
Journal of Artificial Intelligence Research 63 (2018) 51-86 Submitted 02/17; published 09/18

A Core Method for the Weak Completion Semantics
with Skeptical Abduction

Emmanuelle-Anna Dietz Saldanha dietz@iccl.tu-dresden.de
International Center for Computational Logic
TU Dresden 01062 Dresden, Germany

Steffen Hölldobler sh@iccl.tu-dresden.de
International Center for Computational Logic
TU Dresden 01062 Dresden, Germany
and North-Caucasus Federal University
Stavropol, Russian Federation

Carroline Dewi Puspa Kencana Ramli carroline.ramli@gmail.com
International Center for Computational Logic
TU Dresden 01062 Dresden, Germany

Luis Palacios Medinacelli palacios.medinacelli@gmail.com

LRASC, Thales Research & Technology, Palaiseau

and LRI, CNRS, Université Paris-Saclay, France

Abstract

The Weak Completion Semantics is a novel cognitive theory which has been success-
fully applied to the suppression task, the selection task, syllogistic reasoning, the belief
bias effect, spatial reasoning as well as reasoning with conditionals. It is based on logic
programming with skeptical abduction. Each program admits a least model under the
three-valued Lukasiewicz logic, which can be computed as the least fixed point of an ap-
propriate semantic operator. The semantic operator can be represented by a three-layer
feed-forward network using the core method. Its least fixed point is the unique stable
state of a recursive network which is obtained from the three-layer feed-forward core by
mapping the activation of the output layer back to the input layer. The recursive network
is embedded into a novel network to compute skeptical abduction. This paper presents a
fully connectionist realization of the Weak Completion Semantics.

1. Introduction

In his seminal paper on the situation calculus, McCarthy (1963) formulated requirements
for systems to reason about actions and causality. Besides being able to specify properties
as formulas and to draw conclusions as logical consequences he suggested that the formal
descriptions of states should correspond as closely as possible to what people may reasonably
be presumed to know about them when deciding what to do. In order to meet this latter
requirement we need to study humans and their behaviour, which is usually done within
Cognitive Science.

c©2018 AI Access Foundation. All rights reserved.

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

In this paper, we are concerned with human reasoning tasks like, e.g., Byrne’s (1989) sup-
pression task, Wason’s (1968) selection task, or syllogistic reasoning (Khemlani & Johnson-
Laird, 2012). Firstly, we are interested in finding a declarative, computational logic ap-
proach adequately modeling these tasks. Secondly, we would like to embed the computa-
tional logic approach in a plausible connectionist or artificial neural network.

The Weak Completion Semantics (WCS) (Hölldobler, 2015) is a new cognitive theory
which has been successfully applied to various human reasoning tasks WCS is rooted in
the work by Stenning and van Lambalgen (2008) but corrects a technical bug by switch-
ing from three-valued Kripke-Kleene (Fitting, 1985) to three-valued Lukasiewicz (1920)
logic (Hölldobler & Kencana Ramli, 2009a).

To illustrate WCS consider an example from the suppression task. Suppose we know
that if she has an essay to write then she will study late in the library. Under WCS the
given conditional is represented by the logic program

P1 = {`← e ∧ ¬ab1, ab1 ← ⊥},

where ` and e denote that she will study late in the library and she has an essay to write,
respectively, and ab1 is an abnormality predicate, which in this case is assumed to be false
(considering the weak completion of the program). If we observe that she will study late in
the library, then according to Byrne (1989), 71% of the participants concluded that she has
an essay to write. This can be computed in WCS by abducing {e← >} given P1.

Assume additionally, that if she has a textbook to read then she will study late in the
library. Under WCS the two given conditionals are represented by the logic program

P2 = P1 ∪ {`← t ∧ ¬ab2, ab2 ← ⊥},

where t denotes that she has a textbook to read, and ab2 is another abnormality predicate,
which is also assumed to be false. If we observe again that she will study late in the library,
then the previously drawn conclusion is suppressed in that only 13% of the participants
concluded that she has an essay to write (Byrne, 1989). If we apply abduction in WCS,
then the observation can be explained by the two minimal explanations {e ← >} and
{t ← >}. Hence, reasoning credulously we would conclude that she has an essay to write.
Apparently, humans don’t do this; they appear to reason skeptically.

Programs like P1 and P2 as well as their weak completions admit a least model under
WCS which can be computed as the least fixed point of an appropriate semantic opera-
tor (Hölldobler & Kencana Ramli, 2009a). Semantic operators for logic programs were first
studied by Apt and van Emden (1982) in an attempt to capture the semantics of logic
programs. In particular, they showed that in classical two-valued logic the least model of
a definite logic program is identical to the least fixed point of a corresponding semantic
operator. In the meantime, various semantic operators for more expressive logics have been
studied.

In Cognitive Science semantic operators are interesting as they allow to construct a
model for a given program. This construction may be compared to other ways of generating
models like, for example, in the theory of mental models (Johnson-Laird & Byrne, 1991).
Suppose we extend the program P1 with the fact e← > representing the information that
she has an essay to write. The extended program corresponds to the case of modus ponens

52

A Core Method for the Weak Completion Semantics with Skeptical Abduction

in the suppression task (Byrne, 1989). Starting with the empty interpretation, i.e., the
interpretation where all relations are unknown, the semantic operator of WCS assigns true
to e and false to ab1 in its first application because of the fact e ← > and the negative
assumption ab1 ← ⊥, respectively. In its second application, the operator additionally
assigns true to ` because the condition of the rule

`← e ∧ ¬ab1

is true as soon as e is mapped to true and ab1 is mapped to false. In other words, `
being true is an immediate consequence of the rule given that its condition is true. Further
applications of the semantic operator do not alter the findings. A least fixed point has been
reached. Reasoning with respect to this least fixed point allows to conclude `, which is what
96% of the subjects in the suppression task do.

The semantic operator introduced by Apt and van Emden (1982) is continuous. Funa-
hashi (1989) has shown that continuous mappings can be approximated arbitrary well by
feed-forward networks. Combining both results, Hölldobler and Kalinke (1994) developed
the idea to compute semantic operators for propositional logic programs by feed-forward
networks. By connecting the output to the input layer, the feed-forward networks are
turned into recurrent ones. These recurrent networks compute iterated applications of the
semantic operators and, in particular, if they reach a stable state, then this state corre-
sponds to the least fixed point of the semantic operator. In other words, the connectionist
networks compute the least models of the given programs. The idea was later extended
to first-order programs and called core method for connectionist model generation using
recurrent networks with feed-forward core (Bader & Hölldobler, 2006).

The first question to be considered in this paper is: How can the semantic operator
associated with WCS be represented and computed within a fully connectionist setting? This
question will be answered in Section 3. But the solution is not just an extension of the
core method to three-valued Lukasiewicz (1920) logic, but rather we extend the network to
determine whether it has reached a stable state, to consider additional facts and assumptions
in order to explain a given observation, to check whether a given set of integrity constraints
is violated, and to eliminate stable states that may have arisen from previous reasoning
episodes.

However, even with such a network we cannot solve all reasoning episodes of the sup-
pression task. As discussed before, we have to add skeptical abduction. Unfortunately,
all known connectionist solutions which we are aware of handle credulous abduction in
classical two-valued logic (Ray & d’Avila Garcez, 2006; d’Avila Garcez, Gabbay, Ray, &
Woods, 2007). Hence, the second question to be considered in this paper is: How can skep-
tical abduction be integrated into the connectionist realization of the core method? This
question will be answered in Section 4. In particular, we will use McCulloch-Pitts (1943)
networks to sequentially generate all possible explanations. Possible explanations are for-
warded to the core network developed in Section 3. As soon as an explanation is detected,
it will be stored. Once all possible explanations are tested, the skeptical conclusions will be
computed.

In order to discuss the solutions to the two open research questions, WCS is presented in
detail in the following Section 2. In particular, we will define logic programs, interpretations

53

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

and models, the weak completion semantics, its associated semantic operator, integrity
constraints, and abductive frameworks.

Finally, in Section 5 we discuss our solutions and identify future research directions.

2. Weak Completion Semantics

In this section we describe the general notation that we use through the paper based on
Lloyd’s (1984) and Hölldobler’s (2009) notation.

2.1 Logic Programs

An atom is an atomic proposition. A literal is either an atom A or its negation ¬A. A
(propositional logic) program P is a finite set of clauses (or rules) of the form A ← Body,
where the head A is an atom and Body is either a non-empty conjunction of literals, >
(denoting truth), or ⊥ (denoting falsehood). Clauses of the form A ← > and A ← ⊥ are
called (positive) facts and (negative) assumptions, respectively. Let atoms(P) denote the
set of all atoms occurring in the program P. An atom A is defined in P iff P contains a
clause of the form A ← Body; otherwise A is said to be undefined. The set of all atoms
that are defined in P is denoted by def (P). The set of all atoms that are undefined in P,
i.e. atoms(P) \ def (P), is denoted by undef (P).

As examples consider the programs

P3 = {a← b, a← c, c← ⊥}

and
P4 = {c← >, c← ⊥}.

We obtain
atoms(P3) = {a, b, c}, def (P3) = {a, c}, undef (P3) = {b}

and
atoms(P4) = def (P4) = {c}, undef (P4) = ∅.

Consider the following transformation for a given program P:

1. For all A ∈ def (P), replace all clauses of the form A ← Body1, . . . , A ← Bodyn
occurring in P by A← Body1 ∨ . . . ∨ Bodyn.

2. Replace all occurrences of ← by ↔.

The resulting set of equivalences is called the weak completion of P (Hölldobler & Kencana
Ramli, 2009a), denoted by wcP.

Returning to the examples P3 and P4 we obtain

wcP3 = {a↔ b ∨ c, c↔ ⊥}

and
wcP4 = {c↔ >∨⊥}.

One should observe that the weak completion differs from the completion defined by Clark
(1978) in that undefined atoms are not identified with falsehood. In particular, the com-
pletion of P3 is the set

wcP3 ∪ {b↔ ⊥}.

54

A Core Method for the Weak Completion Semantics with Skeptical Abduction

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U > U
⊥ ⊥ U >

Table 1: Truth tables for the three-valued Lukasiewicz logic.

2.2 Interpretations and Models

A (three-valued) interpretation I is a mapping from the set of formulas (atoms, literals,
clauses, programs, equivalences) into the set {>,⊥,U} of truth values. It is represented
by 〈I>, I⊥〉 with the understanding that I> and I⊥ are the sets of all atoms mapped to >
and ⊥, respectively. Hence, I> and I⊥ are disjoint and A 6∈ (I> ∪ I⊥) if and only if
I(A) = U. The meaning of the connectives ¬, ∧, ∨, ←, and ↔ is defined with respect to
the Lukasiewicz (1920) (L-) logic and is given in Table 1.

One should observe that in contrast to two-valued logic, a ← b is not semantically
equivalent to a ∨ ¬b under L-logic: For interpretation I, where I(a) = I(b) = U, we find
I(a ∨ ¬b) = U and I(a ← b) = >. However, this is different under Kripke-Kleene logic
(Kleene, 1952): For interpretation I, where I(a) = I(b) = U, we find I(a ∨ ¬b) = U and
I(a← b) = U.

Returning to P3 again, we observe that the interpretation

I1 = 〈{b}, {a}〉

maps P3 to ⊥ because I1(b) = >, I1(a) = ⊥, and, consequently, I1(a ← b) = ⊥. On the
other hand, the interpretation

I2 = 〈{a, b}, {c}〉

maps P3 to > because I2(a← b) = I2(a← c) = I2(c← ⊥) = >.

An interpretation I for a formula F is said to be a model for F if and only if I(F) = >.
Hence, I2 is a model for P3, and so are

I3 = 〈{a, b, c}, ∅〉, I4 = 〈∅, {c}〉, I5 = 〈∅, ∅〉.

Hölldobler and Kencana Ramli (2009a) have shown that each logic program as well as
its weak completion admits a least model with respect to the knowledge-ordering1 under
 L-logic. It is defined as the intersection of all models for a given program, where

〈I>1 , I>1 〉 ∩ 〈I>2 , I⊥2 〉 = 〈I>1 ∩ I>2 , I⊥1 ∩ I⊥2 〉.

Thus, I5 is the least model for P3, whereas I4 is the least model for wcP3 under L-logic
(least L-model). Likewise, 〈{c}, ∅〉 is the least model for wcP4.

1. There are two common partial orderings on truth values, the truth- and the knowledge-ordering. In the
former, the truth values are ordered such that ⊥ ≤ U ≤ >, whereas in the latter U ≤ > and U ≤ ⊥
(e.g. Ruiz and Minker, 1995).

55

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

2.3 Weak Completion Semantics

In the sequel, let MP denote the least L-model of the program P. We define logical
consequence with respect to MP , i.e.,

P |=wcs F if and only if MP(F) = >,

where P is a program and F a formula. This is called the weak completion semantics or
WCS for short.

Returning to the examples P3 and P4 again, we find

P3 |=wcs ¬c, P3 6|=wcs a ∨ ¬a, and P4 |=wcs c.

The last example shows that under WCS positive facts are considered to be stronger than
negative assumptions. This is also the reason why clauses of the forms c ← > and c ← ⊥
are called facts and assumptions, respectively.

2.4 A Semantic Operator

The least L-model MP of a program P can be computed with the help of a semantic
operator ΦP which was first introduced by Stenning and van Lambalgen (2008). Let I be
an interpretation. The application of ΦP to I yields the interpretation 〈J>, J⊥〉, where

J> = {A | there exists a clause A← Body ∈ P and I(Body) = >},
J⊥ = {A | there exists a clause A← Body ∈ P and

for all A← Body ∈ P we find that I(Body) = ⊥}.

Kencana Ramli (2009) and Hölldobler (2009a) have shown that ΦP has a least fixed point
which is identical to MP and can be computed by iterating ΦP starting with the empty
interpretation.

Returning to the examples P3 and P4 we obtain

ΦP3(〈∅, ∅〉) = 〈∅, {c}〉 = ΦP3(〈∅, {c}〉) =MP3

and
ΦP4(〈∅, ∅〉) = 〈{c}, ∅〉 = ΦP4(〈{c}, ∅〉) =MP4 .

Consider an extension of P1 where besides knowing that if she has an essay to write then
she will study late in the library we also know that she has an essay to write:

P5 = {`← e ∧ ¬ab1, ab1 ← ⊥, e← >}.

We obtain

ΦP5(〈∅, ∅〉) = 〈{e}, {ab1}〉,
ΦP5(〈{e}, {ab1}〉 = 〈{e, `}, {ab1}〉 = ΦP5(〈{e, `}, {ab1}〉 = MP5 ,

and conclude that she will study late in the library :

P5 |=wcs `.

56

A Core Method for the Weak Completion Semantics with Skeptical Abduction

As another example consider
P6 = {p← q}.

We obtain
ΦP6(〈∅, ∅〉) = 〈∅, ∅〉 =MP6 .

The empty interpretation 〈∅, ∅〉 is the least L-model of P6 computed by ΦP6 in accordance
with the results presented by Hölldobler and Kencana Ramli (2009a). However, it is not a
model under Kripke-Kleene logic (Kleene, 1952), where U↔ U = U. In fact, under Kripke-
Kleene logic programs may not have least models with respect to the knowledge-ordering.
In particular, P6 has two minimal models under Kripke-Kleene logic, viz. 〈{p, q}, ∅〉 and
〈∅, {p, q}〉, neither of which is computed by ΦP6 . The corresponding results by Stenning
and van Lambalgen (2008) are wrong.

2.5 Integrity Constraints

An integrity constraint is an expression of the form U← Body, where Body is a conjunction
of literals. An interpretation I violates a finite set IC of integrity constraints if and only if IC
contains an integrity constraint U ← Body with I(Body) = >. Given an interpretation I
and a set of integrity constraints IC, I satisfies IC if and only if all clauses in IC are true
under I.

2.6 Abductive Frameworks

A (three-valued) abductive framework 〈P,AP , IC, |=wcs〉 consists of a program P, a finite set

AP = {A← > | A ∈ undef (P)} ∪ {A← ⊥ | A ∈ undef (P)}

of facts and assumptions called abducibles, a finite set IC of integrity constraints, and the
logical consequence relation |=wcs.

An observation O is a non-empty set of literals. E ⊆ AP is an explanation for O given
P and IC if and only if P ∪ E |=wcs O ∪ IC. Sometimes, only minimal explanations are
considered. A formula F follows skeptically from P, IC, and O if and only if O can be
explained, and for all explanations E for O it holds that P∪E |=wcs F . F follows credulously
from P, IC, and O if and only if there exists an explanation E for O such that P∪E |=wcs F .

Returning to the example P1 = {`← e ∧ ¬ab1, ab1 ← ⊥} of the introductory Section 1
we learn that

def (P1) = {`, ab1}, undef (P1) = {e},
and, hence,

AP1 = {e← >, e← ⊥}.
Let IC = ∅ and O = {`}. There are four possible subsets of AP1 , viz.

E0 = ∅, E1 = {e← >}, E2 = {e← ⊥}, E3 = AP1 .

Combining these subsets with P1 and computing the corresponding least L-models we obtain

MP1∪E0 = 〈∅, {ab1}〉,
MP1∪E1 = 〈{e, `}, {ab1}〉 = MP5 ,
MP1∪E2 = 〈∅, {ab1, e, `}〉,
MP1∪E3 = 〈{e, `}, {ab1}〉 = MP1∪E1 .

57

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

All models satisfy IC, whereas only the models MP1∪E1 and MP1∪E3 assign > to `. Thus,
E1 and E3 are explanations for O. Because E1 ⊂ E3, the explanation E1 is minimal. We
conclude (skeptically as well as credulously) that she has an essay to write.

It is no coincidence that MP1∪E1 =MP1∪E3 . A pair of clauses of the form c ← > and
c ← ⊥ is said to be complementary. A set of clauses is said to be complementary if it
contains a complementary pair. In the example discussed in the previous paragraph, E3 is
complementary with complementary pair e← > and e← ⊥.

Proposition 1. Let 〈P,AP , IC, |=wcs〉 be an abductive framework, O an observation, and
E ⊆ AP an explanation for O which contains a complementary pair c ← > and c ← ⊥.
Then, E ′ = E \ {c← ⊥} is also an explanation for O and MP∪E =MP∪E ′.

Proof If E contains c ← > and c ← ⊥, then c ∈ undef (P). Hence, wc(P ∪ E) contains
the equivalence c ↔ > ∨ ⊥. This is semantically equivalent to c ↔ >, which is the
corresponding equivalence contained in wc(P ∪ E ′) where E ′ = E \ {c ← ⊥}. The result
follows from the observation that all other equivalences occurring in wc(P∪E) and wc(P∪E ′)
are identical.

As an immediate consequence of Proposition 1, we learn that explanations can be re-
stricted to non-complementary ones.

Proposition 2. Given n undefined atoms in P, there are 22n subsets of AP and 3n non-
complementary subsets of AP .

Proof As |AP | = 2× n, it follows straightforwardly that there are 22n subsets of AP . It
can be easily proven by induction on n that there are 3n non-complementary subsets of AP .
The case n = 1 has been discussed in the example above. Suppose that the result holds for
n, the program P has n+ 1 undefined atoms, and c is one of the undefined atoms occurring
in P. Let A′P = AP \ {c ← >, c ← ⊥}. By the induction hypothesis A′P has 3n non-
complementary subsets. To each of the subsets we can add either ∅, {c← >}, or {c← ⊥}
to obtain the non-complementary subsets of AP . Altogether, these are 3 × 3n = 3n+1

subsets. An application of the induction principle completes the proof.

Considering the example P2 = P1 ∪ {`← t ∧ ¬ab2, ab2 ← ⊥} of the Section 1 we learn
that

def (P2) = {`, ab1, ab2}, undef (P2) = {e, t},

n = 2, and,

AP2 = {e← >, t← >, e← ⊥, t← ⊥}.

Let IC = ∅ and O = {`}. There are nine non-complementary subsets of AP2 , viz.

E0 = ∅, E1 = {e← >},
E2 = {e← ⊥}, E3 = {t← >},
E4 = {t← ⊥}, E5 = {e← >, t← >},
E6 = {e← >, t← ⊥}, E7 = {e← ⊥, t← >},
E8 = {e← ⊥, t← ⊥}.

58

A Core Method for the Weak Completion Semantics with Skeptical Abduction

Combining these subsets with P2 and computing the corresponding least L-models we obtain

MP2∪E0 = 〈∅, {ab1, ab2}〉, (1)

MP2∪E1 = 〈{e, `}, {ab1, ab2}〉, (2)

MP2∪E2 = 〈∅, {e, ab1, ab2}〉,
MP2∪E3 = 〈{t, `}, {ab1, ab2}〉, (3)

MP2∪E4 = 〈∅, {t, ab1, ab2}〉,
MP2∪E5 = 〈{e, t, `}, {ab1, ab2}〉, (4)

MP2∪E6 = 〈{e, `}, {t, ab1, ab2}〉, (5)

MP2∪E7 = 〈{t, `}, {e, ab1, ab2}〉, (6)

MP2∪E8 = 〈∅, {e, t, ab1, ab2}〉. (7)

There are five explanations, viz. E1, E3, E5, E6, E7, with E1 and E3 being the minimal
ones. We cannot conclude skeptically that she has an essay to write, because onlyMP2∪E1
maps e to >, whereas MP2∪E3 maps e to U. This is in line with the findings presented
by Byrne (1989) and shows that skeptical abduction is needed to adequately model the
suppression task. We will come back to this example in Subsection 4.2.

3. A Core Method for the Computation of Least L-Models

Hölldobler, Kalinke, Hizler and Seda presented a connectionist model generator for proposi-
tional logic programs using recurrent networks with a feed-forward core, i.e, a feed-forward
network consisting of input, hidden and output layer, of logical threshold units (Hölldobler
& Kalinke, 1994; Hitzler, Hölldobler, & Seda, 2004). The input and output layers of the
feed-forward core were used to represent interpretations. The feed-forward network itself
was used to compute the application of a semantic operator associated with a given logic
program. This operator is applied to the interpretation given by the activation pattern of
the input layer at time point t and yields the interpretation given by the activation pattern
of the output layer at time point t + 2, i.e., the feed-forward network needs two time steps
to propagate the activation pattern of the input layer to the output layer. The recurrent
connections between the output and the input layer of the feed-forward core were used to
iterate the application of the semantic operator. If a stable state was reached then the acti-
vation pattern of the input (or output) layer represent the least fixed point of the semantic
operator. The connectionist model generator was later called the core method (Bader &
Hölldobler, 2006).

The core method has been extended and applied to a variety of programs and log-
ics. It was applied to reflexive reasoning (Hölldobler, Kalinke, & Wunderlich, 2000). The
logical threshold units can be replaced by squashing units (d’Avila Garcez, Zaverucha, &
de Carvalho, 1997; Bader, 2009). Consequently, the semantic operator computed by the
feed-forward core can be learned by back-propagation. Modal, intuitionistic, and temporal
logic programs were considered (d’Avila Garcez, Lamb, & Gabbay, 2002, 2003, 2009). The
core method was extended to first-order logic programs (Hölldobler, Kalinke, & Störr,
1999; Bader, Hitzler, & Hölldobler, 2008) based on the idea that feed-forward connectionist
networks can approximate almost all functions arbitrarily well (Hornik, Stinchcombe, &

59

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

u1 ω u2

u3

u1

•
ω u2

u3

Figure 1: The output v of the unit u1 is multiplied with the weight ω and received as the
input i of the unit u2 if the modifier (or output) m of unit u3 is 1 (left; positively
modified connection) or 0 (right; negatively modified connection), respectively.

White, 1989; Funahashi, 1989) and, hence, they can also approximate the semantic opera-
tors associated with first-order logic programs.

Kalinke (1994) has applied the core method to propositional logic programs under the
three-valued Kripke-Kleene logic used by Fitting (1985). In particular, her feed-forward
cores compute a semantic operator introduced by Fitting. This operator differs from the
ΦP operator presented in Subsection 2.4 in that in the definition of J⊥ the condition ’there
exists a clause A← Body’ is omitted; consequently, Fitting’s operator computes a minimal
model for the completion of a given program. Seda and Lane (2004) showed that the
core method can be extended to many-valued logic programs using again the three-valued
Kripke-Kleene logic and Fitting’s operator. In the sequel, the approaches by Kalinke as
well as by Seda and Lane are modified in order to compute ΦP .

3.1 Some Preliminaries about Connectionist Systems

We assume the reader to be familiar with connectionist networks as, for example, defined by
Feldman and Ballard (1982). In particular, we will use McCulloch-Pitts (1943) networks of
threshold units and multi-layer feed-forward networks (Rumelhart, Hinton, & McClelland,
1986). We sometimes use modified connections of the following form: In case of a positively
modified connection, the input i = wv of a unit is only received if the modifier m is 1, where
v is the output of the sending unit and w is the weight of the connection:

i =

{
wv if m = 1,
0 if m = 0.

In case of a negatively modified connection, the input i = wv is only received if the modifier m
is 0:

i =

{
0 if m = 1,
wv if m = 0.

The modifier m is the output of another unit. Figure 1 shows the graphical representation
of a positively and a negatively modified connection.

3.2 A Translation Algorithm

Given a program P, the following algorithm translates P into a feed-forward core NP . Let
m = |atoms(P)| be the number of propositional variables occurring in P. Without loss of

60

A Core Method for the Weak Completion Semantics with Skeptical Abduction

generality, we may assume that the variables are denoted by natural numbers from [1,m].
Let ω ∈ R+.

1. The input and output layer is a vector of binary threshold units of length 2m repre-
senting interpretations. Let i ∈ [1,m]. The 2i − 1-st unit in the layers, denoted by
i>, is active if and only if the i-th variable is mapped to >. The 2i-th unit in the
layers, denoted by i⊥, is active if and only if the i-th variable is mapped to ⊥. Both,
the 2i− 1-st and the 2i-th unit, are passive if and only if the i-th variable is mapped
to U. The case where the 2i− 1-st and the 2i-th unit are active is not allowed.

The threshold of each unit occurring in the input layer is set to 1
2 . The threshold of

each 2i − 1-st unit occurring in the output layer is set to ω
2 . The threshold of each

2i-th unit occurring in the output layer is set to max{ω2 , lω−
ω
2 }, where l = |def (i,P)|

is the number of clauses with head i in P.

In addition, two units representing > and ⊥ are added to the input layer. The
threshold of these units is set to −1

2 .

2. For each fact A← > occurring in P, do the following:

(a) Add two binary threshold units h> and h⊥ to the hidden layer.
Set the threshold of both units to ω

2 .

(b) Connect h> to the unit A> in the output layer.
Connect h⊥ to the unit A⊥ in the output layer.

(c) Connect the unit > in the input layer to h>.

3. For each assumption A← ⊥ occurring in P, do the following:

(a) Add two binary threshold units h> and h⊥ to the hidden layer.
Set the threshold of both units to ω

2 .

(b) Connect h> to the unit A> in the output layer.
Connect h⊥ to the unit A⊥ in the output layer.

(c) Connect the unit ⊥ in the input layer to h⊥.

4. For each clause of the form A← B1 ∧ . . . ∧Bk occurring in P, do the following:

(a) Add two binary threshold units h> and h⊥ to the hidden layer.

(b) Connect h> to the unit A> in the output layer.
Connect h⊥ to the unit A⊥ in the output layer.

(c) For each Bj , 1 ≤ j ≤ k, do the following.

i. If Bj is an atom, then
connect the unit B>j in the input layer to h> and

connect the unit B⊥j in the input layer to h⊥.

ii. If Bj is the literal ¬B, then
connect the unit B⊥ in the input layer to h> and
connect the unit B> in the input layer to h⊥.

61

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

1
2ab>2

1
2ab⊥2

1
2t>

1
2t⊥

−1
2⊥

−1
2>

3ω
2

ω
2

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

3ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

ω
2 ab>2

ω
2 ab⊥2

ω
2 t>

ω
2 t⊥

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

Figure 2: The cores NP1 (left), NP2 (middle), and NP5 (right). All connections have the
weight ω. The units representing > and ⊥ have been added at the top and the
bottom of the input layer.

(d) Set the threshold of h> to kω − ω
2 , and the threshold of h⊥ to ω

2 .

5. Set the weights associated with all connections to ω.

As examples reconsider P1, P2, and P5 discussed in the introduction as well as in
Subsection 2.4. The corresponding networks are shown in Figure 2.

3.3 Properties

Proposition 3. For each program P, there exists a core NP of binary threshold units
computing ΦP .

Proof Let P be a program, NP the core obtained by the translation algorithm, and
assume that the input layer is activated at time t such that it represents an interpretation
I. At time t + 1 the following units of the hidden layer become active:

62

A Core Method for the Weak Completion Semantics with Skeptical Abduction

• An h>-unit representing A ← > becomes active, because the unit representing > in
the input layer has negative threshold, receives no input and, thus, is active, the sum
of the weighted input of the unit h> is ω and is larger than its threshold of ω

2 .

• An h>- unit representing A ← B1 ∧ . . . ∧ Bk becomes active if and only if all units
representing B1, . . . , Bk in the input layer are active, i.e., if I(B1) = . . . = I(Bk) = >,
and, thus, the sum of the weighted input of h> is kω and is greater than its threshold
of kω − ω

2 .

• An h⊥-unit representing A ← ⊥ becomes active, because the unit representing ⊥ in
the input layer has negative threshold, receives no input and, thus, is active, the sum
of the weighted input of the unit h⊥ is ω and is larger than its threshold of ω

2 .

• An h⊥-unit representing A← B1 ∧ . . .∧Bk in the hidden layer becomes active if and
only if at least one unit representing the negation of B1, . . . , Bk in the input layer is
active, i.e., if I(¬B1)∨ . . .∨ I(¬Bk) = >, and, thus, the sum of the weighted input of
h⊥ is greater or equal than ω, which is greater than its threshold of ω

2 .

At time t + 2 the following units in the output layer become active:

• A unit representing A becomes active if and only if there is an active h>-unit repre-
senting A← Body in the hidden layer at time t+1 and, thus, the sum of the weighted
input of the unit representing A is larger or equal than ω, which is larger than its
threshold of ω

2 .

• A unit representing ¬A becomes active if and only if all h⊥-units representing a clause
with head A in the hidden layer are active at time t+ 1 and there is at least one such
h⊥ unit. Suppose l = |def (A,P)|, then l ≥ 1 and each of the l h⊥-units must be active
at time t+ 1. In this case, the sum of the weighted input of the unit representing ¬A
is lω which is larger than its threshold of max{ω2 , lω −

ω
2 }.

Hence, at time t + 2 the activation pattern of the output layer represents ΦP(I).

Using the techniques presented by d’Avila Garcez et al. (1997) and Bader (2009) the
logical threshold units can be replaced by sigmoidal ones such that the core can be trained
by back-propagation.

Given a program P and its core NP , a recurrent network N�
P can be constructed by

connecting each unit in the output layer to its corresponding unit in the input layer with
weight 1. In Figure 3 the construction is illustrated for the programs P1 and P5.

Proposition 4. For each program P, the corresponding recurrent network N�
P initialized

by the empty interpretation will converge to a stable state which corresponds to the least
fixed point of ΦP .

Proof The result follows immediately from the construction of the recurrent network
using Proposition 3 and that ΦP has a least fixed point which can be computed by iterating
ΦP starting with the empty interpretation, as has been shown by Hölldobler and Kencana
Ramli (2009a).

63

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

Figure 3: The recurrent networks N�
P1

(left) and N�
P5

(right). All dashed connections have
the weight 1; all other connections have the weight ω.

In Figure 4 the computation is exemplified using the program P5. Starting at t = 0
with the empty network as shown in Figure 3, at t = 1 the units > and ⊥ in the input layer
become active. At t = 2, the units in the hidden layer which are corresponding to the fact
e ← > and the assumption ab1 ← ⊥ become active. At t = 3 the units e> and ab⊥1 in the
output layer become active. This activation is propagated to the input layer at t = 4. At
t = 5 the h>-unit of the hidden layer and corresponding to the clause `← e∧¬ab1 becomes
active, which leads to the activation of the unit `> in the output layer at t = 6. Finally at
t = 7 this is propagated to the input layer leading to a stable state which represents the
least L-model 〈{e, `}, {ab1}〉 of P5 as the activation pattern of the input or output layer.

Figure 5 shows the computation of the least L-model of the program P1. Starting at
t = 0 with the empty network as shown in Figure 2, at t = 1 the units > and ⊥ in the input
layer become active. At time t = 2, the h⊥-unit representing ab1 ← ⊥ in the hidden layer
becomes active. At t = 3 the unit ab⊥1 in the output layer becomes active. At t = 4 this
is propagated to the input layer leading to the unique stable state representing the least
 L-model 〈∅, {ab1}〉 of P1 as the activation pattern of the input or output layer.

3.4 Clamping Units of the Output Layer

Reconsider the program P1. Suppose we are making the observation O = {`}. This obser-
vation cannot be explained by the least L-model 〈∅, {ab1}〉 of P1 or, equivalently, by the
stable state of the corresponding recurrent network N�

P1
shown in Figure 5. As discussed in

Subsection 2.6, the two minimal and non-complementary candidates for explanations for O
with respect to the abductive framework 〈P1,AP1 , ∅, |=wcs〉 are {e ← >} and {e ← ⊥}. In
order to test whether these candidate sets explain O we could construct recurrent networks

64

A Core Method for the Weak Completion Semantics with Skeptical Abduction

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 1

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 2

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 3

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 4

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 5

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 6

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 7

Figure 4: The computation of the unique stable state for the recurrent network N�
P5

.

65

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 1

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 2

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 3

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

t = 4

Figure 5: The computation of the unique stable state for the recurrent network N�
P1

, where
active units are depicted in grey.

66

A Core Method for the Weak Completion Semantics with Skeptical Abduction

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

3ω
2

3ω
2

ω
2

ω
2

ω
2

1
2 e>

1
2 e⊥

1
2 `>

1
2 `⊥

1
2 ab>1

1
2 ab⊥1

ce>

1
2e>

1
2e⊥

1
2`>

1
2`⊥

1
2ab>1

1
2ab⊥1

−1
2⊥

−1
2>

3ω
2

ω
2

ω
2

ω
2

ω
2 e>

ω
2 e⊥

ω
2 `>

ω
2 `⊥

ω
2 ab>1

ω
2 ab⊥1

ce⊥

Figure 6: The stable states of the recurrent network for P1 with externally clamping the
unit e> in the output layer (left) and the unit e⊥ in the output layer (right).

for P5 = P1 ∪ {e← >} and P1 ∪ {e← ⊥} and check whether their stable states contain an
active unit representing ` in their input and output layers.

But, instead of adding hidden layer units and their connections for these candidate sets
of facts to the network representing P1 we could simply clamp the units e> and e⊥ in
the output layer. Figure 6 shows the computations of the networks, where the units e>

and e⊥ in the output layer are externally clamped via the units ce> and ce⊥ , respectively.
Now, the stable states encoding the least L-models 〈{e, `}, {ab1}〉 of (P1 ∪ {e ← >}) and
〈∅, {ab1, e, `}〉 of P1 ∪ {e ← ⊥}) are computed. One should observe that the units e> and
e⊥ are not simultaneously clamped. Due to Proposition 1 possible explanations are non-
complementary and, thus, cannot contain a pair e ← >, e ← ⊥. This is also in line with
the representation 〈I>, I⊥〉 of interpretations, where it is required that I> ∩ I⊥ = ∅.

The units ce> and ce⊥ are self-excitatory such that they remain active once they have
been externally activated. This external activation will be provided by the network NA
discussed in Section 4.1. As discussed in Section 3.5 the self-excitatory connections are in
fact modified such that the external activation can be withdrawn once the stable state has
been computed.

3.5 Eliminating Stable Coalitions

Clamping units of the output layer allows to test candidate sets for explanations sequentially
by, for example, first clamping the unit e> in the output layer of N�

P1
, waiting until a stable

state has been reached, withdrawing the external activation for e> and clamping the unit e⊥

thereafter.

67

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

1
2p>

1
2p⊥

1
2r>

1
2r⊥

1
2q>

1
2q⊥

−1
2⊥

−1
2>

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2 p>

ω
2 p⊥

ω
2 r>

ω
2 r⊥

ω
2 q>

ω
2 q⊥

cr>

1
2p>

1
2p⊥

1
2r>

1
2r⊥

1
2q>

1
2q⊥

−1
2⊥

−1
2>

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2 p>

ω
2 p⊥

ω
2 r>

ω
2 r⊥

ω
2 q>

ω
2 q⊥

cr>

Figure 7: The stable state of the network N�
P6

if the unit r> in the output layer is externally
clamped (left) and with the external activation withdrawn again (right). The
connection from the unit cr> to the unit r> has the weight ω.

However, there is the problem that a clamped unit may lead to a stable coalition which
persists even if the external activation is withdrawn. As an example consider the program

P6 = {p← r, p← q, q ← p}

with wcP6 = 〈∅, ∅〉. One should observe that P6 contains a (positive) cycle: p depends on
q (because of p ← q) and q depends on p (because of q ← p). The recursive network N�

P6

corresponding to P6 is shown in Figure 7. If the unit r> in the output layer is exter-
nally clamped using unit cr> , then the stable state of N�

P6
represents the interpretation

〈{r, p, q}, ∅〉, which is the least L-model of (P6 ∪ {r ← >}).
If this external activation is withdrawn, then the stable state of the recurrent network

represents the interpretation 〈{p, q}, ∅〉, which is not the least L-model of P6. The units
representing p and q are forming a stable coalition which was triggered by the previous
external activation of the unit representing r> in the output layer. If we would continue by
externally clamping the unit r⊥ in the output layer, then the stable state of the network will
represent the interpretation 〈{p, q}, {r}〉, which is not the least L-model of (P6 ∪{r ← ⊥}).

Thus, in order to eliminate stable coalitions after some external activation has been
withdrawn all units occurring in the input layer (including the units > and ⊥) must be
externally deactivated for three time steps. This can be achieved by (inhibitory) connections
with weight −2. After three time steps, all units of the recurrent network will be passive
and the external inhibition can be withdrawn. This is exemplified in Figure 8. At t = 1
(top left) all units in the input layer become passive as the sum of their weighted inputs is

68

A Core Method for the Weak Completion Semantics with Skeptical Abduction

less or equal than −1. At t = 2 (top right) all units in the hidden layer become passive as
the sum of their weighted inputs is zero. Likewise, at t = 3 (bottom) all units in the output
layer become passive. The inhibitory connections from the unit i to the units of the input
layer have weight −2 and are depicted with a bullet at their tip.

Likewise, the unit cr> must be deactivated. This can be done by negatively modifying
the self-excitatory connection from cr> to itself by the unit i (see also Figure 11).

3.6 Detecting Stable States

Let N�
P be the recurrent neural network corresponding to the program P. We need to

determine whether N�
P has reached a stable state. To this end we construct a neural

network as follows. Let n be the number of units occurring in N�
P .

1. For each unit u occurring in N�
P do the following.

(a) Add a unit u′ with threshold 1
2 and connect u to u′ with weight 1.

(b) Connect u and u′ with weight −1 to a new unit v⊥ with threshold −1
2 .

(c) Connect u and u′ with weight 1 to a new unit v> with threshold 3
2 .

(d) Connect v⊥ and v> with weight 1 to a new unit w with threshold 1
2 .

2. Connect the n w-units generated in the first step with weight 1 to a new unit s with
threshold n− 1

2 .

For each unit u occurring in N�
P the unit u′ acts as a copy in the sense that at time

t + 1 the unit u′ is in the same state as u at time t. The unit v⊥ becomes active if and
only if both, u′ and u, are passive at t and t + 1, respectively. In this case, the sum of the
weighted input of v⊥ is 0, which is above its threshold of −1

2 . The unit v> becomes active
if and only if u′ and u are active at time t and t + 1, respectively. In this case, the sum of
the weighted input of v> is 2, which is above its threshold of 3

2 . The unit w becomes active
if and only if v⊥ is active or v> is active. In this case, the sum of the weighted input of w
is 1, which is above its threshold of 1

2 ; unit u has not changed its state between t and t+ 1.
Finally, the unit s becomes active if and only if no unit occurring in N�

P has changed its
state between t and t + 1. In this case, the sum of the weighted input received by the unit
s is n and is above its threshold of n− 1

2 . The network is exemplified in Figure 9.

3.7 Checking Integrity Constraints

If the least L-model MP of a program P has been computed, i.e., if a stable state of the
corresponding recurrent network N�

P has been reached, then we may be forced to check
whether the formulas occurring in a set IC of integrity constraints are satisfied underMP .
This can be done by a three-layered feed-forward network as follows. Let ω ∈ R+.

1. The input layer of the new network is the output layer of the N�
P . The output layer

consists of a single unit v with threshold ω
2 .

2. For each integrity constraint of the form U ← B1 ∧ . . . ∧ Bk occurring in IC add a
binary threshold unit u with threshold kω − ω

2 to the hidden layer. Connect u to v
with weight w.

69

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

1
2p>

1
2p⊥

1
2r>

1
2r⊥

1
2q>

1
2q⊥

−1
2⊥

−1
2>

i

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2 p>

ω
2 p⊥

ω
2 r>

ω
2 r⊥

ω
2 q>

ω
2 q⊥

t = 1t = 1

1
2p>

1
2p⊥

1
2r>

1
2r⊥

1
2q>

1
2q⊥

−1
2⊥

−1
2>

i

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2 p>

ω
2 p⊥

ω
2 r>

ω
2 r⊥

ω
2 q>

ω
2 q⊥

t = 2t = 2

1
2p>

1
2p⊥

1
2r>

1
2r⊥

1
2q>

1
2q⊥

−1
2⊥

−1
2>

i

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2 p>

ω
2 p⊥

ω
2 r>

ω
2 r⊥

ω
2 q>

ω
2 q⊥

t = 3t = 3

Figure 8: The network shown in Figure 7 after the external activation of the unit represent-
ing r in the output layer is withdrawn and the external inhibition of the units in
the input layer is clamped for three time steps.

70

A Core Method for the Weak Completion Semantics with Skeptical Abduction

u1

1
2

u′1

−1
2v⊥1

3
2 v>1

1
2

w1

. . .

. . .

. . .

un

1
2

u′n

−1
2v⊥n

3
2 v>n

1
2

wn

n− 1
2

s

Figure 9: Detecting stable states in a network with n units.

3. Connect the units representing the literals Bi, 1 ≤ i ≤ k, in the input layer to u with
weight w.

The unit u in the hidden layer representing an integrity constraint U ← B1 ∧ . . . ∧ Bk

will become active if and only if all units representing the literals Bi, 1 ≤ i ≤ k, in the input
layer are active. In this case, the sum of the weighted input received by u is kω, which is
larger than its threshold of kω− ω

2 . The output unit v will become active if and only if one
hidden layer unit becomes active. In this case, the sum of the weighted input of v is larger
than ω, which is larger than its threshold of ω

2 . This is exemplified in Figure 10 using the
program P6 and assuming the integrity constraint IC = {U← q ∧ r}.

3.8 Checking Observations

A similar construction as in the previous subsection can be used to check whether all obser-
vations can be explained by the least L-model MP of a program P. Let O = {L1, . . . , Lk}
be the observation and ω ∈ R+. Construct the following two-layered feed-forward network.

1. The input layer is the output layer of the recurrent neural network for P. The output
layer consists of a single unit o with threshold kω − ω

2 .

2. Connect the units representing Li, 1 ≤ i ≤ k, in the input layer to o with weight ω.

The unit o will become active if and only if all units representing the literals Li, 1 ≤ i ≤ k,
in the input layer are active. In this case, the sum of the weighted input received by o is
kω, which is larger than its threshold of kω − ω

2 . In other words, o will become active if
and only if all observations can be explained. This can be checked as soon as the network
corresponding to the program has reached a stable state. It takes one time step to compute
the value of o. Figure 10 illustrates the case for the program P6 and the observation
O = {p, r}.

71

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

p>

p⊥

r>

r⊥

q>

q⊥

3ω
2

3ω
2

3ω
2

o

ω
2 v

Figure 10: Checking the integrity constraint IC = {U ← q ∧ r} and the observation O =
{p, r} with respect to the program P6. All connections have the weight ω. If the
units p>, r>, and q> in the output layer of N�

P6
are active, then IC is violated,

but O is explained.

3.9 A Brief Summary

The semantic operator ΦP associated with a program P can be computed by a three-layer
feed-forward network NP , where the input and output layers represent interpretations.
Turned into a recurrent network N�

P , it will converge to a stable state which represents the
least L-model of P. The network can be extended to clamp units in the output layer which
correspond to possible explanations for a given observation. Once the network has settled
down in a stable state, then it can be checked whether the observation can be explained
and whether given integrity constraints are satisfied.

The external activation of units in the output layer can lead to stable coalitions which
persist if the external activation is withdrawn. These coalitions can be eliminated by in-
hibiting the network for three time steps. All together, we obtain an extended recursive
network eN�

P which is depicted in Figure 11 for the program P2 and the observationO = {`}.

4. A Connectionist Network for Skeptical Abduction

The approach presented in this section is inspired by Ray and d’Avila Garcez (2006)
and d’Avila Garcez et al. (2007), but deviates in various aspects. Let P be a logic program,
N�
P be the corresponding recursive network, 〈P,AP , IC, |=wcs〉 be an abductive framework

with respect to P, and O be an observation.

As Ray and d’Avila Garcez (2006) and d’Avila Garcez et al. (2007) we will construct a
network which sequentially generates all possible explanations for O and tests whether the
least L-model of the program P together with a possible explanation satisfies the integrity
constraint IC and explains the observation O. However, whereas Ray and d’Avila Garcez
and d’Avila Garcez et al. stop this process as soon as a (credulous) explanation is found we
check all possible explanations and compute the skeptical consequences. Whereas Ray and

72

A Core Method for the Weak Completion Semantics with Skeptical Abduction

i s v o

ce>

ce⊥

ct>

ct⊥

>

e>

e⊥

e>

e⊥

`>

`⊥

`>

`⊥

ab>1

ab⊥1

ab>1

ab⊥1

t>

t⊥

t>

t⊥

ab>2

ab⊥2

ab>2

ab⊥2

⊥
N�
P2

Figure 11: The extended recursive network eN�
P2

.

73

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

d’Avila Garcez and d’Avila Garcez et al. compute abduction in classical two-valued logic,
we apply the three-valued L-logic and use |=wcs as the logical consequence relation.

There is another technical issue: Ray and d’Avila Garcez (2006) and d’Avila Garcez
et al. (2007) have used a clock to ensure that the recursive network N�

P has settled in a
stable state. This can be done as long as the given program P is definite, i.e., if all bodies
of the clauses occurring in P are conjunctions of atoms or > and do not contain occurrences
of negated atoms and ⊥. The corresponding semantic operator is known to have a least
fixed point in classical two-valued logic, which can be obtained by iterating the operator
starting with the empty interpretation (Apt & van Emden, 1982). As shown by Dowling
and Gallier (1984) and Scutella (1990), the least fixed point can be computed in less or equal
than |atoms(P)| steps for a propositional and definite program P, thus specifying a limit
for the clock. However, if the program is not definite, then a least fixed point may not exist
and, consequently, the recurrent network may not reach a stable state at all. Moreover, if
the approach is extended to full first-order logic, then we may not be able to predict how
long it may take to compute a least fixed point if it exists. To overcome these problems
we use the construction developed in Subsection 3.6 to detect when N�

P has settled down
in a stable state. This construction is independent of the form of the program and the
underlying logic.

4.1 Generating Possible and Non-complementary Explanations

If a given program P contains n undefined atoms, then the set AP of abducibles contains 2n
elements and there are 3n possible and non-complementary explanations. Reconsidering
the program P1 = {` ← e ∧ ¬ab1, ab1 ← ⊥} we observe that only e is undefined. Hence,
n = 1, AP1 = {e ← >, e ← ⊥} and we obtain the three possible and non-complementary
explanations ∅, {e ← >}, and {e ← ⊥}. We can label these explanations by the binary
numbers 00, 01, and 10, respectively, with the understanding that the first bit (from the
right) represents the positive fact e ← > and the second bit (from the right) represents
the negative assumption e ← ⊥. Now, the task is to construct a neural network which
sequentially generates the binary numbers 00, 01, and 10.

This task can be formally specified by a finite automaton with state output (Moore
machine) as shown in Figure 12. This automaton has the set {0, 1} of input symbols, the
set {00, 01, 10} of output symbols, the set {q0, q1, q2} of states with q0 being the initial state,
the transition function

0 1

q0 q0 q1

q1 q1 q2

q2 q2 q0

and the output function

q0 q1 q2

00 01 10
.

Likewise, Figure 13 shows the corresponding automaton for the program P2 and the
observation O = {`}. This automaton outputs four binary numbers which represent from
the right e← >, e← ⊥, t← >, and t← ⊥.

74

A Core Method for the Weak Completion Semantics with Skeptical Abduction

q0

00

q1

01

q2

10

0

1

0

1

0

1

Figure 12: A finite automaton generating all possible and non-complementary explanations
for AP1 .

q0

0000

q1

0001

q2

0010

q3

0100

q4

1000

q5

0101

q6

1001

q7

0110

q8

1010

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 13: A finite automaton generating all possible and non-complementary explanations
for AP2 .

McCulloch and Pitts (1943) have shown in that each finite automaton with state out-
put can be turned into a neural network of binary threshold units (sometimes called a
McCulloch-Pitts network) receiving an input via its input units and producing an output
via its output units. In particular, for the finite automaton shown in Figure 13 we can
obtain a network NAP2

with an input unit t triggering the state transitions and four output

units e>, e⊥, t>, and t⊥ (see Figure 14). Initially, the unit q0 will be active. Because
E0 = ∅, no output is generated by NAP2

(compare (1) on page 59). As soon as the unit t is
externally activated, then the unit q0 will become passive and the unit q1 will become active.
Moreover, the unit q1 will activate the unit e> representing the first possible, non-empty
explanation E1 = {e ← >} (compare (2) on page 59). Upon further external activation of
the unit t, this process will continue until the unit q8 becomes active. The unit q8 will ac-
tivate the units e⊥ and t⊥ representing the last possible explanation E8 = {e← ⊥, t← ⊥}
(compare (7) on page 59). Another activation of the unit t will return the network into its
initial state. Because the environment needs to know when all possible explanations have
been generated, another output unit d (done) is foreseen which will also become active once
the unit q8 becomes passive. The unit d will remain active unless the unit t is externally
activated again.

4.2 Computing Skeptical Conclusions

Let P be the given program, m = atoms(P) be the number of atoms occurring in P, and n
the number of undefined atoms occurring in P. The network N�

P contains 2m output units,

75

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

ω
2

d t

1
2

q0

ω
2 e>

ω
2 e⊥

ω
2 t>

ω
2 t⊥

ω
2

q1

ω
2

q2

ω
2

q3

ω
2

q4

ω
2

q5

ω
2

q6

ω
2

q7

ω
2

q8

NAP2

Figure 14: The McCulloch-Pitts network for the finite automaton shown in Figure 13. Unit
q0 is initially active; all other units are initially passive.

76

A Core Method for the Weak Completion Semantics with Skeptical Abduction

viz. for each i ∈ [1,m] the units i> and i⊥. As discussed in Subsections 3.4 and 4.1, this
network will be used to sequentially check whether the possible explanations Ej occurring
in a sequence (Ej | 1 ≤ j ≤ 3n) are explanations. For each Ej this is done by clamping
the units of the output layer in eN�

P corresponding to Ej and waiting until the network
has settled down in a stable state. Such a stable state will eventually be reached and,
hence, the unit s specified in Subsection 3.6 will become active. If the unit v specified in
Subsection 3.7 is passive (no integrity constraint occurring in IC is violated) and the unit
o specified in Subsection 3.8 is active (the observation O is explained), then Ej is indeed
an explanation. In this case, the activation pattern of the output layer of eN�

P (with the
output units corresponding to Ej clamped) encodes the least L-model MP∪Ej as follows:

• i> is active if and only if MP∪Ej (i) = >,

• i⊥ is active if and only if MP∪Ej (i) = ⊥,

• i> and i⊥ are both passive if and only if MP∪Ej (i) = U,

• and it cannot be the case that both, i> an i⊥, are active.

A generated least L-model for a program P and an explanation Ej must be stored and
compared to the least L-models of P and other explanations in order to compute skeptical
conclusions. To this end we use a unit e (extract) which is defined by the rule

e← s ∧ ¬v ∧ o

in classical two-valued logic. In other words, the unit e will become active if

• the recursive network N�
P with the output units corresponding to Ej being externally

clamped has reached a stable state (the unit s is active),

• no integrity constraints are violated (the unit v is passive), and

• the observation is explained (the unit o is active).

Unit e is part of the network depicted in Figure 16.

The skeptical conclusion are calculated by a two-layered network NS . Its input and its
output layer consists of 3m units: for each atom i occurring in P there are the units i>, i⊥,
and iU. If the unit e is active, then the units in the input layer of NS are activated by the
corresponding units in the output layer of N�

P :

{i> ← i> ∧ e | 1 ≤ i ≤ m} ∪
{i⊥ ← i⊥ ∧ e | 1 ≤ i ≤ m} ∪
{iU ← ¬i> ∧ ¬i⊥ ∧ e | 1 ≤ i ≤ m},

where the units i>, i⊥, and iU occurring on the left hand side of the rules are input units
of NS and the units i> and i⊥ occurring on the right hand side of the rules are output
units of N�

P . These rules can be easily implemented by a feed-forward network of logical
threshold units following McCulloch and Pitts (1943), where we use the output of e as a

77

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

positive modifier for the connections between the output units of N�
P and the input units

of NS . These connections are shown in Figure 16.
The input units of NS must be self-excitatory as a least L-model for the program and

some explanation must persist until all explanations have been tested. If all explanations
have been generated, then the activation pattern of the input units of NS shows the pos-
itive, negative, and undefined atoms, which can be credulously concluded from the given
program P and the given observation O. In order to generate the skeptical consequences we
need to exclude those atoms whose interpretation varied under different least L-models, i.e.,
those atoms i for which more than one unit out of {i>, i⊥, iU} in the input layer of NS is
active. This can be achieved by connecting each input unit of NS to the corresponding out-
put unit of NS and, at the same time, negatively modifying competing connections between
the input and the output layer. For example, the unit i> in the input layer is connected to
the unit i> in the output layer and is negatively modifying the connections from the unit
i⊥ in the input layer to the unit i⊥ in the output layer as well as from the unit iU in the
input layer to the unit iU in the output layer.

Figure 15 shows the network NS for the program P2 and observation O = {`}. Recall
that the explanations E1, E3, E5, E6, and E7 explain O (see page 59). Comparing the least
 L-models of P2 together with these explanations we obtain the final pattern of the input
units of NS :

• e> is active because of (2), (4), and (5),

• e⊥ is active because of (6),

• eU is active because of (3),

• `> is active because it is the observation,

• ab⊥1 is active because of the assumption ab1 ← ⊥ ∈ P2,

• t> is active because of (3), (4), and (6),

• t⊥ is active because of (5),

• tU is active because of (2),

• ab⊥2 is active because of the assumption ab2 ← ⊥ ∈ P2.

All other units occurring in the input layer of NS are passive.
Consequently, the units `>, ab⊥1 , and ab⊥2 of the output layer of NA are the only active

units in this layer once the network has reached a stable state. The literals `, ¬ab1 and ¬ab2

are the skeptical consequences of P2 and O.

4.3 Control

After the specification of the connectionist networks for the various sub-parts of a network
for skeptical abduction, we need to combine the sub-parts. Given the abductive framework
〈P,AP , IC, |=wcs〉 and the observation O the final network (see Figure 16) is supposed to
do the following:

78

A Core Method for the Weak Completion Semantics with Skeptical Abduction

1
2e>

1
2e⊥

1
2eU

1
2 e>

1
2 e⊥

1
2 eU

1
2`>

1
2`⊥

1
2`U

1
2 `>

1
2 `⊥

1
2 `U

1
2ab>1

1
2ab⊥1

1
2abU1

1
2 ab>1

1
2 ab⊥1

1
2 abU1

1
2t>

1
2t⊥

1
2tU

1
2 t>

1
2 t⊥

1
2 tU

1
2ab>2

1
2ab⊥2

1
2abU2

1
2 ab>2

1
2 ab⊥2

1
2 abU2

Figure 15: The network NS computing the skeptical consequences for the program P2 and
observation O = {`}. The activation pattern shows the stable state of the
network.

79

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

1. While not all non-complementary subsets of AP have been tested do:

(a) Delete stable states from N�
P .

(b) Generate the next non-complementary subset E of AP .

(c) Clamp the output units of N�
P which are corresponding to E .

(d) If N�
P has reached a stable state, IC is not violated, and O can be explained,

then add E to the set of explanations

2. Compute the skeptical consequences.

Step 1.(a) is implemented by externally activating the unit i of the network eN�
P in

three consecutive time steps. This is realized by three units init, i1, and i2 such that the
unit init activates the unit i1 and the unit i1 activates the unit i2 while all of them activate
the unit i.

Step 1.(b) is implemented by externally activating for one time step the unit t of the
network NA. This is realized by adding a connection from the unit init to the unit t such
that init activates the unit t. Once t becomes active, the next non-complementary E ⊆ AP
is generated as output pattern of NA.

To implement step 1.(c) we introduce a new unit n (next), which is activated by the unit
i2 (stable coalitions occurring in N�

P are removed) and positively modifies the connections
from the output layer of NA and the corresponding input units of eN�

P .
Step 1.(d) is implemented by the unit e (top-right Figure 16) which acts as a positive

modifier for the connections between the output layer of eN�
P and the input layer of NS .

The condition of the while-loop is tested with the help of the units s (of eN�
P), init,

and d (of NA). Initially, the unit init is externally activated. Thereafter, it is activated as
soon as s becomes active and d is passive. In other words, as soon as the network eN�

P has
reached a stable state (unit s) and not all non-complementary subsets of AP have already
been tested (unit d), unit init becomes active. With init active a new subset of AP is
computed while stable coalitions occurring in N�

P are removed. As the removal of stable
coalitions from N�

P takes time, we want to prevent that the unit s activates the unit init in
subsequent time steps, the units init, i1, i2, and n negatively modify the connection from s
to init.

Step 2 has already been explained in Section 4.2. It is implemented by the network NS
and exemplified in Figure 15.

The final network for the program P2 and the observation O = {`} is shown in Figure 16.

5. Conclusion

Recall from the introduction, that in order to meet McCarthy’s (1963) requirements for sys-
tems to reason about actions and causalities, we need to study humans and their behavior. It
has been previously shown that skeptical abduction is required in order to adequately model
a wide range of human reasoning tasks under the Weak Completion Semantics (WCS). Moti-
vated by this observation, the main goal of this paper was to specify a plausible connectionist
realization of WCS, that provides the representation of logic programs, the computation of
least models, the interpretation under three-valued Lukasiewicz logic and the derivation of
consequences under skeptical abduction.

80

A Core Method for the Weak Completion Semantics with Skeptical Abduction

1
2

d

1
2

t

e>

e⊥

t>

t⊥

i s v o

ce>

ce⊥

ct>

ct⊥

e>

e⊥

`>

`⊥

ab>1

ab⊥1

t>

t⊥

ab>2

ab⊥2

1
2 e>

1
2 e⊥

1
2 eU

1
2e>

1
2e⊥

1
2eU

1
2 `>

1
2 `⊥

1
2 `U

1
2`>

1
2`⊥

1
2`U

1
2 ab>1

1
2 ab⊥1

1
2 abU1

1
2ab>1

1
2ab⊥1

1
2abU1

1
2 t>

1
2 t⊥

1
2 tU

1
2t>

1
2t⊥

1
2tU

1
2 ab>2

1
2 ab⊥2

1
2 abU2

1
2ab>2

1
2ab⊥2

1
2abU2

1
2

init

1
2i1

1
2i2

1
2

n 3ω
2

e

NAP2
eN�
P2

NS

Figure 16: The final network for the program P2 and the observation O = {`}.
Networks NAP2

, eN�
P2

and NS are shown in Figure 14, 11 and 15, respectively.

81

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

As starting point we took the preliminary connectionist realization of the three-valued
semantic operator considered under WCS (Hölldobler & Kencana Ramli, 2009b). This ap-
proach utilizes the core method where the semantic operator associated with a weakly
completed program is mapped onto a feed-forward network. Additional recursive connec-
tions from the output to the input layer of this network allow for the iteration of the semantic
operator until a least fixed point has been reached. This fixed point is the least model of
the weakly completed program. Reasoning is performed with respect to this fixed point.
Extending the work of Hölldobler and Kencana Ramli (2009b), skeptical abduction is added
to the core method by sequentially generating all possible explanations, checking whether
they are indeed explanations, and computing the abductive consequence of all explana-
tions. We provide all details, a formal specification of the connectionist system, a proof
of its soundness and several extensions: the possibility to clamp units representing atoms
occurring in a possible extension, the check whether the network has reached a stable state,
the elimination of stable coalitions, and the check whether observations are explained and
integrity constraints are not violated. Observe that our approach combines different logics.
The possible explanations for an abductive reasoning task are sequentially generated with
the help of finite automata. The control, the computation of the credulous consequences,
and the checks whether observations are explained and integrity constraints are not violated
are done in classical two-valued logic. The generation of models for a particular human rea-
soning tasks are done in a non-monotonic and three-valued logic. A preliminary version
of skeptical abduction – still under classical two-valued logic – was published by Dietz,
Hölldobler, and Palacios Medinacelli (2015) and Palacios Medinacelli (2015).

The extension to skeptical abduction in this paper was inspired by Ray and d’Avila
Garcez (2006) and d’Avila Garcez et al. (2007) who have developed a connectionist re-
alization of credulous abduction in classical two-valued logic for definite logic programs.
We share the idea to sequentially generate all possible extensions and to check whether a
possible extension is indeed an extension by clamping corresponding units in the network
realizing the semantic operator. But we deviate and extend the approach in various direc-
tions: Our programs are normal logic programs in that clauses may have negated atoms
in their bodies, we switch to three-valued Lukasiewicz logic, we allow the network to settle
down to a stable state without assuming a maximum time limit, we consider all possible
explanations, and combine the consequences of all explanations.

Stenning and van Lambalgen have also introduced a connectionst realization to compute
the least fixed point of their semantic operator (Stenning & van Lambalgen, 2008). Their
networks are essentially identical to the networks generated by the core method for three-
valued logics except that the units A> and A⊥ for an atom A in the input and output
layer are connected by inhibitory connections to prevent both units to become active at the
same time. As this can never happen in our approach, there is no need for such inhibitory
connections. Moreover, their networks do not implement abduction and, hence, cannot
handle examples like the ones discussed in this paper.

We have developed the networks using logical threshold units. But it is well-known (e.g.
Bader, 2009, d’Avila Garcez et al., 1997) that these units can be replaced by sigmoidal ones
such that the cores of the networks can be trained by back-propagation. During training
some of the connections might change and rule extraction techniques must be applied to
extract the trained programs.

82

A Core Method for the Weak Completion Semantics with Skeptical Abduction

But much remains to be done. While we have restricted possible explanations to non-
complementary sets of abducibles, abduction often restricts explanations to minimal ones.
Detecting minimality is not a trivial task. Palacios Medinacelli (2016) provided a formal
specification that produces all possible explanations in a specific order such that minimal
explanations can be detected and all non-minimal possible explanations can be discarded.
More recently, Rocha (2017) added minimality to the approach presented in this paper.
Moreover, she replaced the McCulloch-Pitts networks used to generate all possible explana-
tions in a fixed and pre-defined sequence by Elman (1989, 1990) networks and showed that
these networks can be trained to generate all possible explanations in an arbitrary order.
This is a prerequisite for the next step: We do not believe that humans test all possible
explanations in a systematic way. It appears to us that in particular reasoning episodes
some possible explanations are systematically tested whereas others are not considered at
all. We believe that there is a kind of attention formalism which identifies those possible
explanations, which are really tested. This will lead to a kind of bounded skeptical abduc-
tion. But it remains to set up experiments that test this hypothesis and, if our hypothesis
is supported, then we need to identify the mechanism which defines the bound and build it
into our networks.

References

Apt, K., & van Emden, M. (1982). Contributions to the theory of logic programming.
Journal of the ACM, 29, 841–862.

Bader, S. (2009). Neural-Symbolic Integration. Ph.D. thesis, Technische Universität Dres-
den, Faculty of Computer Science.

Bader, S., Hitzler, P., & Hölldobler, S. (2008). Connectionist model generation: A first-order
approach. Neurocomputing, 71, 2420–2432.

Bader, S., & Hölldobler, S. (2006). The Core method: Connectionist model generation. In
Kollias, S., Stafylopatis, A., Duch, W., & Ojaet, E. (Eds.), Proceedings of the 16th
International Conference on Artificial Neural Networks, Vol. 4132 of Lecture Notes in
Computer Science, pp. 1–13. Springer-Verlag.

Byrne, R. (1989). Suppressing valid inferences with conditionals. Cognition, 31, 61–83.

Clark, K. (1978). Negation as failure. In Gallaire, H., & Minker, J. (Eds.), Logic and
Databases, pp. 293–322. Plenum, New York.

d’Avila Garcez, A., Gabbay, D., Ray, O., & Woods, J. (2007). Abductive reasoning in
neural-symbolic learning systems. Topoi: An International Review of Philosophy, 26,
37–49.

d’Avila Garcez, A., Lamb, L. C., & Gabbay, D. (2002). A connectionist inductive learn-
ing system for modal logic programming. In Proceedings of the IEEE International
Conference on Neural Information Processing, Singapore.

d’Avila Garcez, A., Lamb, L., & Gabbay, D. (2003). Neural-symbolic intuitionistic rea-
soning. In Design and Application of Hybrid Intelligent Systems, pp. 399–408, IOS
Press.

83

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

d’Avila Garcez, A., Lamb, L., & Gabbay, D. (2009). Neural-Symbolic Cognitive Reasoning.
Springer Verlag.

d’Avila Garcez, A., Zaverucha, G., & de Carvalho, L. (1997). Logic programming and induc-
tive learning in artificial neural networks. In Herrmann, C., Reine, F., & Strohmaier,
A. (Eds.), Knowledge Representation in Neural Networks, pp. 33–46, Berlin. Logos
Verlag.

Dietz, E.-A., Hölldobler, S., & Palacios Medinacelli, L. (2015). A connectionist network
for skeptical abduction. In Besold, T. R., Lamb, L. C., Icard, T., & Mikkulainen, R.
(Eds.), Proceedings of the Tenth International Workshop on Neural-Symbolic Learning
and Reasoning.

Dowling, W. F., & Gallier, J. H. (1984). Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. Journal of Logic Programming, 1 (3), 267–284.

Elman, J. L. (1989). Structured representations and connectionist models. In Proceedings
of the Annual Conference of the Cognitive Science Society, pp. 17–25.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cog-
nitive Science, 6 (3), 205–254.

Fitting, M. (1985). A Kripke–Kleene semantics for logic programs. Journal of Logic Pro-
gramming, 2 (4), 295–312.

Funahashi, K.-I. (1989). On the approximate realization of continuous mappings by neural
networks. Neural Networks, 2, 183–192.

Hitzler, P., Hölldobler, S., & Seda, A. (2004). Logic programs and connectionist networks.
Journal of Applied Logic, 2 (3), 245–272.

Hölldobler, S. (2009). Logik und Logikprogrammierung 1: Grundlagen. Kolleg Synchron.
Synchron.

Hölldobler, S. (2015). Weak completion semantics and its applications in human reasoning.
In Furbach, U., & Schon, C. (Eds.), Bridging 2015 – Bridging the Gap between Hu-
man and Automated Reasoning, Vol. 1412 of CEUR Workshop Proceedings, pp. 2–16.
CEUR-WS.org. http://ceur-ws.org/Vol-1412/.

Hölldobler, S., & Kalinke, Y. (1994). Towards a new massively parallel computational
model for logic programming. In Proceedings of the ECAI94 Workshop on Combining
Symbolic and Connectionist Processing, pp. 68–77. ECCAI.

Hölldobler, S., Kalinke, Y., & Störr, H.-P. (1999). Approximating the semantics of logic
programs by recurrent neural networks. Applied Intelligence, 11, 45–59.

Hölldobler, S., Kalinke, Y., & Wunderlich, J. (2000). A recursive neural network for reflexive
reasoning. In Wermter, S., & Sun, R. (Eds.), Hybrid Neural Symbolic Integration, No.
1778 in Lecture Notes in Artificial Intelligence, pp. 46–62. Springer-Verlag.

Hölldobler, S., & Kencana Ramli, C. D. P. (2009a). Logic programs under three-valued
 Lukasiewicz’s semantics. In Hill, P. M., & Warren, D. S. (Eds.), Logic Programming,
Vol. 5649 of Lecture Notes in Computer Science, pp. 464–478. Springer-Verlag Berlin
Heidelberg.

84

A Core Method for the Weak Completion Semantics with Skeptical Abduction

Hölldobler, S., & Kencana Ramli, C. D. P. (2009b). Logics and networks for human reason-
ing. In Alippi, C., Polycarpou, M. M., Panayiotou, C. G., & Ellinasetal, G. (Eds.), 19th
International Conference on Artificial Neural Networks, Vol. 5769 of Lecture Notes in
Computer Science, pp. 85–94. Springer-Verlag Berlin Heidelberg.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2, 359–366.

Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Lawrence Erlbaum Associates,
Hove and London (UK).

Kalinke, Y. (1994). Ein massiv paralleles Berechnungsmodell für normale logische Pro-
gramme. Master’s thesis, Fakultät Informatik, TU Dresden. (in German).

Kencana Ramli, C. D. P. (2009). Logic programs and three-valued consequence operators.
Master’s thesis, International Center for Computational Logic, TU Dresden.

Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of the syllogism: A meta-analysis.
Psychological Bulletin, 138 (3), 427–457.

Kleene, S. (1952). Introduction to Metamathematics. North-Holland.

Lloyd, J. W. (1984). Foundations of Logic Programming. Springer, New York, USA.

Lourêdo Rocha, I. (2017). Bounded sceptical reasoning. Master’s thesis, International
Center for Computational Logic, TU Dresden.

 Lukasiewicz, J. (1920). O logice trójwartościowej. Ruch Filozoficzny, 5, 169–171. En-
glish translation: On Three-Valued Logic. In: Jan Lukasiewicz Selected Works.
(L. Borkowski, ed.), North Holland, 87-88, 1990.

McCarthy, J. (1963). Situations and actions and causal laws. Stanford Artificial Intelligence
Project: Memo 2.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus and the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5, 115–133.

Palacios Medinacelli, L. (2015). A connectionist model for skeptical abduction. Project
Work, International Center for Computational Logic, TU Dresden.

Palacios Medinacelli, L. (2016). Skeptical abduction: A connectionist network. Master’s
thesis, International Center for Computational Logic, TU Dresden.

Ray, O., & d’Avila Garcez, A. (2006). Towards the integration of abduction and induction in
artificial neural networks. In Proceedings of the ECAI06 Workshop on Neural-Symbolic
Learning and Reasoning, pp. 41–46.

Ruiz, C., & Minker, J. (1995). Computing stable and partial stable models of extended
disjunctive logic programs. In Dix, J., Pereira, L. M., & Przymusiski, T. C. (Eds.),
Non-Monotonic Extensions of Logic Programming, Vol. 927 of Lecture Notes in Arti-
ficial Intelligence, pp. 205–229. Springer.

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for
parallel distributed processing. In Parallel Distributed Processing. MIT Press.

Scutella, M. G. (1990). A note on Dowling and Gallier’s top-down algorithm for proposi-
tional Horn satisfiability. Journal of Logic Programming, 8, 265–273.

85

Dietz Saldanha, Hölldobler, Kencana Ramli, & Palacios Medinacelli

Seda, A., & Lane, M. (2004). Some aspects of the integration of connectionist and logic-
based systems. In Proceedings of the Third International Conference on Information,
pp. 297–300, International Information Institute, Tokyo, Japan.

Stenning, K., & van Lambalgen, M. (2008). Human Reasoning and Cognitive Science. MIT
Press.

Wason, P. C. (1968). Reasoning about a rule. The Quarterly Journal of Experimental
Psychology, 20, 273–281.

86

