
Journal of Artificial Intelligence Research 63 (2018) 955–986 Submitted 03/18; published 12/18

Optimal Torpedo Scheduling

Adrian Goldwaser adrian.goldwaser@gmail.com
Data61, CSIRO, & The University of New South Wales
Sydney, NSW, Australia

Andreas Schutt andreas.schutt@data61.csiro.au

Data61, CSIRO, & The University of Melbourne

Melbourne, VIC, Australia

Abstract

We consider the torpedo scheduling problem in steel production, which is concerned
with the transport of hot metal from a blast furnace to an oxygen converter. A schedule
must satisfy, amongst other considerations, resource capacity constraints along the path
and the locations traversed as well as the sulfur level of the hot metal. The goal is first
to minimize the number of torpedo cars used during the planning horizon and second
to minimize the time spent desulfurizing the hot metal. We propose an exact solution
method based on Logic-based Benders Decomposition using Mixed-Integer and Constraint
Programming, which optimally solves and proves, for the first time, the optimality of all
instances from the ACP Challenge 2016 within 10 minutes. In addition, we adapted our
method to handle large-scale instances and instances with a more general rail network.
This adaptation optimally solved all challenge instances within one minute and was able
to solve instances of up to 100,000 hot metal pickups.

1. Introduction

Steel production is a complex process of sequential stages from raw materials to a final
product in the form of, e.g., wire plate coils. In the first stage, the iron making, raw iron
ore powders are combined with other mineral powders in a sinter and coke is produced for
fuel. The coke is then used to power a blast furnace to melt the output of the sinter, creating
hot metal. In the second stage, the steel making, the hot metal is loaded in torpedo cars, or
torpedoes, and transported to an oxygen converter, at which the content of sulfur, phoshor,
carbon, and silicon is reduced (Kumakura, 2013). In modern plants, a desulfurization step
of the hot metal is performed in the torpedoes before the oxygen converter (Kumakura,
2013). Once at the oxygen converter, the hot metal is converted into crude steel which
is then further refined in order to finalise the characteristic and quality of the produced
steel. The last two stages involve a continuous caster to create steel slabs which are then
passed to a hot strip mill where it is thinned and coiled. Figure 1 provides a schematic view
of a these sections in a steel production plant. This work focuses on the rotation of the
torpedoes between the blast furnace and oxygen converter in the steel making stage, shown
in Figure 2. At the steel making area, there are a number of blast furnaces producing hot
metal of different qualities. At certain times or events, the hot metal in the blast furnace
has to be loaded into a torpedo. Then the torpedo moves on a rail network to different
locations for improving the quality of the hot metal if needed. After that, the hot metal is
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transported to the oxygen converter and poured into it at a pre-defined event time. Now,
the empty torpedo is available for the next pick up of hot metal.

We study the torpedo scheduling problem that was proposed by Schaus et al. (2016) for
the ACP Challenge 2016. This problem focuses on the assignment of blast furnace events to
oxygen converter events and the scheduling problem of transporting the hot metal through
different locations while satisfying all scheduling constraints and the quality constraint,
sulfurization level, on the hot metal. Figure 3 shows the rail network considered. There
are five different locations: blast furnace (bf), full buffer (fb), desulfurization station (ds),
oxygen converter (oc), and empty buffer (eb). The full and empty buffers are waiting areas
for full and empty torpedoes, whereas at the desulfurization station the sulfur level of the
hot metal can be reduced by chemical processes. Each location has a torpedo capacity,
which is shown above the node. Each link or edge has a minimal transition time and a
torpedo capacity, which is shown next to the edge in the same order. The dashed edge from
bf to eb represents the emergency pit, in which hot metal can be dumped if required. The
objective is a lexicographical one, first to minimize the number of torpedoes and second to
minimize the total time spent at the desulfurization station by torpedoes.

Example 1.1. Figure 4 shows a small problem with five blast furnace 1, 2, . . . , 5 and four
converter events 6, 7, 8, 9. Each converter event is specified by its due date and (maximal)
sulfur level given above or below its node. We assume that the loading time at the blast
furnace, the unloading time at the oxygen converter, and the time to desulfurize the hot
metal by one level are 5 time units. The transition times between different locations and the
torpedo capacities are shown in Figure 3, e.g., the blast furnace bf has torpedo capacity 1 and
the emergency trip (dashed line) a transition time of 20 and no capacity limit. A solution
is depicted by the arrows between the events, which shows the usage of three torpedoes. The
first torpedo serves the events 1, 6, 4, 8, the second one only 2, and the third one 3, 7, 5, 9
in this order. The scheduling of this solution is depicted in Figure 5, showing the movement
of each torpedo. For fulfilling the demands for oxygen converter events 6, 7, and 8, a total
of 20 time units have to be spent for desulfurization — 5 time units per unit decrease with
4 unit decreases required.

To the best of our knowledge, the torpedo scheduling problem we study was first pro-
posed in the 2016 ACP Challenge. From the ten teams who took part, we are only aware
of the publication of the winning team (Kletzander & Musliu, 2017) and the third placed
team (Geiger, 2017b). Kletzander and Musliu (2017) propose a two-stage simulated anneal-
ing approach. The first stage minimizes the number of torpedoes by tracking the maximal
number of torpedoes simultaneously used at any one time, whereas the second stage mini-
mizes the desulfurization time. They relax some constraints, but add penalty terms to their
objective. One iteration of the method takes between four and ten minutes time for the
ACP challenge instances. They run 50 iterations to get their best results, which is a run-
time of more than 3 hours. Geiger (2017b) proposes a Branch-and-Bound method, which
branches over the assignments of converter events to blast furnace events in a depth first
manner with chronological backtracking. In each node, a resource-constrained scheduling
problem is solved by a serial generation scheme with variable neighborhood search (Geiger,
2017a). In order to reduce the search tree size, Geiger removes infeasible assignments in a
preprocessing step and after a solution is found. Both methods (Geiger, 2017b; Kletzander
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Figure 1: Overview of a steel production plant taken from (Schaus et al., 2016).
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Figure 2: Close up view of blast furnace to oxygen converter section of a steel production
plant modified from (Schaus et al., 2016).
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& Musliu, 2017) are incomplete and thus cannot prove optimality of an instance, unless the
lower bound of the objective is the optimal value.

Different aspects on the torpedo scheduling problem have been studied in the literature:
the routing of torpedoes through the rail network while minimizing the transportation
time of the hot metal (Deng, Inoue, & Kawakami, 2011; Kikuchi, Konishi, & Imai, 2008;
Liu & Wang, 2015), the molten iron allocation problem (Tang, Wang, & Liu, 2007), the
molten scheduling problem (Huang, Chai, Luo, Zheng, & Wang, 2011; Li, Pan, & Duan,
2016), and the locomotive scheduling problem (Wang & Tang, 2007). All those works use
different solution methods such as local search, mixed integer programming, and column
generation, but none use Logic-based Benders Decomposition (Hooker & Ottosson, 2003)
and Constraint Programming (CP) as we do in the present paper.

We propose a Logic-Based Benders Decomposition (Hooker & Ottosson, 2003) method,
in which the assignment problem and the lexicographical objective is handled in the master
problem. The remaining scheduling is partitioned by one of our two algorithms, if possi-
ble, and solved minimizing the desulfurization time. The master problem is solved by a
Mixed Integer Programming (MIP) solver whereas the scheduling problems by a CP solver
with Nogood Learning applying Lazy Clause Generation (LCG) (Ohrimenko, Stuckey, &
Codish, 2009). In preprocessing, we simplify the problem by removing symmetries. To
the best of our knowledge, our method is the first published complete method for the tor-
pedo scheduling and proves the optimality of found solutions of the simulated annealing
approach (Kletzander & Musliu, 2017) for all ACP challenge instances, in an even shorter
runtime. We modified our method for handling large scale problems, but with the price of
losing optimality. The modified method improved the runtime by orders of magnitude and
was able to solve instances with 100,000 events in 70 minutes.

Moreover we use the same idea of handling large scale problems but instead restricting
the time between pick up and drop off of the hot metal in order to keep the hot metal
at a high enough temperature. We also generalise our approach to work on a general rail
network having the same structure by allowing arbitrary capacities at the locations and the
paths between two locations. The generalisation allows us to test our method on denser
torpedo scheduling problems, which exhibit different solving characteristics.

The paper is organised as follows: Section 2 covers the formal definition of the torpedo
scheduling problem. Section 3 presents the preprocessing steps used in the solution. Sec-
tion 4 explains the solution method, including both the MIP and CP models and the other
algorithms used. Section 5 shows the results of running different versions of the solution on
a range of benchmarks.

2. Torpedo Scheduling

In this section, we formally introduce the torpedo scheduling problem considered in this
work. For convenience and later reference, Table 1 provides a brief overview of notations
defined in this and the next section.

The torpedo scheduling problem consists of a set of blast furnace events N = {1, 2, . . . , n},
a set of (oxygen) converter events M = {n+ 1, n+ 2, . . . , n+m}, and a set of locations L =
{bf, fb, ds, oc, eb} in the production plant. In addition, the torpedo graph G = (L,P ) is
a directed graph which specifies the two possible traversals of the torpedoes through the
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Notation Description

N The set of n events at the blast furnace, which are 1, 2, . . . , n.
M The set of m events at the oxygen converter, which are n+1, n+2, . . . , n+m
L The set of locations in the production plant, which are bf (blast furnace), fb

(free buffer), ds (desulfurization station), oc (oxygen converter), and eb (empty
buffer).

(l, l′,) A (directed) rail link between two locations l and l′ in L.
P The set of rail links in the production plant, which are (eb, bf), (bf, eb), (bf, fb),

(fb, ds), (ds, oc), and (oc, eb).
G A directed graph with the nodes L and the edges P .
tt(l,l′) The minimal transition time from l ∈ L to l′ ∈ L with (l, l′) ∈ P .

ddbfi The due date of the event i ∈ N at the blast furnace.
ddocj The due date of the event j ∈M at the oxygen converter.

sulbfi The sulfur level of the hot metal for events i ∈ N .
sulocj The maximal sulfur level of the hot metal for events j ∈M .

durbf The duration of loading hot metal into a torpedo at bf.
duroc The duration of unloading hot metal from a torpedo at oc.
durds The duration of reducing the sulfur level of hot metal by one unit at ds.
capl The torpedo capacity of the location l ∈ L.
cap(l,l′) The torpedo capacity of the rail link (l, l′) ∈ P .

arril The variable storing the arrival time at l ∈ L for the event i ∈ N .

depi
l The variable storing the departure time at l ∈ L for the event i ∈ N .

epi The variable representing whether event i ∈ N is an emergency pit trip.
oci The variable representing which oxygen converter event in M is matched to

the event i ∈ N if i is not a emergency pit trip. If i is an emergency pit trip,
then oci = 0.

S A solution vector of n torpedo runs.
X The set of possible matchings (i, j) ∈ N ×M from blast furnace events i to

oxygen converter events j.
bm A backward matching that assigns a blast furnace event i ∈ N or none (∞)

to an oxygen converter event j ∈M , i.e., bm : M → N ∪ {∞}.
V The set of all blast furnace events matched by bm, i.e., bm(M) \ {∞}.
U The set of all blast furnace events unmatched by bm, i.e., N \ bm(M).
R The set of possible matchings (i, i′) of blast furnace events i ∈ N to unmatched

blast furnace events i′ ∈ U .

Table 1: Brief overview of notations introduced in Sections 2 and 3.
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plant. The oxygen converter trip delivers the hot metal to the converter and visits the
locations in the order eb, bf, fb, ds, oc, then eb, whereas the emergency pit trip dumps the
hot metal at the emergency pit and visits the locations in the order eb, bf, then eb. Thus,
P = {(eb, bf), (bf, eb), (bf, fb), (fb, ds), (ds, oc), (oc, eb)}.

Each location l ∈ L has a torpedo capacity, capl, where the empty buffer has no limit,
i.e., capep = ∞. We extend this notation for edges p ∈ P , which is capp, where trips via
the emergency pit are also unlimited, i.e., cap(bf,eb) = ∞. A torpedo traversing the edge p
requires a minimal transition time of ttp. Note that for the ACP Challenge 2016 (Schaus
et al., 2016) the following capacities were given as shown in Figure 3: capbf = 1, and
capp = 1 for all p ∈ P \ {(bf, eb)}.

Each blast furnace event i ∈ N is characterized by a due date, ddbfi ∈ N0, at which hot
metal is picked up by exactly one empty torpedo, and a sulfur level, sulbfi ∈ {1, 2, . . . , 5},
of the hot metal. Each oxygen converter event j ∈ M has a due date, ddocj ∈ N0, at which
hot metal from exactly one full torpedo is poured into the converter, and a maximal sulfur
level, sulocj ∈ {1, 2, . . . , 5}, of the hot metal. Loading of a torpedo takes durbf ∈ N time units
at the blast furnace, while unloading takes duroc ∈ N time units at the oxygen converter.
Reducing the sulfur level of hot metal by one unit requires durds ∈ N time units at the
desulfurization station.

Following (Kletzander & Musliu, 2017), we describe a solution as n torpedo runs, in
which the i-th run picks up the hot metal of the i-th event at the blast furnace bf, i.e.,
i ∈ N . For simplicity, we abuse the notation of the events in N and refer to blast furnace
event or torpedo run by i ∈ N . A torpedo run i is either a converter or emergency pit
trip. In the former case, it is specified by variable departure times depl

i, variable arrival
times arrli for locations in {eb, bf, fb, ds, oc}, and the variable converter event oci ∈ M ,
that it serves. For the latter case, it is specified by the variable departure and variable
arrival times for only the locations eb and bf. We denote by epi whether it is a converter
trip epi = 0 or an emergency pit trip epi = 1. In the case where epi = 1, then oci = 0.

Definition 2.1 (Torpedo Scheduling Problem). A torpedo scheduling problem consists of
a triplet (N,M,G = (L,P )). A solution S = (1, 2, . . . , n) is a vector of n torpedo runs,
in which the i-th run picks up the hot metal of the i-th blast furnace event, matches the
blast furnace event to an oxygen converter event or an emergency pit trip, and assigns all
corresponding arrival and departure times, i.e., each run, i, consists of arrli and depl

i for
all locations l, as well as oci and epi. A solution satisfies the capacity constraints on each
location (1) and on each edge (2),∑

i∈N :arrli≤t<depl
i

1 ≤ capl ∀l ∈ L,∀t ∈ N0 (1)∑
i∈N :depl

i≤t<arrki
1 ≤ cap(l,k) ∀(l, k) ∈ P,∀t ∈ N0 (2)

the minimal transition times for oxygen converter (3) and emergency pit trips (4),

arrki − depl
i ≥ tt(l,k) ∀i ∈ N : epi = 0,∀(l, k) ∈ P \ {(bf, eb)} (3)

arrki − depl
i ≥ tt(l,k) ∀i ∈ N : epi = 1,∀(l, k) ∈ {(eb, bf), (bf, eb)} (4)
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the loading constraints at the blast furnace (5), the unloading constraints (6), and the max-
imal sulfurization level (7) at the oxygen converter.

arrbfi ≤ ddbfi ∧ ddbfi + durbf ≤ depbf
i ∀i ∈ N (5)

arroci ≤ ddococi ∧ ddococi + duroc ≤ depoc
i ∀i ∈ N : epi = 0 (6)

sulbfi −

⌊
depds

i − arrdsi
durds

⌋
≤ sulococi ∀i ∈ N : epi = 0 (7)

All torpedoes, which are identical, are located at eb at time 0. Here, we are interested
in a solution that minimizes two objective functions in lexicographic order. The primary
objective (8) is to minimize the number of torpedoes used, which can be stated as minimizing
the maximal number of “active” torpedo runs at any time (Kletzander & Musliu, 2017;
Geiger, 2017b). The secondary objective (9) is to minimize the total time spent at the
desulfurization station.

min maxt∈N0 |{i ∈ N | depeb
i ≤ t ∧ t < arrebi }| (8)

min
∑

i∈N :epi=0
depds

i − arrdsi (9)

Note that the solutions do not provide an assignment of torpedo runs to individual
torpedoes, but such an assignment can be computed in polynomial time with respect to
the number of torpedoes. Algorithm 1 generates such an assignment with the worst case
complexity O(n log n). It iterates over the departure times and arrival times of the torpedo
runs at the empty buffer in chronological order while recording the available torpedoes at
the empty buffer using a stack (lines 6–14). If the departure time of a torpedo run d is
earlier then arrival time of a returning torpedo of the torpedo run a then a torpedo c is
popped from the stack avail, assigned to d, and the next departure time is considered in
the next loop iteration. Otherwise the torpedo used for a is pushed to the stack avail and
the next arrival time is considered in the next loop iteration. Note that there can be many
different assignments for one solution.

Moreover, as already observed by Kletzander and Musliu (2017) and Geiger (2017b) the
possible oxygen event matches for a blast furnace event can be reduced by simply calculating
the minimal travel time including a minimal time for desulfurization from the blast furnace
to the oxygen converter. We denote X = {(i, j) ∈ N × M | ddbfi + tt(bf,fb) + tt(fb,ds) +

tt(ds,oc) + durds ·max(0, sulbfi − sulocj ) ≤ ddocj } the set of possible matchings of blast furnace
to oxygen converter events. In addition, they also observed that there is no reason to delay
a departure of a torpedo from the blast furnace in the case of an emergency trip due to the
uncapacitated path (bf, eb) and empty buffer. Thus, we can fix depbf

i = ddbfi + durbf and
arrebi = depbf

i + tt(bf,eb) if the torpedo run i goes to the emergency pit.

Example 2.1. Given the example from Example 1.1. Then, X = {(1, 6), (1, 7), (1, 8), (1, 9),
(2, 7), (2, 8), (2, 9), (3, 7), (3, 8), (3, 9), (4, 8), (4, 9), (5, 9)} and the departure times at bf re-
spectively are 10, 20, 30, 52, and 75 for events 1, 2, 3, 4, and 5 if they go to the emergency
pit. Note that only bf event 1 can deliver hot metal for event 6, we leave such simple
reductions to the solver.
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Algorithm 1: Assignment of torpedo runs to torpedoes.
Input : S a solution of a torpedo scheduling problem with n torpedo runs.
Input : C the number of torpedoes required for solution S.
Output : assgmt an array of assignments of torpedo runs to torpedo cars.

1 for i := 1 to n do X[i] := i; Y [i] := i;

2 sort X in ascending order of their departure times depeb
i in S;

3 sort Y in ascending order of their arrival times arrebi in S;
4 for c := 1 to C do avail.push(c);
5 ii := 1; jj := 1;
6 while ii ≤ n do
7 d := X[ii]; a := Y [jj];

8 if depeb
d < arreba then

9 c := avail.pop();
10 assgmt[d] := c;
11 jj := jj + 1;

12 else
13 avail.push(assgmt[a]);
14 ii := ii + 1;

15 return assgmt;

3. Preprocessing

The original problem definition requires solving many parts simultaneously. We make some
observations which allow us to decompose and solve some of these components optimally to
simplify the problem. The problem can be decomposed into three components: the assign-
ment of blast furnace events to oxygen converter events, the scheduling of the torpedoes and
the assignment of torpedoes to torpedo runs. In the preprocessing, we take this third section
and note that due to all torpedoes being identical, we can solve part of this — specifically
the optimal reuse of torpedoes after they exit the oxygen converter. This analysis rests on
the unlimited capacity of the empty buffer and allows the removal of much of the cyclic
nature of the problem.

The rest of this section explains these preprocessing steps in detail and sets up the
structure of the resulting problem necessary for our solution approach.

3.1 Departure Times from the Oxygen Converter

The empty buffer has unlimited capacity, which means that it is never suboptimal to get an
empty torpedo there earlier rather than later as it can be reused earlier, it frees space at the
oxygen converter earlier, and clears the path from the oxygen converter to the empty buffer
earlier. Thus, an empty torpedo should leave the oxygen converter as early as possible,
which is the latest time of the completion unloading the torpedo and the arrival time of one
of the previous torpedoes at the empty buffer from the oxygen converter.

Since the due dates for the oxygen converter events are known a priori, the departure
times from the oxygen converter and the arrival times to the empty buffer can be computed
in linear time with the respect to the number of those events, if the events are given in
chronological order, as shown in Algorithm 2. The idea of Algorithm 2 is to compute the
departure times in chronological order of the events while recording the earliest available
time on (oc, eb) for each track. In line 1, for each converter event j the departure time
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Algorithm 2: Computation of departure times from the oxygen converter.
Input : M an array of m oxygen converter events sorted in ascending order of their due dates.
Output : depOC an array of departure times at oxygen converter for each converter event.

1 for j := 1 to m do depOC[j] := ddocj + duroc;
2 for track := 1 to cap(oc,eb) do availAt[track] := −∞;
3 for jj := 1 to m do
4 j := M [jj];
5 track := 1 + (jj mod cap(oc,eb));
6 if availAt[track] > depOC[j] then depOC[j] := availAt[track];
7 availAt[track] := depOC[j] + tt(oc,eb);

8 return depOC;

depOC[j] of the torpedo is initialised by the end of the unloading, i.e., ddocj +duroc. In line
2, the earliest available time availAt[track] is initialised for each track track. The for-loop
(lines 3–7) iterates in chronological order over the converter events. It determines which
track to use (line 5) and checks if the track is available after the end of loading of the current
event j (line 6). If so then the departure time depOC[j] is updated to the available time on
the track (line 7), otherwise it remains unchanged. Finally, the available time is updated
to the arrival time depOC[j] + tt(oc,eb) of the torpedo at the empty buffer when departing
at depOC[j] from the converter (line 7). Note that the order of torpedoes serving oxygen
converter events remains unchanged by the algorithm.

Proposition 3.1. Algorithm 2 computes the earliest departure times for each oxygen con-
verter event without changing the order of their corresponding earliest arrival times at the
empty buffer and without creating an overload on the path between both locations, i.e.,
(oc, eb).

Proof. Let 1, 2, . . . ,m be the order of converter events sorted in ascending order of their
due dates, i.e., for all 1 ≤ j1 < j2 ≤ m hold ddocj1 ≤ ddocj2 . The departure times are ini-
tialised by their end time of their loading regardless whether it will cause an overload at
(oc, eb) (line 1), whereas the entries in the array availAt by −∞. We prove the claim
by induction. The departure times for the first cap(oc,eb) converter events j remain un-
changed, because the condition on line 6 does not hold. Since the duration of unloading
and the transition time on (oc, eb) are the same and constant, the order of the events ac-
cording to the departure times from the converter and arrival times at the empty buffer
remain unchanged, i.e., for all 1 ≤ j1 < j2 ≤ cap(oc,eb) holds depOC[j1] ≤ depOC[j2]
and depOC[j1] + tt(oc,eb) ≤ depOC[j2] + tt(oc,eb). Thus, availAt[1 + (j1 mod cap(oc,eb))] ≤
availAt[1 + (j2 mod cap(oc,eb))] holds, too, because they are respectively assigned to the
arrival times at the empty buffer availAt[1 + (j1 mod cap(oc,eb))] = depOC[j1] + tt(oc,eb)

and availAt[1 + (j2 mod cap(oc,eb))] = depOC[j2] + tt(oc,eb) (line 7). Obviously, there is
no overload at (oc, eb) for the first cap(oc,eb) events. Let j be any event after the first
cap(oc,eb) events, i.e., j > cap(oc,eb). Let j1, j2, ..., jcap(oc,eb) be the cap(oc,eb) events before j
in this order. We know that their order of arrival times is the same as their unload-
ing times and the entries in availAt reflecting their arrival times. We also know that j
mod cap(oc,eb) = j1 mod cap(oc,eb). If availAt[1 + (j mod cap(oc,eb))] ≤ depOC then the
departure time of j remains the completion of the unloading, which is the earliest possible
departure time. In the other case, the departure time depOC[j] is updated to availAt[1+(j
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mod cap(oc,eb))], which is the earliest available time of available track, because availAt[1+(j
mod cap(oc,eb))] ≤ availAt[1 + (j′ mod cap(oc,eb))] for all j1 < j′ ≤ jcap(oc,eb) . Consequently,
the orders of the events do not change. In both, one track at (oc, eb) needs to be re-
served during the time interval [depOC[j], depOC[j] + tt(oc,eb)), but at most cap(oc,eb) − 1
time intervals of previous events are able to intersect with the time interval by construc-
tion. The track is reversed by the algorithm by updating availAt[1 + (j mod cap(oc,eb))] to
depOC[j] + tt(oc,eb). Thus, there is no resource overload.

Theorem 3.1. Let (N,M,G) be a feasible torpedo scheduling problem. Then there ex-
ists an optimal solution S using the departure times at the oxygen converter computed by
Algorithm 2.

Proof. Without loss of generality, assume that all oxygen converter due dates are unique.
Let S be an optimal solution. Let depOC ′[1], depOC ′[2], . . . and depOC[1], depOC[2], . . . be
the sequence of departure times at the oxygen converter in solution S and from Algorithm 2,
respectively. Due to the construction of Algorithm 2, it holds depOC ′[1] ≥ depOC[1]. Since
the empty buffer is uncapacitated, the torpedoes identical, and Proposition 3.1, we can
replace the departure times for each oxygen converter event in S by the computed ones of
Algorithm 2.

Example 3.1. Given the example from Example 1.1 from page 956. Then Algorithm 2
respectively computes departure times 35, 62, 67, and 85 for the oxygen converter events 6,
7, 8, and 9.

Algorithm 2 computes the earliest departure times at the converter and the arrival
times at the empty buffer while guaranteeing a non-overload on the path between both
locations. However, the earliest departure times may lead to a resource overload at the
converter, because one spot for a torpedo has to be reserved at the converter during the
time interval [ddocj , depOC[j]) for each converter event j. A check can be simply performed
with a standard algorithm as shown in Algorithm 3. It takes the parameters start, end,
and cap as input, which would respectively be in our case the unloading times ddocj of all
events j, the departure times depOC[.] of all events j, and the converter capacity capoc. A
few initialisations are performed such as sorting the events regarding their start (unloading)
times and their end (departure) times in the first four lines. The while-loop (lines 5–10)
iterates over the start and end times in chronological order, breaks ties by processing end
times before start times, and tracks the current number of torpedoes by height. If a start
time is processed (line 7) then the height is incremented. If an end time is processed then
it is checked for a resource overload and in a case of it the algorithm fails (line 9). In the
other case, the height is updated by a decrement (line 10). If no resource overload is found
then the algorithm succeeds (line 11).

Proposition 3.2. Let (N,M,G) be a torpedo scheduling problem. If Algorithm 3 detects
a resource overload when provided with the due dates of the converter events, the earliest
departure times computed by Algorithm 2, and the converter capacity capoc then the torpedo
scheduling problem is infeasible.

Proof. Assume the problem is feasible, but Algorithm 3 detects a resource overload when
processing the end time t. Let Ω be the set of converter events that contributed to the height
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Algorithm 3: Resource overload check.
Input : start an array of start times of k events.
Input : end an array of end times of k events where start[i] < end[i] for all 1 ≤ i ≤ k.
Input : cap a positive integer representing a resource capacity.
Output : True if there is no resource overload; otherwise False.

1 for i := 1 to k do X[i] := i; Y [i] := i;
2 sort X in ascending order to start;
3 sort Y in ascending order to end;
4 ii := 1; jj := 1; height := 0;
5 while ii ≤ k or jj ≤ k do
6 if ii ≤ k and start[X[ii]] < end[Y [ii]] then
7 height := height + 1; ii := ii + 1;
8 else
9 if height > cap then return False;

10 height := height− 1; jj := jj + 1;

11 return True;

before the time t, i.e., events for which their start time has been processed but not yet their
end time. By construction of the algorithm, start[j] < t and t ≤ end[j] hold for all j ∈ Ω
where start[j] = ddocj and end[j] = depOC[j] computed by Algorithm 2 with the property
ddocj +duroc ≤ depOC[j]. Thus, there is a resource overload at the converter, i.e.,

∑
j∈Ω 1 >

capoc, during the time interval [maxj∈Ω dd
oc
j , t = minj∈Ω depOC[j]). Since the problem

is feasible, we know that there is no resource overload at the converter when torpedoes
immediately depart from the converter once they are unloaded, i.e., ddocj + duroc for all
j ∈ Ω. Therefore, Algorithm 2 must have delayed the departure of at least one torpedo for
a converter event j, such that ddocj +duroc < end[j] holds. Due to Proposition 3.1, we know
that end[j] are the earliest departure time from the converter without changing the order
of the events for unloading and departure. Consequently, the order in a solution without
a resource overload must be different, in which a delayed departure event in Algorithm 2
departs earlier. However, the only way to move such a event j forward is to delay an event
j′ in the order before j, but this means that we have to reserve one torpedo for j′ for at
least the same time interval that we freed the space from j. Thus, we still have a resource
overload and the solution S is incorrect.

3.2 Arrival Times at the Blast Furnace

A similar observation to the departure times at the oxygen converter can be seen for the
arrival times at the blast furnace. Since the empty buffer is uncapacitated and the hot metal
cannot be picked up before its due date, it is never suboptimal to get an empty torpedo
there later than rather earlier.

Algorithm 4 is symmetric to Algorithm 2 for the arrival times at the blast furnace.
It computes the times in reverse-chronological order of the blast furnace events. As for
Algorithm 2, the computed arrival times arrBF may lead to a resource overload at the
blast furnace. We can use Algorithm 3 for checking of an overload by respectively using
arrBF [i], and ddbfi + durbf of all blast furnace events i for start, and end as well as capbf
for cap.

With similar arguments as in the oxygen converter case, the following two claims hold.
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Algorithm 4: Computation of arrival times at the blast furnace.
Input : N an array of n blast furnace events sorted in chronological order.
Output : arrBF an array of arrival times at the blast furnace for each blast furnace event.

1 for i := 1 to n do arrBF [i] := ddbfi ;
2 for track := 1 to cap(eb,bf) do availAt[track] :=∞;
3 for ii := n down to 1 do
4 i := N [ii];
5 track := 1 + (n mod cap(eb,bf));
6 if availAt[track] < arrBFi then arrBF [i] := availAt[track];
7 availAt[track] := arrBF [i]− tt(eb,bf);

8 return arrBF ;

Proposition 3.3. Algorithm 4 computes the latest arrival time for each blast furnace event
and their latest departure time from the empty buffer without creating an overload on the
path between both locations, i.e., (eb, bf).

Proof. Proof is similar to the proof of Proposition 3.1.

Theorem 3.2. Let (N,M,G) be a feasible torpedo scheduling problem. Then there exists
an optimal solution S using the arrival times at the blast furnace computed by Algorithm 4.

Proof. Proof is similar to the proof of Theorem. 3.1.

Note that for torpedo runs using the emergency pit, we can now fix its remaining
departure and arrival times. Thus, we only have to decide which run is an emergency
pit trip.

Example 3.2. Consider Example 1.1 from page 956. Then Algorithm 4 respectively com-
putes arrival times 4, 14, 24, 46, and 69 for the events 1, 2, 3, 4, and 5.

Since the blast furnace and oxygen converter events are independent of each other, it
follows that an optimal solution exists, which has the same arrival and departure times for
the corresponding events as computed in Algorithm 2 and 4. Thus, fixing the corresponding
variables to those times removes symmetries from the problem.

Theorem 3.3. Let (N,M,G) be a feasible torpedo scheduling problem. Then there exists
an optimal solution S using the arrival times at the blast furnace computed by Algorithm 4
and the departure times at the oxygen converter computed by Algorithm 2.

3.3 Backward Matching

We introduce the concept of backward matches, i.e., matches from oxygen converter events
to blast furnace events. The meaning of such a match is that a torpedo fulfilling the
demand for the oxygen converter event j ∈ M is used to serve the request for the blast
furnace event i ∈ N . In other words, the torpedo used for j is reused for i.

Since the torpedoes are identical and each blast furnace event requires exactly one
torpedo, it does not matter which empty torpedo serves the event if more than one can be
at the blast furnace in time. Algorithm 5 computes a backward matching in linear time with
respect to the number of blast furnace events, when these events and the oxygen converter
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Algorithm 5: Computation of a backward matching.
Input : N an array of n blast furnace events sorted in chronological order.
Input : M an array of m oxygen converter events sorted in chronological order.
Output : bm a matching from oxygen converter to blast furnace events.

1 arrBF := Algorithm 4(N);
2 depOC := Algorithm 2(M);
3 for o = 1 to m do bm[o] :=∞;
4 bb := 1; oo := 1;
5 while bb ≤ n and oo ≤ m do
6 b := N [bb]; o := M [oo];
7 if depOC[o] + tt(oc,eb) + tt(eb,bf) ≤ arrBF [b] then bm[o] := b; bb++; oo++ ;
8 else bb++ ;

9 return bm;
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Figure 6: The backward matching for Example 1.1.

events are already sorted. Let bm : M → N ∪ {∞} denote the backward matching returned
by Algorithm 5. Note that some of the last oxygen converter events can not be matched
with any blast furnace event. We represent this case by a match to ∞.

Example 3.3. Consider Example 1.1 from page 956. Then Algorithm 5 computes the
backward matching as shown by the arrows in Figure 6, in which events 8 and 9 do not get
a match.

Theorem 3.4. Let (N,M,G) be a feasible torpedo scheduling problem. Then there exists
an optimal solution S using the backward matching computed by Algorithm 5 for the reuse
of torpedoes.

Proof. Let S′ be an optimal solution. We can assume that S′ uses the departure times at
the oxygen converter computed by Algorithm 2. We will construct a solution S by swapping
torpedoes in S′. Consider the first blast furnace event b1 which uses a torpedo t1 other than
the assigned one t2 in the backward matching bm. Without loss of generality, we assume
that b2 is the next blast furnace event that t2 serves. Since b1 is the earliest event that t2
can serve after finishing its oxygen converter run, it holds ddbfb1 ≤ dd

bf
b2

. Now, we distinguish
regarding the origin of torpedo t1. If the torpedo t1 was never used before or returns from an
emergency pit run then, clearly, we can swap the torpedoes for b1 and b2. If the torpedo t1
returned from an oxygen converter trip then the departure time from the oxygen converter
must be later than for t2, otherwise S′ would deviate earlier from the backward matching.
Since Algorithm 5 matched t2 with the earliest possible blast furnace event, it holds that
ddbfb1 ≤ dd

bf
b2

. Therefore, the torpedoes can be swapped.
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Given a backward matching, it divides the blast furnace events into the set of matched
events, i.e., V = bm(M) \ {∞}, and the set of unmatched events, i.e., U = N \ bm(M).
Our solution method presented in the next section will extend this matching by matching
torpedoes used for an emergency pit trip to unmatched events. As all departure and arrival
times are known in the case of those trips, we reduce possible matchings to R = {(i, j) ∈
N × U | ddbfi + durbf + tt(bf,eb) + tt(eb,bf) ≤ arrbfj }, where arrbfj = arrBF [j] computed by
Algorithm 4.

Example 3.4. Given the example from Example 3.3. Then, V = {4, 5} and U = {1, 2, 3}.
The time cost for an emergency trip is from bf (including loading) back to it is 5+20+1 = 26.
Thus, no torpedo serving any blast furnace events would be able to return to bf in time for
one of the unmatched one, i.e., R = ∅. Therefore, the backward matching cannot be extended.

4. Solution Method

The solution method is based on Logic-Based Benders Decomposition (Hooker & Ottosson,
2003). The idea of the Benders decomposition is to split the torpedo scheduling problem
into an assignment problem used as the master problem and a scheduling problem. It
alternates between solving the master and scheduling problem until an optimal solution is
found or infeasibility is proven. Before we start the Benders decomposition, we preprocess
an instance to determine the departure times at the oxygen converter and empty buffer,
the arrival times at the blast furnace and empty buffer, and the backward matching bm as
described in the previous section. We also perform an overload check at the blast furnace
and oxygen converter provided with the corresponding times. If the check fails then we
have proven the infeasibility of the instance. In the other case, we will start the Benders
decomposition.

The master problem is formulated as a MIP, in which each oxygen converter event is
assigned to a torpedo run, unmatched blast furnace events are matched with emergency
pit trips, and the lexicographic objective of the problem is minimized. Then the remaining
scheduling problem is split into smaller sub-problems using the optimal matching from
the MIP solution. Each sub-problem is then solved as a constraint optimization problem
minimizing the total time spent at the desulfurization station. If all sub-problems are
feasible and the total time spent at the desulfurization station equals the corresponding
lower bound in the MIP solution then we have found a globally optimal solution. If some sub-
problems are not feasible, we compute minimal Benders cuts, add them to the MIP problem,
and re-optimize the MIP. If some sub-problems require extra desulfurization time, we add
optimality cuts, which forces the objective to take into account the extra desulfurization
time, and re-optimize the MIP.1 The optimality cuts can also make the MIP problem
infeasible. In this case, it proves that the last found solution was the optimal one.

A brief overview of the notations introduced in the previous sections is shown in Table 1
on page 960. Table 2 lists the notations defined in this section.

1. Note that this case never occurred for generated instances and was only tested on handcrafted instances.
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Notation Description

xij A binary variable expressing whether the event i ∈ N serves the event j ∈M .
rii′ A binary variable expressing whether the torpedo of the event i ∈ N is reused

for the event i′ ∈ N .
obj1 The variable expressing the number of torpedoes used.
obj2 The variable expressing the total time spent at the desulfurization station.
eatli The earliest arrival (start) time of the event i at the location l.

eat
(l,l′)
i The earliest arrival (start) time of the event i at the rail segment between

locations l and l′.
ldtli The latest departure (completion) time of the event i at the location l.

ldt
(l,l′)
i The latest departure (completion) time of the event i at the rail segment

between locations l and l′.

Table 2: A brief overview of notations introduced in Section 4.

4.1 MIP Model

The MIP model tries to find an assignment from blast furnace events to converter events
and reuse of torpedoes after emergency trips such that the number of torpedoes is minimized
and for the minimal number of torpedoes, the lower bound on the desulfurization time is
minimized.

Contrary to (Kletzander & Musliu, 2017; Geiger, 2017b), the idea of counting the num-
ber of torpedoes used is not based on how many torpedoes are doing an emergency pit or an
oxygen converter trip at the same time, but rather modelled via the reuse of torpedoes. The
backward matching bm already provides the reuse of torpedoes used for oxygen converter
trips. Solving the MIP model just extends this backward matching for torpedoes used for
emergency trips.

Besides the binary variables epi from the torpedo run, the MIP model uses the following
binary variables. For each (i, j) ∈ X, we create a variable xij ∈ {0, 1} expressing whether
the torpedo run i serves the demand of the oxygen converter event j. For each (i, i′) ∈ R,
the variables rii′ ∈ {0, 1} model whether the torpedo from torpedo run i is reused for the
blast furnace event i′.

min capds ·
(

max
j∈M

ddocj

)
· obj1 + obj2 (10)

s.t. obj1 = |U | −
∑

(i,j)∈R
rij (11)

obj2 =
∑

(i,j)∈X
xij ·max(0, suli − sulj) · durds (12)∑

(i,j)∈X
xij = 1 ∀j ∈M (13)

epi +
∑

(i,j)∈X
xij = 1 ∀i ∈ N (14)∑

(i,i′)∈R
rii′ ≤ epi ∀i ∈ N (15)∑

(i,i′)∈R
rii′ ≤ 1 ∀i′ ∈ U (16)
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xij ∈ {0, 1} ∀i ∈ N, j ∈M
rii′ ∈ {0, 1} ∀i ∈ N, i′ ∈ U
epi ∈ {0, 1} ∀i ∈ N

Constraint (10) states the objective of the MIP, which is split into two parts. The first
part (11) models the minimization of the number of torpedoes, by maximizing the number of
reused torpedoes for unmatched blast furnace events. We scale this objective by the product
of the capacity of the desulfurization station and the time horizon — the latest time that
a torpedo can be at the desulfurization station — in order to account for the lexicographic
problem objective. Constraint (13) ensures each oxygen converter event is matched by one
blast furnace event, whereas (14) matches each blast furnace event to an oxygen converter
event or emergency trip. Constraint (15) models that a torpedo used for an emergency trip
can be reused for at most one unmatched blast furnace event, whereas (16) ensures that at
most one torpedo is reused for each unmatched blast furnace event. Note that the reuse of
torpedoes for an oxygen converter trip is already determined by the backward matching bm,
and thus can be left out of the model.

An assignment, oc, for a solution can be extracted from the MIP by setting for all
i ∈ N , oci =

∑
j∈M xij · j, this gives oci = 0 whenever epi = 1. All epi for the solution

can be copied directly from the result of the MIP.

A MIP solution provides not only the matching of torpedo runs to oxygen converter
events and the matching for the reuse of torpedoes, but also a lower bound on the desulfu-
rization time, which is used as a quality measurement for the scheduling solution.

4.2 Partitioning the Scheduling Problem

Once, we have the assignment oc, the remaining scheduling problem is partitioned into
smaller ones, which are then solved separately. We present two partitioning algorithms.
The first one is opportunistic and very quick to compute, but may require additional steps
to consolidate the individual schedules to a full one, whereas the second one is based on
potential resource overloads and requires no consolidation steps, but is more complex to
compute. In the remainder, we refer to locations and paths as resources.

Note that in both of these methods, we use the observation that emergency pit trips are
not required to be passed in to the CP model in the same way as oxygen converter trips.
Specifically, we can precompute the departure time from the blast furnace as cap(bf,eb) =
capeb = ∞, hence they should leave the blast furnace as soon as they are filled, and their
arrival times at the blast furnace are already precomputed by Algorithm 4. This means
that for the one place where emergency pit trips interact with other trips, namely at the
blast furnace, the resource capacity constraint can use these fixed values instead.

4.2.1 Opportunistic Partitioning

The opportunistic partitioning splits the blast furnace events serving an oxygen converter
event in chronological order, when it seems that a blast furnace event does not interfere in
terms of time with any previous torpedo run at the desulfurization station. Algorithm 6
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Algorithm 6: Computation of the sub-problems via opportunistic partitioning.
Input : N an array of n blast furnace events sorted in non-decreasing order of the due dates.
Input : oc an assignment from blast furnace events to oxygen converter events or 0 if not

connected to any (i.e., if epi = 1).
Output : B a partition of the n blast furnace events.

1 latestArrDS := −∞; maxDur := max(durbf, tt(bf,fb), tt(fb,ds), tt(ds,oc)); A := ∅; B := ∅;
2 for ii := 1 to n do
3 if ocN [ii] = 0 then continue;

4 i := N [ii]; earliestArrDS := ddbfi + durbf + tt(bf,fb) + tt(fb,ds);
5 if latestArrDS + maxDur ≤ earliestArrDS and A 6= ∅ then
6 B := B ∪ {A}; A := {i};
7 else A := A ∪ {i};
8 latestArrDS := max(latestArrDS, ddococi − tt(ds,oc) − durds ×max(0, sulococi − sulbfi ));

9 return B;
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Figure 7: Partition of the scheduling given the shown matching.

computes all sub-problems.2 It iterates over all blast furnace events in chronological order
while skipping events going to the emergency pit. The set A records all events belonging
to the same sub-problem whereas the set B collects all those sets. For each event i, it
checks whether the earliest arrival time of its torpedo run at the desulfurization station is
not before the latest arrival of any previous torpedo run. In that case, the current set A is
completed, A is added to B, and a new set A containing the event i is created. In the other
case, the set A is expanded by i.

Example 4.1. Consider Example 1.1 from page 956. Algorithm 6 will split the problem
into three sub-problems as depicted in Figure 7.

The condition used for partitioning ensures that a torpedo serving a blast furnace event i
does not interfere in time and space with any torpedo serving previous blast furnace events
before the desulfurization station. But a time and space interference might occur at the
desulfurization, on the way to the oxygen converter, and at the oxygen converter. Con-
sequently, a composition of the schedules from two consecutive sub-problems may cause a
resource overload. In such a case, we merge the two sub-problems and re-solve the now
bigger problem. Note that this case has never occurred during our experiments.

2. Note that this algorithm is a correction of the one presented in the preliminary version in (Goldwaser &
Schutt, 2017), in which we presented the wrong condition for partitioning that did not reflect the one
used for our experiments.
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4.2.2 Overload Partitioning

The overload partitioning is based on the resource capacity of each location and each path
in the network. It uses the earliest arrival and latest departure times for these places to
compute maximum profiles, from which the sub-problems are derived. For each torpedo
run i with epi 6= 1, we define the earliest arrival times by

eatbfi = arrbfi , eat
(bf,fb)
i = ddbfi + durbf,

eatfbi = eat
(bf,fb)
i + tt(bf,fb), eat

(fb,ds)
i = eatfbi ,

eatdsi = eat
(fb,ds)
i + tt(fb,ds), eat

(ds,oc)
i = eatdsi + durds ×max(0, sulococi − sul

bf
i ),

eatoci = eat
(ds,oc)
i + tt(ds,oc),

and the latest departure times by

ldtbfi = ldt
(bf,fb)
i − tt(bf,fb), ldt

(bf,fb)
i = ldtfbi ,

ldtfbi = ldt
(fb,ds)
i − tt(fb,ds), ldt

(fb,ds)
i = ldtdsi − durds ×max(0, sulococi − sul

bf
i ),

ldtdsi = ldt
(ds,oc)
i − tt(ds,oc), ldt

(ds,oc)
i = ddococi ,

ldtoci = depoc
i .

We extend these notations to torpedo runs i going to the emergency pit, i.e., epi = 1.

eatbfi = arrbfi eat
(bf,fb)
i = eatfbi = eat

(fb,ds)
i = eatdsi = eat

(ds,oc)
i = eatoci =∞

ldtbfi = ddbfi + durbf ldt
(bf,fb)
i = ldtfbi = ldt

(fb,ds)
i = ldtdsi = ldt

(ds,oc)
i = ldtoci =∞

The earliest arrival times and the latest departure times define the time intervals, in which
a torpedo car uses up to one unit from the torpedo capacity of a resource over some time.
If we overestimate the usage by assuming that a torpedo car requires one unit during his
entire time intervals then we can compute the maximum profile for each resource. The
maximum profile then provides an upper bound on the resource usages for each time over
the planning horizon. The idea then is to look for time intervals for that the maximum
profiles exceed the capacity and put the corresponding blast furnace events that may cause
an overload in the same partition.

The overload partitioning then uses these maximum profiles retrieved from the earliest
arrival and latest departure times at each location. The partition is computed by combining
blast events that might caused a resource overload at any location at any time, i.e., time
units for that the maximum profile exceeds the resource capacity. Algorithm 7 shows a
standard algorithm to compute the resource profile which is defined as a sorted array of
triplets (t, c, e) where t is the time point when a change in the profile happens, c the amount
of the increase or decrease of the profile, and e the event (or task) causing the change. The
runtime complexity is dominated by the sorting (line 6), which is O(n log n). A (linear)
sweep from the start or end of the array is required for determining the height of the profile
at a specific point in time. However, the partition algorithm described next has to perform
a sweep anyway, so that it does not incur an additional cost.
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Algorithm 7: getProfile(start, end) : Computation of the resource profiles.

Input : start an array of n start times of a resource usage.
Input : end an array of n end times of a resource usage.
Output : profile an array of at most 2n triplets (t, u, i) sorted in non-descending lexicographic

order, where t is a time unit, u the amount of change in the resource usage, and i the
task.

1 k := 1;
2 for i := 1 to n where start[i] 6=∞ do
3 if start[i] 6= end[i] then
4 profile[k] := (start[i], 1, i);
5 profile[k + 1] := (end[i],−1, i);
6 k := k + 2;

7 sort profile in lexicographic ascending order of the triplets;
8 return profile;

Algorithm 8: Computation of the sub-problems via overload partitioning.
Input : N an array of n blast furnace events sorted in non-decreasing order of the due dates.
Input : eatri the earliest arrival time for all blast furnace events and resources.
Input : ldtri the latest departure time for all blast furnace events and resources.
Output : B a partition of the n blast furnace events.

1 for i := 1 to n do disjointSet.MakeSet(i);
2 for r ∈ L ∪ P do
3 profile := getProfile(eatr. , ldt

r
. );

4 height := 0; events := ∅;
5 for k := 1 to profile.size do
6 if 0 < profile[k].change then
7 events := events ∪ {profile[k].event};
8 else
9 if height > capr then

10 for two consecutive events i, j ∈ events do disjointSet.Union(i, j);
11 events := events \ {profile[k].event};
12 height := height + profile[k].change;

13 B := disjointSet.RetrievePartition();
14 return B
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Algorithm 8 computes the overload partition using Algorithm 7 for computing the maxi-
mum profiles and disjoint-set data structure (Galler & Fisher, 1964; Tarjan, 1975) for finding
and merging partitions. First, it initialises the disjoint-set data structure disjointSet by
making each blast furnace event its own partition (line 1). Second, it then iterates over
all resources (lines 2–12), i.e., bf, (bf, fb), fb, (fb, ds), ds, (ds, oc), and oc. In the loop, it
computes the profile of the resource (line 3) before performing a sweep over the profile (lines
5–12). During the sweep, it tracks the profile height height and the events events creating
the height. If the height exceeds the resource capacity then the partitions to whom the
events in events belong to are joined (lines 9, 10). Last, it retrieves the final partition and
returns it (lines 13, 14).

4.3 The CP Model

Once we have an assignment oc and the opportunistic or overload partitioning of blast fur-
nace events, each sub-problem is modeled and solved separately and the schedules obtained
are combined to a schedule for the entire problem if possible.

Each sub-problem is modeled as a constraint optimization problem using the same
model, but restricted to torpedo runs in the sub-problem, as in Definition 2.1 on page 961
except for the torpedo capacity constraints and an additional constraint enforcing an upper
bound on the departure times at the blast furnace for avoiding an overload (17).

min
∑

i∈N ′′
depds

i − arrdsi

s.t. (3–7)

cumulative((arrbfi )i∈N ′ , (depbf
i − arrbfi )i∈N ′ , (1)i∈N ′ , capbf) (17)

cumulative((depl
i)i∈N ′′ , (arrki − depl

i)i∈N ′′ , (1)i∈N ′′ , cap(k,l)) ∀(k, l) ∈ P ′

cumulative((arrli)i∈N ′′ , (depl
i − arrli)i∈N ′′ , (1)i∈N ′′ , capl) ∀l ∈ L \ {bf}

where N ′ are the blast furnace events of the sub-problem, N ′′ the blast furnace events of
N ′ going to the oxygen converter, P ′ = {(bf, fb), (fb, ds), (ds, oc)}, and cumulative is global
constraint modeling non-unary discrete resources in CP solvers (Aggoun & Beldiceanu,
1993) taking as arguments following parameters in this order: variable start times of tasks,
variable durations of tasks, variable resource requirements of tasks, and the resource ca-
pacity. Note that Algorithms 2 and 4 already provide a non-overload schedule at (eb, bf)
and (oc, eb) and therefore we can safely omit the corresponding constraints from the CP
model.

We employ a sequential search over sub-searches, which represent a location or a path.
Each sub-search branches over the duration of the torpedoes i used for the location l or
the path (k, q), i.e., depl

i − arrli and arrqi − depk
i . The most constrained duration variable

is selected first and its smallest possible duration is assigned to it. The sub-searches are
explored in this order ds, (fb, ds), (ds, oc), oc, (bf, fb), and bf. There are two important
ingredients for this search. First, the search is objective driven, because it assigns the
minimal duration spent at ds at first. Second, branching on the durations rather than on
the departure or arrival times keeps the schedule flexible while providing some propagation
on the departure and arrival time variables. Other searches tested, that did not follow both
ingredients, were inferior.
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Caching We recognized that from one MIP iteration to another one the assignment oc
does not change very much. Thus, many sub-problems are the same. Instead of resolving
the sub-problems from the scratch again, we cache them. For each sub-problem, we store
the assignment and the solution. This storage is performed using a hash map of the actual
assignment giving O(k) average case lookup, where k is the length of the assignment.

4.4 Benders Cuts

The scheduling problem can have three possible outcomes. First, it is infeasible. Second,
it is schedulable, but not with the lower bound on the desulfurization time from the MIP
solution. Last, it is schedulable with the same desulfurization time. Only in the first two
cases do we need to create Benders cuts in terms of the decision variables in the master
problem. In the third case, the combined MIP and CP solution is an optimal solution of
the entire problem.

We express the cuts in terms of the variables xij from the MIP problem. Let N ′ be the
set of blast furnace events in the sub-problem.

4.4.1 Infeasibility Cuts

The sub-problem is infeasible, which is a direct result of the assignment oc. Thus,
∑

i∈N ′ xioci <
|N ′| is valid cut, because it forces the MIP solver to choose a different oxygen converter
event for at least one torpedo run.

To strengthen the cut, we rerun the CP model |N ′|-times, but with a small modification.
For each rerun, we remove one torpedo run including the matched oxygen converter event
from the model. If the model is still infeasible then this run does not contribute to the
infeasibility and we can leave it out; otherwise it contributes to the infeasibility and we
reinsert it. The removals are performed in chronological order of the blast furnace events.
At the end of the process, we obtain a minimal unsatisfiable set of torpedo runs N ′′ ⊆ N ′

leading to the stronger cut
∑

i∈N ′′ xioci < |N ′′|, which is minimal too. In preliminary
testing, this minimization resulted in an order of magnitude less MIP iterations.

We also investigated more general cuts by relaxing the conditions on the start time of a
torpedo trip instead of removing it completely, but they were not beneficial for the overall
runtime.

4.4.2 Optimality Cuts

The sub-problem is schedulable with minimal desulfurization time β, but the desulfurization
time α from the MIP solution is smaller, i.e., α < β. In this case, we introduce a new binary
variable b for the MIP model, add the term (β − α) · b to the objective (10), and add the
constraint

∑
i∈N ′ xioci − (|N ′| − 1) ≤ b to the MIP model. The variable b takes value 1 if

and only if the MIP uses the same assignment oc for the sub-problem. In that case, the
added objective term accounts for the difference in the desulfurization time derived by the
CP model. If the variable b takes value 0 then the MIP model is forced to take a different
assignment due to the added constraint and the added objective term is zero.
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4.5 Limited Forward Matchings

The size of the MIP model, i.e., the number of constraints, variables, and the size of
constraints, depends on the number of blast furnace and oxygen converter events. For
example, the objective (12) has a quadratic size of O(nm). For large problems, the MIP
model is so large that the MIP solver runs out of memory or is extremely slow. A way to
reduce the size is to limit the oxygen converter events to which a blast furnace event can
be matched and the reuse of torpedoes after emergency pit run. We look at two different
ways.

Event-based For the event-based limited forward matching, we specify the absolute num-
ber of events, for example 10, that a blast furnace event can be matched to next closest
reachable oxygen converter events, and the reuse of torpedo coming from the emergency
trip can be matched to the next closest blast furnace events.

Time-based Instead of restricting forward matching by the absolute number of next
closest event, we can impose a time restriction on the duration of how long a torpedo can
take from picking up hot metal to dropping off it. Thus, we could enforce time restrictions
for delivery of hot metal to the oxygen converter if existent. In comparison to the event-
based limit, time-based limits provide more control over how long the delivery of hot metal
can take, but less control over the model size.

However, in both cases, the model size is not only drastically smaller, but also signifi-
cantly speeds up the solving time. The drawback is that we cannot prove the optimality
of the original problem and the optimal solution of this relaxed problem can be worse than
the one from the original problem. From a practical point of view, it might be the preferred
mode because a matching of a blast furnace to an oxygen converter event far in the future
can be seen as not preferable or sub-optimal due to cooling of the molten metal.

Limits to Generate Cuts Any cuts generated in runs with limited forward matchings
are clearly valid globally, as they only talk about whether an assignment is feasible or how
much extra desulfurization time beyond the lower bound it would need. This gives rise to
a hybrid approach where the instance is first solved to completion using a limited forward
matching, then the cuts used in that solution process are combined with the MIP model for
an unlimited version. The benefit of this is that it will require fewer iterations of solving
the large MIP without the forward limit, which dominates the runtime in most cases. This
approach also conserves the proof of optimality as the limited forward matching is double
checked with the unlimited matching version afterwards.

5. Experiments

We conducted experiments on a variety of instances, either taken from the ACP 2016 Chal-
lenge, created using the instance generator provided at the ACP Challenge website or, in
the case of the extended network, our own instance generator. We group all instances into
two benchmark sets called ACPNet and ExtNet. ACPNet contains all instances having
the same capacities for the rail network and the blast furnace as they appear in ACP 2016
Challenge, all these capacities are unary. ExtNet contains all other instances. All instances
are available at https://github.com/AdGold/TorpedoSchedulingInstances. We ran all
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our experiments on Dell PowerEdge M630 machines having Intel Xeon E5-2660 V3 pro-
cessors running at 2.6 Ghz with a 25 MB cache and 8GB RAM, unless otherwise stated.
Our solution method was implemented in Python 3.5.1 interfacing Gurobi 7.0.2 using the
Python library gurobipy and Chuffed using system calls. Gurobi was used for solving the
MIP problem and executed with the default settings and on 2 cores. Chuffed (Chu, 2011)
was used for solving the CP problems. The time-tabling propagator with explanation gen-
eration as described in (Schutt, 2011; Schutt, Feydy, Stuckey, & Wallace, 2011) was used
for all cumulative constraints in the CP model. We impose a runtime limit of 5 minutes for
Chuffed for solving any CP problem. No runtime limit was imposed for solving the MIP
problem. If Chuffed timed out then we aborted the solution method. All solutions were
verified using the ACP solution checker or our extended solution checker for instances in
ExtNet.

5.1 Results on ACPNet Instances

We group the instances in this benchmark set as follows:

small 15 instances with 30 to 500 blast furnace events,

comp 6 instances with 850 to 2500 blast furnace events,

medium 19 instances with 1000 to 3000 blast furnace events, and

large 3 instances with 10000 blast furnace events.

50k 3 instances with 50000 blast furnace events, used only for looking at forward limit
runtime.

The test small comprises all nine test instances from the ACP 2016 Challenge and six
additional created instances, the test comp all competition instances from the challenge
whereas the others were generated by using the provided instance generator. On these
sets, we compare our solution method using unlimited and limit forward matchings, and
opportunistic and overload partitioning.

We record following parameters in different tables. We list the instance name (Inst),
the number of torpedoes (#T), the desulfurization time spent at ds (Desulf), the total
runtime (RT), the percentage of the total runtime that was used by the MIP solver (MT),
the number of iterations (#I), the cache hit rate for sub-problems (CHR), the number
of total sub-problems stores (#SP), the success rate of sub-problems (SSR), i.e., no cuts
needed to be generated, the percentage of sub-problems with size 1 (S1), the average size of
sub-problems with size greater than 1 (SAvg), the maximal size of sub-problems (SMax),
and the percent reduction in maximal sub-problem size (RMSS).

5.1.1 Unlimited Forward Matchings

Table 3 shows the results on the set comp for each instance when using opportunistic
partitioning (Algorithm 6). All ACP challenge instances were optimally solved in less than
10 minutes, which is much quicker than the winning method presented in (Kletzander &
Musliu, 2017). In addition, it is the first time that the optimality was proven. The results
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Inst #T Desulf RT MT #I CHR #SP SSR S1 SAve SMax

instance01 4 7695 56s 58% 2 38% 4 94% 63.6% 144 604
instance02 4 5302 117s 77% 1 0% 16 100% 63.6% 31 769
instance03 3 27150 301s 93% 1 0% 100 100% 82.5% 3 215
instance04 3 10676 43s 80% 1 0% 149 100% 81.9% 1 5
instance05 4 16308 471s 87% 3 50% 203 99% 80.2% 3 1747
instance06 4 7755 360s 90% 1 0% 10 100% 67.7% 75 1149

Table 3: Detailed results on comp using opportunistic partitioning.

Inst Method #T Desulf RT MT #I CHR #SP SSR

small
opp. part. 3.5 362 3s 33% 1.1 3% 9 99.3%
over. part. 3.5 362 3s 33% 1.1 3% 10 99.5%
lim. + unlim. 3.5 362 3s 28% 2.1 2% 10 99.2%

comp
opp. part. 3.7 12481 225s 81% 1.5 14% 80 99.1%
over. part. 3.7 12481 218s 84% 1.5 14% 29 98.3%
lim. + unlim. 3.7 12481 210s 71% 2.5 14% 80 99.1%

medium
opp. part. 4.4 1223 271s 92% 1.1 4% 34 99.6%
over. part. 4.4 1223 270s 92% 1.1 4% 41 99.7%
lim. + unlim. 4.4 1223 287s 79% 2.2 6% 22 99.2%

large
opp. part. 4.5 6480 30679s 99% 2.0 9% 131 99.5%
over. part. 4.5 6480 30939s 99% 2.0 9% 169 99.7%
lim. + unlim. 4.5 6480 14845s 98% 3.0 25% 117 99.6%

Table 4: Results on each test set excluding infeasible instances.

also reveal that the MIP solver used the majority of the runtime and the sub-problems
had almost 100% success, which lead to a very low number of iterations. In addition, most
sub-problems were small and only a few contained 100s of blast furnace events. Note that
the nogood learning solver Chuffed was essential for quickly solving the sub-problems. In
particular on larger and infeasible ones, we had to terminate the process if using Gecode.

Table 4 presents the results on all ACPNet test sets excluding infeasible instances. For
each entry it shows an average over the number of (feasible) instances. It compares three
different variations of our solution method:

opp. part.: The solution method uses the opportunistic partitioning and unlimited for-
ward matching.

over. part.: The solution method uses the overload partitioning and unlimited forward
matching.

lim. + unlim.: At first, we run the solution method using opportunistic partitioning and
event-based limited forward matching of 30 events. Afterwards we run the same
method with unlimited forward matching, but including all cuts from the first run
and restricting the upper bound on the objective with the objective value found in
the first run.
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The results of opp. part. on the different sets show a similar picture to the ACP challenge
instances (comp) in Tab. 3, i.e., majority time is spent on solving the MIP problem (except
on the small instances), the number of iterations is one or two in the most cases, and almost
all sub-problems are feasible. Note that for the large size instances in large, the runtime
was more than 30 hours and it had to be run on a machine with extra RAM in order to be
able to solve the MIP. This machine had the same specifications as the others except that
it used 128GB of RAM instead.

Both opp. part. and over. part. both have very similar results on the ACPNet
benchmarks. This is because there are few places with a capacity of more than one.

Except for large, there is no significant difference between the methods in terms of
runtime. However, the hybrid solution method lim. + unlim. is twice as fast as the
others for large.

The reason this method is very similar for the small, comp and medium benchmarks is
that the MIP solving is quite quick, hence anywhere where time saved through not doing
more unlimited runs of the MIP is cancelled out by having to run an initial limited forward
matching run. However, on the large benchmark, the runtime is halved because the MIP
takes many hours to solve and the number of times that it has to be solved in the unlimited
case can be reduced from 2 to 1, essentially halving the solve time as the MIP takes up
99% of the runtime. The MIP also involved large objectives due to the constant used in the
lexicographical ordering of objectives, however these did not exceed 15 million even on the
largest cases tested so never caused problems.

The runtimes for most instances were slightly shorter than in (Goldwaser & Schutt,
2017), while a few took longer. The reason for this was due to the removal of a redundant
constraint in the MIP which caused different assignments to be found, in most cases reducing
the number of iterations needed to find a feasible assignment and in some cases making the
subproblems simpler to solve.

5.1.2 Limited Forward Matchings

Figures 8–10 show the development of the optimality gap on the desulfurization time spent,
of the percentage of instances optimally solved, and of the runtime when the limit on the
event-based forward matchings increases. The benchmark 50k was here run with 40GB of
memory and the same specifications for everything else. Note that Figure 10 uses logarith-
mic scale for the y-axis. The optimality gap on the desulfurization time spent converges
quickly on each test set. Between a limit of 30 and 40 the last optimal solution was found
even on the test set large.

The runtime could be reduced by orders of magnitude for medium and large scale prob-
lems, especially for large scale instances where the runtime was reduced to less than 30
minutes. All ACP challenge instances were solved in less than one minute, down from 10
minutes. In order to test the limit of our method, we created six new instances, three each
with 50,000 and 100,000 blast furnace events, respectively. The average total runtime of the
50k instances were below 60 minutes except for a limit of 30 or more as shown in Figure 10.
Interestingly, the same optimal solutions were generated with limits of at least 10. The
100k instances were solved between 70 minutes and 3.5 hours for a limit of 20.
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Figure 8: Optimality gap in desulfurization time using event based forward limits.
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Figure 9: Percent of instances solved optimally. using event based forward limits.
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Figure 10: Total runtime using event based forward limits.
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Figure 11: Optimality gap in desulfurization time using time based forward limits.
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Figure 12: Percent of instances solved optimally using time based forward limits.
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Figure 13: Total runtime using time based forward limits.
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Inst Method #T Desulf RT MT #I #SP SAve RMSS

small-2x (51)
opp. part. 6.5 624 14s 37% 1.1 18 33
over. part. 6.5 624 10s 37% 1.1 56 9 29.4%

small-3x (31)
opp. part. 9.3 513 4379s 43% 104 354 391
over. part. 9.3 513 4285s 43% 104 752 711 26.9%

Table 5: Results on instances from ExtNet solved by both methods using unlimited forward
matching.

We also show, for comparison, similar graphs for time-based limits in Figures 11–13.
Here it can be seen that there are a few differences. Optimality gaps start a lot lower, this
is mostly a factor of the graph starting when all instances can be solved with that limit and
event based limits being less dependent on the actual instance due dates in comparison to
time based limits.

The other interesting point is that the large cases start at similar points but event-based
limits grow much faster, rising up to over 20 minutes for a limit of 40, whereas time-based
limits never took more than 5 minutes for the same cases. However, the opposite can be
seen in the 50k instances where time based limits were almost as slow with the smallest
limit than event based ones were with the highest.

5.2 Results on ExtNet Instances

In order to test the solution method on denser instances, i.e., instances having more blast
furnace and oxygen converter events over a similar planning horizon, we created new in-
stances based on the instances from the test set small having up to 300 blast furnace events.
For each of these instances in small, we created ten new instances; five instances with the
twice as many blast furnace and oxygen converter events and five instances with the triple
the amount of those events. We copied the events with the same due dates and sulfur
level, we then shifted the copied events by the same amount of time units backwards in the
planning horizon, and finally, we individually shifted blast furnace and oxygen converter
events by small amount of time units forward and backwards, respectively. We randomly
picked the amount of time units to be shifted, but at most twice as the unloading duration
of a torpedo at the converter. We grouped the benchmark set ExtNet into two test sets.

small-2x 60 instances with 60 to 600 blast furnace events created by doubling the number
of events in instances from small, and

small-3x 60 instances with 90 to 900 blast furnace events created by tripling the number
of events in instances from small.

Table 5 presents the results for both partitioning algorithms and unlimited forward
matchings on 79 instances in ExtNet that were solved by our solution method with either
partitioning algorithm. First, we observe that not all instances were solved as it was for
their corresponding instances in ACPNet. Second, the number of solved instances decreases
with an increase of the density. Both observations are not surprising, because if the density
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Inst Method #T Desulf RT MT #I #SP SAve RMSS

small-2x (26)
opp. part. 7.2 967 26s 53% 1.1 30 46
over. part. 7.2 967 19s 53% 1.1 88 12 31.3%

small-3x (12)
opp. part. 10 722 11309s 52% 266 905 918
over. part. 10 722 11067s 55% 266 1913 1811 28.8%

Table 6: Results on instances from ExtNet solved by both methods using unlimited forward
matching, excluding those with a runtime of under 5s with either method.

increases then there are less opportunities to partition the scheduling problem and, conse-
quently, the size of the scheduling sub-problems are larger as shown in the average size of
sub-problems (SAve) in the table. Thus, the sub-problems are harder to optimally solve for
the CP solver and more time has to be spent for the scheduling part. For example, the solu-
tion method spent more than 90% of the runtime for solving the CP part on instances that
could not be solved within 40 seconds. Since the scheduling part becomes harder to solve
our solution method deteriorates and hits its limitation, because it relies on fast solving of
the scheduling problem.

Table 6 shows the same results as in Tab. 5 but excludes instances that were solved in
under five seconds using either partitioning algorithm. In these tables, the number in the
brackets after the test set shows the number of instances considered. This table provides a
better comparison between opportunistic and overload partitioning when the easy-to-solve
instances are excluded. It clearly shows that there is a runtime benefit when using the
finer overload partitioning algorithm, which was able to reduce the size of the biggest sub-
problems (RMSS). We note that an additional three instances from small-3x were solved
when using overload partitioning. As expected, the average number of sub-problems and the
average size of sub-problems are higher and lower respectively. The majority of the number
of additional sub-problems for overload partitioning resulted from dividing sub-problems
from the opportunistic partitioning, which could already be solved quickly. Thus, for those
ones there was no or a negligible benefit as shown in Tab. 4 for instances in ACPNet. The
difference lays in the ability to split the biggest sub-problems into smaller ones. Computing
the overload partitioning was orders of magnitudes more costly, but even for the bigger
instances a fraction of a second. To sum up, the overload partitioning is clearly preferable
for more dense instances such as in ExtNet, due to the potential to generate smaller sub-
problems.

6. Conclusion

We propose a logic-based Benders decomposition solution method for the industrial problem
of torpedo scheduling in steel production and also extend this solution to a generalised ver-
sion of the torpedo scheduling problem. The master problem was modeled as a MIP, which
takes care of the assignment component of the problem and the lexicographical objective.
The remaining scheduling problem was split into smaller sub-problems and solved by a CP
solver with nogood learning. This solution method is the first exact one for the torpedo
scheduling problem and is the first one, that could prove the optimality of all instances
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from the ACP 2016 Challenge in less than 10 minutes. Thus, it outperforms the previous
state of the art. A limited version of our method, which cannot guarantee optimality, could
reduce the runtime by an order of magnitude and was able to find optimal solutions very
quickly for even larger instances that we created. The success of the solution method relies
in the fast solving of the scheduling sub-problems, which in general took no time compared
to the master problem. In order to test the limitation of our method, we also generated
small dense instances, which quickly became hard to solve for our solution method, because
the maximal size of the scheduling sub-problems increased, so that it became hard to solve
by the CP solver.
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