
Journal of Artificial Intelligence Research 66 (2019) 33-56 Submitted 01/2019; published 09/2019

© 2019 AI Access Foundation. All rights reserved.

Xeggora: Exploiting Immune-to-Evidence Symmetries

with Full Aggregation in Statistical Relational Models

Mohammad Mahdi Amirian M.AMIRIAN@AUT.AC.IR

Computer Engineering & Information Technology Department

Amirkabir University of Technology, Tehran, Iran

Saeed Shiry Ghidary SHIRY@AUT.AC.IR

Math & Computer Science Department

Amirkabir University of Technology, Tehran, Iran

Abstract

 We present improvements in maximum a-posteriori inference for Markov Logic, a widely used

SRL formalism. Inferring the most probable world for Markov Logic is NP-hard in general. Several

approaches, including Cutting Plane Aggregation (CPA), perform inference through translation to In-

teger Linear Programs. Aggregation exploits context-specific symmetries independently of evidence

and reduces the size of the program. We illustrate much more symmetries occurring in long ground

clauses that are ignored by CPA and can be exploited by higher-order aggregations. We propose Full-

Constraint-Aggregation, a superior algorithm to CPA which exploits the ignored symmetries via a

lifted translation method and some constraint relaxations. RDBMS and heuristic techniques are in-

volved to improve the overall performance. We introduce Xeggora as an evolutionary extension of

RockIt, the query engine that uses CPA. Xeggora evaluation on real-world benchmarks shows

progress in efficiency compared to RockIt especially for models with long formulas.

1. Introduction

Recently, there has been a growing interest in learning and inference in Statistical Relational Learning

(SRL) models. In these models, especially in Markov Logic Networks (MLN), one of the most widely

used SRL formalisms, we are concerned with Maximum A-Posteriori (MAP) inference, i.e., inferring

the most likely explanation (world) that maximizes the sum of the weights of the satisfied clauses.

Raised from First-Order Logic by attaching weights to the first-order formulas, MLN offers a com-

pact representation of Markov Networks with repetitive structures. An MLN can be grounded to pro-

duce the Markov Network to which propositional inference algorithms are applicable. This procedure

results in potentially large amounts of repetitive computations. Lifted inference is introduced to avoid

this undesired blow-up. Both marginal and MAP lifted inference approaches in MLNs can be catego-

rized into two major methodologies: top-down, which starts from a lifted model and avoids grounding

as much as possible, and bottom-up methodology, which starts from a propositional model and detects

repetitive structures (Kimmig, Mihalkova, & Getoor, 2015). The former recognizes identical structures

and performs computations only once, caching the results and re-using them. Lifted belief propagation

(Singla & Domingos, 2008), first-order variable elimination (Poole, 2003) and its extensions (de Salvo

Braz, Amir, & Roth, 2006; Kisynski & Poole, 2009; Milch, Zettlemoyer, Kersting, Haimes, &

Kaelbling, 2008), domain-lifted MAP inference over non-shared MLNs (Sarkhel, Venugopal, Singla,

& Gogate, 2014a), lifted recursive conditioning (Poole, Bacchus, & Kisynski, 2011), and its extension

on MLN conversion to other liftable first-order models (Kazemi, Kimmig, Van den Broeck, & Poole,

2016) are some of top-down approaches to name but a few. A key advantage of these algorithms is their

AMIRIAN & SHIRY GHIDARY

 34

much smaller computational complexity than propositional algorithms. Their major disadvantage how-

ever, lays on the fact that the presence of evidence breaks the symmetries in the model. Models coming

from real-world problems are often highly connected, containing many evidence axioms and variables.

Indeed, several top-down lifted inference approaches (more precisely, those considering symmetry only

as exchangeability) are evaluated on artificial datasets that are composed of a simple first-order template

with many instances, resulting in a huge ground network with many indistinguishable objects.

For several algorithms, both top-down and bottom-up versions exist (Lüdtke, Schröder, Krüger, Ba-

der, & Kirste, 2018). For example, lifted belief propagation has also a bottom-up variant (Kersting,

Ahmadi, & Natarajan, 2009). For real-world MLN models, the latter methodology seems to fit better in

obtaining symmetries. RockIt (Noessner, Niepert, & Stuckenschmidt, 2013) is one of the most fa-

mous MLN inference engines that is categorized in the bottom-up approaches, involved in several ap-

plications including ensemble matching (Meilicke, Leopold, Kuss, Stuckenschmidt, & Reijers, 2017),

root cause analysis (Schoenfisch, Meilicke, von Stülpnagel, Ortmann, & Stuckenschmidt, 2018), com-

puting LPMLN (Lee, Talsania, & Wang, 2017), and data cleaning (Visengeriyeva, Akbib, & Kaul, 2016).

It introduces aggregation on constraints, namely Cutting Plane Aggregation1, that improves compilation

from a ground network to an Integer Linear Program (ILP) by decreasing the size of the program and

better exposing its symmetries. The ILP is further passed to traditional solvers and the solution is

mapped to a MAP state of the original MLN.

Despite exploiting acceptable amounts of symmetries, there still exist further symmetries that CPA

is unable to handle. In this work, we first illustrate some types of these symmetries by introducing order

of aggregation and showing that CPA is able to perform only aggregations of order one, whereas higher-

order aggregations are required to exploit the ignored symmetries. Secondly, a superior algorithm,

namely Full-Constraint-Aggregation (FCA) is introduced, empowered with any possible order of ag-

gregation with respect to the model. FCA performs a novel translation to efficient ILPs by relaxing

some constraints that have no impact on the final solution. We then propose complementary techniques,

including heuristics and Relational Database Management Systems (RDBMS) leverage to choose effi-

ciently among multiple candidates the one in which FCA fits the best. The proposed methods are im-

plemented within an evolutionary extension of RockIt, namely Xeggora. The extension also sup-

ports numerical constraints in Markov Logic (Chekol, Huber, Meilicke, & Stuckenschmidt, 2016). Fi-

nally, we show that Xeggora’s time-preserving techniques outperform RockIt while applied to

models with long formulas.

There also exist approaches that affect other phases of lifted inference independently of the FCA

scope, such as the grounding phase. For instance, Martínez-Angeles, Dutra, Costa, and Buenabad-Chá-

vez (2016) make use of graphics processing units to speed up grounding, and Mangal, Zhang, Kamath,

Nori, and Naik (2016) introduce an eager-lazy grounding algorithm which eagerly exploits proofs and

lazily refutes counterexamples. FCA is a meta-algorithm that affects the translation to ILPs and the

optimization phase, and is able to be jointed with all these orthogonal algorithms. Cutting Plane Infer-

ence (CPI) (Riedel, 2008) is another approach that reduces the inference runtime by splitting the ground-

ing, translation, and optimization phases into iterations. FCA is also able to get involved in CPI proce-

dure by moving into the iterations.

1 Its owners’ intention of naming the method cutting plane aggregation is unclear to us. However, we prefer to leave this name

for the aggregation while jointed with CPI and call the single procedure constraint aggregation or first-order aggregation.

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 35

The rest of this paper is organized as follows. Section 2 defines the preliminaries, mainly constraint

aggregation and related techniques and describes the problem. Section 3 is composed of the FCA algo-

rithm description and its soundness proofs. Section 4 describes add-on techniques that leverage RDBMS

and related heuristics to improve the overall performance. Section 5 includes ILP solving analytics and

reports the empirical evaluation of FCA on six benchmark MLNs. Recent symmetry exploitation ap-

proaches with connections to this work are briefly described in Section 6, and Section 7 concludes.

2. Preliminaries

In this section, we review the concepts required for understanding the rest of the paper and define useful

notations. As the evaluation part includes experiment reports in which we use CPI in conjunction with

CPA and FCA, we also present a brief explanation of the algorithm, although it is orthogonal to our

approach with no close relation to the contents of this paper.

2.1 First-Order Logic

A first-order knowledge base (KB) is a set of formulas in first-order logic (FOL). Formulas are con-

structed using four types of symbols: constants, variables, functions, and predicates. Constants repre-

sent objects in the domain of interest. Variables range over the objects. Functions represent mappings

from tuples of objects to objects. Predicates represent relations among objects in the domain or attributes

of objects. A term is any expression representing an object in the domain; it can be a constant, a variable

or a function of terms. An atomic formula or atom is a predicate applied to a tuple of terms. Formulas

are recursively constructed from atoms using logical connectives ¬, ∧, ∨ and quantifiers ∀, ∃. A positive

literal is an atom; a negative literal is a negated atom. A KB is in the standard Conjunctive Normal Form

(CNF) if it is expressed as a conjunction of clauses (disjunctive formulas). The length of a clause is the

number of its constituting literals. The process of (partial) grounding corresponds to substituting con-

stants for (some) all of the free variables in a predicate or a formula. An interpretation (possible world)

assigns a truth value to each ground atom. In this paper, we assume function-free KB, and permit only

the universal quantification on variables. For specific applications that use existential quantification in

MLNs (e.g., Schoenfisch et al., 2018), some pre-processing is involved by Meilicke and Stuckenschmidt

(2015) to treat it in terms of a comprehensive grounded representation. A good alternative would be

using the concept of cardinality constraints in formulas as implemented within the RockIt system.

2.2 Markov Logic

Markov Logic (Richardson & Domingos, 2006) is a combination of first-order logic and probabilistic

graphical models. It allows softening a first-order formula f, by attaching a real-valued weight w to it.

A positive (negative) weight makes the formula support (penalize) worlds in which it is satisfied. Hard

formulas are regular first-order formulas which are expressed with infinite weights and have to be ful-

filled by every possible world. The probability of a possible world x is proportional to the exponential

sum of the weights of the soft formulas F that are satisfied in that world. The formal definition is:

𝑃(𝑋 = 𝑥) =
1

𝑍
𝑒𝑥𝑝 (∑ 𝑤𝑖𝑛𝑖(𝑥)

𝑖:𝑓𝑖∈𝐹

)

AMIRIAN & SHIRY GHIDARY

 36

where Z is a normalization constant and 𝑛𝑖(𝑥) is the number of true groundings of 𝑓𝑖 in x. In the presence

of evidence e, the possible world should satisfy e in addition to hard formulas, and its probability is

reformulated as:

𝑃(𝑋 = 𝑥|𝑒) =
1

𝑍𝑒
𝑒𝑥𝑝 (∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

)

where 𝑍𝑒 is the normalization constant with respect to e, and 𝑛𝑖(𝑥, 𝑒) is the number of true groundings

of 𝑓𝑖 in x that satisfy e.

MAP inference in Markov Logic corresponds to inferring the most likely possible world:

𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃(𝑥|𝑒) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥

1

𝑍𝑒
𝑒𝑥𝑝 (∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 ∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

.

Thus, MAP inference reduces to finding the interpretation that maximizes the sum of the weights of

the satisfied clauses. The problem is NP-hard in general. Any standard solver such as MaxWalkSAT

(Kautz, Selman, & Jiang, 1997) can be used over the ground network to find the MAP solution. As an

advanced alternative, this can be left as an ILP formulation (Wolsey, 1998) for efficient optimizers to

be solved.

There is a rich literature of compiling computational problems to ILPs in operations research com-

munity. Thanks to advances in optimizers development, a wide variety of applications resolve queries

by translating them to ILPs (or other types of optimization programs) and having an optimizer find the

exact or approximate solution. Huynh and Mooney (2009) proposed a translation of MAP queries to

ILPs and Noessner et al. (2013) extended the approach by applying constraint aggregation besides minor

enhancements to improve efficiency. Here we describe the ILP formulation and constraint aggregation

methods.

2.3 Traditional ILP Formulation

In all parts of the process, formulas are supposed to be conjunction-free, i.e., composed of disjunctive

clauses. Formulas with conjunctions are treated similarly in a separate procedure (Noessner, 2014).

Given a set of ground clauses 𝒢 as input, one binary ILP variable 𝑥ℓ is associated with each ground

atom ℓ occurring in the set, assigning it a value 1 provided ℓ is true and 0 otherwise. Each evidence

atom (assignment of a truth value to an atom) can be represented as a linear constraint of the form 𝑥ℓ ≤

0 or 𝑥ℓ ≥ 1, or simply by replacing the corresponding ILP variable with a constant binary value. For

each ground clause 𝑔 ∈ 𝒢 with weight 𝑤𝑔 ∈ ℝ, a binary variable 𝑧𝑔 with coefficient 𝑤𝑔 is added to the

objective. The objective totally becomes:

maximize ∑ 𝑤𝑔𝑧𝑔𝑔∈𝒢 .

It is straightforward to design constraints considering 𝑧𝑔 to be assigned 1 provided its corresponding

ground clause is satisfied in the MAP solution and 0 otherwise. For a clause with 𝑤𝑔 > 0, the following

constraint is added to the ILP:

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≥ 𝑧𝑔

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 37

where 𝐿+(𝑔) and 𝐿-(𝑔) refer to the sets of all ground atoms occurring unnegated and negated in 𝑔,

respectively. A truth value assignment to any ground atom that fulfills the disjunctive clause 𝑔, makes

the left-hand side of the constraint positive, thus, 𝑧𝑔 can take its maximum possible value 1.

For hard clauses (𝑤𝑔 = ∞), no term is added to the objective and 𝑧𝑔 in the constraint is simply

replaced with 1:

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≥ 1.

For a clause with 𝑤𝑔 < 0, the optimizer tries to lower 𝑧𝑔 to its minimum possible value 0. The

following constraint is added to permit this only if none of its constituting ground atoms satisfy 𝑔:

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≤ (|𝐿+(𝑔)| + |𝐿-(𝑔)|) 𝑧𝑔.

Finally, for clauses with zero weights, no constraint is added to the ILP as they have no effect on the

MAP solution.

Example 1 Consider an MLN with a single formula of weight 1.4 stating that each kid may be happy

of having a kind parent:

1.4 Child(k, p) ∧ Kind(p) ⇒ Happy(k).

The formula is expressed in the standard form as:

1.4 ¬Child(k, p) ∨ ¬Kind(p) ∨ Happy(k).

By grounding and applying evidence:

Child(Mary, Jack),

Child(Mary, Rose),

Child(Bob, Jack),

Child(Kate, Jack),

the essential ground clauses would be:

𝑔1: 1.4 ¬Kind(Jack) ∨ Happy(Mary)

𝑔2: 1.4 ¬Kind(Rose) ∨ Happy(Mary)

𝑔3: 1.4 ¬Kind(Jack) ∨ Happy(Bob)

𝑔4: 1.4 ¬Kind(Jack) ∨ Happy(Kate)

This MLN is translated to the following ILP (all variables types are binary):

maximize 1.4𝑧1 + 1.4𝑧2 + 1.4𝑧3 + 1.4𝑧4

subject to:

𝑐1: (1 − 𝐾𝑖𝑛𝑑𝐽𝑎𝑐𝑘) + 𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦 ≥ 𝑧1,

𝑐2: (1 − 𝐾𝑖𝑛𝑑𝑅𝑜𝑠𝑒) + 𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦 ≥ 𝑧2,

𝑐3: (1 − 𝐾𝑖𝑛𝑑𝐽𝑎𝑐𝑘) + 𝐻𝑎𝑝𝑝𝑦𝐵𝑜𝑏 ≥ 𝑧3,

𝑐4: (1 − 𝐾𝑖𝑛𝑑𝐽𝑎𝑐𝑘) + 𝐻𝑎𝑝𝑝𝑦𝐾𝑎𝑡𝑒 ≥ 𝑧4.

By the essential ground clauses, we mean having inessential, say, free groundings whose truth values

have no effect on the MAP state removed from the entire ground clauses. For instance, generating the

ground clause: 1.4 ¬Child(Bob, Rose) ∨ ¬Kind(Rose) ∨ Happy(Bob) in Example 1 is inessential. In

other words, we always perform grounding only if we need to. This is the only reason for involving

evidence in the given example.

AMIRIAN & SHIRY GHIDARY

 38

2.4 Cutting Plane Inference

The well-known idea of using cutting planes from operations research (Dantzig, Fulkerson, & Johnson,

1954) was involved by Riedel (2008) in ILP solving of MAP inference for Markov Logic. The algorithm

starts with the given evidence and the trivial parts of the KB (e.g. unary clauses) and solves the corre-

sponding ILP which can be actually much smaller than the ILP formulation of the whole MLN. The

solution is then checked if it violates any constraints. The violated constraints (if any) are then added to

the program and solved again. This incremental process iterates until no violated constraint remains. It

is shown by experiments that CPI can solve previously intractable MAP inference queries within short

times.

2.5 Constraint Aggregation

Grounding formulas in MLN often results in symmetries in multiple ground clauses, and consequently,

in the ILP constraints. Constraint aggregation proposes aggregating ground clauses that include sym-

metries, resulting in smaller constraint matrices and aiding symmetry detection algorithms of the ILP

solver. The candidate sets of ground clauses to which aggregation can be applied are defined as follows:

Definition 1 Let 𝐺 ⊆ 𝒢 be a set of n weighted ground clauses and let c be a ground clause. We say that

𝐺 can be aggregated with respect to c if (a) all ground clauses in 𝐺 have the same weight and (b) for

every 𝑔𝑖 ∈ 𝐺, 1 ≤ 𝑖 ≤ 𝑛, we have that 𝑔𝑖 = ℓ𝑖 ∨ 𝑐 where ℓ𝑖 is a positive or a negative literal.

For such a set, all corresponding ILP constraints can be replaced by fewer constraints with the fol-

lowing rules:

Definition 2 (First-Order Aggregation Rules) Let 𝐺 ⊆ 𝒢 be a set of n ground clauses with weight 𝑤𝐺

that can be aggregated with respect to a ground clause c.

I. In case of a finite weight (𝑤𝐺 ≠ ∞), replace the corresponding terms in the ILP objective with

a new integer variable 𝑧𝐺 ∈ {0, . . , 𝑛} with coefficient 𝑤𝐺:

maximize 𝑤𝐺𝑧𝐺 + rest of the objective.

If 𝑤𝐺 > 0, replace the corresponding ILP constraints with:

∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑧𝐺 ,

and if 𝑤𝐺 < 02, with:

∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 ≤ 𝑧𝐺 ,

𝑛𝑥ℓ ≤ 𝑧𝐺 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿+(𝑐),

𝑛(1 − 𝑥ℓ) ≤ 𝑧𝐺 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿-(𝑐).

II. In case of an infinite weight (𝑤𝐺 = ∞)3, only replace the corresponding ILP constraints with:

∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑛.

According to the aggregation rules, 𝑧𝐺 is considered to be assigned the number of satisfied ground

clauses in 𝐺; it gains the maximum value n provided a solution satisfies the ground clause c, otherwise

it is equal to the number of the literals (of the form p or ¬q) satisfied by the solution. CPA algorithm

chooses greedily among sets that can be aggregated to a more compact ILP and applies constraint ag-

gregation.

2,3 Despite the perfect explanation of the process by Noessner et al. (2013) and Noessner (2014), the implementation of

RockIt (up to the current ver. 0.5.276) lacks the aggregation of hard clauses and also happens to generate irrelevant ILP

constraints for the case of negative weights which result in incorrect solutions. These issues are fixed in Xeggora.

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 39

A fundamental distinction should be considered in the resulting ILP between negative and positive

weights: More constraints are required for negative weights to bind 𝑧𝐺 with the desired value. Intui-

tively, satisfying each negative weighted ground clause brings one penalty in the objective; hence, the

common disjunctive part (c) of the aggregated clauses should be checked conjunctively for each of its

constituting literals to bring n penalties if satisfied. To be more precise, adding each integer variable of

the mathematical program with a negative weighted representative in the objective leads to minimizing

that variable, which in turn, appears in the right-hand side of multiple inequality constraints to minimize

the maximum of all the left-hand side values. This is regarded as minimax multi-objective optimization

in operations research community (Aissi, Bazgan, & Vanderpooten, 2009).

Example 2 Among the ground clauses of Example 1, {𝑔1, 𝑔2} can be aggregated with respect to

Happy(Mary), while {𝑔1, 𝑔3, 𝑔4} can be aggregated with respect to ¬Kind(Jack). {𝑔1, 𝑔3, 𝑔4} is cho-

sen by greedy for aggregation. The terms: 1.4𝑧1 + 1.4𝑧3 + 1.4𝑧4 in the objective are replaced by

1.4𝑧1,3,4, 𝑧1,3,4 ∈ {0. .3} and the ILP constraints {𝑐1, 𝑐3, 𝑐4} are replaced by:

𝑐1,3,4: 𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦 + 𝐻𝑎𝑝𝑝𝑦𝐵𝑜𝑏 + 𝐻𝑎𝑝𝑝𝑦𝐾𝑎𝑡𝑒 + 3(1 − 𝐾𝑖𝑛𝑑𝐽𝑎𝑐𝑘) ≥ 𝑧1,3,4.

A distinctive advantage of the aggregation approach is its immunity to evidence in contrast to other

lifting methods and relates to the different views of the symmetry concept. This can be explained by

justifying the aggregation rules versus other symmetry exploitation techniques. Conventional lifting

approaches (e.g. fractional automorphisms for MAP LPs by Bui, Huynh, and Riedel, 2013) define and

expose symmetry as exchangeability which is justified by encapsulating exchangeable entities into a

single representative, hence reducing the problem size. This type of symmetry is broken by evidence.

The reader is referred to Van den Broeck and Darwiche (2013) for illustration. Moreover, the current

exchangeable variables may not remain exchangeable by any upcoming additional formulas giving in-

formation about them. In the aggregation approach in contrast, symmetric variables do not need to be

assigned the same value, but to be just capable of being summed up in the constraints. This capability

won’t suffer from evidence. The difference may be precisely explored in Example 3:

Example 3 Consider the traditional ILP translation of the MLN in Example 1. The binary variables

𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦, 𝐻𝑎𝑝𝑝𝑦𝐵𝑜𝑏 and 𝐻𝑎𝑝𝑝𝑦𝐾𝑎𝑡𝑒 are symmetric and may be unified by a conventional lifting

technique to a representative, say, 𝐻𝑎𝑝𝑝𝑦𝑀𝐵𝐾. Consequently, the constraints {𝑐1, 𝑐3, 𝑐4} would be

grouped as a unique constraint with one binary representative in the lifted ILP objective. Adding the

new evidence: “Mary is happy” or the complicated knowledge: “Only one person is not happy” to the

MLN breaks the symmetries, bringing back the underlying entities to ground. The restriction is even

more intensive for example in fractional automorphism based methods, because the presence of

𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦 in 𝑔2 avoids unifying the predicate with 𝐻𝑎𝑝𝑝𝑦𝐵𝑜𝑏 and 𝐻𝑎𝑝𝑝𝑦𝐾𝑎𝑡𝑒 even with no addi-

tional evidence. However, this would not happen to the aggregated constraints in Example 2 as the

underlying variables have not been unified but summed up.

As seen in Example 2, constraint aggregation is able to reduce the number of ILP variables and

constraints. This is however not the case in Example 4, where the members of every non-singular subset

of the ground clauses differ in at least two literals:

Example 4 Consider an MLN with a single formula of weight 2.3 stating that each kid may be happy

of having a kind parent who has fun with him (her):

2.3 ¬Child(k, p) ∨ ¬Kind(p) ∨ ¬HasFunWith(p, k) ∨ Happy(k).

By grounding and applying the same evidence of Example 1, the essential ground clauses would be:

𝑔1: 2.3 ¬Kind(Jack) ∨ ¬HasFunWith(Jack, Mary) ∨ Happy(Mary)

AMIRIAN & SHIRY GHIDARY

 40

𝑔2: 2.3 ¬Kind(Rose) ∨ ¬HasFunWith(Rose, Mary) ∨ Happy(Mary)

𝑔3: 2.3 ¬Kind(Jack) ∨ ¬HasFunWith(Jack, Bob) ∨ Happy(Bob)

𝑔4: 2.3 ¬Kind(Jack) ∨ ¬HasFunWith(Jack, Kate) ∨ Happy(Kate)

Here, there still exist similarities between the members of both {𝑔1, 𝑔2} and {𝑔1, 𝑔3, 𝑔4}, but in

addition, diversity in more than one literal. These are ignored by the constraint aggregation algorithm;

it allows only one literal to be distinct while all others must be identical. This is the justification of

naming the method first-order aggregation. This failure often happens in models containing long for-

mulas. We introduce Full-Constraint-Aggregation that can exploit this type of symmetry.

3. The FCA Method

We start by illustrating symmetry types that appear in ground clauses as in Example 4, based on a pa-

rameter we name order of aggregation. Then we describe our superior algorithm which performs

higher-order aggregations.

Definition 3 Let 𝐺 ⊆ 𝒢 be a set of n weighted ground clauses and let c be a ground clause with non-

zero length. We say that 𝐺 can be aggregated of order k with respect to c, if (a) all ground clauses in 𝐺

have the same weight and (b) for every 𝑔𝑖 ∈ 𝐺, 1 ≤ 𝑖 ≤ 𝑛, we have that 𝑔𝑖 = 𝐿𝑖 ∨ 𝑐 where 𝐿𝑖 is a

ground clause of maximum length k. We call k the aggregation order of 𝐺, if k is the minimum order of

which 𝐺 can be aggregated (with respect to any ground clause c).

Due to Definition 3, the constraint aggregation method is only applicable to the sets of ground clauses

with aggregation order of 1, performing first-order aggregation. For a set of a higher aggregation order,

we need to associate disjunctions of literals with binary terms in the optimization program, e.g. 𝑎 ∨ 𝑏 ≡

𝑥𝑎 + 𝑥𝑏 − 𝑥𝑎𝑥𝑏. This results in an Integer Polynomial Program. To be more precise, a kth order trivial

aggregation may be performed to formulate the MAP inference problem as an integer kth order mathe-

matical program. The program can be further linearized to an equivalent ILP using the classic lineari-

zation method outlined by Watters (1967), as previously done in a different MAP inference method by

Sarkhel, Venugopal, Singla, and Gogate (2014b). However, the resulting ILP would carry much more

variables and constraints and last longer to be solved than the one from the traditional ILP formulation.

To overcome this issue, we propose a novel relaxed translation of MLNs to ILPs by associating

auxiliary variables with disjunctive clauses. This is done through higher-order aggregation rules.

Definition 4 (Higher-Order Aggregation Rules) Let 𝐺 ⊆ 𝒢 be a set of n ground clauses with weight 𝑤𝐺

with the aggregation order of 𝑘 > 1, i.e., can be aggregated of order 𝑘 with respect to a ground clause

c. Each ground clause 𝐿𝑖 such that 𝐿𝑖 ∨ 𝑐 ∈ 𝐺 is a disjunction of at most k unnegated or negated ground

atoms. For each 𝐿𝑖 with length 1, apply the First-Order Aggregation Rules. For the remainder:

I. Corresponding to each 𝐿𝑖, define a new binary ILP variable 𝑥𝑠𝑖
. Choose one of the following

Bound Constraints (BCs) after the sign of 𝑤𝐺 and add it to the ILP:

Upper-BC: 𝑥𝑠𝑖
≤ ∑ 𝑥ℓℓ∈𝐿+(𝐿𝑖) + ∑ (1 − 𝑥ℓ)ℓ∈𝐿-(𝐿𝑖) if 𝑤𝐺 > 0 or 𝑤𝐺 = ∞

Lower-BC: ∑ 𝑥ℓℓ∈𝐿+(𝐿𝑖) + ∑ (1 − 𝑥ℓ)ℓ∈𝐿-(𝐿𝑖) ≤ |𝐿𝑖|. 𝑥𝑠𝑖
 if 𝑤𝐺 < 0

II. In case of a finite weight (𝑤𝐺 ≠ ∞), replace the corresponding terms in the ILP objective with

a new integer variable 𝑧𝐺 ∈ {0, . . , 𝑛} with coefficient 𝑤𝐺:

maximize 𝑤𝐺𝑧𝐺 + rest of the objective.

If 𝑤𝐺 > 0, replace the corresponding ILP constraints with:

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 41

∑ 𝑥𝑠𝑖

𝑛
𝑖=1 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑧𝐺,

and if 𝑤𝐺 < 0, with:
∑ 𝑥𝑠𝑖

𝑛
𝑖=1 ≤ 𝑧𝐺 ,

𝑛𝑥ℓ ≤ 𝑧𝐺 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿+(𝑐),

𝑛(1 − 𝑥ℓ) ≤ 𝑧𝐺 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿-(𝑐).

III. In case of an infinite weight (𝑤𝐺 = ∞), only replace the corresponding ILP constraints with:
∑ 𝑥𝑠𝑖

𝑛
𝑖=1 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑛.

The Upper-BC and Lower-BC pair if used altogether, represent the disjunction operator(s) of 𝐿𝑖 in

the ILP. Intuitively, to correspond a logical OR operator for two Boolean variables: 𝑐 ≡ 𝑎 ∨ 𝑏 in the

integer space, one may add two inequalities: 𝑥𝑐 ≤ 𝑥𝑎 + 𝑥𝑏 ≤ 2𝑥𝑐. Similar inequalities would represent

the disjunction of k Boolean variables. Now if 𝑥𝑐 is involved in either maximization or minimization,

one can drop the corresponding inessential constraint.

Example 5 The traditional ILP formulation of Example 4 is straightforward and not mentioned here.

Among the ground clauses, {𝑔1, 𝑔2} can be aggregated of order 2 with respect to Happy(Mary), and

{𝑔1, 𝑔3, 𝑔4} can also be aggregated of order 2 with respect to ¬Kind(Jack). By some heuristics, {𝑔1,

𝑔3, 𝑔4} is chosen as the target for aggregation. The corresponding terms in the objective are replaced

by: 2.3𝑧1,3,4, 𝑧1,3,4 ∈ {0. .3} and the corresponding ILP constraints are replaced by:

𝑥𝑠1
≤ (1 − 𝐻𝑎𝑠𝐹𝑢𝑛𝑊𝑖𝑡ℎ𝐽𝑎𝑐𝑘,𝑀𝑎𝑟𝑦) + 𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦,

𝑥𝑠3
≤ (1 − 𝐻𝑎𝑠𝐹𝑢𝑛𝑊𝑖𝑡ℎ𝐽𝑎𝑐𝑘,𝐵𝑜𝑏) + 𝐻𝑎𝑝𝑝𝑦𝐵𝑜𝑏,

𝑥𝑠4
≤ (1 − 𝐻𝑎𝑠𝐹𝑢𝑛𝑊𝑖𝑡ℎ𝐽𝑎𝑐𝑘,𝐾𝑎𝑡𝑒) + 𝐻𝑎𝑝𝑝𝑦𝐾𝑎𝑡𝑒,

𝑥𝑠1
+ 𝑥𝑠3

+ 𝑥𝑠4
+ 3(1 − 𝐾𝑖𝑛𝑑𝐽𝑎𝑐𝑘) ≥ 𝑧1,3,4.

3.1 ILP Analysis

Applying higher-order aggregation rules results in relaxed ILPs that are necessary to be analyzed in

terms of soundness and efficiency. To this end, we have the following theorem:

Theorem Let M be a Markov Logic Network and HOA(M) be the ILP formulation having higher-order

aggregations applied to all or part of it. Each solution of HOA(M) corresponds one-to-one to a maxi-

mum a-posteriori state of M.

Proof. The aggregation process is similar to the first-order aggregation whose soundness has been

proven earlier by Noessner (2014, Theorem 3). We need moreover to show that the auxiliary relaxed

variables and the BCs of rule I in Definition 4 do not affect the soundness. We build a new MLN with

the same logic as M, and show that HOA(M) can be produced by applying first-order aggregation to it.

Consider a set of n ground clauses 𝐺 in M with weight w which has been aggregated of order 𝑘 > 1

with respect to some ground clause c. Without loss of generality, suppose that the other parts of M are

not aggregated. For each 𝑔𝑖 ∈ 𝐺, 𝑔𝑖 = 𝐿𝑖 ∨ 𝑐, |𝐿𝑖| > 1 we add to M, without affecting its logic, a Bool-

ean variable 𝑠𝑖 and new hard formulas 𝑠𝑖 ⇒ 𝐿𝑖, 𝐿𝑖 ⇒ 𝑠𝑖 and substitute 𝑠𝑖 ∨ 𝑐 for 𝑔𝑖. Note that any MAP

inference algorithm tries to satisfy clauses with positive weights (besides hard clauses), and dissatisfy

those with negative weights. Hence for each i, if 𝑤 > 0 or 𝑤 = ∞, it never tries to dissatisfy 𝑠𝑖 (because

it appears in no ground clause except 𝑠𝑖 ∨ 𝑐), so 𝐿𝑖 ⇒ 𝑠𝑖 has no impact on the truth values of the literals

occurring in 𝐿𝑖, and can be relaxed (removed) . Similarly, 𝑠𝑖 ⇒ 𝐿𝑖 can be relaxed if 𝑤 < 0 because the

inference engine never tries to satisfy 𝑠𝑖. Thus, in both cases we can drop either the upper-BC or the

lower-BC (as done in rule I). It is remarkable that through relaxation, 𝑠𝑖 is no longer equivalent to 𝐿𝑖;

AMIRIAN & SHIRY GHIDARY

 42

we do not need it to be though. It is straightforward to show that the new MLN can be ILP-formulated

as HOA(M): For each 𝑖 ∈ {1,2, . . , 𝑛}, associate 𝑠𝑖 with the 𝑥𝑠𝑖
 in Definition 4; each 𝑠𝑖 ⇒ 𝐿𝑖 in the

standard CNF form is a ground clause of maximum length 𝑘 + 1 that can form an upper-BC. Mean-

while, each 𝐿𝑖 ⇒ 𝑠𝑖 is composed of at most 𝑘 ground clauses in the standard form that can be first-order

aggregated with respect to 𝑠𝑖 and form a lower-BC. On the other hand, {𝑠𝑖 ∨ 𝑐|1 ≤ 𝑖 ≤ 𝑛} can be first-

order aggregated with respect to c and form the constraints of rule II or III. □

Now we deal with the computational aspect of higher-order aggregation by comparing the number

of variables and constraints of the resulting ILP before and after applying the rules. For a set of n ground

clauses of length m and aggregation order of k, the identical clause c has length 𝑚– 𝑘. Assuming that

the clauses don’t share any variables except those occurring in c, the number of variables would be

𝑛. 𝑘 + 𝑚 − 𝑘 (for hard clauses) or 𝑛. 𝑘 + 𝑚 − 𝑘 + 𝑛 (for soft clauses). The number of corresponding

constraints is n. After applying kth order aggregation, the number of variables increases by n (for hard

clauses) or by 1 (for soft clauses). The number of constraints also increases by 1 (in case of positive

weight) or by 𝑚 − 𝑘 + 1 (in case of negative weight). This would increase by n more constraints with-

out relaxing either upper-BCs or lower-BCs. First-order aggregation is an exception, which in case the

auxiliary variables and BCs need not be added; hence we have a decrease in the ILP size as outlined by

Noessner et al. (2013). For the higher aggregation orders, despite the increase in the ILP size, we em-

pirically observed runtime enhancements of the solver. This is because the increase in the ILP size is of

order of the lengths of clauses and can be ignored while compared to the size of symmetries that aggre-

gation makes explicit to the solver.

Higher-order aggregation rules bring us the option to choose the target among wider sets of ground

clauses. Consider a first-order formula that is grounded to a set of ground clauses 𝒢. For each cluster

𝐺 ⊆ 𝒢, we can partition the constituting literals into identical and distinct parts. Identical literals are the

ones that every clause in 𝐺 shares exactly the same grounding for. Aggregation would be applicable if

at least one identical literal exists. Therefore, no similarity is ignored and a full aggregation can be

performed. The order of aggregation would be the number of distinct literals that can range from 1 to

the length of the clauses minus 1.

The FCA algorithm is composed of three phases that are executed iteratively: It first seeks the can-

didate clustering schemes of ground clauses in the MLN for aggregation. Then it chooses a target among

them by heuristics and finally applies higher-order aggregation rules to the target. The first two phases

should be essentially time-preserving and efficiency-preserving, so that the enhancement earned by the

third phase would not be neutralized, i.e., efficient candidates should be chosen to fit the best for aggre-

gation, and this should be done efficiently. To this end, multiple techniques are involved that are de-

scribed in the next section.

4. Leveraging RDBMS and Heuristics

We showed analytically a major difference between the first-order and higher-order aggregations. First-

order aggregation, if applicable, reduces the ILP size on the order of the number of aggregated clauses,

which results in much faster program solving. This is also verified through experiments on the artificial

data. In order to compare the efficiency between possible clustering schemes for higher-order aggrega-

tions, one may obtain desired metrics. However, designing such metrics is not trivial because efficiency

is an abstract measure that relates to the cost of the aggregation procedure in terms of size and runtime,

along with the cost of solving the ILP. Moreover, involving a metric in the algorithm would acquire

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 43

time-consuming computations. Instead, we propose a heuristic approach to choose an appropriate clus-

tering scheme for aggregation as described in the following algorithm. In order to benefit from query

optimization technologies, this algorithm leverages RDBMS to compute the compactness of possible

aggregations. The idea of RDBMS leverage for MAP inference in Markov Logic was inspired by Riedel

(2008) and evolved by Niu, Ré, Doan, and Shavlik (2011) and Noessner et al. (2013). They used

RDBMS in the grounding phase and also in finding the violated constraints, but the computation of

counting features was not implemented with RDBMS because it requires storing or regeneration of the

ground table which is often inefficient for first-order aggregation. In the case of higher-order aggrega-

tions however, counting the number of rows is required several times which is done by the COUNT

DISTINCT query. It is a standard SQL query used for counting the number of distinguishable rows on

the specified columns in a table. Extensionally, MySQL permits using it multiple times in a single query.

Algorithm CHOOSEFORAGGREGATION

 Input ℱ: a first-order disjunctive clause

 Input 𝒢: a SQL table, containing all essential ground clauses of ℱ

 Output appropriate clustering scheme as the target for aggregation

1: L 𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠_𝑜𝑓 (ℱ)

2: 𝒱 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠_𝑜𝑓 (L)

3: if |L| = 1

4: candidate_sets {∅}

5: else

6: candidate_sets {}

7: foreach non-empty 𝑉 ⊆ 𝒱

8: identical_literals {ℓ𝑖 ∈ 𝐿| 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠_𝑜𝑓 (ℓ𝑖) ⊆ 𝑉}

9: if identical_literals candidate_sets and identical_literals ≠ L

10: add identical_literals to candidate_sets

11: if candidate_sets contains any sets of literals with the size of |L| - 1

12: return best of them greedily to be further first-order aggregated

13: else

14: query ‘SELECT ’

15: foreach identical_part ∈ candidate_sets

16: query query + ‘COUNT (DISTINCT ’

 + 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (identical_part) + ‘) as ’ + 𝐶𝑎𝑝𝑡𝑖𝑜𝑛 (identical_part)

 [+ ‘,’] // except for the last loop

17: query query + ‘FROM ’ + 𝒢

18: execute query into #clusters

19: best_candidate_sets {argmin#𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 candidate_sets}

20: return argmaxcardinality best_candidate_sets

The algorithm is provided with a disjunctive clause and a table containing all of its essential ground-

ings in the rows and its constituting variables in the columns. Inessential groundings (e.g. by the substi-

tution of {𝑘 ↦ 𝐵𝑜𝑏, 𝑝 ↦ 𝑅𝑜𝑠𝑒} in Example 4) should have been previously ignored in order to pro-

duce an effective output. The algorithm first acquires the set of all literals that constitute the clause and

also all variables that participate in grounding (lines 1, 2). In lines 3-6, a set is initialized for storing all

feasible partitioning schemes of the literals. Each candidate set is a representative for the set of identical

AMIRIAN & SHIRY GHIDARY

 44

literals (i.e., clause c in Definition 3), so the complementary literals are considered distinct. The cardi-

nality of a candidate set represents the clause length minus its proposing order of aggregation. ∅ is by

default a feasible candidate set. However, it is added only for first-order aggregation as it would not be

efficient for higher orders, as considered in Definition 3. Lines 7-10 collect candidate sets for aggrega-

tion. One may trivially collect the sets based on ground literals; however, we build the collection method

upon non-empty sets of variables, in order to avoid producing infeasible candidate sets. It starts with

partitioning the variables. Each partitioning scheme of variables specifies a feasible partitioning scheme

of literals which in turn corresponds to a clustering scheme of the essential ground clauses. Line 11

discovers if any candidates are present for first-order aggregation, to be in case the arguments of a call

to the procedure (line 12). If there exist more than one candidate, one would be chosen greedily as done

in CPA. Lines 14-18 contain the code for generating and executing the SQL query that counts the num-

ber of clusters aggregated according to each partitioning scheme. Each single clause that is not aggre-

gated is considered in a singleton cluster. We involve the query output #clusters as a lookup table which

returns the number of clusters given a candidate set. Finally, the candidate partitioning scheme that

offers the minimum number of clusters is selected. If there exist multiple solutions, the one with the

lowest aggregation order is returned (lines 19-20). This is motivated from the analysis on the artificial

data; keeping other parameters fixed, lower-order aggregations often produce slightly more efficient

ILPs.

Example 6 Consider ℱ to be the first-order clause: ¬Kind(p) ∨ ¬HasFunWith(p, k) ∨ Happy(k). Also

consider 𝒢 to contain its essential groundings from Example 4 as stored in the following SQL table:

k p

Mary Jack

Mary Rose

Bob Jack

Kate Jack

Following the algorithm onto line 13, the candidate sets would become {{k}, {p}}. To elaborate the

process, suppose exceptionally that we permit the universal set to be also a candidate. The counting

SQL query given the candidate sets: {{k}, {p}, {k, p}} would be generated as:

SELECT COUNT (DISTINCT k) as ‘{Happy(k)}’

 , COUNT (DISTINCT p) as ‘{¬Kind(p)}’

 , COUNT (DISTINCT k, p) as ‘{¬Kind(p), ¬HasFunWith(p, k), Happy(k)}’

FROM 𝒢

By executing the query, we are provided with a lookup table for #clusters as:

candidate set #clusters

{Happy(k)} 3

{¬Kind(p)} 2

{¬Kind(p), ¬HasFunWith(p, k), Happy(k)} 4

Finally, the 2nd candidate set: {¬Kind(p)} is chosen and returned as the identical part for aggregation.

An extra point which is not described here in detail is that we collect the candidate sets in an elegant

order by which the number of costly COUNT DISTINCT commands in the query becomes fewer than

as done by brute force, and the last argmaxing step in the algorithm becomes inessential.

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 45

5. Empirical Evaluation

This section is composed of two main evaluation reports. In order to design efficient heuristics for FCA

as described earlier, the ILP resolution phase was empirically analyzed and evaluated on the artificial

data. Furthermore, the whole algorithm was experimented on real benchmark MLNs. In both evalua-

tions, Gurobi4 version 8 was employed as the ILP solver to find an exact or approximate solution based

on a gap parameter (bound of relative error). The gap was set to 10−6 to reach the exact solution in the

experiments it is reachable. For each benchmark with intractable exact inference, we tried various gap

ranges to find the best approximation in admissible time. All experiments were performed on a PC with

8 GB RAM and 4 cores with 2.1 GHz.

5.1 Analysis on the Artificial Data

In order to elaborate the enhancement achieved by higher-order aggregations, we first implemented a

prototype system to generate artificial ILPs that can be produced from the sets of ground clauses with

various lengths and aggregation orders. We generated two batches of ILPs as the translations by the

traditional (TRAD) and FCA methods from the same ground clauses of lengths from 1 to 10. The two

ILP batches were then passed to the ILP solver and the solving times were measured and compared to

test FCA scalability. In addition to the length and the aggregation order features, we needed to classify

the operational domain based on two more features in order to analyze the impact of our approach more

precisely: the sign of the clauses weights and the presence of evidence. All tests were done upon both

positive and negative-weighted sets of clauses, without and in the presence of evidence for 5%, 10%

and 20% of all atoms. Figure 1 displays the ILP solving times for a set of 100000 ground clauses of

length 10 and various aggregation orders. The times are calculated by the average on 5 runs. Based on

the preceding features, these results are observed from the experiments:

A. Observations on the TRAD curves characteristics:

I. All curves slope downward from right to left, i.e., more symmetries in the model cause

faster inference. These symmetries are originally implicit in the ILP and exposed by the

solver itself, leading to faster optimization. FCA is supposed to better expose the symme-

tries by making them explicit to the solver.

II. Solve time rises with an increase in the portion of evidence. Moreover, a significant gap

is observed between the curves of evidence-free models and the rest. This is because ev-

idence (even over few atoms) breaks variables exchangeability which in turn prevents the

variables encapsulation.

III. Among the evidence-free models, no significant difference is observed between inference

on positive and negative-weighted clauses, while among clauses including constrained

atoms (caused by evidence), inference on those with negative weights is slightly slower.

Briefly arguing, the difference may be due to the way TRAD encodes weighted satisfia-

bility constraints as ILPs and solves them in turn. As explained earlier, the translation of

a negative weighted clause comes with a coefficient (|𝐿+(𝑔)| + |𝐿-(𝑔)|) for one binary

variable. By LP relaxation, the variable is temporarily relaxed to accept real values and

later discretized somehow (trivially rounded) to permit only binary values. The gap be-

tween the optimal solutions of the LP and its underlying IP often causes this relaxa-

tion/discretization formalism generate non-optimal (or infeasible) intermediate solutions

(Wolsey, 1998). On the variables with coefficients, this gap may become larger and cause

4 https://www.gurobi.com/

https://www.gurobi.com/

AMIRIAN & SHIRY GHIDARY

 46

longer solving times in comparison to the positive weighted case in which no coefficient

exists.

B. Observations on the impact of FCA is fourfold:

I. The best enhancement is achieved for the class of CPA-applicables (the first column),

where a discrete sharp point in the curve is observed. The reason, as analyzed earlier, is

the order of the ILP size reduction in case is linear to the number of aggregated con-

straints.

II. Among the rest of the domain, the sets of clauses with lower aggregation orders, starting

with aggregation order of 2 (Quadratic Aggregation applicable) receive more enhance-

ments. This is obviously due to more symmetric clauses and is the justification in prefer-

ring lower orders of aggregation in our target selection heuristic.

III. In high-symmetric clauses with low aggregation orders, the disorder caused by evidence

in efficacy of FCA is ignorable in contrast to the conventional lifting methods. This is

resulted from the novel view of symmetry in aggregation which has been discussed ear-

lier.

IV. As the aggregation order reaches near the clauses length (the identical part vanishes),

FCA loses its advantage in negative weights, and the meaningful gap between the evi-

dence-free curve and other curves becomes observable (following that of the TRAD

curves), yet surprisingly, positive weighted clauses proceed receiving enhancements from

aggregation. In other words, aggregation preserves the efficiency in the presence of evi-

dence even for low-symmetric positive-weighted target sets. This difference could be

caused by the dissimilar forms of aggregation rules for negative and positive weights.

Aggregation on positive weights is straightforward and results in a classical maximization

problem, while on negative weights it leads to minimax multi-objective optimization

which potentially requires more complicated steps to solve, especially when the gap be-

tween multiple objectives rises (Aissi et al., 2009).

Figure 1: ILP solving times (average on 5 runs) of TRAD and FCA on sets of 100000 ground clauses for positive

(left) and negative (right) weights of length 10 with various portion of random evidence and aggregation orders

We also considered the FCA enhancement for a fixed order of aggregation on various clause lengths.

Figure 2 shows the average solving times of ILPs produced from Quadratic Aggregation (QuadA) com-

pared to TRAD. In addition to the previous observations, it is exemplified that keeping the aggregation

CPA
QuadA

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

so
lv

in
g

ti
m

e
[m

s]

aggregation order aggregation order

no Ev. TRAD %5 Ev. TRAD %10 Ev. TRAD %20 Ev. TRAD

no Ev. FCA %5 Ev. FCA %10 Ev. FCA %20 Ev. FCA

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 47

order fixed, the solving time for FCA remains near constant as the ground clauses get longer, but grows

with clauses length in the traditional case. This means that FCA better exposes aggregation advantages

while applied to longer clauses with symmetries.

Figure 2: ILP solving times (average on 5 runs) of TRAD and QuadA on sets of 100000 ground clauses with

aggregation order of 2 for positive (left) and negative (right) weights and various lengths and portions of random

evidence

5.2 Benchmarks

As stated in previous sections, our MLN system performs MAP inference within three phases. We an-

alytically and empirically showed improvements in the last phase compared to the traditional method

and CPA. The overall process evaluation on multiple engineering applications is a further necessity.

CPA was previously evaluated by Noessner et al. (2013) and reported to outperform other state-of-the-

art inference algorithms on five established benchmark MLNs. The benchmarks included Relational

Classification (RC), Link Prediction (LP), Information Extraction (IE), Protein Interaction (PR), and

Entity Resolution (ER). These benchmarks except PR were also the test cases for evaluating the Tuffy

system (Niu et al, 2011). RC was built for the classification problem on the CORA (McCallum, Nigam,

Rennie, & Seymore, 2000) dataset. LP performs prediction of the relations holding between UW-CSE

students, faculty, and staff (Richardson & Domingos, 2006). IE (Poon & Domingos, 2007) extracts

database records from parsed sources. PR contains information on the yeast protein location, function,

class, phenotype, and enzymes, from the MIPS (Munich Information center for Protein Sequence) Com-

prehensive Yeast Genome Database, as of February 2005 (Mewes et al., 2000). We used the MLN

version (Davis & Domingos, 2009) which addresses the problem of predicting interactions between

proteins, enzymes, and phenotypes. ER is used to find records corresponding to the same real-world

entity (Singla & Domingos, 2006).

In order to show empirically to what extent FCA preserves efficiency, we compare FCA with CPA

and TRAD with various configurations on these benchmarks and in addition, on the EKAW dataset

whose confidence values were gathered from crowd-sourcing services to be used in ontology learning

(Noessner, 2014; Niepert, Noessner, & Stuckenschmidt, 2011). The six benchmarks altogether cover a

wide variety of MLNs in different aspects. Table 1 summarizes their characteristics.

0

100

200

300

400

500

600

2 3 4 5 6 7 8 9 1 0 2 3 4 5 6 7 8 9 1 0

so
lv

in
g

ti
m

e
[m

s]

clause length clause length

no Ev. TRAD %5 Ev. TRAD %10 Ev. TRAD %20 Ev. TRAD

no Ev. QuadA %5 Ev. QuadA %10 Ev. QuadA %20 Ev. QuadA

AMIRIAN & SHIRY GHIDARY

 48

Table 1: Characteristics of the six benchmark MLNs

characteristic RC LP IE PR * ER * EKAW

predicates 4 22 18 7 10 21

formulas 17 24 1,024 2,460/1,689 1,268/1,265 21

evidence atoms 99,161 1,031 258,079 12,999 12,892 10,987

clauses 202,215 354,587 340,737 40,234,321 390,720 2,922,601

1st ord. aggr. cnstr. 261,871 352,190 269,817
3,145,198/
1,507,573

422,959/
280,011

301

2nd ord. aggr. cnstr. 0 0 0 0/0 0/32,407 11,171

3rd ord. aggr. cnstr. 0 0 0 0/0 0/0 391,235

* multi-valued characteristics refer to simplified/not simplified long formulas with negative weights

5.3 Experimental Setup

We implemented the FCA algorithm in Xeggora as an evolutionary extension of RockIt, which is

invoked as the inference engine on each benchmark. We release the code as an open source project for

further investigation5. In order to cancel the measurement error caused by the other processes running

in parallel, all runs shorter than 10 minutes are repeated five times and runtimes are obtained on the

average. In addition to the solver’s gap bound parameter, we set its time limit to stop optimization if the

gap is not reached in 10 minutes. For CPI, this limit is applied separately in each iteration thus the overall

inference process may last much longer. As an external observer, Tuffy is also invoked on all bench-

marks. It leverages RDBMS for grounding and performs MaxWalkSAT for MAP inference. Out of the

MAP solution of each MLN, we evaluate the objective of a unified ILP equivalent to its ground model.

By linear scaling of the objective, we obtain a grade for each approximate solution (displayed in paren-

thesis) as a criterion for analyzing its quality; a naïve empty instance (assigning false value to all query

atoms) is graded 0, while the Tuffy output solution with default parameters is graded 100. Tuffy

typically achieves higher quality solutions but in longer runtimes. Two exceptions are for the LP and IE

benchmarks where some ILP approaches reach better approximate solutions (i.e., are graded above 100)

on LP and the exact solution on IE.

5.4 Results

Experiments show different treatments of our approach on the benchmarks which can be discussed in

three categories. The first category consists of RC, LP, and IE. Table 2 shows the comparison results

on these benchmarks. We applied a 0.01 gap for LP while the two other models were solved exactly.

Each method was firstly tested alone and then jointed with CPI.

Table 2: ILP/total Inference runtimes with various configurations on RC, LP, and IE benchmarks [ms]

benchmark TRAD CPA FCA
TRAD
+CPI

CPA
+CPI

FCA
+CPI

Tuffy

RC
2,166

6,015

𝟕𝟒𝟔

𝟒, 𝟒𝟕𝟗

918

5,697

12,348

15,671

4,642

7,645

5,572

9,518

−

21,563

LP

9,309

11,487

(86.2)

𝟏, 𝟐𝟖𝟓

𝟑, 𝟎𝟒𝟓

(99.3)

1,364

3,343

(82.5)

81,235

84,014

(107.3)

5,927

8,383

(106.5)

3,369

5,889

(106.0)

−

230,630

(100)

IE
1,975

21,359

949

19,751

1,049

20,627

53

𝟏𝟖, 𝟐𝟖𝟔

29

18,397

𝟐𝟔

18,484

−

14,400
∗

* failed to reach the exact solution even in 40 seconds and by testing various maxFlips values

5 The source code is available at https://github.com/amirian/xeggora.

https://github.com/amirian/xeggora

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 49

The runtime values of TRAD and CPA verify the experimental results reported by Noessner et al.

(2013)6. The minimum value in each row is shown bolded. FCA executes in close runtimes to CPA and

both of them run faster than TRAD. The reason is that FCA operates on sets of clauses with higher

aggregation orders; in the absence of such sets, FCA behaves the same as CPA. Among these bench-

marks, the IE inference runtimes are not much affected by the method because the optimization phase

constitutes a small portion (0.14% - 9.2%) of the overall runtime.

The second category includes the EKAW ontology. We tested FCA and its competitors on an EKAW

MLN with 10,987 evidence atoms. The MLN is the only test case for aggregation order of 3. It contains

8 sets of ground clauses with aggregation order of 1, 1105 sets of ground clauses with aggregation order

of 2, and additionally 5 sets of ground clauses with aggregation order of 3 which totally result in aggre-

gating more than 400,000 hard clauses in each CPI iteration. Without applying CPI, all methods ran out

of memory in the grounding phase. The inference runtimes of different methods with various gap values

are listed in Table 3. This category demonstrates a rare paradigm in which aggregation has more cons

than pros. However, the FCA progressive selection strategy of aggregation targets prevents the runtime

blow-up as that of CPA’s. CPA shows poor results on EKAW, meanwhile FCA retains the higher so-

lution quality and better runtimes of TRAD as we reduce the gap bound.

Table 3: ILP/total Inference runtimes with various gaps on EKAW benchmark [sec]

gap TRAD+CPI CPA+CPI FCA+CPI Tuffy

0.01
𝟓𝟎𝟒

𝟓𝟏𝟑
(86.99)

1,750

1,770
(86.65)

976

994
(87.04)

−

25,415
(100) 0.001

𝟕𝟒𝟎

𝟕𝟒𝟖
(87.35) *

1,003

1,014
(87.35)

0.0005
𝟏, 𝟓𝟑𝟏

𝟏, 𝟓𝟑𝟖
(87.36) *

1,892

1,903
(87.36)

* failed to reach the gap within the time limit in one CPI iteration.

The PR benchmark appeared to provide similar results by FCA and CPA in the primary experiment

with an improvement compared to TRAD, hence categorized in the first group; FCA and CPA both run

in near half overall runtime of TRAD. The number of first-order aggregated constraints exceeds

3,000,000. By default, a formula simplification pre-processing option in RockIt splits long formulas

with negative weights into shorter parts and the corresponding weights are divided between the parts.

This simplification procedure is traditionally used by Richardson and Domingos (2006) when a con-

junction of literals is present in the model. Tuffy also performs internal transformations to obtain

clauses only with positive weights (Niu et al., 2011). It can be shown that the simplification leads to

different probabilities of the same possible world (Noessner, 2014); hence the final solution would be

approximated. Moreover, having long formulas broken, high orders of aggregation may disappear in

the model and consequently, FCA may expose no benefit.

We repeated all experiments on PR ignoring the simplification step which resulted in an intractable

inference. Runtimes are listed in Table 4. All executions without applying CPI ran out of memory in the

grounding phase and are not included. The non-simplified MLN, providing near 1,500,000 first-order

aggregated constraints fits in the second category, i.e., FCA affords no enhancement compared to

6 One exception is for the TRAD+CPI configuration on LP benchmark; a runtime enhancement for this configuration was

reported, but our experiments with various gaps and various Gurobi versions resulted in the nearest case a minimum of 30%

additive runtime compared to TRAD.

AMIRIAN & SHIRY GHIDARY

 50

TRAD but prevents inheritance of CPA’s runtime blow-up. However, the results show that the simpli-

fication should be accomplished for PR; otherwise the ILP methodology actually drops behind Max-

WalkSAT of Tuffy in both quality and runtime aspects.

Table 4: ILP/total Inference runtimes on PR benchmark [sec]

configuration TRAD+CPI CPA+CPI FCA+CPI Tuffy

simplified
99

154
(21.2)

40

𝟖𝟓
(21.2)

𝟑𝟖

91
(21.2)

−

1,161
(100)

non-simplified (gap=1)
4,039

4,124
(36.0) *

𝟒, 𝟎𝟐𝟖

𝟒, 𝟏𝟐𝟑
(36.0)

* failed to reach the gap within the time limit in one CPI iteration.

The last category consists of the ER benchmark on which the simplification step again takes effect.

The simplified MLN provides 1,612 sets of ground clauses with aggregation order of 1, resulting in

more than 420,000 aggregated constraints, as both FCA and CPA run in near half runtime of TRAD

(similar to that of the first category). It is remarkable that no better approximation for the original model

is reachable in this way because the simplified model has gained its optimum solution. From the non-

simplified MLN, FCA provides about 100,000 fewer aggregated constraints by 3,030 sets with aggre-

gation order of 1 and 967 sets with aggregation order of 2, but with a meaningful runtime enhancement

compared to CPA and TRAD; FCA facilitates obtaining high quality approximation (grade 99.8) in a

short time. Results are shown in Table 5. An excessive competition including 16-minutes time limit

(that of Tuffy’s duration) was also held to compare between the gained objectives; none of the meth-

ods were graded 100, i.e., reached the objective of Tuffy’s solution, yet FCA did the best. CPI-jointed

methods were not included because the deadline is not applicable to the whole multi-iteration process.

Table 5: ILP/total Inference runtimes with various gaps on ER benchmark [sec]

configuration TRAD CPA FCA
TRAD
+CPI

CPA
+CPI

FCA
+CPI

Tuffy

simplified
2.3

5.4
(98.3)

𝟎. 𝟑𝟓

𝟐. 𝟔
(98.3)

0.4

3.7
(98.3)

3.3

7.2
(98.3)

0.6

3.6
(98.3)

0.6

4.0
(98.3)

−

960
(100)

non-simplified
(gap=0.3)

14

16
(99.6)

20

22
(98.6)

𝟓. 𝟐

𝟕. 𝟐
(98.5) * * *

non-simplified
(gap=0.2)

581

584
(99.9)

20

22
(99.6)

𝟓. 𝟒

𝟕. 𝟒
(99.8) * * *

960-seconds
competition

(99.84) (99.72) (99.86) − − −

* failed to reach the gap within the time limit in one CPI iteration.

It can be observed from the results that with increasing the number of higher-order aggregated con-

straints, FCA shows its role of reducing inference runtime, yet retaining the optimality. This happens

by ignoring the simplification pre-process on the ER benchmark, hence allowing long formulas to take

place in the model.

6. Related Works

A vast line of works with connections to ours has been done on symmetry exposition and exploitation

in SRL. Bui et al. (2013) propose a general algebraic lifting framework based on the group theory and

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 51

graph isomorphism for variational inference. Kersting, Mladenov, and Tokmakov (2017) define a syn-

tax for relational domains of linear programs and propose its translation into an equivalent Lifted Linear

Program (Mladenov, Ahmadi, & Kersting, 2012). By computing the Coarsest Equitable Partition (CEP)

for the coefficient graph of the LP, they provide a smaller lifted LP which recovers an exact optimal

solution of the original LP. Mladenov, Globerson, and Kersting (2014) argue that despite the enhance-

ments from lifting a MAP LP, existing message passing solvers such as MPLP and Tree-ReWeighted

Belief Propagation (TRW-BP) will not work on the lifted version because it contains constraints that do

not conform to the MAP LP template. Imposing ignorable overhead, they find a small Markov Random

Field with a ground optimal value equal to the value of the lifted program and produce an equivalent

LP conforming to the required template. Bui, Huynh, and Sontag (2014) implement the idea of Bui et

al. (2013) for marginal inference using the Kruskal's algorithm and lifting TRW problem again with

CEP. Mladenov and Kersting (2015) also apply equitable partitions to lift the message passing algorithm

for marginal inference with the ability to distribute and parallelize inference computations. Mladenov,

Kersting, and Globerson (2014) suggest a different way of finding symmetries and lifting MAP LPs

compared to Lifted Linear Programs, considering higher-order neighborhood to reach tighter approxi-

mation. To find finer partitions, they apply the k-dimensional Weisfeiler-Lehman − an algorithm pre-

viously used for approximating the graph automorphism problem (Cai, Fürer, & Immerman, 1992) −

to the original graphical model instead of the larger graph of the LP. Mladenov, Kleinhans, and Kersting

(2017) extend the idea of relational linear programming (Kersting et al., 2017) over convex quadratic

programs and provide the relational version.

A common deficiency of Linear (or Quadratic) Programming lifting approaches for MAP inference

in SRL rises from the fact that MAP inference is equivalent to solving Integer Programs. If solving any

relaxed IP gives the exact solution, which in turn would lead to an approximation of the underlying IP,

the lifted version would also provide an exact solution, say, with fewer computations. However, it will

not go farther for more tightening the approximation. We showed in contrast that as aggregation is

performed before program relaxation, it can result in tighter approximation for the corresponding ILP.

Moreover, modern IP solvers involve much more than just solving the LP relaxation of the given ILP.

Lifting the mathematical program before relaxation allows speeding up pre-processing techniques such

as exploiting integrality requirements and primal/dual dominance arguments and even program re-for-

mulation to be applied to the compact lifted version. Similar to our idea, Sarkhel et al. (2014b) translate

the MAP inference problem to an Integer Polynomial Program, but by adapting the theorem proving

technique (Gogate & Domingos, 2011) and removing its search and conditioning steps. They define

each variable in the program to represent an assignment to a set of indistinguishable variables. The

integer polynomial program is further converted to an ILP with classic linearization methods with no

relaxation except the LP relaxation by the ILP solver. In contrast, we perform an extra relaxation of the

upper bound or lower bound constraints in the aggregation rules.

Another major challenge in the area of lifted inference is examining the role of evidence, which is

rarely targeted in the symmetry exposition. Apsel, Kersting, and Mladenov (2014) discuss the high cost

of obtaining symmetry with automorphism groups. To solve, they offer a costly graph which can be

generated once and used multiple times separately from the problem model, concluding with curves that

confirm the evidence problem. Venugopal and Gogate (2014a) propose a heuristic similarity function

on groundings to apply K-Means clustering and perform approximation on the evidence in order to

increase the number of symmetries. Venugopal and Gogate (2014b) utilize the approach to build an

informed distribution for importance sampling. Bui, Huynh, and de Salvo Braz (2012) consider the

AMIRIAN & SHIRY GHIDARY

 52

models with symmetries that are broken by the evidence. They show that exact lifted inference based

on distinct soft evidence consisting only of unary predicates can be done in polynomial time. Van den

Broeck and Niepert (2015) also provide a solution in the presence of distinct soft evidence for marginal

inference approximation by lifting Metropolis Hastings at the propositional level on asymmetric graph-

ical models where symmetry is a hard condition. Another approach considering evidence on unary pred-

icates is taken by Habeeb, Anand, Mausam, and Singla (2017) who introduce an application specific

approximate lifted MAP inference. They adapt the general color passing algorithm for symmetry detec-

tion by Kersting et al. (2009) in a way to make effective partitioning in the presence of evidence. Van

den Broeck and Darwiche (2013) extend the results of Bui et al. (2012) and point out the hardness of

dealing with binary evidence. They show it can be done efficiently if there is a corresponding low rank

Boolean Matrix Factorization (BMF). The evidence approximation scheme is further proposed to re-

duce the rank. As an important drawback of dealing with distinct soft evidence and the corresponding

BMF, all objects with evidence go beyond closed-world assumption, i.e., each predicate is assumed

either hidden or fully observed. Mladenov, Globerson, and Kersting (2014) also demonstrate that the

cost of evidence rises in their lifting approach with an increase in the Boolean rank. In contrast to Bui

et al. (2013) which introduce symmetries on unobserved constants, Kopp, Singla, and Kautz (2015)

explicitly find symmetries among constants that appear in the evidence. Another schema alongside the

evidence is the notion of context (variable-value assignment). Contextual symmetry is introduced which

allows for exploitation of count (Anand, Grover, Mausam, & Singla, 2016) and non-count (Anand,

Noothigattu, Singla, & Mausam, 2017) symmetries using graph isomorphism in the MCMC framework.

Addressing the evidence problem comes with building the notion of symmetry given a specific form

of evidence in some of the above approaches, while partly manipulating (i.e., approximating) evidence

in the others. All methods are subject to alteration with any change in the evidence (e.g. via incremental

perception) or its structure (e.g. by adding evidence for unobserved predicates). To our knowledge, CPA

(Noessner et al., 2013) is the only approach that exploits symmetries independently of the notion of

evidence. In contrast to CPA which will only aggregate clauses that differ by a single literal, our higher-

order aggregation method can aggregate clauses with an arbitrary number of different literals. FCA, as

an additional facility, retains all benefits of the CPA approach, such as parallelization, control on the

error bound, the ability of merging with orthogonal approaches, and leveraging several state-of-the-art

optimization and data mining techniques.

Finally, a single approach that deals with long formulas, follows the idea of pairwise MLNs (Fierens

et al., 2013), performing inference through quadratization for pseudo-Boolean functions by the means

of first-order slack predicates (de Nijs, Landsiedel, Wollherr, & Buss, 2016). It produces a new model

with quadratic parfactors, at the cost of additional optimization over slack variables and the benefit of

better bounds and more persistencies. Similar to our approach, it reports higher quality approximation

and shorter inference runtime compared to state-of-the-art inference engines on models with long for-

mulas. Unfortunately, no source or executable code as well as benchmarks for testing and comparing

the methods are made public. Moreover, the configurations during experiments are not described in

detail, ceasing the option of an estimated comparison by performing similar tests with Xeggora.

Among the common benchmarks, ER is however the only test case on which its significant runtime

enhancement compared to RockIt is reported, reducing the inference runtime from 1902 seconds to

101 seconds. Our experiments show this can be also verged by FCA, setting various gaps in (0.1 , 0.2),

where FCA runs 10 times faster than CPA on average.

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 53

7. Conclusion and Future Directions

Dealing with long formulas has been a challenging task in lifted inference. CPA is a symmetry exploit-

ing algorithm for inference in Markov Logic which is widely used in real-world applications. It exposes

first-order aggregate-able sets of ground clauses. We showed that in addition to the aggregation of order

one, there often exist higher aggregation orders in MLNs with long formulas that are ignored by CPA.

We introduced FCA, a superior meta-algorithm that is empowered with any possible orders of aggre-

gation with respect to the model. We proposed complementary techniques within the FCA algorithm,

including heuristics and RDBMS leverage to choose efficiently among multiple candidates the one in

which aggregation fits the best. We implemented the proposed methods within an evolutionary exten-

sion of RockIt, namely Xeggora, besides fixing minor bugs of the previous system and supporting

numerical constraints (Chekol et al., 2016). Finally, we proved enhancements with comprehensive ex-

periments upon two benchmark sets. The first set of artificial benchmarks explores the effect of higher

order aggregation as compared to the first order aggregation with respect to the length of clauses. The

results confirm the intuition developed through the theoretic side. On practical benchmarks for the entire

system, it is shown that FCA retains the enhancements of previous works on instances where higher

order aggregation is not applicable, but provides a large benefit in instances where it is.

Future directions consist of four extensions. One is to define a better ILP encoding for negative

weighted clauses whereas aggregation brings less efficiency as shown by the analysis on the artificial

datasets. Another direction is to adapt the conventional lifting LP methods to lift ILPs as well, before

any relaxation, and see if this provides any time savings or tighter approximation. A third direction

would be to develop techniques to make symmetry exploitation even more adaptive. For instance, when-

ever a set of ground clauses is clustered to expose symmetries, the partitioning of each cluster to identical

and distinct parts can be different and independent of the other clusters. FCA treats all clusters the same.

Fixing the partitions for all clusters won’t promise best constraint aggregation.

Finally, an extension may be to generalize the constraint aggregation technique for marginal infer-

ence. Marginal inference for MLNs with long formulas is also a challenging purpose for several appli-

cations including natural language semantics inference (Beltagy & Mooney, 2014) and automatic ques-

tion answering (Khot et al., 2015). Researchers already try to avoid heavy process on long formulas by

either splitting them into shorter parts, or manipulating an inference engine in a way to especially solve

their precise problem. A general-purpose technique for inferring such MLNs would be a promising

direction.

Acknowledgements

We would like to thank the anonymous reviewers for their comments and helpful suggestions.

References

Aissi, H., Bazgan, C., & Vanderpooten, D. (2009). Min-max and min-max regret versions of
combinatorial optimization problems: A survey. European journal of operational research,
197(2), 427-438.

Anand, A., Grover, A., Mausam, & Singla, P. (2016). Contextual symmetries in probabilistic
graphical models. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence, 3560-3568.

AMIRIAN & SHIRY GHIDARY

 54

Anand, A., Noothigattu, R., Singla, P., & Mausam. (2017). Non-Count Symmetries in Boolean &
Multi-Valued Prob. Graphical Models. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, in PMLR, 54, 1541-1549.

Apsel, U., Kersting, K., & Mladenov, M. (2014). Lifting Relational MAP-LPs Using Cluster
Signatures. In Proceedings of AAAI, 2403-2409.

Beltagy, I., & Mooney, R. J. (2014). Efficient Markov Logic Inference for Natural Language
Semantics. In Proceedings of the 13th AAAI Conference on Statistical Relational AI, 9-14.

Bui, H. H., Huynh, T. N., & de Salvo Braz, R. (2012). Exact lifted inference with distinct soft
evidence on every object. In Proceedings of AAAI, 1875-1881.

Bui, H. H., Huynh, T. N., & Riedel, S. (2013). Automorphism groups of graphical models and lifted
variational inference. In Proceedings of the 29th Conference on Uncertainty in Artificial
Intelligence, 132-141.

Bui, H. H., Huynh, T. N., & Sontag, D. (2014). Lifted Tree-Reweighted Variational Inference. In
Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, 92-101.

Cai, J. Y., Fürer, M., & Immerman, N. (1992). An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4), 389-410.

Chekol, M. W., Huber, J., Meilicke, C., & Stuckenschmidt, H. (2016). Markov logic networks with
numerical constraints. Frontiers in artificial intelligence and applications, 285, 1017-1025.

Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale traveling-salesman
problem. Journal of the operations research society of America, 2(4), 393-410.

Davis, J., & Domingos, P. (2009). Deep transfer via second-order Markov logic. In Proceedings of
the 26th International Conference on Machine Learning, 217-224.

de Nijs, R., Landsiedel, C., Wollherr, D., & Buss, M. (2016). Quadratization and Roof Duality of
Markov Logic Networks. Journal of Artificial Intelligence Research, 55, 685-714.

de Salvo Braz, R., Amir, E., & Roth, D. (2006). MPE and partial inversion in lifted probabilistic
variable elimination. In Proceedings of AAAI, 1123-1130.

Fierens, D., Kersting, K., Davis, J., Chen, J., & Mladenov, M. (2013). Pairwise Markov Logic. In
Postproc. of the 22nd International Conference on Inductive Logic Programming, ILP 2012, 58-
73.

Gogate, V., & Domingos, P. (2011). Probabilistic theorem proving. In Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence, 256-265.

Habeeb, H., Anand, A., Mausam, & Singla, P. (2017). Coarse-to-Fine Lifted MAP Inference in
Computer Vision. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, 4595-4602.

Huynh, T. N., & Mooney, R. J. (2009). Max-margin weight learning for Markov logic networks.
In Proceedings of the European Conference on Machine Learning and Practice of Knowledge
Discovery in Databases, 564-579.

Kautz, H., Selman, B., & Jiang, Y. (1997). A general stochastic approach to solving problems with
hard and soft constraints. In Gu, D., Du, J., & Pardalos, P. (Eds.), The Satisfiability Problem:
Theory and Applications, 573-586. American Mathematical Society, New York, NY.

Kazemi, S. M., Kimmig, A., Van den Broeck, G., & Poole, D. (2016). New liftable classes for first-
order probabilistic inference. In Advances in Neural Information Processing Systems, 3117-
3125.

Kersting, K., Ahmadi, B., & Natarajan, S. (2009). Counting Belief Propagation. In Proceedings of
the 25th Conference on Uncertainty in Artificial Intelligence, 277-284.

Kersting, K., Mladenov, M., & Tokmakov, P. (2017). Relational linear programming. Artificial
Intelligence, 244, 188-216.

XEGGORA: EXPLOITING IMMUNE-TO-EVIDENCE SYM. WITH FULL AGGREGATION IN STAT. REL. MODELS

 55

Khot, T., Balasubramanian, N., Gribkoff, E., Sabharwal, A., Clark, P., & Etzioni, O. (2015).
Exploring Markov logic networks for question answering. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, 685-694.

Kimmig, A., Mihalkova, L., & Getoor, L. (2015). Lifted graphical models: A survey. Machine
Learning, 99, 1-45.

Kisynski, J., & Poole, D. (2009). Lifted aggregation in directed first-order probabilistic models. In
Proceedings of the 21st International Joint Conference on Artificial Intelligence, 1922-1929.

Kopp, T., Singla, P., & Kautz, H. (2015). Lifted symmetry detection and breaking for MAP
inference. In Advances in Neural Information Processing Systems, 1315-1323.

Lee, J., Talsania, S., & Wang, Y. (2017). Computing LP MLN using ASP and MLN solvers. Theory
and Practice of Logic Programming, 17, 942-960.

Lüdtke, S., Schröder, M., Krüger, F., Bader, S., & Kirste, T. (2018). State-space abstractions for
probabilistic inference: a systematic review. Journal of Artificial Intelligence Research, 63,
789-848.

Mangal, R., Zhang, X., Kamath, A., Nori, A. V., & Naik, M. (2016). Scaling relational inference
using proofs and refutations. In Proceedings of AAAI, 3278-3286.

Martínez-Angeles, C. A., Dutra, I., Costa, V. S., & Buenabad-Chávez, J. (2016). Processing
Markov Logic Networks with GPUs: Accelerating Network Grounding. In Postproc. of the 25th
International Conference on Inductive Logic Programming, ILP 2015, 122-136.

McCallum, A., Nigam, K., Rennie, J., & Seymore, K. (2000). Automating the construction of
internet portals with machine learning. Information Retrieval, 3(2), 127-163.

Meilicke, C., Leopold, H., Kuss, E., Stuckenschmidt, H., & Reijers, H. A. (2017). Overcoming
individual process model matcher weaknesses using ensemble matching. Decision Support
Systems, 100, 15-26.

Meilicke, C., & Stuckenschmidt, H. (2015). A New Paradigm for Alignment Extraction. In
Proceedings of the 10th International Workshop on Ontology Matching, OM 2015, 1-12.

Mewes, H. W., Frishman, D., Gruber, C., Geier, B., Haase, D., Kaps, A., Lemcke, K., Mannhaupt,
G., Pfeiffer, F., Schüller, C., Stocker, S., & Weil, B. (2000). MIPS: a database for genomes and
protein sequences. Nucleic acids research, 28(1), 37-40.

Milch, B., Zettlemoyer, L. S., Kersting, K., Haimes, M., & Kaelbling, L. P. (2008). Lifted
probabilistic inference with counting formulas. In Proceedings of AAAI, 1062-1068.

Mladenov, M., Ahmadi, B., & Kersting, K. (2012). Lifted linear programming. In Proceedings of
the 15th International Conference on Artificial Intelligence and Statistics, in PMLR, 22, 788-
797.

Mladenov, M., Globerson, A., & Kersting, K. (2014). Lifted Message Passing as Reparametrization
of Graphical Models. In Proceedings of the 30th Conference on Uncertainty in Artificial
Intelligence, 603-612.

Mladenov, M., & Kersting, K. (2015). Equitable Partitions of Concave Free Energies. In
Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, 602-611.

Mladenov, M., Kersting, K., & Globerson, A. (2014). Efficient Lifting of MAP LP Relaxations
Using k-Locality. In Proceedings of the 17th International Conference on Artificial Intelligence
and Statistics, in PMLR, 33, 623-632.

Mladenov, M., Kleinhans, L., & Kersting, K. (2017). Lifted Inference for Convex Quadratic
Programs. In Proceedings of AAAI, 2350-2356.

Niepert, M., Noessner, J., & Stuckenschmidt, H. (2011). Log-linear description logics. In
Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 2153-2158.

AMIRIAN & SHIRY GHIDARY

 56

Niu, F., Ré, C., Doan, A., & Shavlik, J. (2011). Tuffy: Scaling up statistical inference in Markov
Logic Networks using an RDBMS. In Proceedings of the VLDB Endowment, 4(6), 373-384.

Noessner, J. (2014). Efficient Maximum A-Posteriori Inference in Markov Logic and Application
in Description Logics. Ph.D. thesis, University of Mannheim.

Noessner, J., Niepert, M., & Stuckenschmidt, H. (2013). RockIt: Exploiting Parallelism and
Symmetry for MAP Inference in Statistical Relational Models. In Proceedings of AAAI, 739-
745.

Poole, D. (2003). First-order probabilistic inference. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence, 985-991.

Poole, D., Bacchus, F., & Kisynski, J. (2011). Towards completely lifted search-based probabilistic
inference. In CoRR, abs/1107.4035.

Poon, H., & Domingos, P. (2007). Joint inference in information extraction. In Proceedings of
AAAI, 913-918.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107-136.

Riedel, S. (2008). Improving the accuracy and efficiency of MAP inference for Markov Logic. In
Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, 468-475.

Singla, P., & Domingos, P. (2006). Entity resolution with Markov Logic. In Proceedings of the 6th
IEEE International Conference on Data Mining, 572–582.

Singla, P., & Domingos, P. (2008). Lifted first-order belief propagation. In Proceedings of AAAI,
1094-1099.

Sarkhel, S., Venugopal, D., Singla, P., & Gogate, V. (2014a). Lifted MAP inference for Markov
Logic Networks. In Proceedings of the 17th International Conference on Artificial Intelligence
and Statistics, in PMLR, 33, 859-867.

Sarkhel, S., Venugopal, D., Singla, P., & Gogate, V. (2014b). An integer polynomial programming
based framework for lifted MAP inference. In Advances in Neural Information Processing
Systems, 3302-3310.

Schoenfisch, J., Meilicke, C., von Stülpnagel, J., Ortmann, J., & Stuckenschmidt, H. (2018). Root
cause analysis in IT infrastructures using ontologies and abduction in Markov Logic Networks.
Information Systems, 74, 103-116.

Van den Broeck, G., & Darwiche, A. (2013). On the complexity and approximation of binary
evidence in lifted inference. In Advances in Neural Information Processing Systems, 2868-
2876.

Van den Broeck, G., & Niepert, M. (2015). Lifted Probabilistic Inference for Asymmetric
Graphical Models. In Proceedings of AAAI, 3599-3605.

Venugopal, D., & Gogate, V. (2014a). Evidence-based clustering for scalable inference in Markov
Logic. In Proceedings of the Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, 258-273.

Venugopal, D., & Gogate, V. (2014b). Scaling-up importance sampling for Markov Logic
Networks. In Advances in Neural Information Processing Systems, 2978-2986.

Visengeriyeva, L., Akbib, A., & Kaul, M. (2016). Improving Data Quality by Leveraging Statistical
Relational Learning, In Proceedings of the 21st International Conference on Information
Quality, 220-236.

Watters, L. J. (1967). Reduction of Integer Polynomial Programming Problems to Zero-One Linear
Programming Problems. Operations Research, 15, 1171-1174.

Wolsey, L. A. (1998). Integer Programming. Wiley-Interscience, New York.

	1. Introduction
	2. Preliminaries
	2.1 First-Order Logic
	2.2 Markov Logic
	2.3 Traditional ILP Formulation
	2.4 Cutting Plane Inference
	2.5 Constraint Aggregation

	3. The FCA Method
	3.1 ILP Analysis

	4. Leveraging RDBMS and Heuristics
	5. Empirical Evaluation
	5.1 Analysis on the Artificial Data
	5.2 Benchmarks
	5.3 Experimental Setup
	5.4 Results

	6. Related Works
	7. Conclusion and Future Directions
	References

