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Abstract
Deshpande et al. presented a k(lnR+1) approximation bound for Stochastic Submodular

Cover, where k is the state set size, R is the maximum utility of a single item, and the utility
function is integer-valued. This bound is similar to the (lnQ/η + 1) bound given by Golovin
and Krause, whose analysis was recently found to have an error. Here Q ≥ R is the goal
utility and η is the minimum gap between Q and any attainable utility Q′ < Q. We revisit
the proof of the k(lnR+ 1) bound of Deshpande et al., fill in the details of the proof of a key
lemma, and prove two bounds for real-valued utility functions: k(lnR1 + 1) and (lnRE + 1).
Here R1 equals the maximum ratio between the largest increase in utility attainable from a
single item, and the smallest non-zero increase attainable from that same item (in the same
state). The quantity RE equals the maximum ratio between the largest expected increase in
utility from a single item, and the smallest non-zero expected increase in utility from that
same item. Our bounds apply only to the stochastic setting with independent states.

1. Introduction

Golovin and Krause introduced the Stochastic Submodular Cover (StSuC) problem, a
generalization of the classical NP-complete set cover problem that has applications to
problems ranging from sensor placement to minimizing the cost of evaluating Boolean
prediction functions (Golovin & Krause, 2011; Deshpande, Hellerstein, & Kletenik, 2016).
In this problem, there are n “items”. Each item can be in one of k states, and the state of
each item is an independent random variable. Each item has a cost. The state of an item
can only be determined by choosing it and incurring the associated cost. There is a utility
function that assigns a utility value to each subset of items, and that value can depend on
the states of the items. The utility function obeys certain monotonicity and submodularity
properties. The problem is to sequentially choose a set of items that achieve a goal utility Q,
with minimum expected cost. Formal definitions can be found in Section 2.

Golovin and Krause (2011) presented a proof showing that the Adaptive Greedy algorithm
is a (lnQ/η + 1)-approximation algorithm, for a class of adaptive submodular cover problems
that includes the StSuC problem. Here Q is the “goal value”, and η is the minimum gap
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between Q and any attainable utility value Q′ < Q. The quantity η can be viewed as a
scaling factor.

Subsequently, Deshpande, Hellerstein, and Kletenik used an LP-based analysis to show
that Adaptive Greedy is a k(lnR + 1)-approximation algorithm for the StSuC problem,
assuming an integer-valued utility function (Deshpande et al., 2016). Here k is the (constant)
size of the state set, and R is the maximum utility of a single item, so R ≤ Q. For
integer-valued utility functions, η ≥ 1, so (lnQ/η + 1) ≤ (lnQ+ 1).

Recently, Nan and Saligrama (2017) discovered an error in Golovin and Krause’s analysis
of Adaptive Greedy. The error invalidates the (lnQ/η + 1) bound of Golovin and Krause for
the StSuC problem. Golovin and Krause (2017) have since posted a new and more involved
analysis, with a bound that is quadratic in (lnQ/η).

Given these developments, the k(lnR+ 1) bound of Deshpande et al. (2016) is the only
current approximation bound for the StSuC problem that is linear in lnQ, for integer-valued
utility functions. Because of this, we were motivated to revisit the bound.

We prove two variants of the k(lnR+ 1) bound of Deshpande et al. (2016), removing the
assumption that the utility function is integer valued: k(lnR1 + 1) and (lnRE + 1). Here R1

equals the maximum ratio between the largest increase in utility attainable from a single
item, and the smallest non-zero increase attainable from that same item (in the same state).
The quantity RE equals the maximum ratio between the largest expected increase in utility
from a single item, and the smallest non-zero expected increase in utility from that same item.
These bounds are similar to the (lnQ/η + 1) bound claimed by Golovin and Krause (2011).
We obtain these bounds by tightening the analysis of Deshpande et al., and by using a
different technical result of Wolsey (1982).

One of the key lemmas of Deshpande et al. (2016) lacked a convincing proof. The proof
said the lemma “follows directly by linearity of expectation” from a previous result, but
linearity of expectation is not sufficient. We need this lemma for our new bounds and provide
a complete proof of it below.

There are previous results, for other problems, that relied on the claimed bound of
Golovin and Krause (2011) for the StSuC problem. Examples include a number of the results
on the Stochastic Boolean Function Evaluation (SBFE) problem (e.g. Deshpande et al., 2016;
Bach, Dusart, Hellerstein, & Kletenik, 2018). These previous results on the SBFE problem
still hold, up to constant factors, by substituting the k(lnR + 1) bound of Deshpande et
al. (2016), or the k(lnR1 + 1) bound proved in this paper, for the claimed (lnQ/η + 1) bound.

It is easy to show that RE ≤ R1 if the following property holds: whenever an item j
yields non-zero utility in one state, it yields non-zero utility in its other states. However,
there are natural StSuC problems where this property does not hold. For example, the
Stochastic Set Coverage problem is a special case of the StSuC problem with an integer-valued
utility function. It is motivated by covering locations with sensors, and a sensor might cover
something or nothing depending on whether its state is “working” or “broken”. Adaptive
Greedy applied to the Stochastic Set Coverage problem yields an approximation bound of
(lnQ+ 1) (Parthasarathy, 2018).1 This bound is not implied by the bounds in this paper.

1. Golovin and Krause (2011) cited an earlier paper of Liu et al. as having proved this (lnQ+1) bound (Liu,
Parthasarathy, Ranganathan, & Yang, 2008). However, the proof in that paper had an error.
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In general, the quantity Q/η in the bound of Golovin and Krause (2011) is incomparable
to R1 and RE . However, in many cases η is equal to the smallest non-zero increase in utility
from a single item, and in these cases, R1 ≤ Q/η.

The bounds we prove in this paper do not extend beyond the StSuC problem to the more
general class of adaptive submodular cover problems originally considered by Golovin and
Krause. The proofs of the bounds in this paper require that item states be independent,
and that the utility function be “pointwise” submodular. As a result, our bounds do not
apply to previous work where Adaptive Greedy was used to solve the following problems:
Equivalence Class Determination, Decision Region Identification, and Scenario (sample-
based) Submodular Cover (e.g., Bellala, Bhavnani, & Scott, 2012; Chen, Javdani, Karbasi,
Bagnell, Srinivasa, & Krause, 2015; Grammel, Hellerstein, Kletenik, & Lin, 2017). However,
we note that there are other algorithms for solving these particular problems that achieve
good approximation bounds. Grammel et al. (2017) presented two algorithms for solving
Scenario Submodular Cover. While one of them used Adaptive Greedy, the other did not.
Subsequently, Kambadur et al. (2017) presented an algorithm that uses just one simple
greedy rule, and solves an even more general class of problems.

It remains an open question whether Adaptive Greedy achieves an approximation bound
of (lnQ/η + 1) or (lnR1 + 1) for the StSuC problem.

Finally, we note that Deshpande et al. (2016) presented another approximation algorithm
for the StSuC problem which they called Dual Adaptive Greedy. That algorithm is an
extension of Fujito’s algorithm for the deterministic submodular cover problem, which was
based on Hochbaum’s dual greedy algorithm for the classical set cover problem (Fujito, 2000).
These dual greedy algorithms yield approximation bounds of an entirely different form.

2. Definitions and Background

Let N = {1, . . . , n} be a set of items. Let O be a finite set of states. For simplicity we
assume O = {0, 1}, but our proof extends easily to state spaces of constant size k. A state
vector x ∈ {0, 1}n is an assignment of states to items, where xi is the state of item i. A
partial assignment b ∈ {0, 1, ∗}n represents partial information about a state assignment,
with bi = ∗ if the state of item i is unknown. For b ∈ {0, 1, ∗}n, i ∈ N , and ` ∈ {0, 1},
bi←` is the assignment produced from b by setting bi to `. For a, b ∈ {0, 1, ∗}n, we say a is
an extension of b, written a � b, if ai = bi for all i with bi 6= ∗. We use ? to denote the
assignment (∗, . . . , ∗).

We define a (state dependent) utility function to be a function g : {0, 1, ∗}n → R≥0. For
b ∈ {0, 1, ∗}n, g(b) is the “utility” of the information in b; in other words, it is the utility of
the items in {j | bj 6= ∗} when they are in the states indicated by b.

We also overload g() to denote the utility of a partial assignment that is given by a
subset of items and a state vector. In particular, for S ⊆ N and x ∈ {0, 1, ∗}n, we define
g(S, x) = g(b) for the b ∈ {0, 1}n satisfying bj = xj for j ∈ S, and bj = ∗ otherwise.

Let pi be the probability that item i is in state 1 and qi = (1− pi) be the probability it
is in state 0. Let Dp denote the product distribution defined by the pi. Let P (b) be the joint
probability of the known states in b, so P (b) = (

∏
i:bi=1 pi)(

∏
i:bi=0 qi).

For S ⊆ N , b ∈ {0, 1, ∗}n, and j ∈ N where bj 6= ∗, let ∂gj(S, b) = g(S ∪ {j}, b)− g(S, b).
We adopt the partial derivative notation here to indicate that we are measuring the change

267



Hellerstein & Kletenik

in utility produced by “increasing” the value of bj from ∗ to a value in {0, 1}. In the notation
∂gj(S, b), the value of bj indicates whether the ∗ is being set to 0 or 1. Note that if j is
already in S, then ∂gj(S, b) = g(S ∪ {j}, b)− g(S, b) = 0.

For S ⊆ N , b ∈ {0, 1, ∗}n, j ∈ N where bj = ∗, and ` ∈ {0, 1}, let ∂gj(S, b, `) =
g(S ∪ {j}, bj←`)− g(S, b). Here the third argument ` indicates the changed value of bj .

Similarly, for b ∈ {0, 1, ∗}n, j ∈ N such that bj = ∗, and ` ∈ {0, 1}, let ∂gj(b, `) =
g(bj←`)− g(b). So, ∂gj(b, `) = ∂gj(N , b, `).

Function g is monotone if for all a, b ∈ {0, 1, ∗} with a � b, we have g(a) ≥ g(b). Function
g is submodular if for all a, b ∈ {0, 1, ∗}n where a � b, j ∈ N such that aj = bj = ∗,
and ` ∈ {0, 1}, we have ∂gj(a, `) ≤ ∂gj(b, `). (Golovin and Krause call this “pointwise”
submodularity.)

In the StSuC problem, we need to choose items sequentially from N . Each item has
an initially unknown state, which is a value ` in O = {0, 1}. We must continue choosing
items from N until the chosen items achieve a certain goal utility Q, as measured by a given
monotone submodular function g : {0, 1, ∗}n → R≥0. Choosing item j incurs a known cost
cj . We cannot see the state of an item j until after we choose it, and incur its cost. Each
item can be chosen only once.

The state of each item j is an independent random variable. We are given the distribution
of states for each item j. The problem is to determine the order in which to choose items, so
as to minimize expected cost. The choice of the next item can depend on the states of the
previously chosen items.

Formally, the inputs to the StSuC problem are as follows: itemset N , the probabilities
pj , the costs cj , and a monotone submodular utility function g : {0, 1, ∗}n → R≥0 (given
by an oracle). For j ∈ N , pj and cj satisfy 0 < pj < 1 and cj ∈ R+. Further, g has the
following property: there exists a value Q ∈ R≥0 such that for all full assignments x ∈ {0, 1}n,
g(x) = Q. This ensures that utility value Q can always be attained. We call Q the goal value
of g. For x ∈ {0, 1}n, we say that S ⊆ N is a cover for x if g(S, x) = Q.

We assume without loss of generality that for each j ∈ N , there exists ` ∈ {0, 1} such
that ∂gj(?, `) > 0. Otherwise, by submodularity, choosing j can never increase utility.

Parameter R in an approximation bound denotes maxj∈N ,`∈{0,1} ∂gj(?, `). For j ∈ N
and ` ∈ {0, 1}, let η1(j, `) be the minimum non-zero value of ∂gj(b, `) for any b ∈ {0, 1, ∗}n
where bj = ∗. Let r(j, `) = ∂gj(?, `). Since g is submodular, r(j, `) is the largest increase in
utility attainable from item j when it is in state `. We use R1 to denote the maximum value
of the ratio r(j,`)/η1(j,`), over all j ∈ N and all ` ∈ {0, 1}.

Let ηE(j) be the minimum non-zero value of pj(∂gj(b, 1)) + qj(∂gj(b, 0)), for any b ∈
{0, 1, ∗}n where bj = ∗. Let rE(j) be the maximum value of pj(∂gj(b, 1)) + qj(∂gj(b, 0)),
for any b ∈ {0, 1, ∗}n where bj = ∗. By the submodularity of g, rE(j) = pj(∂gj(?, 1)) +
qj(∂gj(?, 0)). We use RE to denote the maximum value of the ratio re(j)/ηE(j) over all j ∈ N .

A (feasible) solution to the StSuC problem is an adaptive strategy for choosing items
from N , so that utility Q is achieved, as measured by g. An adaptive strategy corresponds
to a decision tree τ , where each internal node is labeled with an item j, and has a child for
each of the possible states of j. An item j can appear at most once on a root-leaf path. Thus
each root-leaf path in τ corresponds to a partial assignment b where for each j on the path,
bj equals the state of item j leading to the next node in the path. For each j not on the
path, bj = ∗. Partial assignment b must satisfy g(b) = Q.
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Each x ∈ {0, 1}n results in following a particular root-leaf path in the tree τ . We call the
set of items on that path the cover constructed by τ on x. We define cost(τ, x) to be the
sum of the costs of the items in the cover constructed by τ on x. The expected cost of tree τ
is
∑

x∈{0,1}n P (x) cost(τ, x),
The StSuC problem is to find an adaptive strategy satisfying the properties specified

above, such that the expected cost of the corresponding decision tree τ is minimized. Thus
an optimal solution minimizes

∑
x∈{0,1}n P (x) cost(τ, x). However, it is not necessary to

output decision tree τ explicitly (it may have exponential size). It is sufficient to find a
procedure that can be used to determine, in polynomial time, which item should be chosen
next in the sequence.

The Adaptive Greedy algorithm of Golovin and Krause (2011) solves the StSuC problem
using the greedy rule that chooses the item that will yield the largest expected increase in
utility, per unit cost. (Equivalently, the item minimizes the ratio between cost and expected
increase in utility.) We give pseudocode in Figure 1, where we use xj to denote the random
state of item j. Thus pj = P (xj = 1) and qj = P (xj = 0). We treat cj/∆(j) as being equal
to positive infinity whenever denominator ∆(j) equals 0. Lines in the pseudocode that are
enclosed in square brackets assign values to variables that are not necessary for the processing
of the algorithm, but that are used in the analysis.

b← (∗, ∗ . . . , ∗)
F ← ∅ //F is set of items j chosen so far
[ t← 0 ]
while g(b) < Q do
[ t← t+ 1 ]
for j 6∈ F do

∆(j)←
∑

`∈{0,1} P (xj = `) ∂gj(b, `) // expected increase in utility if j is chosen
end for
j∗ ← arg min

j 6∈F

cj
∆(j)

[ θ ← cj∗
∆(j∗) ]

`← the state of j∗ // observe state of j∗

F ← F ∪ {j∗}
bj∗ ← ` // update b to include state of j∗

end while
[ T ← t ]
return b

Algorithm 1: Adaptive Greedy

3. The (lnRE + 1) Bound

We start by reviewing some of the necessary background from the analysis of Deshpande et
al. (2016). We then present our two key lemmas and complete the proof of the (lnRE + 1)
bound.
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3.1 Background from Deshpande et al.

The starting point of the analysis of Deshpande et al. (2016) is the definition of a special LP
whose optimal value lower bounds the optimal expected cost for the StSuC problem. This
LP and a modified form of its dual are used only in the analysis of Adaptive Greedy. They
do not play any role in the Adaptive Greedy algorithm itself.

We present the LP in Figure 2, and call it LPI. It is based on an integer program (IP)
used by Wolsey (1982) to obtain an approximation bound for the deterministic Submodular
Cover problem. The deterministic problem can be viewed as a version of the StSuC problem
where the state of each item is known in advance and the problem is simply to choose
the min-cost subset of items achieving goal utility Q. In this case the utility function g
is a standard set function g : 2N → R≥0 that is monotone and submodular as per the
standard definitions (for all S′, S ⊆ N with S′ ⊆ S, and all j ∈ N , g(S′) ≤ g(S) and
g(S′ ∪ {j}) − g(S′) ≥ g(S ∪ {j}) − g(S)). In Wolsey’s IP, there is a variable zj ∈ {0, 1}
associated with each item j, where zj = 1 means item j is included in the chosen subset.
Wolsey’s IP is shown in Figure 1.

Minimize
∑

j∈N cjzj

s.t. ∑
j∈N [g(S ∪ {j})− g(S)]zj ≥ Q− g(S) ∀S ⊆ N

zj ∈ {0, 1} ∀j ∈ N

Figure 1: Wolsey’s IP

The number of constraints of the IP is exponential in n. Using the monotonicity and
submodularity of g, Wolsey showed that an assignment z ∈ {0, 1}n satisfies these constraints
iff the subset represented by z has utility equal to Q = g(N ), that is g({j | zj = 1}) = Q.

A solution to the StSuC problem is a decision tree that constructs a cover for each
possible assignment of states to items. Thus it constructs feasible solutions (covers) to 2n

instances of the deterministic Submodular Cover problem, one for each of the 2n assignments
a ∈ {0, 1}n of states to items. Further, these covers are related to each other, because they
correspond to overlapping paths in a single decision tree.

LPI can be seen as a relaxation of the StSuC problem. The idea is to find covers for the
2n assignments x ∈ {0, 1}n which do not have to come from a decision tree, but instead must
satisfy a weaker property, which we describe now. Let W ⊆ {0, 1, ∗}n be the set of partial
assignments that have exactly one ∗. For w ∈ W , let J(w) denote the unique j such that
wj = ∗. For ` ∈ {0, 1}, let w(`) be the full assignment produced by taking the * bit of w and
setting it to `; that is w(`) = wJ(w)←`. Given w ∈W , consider its two extensions w(0) and
w(1). Let τ be a strategy (decision tree) solving the StSuC instance. Consider the paths
taken in τ on w(0) and w(1). Either they are identical, meaning no node on them was labeled
with J(w), or they diverge at a node labeled with J(w). This proves the Neighbor Property,
which states that for each w ∈W , the covers constructed by τ for w(0) and w(1) either both
contain J(w), or neither does.
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LPI has a single variable zw for each w ∈ W . Setting zw = 1 corresponds to including
item J(w) in the covers for both w(0) and w(1), and setting it to 0 corresponds to excluding it
from both covers. Thus a 0/1 assignment Z to the variables zw associates a subset F (a) with
each a ∈ {0, 1}n as follows: F (a) = {j ∈ N | for w = aj←∗, zw = 1}. If Z satisfies the LP
constraints, then for each a, F (a) is a cover for a (this follows directly from the correctness
of Wolsey’s IP). Further, the value of the objective function on Z equals the expected cost of
cover F (a) for a ∼ Dp. To illustrate the definitions, we present the following example:

Example 1. For n = 3, W = {∗00, ∗01, ∗10, ∗11, 0∗0, 0∗1, 1∗0, 1∗1, 00∗, 01∗, 10∗, 11∗}. Let
w = ∗00. Then w(0) = 000 and w(1) = 100. If z∗00 = 1, z0∗0 = 0, and z00∗ = 1, then
F (000) = {1, 3}.

If we further constrain the variables of LPI so that each zw must be in {0, 1}, the resulting
IP asks for a cover for each a, such that the covers satisfy the Neighbor Property, and the
expected cost of the cover on a random a ∼ Dp is minimized.

We now make the simplifying assumption that each pi is strictly between 0 and 1, so that
P (a) 6= 0 for all a ∈ {0, 1}n, and P (w) 6= 0 for all w ∈W . This assumption was implicit in
the proof of Deshpande et al. (2014). It is relatively straightforward to extend their proof,
and the proof below, to remove this assumption. The idea is modify the definition of LPI,
by omitting all constraints associated with a ∈ {0, 1}n where P (a) = 0, and all terms of
the objective function containing variables zw where P (w) = 0. This results in a modified
version of LPII, which omits the constraints corresponding to w, j where P (w) = 0 and the
terms of the objective function with yS,a where P (a) = 0. The rest of the proof requires only
small changes to deal with realizations that have no “neighbor”. We omit the details here.

These observations imply the following lemma.

Lemma 1. (Deshpande et al., 2014) The optimal value of the LP in Figure 2 lower bounds
the expected cost of the optimal strategy solving the associated StSuC instance.

Take each constraint of LPI that is associated with a pair S, a, and multiply both sides of
that constraint by P (a). This does not change the optimal value of the LP. Taking the dual
of the resulting LP, we get LPII in Figure 3. Thus LPII can be viewed as a non-standard
version of the dual of LPI. For readability, in LPII we have designated each constraint as
corresponding to a pair w, j. We could have designated the constraint as corresponding to
just w, since we require j = J(w).

By strong duality, the optimal value of LPII is equal to the optimal value of LPI, and
thus also lower bounds the expected cost of the optimal strategy. The remainder of our
analysis will use LPII.

The basic idea of the analysis of Adaptive Greedy is to define an assignment Y to the
variables yS,a of LPII that corresponds to information about the running of Adaptive Greedy
on the different possible state vectors a. For any fixed a, the variables yS,a are associated
with the results of running Adaptive Greedy on state vector a (i.e., when each item j is in
state aj). The analysis we give below is the same as that of Deshpande et al., except in the
proofs of two key lemmas, Lemma 2 and Lemma 3, below.

In Lemma 2, we show that the value of the objective function of LPII, on assignment
Y , equals the expected cost incurred by Adaptive Greedy. This is the lemma presented by
Deshpande et al. without adequate proof.
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Minimize
∑

w∈W cJ(w) P (w) zw

s.t. ∑
j∈N ∂gj(S, a) zaj←∗ ≥ Q− g(S, a) ∀a ∈ {0, 1}n, S ⊆ N

zw ≥ 0 ∀w ∈W

Figure 2: LPI

Maximize
∑

a∈{0,1}n
∑

S⊆N P (a) (Q− g(S, a)) yS,a

s.t. ∑
S⊆N

∑
`∈{0,1} P (xj = `) ∂gj(S,w

(`)) yS,w(`) ≤ cj ∀w, j s.t. w ∈W , j = J(w)

yS,a ≥ 0 ∀S ⊆ N, a ∈ {0, 1}n

Figure 3: LPII

In Lemma 3, we show that Y exceeds the right hand side of the constraints of LPII by a
factor of at most cj(lnRE + 1). (An analogous lemma of Deshpande et al. shows that for
integer valued utility functions, Y exceeds the right hand side of each constraint of LPII by
a factor of at most k(lnR+ 1).)

Let Y ′ be the result of dividing each entry in Y by (lnRE + 1). By Lemma 3, Y ′ is a
feasible solution to LPII.

The analysis of Adaptive Greedy can then be completed as follows. Let OPTDT be
the expected cost of the optimal strategy and let OPTII be the optimal value of LPII. Let
AGCOST be the expected cost of Adaptive Greedy and let q(y) denote the objective function
of LPII.

Then:

q(Y ′) ≤ OPTII because Y ′ is a feasible solution to LPII
⇒ q(Y ′) ≤ OPTDT since OPTII ≤ OPTDT by Lemma 1

⇒ q(Y ) ≤ (lnRE + 1)OPTDT by definition of Y ′ and the linearity of q()
⇒ AGCOST ≤ (lnRE + 1)OPTDT since q(Y ) = AGCOST by Lemma 2

3.2 The Two Lemmas

It remains to describe assignment Y and to prove the two key lemmas. Consider execution
of Adaptive Greedy on a state vector x. Number the iterations of the while loop starting
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from 1. Let T x be the total number of iterations. Let btx and F tx be the values of b and F at
the end of iteration t. So |F tx| = t, and btx represents the states of items in F tx. If j 6∈ F t−1

x

then let ∆t
x(j) be the value of ∆(j) at the end of iteration t, else let ∆t

x(j) = 0. Let jtx be
the item j∗ chosen in iteration t. Let θtx be the value of cj/∆t

x(j) for j = jtx. We refer to θtx
as the rate in iteration t.

Define Y to be the assignment to the variables in LPII such that for all x ∈ {0, 1}n:

yS,x =


θ1
x if S = F 0

(θt+1
x − θtx) if S = F t and t ∈ {1 . . . T x − 1}

0 otherwise
(1)

Let qx(Y ) =
∑

S⊂N (Q− g(S, x))yS,x.
Deshpande et al. (2014) claimed that Lemma 2 below followed directly from a result of

Wolsey (1982) by linearity of expectation. This would be the case if state vector x was given
at the start of Adaptive Greedy, and item j chosen in loop iteration t was the minimizer
of the quantity cj/∂gj(F, x), whose denominator is the guaranteed increase in utility from
choosing j with known x.

However, Adaptive Greedy chooses the item j that minimizes cj/∆(j), whose denominator
is the expected increase in utility from choosing j. Linearity of expectation is not sufficient
here. We modify Wolsey’s analysis by “averaging” the expected value ∆(j) over the two
different possible states of j.

Lemma 2. The expected cost of the cover constructed by Adaptive Greedy is equal to q(Y ).

Proof. For each fixed x ∈ {0, 1}n, we have the following (omitting the subscripts and
superscript x on θ, F , q, and T for readability):

qx(Y )

=
∑
S⊂N

(Q− g(S, x))yS,x by definition of q

=

T∑
t=1

(Q− g(F t−1, x))yF t−1,x since yS,x = 0 for S 6∈ {F 0, . . . , F T−1}

=(Q− g(F 0, x))θ1 +

T∑
t=2

(Q− g(F t−1, x))(θt − θt−1) by (1)

=(Q− g(F T−1, x))θT +
T−1∑
t=1

(g(F t, x)− g(F t−1, x))θt grouping by multiples of θt

=
T∑
t=1

(g(F t, x)− g(F t−1, x))θt because Q = g(F T )
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Therefore (restoring subscripts and superscript x):

E[qx(Y )] =
∑

x∈{0,1}n

Tx∑
t=1

P (x)[g(F tx, x)− g(F t−1
x , x)]θtx (2)

Consider the decision tree τ corresponding to Adaptive Greedy. Running Adaptive
Greedy on input x corresponds to following a path in τ from the root to a leaf. Let
X = {(x, t) | x ∈ {0, 1}n, 1 ≤ t ≤ T x}. Let Xv denote the set of (x, t) ∈ X such that v is
node number t on the root-leaf path that is followed in τ on state vector x (with the root as
node number 1 on that path). Thus for x ∈ {0, 1}n and 1 ≤ t ≤ T x, the pair (x, t) belongs to
exactly one set Xv, and the Xv form a partition of X. Each pair (x, t) ∈ Xv has the same
value for t, which is the number of nodes on the path from the root of τ to node v.

Let v be a node in τ , and let j(v) be the item labeling v. We define pv = pj(v) and
qv = qj(v). We define Xv

1 = {(x, t) ∈ Xv|j(v) = 1}, and Xv
0 = {(x, t) ∈ Xv|j(v) = 0}.

Each (x, t) ∈ Xv
1 has a corresponding “neighbor” (x′, t) ∈ Xv

0 , where x differs from x′ only
in position j(v). Therefore, Xv = Xv

1 ∪ Xv
0 and there is a bijection between Xv

1 and Xv
0

mapping each (x, t) ∈ Xv
1 to (x′, t) ∈ Xv

0 .
Let F v denote the set of items labeling the nodes on the path from the root down to node

v, not including the item labeling node v. Let bv denote the partial assignment indicating the
outcomes of the tests in F v, corresponding to the path down to (but not including) node v.

For (x, t) ∈ Xv, F t−1
x = F v and F tx = F v ∪ {j(v)}. Also,

g(F tx, x)− g(F t−1
x , x) = g(F v ∪ {j(v)}, x)− g(F v, x) (3)

Let ∂gv(`) denote the increase in utility obtained at node v, if the element in that node
is in state `. That is, let ∂gv(`) = ∂gj(v)(b

v, `).
We define ∆(v) to be the expected increase in utility at node v, that is

∆(v) = pv∂gv(1) + qv∂gv(0) (4)

Clearly, P (bv) =
∑

(x,t)∈Xv P (x) and pvP (bv) =
∑

(x,t)∈Xv
1
P (x). Since for (x, t) ∈ Xv

1 ,
P (xj(v)←∗) = (1/pv)P (x), it follows that

∑
(x,t)∈Xv

1
P (xj(v)←∗) = P (bv) and hence∑

(x,t)∈Xv
1

P (xj(v)←∗) =
∑

(x,t)∈Xv

P (x) (5)

Let θv = cj(v)/∆(v). Then for each (x, t) ∈ Xv, θtx = θv.
Thus,
E[qx(Y )]

=
∑

x∈{0,1}n

Tx∑
t=1

P (x)[g(F tx, x)− g(F t−1
x , x)]θtx by (2)

=
∑
v

∑
(x,t)∈Xv

P (x)[g(F v ∪ {j(v)}, x)− g(F v, x)]θv

by (3) since the Xv partition the (x, t)
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=
∑
v

θv
( ∑

(x,t)∈Xv

P (x)[g(F v ∪ {j(v)}, x)− g(F v, x)]
)

moving θv forward

=
∑
v

θv
( ∑

(x,t)∈Xv

P (x)[∂gv(xj(v))]
)

by definition of ∂gv(`)

=
∑
v

θv
( ∑

(x,t)∈Xv
1

P (x)[∂gv(1)] +
∑

(x,t)∈Xv
0

P (x)[∂gv(0)]
)

separating Xv into Xv
0 and Xv

1

=
∑
v

θv
( ∑

(x,t)∈Xv
1

P (xj(v)←∗)pv[∂gv(1)] +
∑

(x,t)∈Xv
0

P (xj(v)←∗)qv[∂gv(0)]
)

since for i ∈ N , P (x) = P (xi←∗)pi if xi = 1 and P (x) = P (xi←∗)qi if xi = 0

=
∑
v

θv
( ∑

(x,t)∈Xv
1

P (xj(v)←∗)[pv∂gv(1) + qv∂gv(0)]
)

pairing (x, t) ∈ Xv
1 with (x′, t) ∈ Xv

0

=
∑
v

θv
( ∑

(x,t)∈Xv
1

P (xj(v)←∗)∆(v)
)

by (4)

=
∑
v

cj(v)

( ∑
(x,t)∈Xv

1

P (xj(v)←∗)
)

by definition of θ(v)

=
∑
v

∑
(x,t)∈Xv

cj(v)P (x) by (5)

=
∑

x∈{0,1}n

Tx∑
t=1

cjtxP (x) since the Xv partition the (x, t)

The final expression is equal to the expected cost of the cover constructed by Adaptive
Greedy.

For w ∈ W , let h′w(Y ) denote the function of the variables yS,a, computed in the left
hand side of the constraint for w (and the associated j = J(w)), in LPII. We will bound
h′w(Y ).

The analysis of Deshpande et al. relied on a bound given in a technical lemma of
Wolsey (1982), as quoted by Fujito (2000). We use a different bound of Wolsey, which we
present here. It comes from the same technical lemma.

Wolsey’s Bound. (Wolsey, 1982) Given two sequences of real numbers, 0 < α(1) ≤ α(2) ≤
. . . ≤ α(T ) and β(1) ≥ β(2) ≥ . . . ≥ β(T ) > 0, the following holds:

α(1)β(1) + (α(2) − α(1))β(2) + . . .+ (α(T ) − α(T−1))β(T ) ≤ ( max
1≤t≤T

α(t)β(t))

[
ln
β(1)

β(T )
+ 1

]

The next lemma, Lemma 3, upper bounds the left hand side of the constraints for the
w ∈W , when evaluated at Y .

Lemma 3. For every w ∈W and j = J(w), h′w(Y ) ≤ cj(lnRE + 1).
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Proof. Let x = w(1) and x′ = w(0).
Let τ be the decision tree corresponding to Adaptive Greedy. Consider the root-leaf paths

of τ taken on x and x′. If j does not appear on these paths, then the paths are the same.
Otherwise, they diverge on a node containing j. We consider these two cases separately.

In the first case, the paths are identical and yS,x = yS,x′ for all S ⊂ N , Further, T x = T x
′ ,

F tx = F tx′ for all t with 0 ≤ t ≤ T x, and unless S = F tx for some t with 0 ≤ t ≤ T x − 1,
yS,x = yS,x′ = 0.

Therefore, we have

h′w(Y ) =
∑
S⊆N

[pj ∂gj(S,w
(1)) yS,w(1) + qj ∂gj(S,w

(0)) yS,w(0) ]

=
Tx−1∑
t=0

yF t
x,x

[
pj ∂gj(F

t
x, w, 1) + qj ∂gj(F

t
x′ , w, 0)

]
=

Tx−1∑
t=0

yF t
x,x

∆t+1
x (j) by the definition of ∆t

x

In the second case, the paths diverge at a node labeled j. Let v be the node. Numbering
the nodes on the path from the root to v, starting at 1, let tv be the number of v. Then
for 0 ≤ t ≤ tv − 1, F tx = F tx′ , and for 1 ≤ t ≤ tv, and θtx = θtx′ . For tv ≤ t ≤ T x, j ∈ F tvx ,
so ∂gj(F

t
x, x) = 0 and hence ∂gj(F

t
x, x) yS,x = 0. If S 6∈ {F 0

x , . . . , F
Tx−1
x }, then yS,x = 0.

Thus if ∂gj(S, x) yS,x 6= 0, then S = F tx for some t where 0 ≤ t ≤ tv − 1. Similarly, if
∂gj(S, x

′) yS,x′ 6= 0, S = F tx′ for some t where 1 ≤ t ≤ tv − 1. Therefore, analogous to the
other case, we have

h′w(Y ) =
tv−1∑
t=0

yF t
x,x

∆t+1
x (j)

Recall that ∆t
x(j) is the expected increase in utility during iteration t, on input x, if j

were chosen in that iteration. By the assumption in the definition of the StSuC problem,
there exists ` ∈ {0, 1} such that ∂gj(?, `) > 0, for ? = (∗, . . . , ∗). Therefore, ∆1

x(j) > 0.
In the first case above, let T̂ be the the maximum value of t such that 1 ≤ t ≤ T x

and ∆t
x(j) > 0. In the second, let T̂ be the maximum value of t such that 1 ≤ t ≤ tv and

∆t
x(j) > 0. In both cases, the first T̂ nodes of the paths for x and x′ in τ are identical, so

∆t
x(j) = ∆t

x′(j) for 1 ≤ t ≤ T̂ .
By the submodularity of g and the greedy rule used by Adaptive Greedy, the rate paid

during each iteration of Adaptive Greedy, on input x, cannot decrease in subsequent iterations.
Therefore, 0 < θ1

x ≤ . . . ≤ θT̂x . By the submodularity of g, ∆1
x(j) ≥ . . . ≥ ∆T̂

x (j) > 0.

Thus Wolsey’s bound applies to the non-decreasing subsequence θ1
x, θ

2
x, . . . , θ

T̂
x and the

non-increasing subsequence ∆1
x(j),∆2

x(j), . . . ,∆T̂
x (j). Suppressing the subscript x on F t, θ ,

and ∆ for readability, and using the fact that w = xj←∗, we have
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h′w(Y ) =

T̂−1∑
t=0

yF t,x∆t+1(j)

= θ1∆1(j) + ΣT̂
t=2(θt − θt−1)∆t(j)

≤ ( max
1≤t≤T̂

θt∆t(j))

[
ln

∆1(j)

∆T̂ (j)
+ 1

]
by Wolsey’s bound

≤ cj [ln
∆1(j)

∆T̂ (j)
+ 1] since θtx ≤ cj/∆t

x(j) by the Adaptive Greedy choice

≤ cj [lnRE + 1] by the definition of RE

By the lemmas above, and the previous analysis, we have the following theorem.

Theorem 1. For the Stochastic Submodular Cover problem, the expected cost incurred by
Adaptive Greedy is at most (lnRE+1) times the expected cost incurred by the optimal strategy.

4. The k(lnR1 + 1) Bound

We can also prove an approximation bound of k(lnR1 + 1) for Adaptive Greedy, where k is
the size of the state space. This generalizes the bound of Deshpande et al. (2016) to utility
functions that are not necessarily integer-valued. The proof is essentially the same as the
proof in the previous section, except that it relies on a different upper bound on h′w(Y ). To
obtain this upper bound, we use almost the same argument as that in the proof of Lemma 8
in the work of Deshpande et al. (2016), but apply a different bound of Wolsey (1982) (the
one given above). We include the full argument here for completeness. As in the previous
section, we make the simplifying assumption that all the pi are strictly between 0 and 1.

Lemma 4. For every w ∈W and j = J(w), h′w(Y ) ≤ kcj(lnR1 + 1), where k is the size of
the state space.

Proof. We give the proof for the state space {0, 1} (i.e., where k = 2) but the proof easily
generalizes to constant k > 2.

Let x = w(1) and x′ = w(0). Let Dt
x(j) = ∂gj(F

t
x, x) and Dt

x′(j) = ∂gj(F
t
x′ , x

′). Thus
Dt
x(j) denotes the amount of additional utility that would have been attained in iteration t

of Adaptive Greedy, on input x, if item j had been chosen (rather than item jxt ). Dt
x′(j) is

the analogous value for x′. Thus

∆t
x(j) = pj(D

t
x(j)) + qj(D

t
x′(j)). (6)

Let κ be the value of t that maximizes (θtx)(Dt
x(j)). Similarly, let κ′ be the value of t

that maximizes (θtx′)(D
t
x′(j)).

We have θ1
x ≤ θ2

x . . . ≤ θT
x

x . By the submodularity of g, D1
x(j) ≥ D2

x(j) ≥ . . . ≥ DTx

x (j).
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Since xj = 1, D1
x(j) = ∂gj(?, 1). By the definition of η1(j), Dt

x(j) ≥ η1(j) for every t
such that Dt

x(j) > 0. Thus by the definition of R1 and Wolsey’s bound,

θ1
x(D1

x(j)) + ΣTx

t=2(θtx − θt−1
x )(Dt

x(j)) ≤ θκx(Dκ
x(j))(lnR1 + 1) (7)

Similarly:

θ1
x′(D

1
x′(j)) + ΣTx′

t=2(θtx′ − θt−1
x′ )(Dt

x′(j)) ≤ θκ
′
x′ (D

κ′
x′ (j))(lnR1 + 1) (8)

Then:

h′w(Y )

=
∑
S⊆N

[pj∂gj(S, x)yS,x + qj∂gj(S, x
′)yS,x′ ]

=
pj [θ

1
x(D1

x(j)) + ΣTx

t=2(θtx − θt−1
x )(Dt

x(j))]+

qj [θ
1
x′(D

1
x′(j)) + ΣTx′

t=2(θtx′ − θ
t−1
x′ )(Dt

x′(j))]

≤pjθκx(Dκ
x(j))(lnR1 + 1) + qjθ

κ′
x′ (D

κ′
x′ (j))(lnR1 + 1) by (7) and (8)

≤(lnR1 + 1)[pjθ
κ
x(Dκ

x(j)) + qjθ
κ′
x′ (D

κ′
x′ (j))]

≤ (lnR1 + 1)[pjθ
κ
x(Dκ

x(j)) + qjθ
κ
x(Dκ

x′(j))+

pjθ
κ′
x′ (D

κ′
x (j)) + qjθ

κ′
x′ (D

κ′
x′ (j))]

since this just adds extra non-negative terms

=(lnR1 + 1)(θκx∆κ
x(j) + θκ

′
x′∆

κ′
x′(j)) factoring out the θs and using (6)

≤(lnR1 + 1)(cj + cj) by the Adaptive Greedy choices
≤2cj(lnR1 + 1)

The factor of 2 in the bound is replaced by k when there are k states.

The bound on Adaptive Greedy then follows immediately from the arguments in the
previous section.

Theorem 2. For the Stochastic Submodular Cover problem, the expected cost incurred by
Adaptive Greedy is at most k(lnR1 + 1) times the expected cost incurred by the optimal
strategy, where k is the size of the state set.
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