digraphs,
diBOX, is presented in Section 8. It is followed by a graph decomposition strategy that allows im-
proving the performance of diBOX. The empirical evaluation comes next, followed by concluding
remarks and future work ideas. For a better presentation flow, some proofs and algorithmic details
are available in an appendix with three sections.

2. Related Work

Previous formal studies of multi-agent path finding, sometimes also called coordinated pebble mo-
tion in graphs, appear to be focused on undirected graphs (Wilson, 1974; Kornhauser, Miller, &
Spirakis, 1984). For instance, Wilson (1974) explicitly requires that the adjacency relation between
agent configurations (called “labellings”) is symmetric, which is equivalent to stating that the graph
is undirected. All graphs considered in these two works appear to have undirected edges, with no
discussion about if or how parts of the study, such as the considered permutation groups, would be
applicable to directed graphs. We see our work as complementary to previous work on undirected
graphs, being a step towards achieving a similar level of understanding for directed graphs.

Algorithms like BIBOX (Surynek, 2009), Push and Swap (Luna & Bekris, 2011), TASS (Khor-
shid et al., 2011), and Push and Rotate (de Wilde, ter Mors, & Witteveen, 2014) build on above-
mentioned formal studies and typically use small sets of movement rules to achieve the final con-
figuration of agents. The key assumption in these rules is that the underlying graph is undirected.

Among existing rule-based, suboptimal, polynomial-time algorithms for undirected graphs, we
view Surynek’s (2009, 2014b) algorithm BIBOX as the most related to our work. The main differ-
ence is that BIBOX works on undirected graphs, whereas our diBOX algorithm works on directed
graphs. As mentioned in the introduction, BIBOX explicitly relies on the fact that edges allow
travel in both directions. The concept of an ear decomposition exists for both directed and undi-
rected graphs. The similarity between BIBOX and diBOX is in the fact that both algorithms rely
on an ear decomposition of the input graph. They both adopt a high-level solving strategy where
ears are solved one by one, leaving the basic cycle at the end. However, the technical details related
to solving individual ears are quite different in the cases of undirected graphs and directed graphs
respectively.

Although rule-based algorithms are scalable and provide completeness guarantees, their solu-
tions can suffer in terms of quality. Therefore multiple search-based algorithms have been devel-
oped, including optimal and bounded suboptimal techniques.

Search-based techniques can be applied to both directed and undirected graphs, even though
they are typically evaluated on undirected graphs, such as grid maps. Examples include suboptimal,
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incomplete methods like WHCA* (Silver, 2006), that implement cooperative variants of A* (Hart,
Nilsson, & Raphael, 1968) in which state expansion can easily be adapted to take the direction of
edges into account.

Optimal search-based algorithms include A* with OD+ID (operator decomposition + indepen-
dence detection) (Standley, 2010) and M* (Wagner & Choset, 2015). In some optimal algorithms,
such as CBS (Sharon, Stern, Felner, & Sturtevant, 2015) and ICBS (Boyarski, Felner, Stern, Sharon,
Tolpin, Betzalel, & Shimony, 2015), the search space is a tree of conflicts. ICTS (Sharon, Stern,
Goldenberg, & Felner, 2013) transforms the search space into a sequence of multi-value decision di-
agrams (MDDs) that correspond to gradually increasing costs. Such techniques can also be applied
to directed MAPF. Compared to the undirected case, directed edges only change the enumeration of
successor states in these algorithms. Other search-based methods can provide bounded-suboptimal
solutions (Barer, Sharon, Stern, & Felner, 2014; Cohen & Koenig, 2016).

A very generic category of methods with respect to the orientation of edges in the underlying
graph is represented by compilation-based methods. They include both optimal and suboptimal
techniques with respect to various objectives. Existing compilation-based methods reduce MAPF
to Propositional Satisfiability (SAT), as performed by Surynek (2012, 2014a, 2016), or Answer
Set Programming (ASP) (Erdem, Kisa, Öztok, & Schüller, 2013). Off-the-shelf SAT and ASP en-
gines respectively can be used as a solver. Directed edges can be introduced into compilation-based
methods with minor changes in existing encodings, while the top-level search strategy remains
unchanged. An advantage of compilation-based methods is that new heuristics and learning tech-
niques developed for SAT or ASP can be leveraged when solving MAPF instances. On the other
hand, MAPF domain knowledge is not necessarily reflected in compiled instances to the same extent
as in the case of dedicated search based algorithms.

Optimal methods are less scalable, which is not surprising, given that solving MAPF optimally
has been shown to be NP-hard (Ratner & Warmuth, 1986; Surynek, 2010). A major focus in
contributions to optimal methods is an improved speed performance in practice.

A specific variant of motion planning assumes the existence of one mobile robot and several
mobile obstacles (Papadimitriou, Raghavan, Sudan, & Tamaki, 1994). This could be seen as a
multi-agent path finding problem where only one agent has a specific target to achieve. Wu and
Grumbach (2010) studied motion planning with one agent and several mobile obstacles on directed
graphs, showing cases where the feasibility can be decided in linear time. Solving such instances is
a building block in our algorithm for multi-agent path finding, as we show later in the paper.

3. Background

In this section we overview a few concepts and results from the literature that form a starting point
to our work.

Definition 1. A directed graph or digraph is a structure D = (V,E), where V is a set of nodes
(vertices) and E is a set of directed edges. A directed edge is an ordered pair (u, v) with u, v ∈ V .

Definition 2. Given a digraph D = (V,E) and a set of agents A, a configuration of agents over D
is a placement of agents in vertices of the graph, with at most one agent in each vertex. Formally,
the configuration is a uniquely invertible assignment of agents to vertices α : A −→ V .

276



SOLVING MULTI-AGENT PATH FINDING ON STRONGLY BICONNECTED DIGRAPHS

If we need to know what agent is placed in a given vertex we may use inverse configuration
α−1 : V −→ A ∪ {blank} which is well defined due to the unique invertibility of α (the blank is
used for unoccupied vertices).

A configuration can be transformed into another one using moves. A move involves changing
the position of one agent to a neighboring vertex, provided that the target vertex is blank. Moves
are possible only along the positive orientation of edges. The time is discretized, and moves are
performed at discrete time steps. For simplicity, in this work we assume that agents move one at a
time.

Definition 3. An instance of multi-agent path finding over directed graphs consists of a digraph
D = (V,E), a set of agents A, an initial configuration α0 : A −→ V , and a goal configuration
α+ : A −→ V . The task is to find a sequence of moves over D that transform α0 to α+.

An undirected graph G is biconnected if G is connected and there are no cut vertices in G. In
other words, removing any single vertex would keep the graph connected. A digraph D is strongly
connected if, for any two distinct vertices v and w, there exist both a path from v to w and a path
from w to v in D. Given a digraph D, G(D) is the underlying graph of D, i.e., the undirected graph
obtained by ignoring the orientation of the edges (Wu & Grumbach, 2010).

Definition 4 (Wu and Grumbach (2010)). Let D be a digraph. D is said to be strongly biconnected
if D is strongly connected and G(D) is biconnected.

To keep our notations simple, when the context is very clear, we sometimes use a graph’s name
to also refer to its set of nodes or to its set of edges. For instance, if L is a graph, we can say “a node
n ∈ L or an edge e ∈ L”. Likewise, a union of two or more graphs is a graph comprising the union
of the nodes together with the union of the edges.

The following definition is slightly adapted from Wu and Grumbach (2010).

Definition 5. An ear decomposition2 of a digraph D = (V,E) is an ordered sequence of sub-
digraphs of D, say [L0, L1, . . . , Lr], such that:

• L0 is a cycle; and

• ∀i ∈ {1, . . . , r}, Li is a path (chain) whose two endpoints belong to the subgraph

Di−1 =

i−1⋃
j=0

Lj ,

but no other vertices or edges of Li belong to Di−1.

Figure 2 shows an example. Each sub-digraph Li is called an ear.3 We say that L0 is the basic
cycle and all other ears are derived ears. In the example, L0 contains nodes 4, 5, 7, 9, 6 and the
corresponding edges (4, 5), (5, 7), (7, 9), (9, 6), (6, 4).

Given an ear L, |L| denotes its number of vertices. The interior of a derived ear L, denoted
as int(L), refers to the contained vertices different from its endpoints. Its number of vertices is

2. Wu and Grumbach (2010) also use the term closed ear decomposition to refer to an ear decomposition.
3. Besides ears, the literature also shows additional names, such as handles.
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Figure 2: An example of a strongly biconnected digraph and its ear decomposition. Dashed edges
are trivial derived ears (not explicitly labeled to avoid clutter).

denoted as |int(L)|. The endpoints are called the entrance and the exit, respectively. For instance,
in Figure 2, int(L1) = {10, 12}. Vertex 7 is the entrance of L1, and vertex 9 is its exit. Likewise,
int(L2) = {13, 11, 8}. Ear L2 has vertex 12 as an entrance, and vertex 6 as an exit. Finally, the
entrance of L3 is vertex 6, and the exit is vertex 8. Its interior contains vertices 3, 2 and 1.

An ear is trivial if it has exactly one edge (Bang-Jensen & Gutin, 2008). Edges (4, 7) and (9, 13)
are trivial ears. An ear is cyclic if its endpoints are represented by a single vertex. Our example has
no derived cyclic ears.

Given an ear decomposition O = [L0, L1, . . . , Lr], we call the i-prefix decomposition the de-
composition Oi restricted to the first i ears: Oi = [L0, L1, . . . , Li]. Notice that this is a proper
ear decomposition on its own, corresponding to a subgraph Di of D, whose nodes and edges are
precisely the nodes and edges contained in the first i ears. We call Di, which we first introduced in
Definition 5, the i-prefix subgraph. As the i-prefix decomposition uniquely determines the i-prefix
subgraph, we may use these two names interchangeably when the context is sufficiently clear.

In the example, O1 contains the nodes 4, 5, 7, 9, 6, 10, 12 and all the edges involved in L0 and
L1: (4, 5), (5, 7), (7, 9), (9, 6), (6, 4), (7, 10), (10, 12), and (12, 9). Notice that the trivial ear (4, 7)
is not part of O1.

A digraph is said to be trivial if and only if it has only one vertex. In this paper, we work with
non-trivial digraphs.

Definition 6. An open ear decomposition of a digraph D is an ear decomposition with no cyclic
derived ears.

The decomposition shown in Figure 2 and discussed earlier in this section is open, as each
derived ear has its entrance node distinct from its exit node (i.e., no derived ear is cyclic).

We list a powerful result that points out a certain structure which is present in strongly bicon-
nected digraphs. In our work, we leverage this structure to solve multi-agent path finding problems
on this class of graphs.
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Theorem 1 (Wu and Grumbach (2010)). Let D be a non-trivial digraph. D is strongly biconnected
if and only if D has an open ear decomposition. Moreover, any cycle can be the starting point of an
open ear decomposition.

Corollary 1. Let D be a strongly biconnected digraph, and let O = [L0, L1, . . . , Lr] be an open
ear decomposition. For every i with 0 ≤ i ≤ r, the i-prefix subgraph Di is strongly biconnected.

Proof. Obviously, Oi = [L0, L1, . . . , Li] is an open ear decomposition, which further implies,
according to the previous theorem, that its corresponding digraph Di is strongly biconnected.

Remark 1. Let D be a strongly biconnected digraph, and let O = [L0, L1, . . . , Lr] be an open ear
decomposition. By removing all trivial derived ears, we obtain a valid open ear decomposition, and
thus a strongly biconnected digraph (see Figure 2 for an illustration).

4. Characterizing Strongly Biconnected Digraphs

It turns out that the class of strongly biconnected digraphs can be partitioned into two comple-
mentary, disjoint categories: partially-bidirectional cycles and graphs for which a regular open ear
decomposition exists. The next two definitions introduce these categories. Then we claim that they
are in fact complementary, in Proposition 1. Finally, we claim that, given a strongly biconnected
digraph, testing whether it belongs to one category or the other can be done in a time that is linear
in the number of digraph nodes. The importance of these two categories stems from the fact that
we address each category with a different multi-agent path finding approach, which we present in
Sections 5 and 6.

Definition 7. A digraph is a partially-bidirectional cycle if it consists of a simple cycle C, plus zero
or more edges of the type (u, v), where (v, u) ∈ C (i.e., edges obtained by swapping the direction
of an edge from C).

Figure 3 shows an example. In a way, this is a simple, degenerate case of a strongly biconnected
digraph. Addressing multi-agent path finding on such graphs is simple, as we show in Section 5.

Definition 8. We say that an open ear decomposition of a strongly biconnected digraph is regular
if the basic cycle L0 has three or more vertices, and there exists a non-trivial derived ear with both
ends attached to the basic cycle.

The example shown in Figure 2 is an example of a graph with a regular open ear decomposition.
In particular, the open ear decomposition shown in the figure (out of many decompositions possible)
is regular. Indeed, L0 has 5 nodes (3 would be sufficient), and L1 is a non-trivial derived ear with
both endpoints attached to L0.

Proposition 1. For every strongly biconnected digraph D = (V,E), exactly one of the following
two cases holds:

1. D has a regular open ear decomposition; or

2. D is a partially-bidirectional cycle.

Proposition 2. Let D = (V,E) be a digraph. Checking if D is a partially-bidirectional cycle can
be done in O(|V |) time steps.
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Figure 3: An example of a partially-bidirectional cycle. The edges of the simple cycle are shown
as solid edges. We call their direction the forward direction. Dotted edges connect, in the
opposite direction, adjacent nodes in the cycle. We call this the backwards direction.

The proofs to these two propositions are available in Appendix A.

Corollary 2. Let D = (V,E) be a strongly biconnected digraph. Checking if D belongs to one
category or another can be done in O(|V |) time steps.

In the coming sections we focus on solving multi-agent path finding instances on strongly bi-
connected digraphs. We will present a suboptimal algorithm that runs in polynomial time, and is
complete for instances with at least two blanks on strongly biconnected digraphs.

5. Solving Partially-Bidirectional Cycles

In discussing multi-agent path finding on strongly biconnected digraphs, we start with the easy case
of partially-bidirectional cycles. Then, in the next section, we discuss the complementary, more
involved case of strongly biconnected digraphs with regular open ear decompositions.

Proposition 3. An instance on a partially-bidirectional cycle, with at least one blank, has a solution
if and only if the ordering of the agents in the initial state is identical with the ordering in the goal
state.

As no swapping between agents is possible, an instance has a solution if and only if the agents
come in the right order in the first place.

Given a cycle C with at least one blank, we call ShiftAgentsInCycle the routine that performs
forward moves in the cycle until a new desired configuration is obtained. ShiftAgentsInCycle can
be used to solve a partially-bidirectional cycle. It will also be useful in other parts of our diBOX
algorithm, as discussed in the next section.

Proposition 4. Given a cycle C, the worst-case complexity of the method ShiftAgentsInCycle is
O(|C|2).

Indeed, moving all agents by one step each requires O(|C|) moves. We may need up to O(|C|)
such shifts in total.
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Corollary 3. Given an instance that has a solution on a partially-bidirectional cycle D = (V,E),
computing the solution can be performed with a time and move complexity of O(|V |2).

6. Solving Instances on Digraphs with Regular Open Ear Decompositions

In this section we show that, on digraphs with a regular open ear decomposition, every instance
with two or more blanks has a solution. We present an algorithm capable of computing suboptimal
solutions in polynomial time.

6.1 Overview of the Approach

The main steps are the following:

• First, transform the problem instance so that, in the goal state, at least two blanks belong to
the basic cycle L0. We call the former the original instance, and the latter the transformed
instance. Having a goal state with (at least) two blanks in L0 is useful because subsequent
steps rely on such an assumption, simplifying those steps. The mapping from the original
instance into the transformed instance is described in Section 6.2.

• Solve the derived ears, one by one, in reverse order (i.e., starting with Lr and going all the way
to L1), similarly to Surynek’s (2009, 2014b) strategy for undirected graphs. By definition, we
say that a derived ear is solved if all interior positions labeled as goals are occupied by the
corresponding agents, and all other interior positions (if any) are blank. When solving a
derived ear, we never touch the interior of previously solved ears.

For example, in Figure 2, we solve the derived ears in the order L3, L2, L1. When solving ear
L3, assume that an agent Mickey has node 1 as a goal, an agent Minnie has node 2 as a goal,
and the goal of an agent Pluto is node 3. As nodes 1, 2 and 3 are the interior nodes of the ear
L3, this ear is considered solved when each of these three agents reach their goal node.

Notice that solving a derived ear does not require solving the endpoint nodes (entrance and
exit). For instance, the entrance of L3 is node 6. As node 6 is also an interior point of another
ear, namely L0, node 6 will be solved later, when solving that particular ear (L0). Likewise,
node 8, the exit point of L3, will be solved when solving ear L2, which contains node 8 as an
interior point.

Solving derived ears is discussed in detail in Section 6.3.

• Solve the basic cycle L0. I.e., make sure that all goals in the basic cycle are occupied by their
corresponding agents. Section 6.4 presents details on this step.

• Finally, the solution to the transformed instance is mapped into a solution to the original
instance. This is discussed in Section 6.2.

6.2 Mapping the Original Instance into the Transformed Instance and Back

When the original instance has less than two blanks in the basic cycle L0, the original instance is
converted into a transformed instance as follows: Identify a node g that must be blank in the goal
of the original instance, and a node n ∈ L0 that is not blank in the goal of the original instance.
Let π(g, n) be a directed path from g to n. In the transformed instance, shift all goal positions
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backwards along this path, making sure that a new blank is present in L0 in the goal state. Repeat
this step if needed, to bring yet another blank to L0. We call this procedure BorrowBlanks.

At the end, the solution to the transformed instance is mapped into a solution to the original
instance as follows. Agents are pushed forward along the π(g, n) path(s) mentioned earlier, making
sure they reach their original goals (method ReturnBlanks).

6.3 Solving Derived Ears

Derived ears are solved one by one, in reverse order, starting with Lr and finishing with L1. Solving
an individual ear will rely on the following property.

Proposition 5. When solving a derived ear Li, (at least) two blanks are available in the digraph
Di =

⋃
j≤i int(Lj).

Proof. This is shown with an induction on the number of derived ears solved so far. In the basic
case, i = r. Thus, Di contains all nodes of the original digraph, which in turn has at least two
blanks. When 0 < i < r, all derived ears Lp with p > i are in a goal state, which means that their
actual number of blanks is equal to the number of blanks in their goal state. Since the goal state of
the overall instance has (at least) two blanks in the basic cycle L0, it follows that at least two blanks
are located outside of the interiors of Li+1, . . . , Lr, i.e., they are located in Di =

⋃
j≤i int(Lj).

Consider a derived earLi, i > 0. We say that its goal configuration is q1, q2, . . . , qz if q1, q2, . . . , qz
are agents whose goal positions belong to the interior of Li, in this order (i.e., q1 is the closest to the
entrance, and qz is the farthest from the entrance). Solving Li pushes agents inside the ear in order,
starting with qz . For example, when solving ear L3 in Figure 2, we push into that ear, in order, agent
Mickey (whose goal is node 1), followed by agent Minnie (goal node 2), followed by Pluto (goal
node 3). The result is that, in the end, all these three agents will sit on their goal positions.

Solving a derived ear Li is an iterative process. Each iteration pushes one more agent inside
the ear. After z − l iterations, the agents ql+1, . . . , qz have been pushed inside, on the first z − l
interior positions of Li, and we need to insert the next agent ql. For simplicity, and without any
loss of generality, assume that all interior positions of Li are occupied, and two blanks are located
elsewhere. We distinguish between two cases:

Case 1. In this case, the next agent ql to be inserted is currently outside the ear Li. The strategy
works as follows:

• First, bring one blank4 to the last interior position of Li, with movements only inside the
subgraph Di =

⋃
j≤i int(Lj). As blanks travel backwards in a directed graph, the positions

of ql+1, . . . , qz are not touched.

• Then, agent ql is brought to the entrance of the ear, with movements only inside the subgraph
Di−1 =

⋃
j≤i−1 int(Lj) (i.e., without touching

⋃
j≥i int(Lj)). This is possible with one

remaining blank in use, as initially proven by Wu and Grumbach (2010) in the proof to their
Theorem 14. We generically call a method that can move an agent within a k-prefix subgraph
MoveAgentInSubgraph. We discuss concrete ways to implement such a method in Section 7
and Appendix B.

4. Bringing one blank to a vertex v of a subgraph D′ works as follows. We identify a blank vertex u in D′ and a path
within D′ from v to u. Push forward by one step all agents placed along that path. As agents travel forward, the
blank travels backward, reaching node v.
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• Then agent ql is pushed inside Li, reaching a configuration where the first z − l + 1 interior
positions of Li are occupied with agents ql, ql+1, . . . , qz .

Case 2. In the second case, the agent ql is already inside Li, but in a wrong position. The strategy,
described in detail below, can be summarized as follows:

• Take agent ql out of Li. A side effect is that previously inserted agents, such as ql+1, . . . , qz ,
will be disturbed from their positions.

• Insert agents ql+1, . . . , qz back into Li.

• These steps will reduce Case 2 to Case 1.

Definition 9. Let π be a simple path (chain)5 and let n be node in the path. An edge (n,m) is an
escape door for π if either m does not belong to π, or m is in π, being at least two positions earlier
than n in π.

Intuitively, an escape door allows an agent to avoid moving forward on a pre-established route
involving path π. Agents can use the escape door and never go beyond node n along the pre-
established route. We will discuss the usefulness of escape doors and show an example later in this
section. Before that, we prove that escape doors exist every time when we need them.

Lemma 1. Let D = (V,E) be a strongly biconnected digraph with a regular open ear decomposi-
tion that has no trivial derived ears. Then, for every edge (u, v) ∈ E, we have that (v, u) /∈ E.

Proof. A proof by induction on the number of ears is straightforward. No edge in the basic cycle
can be mirrored by another edge in the opposite direction, since: i) L0 has at least three nodes
(according to the definition of regular decompositions), and ii) there are no trivial derived ears.
Every new non-trivial derived ear Li maintains the desired property, since every edge in Li has at
least one endpoint that is new, i.e., it did not belong to the (i− 1)-prefix [L0, . . . , Li−1].

Proposition 6. Let O = [L0, L1, . . . , Lr] be a regular open ear decomposition of a strongly bi-
connected digraph. For any derived ear Li, there exists a path π in the (i − 1)-prefix subgraph
Oi−1 = [L0, L1, . . . , Li−1], from the exit to the entrance of Li, such that π has an escape door
(n,m), with m also in Oi−1.

Proof. By removing all trivial derived ears, if any, we obtain a valid strongly biconnected digraph
with a regular open ear decomposition. Thus, without loss of generality, we assume that the input
graph has no trivial derived ears. Let X and E be the exit and the entrance of Li. As Oi−1 is
strongly biconnected, it has a path from X to E and a path from E to X . Let π and π′ be two
arbitrarily chosen simple paths from X to E, and from E to X respectively. Let (a,E) be the last
edge on the path π, and let (E, b) be the first edge on the path π′. According to the previous lemma,
a 6= b. It follows that edge (E, b) is an escaping door for π.

Recall that we are discussing Case 2, where the agent ql is inside the ear, but in a wrong position
(i.e., not right behind agent ql+1). The agent has to be brought out first, after which the agents
ql+1, . . . , qz , if any, will be re-inserted. This method is called TakeAgentOutsideEar.

5. Recall that a simple path is a path without node repetitions.
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Figure 4: Taking an agent out of a partially solved ear with the help of an escape door.

It works as follows. We build a simple cycle C ′ by putting together Li and π, and bring two
blanks to nodes m and n mentioned in Proposition 6. Agents are pushed forward repeatedly in
the cycle C ′. In addition, we interleave zero or more moves through the escape door. Specifically,
every time that agent ql reaches node n, ql is pushed aside through the escape door (i.e., pushed to
node m). This ensures that ql stays outside of the interior of Li. The process stops when all agents
ql+1, . . . , qz (if any) reach their positions inside Li again.

Even if m ∈ C ′, recall that m is not the node right before n in the cycle. This ensures that
pushing ql from n to m does not cause a deadlock (i.e., there is no repetition of the previous global
agent configuration).

Algorithm 1: SOLVEDERIVEDEAR

Input: a digraph D, an ear Li, a goal configuration α+ of agents over D
Output: sequence of moves solving Li

1 let Li = [x0, x1, x2, . . . , xz+1];
2 let π be a simple path from the exit of Li to the entrance of Li, with an escape door;
3 let C ′ be a cycle obtained from Li and π;
4 for l = z down to 1 do
5 ql ← α−1+ (xl);
6 if α−1(x0) 6= ql then
7 if ql ∈ {α−1 (xz) , . . . , α

−1(xz−l+1)} then
8 TakeAgentOutsideEar (ql, Li, C

′);
9 bring blank to last interior position of Li;

10 MoveAgentInSubgraph (ql, x0,
⋃i−1

j=1 Lj);
11 push ql inside Li;

After applying method TakeAgentOutsideEar, ql is outside int(Li) and agents ql+1, . . . , qz , if
any, are inside Li. This fits Case 1 and the processing continues as in that case. Method SolveD-
erivedEar is shown in pseudocode in Algorithm 1.
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Figure 4 shows an example. Node v1 is the entrance of ear Li, and node v5 is the exit. The path
π = v5, v6, v7, v4, v1 is a path from the exit to the entrance of Li. The edge (v1, v2), also labeled
as (n,m) in the figure, is an escape door for the path π. Path π together with Li form a simple
cycle C ′. Assume that agents q8, q9, q10 have their goals at nodes v8, v9, v10 respectively. Assume
further that q10 and q9 have already been pushed inside Li (being currently located at v9 and v8
respectively), and that at this iteration we handle agent q8. Agent q8 is also inside Li, but in a wrong
position, namely v10. We push forward all agents within C ′ until q8 reaches vertex v1, the source
vertex of the escape door (v1, v2). Then, q8 is pushed along the escape door to v2. Then we keep
rotating agents within the cycle until q10 and q9 reach again their initial positions (v9 and v8). We
are now in Case 1, with agent q8 being outside the ear Li.

Proposition 7. Solving a derived ear Li never touches the interiors of previously solved ears
Li+1, . . . , Lr.

Indeed, all moves considered earlier in this section are limited to the sub-graphDi =
⋃

j≤i int(Lj).

Proposition 8. The complexity of solving all derived ears is within O(|V |3), and so is the number
of moves generated.

Proof. When solving a derived ear Li, lines 5–11 in Algorithm 1 have a complexity of O(|V |2).
Indeed, line 8 has a quadratic complexity, whereas moving the blank around (line 9) has a linear
complexity in the number of nodes. Line 10 has a quadratic complexity, as we will show in Ap-
pendix B.2. It follows that the loop on lines 4–11 has a complexity of O(|Li| × |V |2). Adding this
up for all derived ears sums up to O(|V |3).

6.4 Solving the Basic Cycle

After all derived ears have been solved, it remains to solve the basic cycle L0.6 When ordering
agents inside L0, we make use of a non-trivial derived ear L with both ends connected to L0. Such
an ear L always exists in a regular decomposition. For simplicity, and with no loss of generality, we
can assume that L = L1.7 All agents belonging to interior positions of L1 are already solved, as
described earlier. Let q1, . . . , qz be these agents in the order they are arranged on their goal positions
in the interior of the ear L1, starting from the agent closer to the entrance. Recall that (at least) two
blanks are available in L0.

Given a cycle, we introduce two macro-moves called a pseudo-reverse global step and a pseudo-
reverse individual step.

Definition 10. Let C be a cycle with at least one blank.

• A pseudo-reverse global step is a series of moves ahead in the cycle until all agents end up
one position behind their starting position.

6. Solving the basic cycle is the part which is different from the diBOX variant presented in the original paper (Botea
& Surynek, 2015). As explained in the introduction, the revised version ensures an overall complexity of the diBOX
algorithm within O(n3), as proved later in Proposition 12.

7. Indeed, by construction, L1 must have both its endpoints on L0. With no loss of generality, we can assume that there
are no trivial derived ears, according to Remark 1.
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• Let q be an agent right in front of a blank. A pseudo-reverse individual step is a series of moves
ahead in the cycle until agent q ends up one position behind (i.e., on the former position of
the blank), and all other agents end up in their starting positions.

That is, the resulting position of a pseudo-reverse global step is the same as if agents were
capable of moving one step backwards, in the opposite direction of the edges (hence the name of
the macro). The resulting position of a pseudo-reverse individual step is the same as if agent q were
able to travel one step in the opposite direction of the edge at hand.

Observe that these macros are particular cases of the routine ShiftAgentsInCycle, introduced in
Section 5. The worst-case number of moves is withinO(|C|2) for both variations of pseudo-reverse
steps.

In solving the basic cycle, assume that two agents u (Mickey) and v (Minnie) need to be brought
next to each other in L0, in the order u, v in the direction of L0. This process, described in detail
below, is referred to as method BringAgentsTogether. This is split into several stages: Mickey’s
departure, Mickey’s admission into the ride, Minnie’s departure, the joint ride, and the cleanup.
These are described in detail below, and illustrated in Figure 5.

In Figure 5 we show a sequence of seven distinct configurations, with arrows, numbered from 1
to 6, between any two consecutive configurations. Each of the arrows numbered from 1 to 6 repre-
sents part of the processing performed within the method BringAgentsTogether. For example, arrow
1 is Mickey’s departure, which is discussed in more detail below. The meanings of all arrows will
be explained below. Given an arrow, the configuration before it in the sequence is the configuration
before performing the processing represented by the arrow. The configuration after the arrow is the
resulting configuration.

Mickey’s departure. The objective of this step is to have agent u at the entrance of the ear L1,
and a blank at the exit of L1. This is achieved by rotating agents in the basic cycle L0 until this
condition is achieved. In Figure 5, arrow 1 illustrates Mickey’s departure, as mentioned earlier.

Mickey’s admission into the ride. The objective of this step is to temporarily place agent u
inside L1. To obtain this, push all agents in L1 one step further, so that agent u is on the first interior
position of L1. If L1 has had an agent qz on its last interior position, a side effect is that qz is now in
L0. Arrow 2 in Figure 5 represents Mickey’s admission into the ride. In this example, qz is agent 4.

Minnie’s departure. Rotate agents in the basic cycle L0 until v (Minnie) is at the entrance of the
ear L1, and a blank is available at the exit. Notice that, at the end of this step, Minnie is right behind
Mickey in the cycle C ′ containing L1 plus the corresponding part of L0 that completes the cycle.
Arrow 3 in Figure 5 illustrates Minnie’s departure.

The joint ride. The objective of this step is to have both Minnie and Mickey inside L0, next to
each other, in the desired order. To complete this step, perform a pseudo-reverse global step in cycle
C ′. Now Mickey is right at the entrance of L1 and, obviously, Minnie is still right behind Mickey.
Notice that now the last interior position of L1 is empty, as we had a blank at the exit of L1 at the
beginning of this step. See arrow 4 in Figure 5.

Cleanup. Here we eliminate the side effect mentioned earlier. In other words, we put qz back
inside L1 on its goal position. First, push forward agents within L0 until qz is at the exit of L1. This
is illustrated by arrow 5 in Figure 5. Then, perform a pseudo-reverse individual step along the cycle
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Figure 5: Method BringAgentsTogether: bringing u (Mickey) next to v (Minnie) as part of solving
the basic cycle. In the graph, solid edges belong to the basic cycle L0 and dotted edges
belong to the derived ear L1.
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C ′ to place qz onto the last interior position of L1. This restores L1’s goal configuration. See arrow
6 in Figure 5.

After applying method BringAgentsTogether, L1 has preserved its goal configuration. Agents
u and v are next to each other in the desired order. Apart from repositioning u, no other order-
ing relationships were affected inside L0. To see this in Figure 5, compare the first and the last
configurations in the sequence.

The process is repeated, each time with a different pair (u, v), until all agents in the basic cycle
L0 are ordered as required in the goal configuration.

Algorithm 2 sketches the pseudocode of the method for solving the basic cycle. In the pseu-
docode, the function NextAgent tells in constant time what agent should come next to a given agent
u in the goal configuration. At the end (line 8), after all agents are properly ordered in L0, they
are pushed forward within L0 until they all reach their goal positions. This is performed with the
method ShiftAgentsInCycle.

Algorithm 2: SOLVEBASICCYCLE

Input: a basic cycle L0, an ear L1, a goal configuration α+ of agents over D
Output: sequence of moves bringing agents in L0 to their goal positions

1 let L0 =
[
x1, x2, . . . , x|L0|

]
;

2 let L1 be connected to L0 in xa and xb;
3 for l = 1 to |L0| − 1 do
4 v ← α−1(xl);
5 if v 6= blank then
6 u← NextAgent (xl, L0, α+);
7 BringAgentsTogether (L0, L1, u, v);
8 ShiftAgentsInCycle (L0, α+);

Proposition 9. The complexity of solving the basic cycle is withinO(|V |3), and so is the number of
generated moves.

Proof. The method BringAgentsTogether involves the following parts: Mickey’s departure, with
a quadratic complexity on |L0|; admitting Mickey into the ride, which is linear in |L1|; Minnie’s
departure, with a quadratic complexity in |L0|; the joint ride, with a quadratic complexity in |L0|+
|L1|; and the cleanup, with a quadratic complexity in |L0| + |L1|. It follows that the method
BringAgentsTogether has a complexity ofO(|V |2). The method is invoked no more than |L0| times,
resulting in an overall complexity of O(|V |3).

The solving strategy outlined in this section allows us to formulate the following result.

Proposition 10. On a strongly biconnected digraph with a regular open ear decomposition, all
multi-agent path finding instances with two or more blanks have a solution.

The condition of having at least two blanks is tight in the following sense:

Proposition 11. Instances exist such that: the graph is a strongly biconnected digraph with a
regular open ear decomposition; there is only one blank available; and the instance has no solution.
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Figure 6: Obtaining a strongly biconnected digraph from the undirected graph of a 15 puzzle.

Proof. We can construct an example starting from the well-known 4 × 4 sliding-tile puzzle, also
known as the 15 puzzle. It is known that the puzzle has instances with no solution (Johnson &
Story, 1879). Given such an instance, we construct a multi-agent path finding instance on a strongly
biconnected digraph. All we have to do is to modify the original undirected graph by removing some
edges, and assigning directions to the remaining edges. In Figure 6 we show the original undirected
graph (left) and the resulting directed graph (right). Observe that this is a strongly biconnected
digraph, as it accepts a regular open ear decomposition. For example, the top two rows form the
basic cycle, the third row is the interior of a derived ear L1, and the fourth row is the interior of
another derived ear, L2.

As the only modifications performed boil down to imposing additional movement restrictions,
we cannot possibly introduce new solutions. It follows that our multi-agent path finding instance
has no solution.

In summary, a strongly biconnected digraph either is a partially-bidirectional cycle, or it admits
a regular open ear decomposition. On partially-bidirectional cycles, all instances with at least one
blank can be solved or proven unsolvable. On digraphs with a regular open ear decomposition, all
instances with at least two blanks have a solution, and they are solved with our presented approach.

7. Moving One Agent in a Strongly Biconnected Digraph

Our diBOX algorithm includes the method MoveAgentInSubgraph, introduced in Section 6. This
method takes an agent from a current node to a given destination, being free to shuffle the other
agents in the process. In this method, the other agents play the role of mobile obstacles, which can
be moved in any desired way.

Thus, the problem addressed with MoveAgentInSubgraph can be stated formally as follows. In
a strongly biconnected digraph, there is one agent, zero or more mobile obstacles, and at least one
blank. Moves refer to relocating a mobile unit (agent or mobile obstacle) to an adjacent node, if that
adjacent node is currently empty. The task is to get the agent into a given target position. The final
locations of the mobile obstacles are irrelevant.

Wu and Grumbach (2010) studied the feasibility of this problem. With their Theorem 14 they
proved that every instance with at least one blank in use has a solution. In the proof to their theorem,
these authors outline a recursive strategy to (suboptimally) solve such instances.

We implemented a version of MoveAgentInSubgraph, based on Wu and Grumbach’s (2010)
proof. This involves multiple (e.g., 2) recursive calls of a method within its body, suggesting that
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the number of recursive calls could possibly grow exponentially in the worst case. For this reason,
we introduce a second version, with a few easy-to-perform modifications that allow to keep the
complexity within O(|V |2). See details in Appendix B.

Observe that, in the particular case where exactly one blank is available, the number of states
in the search space is quadratic in the number of digraph nodes, since a state is determined by the
position of the agent and the position of the blank. Assuming further that the digraph is sparse (and
thus search space is a sparse graph), an optimal solution (i.e., minimizing the number of agent moves
+ obstacle moves) could be computed in a time linear in the size of the search space (i.e., quadratic
in |V |), using for example breadth-first search. However, as the number of blanks increases, the
state space quickly blows up. Optimally solving single-agent path finding with mobile obstacles on
strongly biconnected digraphs is beyond the focus of this paper.

8. Putting the Pieces Together: the diBOX Algorithm

We put together all pieces of our approach, described in the previous sections, obtaining an algo-
rithm that we call diBOX. We show its pseudo-code and analyze its complexity.

Algorithm 3: Main diBOX algorithm in pseudocode.
Input: a digraph D = (V,E); a set of agents A; an initial configuration α0 of agents over D;

a goal configuration α+ of agents over D
Output: sequence of moves transforming α0 into α+

1 diBOX (D,A, α0, α+)
2 if D is a partially-bidirectional cycle then
3 if α0 and α+ represent the same ordering in D then
4 ShiftAgentsInCycle (D,α+);
5 else
6 return UNSOLVABLE;
7 else
8 let [L0, L1, . . . , Lr] be a regular open ear decomp. with non-trivial ear L1 attached to L0;
9 if |{x ∈ L0|α−1+ (x) = blank}| < 2 then

10 α′+ ← BorrowBlanks
(
D,L0, α+

)
;

11 SolveEars (D, [L0, L1, . . . , Lr] , α0, α
′
+);

12 ReturnBlanks
(
D,α+, α

′
+

)
;

13 else
14 SolveEars (D, [L0, L1, . . . , Lr] , α0, α+);

Before invoking diBOX on a given MAPF instance, we assume that the following information
is available due to a preprocessing step: i) whether the digraph is strongly biconnected; ii) whether
the digraph is a partially-bidirectional cycle; iii) when the digraph is strongly biconnected, but not a
partially-bidirectional cycle, have a regular open ear decomposition available. These are properties
that depend on the input digraph, but not on details specific to a given instance, such as the initial
and the goal positions of the agents. Thus, preprocessing can be performed once and re-used in
solving many MAPF instances on a given digraph.
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Algorithm 3 shows diBOX in pseudocode. For simplicity, we assume that the input graph is a
strongly biconnected digraph. The test on line 2 tells whether the graph is a partially-bidirectional
cycle, or a graph with a regular open ear decomposition. Lines 3–6 and 8–14 handle each of these
cases respectively. Recall that the method ShiftAgentsInCycle on line 4 will rotate agents within a
simple cycle until reaching the desired configuration. Method SolveEars is shown in Algorithm 4.
As mentioned previously, ears are solved in reverse order, leaving the basic cycle to the end. The
pseudocode of the methods SolveDerivedEar and SolveBasicCycle has been presented in Algo-
rithms 1 and 2 respectively.

Algorithm 4: SOLVEEARS

Input: a digraph D, a regular open ear decomposition [L0, L1, . . . , Lr], an initial
configuration α0 of agents over D, a goal configuration α+ of agents over D

Output: sequence of moves bringing agents in [L0, . . . , Lr] to their goal positions
1 α← α0;
2 for i = r down to 1 do
3 SolveDerivedEar (D,Li, α+);
4 SolveBasicCycle (L0, L1, α+);

Proposition 12. The worst-case time complexity of diBOX is withinO(|V |3) and so is the number of
moves. The property holds even if the preprocessing is done once per instance and the preprocessing
costs are included in the diBOX costs.

Proof. Considering first the steps without preprocessing, we show that, in Algorithm 3, both the
time complexity and the number of moves are dominated by the method SolveEars. Specifically,
SolveEars has both the time and the number of moves within O(|V |3), according to Propositions 8
and 9. At the same time, none of the other parts of Algorithm 3 exceeds O(|V |2). Rotating agents
within a cycle C to reach a desired configuration (ShiftAgentsInCycle) consumes a time ofO(|C|2),
according to Proposition 4. BorrowBlanks and ReturnBlanks do not exceed a time of O (|E|),
producing O (|V |) moves.

In the preprocessing, the test used on line 2 of Algorithm 3 is performed within O(|V |) time
steps, according to Proposition 2. Testing whether a digraph is strongly biconnected, and comput-
ing a (regular) open ear decomposition can be performed within O (|V | (|V |+ |E|)), according to
Corollary 4.

Overall, both the worst-case time complexity and the number of moves for diBOX are within
O(|V |3).

9. Computing Open Ear Decompositions

Algorithm 5 outlines a strategy for computing open ear decompositions. For simplicity, we assume
that the basic cycle L0 is given as input. This does not restrict the generality, as the decomposition
can start from any basic cycle, according to Theorem 1.

Each iteration of the main loop adds a new valid ear, until all nodes are covered, or returns with
a failure. In this section, we say that an ear is valid if it is a non-trivial derived ear with its two
endpoints different from each other. In other words, an ear is valid if it can be included in an open
ear decomposition as a non-trivial derived ear.
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Algorithm 5: EARDECOMPOSITION

Input: a digraph D, a basic cycle L0 in D
Output: open ear decomposition O, if one exists

1 O ← [L0]; /* initialize O to a partial decomp. with just L0 */
2 do
3 e← CreateEar(D,O);
4 if a non-trivial derived ear e was found then
5 Append e to the decomposition O;
6 else
7 return UNSOLVABLE;
8 while D has nodes not included in O;
9 return O;

Theorem 2. Let D = (V,E) be a digraph and O an arbitrary partial open ear decomposition
(i.e., a basic cycle plus zero or more valid ears, covering a subset of D’s nodes). Computing a new
shortest valid ear, or showing that no new valid ear exists, can be done within a time complexity of
O(|V |+ |E|).

The proof is available in Appendix C.

Remark 2. Let D = (V,E) be a digraph and O an arbitrary partial, incomplete8 open ear de-
composition. If no new non-trivial derived ear with different endpoints exists, then the graph is not
strongly biconnected.

Proof sketch: Consider a node n that does not belong to O, but is a successor of a node p in O. If n
belongs to no derived ear with different endpoints, it follows that either i) there is no path from n to
any node in O; or ii) p is the only parent of n in O and all paths from n to a node in O pass through
p. The first case implies that D is not strongly connected, and case ii) implies that p is a cut vertex.

Corollary 4. Given a digraph D, finding an open ear decomposition, or showing that no decom-
position exists, can be done within a time complexity of O(|V |(|V | + |E|)). The result holds even
when seeking decompositions with a shortest ear added at each iteration.

The results shown so far in this section were presented for the case of finding an open ear
decomposition. Recall that an open ear decomposition is regular if the basic cycle has at least three
nodes, and there is at least one non-trivial derived ear. To search for a regular decomposition, start
from a basic cycle that has at least three nodes, but it does not contain all the nodes of the digraph.

As it has been shown in the case of the BIBOX algorithm, on undirected graphs, different ear
decompositions have a great impact on the performance of the algorithm (Surynek, Surynková, &
Chromý, 2014). It has been shown that using many short ears instead of few long ears leads to a
significantly better performance of the BIBOX algorithm. Our hypothesis is that diBOX could be
impacted in a similar manner by the length of the ears in the decomposition.

For this reason, we implemented two techniques (i.e., variants of CreateEar). One variant adds a
shortest possible ear at each iteration, whereas the other adds a longest possible ear. We use these for

8. I.e., covering some but not all of D’s nodes.
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evaluation purposes, to test which type of decomposition leads to a better path finding performance
in diBOX (not in preprocessing).

To compute a decomposition with short edges, the method CreateEar performs breadth-first
search. The proof to Theorem 2 shows such an approach.

To compute a decomposition with long ears, depth-first search is employed. For example, to
compute a new longest valid ear, run a depth-first search from each node in O. Cycles along a
branch are not allowed, but previously visited nodes may be visited again on a different branch.
Nodes from O are not expanded at a depth greater than 0. Searching for a longest ear has an
increased worst-case complexity, compared to searching for a shortest ear (i.e., higher complexity
than shown in Theorem 2). However, the purpose of decompositions with long ears is not to be used
in a “production” system, but to be used as a benchmark in our empirical evaluation. Moreover,
we can also regard the computation of an ear decomposition as an offline process that produces
the decomposition to be reused in many runs of the diBOX algorithm with various initial and goal
configuration of agents.

10. Empirical Evaluation

In this section we evaluate the performance of diBOX on a range of problems. We start with a
comparison to an optimal solver, followed by a more detailed analysis of the impact of various
components of diBOX on its performance. The algorithms are implemented in C++. The experi-
ments are performed on an Intel 1.60 GHz machine, running Ubuntu 12.04 64 bit.

10.1 Comparison to Optimal Solutions

We tested the diBOX algorithm against MDD-SAT (Surynek et al., 2016), an existing optimal solver
based on propositional satisfiability (SAT). Originally, MDD-SAT produces sum-of-costs optimal
solutions, counting each move and each waiting action at a position different from the agent’s goal.
In our evaluation, MDD-SAT has been modified to generate optimal solutions in terms of the number
of moves.

Two sets of instances were used in our comparison to optimal solutions. Instances are relatively
small, so that an optimal solver can succeed at least in part of the instances. The first problem set
uses a digraph with 20 vertices. The basic cycle consists of 5 vertices. Derived ears vary in size
from 2 to 5 internal vertices. The second set of instances uses a digraph consisting of 40 vertices.
The basic cycle has 5 vertices, and derived ears have 2 to 8 internal vertices each. The number of
agents in an instance is gradually increased. For each number of agents we generated 10 instances
with the initial and the goal configurations set at random. The average number of moves and the
average runtimes are shown in Figures 7 and 8.

In terms of scalability, in both problem sets, on instances with 11 agents or more, MDD-SAT
reaches a timeout of 300 seconds. On the other hand, the diBOX algorithm scales much better
than the optimal solver. diBOX solves all instances in this experiment quite easily (e.g., less than 1
second for the 20-node instances). In terms of quality, solutions computed with diBOX range from
nearly optimal to a deviation from optimal values by at most a factor of 4.5.
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Figure 7: diBOX vs MDD-SAT on instances with 20 vertices. Average values across 10 random
instances per number of agents are plotted.

10.2 Peformance on Densely-Populated Instances

In this section we evaluate the diBOX algorithm on difficult instances with only two blanks available
in an instance. Our graphs range in size from 80 to 200 nodes, with an increment of 10 nodes from
one graph size to the next. For each graph size, we generate three graphs, and for each graph we
generate 10 instances with the initial and the goal configurations set at random. In all cases, there
are only two empty graph nodes (blanks), and all other nodes are occupied by one agent each. Such
instances are too hard for optimal solvers.

Our evaluation presented in this section focuses on two major aspects: how the algorithm scales
as the graph size increases, and what is the impact of open ear decomposition on the performance of
diBOX. To perform this, we run diBOX with each of the two ear decomposition strategies discussed
in Section 9.

We now discuss the performance of the two versions of our solver. Version S aims at graph
decompositions with short ears, whereas version L favors decompositions with fewer but longer
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Figure 8: diBOX vs MDD-SAT on instances with 40 vertices. Average values across 10 random
instances per number of agents are plotted.

ears. Table 1 shows average key statistics about the graph decomposition, such as the number of
ears, the number of nodes of the biggest ear and the number of nodes of the smallest ear.

As expected, version L is significantly more costly as compared to version S. In fact, version L
does not scale beyond graphs with 120 nodes, given a timeout of 30 minutes per instance.

Figure 9 and Figure 10 show average solution length data and average CPU time data, respec-
tively. Version S performs better, both in terms of solution quality and CPU time. It generates
significantly fewer moves than version L. The reason is that a graph with shorter ears shows a
higher connectivity, which implies the availability of shorter paths along which agents have to move.
Shorter ears require fewer moves in the algorithm’s sub-routines, such as MoveAgentInSubgraph
and TakeAgentOutsideEar. See an evaluation of method MoveAgentInSubgraph in Section 10.4.

Recall that diBOX starts with solving the derived ears, after which it solves the basic cycle.
Figures 9 and 10 have shown the overall performance, when solving the entire instance (derived ears
and basic cycle). For a more detailed presentation, we also show the performance corresponding
to solving derived ears (Figures 11 and 12) and solving the basic cycle (Figures 13 and 14). In all
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Graph size (# nodes) 80 90 100 110 120 130 140
Type of ear decomp. S L S L S L S L S L S L S L

Number of ears 19 12 19 12 20 13 20 14 22 15 22 26
Max ear size 11 32 12 30 17 38 22 49 22 49 22 22
Min ear size 3 3 3 3 3 3 3 3 3 3 3 3

Graph size (# nodes) 150 160 170 180 190 200
Type of ear decomp. S L S L S L S L S L S L

Number of ears 26 26 30 31 31 32
Max ear size 24 26 26 29 29 31
Min ear size 3 3 3 3 3 3

Table 1: Average key statistics on the graph decomposition strategy. S = short-ear version; L =
long-ear version.

Figure 9: Average number of moves per instance.

cases, version S scales significantly better, and it produces shorter solutions as well. We conclude
that decompositions with short ears should be preferred in practice.

For the version S, all figures show a good scalability of the algorithm in practice. Specifically,
as the graph size increases, the increase in the solving time and the solution length is much slower
than the cubic upper bounds shown in our worst-case formal analysis.

10.3 Varying the Agents-to-Vertices Ratio

In this section we evaluate diBOX on instances where the ratio between the number of agents and
the number of graph nodes varies. We focus on graphs of two sizes: 80 nodes and 120 nodes,
respectively. For the 80-node graph, we generate instances with 10, 20, . . . , 70 and 78 agents. For
the 120-node graph, the number of agents is set to 10, 20, . . . , 110 and 118, respectively. For each
combination of a graph and a number of agents, 10 random instances are generated.

Average runtime and solution-length results are shown in Figure 15 and 16 respectively. As
in the case of densely populated instances, these results show a clear advantage of using short-ear
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Figure 10: Average CPU time per instance.

Figure 11: Average number of moves per instance to solve all derived ears, but not the basic cycle.

decompositions. Decompositions with short ears result in a better scalability, whereas long ears can
exhibit a sharp increase in the solving time and solution length.

10.4 Moving One Agent in a Subgraph

Moving one agent within a subgraph, while treating all other agents in the subgraph as mobile
obstacles, is an important component of our solving approach (method MoveAgentInSubgraph).
Section 7 and Appendix B focus on how to solve this problem. In this section, we present an
empirical evaluation, considering instances with only one blank available. We used the same set
of input graphs as in Section 10.2: The graph size ranges from 80 to 200 nodes, with 10-node
increments. There are 3 graphs for each size. For each graph, we generated 50 instances, with the
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Figure 12: Average CPU time per instance to solve all derived ears, but not the basic cycle.

Figure 13: Average number of moves per instance to solve the basic cycle.

initial and the goal configurations picked at random, for a total of 1,050 instances. In an instance
with n graph nodes, there are n − 2 mobile obstacles, one agent and one blank. Our evaluation
focuses on three major aspects: scalability with graph size, the impact of choosing the basic cycle to
contain the target or not, and the impact of sizes of ears. Four variants of the MoveAgentInSubgraph
are run on every instance, resulting from two strategies on ear size (long or short ears), combined
with the two ways of selecting the basic cycle (chosen to contain the target or not). Having the
target outside the basic cycle breaks the conditions that ensure the quadratic complexity discussed
in Section 7 and Appendix B.

Figure 17 summarizes the number of moves averaged per graph size. The decomposition that
aims at building shorter ears leads to better results. This confirms our expectations.

Interestingly, comparing the top and bottom charts in Figure 17 shows that selecting the basic
cycle in such a way that it does not contain the target works well. This implies that the 2 recursive
calls in a row did not cause a performance bottleneck in our experiments. In fact, the case with the
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Figure 14: Average CPU time per instance to solve the basic cycle.

basic cycle containing the target has a somewhat weaker performance (e.g., an increase from close
to 2,000 to close to 3,000 moves for the short-ear decomposition on 150-node graphs). We attribute
this to differences in the average ear distance between the start s and the target t. We define the ear
distance as as |k−k′|, where s ∈ int(Lk) and t ∈ int(Lk′). When k and k′ are drawn uniformly and
independently from the range 0, . . . ,K, with K being the largest ear index, the expected value of
the ear distance is K/3. On the other hand, when k′ is restricted to be 0, the expected ear distance
increases to K/2, which in turn can increase the number of moves in a solution.

11. Conclusion

We have performed a formal and empirical study of multi-agent path finding on strongly biconnected
digraphs. To our knowledge, this is the first theoretical study focused on multi-agent path planning
on any type of directed graphs. We found that instances with at least two blanks have a solution,
except for the trivial case of badly ordered instances on partially-bidirectional cycles. We have
presented a suboptimal algorithm, called diBOX, whose worst-case time complexity and solution
length are both withinO(|V |3), where V is the set of vertices. Similarly to BIBOX (Surynek, 2009),
a method for undirected biconnected graphs, our algorithm solves ears in reverse order. However,
the restriction to unidirectional movements makes our algorithm more involved than the case when
bi-directional movement is possible.

We implemented the diBOX algorithm and evaluated its performance. As particular ear decom-
positions have a great impact on the performance of the algorithm, we implemented two strategies
to decompose a strongly biconnected digraph into an open ear decomposition. One strategy aims
at computing short ears and the other prefers long ones. Results clearly indicate that the preference
of short ears is the better option, as it leads to better solutions and CPU times. Overall, the results
show a good scalability of the method, in combination with short ear decompositions, successfully
solving instances of an increasing size and difficulty. In practice, as the graph size increases, the
increase of the CPU time and the solution time is much slower than the upper bounds shown in the
worst-case formal analysis. diBOX scales convincingly beyond the limits of an optimal solver. On
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Figure 15: Varying the number of agents on a graph with 80 nodes.

small instances where an optimal solver can succeed, the quality of solutions computed with diBOX
stay within a factor of at most 4.5 from optimal values.

In future work, we plan to extend our formal and empirical analysis to other classes of digraphs.
In addition, we plan to investigate problems where rotations in a cycle do not require using a blank.
Pushing the scalability of the system further is another interesting topic for the future.
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Figure 16: Varying the number of agents on a graph with 120 nodes.

Appendix A. Proofs to Propositions 1 and 2

Lemma 2. A strongly biconnected digraph D with three or more nodes admits an open ear decom-
position with the basic cycle having at least three nodes.

Proof. As D is strongly biconnected, an open ear decomposition [L0, . . . , Lr] exists. Unless L0

already has three or more vertices, we modify the open ear decomposition slightly to obtain a
basic cycle with that property. Indeed, when L0 has two vertices, there must be more ears than
just L0 in the decomposition, since the graph has 3 or more vertices. L1 is a derived non-trivial9

ear in [L0, . . . , Lr].10 Ear L1, together with one edge from L0, become the new basic cycle, L′0,

9. Assuming by contradiction that L1 is trivial, it follows that L1 is a duplicate of an edge included in the 2-node basic
cycle L0.

10. L1 is also acyclic, as it belongs to an open ear decomposition.
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Figure 17: Average solution length for moving one agent within a subgraph. Top: target in basic
cycle. Bottom: target elsewhere.

in the decomposition. The other edge from L0 becomes a trivial derived ear, L′1. Observe that
[L′0, L

′
1, L2, . . . , Lr] remains an open ear decomposition.

Proposition 1. For every strongly biconnected digraph D = (V,E), exactly one of the follow-
ing two cases holds:

1. D has a regular open ear decomposition; or

2. D is a partially-bidirectional cycle.

Proof. Part A: Showing that at least one case holds. We start by noting that any strongly bicon-
nected digraph with three or fewer vertices satisfies case 2. Thus, in the rest of Part A, we assume
that |V | ≥ 4.

As D is strongly biconnected, there is an open ear decomposition [L0, . . . , Lr] where L0 has at
least three nodes, according to the previous lemma.
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We distinguish between two scenarios. First, we consider the scenario when L0 contains every
vertex in V . If there exists an edge e ∈ E that connects two vertices p and q that are not next to
each other in the basic cycle L0, then the edge e = (p, q) and part of L0’s edges create a new basic
cycle L′0. The remaining edges of L0 create a non-trivial derived ear. We are now in case 1 of the
proposition. If no such an edge e exists, we are in case 2.

Consider now the scenario when L0 contains only a subset of the vertices in V . As L0 does not
cover all vertices, and trivial derived ears have no interior nodes, it follows that [L0, . . . , Lr] has at
least one non-trivial derived ear. In other words, we have a regular open ear decomposition, being
in case 1 of the proposition.

Part B: Showing that at most one case holds. This can be proven by contradiction. Assume a
given strongly biconnected digraph D is a partially-bidirectional cycle, and it has a regular open ear
decomposition. As D is a partially-bidirectional cycle, the only options for the basic cycle L0 that
could occur in an open ear decomposition are: i) L0 has two vertices; or ii) L0 contains all vertices.
See Figure 3 for an example. Option i) contradicts the requirement that L0 has at least three vertices.
Option ii) contradicts the requirement that there exists at least one non-trivial derived ear.

Proposition 2. Let D = (V,E) be a digraph. Checking if D is a partially-bidirectional cycle
can be done in O(|V |) time steps.

To prove this result, we outline a procedure that performs the test and has the claimed com-
plexity. The intuition with the testing procedure is as follows. Assume that a graph is indeed a
partially-bidirectional cycle (see again Figure 3 for an example). If we manage to start a walk
in the “forward” direction, and never consider edges in the “backwards” direction, there is one
unique way to progress with the walk. Eventually we complete a cycle that contains all nodes of
the graph. After the cycle is built, we can verify that all edges not included in the cycle are the
reversed version of some edges included in the cycle. On the other hand, if the input graph is not a
partially-bidirectional cycle, the walk can sooner or later detect that, as shown in the description of
the procedure, presented next.

The procedure works as follows. If D contains a node with 0 successors, or a node with at
least three successors, return “no” (not a partially-bidirectional cycle). Otherwise, pick a node n0
with the smallest number of successors (i.e., either 1 or 2 successors). We distinguish between the
following two cases.

Case 1 is when n0 has exactly one successor n1. If D is a partially-bidirectional cycle, edge
(n0, n1) must belong to the cycle, i.e., it must be a forward edge, since there is no other edge
leaving from n0. We perform a walk starting with that edge. In extending a walk with one more
node, always ignore edges that would take us back to the previous node. If, after applying this
rule, there is exactly one successor left, continue the walk with that successor. Otherwise (0 or
two successors) the walk stops and the test fails. If a cycle is eventually built, all is left to check
is whether i) the cycle contains all nodes; and ii) all edges not included in the cycle satisfy the
definition of a partially-bidirectional cycle, i.e., each of them is the reversed version of an edge in
the cycle. If both conditions hold, the answer is positive. Otherwise, the test fails.

Case 2 is when n0 has two successors. As n0 is picked to have a minimal out-degree, it follows
that all nodes in D have two successors each. The only case when a partially-bidirectional cycle
satisfies this condition is when every forward edge is mirrored with a backwards edge. In other
words, we have in fact a cycle with all adjacent nodes connected in both directions. Checking
whether a digraph has this structure is straightforward, and we skip the details.

303



BOTEA, BONUSI, & SURYNEK

 

  

L0 L1 

L2 
L3 

L4 

L5 

L6 

a 
s=α(a) 

t 

 k=5 

X5 
E5 

L0 L1 

L2 
L3 

L4 

L5 

L6 a 
s=α(a) 

t 

 
X5 

E5 

Case001 (sL3, tL1, L5) 
C k´=3 

Figure 18: Illustrating Case001. Symbol ⊥ denotes the blank and “a” is the agent.

There are several slight variations of this procedure, and the one presented is not necessarily the
most effective. Our goal was to keep it as simple as possible.

Appendix B. Method MoveAgentInSubgraph

We present two algorithmic versions of this method. In Section B.1 we convert Wu and Grum-
bach’s (2010) proof to their Theorem 14 into a detailed algorithm. In Section B.2 we show that,
with a few easy-to-implement modifications, the complexity is withinO(|V |2). Without any loss of
generality, in this appendix we ignore all trivial derived ears.

B.1 A Detailed Recursive Procedure

The method MoveAgentInSubgraph-v1, where “v1” stands for version 1, shown in Algorithm 6,
takes the following input:

• s, the initial position of the agent;

• t, the target position of the agent;

• b, the blank position;

• k, the largest index so that s ∈ int(Lk), or t ∈ int(Lk), or b ∈ int(Lk).

The output is a series of moves taking the agent from s to t within the subgraph [L0, . . . , Lk].
This is a recursive method with several cases, depending on the positions of the starting location,

the target, and the blank. We identify cases with the name “Case” followed by three symbols (e.g.,
Case001). The first symbol is a boolean flag telling whether s ∈ int(Lk). The second symbol
is a flag telling whether t ∈ int(Lk). For the third symbol, we use several values, which are not
necessarily mutually exclusive: 0 indicates that b /∈ Lk; 1 stands for b ∈ Lk; * is a “don’t care
symbol”; and “g” denotes a “good” position of the blank, namely b ∈ int(Lk) ∪ {Ek} ∪ {Xk},
where Ek is the entrance of Lk and Xk is its exit.

In the basic-cycle case (line 2 in Algorithm 6), all three nodes s, t and b are in the basic cycle
L0. It is possible to bring the agent from s to t by just rotating the agents within L0. In Case001
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Algorithm 6: MOVEAGENTINSUBGRAPH-V1
Input: node s; node t; node b; integer k
Output: moves taking agent from s to t within subgraph [L0, . . . , Lk]

1 if k = 0 then
2 BasicCycleCase(s, t, b, k);
3 else if s /∈ int(Lk) ∧ t /∈ int(Lk) ∧ b ∈ int(Lk) then
4 Case001(s, t, b, k);
5 else if s /∈ int(Lk) ∧ t ∈ int(Lk) ∧ b /∈ int(Lk) then
6 Case010(s, t, b, k);
7 else if s /∈ int(Lk) ∧ t ∈ int(Lk) ∧ b ∈ int(Lk) then
8 Case011(s, t, b, k);
9 else if s ∈ int(Lk) ∧ t /∈ int(Lk) then

10 if b /∈ int(Lk) then
11 bring blank to Xk (or Ek);
12 Case10g(s, t, k);
13 else if s ∈ int(Lk) ∧ t ∈ int(Lk) then
14 if b /∈ int(Lk) then
15 bring blank to Xk (or Ek);
16 Case11g(s, t, k);

Algorithm 7: CASE001
Input: node s; node t; node b; integer k
Output: moves taking agent from s to t within subgraph [L0, . . . , Lk]

1 let P be a simple path from Xk to Ek in [L0, . . . , Lk−1];
2 let C be the cycle P ∪ Lk;
3 rotate in C until both agent and blank are outside int(Lk);
4 let b′ be the new position of blank;
5 let s′ be the new position of agent (may or may not be different from s);
6 let k′ be the largest index so that s′ ∈ int(Lk′) ∨ t ∈ int(Lk′) ∨ b′ ∈ int(Lk′);
7 MoveAgentInSubgraph-v1(s′, t, b′, k′);

(Algorithm 7), the initial and the target positions are not in Lk, and the blank is in Lk. The method
first makes sure that the blank is taken out of int(Lk) after which a recursive call with a smaller k′

is performed. Figure 18 illustrates the way this method works.
It is important to notice that, when taking the blank out of int(Lk), a side effect could be that

the agent is pushed within int(Lk). When this happens, we keep rotating until both the agent and
the blank are out of Lk’s interior. Optionally, we can require that we stop the rotations in a position
where the blank is right in front of the agent. We call this the blank-agent adjacency, and its
relevance will be clear in Section B.2.

In Algorithm 8, the initial position s is in int(Lk) but the target t is not. Also, at the beginning,
the blank is guaranteed to be in a good position (i.e., somewhere along Lk), according to lines 10–11
in Algorithm 6. Method Case10g performs rotations in a cycle C containing Lk until both the agent
and the blank are out of int(Lk). Once again, we can optionally impose the blank-agent adjacency
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Figure 19: Illustration of Case100.

Algorithm 8: CASE10G

Input: node s; node t; integer k
Output: moves taking agent from s to t within subgraph [L0, . . . , Lk]

1 let P be simple path from Xk to Ek in [L0, . . . , Lk−1];
2 let C be the cycle P ∪ Lk;
3 rotate in C until agent reaches some node s′ /∈ int(Lk) and blank reaches some node

b′ /∈ int(Lk);
4 let k′ < k be the largest index so that s′ ∈ int(Lk′) ∨ t ∈ int(Lk′) ∨ b′ ∈ int(Lk′);
5 MoveAgentInSubgraph-v1(s′, t, b′, k′);

condition. Then, a recursive call to MoveAgentInSubgraph-v1 takes the agent from Xk to the target
t. Figures 19 and 20 illustrate cases 100 and 101.

Algorithm 9: CASE010
Input: node s; node t; node b; integer k
Output: moves taking agent from s to t within subgraph [L0, . . . , Lk]

1 let k′ < k be the largest index so that s ∈ int(Lk′) ∨Xk ∈ int(Lk′) ∨ b ∈ int(Lk′);
2 MoveAgentInSubgraph-v1(s,Xk, b, k

′);
3 let b′′ be the new position of blank;
4 let k′′ < k be the largest index so that Xk ∈ int(Lk′′) ∨ Ek ∈ int(Lk′′) ∨ b′′ ∈ int(Lk′′);
5 MoveAgentInSubgraph-v1(Xk, Ek, b

′′, k′′);
6 move blank to Xk;
7 let P be simple path from Xk to Ek in [L0, . . . , Lk−1];
8 let C be the cycle P ∪ Lk;
9 rotate in C until agent reaches t;

In Algorithm 9 and Algorithm 10, the initial position s is not in int(Lk) but the target t is.
The difference between the two methods is that, in Case011 (Algorithm 10), the blank is in Lk.
In Case010, a recursive call to MoveAgentInSubgraph-v1 brings the agent from s to Xk, the exit

306



SOLVING MULTI-AGENT PATH FINDING ON STRONGLY BICONNECTED DIGRAPHS

 

  

s=α(a) 

k=6 

 

Case101 (sL6, tL2, L6) 

L0 L1 

L2 
L3 

L4 

L5 

L6 a 

t 

 

X6 

E6 

k´=2 

C 

L0 L1 

L2 
L3 

L4 

L5 

L6 a 

 X6 

E6 

t 

Figure 20: Illustrating Case 101.
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Figure 21: Illustrating Case010.

of the ear Lk. Then, another recursive call brings the agent from Xk to Ek, the entrance of the
ear Lk. Then, the blank is taken to Xk. The fact that we have brought the agent from Xk to Ek

ensures that the blank can be taken to Xk without having to touch the agent at its current position
Ek. The blank can simply travel backwards on the trajectory followed by the agent from Xk to Ek.

Algorithm 10: CASE011
Input: node s; node t; node b; integer k
Output: moves taking agent from s to t within subgraph [L0, . . . , Lk]

1 let P be simple path from Xk to Ek in [L0, . . . , Lk−1];
2 let C be the cycle P ∪ Lk;
3 if s ∈ C then
4 rotate in C until agent reaches target;
5 else
6 rotate in C until blank reaches Xk;
7 Case010(s, t,Xk, k);
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Figure 22: Illustrating Case011.

 

  

L0 L1 

L2 
L3 

L4 

L5 

L6 

a 

s=α(a) 

t 

 

k=4 

X4 

E4 

Case110 (sL4, tL4, L2) 

C 

L0 L1 

L2 
L3 

L4 

L5 

L6 

a 

t 

 
X4 

E4 

L0 L1 

L2 
L3 

L4 

L5 

L6 
a 

 
X4 

E4 

Figure 23: Illustrating Case110.

At the end, perform rotations within a cycle C containing Lk until the agent reaches t. As shown
in Algorithm 10, Case011 first repositions the blank, after which it works similarly to Case010.
Figures 21 and 22 illustrate these two methods.

Algorithm 11: CASE11G

Input: node s; node t; integer k
Output: moves taking agent from s to t within subgraph [L0, . . . , Lk]

1 let P be simple path from Xk to Ek in [L0, . . . , Lk−1];
2 let C be the cycle P ∪ Lk;
3 rotate in C until agent reaches t;

In Case11g (Algorithm 11), both s and t are in int(Lk). The blank is in a good position (some-
where along Lk), according to lines 14–15 in Algorithm 6. The method Case11g performs rotations
within a cycle C containing Lk until the agent reaches t. The two relevant cases 110 and 111 are
illustrated in Figures 23 and 24.
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Figure 24: Illustrating Case111.

B.2 Obtaining an O(|V |2) Complexity for the Recursive Approach

We introduce a few easy-to-satisfy assumptions that will lead to a quadratic-complexity procedure.

Assumption 1. In the initial state, the blank is located right in front of the agent. That is, there is a
directed edge (u, v) so that the agent is at u and the blank is at v in the initial state.

This is easy to satisfy by finding a directed path from the initial position of the agent to the
initial position of the blank, and moving the blank backwards (i.e., shifting obstacles forward) until
it gets right in front of the agent.

Assumption 2. Every time when we perform rotations in a cycle involving the agent, at the end of
the rotations, the blank is right in front of the agent in the cycle. This is the blank-agent adjacency
condition introduced in the previous section.

This is easily achieved by having the blank travel backwards in the cycle from behind the agent
to the front of the agent (i.e., push all mobile obstacles in the cycle one step ahead, as mentioned
previously).

Assumption 3. The target t belongs to the basic cycle L0.

This too is easy to ensure according to to Theorem 1, which says that any cycle can be used as
a basic cycle in the open ear decomposition. Thus, all we have to do is to pick a basic cycle that
contains the target. Computing a new ear decomposition would have to stay within O(|V |2). Once
an original ear decomposition is available, this is easy to ensure for new decompositions. If we
ignore trivial derived ears in the original decomposition, we obtain a sparse graph. I.e., the number
of edges is within the order of the number of nodes, since each ear has p nodes and either p or p+ 1
edges. Combining this with Corollary 4, we obtain the desired complexity bound.

Here is a simplified procedure, MoveAgentInSubgraph-v2, that works with these assumptions in
place. Identify the edge e = (s, b) such that the agent is at s and the blank is at b. Let Lk be the
ear that contains the edge e.11 Consider a cycle Ck obtained from Lk together with a path from its

11. That is, we are in one of the following three cases: 1) both s and b are interior nodes of Lk; or 2) s is the entrance Ek

and b is the first interior node; or 3) s is the last interior node and b is the exit Xk.
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exit of Xk to the entrance Ek in the subgraph Dk−1 = L0 ∪ · · · ∪Lk−1. Rotate elements (agent and
obstacles) within Ck until both the agent and the blank are outside the interior of Lk, on some edge
(s′, b′), with the blank in front of the agent. We call this rotation within Lk a descending step. Now
pick the ear Lk′ with the property that it contains the edge (s′, b′). Clearly, k′ < k, since the path
from Xk to Ek belongs to Dk−1. Continue recursively with descending steps until k = 0, which
means that both the agent and the blank are within the basic cycle L0. Finally, rotate within L0 until
reaching the target, which is actually the BasicCycleCase subroutine.

To see the relation to the algorithm presented in the previous section, note that a descending
step corresponds to either Case001 or Case10a, with blank-agent adjacency turned on, as follows.
When, in a descending step, s is the entrance of Lk and b is its first interior node, we are in Case001.
Otherwise (i.e., s, b ∈ int(Lk); or s is the Lk’s last interior node and b is the exit) we are in Case10a.

Thus, the simplified procedure can include Case001, Case10a, and BasicCycleCase, but it never
includes any of the remaining cases, such as Case010, Case011 and Case11a. In particular, this
eliminates the multiple calls-to-self in the same block of code (e.g., as done in Case010; see Algo-
rithm 9, lines 2 and 5). This allows us to claim the following complexity result.

Theorem 3. The simplified algorithm presented in this section has both the time and the solution
length bounded by O(|V |2).

Proof. Each recursive iteration (i.e., a descending step or the call to BasicCycleCase at the end)
has at most O(|Lk| × |Ck|) moves, where Lk is the ear involved at that iteration and Ck is its
corresponding cycle (for k = 0, define C0 = L0). Indeed, shifting all entities (agent and obstacles)
in the cycle Ck by one step requires in the order of |Ck| moves, and we perform at most |Lk|
such shifting operations. Summing up all these we obtain a number of moves within an order of∑

k |Lk| × |Ck| ≤
∑

k |Lk| × |V | ≤ |V |2.

Furthermore, the quadratic upper bound mentioned is tight. That is, instances exist whose solu-
tion requires a quadratic number of steps. Consider an instance where the entire graph is a directed
cycle (i.e., a basic cycle with no derived ears) and the target of the agent is right behind its starting
position. The solution plan has (|V | − 1)2 steps.

Appendix C. Proof to Theorem 2

Theorem 2. Let D = (V,E) be a digraph and O an arbitrary partial open ear decomposition
(i.e., a basic cycle plus zero or more valid ears, covering a subset of D’s nodes). Computing a new
shortest valid ear, or showing that no new valid ear exists, can be done within a time complexity of
O(|V |+ |E|).

Proof. We show that a new shortest valid ear (if one exists) can be found with a breadth-first search
in a digraph D2. The nodes of D2 contain at most two copies of each node in D, plus one new node
r. For every node n in D, we use a counter to keep track of how many copies of n have been added
to D2. When a first copy of a node n is added to D2, we denote the corresponding node in D2 as
(n : 0). A second copy is denoted as (n : 1).

The digraph D2 is built on the fly as the breadth-first search advances. The root node is r. For
each node p in O, define a node (p : 0) in D2, and an edge from r to (p : 0). The root node r has no
other successors besides these. We call the nodes (p : 0), with p in O, depth-one nodes, since they
have a depth of 1 in the breadth-first search. Nodes from O never have a second copy added to D2.
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For every node in D2 different than the root r we keep track of its depth-one ancestor (by
definition, a node at depth 1 is its own depth-one ancestor).

To expand a node (n : i) inD2, the successors are generated by enumerating the edges (n,m) ∈
E, and applying the following rules for each edge. If m is in O, do not create a new successor.
Otherwise, if no copy of node m has been added yet to D2, add a new copy (m : 0) as a successor
of (n : i). Otherwise, if exactly one copy of m already exists somewhere in D2 (i.e., a node (m : 0)
exists, but a node (m : 1) does not), and the depth-one ancestor of (m : 0) is different from the
depth-one ancestor of (n : i), add a new node (m : 1) and make it a successor of (n : i). Otherwise,
no successor of (n : i) is created based on the edge (n,m).

During the expansion of a node (n : i) with a depth greater than 1, if an edge (n,m) with m in
O is encountered, check if a valid ear has been discovered: Let (s : 0) be the depth-one ancestor of
(n : i). If m 6= s, a valid ear has been discovered, as: i) the ear starts from one node in O, namely s,
and ends at another node in O, namely m; ii) the ear has at least one interior node, namely n (recall
that the depth of (n : i) is greater than 1); and iii) no interior node belongs to O, as nodes from O
generate in D2 only depth-one nodes. The search stops after the first valid ear is discovered, or after
expanding all nodes, if no valid ear is found.

The number of expanded nodes does not exceed 2|V |+ 1 (i.e., it stays within a constant factor
from |V |). The number of successors of one search node, namely the root r, is within O(|V |).
Every other node (n : i) inD2 has a number of successors at most within the order of the number of
successors of the node n in D. In other words, the number of edges of D2 is within O(|V |+ |E|),
and the number of nodes of D2 is within O(|V |). These ensure that the search complexity stays
within the desired bounds.

It remains to show that this search will discover a shortest valid ear if and only if a valid ear
exists.

The “only if” part is obvious. For the “if” part, consider that at least one valid ear exists, and
assume by contradiction that the algorithm misses out all shortest valid ears.

Given a path π2 = r, (c1 : i1), (c2 : i2), . . . , (cl : il) in D2, we say that the path π =
c1, c2, . . . , cl is a projection of π2 in D. Note that π is a valid path in D, starting from a node
in O.

Among all shortest valid ears, consider an ear with the property that it has a longest prefix that is
the projection of some path in D2, generated in the breadth-first search. Let Ω = a1, a2, . . . , ap, x,
with a1 and x in O, be such an ear, let a1, a2, . . . , al−1 be the corresponding prefix, and let P2 =
r, (a1 : i1), (a2 : i2), . . . , (al−1 : il−1) be the path in D2 projected onto the prefix. As the ear is
missed out in search, it follows that l − 1 < p.

It follows that (al−1 : il−1) is expanded in the breadth-first search, but no (al : ∗) successor is
created. According to the expansion rules described earlier, it further follows that either:

• A node ν = (al : 0) already exists in D2 at the time of expanding (al−1 : il−1), and it has the
same depth-one ancestor as (al−1 : il−1), namely (a1 : 0); or

• Two nodes (al : 0) and (al : 1) already exist in D2 at the time of expanding (al−1 : il−1). By
construction, (al : 0) and (al : 1) cannot have the same depth-one ancestor. It follows that at
least one of them has a depth-one successor different than (x : 0). Let ν ∈ {(al : 0), (al : 1)}
be such a node.
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In either case, let r, (b1 : j1), (b2 : j2), . . . , (bs : js), ν be the path to ν in the breadth-first
search. Define Ω′ = b1, b2, . . . , bs, al, al+1, . . . , x. Observe that Ω and Ω′ have the same length.12

It follows that Ω′ is a shortest valid ear. Finally, compared to Ω, Ω′ has a strictly longer prefix that
is the projection of a path generated in the search. This contradicts the way we have chosen Ω.

References

Bang-Jensen, J., & Gutin, G. Z. (2008). Digraphs: Theory, Algorithms and Applications (2nd edi-
tion). Springer.

Barer, M., Sharon, G., Stern, R., & Felner, A. (2014). Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem. In ECAI-2014 - 21st European
Conference on Artificial Intelligence, pp. 961–962. IOS Press.

Bonusi, D. (2015). Heuristic Enhancements to Multi-Agent Path Finding on Strongly Biconnected
Digraphs. Master’s thesis, University of Brescia, Brescia, Italy.

Botea, A., & Surynek, P. (2015). Multi-agent path finding on strongly biconnected digraphs. In
Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp. 2024–2030. AAAI
Press.

Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., & Shimony, S. E. (2015).
ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In Proceedings
of the 24th International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 740–746.
AAAI Press.

Cohen, L., & Koenig, S. (2016). Bounded suboptimal multi-agent path finding using highways. In
Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI 2016,
pp. 3978–3979. IJCAI/AAAI Press.

de Wilde, B., ter Mors, A., & Witteveen, C. (2014). Push and rotate: a complete multi-agent
pathfinding algorithm. Journal of Artificial Intelligence Research, 51, 443–492.

de Wilde, B., ter Mors, A. W., & Witteveen, C. (2013). Push and rotate: Cooperative multi-agent
path planning. In Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems (AAMAS-13), pp. 87–94. IFAAMAS.
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Surynek, P., Surynková, P., & Chromý, M. (2014). The impact of a bi-connected graph decom-
position on solving cooperative path-finding problems. Fundamenta Informaticae, 135(3),
295–308.

Wagner, G., & Choset, H. (2015). Subdimensional expansion for multirobot path planning. Artificial
Intelligence, 219, 1–24.

Wang, K.-H. C., & Botea, A. (2008). Fast and Memory-Efficient Multi-Agent Pathfinding. In
Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS-
08), pp. 380–387. AAAI Press.

Wang, K.-H. C., & Botea, A. (2011). MAPP: a Scalable Multi-Agent Path Planning Algorithm with
Tractability and Completeness Guarantees. Journal of Artificial Intelligence Research, 42,
55–90.

Wilson, R. M. (1974). Graph puzzles, homotopy, and the alternating group. Journal of Combinato-
rial Theory, Series B, 16(1), 86–96.

Wu, Z., & Grumbach, S. (2010). Feasibility of motion planning on acyclic and strongly connected
directed graphs. Discrete Applied Mathematics, 158(9), 1017 – 1028.

314


