
Journal of Artificial Intelligence Research 64 (2019) 109-145 Submitted 05/18; published 01/19

New Approximations for Coalitional Manipulation in Scoring
Rules

Orgad Keller orgad.keller@gmail.com
Department of Computer Science
Bar-Ilan University, Israel

Avinatan Hassidim avinatan@cs.biu.ac.il
Department of Computer Science
Bar-Ilan University, Israel

Noam Hazon noamh@ariel.ac.il

Department of Computer Science

Ariel University, Israel

Abstract

We study the problem of coalitional manipulation—where k manipulators try to manip-
ulate an election on m candidates—for any scoring rule, with focus on the Borda protocol.
We do so in both the weighted and unweighted settings. For these problems, recent ap-
proximation approaches have tried to minimize k, the number of manipulators needed to
make some preferred candidate p win (thus assuming that the number of manipulators is
not limited in advance). In contrast, we focus on minimizing the score margin of p which
is the difference between the maximum score of a candidate and the score of p.

We provide algorithms that approximate the optimum score margin, which are appli-
cable to any scoring rule. For the specific case of the Borda protocol in the unweighted
setting, our algorithm provides a superior approximation factor for lower values of k.

Our methods are novel and adapt techniques from multiprocessor scheduling by care-
fully rounding an exponentially-large configuration linear program that is solved by using
the ellipsoid method with an efficient separation oracle. We believe that such methods
could be beneficial in other social choice settings as well.

1. Introduction

The concept of elections lies at the heart of democratic societies, where it is the main tool for
reaching a joint decision when considering several alternatives. While being so commonplace
in human societies, it has also played a major role in multiagent systems, where it enables
decisions by groups of intelligent agents (Ephrati & Rosenschein, 1993). In its essence, an
election consists of n agents (also called voters) who need to decide on a winning candidate
among m candidates. In order to do so—focusing on the well-studied preferential model—
each voter reveals a ranking of the candidates according to his preference and the winner
is then decided according to some protocol.

Ideally in voting, the voters should be truthful, that is, their reported ranking of the can-
didates shall be their true one. However, almost all voting rules are prone to manipulation:
Gibbard (1973) and Satterthwaite (1975) show that for any reasonable preference-based
voting system with at least 3 candidates, voters might benefit from reporting a ranking
different from their true one in order to make sure that the candidate they prefer the most

c©2019 AI Access Foundation. All rights reserved.

Keller, Hassidim, & Hazon

wins. Furthermore, several voters might decide to collude and coordinate their votes in
such a way that a specific candidate p (hereafter the preferred candidate) will prevail. Such
a setting is reasonable especially when the voters are agents that are operated by one party
of interest.

For some time, the hope of making voting protocols resistant to manipulation at least in
practice relied on computational assumptions (Bartholdi, Tovey, & Trick, 1989). For several
common voting protocols, it was shown that computing a successful voting strategy for the
manipulators is NP-hard, see surveys by Faliszewski and Procaccia (2010) and by Conitzer
and Walsh (2016). However, approximation algorithms and heuristics were devised in order
to overcome the NP-hardness albeit with some compromises on the quality of the resulting
strategy. This paper falls within this scheme.

We study the following two problems. In (constructive) unweighted coalitional manip-
ulation (UCM)1, we assume that k additional voters (hereafter the manipulators), all of
them preferring a specific candidate p, can be added to the voting system, thus forming a
coalition. We also assume that all n original voters (hereafter the non-manipulators) voted
first (or equivalently, that the non-manipulators are truthful and that their preferences are
known). Find a strategy for the manipulators telling each one how to vote so that p wins,
if such a strategy exists. We call such a strategy a p-winning strategy. In the weighted
variant (WCM), the manipulators are weighted; essentially this means that the ballot of a
manipulator having weight w is counted as if it was replaced with w unweighted copies of
it. A related problem is Bribery, in which an interested party is willing to pay k (of the
given n) voters to change their vote into a given ballot, such that p will prevail. Likewise,
Bribery can be easily extended into a weighted variant as well.

While UCM and Bribery are usually defined as search problems in which we are asked
to find a strategy, they can also be seen as optimization problems in which the goal is to
find the minimum k enabling p to win. In this context, they can be treated as a measure of
how far candidate p is from winning the election, or equivalently, they define the notion of
a margin by which she might lose. Moreover, these problems also have destructive variants,
in which the sole purpose of the manipulating party-of-interest is to prevent the currently
leading candidate from winning. Likewise, the destructive variants serve as a measure of
how robust the victory of the currently leading candidate is. Specifically, when considering
the destructive variant of Bribery, this measure is known as the margin of victory and was
extensively studied, e.g. by Magrino, Rivest, and Shen (2011), Cary (2011), and Xia (2012).

We focus on one of the most important families of voting rules, known as (positional)
scoring rules. For a given score vector α = (α1, . . . , αm), where α1 ≥ · · · ≥ αm, a scoring
rule Rα is a voting rule where each voter awards α1, . . . , αm points to the candidates he
ranked in places 1, 2, . . . ,m, respectively. The winners are the candidates with the maximum
aggregate score. Popular cases of scoring rules are the Plurality, Veto, and Borda voting
rules.

The computational hardness of manipulating various scoring rules depends on the set-
ting. Specifically, we distinguish between three cases in an increasing level of generality:
UCM, WCM with polynomially-bounded integer weights (or weights that can be normalized
to be such), and WCM with no restriction on the weights. Focusing on the Borda scoring

1. The problem was called CCUM, for “constructive coalitional unweighted manipulation”, by Zuckerman,
Procaccia, and Rosenschein (2009).

110

New Approximations for Coalitional Manipulation in General Scoring Rules

rule, it is NP-hard even for the UCM case (Davies, Katsirelos, Narodytska, & Walsh, 2011;
Betzler, Niedermeier, & Woeginger, 2011). Please refer to Section 6 for a more elaborate
overview of other scoring rules and previous work. For similar results related to Bribery,
see a survey by Faliszewski and Rothe (2016).

In order to overcome the hardness, several lines of research ensued. Most notably,
a string of approximation results for both manipulation (Zuckerman et al., 2009; Xia,
Conitzer, & Procaccia, 2010; Brelsford, Faliszewski, Hemaspaandra, Schnoor, & Schnoor,
2008) and (various models of) Bribery (Brelsford et al., 2008; Faliszewski, 2008; Elkind,
Faliszewski, & Slinko, 2009; Elkind & Faliszewski, 2010) has followed. In addition, other
research venues focused on simple, practical heuristics for UCM, in particular for Borda-
UCM (Davies, Katsirelos, Narodytska, Walsh, & Xia, 2014), or on analyzing the hardness
of UCM in the average case (Procaccia & Rosenschein, 2007b, 2007a).

For UCM and WCM, recent research (Zuckerman et al., 2009; Xia et al., 2010) has
focused on approximating the minimum k enabling p to win. For Borda-UCM, they showed
that if a p-winning strategy for k manipulators exists, then they will find a p-winning strat-
egy with at most one additional manipulator – in addition to the k given in the problem
definition. A counterpart for Borda-WCM—this time approximating the overall manipula-
tor weight required—was also provided.

This kind of approximation might seem a bit problematic. Firstly, the ability to add
a manipulator is a strong operation, perhaps too strong; for instance, for Borda-UCM,
whereby adding a manipulator adds Ω(m) to the difference between p and her highest-
scoring competitor (hereafter we shall refer to a non-preferred candidate as a competitor).
Secondly, while in some cases it might be reasonable that the party behind the manipulators
can add another manipulator to the system, in many cases we do not expect this to be true.
Furthermore, in the weighted case assumptions are needed to be made on the weight of the
additional manipulators – also a problematic aspect. Instead, it is interesting to question
what we can assert—assuming that the number of manipulators cannot be changed—on the
ability to promote a specific candidate p given the votes of the non-manipulators and the
value k (or equivalently, the length-k vector of manipulator weights).

We provide positive results of the following type:

If a manipulation strategy enabling p to win by a large-enough margin exists,
we efficiently find a successful manipulation strategy that will cause p to win.

Let the score margin be the minimum difference obtainable between the final score of the
highest-scoring competitor and of p’s. Now take the unweighted case as an example: assume
that we can provide, for some function f(k,m), an additive f(k,m)-approximation to the
score margin. Then, if there exists a p-winning strategy such that this difference is at most
−f(k,m) (we can also say that “p can win by a margin of at least f(k,m) points”), we can
rest-assured that the algorithm will find a p-winning strategy.

This, in turn, boils down to approximating an upper-bound to the score of the highest-
scoring competitor. Earlier research of this type focused only on cases where the number
of candidates is bounded: for Rα-WCM, Brelsford et al. (2008) provide a fully polynomial-
time approximation scheme (FPTAS) for this upper bound. Compared to this line of work,
we do not limit ourselves to a bounded number of candidates.

111

Keller, Hassidim, & Hazon

Approximating the score of the highest-ranked competitor had found another important
use-case: in another work (Keller, Hassidim, & Hazon, 2018), the current authors showed
that approximating the score of the highest-ranked competitor translates to an approxima-
tion to the number of bribed voters in the related Bribery problem.

1.1 Our Results and Contributions

We shall now describe the nature of our contribution. Given an election under a scoring
rule Rα (see Section 2.1 for formal definitions), the goal is to determine the manipulator
strategies S, such that the score margin maxc∈C\{p} S(c) − S(p) is minimized, where C is
the candidate set and S(c) is c’s final score according to the strategy S. This boils down
to minimizing T = maxc∈C\{p} S(c), i.e., the score of the highest-ranked competitor. Let

TOPT denote the minimum obtainable T , and let g(α) be the maximal difference between
two values in α that are Õ(

√
m) entries away2 (g(α) will be precisely defined later). Then:

• We provide a randomized algorithm for Rα-UCM which finds a strategy that obtains
a bound T ≤ TOPT + k · g(α) with a high probability (Theorem 8).

• For unary weights—or equivalently weights that can be normalized to become integers
bounded by a polynomial in m, k—we provide a randomized algorithm for Rα-WCM
which finds a strategy that obtains a bound T ≤ TOPT + W · g(α) with a high
probability, where W is the sum of manipulator weights (Theorem 15).

• For a general weight vector, we provide a randomized algorithm for Rα-WCM which
finds a strategy that obtains a bound T ≤ (1 + ε)TOPT + W · g(α), for any constant
ε > 0, with a high probability (Theorem 17).

In the above, notice that the first two results are additive approximations and thus translate
directly into an additive approximation on the optimal score margin. The third one does not
necessarily, but it does present somewhat of a trade-off w.r.t. Brelsford et al.’s (2008) FPTAS
(see Lemma 3 therein): there, the authors supported only a constant number of candidates;
while we remove this limitation, we add an additive Wg(α)-factor to the approximation. It
should be noted that the second result continues the line of research focusing on weighted
settings where weights are not too large, or equivalently, are assumed to be encoded by a
unary encoding. Such assumptions were previously made by Brelsford et al. (2008) and
Faliszewski, Hemaspaandra, and Hemaspaandra (2009).

Taking Borda-UCM as an example, if there exists a p-winning strategy that will enable
p to win by a margin of Ω(k

√
m logm) compared to the score of the highest-scoring com-

petitor, our method will find a p-winning strategy (albeit with a possibly smaller margin)
(Corollary 9). Similar guarantees apply in the weighted settings as well (Corollary 16).

Our methods have the following advantages over previous methods:

• We provide provable guarantees – as opposed to the heuristics made by Davies et al.
(2014).

2. The Õ(·) notation suppresses poly-logarithmic factors.

112

New Approximations for Coalitional Manipulation in General Scoring Rules

• Our algorithm generalizes to the weighted case – as opposed to the heuristics made
by Davies et al. (2014), wherein it is not clear how to extend their algorithm to the
weighted case.

• We provide an approximation based on a more granular metric – compared to the
greedy algorithm of Zuckerman et al. (2009)—also called the Reverse algorithm3—
for Borda-UCM. They provide an additive +1-approximation to k, the number of
required manipulators, and though adding only a single extra manipulator seems like a
minor operation, it is not. As mentioned, an extra manipulator implies the addition of
Ω(m) points to the difference between p and her highest-scoring competitor. Focusing
on the score margin instead, provides the ability to distinguish between cases where
p loses by a small score margin, to cases where she loses by a large one.

• We provide a better approximation to the score margin – compared to the implicit
score margin approximation provided by Reverse. Specifically, consider the Re-
verse algorithm for Borda-UCM, and now assume that adding extra manipulators is
not allowed. We show (Claim 1) that their method implies no better than an additive
Ω(m)-approximation to the score of the highest-scoring competitor. Our approxima-
tion is therefore superior when k is o(

√
m/ logm).

• Our methods generalize to all scoring rules – as opposed to the work by Zuckerman
et al. (2009). It should be noted that in Davies et al.’s (2014) work, the provided
heuristics are empirically analyzed only w.r.t. Borda and two other voting rules (Nan-
son’s and Baldwin’s) which are not pure scoring rules.

• Our methods are not limited to a bounded number of candidates – as opposed to the
work of Brelsford et al. (2008).

• Our results take into consideration the entire input at once. Compared to previous
methods, our results are linear-programming-based, and not greedy. Thus, they make
a decision based on the entire input, as opposed to repeatedly making a decision based
on a greedy estimate w.r.t. some subset of the input.

• Our method provides a polynomially-computable, non-trivial lower bound to the value
of TOPT in the form of a solution to the linear program it uses as the starting-point
to the approximation. In some cases the value T returned by our algorithm did not
increase w.r.t. this linear program solution. In such cases, the linear program can be
seen as an oracle proving that the algorithm did indeed find the optimal solution.

Focusing again on Borda, it is worth noting that while Borda is resistant to manipula-
tion in the sense that Borda-UCM is NP-hard, it can be argued that empirically-speaking
it is manipulable. This is due to Davies et al. (2014) showing that in the vast majority of
experiments over Borda-UCM, where non-manipulator votes were taken from two distribu-
tions, their Average Fit heuristic finds an optimal strategy. However, our methods still
provide a deeper, more theoretical insight into UCM for Borda as well as all other scoring
rules. As mentioned, they also hold for WCM where Average Fit has no counterpart.

3. This name was given by Davies et al. (2011).

113

Keller, Hassidim, & Hazon

Our algorithms do not rely on any assumption on the distribution of voter ballots and
weights and thus supply the guaranteed approximation factors regardless of such distribu-
tions. Specifically, they do not rely on the votes being independent of one another.

Our techniques are novel in that they employ the use of configuration linear programs
(C-LPs), a method which is also used in the scheduling literature, namely for two well-
studied problems: scheduling on unrelated machines (Svensson, 2012), and the so-called
Santa Claus problem (Bansal & Sviridenko, 2006). See Section 6 for a discussion on these
problems. C-LPs are used for the generation of an initial, invalid strategy, which is later
modified to become valid. They are unique in the sense that they are linear programs
that might have an exponential number of variables. This is an issue which we solve by
converting them to an LP with an exponential number of constraints (the LP dual) and using
the ellipsoid method with a polynomially-computable separation oracle (Khachiyan, 1980;
Grötschel, Lovász, & Schrijver, 1981). Essentially these techniques solve an LP without
being given all the constraints as input, but by requesting violated constraints from the
oracle in an ‘on demand’ fashion. We also implemented our algorithm: as a result of not
finding a library that would enable solving an LP this way, we simulated this by an iterative
use of a general LP-solving library, each time adding a violated constraint based on running
the separation oracle externally.

The current work subsumes a previous conference paper (Keller, Hassidim, & Hazon,
2017). In particular, the conference paper had studied only Borda-UCM. The current work
generalizes this to any scoring rule, and to the weighted setting.

1.2 Outline of the Paper

We begin with preliminaries. Section 3 is dedicated to our Rα-UCM algorithm where we
first provide the motivation for this work by showing that for Borda, the Reverse algorithm
offers no better than an Ω(m)-approximation factor with respect to the score margin. We
then present ourRα-UCM algorithm which provides a better approximation for small values
of k. This section also serves as a warm-up for the Rα-WCM algorithm presented later,
as the Rα-UCM counterpart is simpler (both provide a similar approximation factor when
applied to Rα-UCM instances). In Section 4 we present our Rα-WCM algorithm. We begin
by handling the case of weights polynomial in the input size, and then show how to modify
our methods in order to remove this limitation. In Section 5 we discuss our implementation
of the algorithms, and present empirical results for both cases. Finally, in Section 6 we
overview some related work in order to present ours in the correct context.

2. Preliminaries

In this section we provide basic definitions, problem definitions, and some prerequisites.

2.1 Definitions

Candidate Set. With a slight change of notation, let C = {c0, c1, . . . , cm} be a candidate
set consisting of the preferred candidate p = c0 and the other m candidates c1, . . . , cm. Note
that we changed the notation so that the overall number of candidates is m + 1; this will
help streamline the writing.

114

New Approximations for Coalitional Manipulation in General Scoring Rules

Election. An election E = (C, V) is defined by a candidate set C and a set N = {1, . . . , n}
of n voters where each voter submits a preference order, i.e., a ranking of the candidates
according to his preference. Formally, V = 〈v1, . . . , vn〉 is the preference profile, that is a
list of the preference orders v` for each voter ` ∈ N . For example, v` = c1 � p � c2 is one
such possible order if C = {p, c1, c2}.

Given E = (C, V), some decision rule R is applied in order to decide on the winner(s);
formally R(E) ⊆ C is the set of winners of the elections.

Weighted Election. A weighted election E = (C, V,w′) is defined similarly to an election,
with the following twist: a positive-valued weight-vector w′ of dimension n is also included
in the input. w′ represents the weights of the n voters, with the meaning that if a voter `
has a weight w′`, then any score awarded to some candidate c as a result of the ballot v`, is
multiplied by w′`. Some results assume that the weights are encoded by a unary encoding
or equivalently that they are representable by a word of length O(logN) bits in fixed-point
arithmetic, where N is the overall input size. Another equivalent assumption is that they
can be normalized to integers that are bounded by a polynomial in the input size. Our
most general result will not depend on such an assumption.

Positional Scoring Rules. A scoring rule Rα is usually described by a vector α =
(α0, α1, . . . , αm) for which α0 ≥ α1 ≥ · · · ≥ αm, and α0 is polynomial in m, used as
follows: each voter awards the candidate he ranked i-th the score αi−1. Finally, the winning
candidate is the one with the highest aggregated score. In the specific case of the Borda
scoring rule, α = (m,m− 1, . . . , 1, 0). In t-approval, α = (1t; 0m+1−t) where 0t

′
(resp. 1t

′
)

is 0 (resp. 1) concatenated t′ times. Plurality (resp. Veto) is the specific case of 1-approval
(resp. m-approval). We refer to an index j representing the score αj as a score-type.

Example 1. As a running example, let C = {p, c1, c2, c3, c4, c5} and n = 2. Notice that
m = 5 and thus |C| = m+1 = 6. We define the two voters to have preferences v1 = c5 � c1 �
c3 � c2 � c4 � p and v2 = c4 � c2 � c3 � c5 � c1 � p, respectively. If α = (5, 4, 3, 2, 1, 0)
(i.e., Borda), then the scores of p, c1, c2, c3, c4, c5 following the election are 0, 5, 6, 6, 6, 7,
respectively. We denote this score profile as σ, and thus σ = (0, 5, 6, 6, 6, 7).

WCM and UCM. In the Rα-(constructive) weighted coalitional manipulation (Rα-
WCM) problem, the following input is given:

• A score profile vector σ = (σ0, σ1, . . . , σm) representing the aggregated scores given
hitherto to each candidate in C by the original voters in a weighted election E under
the rule Rα.

• A weight-vector w = (w1, . . . , wk) representing the weights of k manipulators to be
added to the election.

It should be determined if when adding k manipulators u1, . . . , uk to the election, there
exist a voting strategy for the manipulators under Rα in which p wins. If such a strategy
exists, the algorithm should find it. Rα-(constructive) unweighted coalitional manipulation
(Rα-UCM) is the specific case where w is the all-ones vector and therefore can be replaced
in the input by the integer k.

115

Keller, Hassidim, & Hazon

We define the input size of the problem as N = m + k. Notice that the input to the
problem as we defined it does not include E, but instead the score profile σ. Indeed the
inclusion of σ eliminates the need to obtain E in the input: σ is a sufficient representation of
the outcome of non-manipulator votes, and once the manipulator strategies are computed,
we have enough information in order to determine the winner. Such a representation is
called a compilation of the truthful voters’ votes. The complexity of sufficient compilations
has already been studied, e.g., by Chevaleyre, Lang, Maudet, and Ravilly-Abadie (2009)
and by Xia and Conitzer (2010). If in some scenario, E is preferred in the input (instead
of σ), then the input size becomes Θ(nm+ k). Our choice to have the input size m+ k is
stricter, as clearly, any algorithm (such as ours) which is polynomial in N = m+ k is also
polynomial in nm+ k.

A careful reader might ask whether the use of σ will make the problem more difficult to
solve by forcing us to support values of σ which are invalid in the sense that they cannot be
obtained as a compilation of the non-manipulator votes. However, Davies et al. (2014, see
Lemma 1) show that this is not the case. In the context of Borda, for any given non-negative
integer vector σ = (σ0, σ1, . . . , σm), we can define a set of non-manipulators (along with
their preferences) and an additional candidate cm+1 that will induce an initial score profile
σ′ = (τ + σ1, . . . , τ + σm, y) for some values τ and y < τ . Such an additive translation and
addition of a new candidate will have no effect on the winner (and on the difference between
each two candidates’ final scores). This is due to the fact that any manipulation strategy
on σ can be translated into an equivalent manipulation strategy on σ′ while preserving the
differences between candidate scores: for each manipulator, rank cm+1 last and keep the
order of the other (original) candidates unchanged. As the differences between candidate
scores are maintained, and as our results concern an additive approximation, we cannot
effectively limit the nature of values in σ.

In our examples we assume the non-unique-winner/co-winner model where p is con-
sidered a winner even if she is not the only winner. This assumption is irrelevant to the
results themselves as they focus on additively approximating the score margin by an order-
of-magnitude expression, where the difference between p being a non-unique-winner to be-
coming a unique-winner is one point.

Example 2. Continuing our running example, recall that σ = (0, 5, 6, 6, 6, 7) and assume
we have k = 2 manipulators at our disposal. A p-winning strategy exists by assigning them
the preferences u1 = p � c4 � c2 � c3 � c1 � c5 and u2 = p � c1 � c5 � c3 � c2 � c4,
respectively. At the end of the process, each candidate has a score of 10, and by the
co-winner assumption, p wins.

Score Margin. Our objective is to minimize the score margin maxc′∈C\{p} S(c′) − S(p),
where S(c) is c’s score according to the manipulation strategy S. It should be noted that
the value S(c) is dependent on Rα, σ, and w, and therefore a more precise notation should
be S(c;Rα,σ,w). However, since Rα, σ, and w will always be clear from the context, we
discard them for brevity.

Manipulation Matrices. If a p-winning strategy exists, the output is a manipulation
strategy S which can be represented as a k × (m+ 1) matrix S in which the entry S`,i = j
if manipulator u` awarded a score of αj to candidate ci. Therefore, each row of S is a

116

New Approximations for Coalitional Manipulation in General Scoring Rules

p c1 c2 c3 c4 c5

σ 0 5 6 6 6 7

u1 0 (α0 = 5) 4 (α4 = 1) 2 (α2 = 3) 3 (α3 = 2) 1 (α1 = 4) 5 (α5 = 0)

u2 0 (α0 = 5) 1 (α1 = 4) 4 (α4 = 1) 3 (α3 = 2) 5 (α5 = 0) 2 (α2 = 3)

S 10 10 10 10 10 10

Table 1: Manipulation matrix for manipulators u1 and u2 with strategic ballots p � c4 �
c2 � c3 � c1 � c5 and p � c1 � c5 � c3 � c2 � c4, respectively. The aggregate scores given
by the non-manipulators (the vector σ) are given in the row following the header and the
final scores are given in the last row.

p c1 c2 c3 c4 c5

σ 0 5 6 6 6 7

– 0 1 2 3 1 2

– 0 4 4 3 5 5

S 10 10 10 10 10 10

Table 2: An example of a relaxed manipulation matrix that can be re-arranged to become
the manipulation matrix in Table 1.

permutation of {0, . . . ,m} (representing a permutation on α). Such a representation is
also called a manipulation matrix. We can relax the requirement that each row of S is a
permutation, and replace it by the requirement that each score-type j is repeated exactly
k times in S. Such a matrix is called a relaxed manipulation matrix. We can perform this
relaxation as Davies et al. (2014, see Theorem 7) have shown that each relaxed manipulation
matrix can be rearranged to become a valid manipulation matrix while preserving each
candidate’s final score.

Example 3. The (valid) manipulation matrix corresponding to the manipulation strategy
in Example 2 is illustrated in Table 1. For clarity, and to prevent confusion between the
score-type j and the value αj it represents, we also indicate the actual value of αj in
parentheses. An example of a relaxed manipulation matrix is presented in Table 2. Notice
that every score-type is repeated exactly twice, and that this relaxed manipulation matrix
can be rearranged to become the valid manipulation matrix mentioned above, without
affecting candidate scores.

Greedy Methods. As a point of reference in our experimental results, we will use both
Reverse and Average Fit. In Reverse, the algorithm finds a manipulation strategy
as follows: it iterates over the manipulators. Each manipulator awards his maximum score
α0 to p, and then awards all of his other scores to the other candidates according to the
reverse order of their current aggregate scores. Therefore, the candidate with the current
maximum score will be awarded αm, etc.

Average Fit is defined for UCM only. We first pool all manipulator scores together,
so that we have k copies of α0, k copies of α1, etc. We then award all the α0 scores to p.
Let S(p) = σ0 + kα0 be p’s score following this. We then perform km iterations (i.e., the

117

Keller, Hassidim, & Hazon

p c1 c2 c3 c4 c5

σ 0 5 6 6 6 7

u1 0 (α0 = 5) 1 (α1 = 4) 2 (α2 = 3) 3 (α3 = 2) 4 (α4 = 1) 5 (α5 = 0)

u2 0 (α0 = 5) 5 (α5 = 0) 4 (α4 = 1) 3 (α3 = 2) 2 (α2 = 3) 1 (α1 = 4)

S 10 9 10 10 10 11

Table 3: The manipulation matrix resulting from applying Reverse to our running exam-
ple.

number of scores remaining to be awarded) where in each iteration, we visit the candidate
ci with the maximum ratio d(ci)/n(ci) where d(ci) is the gap between S(p) and ci’s current
score, and n(ci) is the number of scores we still need to award to ci. We award her the
maximum score which fits in the aforementioned gap.

Example 4. The manipulation matrix resulting from applying Reverse to our running
examples can be found in Table 3. As can be easily seen, p loses to c5 with scores 10 and
11, respectively.

A step-by-step demonstration of an application of Average Fit on our running example
can be found in Table 4. The resulting relaxed manipulation matrix can be found in Table 5.
Notice two interesting issues: after iteration 5, there is still a copy of α3 to distribute,
however all candidates have gap of at most 1. Therefore at this point it is clear that at
least one candidate will have a final score of at least 11. However, at this point the heuristic
aggravates the situation even further because it distributes 2 copies of α4 and 2 copies of α5

between the four candidates with a ratio of 1/1 (we chose an arbitrary order: c1, c3, c4, c5),
and at this point, it has to give the remaining α3 to c2, resulting in her having a final score
of 12, compared to p’s 10.

High Probability. Throughout the paper, when we use the term ‘with a high proba-
bility’, we are referring to an arbitrarily-chosen polynomially-small failure probability, i.e.,
a success probability in the form of 1 −m−d where d ≥ 1 is a constant that can be cho-
sen without affecting the asymptotic running time. ‘Failure’ refers to the event that the
algorithm does not provide the desired approximation guarantee.

In this paper we will use various forms of the Hoeffding inequalities, which are variants
of the Chernoff inequalities:

Hoeffding’s (1963, Theorem 2) Generalized Inequality. Let X1, . . . , Xm be inde-
pendent random variables where each Xi is bounded by the interval [ai, bi], respectively.
Let X =

∑m
i=1Xi and X̄ = X/m. Then

Pr[X̄ − E[X̄] ≥ t] ≤ exp

(
− 2m2t2∑m

i=1(bi − ai)2

)
.

By redefining the above inequality in terms of the sum X (instead of the mean X̄) and
defining λ = tm we derive the following equivalent formulation:

Pr[X − E[X] ≥ λ] ≤ exp

(
− 2λ2∑m

i=1(bi − ai)2

)
.

118

New Approximations for Coalitional Manipulation in General Scoring Rules

p c1 c2 c3 c4 c5

σ 0 5 6 6 6 7

— α0 = 5

— α0 = 5

1 α1 = 4 (5/2)

2 α1 = 4 (4/2)

3 α2 = 3 (4/2)

4 α2 = 3 (4/2)

5 α3 = 2 (3/2)

6 α4 = 1 (1/1)

7 α4 = 1 (1/1)

8 α5 = 0 (1/1)

9 α5 = 0 (1/1)

10 α3 = 2 (0/1)

S 10 10 12 10 9 9

Table 4: A step-by-step demonstration of an application of Average Fit on our running
example. The numbers in the left column are the iteration numbers. Each score is followed
by a ratio, indicated in parentheses. It represents the value d(ci)/n(ci) just before awarding
this score.

p c1 c2 c3 c4 c5

σ 0 5 6 6 6 7

— 0 1 1 2 2 3

— 0 4 3 4 5 5

S 10 10 12 10 9 9

Table 5: The relaxed manipulation matrix resulting from applying Average Fit to our
running example, as depicted in Table 4.

Specifically, when Xi ∈ {0, 1}, we obtain the following ‘classic’ Hoeffding inequality, which
is equivalent to Theorem 1 in Hoeffding’s (1963) paper:

Pr[X − E[X] ≥ λ] ≤ exp

(
−2λ2

m

)
.

The same bounds also hold for the symmetric scenarios, i.e., for Pr[E[X] − X ≥ λ] and
Pr[E[X̄]− X̄ ≥ t].

2.2 Reduction to a Min-Max Problem

As previously indicated, since we know what the final score of p will be (non-manipulator
votes are known and each manipulator will award p the maximum score possible), we
can effectively discard p and treat our problem as a minimization problem on the final
scores of c1, . . . , cm only. In other words, we can focus on finding the value TOPT =

119

Keller, Hassidim, & Hazon

minS maxc∈C\{p} S(c) = minS maxi=1,...,m S(ci), i.e., the minimum possible score (ranging
over all possible manipulation strategies S) of the highest-scoring competitor. Following this
argument the output strategy S in fact can be represented as a k×m relaxed manipulation
matrix.

3. Unweighted Coalitional Manipulation

In this section we present our algorithm for Rα-UCM. We note that the more general
algorithm for Rα-WCM—that we present in Section 4—obtains a similar approximation
factor when applied to an unweighted instance. However, the Rα-UCM is simpler, and thus
serves as a warm-up for the Rα-WCM one, while incorporating most of its fundamental
algorithmic ideas and tools. First we start with some motivation for our methods: consider
Borda-UCM, for which previous theoretical results were given by Zuckerman et al. (2009),
in the form of an additive +1-approximation guarantee on the number of required manipu-
lators. Does it provides an approximation to the score margin as well? We show that such
a guarantee can only be Ω(m). This motivates our algorithm, which obtains a better factor
for k = o(

√
m/ logm).

3.1 Lower Bound for REVERSE

We begin by showing that there are cases in which the Reverse algorithm for Borda
provides only an additive Ω(m)-approximation to the minimum final score of the highest-
scoring competitor. The following claim analyzes Reverse according to this metric.

Claim 1. There are infinitely many values for m, such that when the addition of more than
k extra manipulators is not allowed, the optimal strategy enables p to win by a margin of at
least m/3, but Reverse fails to find a p-winning strategy.

Proof. We provide an infinite family of cases where the claim holds.

Let k = 3 and let m = 3t for any positive integer t. Consider the case where after
the non-manipulators voted, all candidates (except p) have the same score σi = s for all i.
Effectively this can be normalized to (σ1, . . . , σm) = 0.

According to the Reverse algorithm, the first manipulator can award c1, . . . , cm with
0, . . . ,m − 1, respectively, after which the second manipulator will be obliged to award
c1, . . . , cm with m − 1, . . . , 0, respectively. W.l.o.g. we assume that the third manipulator
votes like the first. It can be verified that cm will end up with the maximal score of
dk/2e(m− 1) = 2(m− 1).

Conversely, as an upper bound for an optimal solution, consider the following strategy.
Place all scores to be given in a descending sequence, that is, the sequence 〈m−1,m−1,m−
1,m − 2,m − 2,m − 2, . . . , 0, 0, 0〉. Give the first m scores in the sequence to c1, . . . , cm,
respectively, the next m to cm, . . . , c1, respectively, and the last m to c1, . . . , cm, respectively.
Since every score-type has 3 copies, we have now described a relaxed manipulation matrix
and therefore according to Davies et al. (2014, see Theorem 7 therein) it can be rearranged to
become a valid manipulation matrix without changing the final score of each candidate. Now
notice that the final score of each candidate is of the form (m−r)+(m/3+r−1)+(m/3−r) =
5m/3− r − 1 for r = 1, . . . ,m/3. As such a score can be at most 5m/3− 2 (in the specific

120

New Approximations for Coalitional Manipulation in General Scoring Rules

case where r = 1), the difference between the maximum competitor scores according to the
two strategies we described is thus m/3 = Ω(m).

3.2 Linear Programming for UCM

We begin by providing a ‘natural’ way to formulate the min-max version of Rα-UCM as
an Integer Program (IP), which will be detailed in section 3.2.1. As solving IPs is NP-hard,
we can relax it into the equivalent Linear Program (LP). However, such a natural LP is
not useful in our setting. In Section 3.2.2 we will provide an intuition as to why this is the
case. We note that these two sections can be safely skipped as they are not required for the
understanding of our algorithms, but serve as a segue into Section 3.2.3 where we address
the shortcomings of the natural LP in the form of a radically different LP formulation,
called Configuration Linear Programming (C-LP). The number of variables in the C-LP is
exponential in the size of the input. Nevertheless, we show that our C-LP can be solved in
polynomial time. In the following, we let [m] be a shorthand for {1, . . . ,m}.

3.2.1 The Natural LP

We define the variables xi,j for (i, j) ∈ [m] × [m], and the variable T , with the intent that
xi,j will equal the number of times candidate ci received a score of αj , and T will serve as
the upper-bound on each candidate’s final aggregate score. The IP can then be stated as
follows:

min
x
T

subject to:

m∑
i=1

xi,j = k ∀j ∈ [m] , (1)

m∑
j=1

xi,j = k ∀i ∈ [m] , (2)

m∑
j=1

αjxi,j ≤ T − σi ∀i ∈ [m] , (3)

xi,j ∈ {0, . . . , k} ∀i ∈ [m], j ∈ [m] , (4)

where (1) guarantees that every score was awarded k times, (2) guarantees that every
candidate was given k scores, and (3) guarantees that every candidate gets at most T
points.

It should be noted that when treating the problem as a min-max problem, we need
to take T as a variable that we wish to minimize (this is done by the objective function).
However, if we consider the original definition in which our aim is to make the preferred
candidate p win, T can be set to σ0 + kα0 (the final score of p), and the IP will not have
an objective function.

121

Keller, Hassidim, & Hazon

3.2.2 Integrality Gap of the Natural LP

While we can relax this IP into an LP by replacing the set in the last constraint to be the
continuous interval [0, k], it would not be as helpful. To illustrate this, consider a ‘pure’
LP rounding algorithm, applied w.l.o.g. to a minimization problem. Such an algorithm
works as follows: given an instance of a problem, it solves its associated relaxed LP (the
problem’s IP formulation where integrality constraints are replaced with their continuous
counterparts) and then rounds the resulting solution in some way such that a valid (non-
necessarily optimal) solution to the original IP is obtained. The approximation analysis of
such algorithms is based on reasoning about how worse the objective value of the rounded
solution is compared to the fractional one (i.e., the optimum of the relaxed LP). In other
words, what is the increase—or the ‘damage done’—to the optimum objective incurred by
the rounding process. Since the fractional optimum of a relaxed LP is a lower bound to the
integral optimum, i.e., the optimum of the original problem, the same factor also upper-
bounds the difference between the objective value of the rounded solution and the objective
value of the integral optimum. Thus this process derives an approximation guarantee. We
show that in our case, the increase can be Ω(m), by showing that there are cases in which
the difference between the integral and fractional optimum objective values is Ω(m), and
thus an algorithm based solely on the rounding procedure cannot expect an additive o(m)-
approximation. This kind of reasoning is known as an integrality gap, and is demonstrated
by the following:

Lemma 2. For Borda-UCM, an algorithm based solely on rounding the relaxed natural LP
cannot obtain an additive o(m)-approximation.

Proof. We show a lower bound on the approximation ratio in the form of an additive
integrality gap. In other words, we show an infinite family of instances where the integral
solution to the LP (and thus, to the original problem) gives Ω(m) worse objective value
when compared to the fractional solution.

Consider the simple case of m competitors, all having equal initial scores (w.l.o.g. σi = 0
for all i = 1, . . . ,m) and a single manipulator. When solving the problem, one candidate will
be awardedm−1 and thus will have a final score ofm−1. However, in the fractional solution,
the optimum is obtained by splitting each score equally, that is, setting xi,j = 1/m for every
i ∈ [m] and j ∈ [m]. Now every candidate obtained a final score of 1/m·

∑m
j=1 j = (m−1)/2.

Therefore notice that the gap between the objective values of the integral and fractional
solutions is (m− 1)/2 = Ω(m).

3.2.3 Introducing Configuration LPs

In order to work around the limitations discussed in Section 3.2.2, we will have to resort
to a radically different approach, in which variables no longer represent score-types, and
instead represent a set of scores—or configuration—that can be awarded to a candidate.

Formally, a configuration C for some candidate ci is a vector of dimension m in which
Cj represents a number of scores of type j that ci has received, and for which

∑m
j=1Cj = k,

that is, the overall number of scores awarded is k. For a candidate ci and a bound T , let
Ci(T) be the set of configurations that do not cause the candidate’s overall score to surpass
T , i.e., the set of configurations C for which

∑m
j=1Cjαj ≤ T − σi.

122

New Approximations for Coalitional Manipulation in General Scoring Rules

We formulate the configuration LP as follows:∑
C∈Ci(T)

xi,C ≤ 1 ∀i ∈ [m] , (5)

∑
i,C

C∈Ci(T)

Cjxi,C ≥ k ∀j ∈ [m] , (6)

xi,C ≥ 0 ∀i ∈ [m], C ∈ Ci(T) . (7)

where we want the xi,C variables to serve as indicator variables indicating whether or not
ci was awarded with configuration C (so that xi,C ∈ {0, 1}), but due to the need to avoid
an IP we relax this constraint to be xi,C ≥ 0. In addition, eq. (5) guarantees that every
candidate was given at most one configuration and eq. (6) guarantees that every score was
awarded at least k times. The choice of inequalities over equalities will be explained in
Section 3.4.

Example 5. Continuing with our running example, recall that k = 2, m = 5, α =
(5, 4, 3, 2, 1, 0) (i.e., Borda) and σ = (0, 5, 6, 6, 6, 7). Now assume that T = 10. Our choice of
T is not arbitrary; 10 is p’s final score (that is, α0+α0), and—as seen in Example 2—is indeed
the optimum. Let us focus on the last candidate c5. C5(T) should contain all configurations
which award c5 at most T −σ5 = 3 points. These configurations are (0, 0, 0, 0, 2) (0 points),
(0, 0, 0, 1, 1) (1 point), (0, 0, 0, 2, 0), (0, 0, 1, 0, 1) (2 points), (0, 1, 0, 0, 1) and (0, 0, 1, 1, 0) (3
points).

When solving the C-LP, only two of her configurations will be given a non-zero value:
x5,(0,1,0,0,1) u 0.7 and x5,(0,0,1,1,0) u 0.3. We omit the variables corresponding to the rest of
the candidates.

After solving the LP, we will execute additional procedures that will transform the
fractional LP solution into a valid solution for the original problem. This procedure can
increase the score of some of the candidates, and thus it makes sense to start with the
smallest possible T ; hopefully, even after the increase the final score will be bounded by
σ0 + kα0.

To find the smallest possible T , we perform a one-sided binary search on the value of
T . For this purpose, for each possible value of T that we test during the binary search, we
redefine the LP, solve the new LP from scratch, and check whether it has a solution. The
reason we do not add T as a variable in an objective function (instead of the binary search)
is that the number of summands in eqs. (5) and (6) depends on T .

This formulation has the obvious drawback that the number of variables is exponential
in k. However, in Section 3.4, following the approach of Bansal and Sviridenko (2006), we
will show that if we find a polynomially-computable separation oracle we can solve the LP
by referring to the LP dual and using the ellipsoid method. Such an oracle will require
a solution to the following seemingly unrelated problem as a subroutine: a variant of the
classic Knapsack problem.

3.3 k-Multiset Knapsack

Let {1, . . . ,m} be a set of distinct items, where each item j has an associated value vj and
a weight wj . These items are given as input as well as a weight upper-bound W and a value

123

Keller, Hassidim, & Hazon

lower-bound V . In addition—as opposed to ordinary knapsack—the input also includes
an integer k. We are required to find a multiset S of exactly k items (i.e., we can repeat
items from the item-set), such that S’s overall weight is at most W and S’s overall value is
greater than V (or return that no such multiset exists). We notice that this problem is very
similar to the exact k-item knapsack problem mentioned by Caprara, Kellerer, Pferschy, and
Pisinger (2000), though in our variant, an item can be repeated in the solution more than
once. Another variant, this time with a quadratic objective function (but again without
the option to repeat items) is studied by Létocart and Wiegele (2016).

Lemma 3. The k-multiset knapsack can be solved in time polynomial in k, m, and W
(which is pseudo-polynomial due to the dependency on W).

Proof. We fill out a table Q[w, `], for w = 0, . . . ,W and ` = 0, . . . , k, in which Q[w, `] is the
highest value obtainable with a size-` multiset of items of an aggregate-weight at most w.
Notice that Q can be filled using the following recurrence relation:

Q[w, `] =

{
0 if ` = 0,

maxj vj +Q′(w − wj , `− 1) otherwise,
(8)

where Q′(w, `) = Q[w, `] if it is defined, i.e., w ≥ 0 and ` ≥ 0, and otherwise it is −∞.

Q can be filled-out using dynamic programming. Finally, the entry Q[W,k] contains the
highest value obtainable with an overall weight of at most W . Therefore, if Q[W,k] > V ,
we have found a required multiset; otherwise such does not exist. The resulting multiset
itself can be recovered using backtracking on the table Q. Notice that the amount of work
done is O(Wkm).

3.4 Solving the UCM C-LP

We return to our problem. The choice of inequalities over equalities in the C-LP will be
motivated by our use of the LP dual in Theorem 5. However, they have the same effect as
equalities, as shown by the following lemma:

Lemma 4. In a solution to the above C-LP, eqs. (5) and (6) will actually be equalities.

Proof. Notice that by eq. (6):

km ≤
m∑
j=1

m∑
i=1

∑
C∈Ci(T)

Cjxi,C (9)

=
m∑
i=1

∑
C∈Ci(T)

xi,C

m∑
j=1

Cj (10)

= k
m∑
i=1

∑
C∈Ci(T)

xi,C (11)

≤ km (12)

124

New Approximations for Coalitional Manipulation in General Scoring Rules

where (12) holds by plugging (5) into (11). We therefore obtain that

m∑
j=1

m∑
i=1

∑
C∈Ci(T)

Cjxi,C = km

which forces both non-trivial C-LP inequalities to be equalities.

Theorem 5. Given a value T , the UCM C-LP can be solved in polynomial time.

Proof. In order to solve the C-LP, we will turn to its LP dual; we briefly repeat some LP
duality concepts. Please refer to the textbook by Schrijver (1998) for complete definitions
and an in-depth discussion.

The dual of a maximization problem is a minimization problem. In order to define it
we can treat our primal program as a maximization problem having all coefficients 0 in its
objective function. In the dual there is a variable for every constraint of the primal, and
a constraint for every variable of the primal. Therefore, we define a variable yi for each
candidate ci and a variable zj for each score-type j (since the primal has a constraint for
each candidate ci and for each score-type j). However, since our primal has an exponential
number of variables, the dual will have an exponential number of constraints. We will show
how to address this.

In short, the non-trivial constraints are then obtained by transposing the constraint-
coefficient matrix of the primal, using the primal objective function coefficients as the right-
hand side of the dual constraints, and using the right-hand side of the primal constraints
as the coefficients of the dual objective function.

The process yields the following dual:

min
y,z

m∑
i=1

yi − k
m∑
j=1

zj

subject to:
m∑
j=1

Cjzj ≤ yi ∀i ∈ [m], C ∈ Ci(T)

yi ≥ 0 ∀i = 1, . . . ,m

zj ≥ 0 ∀j = 1, . . . ,m

As mentioned, the dual has an exponential number of constraints. However, it is solvable;
the ellipsoid method (Khachiyan, 1980) is a method for solving an LP which iteratively tries
to find a point inside the feasible region described by the constraints. However, we do not
need to provide all the constraints in advance. Instead, the algorithm can be provided with
a subroutine, called a separation oracle, to which it calls with a proposed point, and the
subroutine then either confirms that the point is inside the feasible region or that it returns
a violated constraint (Grötschel et al., 1981). The ellipsoid method algorithm performs a
polynomial number of iterations, therefore if the separation oracle runs in polynomial time
as well, the LP is solved in overall polynomial time. Notice that the polynomial number of
iterations performed by the ellipsoid method implies that the number of constraints that

125

Keller, Hassidim, & Hazon

played a part in finding the optimum (known as active constraints) was polynomial as well.
In other words, we could effectively discard all except a polynomial number of constraints.

As discussed, a separation oracle for the dual, given a proposed solution (y; z), needs to
find a violated constraint in polynomial time, if one exists. It remains to show that such a
separation oracle is polynomial-time computable.

Observe that a violated constraint in this program is a pair (i, C) for which C ∈ Ci(T)
(and therefore

∑m
j=1Cjαj ≤ T − σi) and at the same time

∑m
j=1Cjzj > yi. Fortunately,

for a specified i, finding a configuration C that induces a violated constraint can be seen as
finding a k-multiset (since

∑m
j=1Cj = k) given by a solution to our knapsack variant: [m] is

the item set (over which j ranges), the value for item j is zj , while its weight is αj . The given
value lower bound is yi, and T − σi is the given upper bound on the weight. Effectively, we
use the possibly-tighter weight bound min{kα1, T − σi} instead, as kα1 bounds the overall
weight obtainable with a size-k multiset. Due to the fact that the weight bound is now
polynomial in m and k, the solution to our knapsack variant becomes polynomial.

We repeat this knapsack-solving step for each i until we find a violated constraint, or
conclude that no constraint is violated. Once we have solved the dual using the ellipsoid
method with the separation oracle, we can discard all variables in the primal that do not
correspond to the active constraints of the dual, since the inclusion of those constraints
(resp. their corresponding variables) did not have any effect on the dual optimum (resp. the
primal optimum).4 The primal now contains only a polynomial number of variables and
can be solved directly using the ellipsoid method or any other known polynomial solvers for
LP, such as Karmarkar’s (1984) method.

3.5 Algorithm for UCM

We solve the configuration LP as described in Section 3.4. As mentioned, while both
constraints are inequalities, in any solution they will actually be equalities. We perform
randomized rounding as follows: for each candidate ci, observe the variables xi,C for C ∈
Ci(T). Since

∑
C∈Ci(T) xi,C = 1, we treat the xi,C ’s as a distribution over the configurations

for ci and randomly choose one according to that distribution. For the time being, we give
ci this configuration.5

While every candidate now has a valid configuration (and her score does not exceed T),
it is possible that the number of scores of a certain type is above or below k. Formally,
if candidate ci received a configuration Ci, let the array H such that H[j] =

∑m
i=1C

i
j be

the histogram of the scores. It is then possible that H[j] 6= k. If we would translate the
configuration given to each candidate to the list of the scores awarded within it, and write
this list as the column of a matrix, this matrix might not be a relaxed manipulation matrix.
In order to solve this, we need to replace some of the scores in this matrix with others such
that the number of scores of each type will be exactly k. On the other hand, we need to
make sure that this process does not add much to the score of each candidate.

4. In other words, the dual of the dual without the discarded constraints is the primal without their
corresponding variables. Another way to explain this is that this is exactly the complementary slackness
condition of the Karush-Kuhn-Tucker conditions (Karush, 1939; Kuhn & Tucker, 2014), a necessary
condition for obtaining the optimum.

5. This is known as randomized rounding since choosing an xi,C variable according to the distribution has
the effect of rounding it to 1, while rounding all other xi,Ĉ for Ĉ 6= C to 0.

126

New Approximations for Coalitional Manipulation in General Scoring Rules

Algorithm 1: UCM Approximation algorithm.

1 Solve the C-LP as described in Section 3.4
2 foreach i do define distribution q s.t. q(C) = xi,C for all C ∈ Ci(T) and randomly

choose Ci ∼ q.
3 L← 〈〉 /* L is the empty list */

4 foreach i ∈ [m], j ∈ [m] do
5 Append Cij copies of (i, j) to L /* j represents the score αj */

6 Sort L in an ascending order by ScoreType(·) /* ScoreType(t) = j if t = (i, j) */

7 Re-index L such that L = 〈t0, . . . , tkm−1〉
8 for r = 0, . . . , km− 1 do
9 Observe tuple tr = (i, j)

/* Assign the score αbr/kc+1 to ci, instead of the previous αj: */

10 Cij ← Cij − 1

11 Cibr/kc+1 ← Cibr/kc+1 + 1

12 return the relaxed manipulation matrix corresponding to C1, . . . , Cm

Let t = (i, j) be a tuple representing the event that candidate ci received a score of αj in
her configuration. We place all such tuples in a single multiset (if αj is awarded to ci more
than once, repeat (i, j) as needed). We then sort this multiset according to the j values in a
non-decreasing manner (break ties between candidates arbitrarily) thus creating the event-
sequence 〈t0, . . . , tkm−1〉, i.e., the tuples are now indexed by their rank in this sequence. We
now start fixing the scores given as follows; for each tuple tr = (i, j) having rank r in the
sorted sequence, we change the score awarded to ci (as described by the tuple) from αj to
αbr/kc+1. To perform this change in the algorithm, it is enough to set Cij ← Cij − 1 followed

by setting Cibr/kc+1 ← Cibr/kc+1 + 1. This is correct as Cij′ , for any j′, represents the number
of αj′ scores awarded to ci.

Notice that now every score is repeated k times (there are only k possible r values
mapping to the same br/kc value). Finally, the corrected configurations represent the final
strategy. This can be easily represented as a relaxed configuration matrix by referring to
the matrix [MS(C1); · · · ; MS(Cm)], where MS(Ci) is a column constructed by taking the
configuration Ci, represented as an ordered-multiset of scores (each j is repeated Cij times),
in some arbitrary order. The entire process is summarized as Algorithm 1.

Let β = d
√
m lnm for some constant d to be defined later. We also define g(α) =

maxj=1,...,m−β αj − αj+β. In words, g(α) is the maximal difference between a score in α
and another score β entries away from it.

Lemma 6. Let C ∈ {C1, . . . , Cm} be a configuration obtained for some candidate by the
rounding process, and let C ′ be its corrected version given by the process described above.
Then with an arbitrarily-chosen polynomially-small failure probability,

m∑
j=1

αjC
′
j ≤

m∑
j=1

αjCj + k · g(α) .

127

Keller, Hassidim, & Hazon

Proof. Let H be the histogram of the original configurations C1, . . . , Cm, and let the array G
be the array of histogram partial sums, i.e., G[j] =

∑j−1
j′=1H[j′]. In words, G[j] is the number

of scores αj′ awarded to ci for which j′ < j. In a similar manner, define Di[j] =
∑j−1

j′=1C
i
j′ to

be the partial sums array w.r.t. each candidate ci. We will show that with a polynomially-
small failure-probability that depends on d, it holds that G[j] ≥ (j − 1)k − dk

√
m lnm.

Fix a specific j. Note that

E[G[j]] =

j−1∑
j′=1

E[H[j′]] =

j−1∑
j′=1

∑
i,C

C∈Ci(T)

Cj′xi,C = (j − 1)k

according to the LP constraints, and that G[j] =
∑m

i=1D
i[j], that is, G[j] is a random

variable which is the sum of the independent random variables Di[j] for i = 1, . . . ,m.
In addition, for every candidate ci, it holds that Di[j] ∈ [0, k], due to the fact that a
configuration contains k scores. Therefore, using Hoeffding’s (1963) generalized inequality:

Pr [E[G[j]]−G[j] ≥ λ] ≤ exp

(
− 2λ2∑m

i=1 k
2

)
= exp

(
− 2λ2

mk2

)
.

Setting λ = dk
√
m lnm, for some arbitrary constant d ≥ 2, we obtain that Pr[E[G[j]] −

G[j] ≥ dk
√
m lnm] ≤ 1/m2d2 , that is, the probability that we will deviate from E[G[j]] by

more than Õ(k
√
m) can be made arbitrarily polynomially small. Using the union bound,

the same can be made to hold for all j = 1, . . . ,m simultaneously, with a failure probability
of at most m/m2d2 = 1/m2d2−1.

Now observe a tuple tr = (i, j) before being possibly corrected by the algorithm. The
number of tuples appearing before tr in the sorted sequence must be greater than the
number of scores awarded with a score-type that is strictly less than j (as all such scores
appear in tuples tr′ where r′ < r), which is by definition G[j]. Therefore, it holds that
r > G[j] ≥ (j−1)k−dk

√
m lnm, where the second inequality holds with a high probability.

Therefore by the algorithm changing the score αj to αbr/kc+1, the score increases by at most
αbr/kc+1 − αj ≤ α(j−1)−d

√
m lnm+1 − αj ≤ g(α).

Now observe some candidate ci with a given configuration Ci corrected by the algorithm
to become a configuration C ′. Since in the worst case, all of ci’s k scores were affected as
such, her overall score has increased by at most kg(α).

Corollary 7. The above algorithm provides an additive kg(α)-approximation with a high
probability. By repeating the randomized rounding procedure a linear number of times, the
failure probability becomes exponentially-small. The overall running time is polynomial.

Proof. Let TOPT be the optimal value for the original problem, and let T ? be the best
bound obtainable via the above C-LP combined with the binary search on T . Notice that
T ? ≤ TOPT, as the optimal solution is also a valid solution for the C-LP. Now observe
the highest-scoring candidate in the C-LP. When the algorithm terminates, with a high-
probability her score will be at most T ? + kg(α) ≤ TOPT + kg(α).

128

New Approximations for Coalitional Manipulation in General Scoring Rules

As the increase in the score of any other candidate resulting from the algorithm is also
bounded by kg(α), the bound TOPT + kg(α) holds for all candidates. We conclude that
this is indeed an additive kg(α)-approximation.

As discussed, solving the C-LP is done in polynomial time (by the polynomial number
of iterations of the ellipsoid method and the polynomial runtime of the k-multiset knapsack
separation oracle). The rounding and fixing procedures are dominated by going over a
polynomial number of non-zero variables of the C-LP and are therefore polynomial as well.
If we repeat the randomized rounding procedure a linear number of times and pick the
iteration yielding the minimum addition to T ?, the probability of not obtaining a kg(α)-
approximation becomes exponentially-small while the runtime remains polynomial.

The above corollary directly yields the following theorem:

Theorem 8. There exists a randomized Monte Carlo algorithm for Rα-UCM which pro-
vides an additive kg(α)-approximation to TOPT with an exponentially-small failure proba-
bility.

Proof. By Corollary 7.

At this point we directly obtain the next corollary, focusing on the specific case of Borda:

Corollary 9. There exists a randomized Monte Carlo algorithm for Borda-UCM which pro-
vides an additive O(k

√
m logm)-approximation to TOPT with an exponentially-small failure

probability.

Proof. By noticing that for Borda, g(α) = O(
√
m logm).

4. Weighted Coalitional Manipulation

In this section we show how to generalize the previous algorithm to support the weighted
setting. Specifically, supporting weighted manipulators introduces the notion that the ma-
nipulators are no longer identical, and thus a new definition of a configuration is needed:
one that also maintains their identity. In turn, this also requires us to define and employ
a different knapsack variant, namely that of the k-sequence knapsack. In the following, we
explain the new algorithm in a similar fashion to the previous one, focusing on the required
changes. First we begin with the case of polynomial weights, that is we assume that the
weight w` for ` = 1, . . . , k is an integer bounded by a polynomial in the input size N (or any
of the equivalent conditions mentioned in Section 2.1); later, we will generalize our results
for any weight vector.

4.1 Linear Programming for WCM

When turning to the WCM problem, the ‘natural’ LP still suffers from the deficiencies
described in Section 3.2. We again resort to using configurations. As mentioned, configura-
tions will now be defined in a different manner, since now, when each voter has an associated
weight, voters are no longer identical and consequently our configurations need to capture
the identity of the manipulators.

129

Keller, Hassidim, & Hazon

A configuration C for some candidate ci is now defined as a length-k sequence in which
C` = j if the manipulator u` awarded αj to ci. For a candidate ci and a bound T , Ci(T) is
again the set of configurations that do not cause the candidate’s overall score to surpass T ,
which this time is formally

∑k
`=1w`αC`

≤ T − σi.
The configuration LP is now formulated as follows:∑

C∈Ci(T)

xi,C ≤ 1 ∀i ∈ [m] , (13)

∑
i,C∈Ci(T)
C`=j

xi,C ≥ 1 ∀j ∈ [m],∀` ∈ [k] , (14)

xi,C ≥ 0 ∀i ∈ [m], C ∈ Ci(T) . (15)

Again, we want the xi,C ’s to serve as indicator variables indicating whether or not ci was
awarded with configuration C (but again, are required to relax their corresponding integral-
ity constraints). In addition, eq. (13) guarantees that every candidate was given at most one
configuration and eq. (14) guarantees that every score was awarded by every manipulator
at least once. The choice of inequalities over equalities will be explained in Section 4.3.

We present another—more complex—Knapsack variant, which will be used later by the
separation oracle required for solving the C-LP.

4.2 k-Sequence Knapsack

Let {1, . . . ,m} be a set of distinct items. In the k-sequence knapsack problem we are
required to construct a length-k sequence S = s1, . . . , sk of items; we can repeat items from
the item-set, however, we are subject to some additional constraints as will be specified
immediately. The input in this problem is the following:

• A value v(j, `), for every j ∈ [m], ` ∈ [k] where v(j, `) is the value obtained by placing
item j at location ` in the sequence.

• A cost b(j) for each item j, and a penalty p` for each location ` ∈ [k]. Placing an item
j at location ` in the sequence has a penalized cost p`b(j), i.e., it depends on both the
item’s weight and the penalty for location `, but on each independently.

• A value lower-bound V .

• A penalized cost upper-bound B.

The resulting sequence S should adhere to the following constraints:

• S’s overall value
∑k

`=1 v(s`, `) is greater than V .

• S’s overall penalized cost
∑k

`=1 p`b(s`) is at most B.

If such sequence S exists, we should return it; otherwise we return that no such sequence
exists.

Lemma 10. The k-sequence knapsack can be solved in time polynomial in k, m, and B
(which is pseudo-polynomial due to the dependency on B).

130

New Approximations for Coalitional Manipulation in General Scoring Rules

Proof. Similar to the proof of Lemma 3, we fill out a table Q[b′, `], for b′ = 0, . . . , B and
` = 0, . . . , k, in which Q[b′, `] is the highest value obtainable with a length-` sequence of
items of a penalized cost of at most b′. This time Q is filled using a different recurrence
relation:

Q[b′, `] =

{
0 if ` = 0,

maxj v(j, `) +Q′(b′ − p`b(j), `− 1) otherwise,
(16)

where Q′(b′, `) = Q[b′, `] if it is defined, i.e., b′ ≥ 0 and ` ≥ 0, and otherwise it is −∞.
Q can be filled-out using dynamic programming. Finally, the entry Q[B, k] contains the

highest value obtainable with an overall penalized cost of at most B. If Q[B, k] > V , we
have found a required sequence; otherwise such does not exist. The resulting sequence itself
can be recovered using backtracking on the table Q. Notice that the amount of work done
is O(Bkm).

4.3 Solving the WCM C-LP

We return to our problem. Again, the choice of inequalities over equalities in the C-LP will
be motivated by our use of the LP dual in Theorem 12. However, they have the same effect
as equalities, as shown by the following lemma:

Lemma 11. In a solution to the above C-LP, eqs. (13) and (14) will actually be equalities.

Proof. Note that by eq. (14):

km ≤
∑
j,`

m∑
i=1

∑
C∈Ci(T)
C`=j

xi,C (17)

=

m∑
i=1

∑
C∈Ci(T)

∑
`,j
C`=j

xi,C (18)

=

m∑
i=1

∑
C∈Ci(T)

xi,C
∑
`,j
C`=j

1 (19)

= k

m∑
i=1

∑
C∈Ci(T)

xi,C (20)

≤ km (21)

where (21) holds by plugging (13) into (20). We therefore obtain that

∑
j,`

m∑
i=1

∑
C∈Ci(T)
C`=j

xi,C = km

which forces both above non-trivial LP inequalities to be equalities.

Theorem 12. Given a value T , the WCM C-LP can be solved in polynomial time.

131

Keller, Hassidim, & Hazon

Proof. We again turn to the LP dual, which this time is:

min
y,z

m∑
i=1

yi −
∑
j,`

zj,`

subject to:∑
j,`
C`=j

zj,` ≤ yi ∀i ∈ [m], C ∈ Ci(T)

yi ≥ 0 ∀i = 1, . . . ,m

zj,` ≥ 0 ∀(j, `) ∈ [m]× [k]

Furthermore, the above single non-trivial constraint can be more conveniently re-written as

k∑
`=1

zC`,` ≤ yi ∀i ∈ [m], C ∈ Ci(T) .

We again turn to the ellipsoid method with a separation oracle; this time, a violated con-
straint w.r.t. this program is a pair (i, C) for which C ∈ Ci(T) (and therefore

∑k
`=1w`αC`

≤
T − σi) and at the same time

∑k
`=1 zC`,` > yi. For a specified i, finding a configuration C

that induces a violated constraint can be seen as finding a k-sequence given by a solution
to our knapsack variant: [m] is the item set (over which j ranges), the value for placing
item j at location ` is zj,`, item j’s cost is αj , and the penalty for location ` is w`. The
given value lower bound is yi, and T − σi is the given upper bound on the penalized cost.
Effectively, we use the possibly-tighter penalized cost bound min{Wα1, T − σi} instead, as
Wα1 bounds the overall penalized cost obtainable with a length-k sequence. As now the
weight bound is polynomial in α1 and W—and by our assumption that the weights (and
thus W) are polynomial in the input size N—the solution to our knapsack variant becomes
polynomial. (As mentioned, we will later address the compromise needed to be made when
W is not polynomial in the input size.)

We repeat this knapsack-solving step for each i until we find a violated constraint, or
conclude that no constraint is violated. Once we have solved the dual using the ellipsoid
method with the separation oracle, we continue in a similar fashion to the proof of Theo-
rem 5.

4.4 Algorithm for WCM

We solve the configuration LP as described in Section 4.3. As mentioned, both constraints
will actually be equalities. For each candidate ci, since

∑
C∈Ci(T) xi,C = 1, we treat the

xi,C ’s as a distribution over the configurations for ci and randomly choose one according to
that distribution. For the time being, we give ci this configuration.

As for UCM, every candidate now has a valid configuration but constraints may still
be violated; it is possible that the number of scores of a certain type j given by a specific
manipulator u` is not exactly 1. Formally, fix a specific manipulator u`; we let the array H
such that H[j] = |{i | Ci` = j}| be the histogram of the scores with respect to u`. It is then
possible that H[j] 6= 1. Our goal, as before, is to fix this without introducing too much of

132

New Approximations for Coalitional Manipulation in General Scoring Rules

Algorithm 2: WCM Approximation algorithm.

1 Solve the C-LP as described in Section 4.1
2 foreach i do define distribution q s.t. q(C) = xi,C for all C ∈ Ci(T) and randomly

choose Ci ∼ q.
3 for `← 1 to k do
4 Let A = {(i, `, Ci`) | i = 1, . . . ,m} /* tuple (i, `, j) represents the event

that u` awarded αj to ci */

5 Sort A in an ascending order by ScoreType(·) and let L = 〈t0, . . . , tm−1〉 be the
resulting list. /* ScoreType(t) = j if t = (i, `, j) */

6 for r ← 0 to m− 1 do
7 Observe tuple tr = (i, `, j).
8 Ci` ← r + 1 /* this assigns the score αr+1 to ci, instead of the

previous αj */

9 return the resulting manipulation matrix [C1; · · · ;Cm] /* place Ci as the i-th
column vector of the resulting matrix */

an addition to the candidates’ overall scores. However, there is now some added complexity
due to the necessity to preserve the identity of the voter when fixing a specific score that is
awarded by him.

Let t = (i, `, j) be a tuple representing the event that candidate ci received a score of
αj from manipulator u` in her configuration. Fix a manipulator u`, and place all tuples
having u` as their respective manipulator in a set A, that is A = {(i, `, Ci`) | i = 1, . . . ,m}.
Sort A according to each tuple (i, `, Ci`)’s score-type Ci`, and let L = 〈t0, . . . , tm−1〉 be the
resulting list. Notice that any tuple tr = (i, `, j) in L represents the event that currently
Ci` = j. Now change Ci` by setting Ci` ← r + 1. In words, Ci` gets the rank of its respective
tuple in the sorted list L, plus one. In effect, the score awarded to ci by u` changes from
αj to αr+1.

We repeat the above process for each manipulator. Notice that now every score is re-
peated k times, one by each manipulator. The entire process is summarized as Algorithm 2.

In a similar fashion to the UCM algorithm, we let β = d
√
m lnN for some constant d

to be defined later, and let g(α) = maxj=1,...,m−β αj − αj+β. Notice that there is a slight
change to the logarithm appearing in β.

Lemma 13. Let C ∈ {C1, . . . , Cm} be a configuration obtained for some candidate by the
rounding process, and let C ′ be its corrected version given by the process described above.
Then with an arbitrarily-chosen polynomially-small failure probability,

k∑
`=1

w`αC′
`
≤

k∑
`=1

w`αC`
+W · g(α) .

Proof. Fix a specific `. Let H be the histogram with respect to manipulator u` over the
original configurations C1, . . . , Cm, so that H[j] = |{i | Ci` = j}|. Let the array G be the

array of histogram partial sums, i.e., G[j] =
∑j−1

j′=1H[j′] = |{i | Ci` < j}|. We also define

Di[j] to be a Bernoulli variable which is equal to 1 if Ci` < j, and 0 otherwise. We will

133

Keller, Hassidim, & Hazon

show that with a polynomially-small failure-probability which depends on d, we have that
G[j] ≥ (j − 1)− d

√
m lnN .

Now also fix a specific j. Note that

E[G[j]] =

j−1∑
j′=1

E[H[j′]] =

j−1∑
j′=1

∑
i,C

C∈Ci(T)
C`=j

′

xi,C = j − 1

according to the LP constraints, and that G[j] =
∑m

i=1D
i[j], that is, G[j] is a random

variable which is the sum of the independent random variables Di[j] ∈ {0, 1} for i =
1, . . . ,m. Therefore, using the ‘classic’ Hoeffding inequality:

Pr [E[G[j]]−G[j] ≥ λ] ≤ exp

(
−2λ2

m

)
.

Setting λ = d
√
m lnN , for some arbitrary constant d ≥ 2, we have that Pr[E[G[j]]−G[j] ≥

d
√
m lnN] ≤ 1/N 2d2 , that is, the probability that we will deviate from E[G[j]] by more

than Õ(
√
m) can be made arbitrarily polynomially small. Using the union bound, the same

can be made to hold for all j = 1, . . . ,m and ` = 1, . . . , k simultaneously, with a failure
probability of at most km/N 2d2 ≤ 1/N 2d2−2.

Now observe a tuple tr = (i, `, j) before being possibly corrected by the algorithm. Since
(as a result of the sorting) its rank r in the sorted sequence must be strictly greater than
the number of scores αj′ given by u` for which j′ < j—which is by definition G[j]—we

obtain that r > G[j] ≥ (j − 1)− d
√
m lnN , where the second inequality holds with a high

probability. Therefore by the algorithm changing the score αj to αr+1, the score increases
by at most αr+1 − αj ≤ α(j−1)−d

√
m lnN+1 − αj ≤ g(α).

Now observe some candidate ci with a given configuration Ci corrected by the algorithm
to become configuration C ′. Since in the worst case, all of ci’s k scores were affected as
such, her overall score has increased by at most

∑k
`=1(w`g(α)) = Wg(α).

Corollary 14. For integer weights bounded by a polynomial in N , the above algorithm pro-
vides an additive Wg(α)-approximation with a high probability. By repeating the randomized
rounding procedure a linear number of times, the failure probability becomes exponentially-
small. The overall running time is polynomial.

Proof. Identical to the proof of Corollary 7, where the only difference is that W is used
instead of k.

This directly yields the main theorem of this paper:

Theorem 15. For integer weights bounded by a polynomial in N , there exists a randomized
Monte Carlo algorithm for Rα-WCM which provides an additive Wg(α)-approximation to
TOPT with an exponentially-small failure probability, where W is the sum of voter weights.

Proof. By Corollary 14.

The above theorem immediately paves the way to the following corollary, focusing on
Borda:

134

New Approximations for Coalitional Manipulation in General Scoring Rules

Corollary 16. For weights bounded by a polynomial in N , there exists a randomized Monte
Carlo algorithm for Borda-WCM which provides an additive O(W

√
m logN)-approximation

to TOPT with an exponentially-small failure probability.

Proof. By noticing that for Borda, g(α) = O(
√
m logN).

4.5 Supporting General Weights

While we cannot achieve the same additive approximation factor when the weights in w
(and thus W) are not guaranteed to be polynomial in the input size N , we can still obtain
a very similar result: instead of yielding a solution with a bound T ≤ TOPT + Wg(α),
our solution will provide a bound T ≤ (1 + ε)TOPT + Wg(α) for any constant ε > 0.
Specifically for Borda-WCM, we will show that under reasonable assumptions it holds that
Wg(α) = o(TOPT) and thus in this case our solution will yield an FPTAS.

The above can be achieved by some relatively simple changes to the WCM algorithm
detailed hitherto. Let us first focus on the problematic aspect of the current algorithm w.r.t.
general weight vectors: the bound B = min{Wα1, T − σi} ≤Wα1 is used as the penalized
cost bound when we run the k-sequence knapsack algorithm (and is therefore a factor in its
runtime), but W is no longer guaranteed to be polynomial in N . We solve this issue in the
proof of the following theorem.

Theorem 17. There exists a randomized Monte Carlo algorithm for Rα-WCM which finds
a strategy that will obtain a bound T ≤ (1 + ε)TOPT +Wg(α), for any constant ε > 0, with
an exponentially-small failure probability, where W is the sum of voter weights.

Proof. We shall use the well-known scaling trick that is the heart of many FPTAS algo-
rithms. However, it will not be performed on the weights, but rather on the penalized costs.
Recall that while searching for the C-LP optimum T ?, we try different T values in the course
of a one-sided binary search. Each time we redefine the C-LP and solve it. Focus on some
trial with a value T , and observe the penalized cost p`b(j) for ` = 1, . . . , k and j = 1, . . . ,m.
Replace each such p`b(j) with p`b(j), where p`b(j) is the value p`b(j) rounded down to the
nearest multiple of εT/k. Formally:

p`b(j) =

⌊
p`b(j)

εT/k

⌋
εT/k .

As a result, notice that p`b(j) ≤ p`b(j) ≤ p`b(j) + εT/k. In addition, in the k-sequence
knapsack algorithm, we fill only the entries of the table Q referring to penalized cost val-
ues that are multiples of εT/k. That is, we only consider entries which are of the form
Q[b′, `] for ` = 1, . . . , k and b′ = 0, εT/k, 2εT/k, 3εT/k, . . . , B, where—as before—B is
B = min{Wα1, T − σi} rounded down to the nearest multiple of εT/k. Notice that the
numbers of cells to fill is at most k · B/(εT/k) = O(k2ε−1) as B ≤ T , and that there is no
need to maintain the cells we do not fill in memory.

Let C be a configuration that appears in the result of the C-LP (i.e., it is a valid
configuration for which there is a variable xi,C > 0, and furthermore, this configuration was
the result of some invocation of k-sequence knapsack). Since the penalized costs were scaled
down, the fact a configuration C was deemed as valid only implies that

∑k
`=1w`αC`

≤ T−σi

135

Keller, Hassidim, & Hazon

and thus
∑k

`=1w`αC`
≤
∑k

`=1(w`αC`
+ εT/k) ≤ (1 + ε)T − σi. In particular, this holds

for T ?: a valid configuration used in the iteration when T = T ? is always in Ci((1 + ε)T ?)
(but not necessarily in Ci(T ?) anymore). When also accounting for the increases to T ?

resulting from the rounding phase and the fixing phase (Lemma 13), we arrive at a solution
T ≤ (1 + ε)T ? +Wg(α).

Brelsford et al. (2008) showed that if m is bounded, Rα-WCM has an FPTAS w.r.t.
the score margin. For the specific case of Borda-WCM, our algorithm can be considered an
FPTAS as well – avoiding any limitation on m, but under the reasonable assumption that
if m is unbounded, then k = 2o(m).

Corollary 18. If either m is bounded, or k = 2o(m), then there exists a randomized Monte
Carlo algorithm for Borda-WCM which will find a strategy that will obtain a bound T ≤
(1 + ε)TOPT, for any constant ε > 0, with an exponentially-small failure probability.

Proof. If m is bounded, Borda-WCM has an FPTAS using Lemma 3 in Brelsford et al.’s
(2008) result. We are left with the case where m is an unbounded parameter and k = 2o(m).

In this scenario, for the specific case of Borda-WCM, g(α) = d
√
m lnN for some con-

stant d, and thus g(α) = o(m). We will show that Wg(α) = o(TOPT) w.r.t. the unbounded
parameter m. To see that, notice that for Borda-WCM the overall ‘voting mass’ given by
the manipulators is Ω(Wm2), and thus the highest-scoring candidate has a score of at least
TOPT = Ω(Wm). On the other hand, the additive factor dW

√
m lnN = W ·o(m) by the ar-

gument above. Therefore, dW
√
m lnN is a lower order term compared to TOPT. As such,

for a large enough m, we have that dW
√
m lnN ≤ εTOPT and thus, the approximation

guarantee becomes T ≤ (1 + ε)T ? + Wg(α) ≤ (1 + 2ε)TOPT. Recalibrating the algorithm
to use ε/2 instead of ε will yield the desired result.

5. Empirical Analysis

While we believe that the main message of this work is the research of Rα-UCM and
Rα-WCM from a theoretical perspective, i.e., establishing positive results regarding the
approximability of Rα-UCM and Rα-WCM, we also wanted to check how they compare
with the known methods, with both being of a greedy type.

5.1 Implementation

We implemented our algorithm for the case of Rα-UCM and Rα-WCM and uploaded the
code to a public repository.6 The main subroutine in our implementation is tasked with
solving the LP dual that we defined. However, the dependency on an LP solver using the
ellipsoid method with a separation oracle proved difficult as to the best of our knowledge
there is no library which supports solving an LP this way. Instead we simulated this by using
general LP-solving libraries (Andersen, Dahl, & Vandenberghe, 2016; Makhorin, 2017) and
running the separation oracle externally as described in Algorithm 3.

6. https://github.com/okeller/BordaManipulation

136

New Approximations for Coalitional Manipulation in General Scoring Rules

Algorithm 3: Simulating the ellipsoid method with a separation oracle.

Input: A linear program P = (f, S) with an objective function f and a separation
oracle S (instead of an explicit list of constraints)

1 Let R← ∅ /* R will be a list of active constraints */

2 Let P ′ ← (f,R) /* P ′ is P without any constraints */

3 x← LP-solve(P ′)
4 while S(x) returns a violated constraint r do
5 R← R ∪ {r}
6 P ′ ← (f,R)
7 x← LP-solve(P ′)

8 return x

5.1.1 Practical Improvements

We used the following practical improvements in our implementation:

• We obtained a running-time speedup by modifying the separation oracle to return a
set of violated constraints, one for each i (if such exists), instead of a single violated
constraint, and adding all of them to the list of constraints.

• When sorting by the score-type after the rounding phase, we broke ties between tuples
having the same score-type j in favor of the candidate with the lower current aggregate
score. This way, a candidate with a higher current aggregate score would be less likely
to have this specific score increased by the fixing procedure.

5.2 Experiments

To evaluate our algorithms for both UCM and WCM in a well-studied setting, we ran
experiments for Borda-UCM and Borda-WCM on sets of values for n, k and m (the choices
of values will be explained shortly). For the unweighted case, our algorithm was compared
to Average Fit that was shown to empirically outperform Reverse (Davies et al., 2014).
For the weighted case, as we are not aware of a generalization of Average Fit to a weighted
setting, we compared against Reverse. In both cases, and in order to be able to compare
performance across different values of k and m, we plotted the ratio T/T ?, where T is the
value obtained by the algorithm (either ours, or its competitor, depending on the case), and
T ? is the bound obtained by the fractional C-LP in conjunction with the one-sided binary
search. In other words, T ? is used as a baseline, as it is polynomially computable and serves
as a lower bound to the optimal solution, thus the ratio T/T ? is an upper bound to the
multiplicative approximation of the respective method.

It is worth noting that runtime-wise our algorithm is inferior to both greedy heuristics: as
the greedy heuristics are extremely simple combinatorial algorithms, they run very quickly,
while ours is based on solving an LP. However, the main issue that affected our practical
running time is not the time required for solving an LP per se, but the fact that in our
implementation we had to solve an LP multiple times each time our algorithm solves a
single LP instance. As mentioned, this is due to the lack of an LP solver with a separation
oracle, forcing us to simulate it. As depicted in Algorithm 3, this simulation incurs many

137

Keller, Hassidim, & Hazon

repetitions on the subprocedure of solving an LP. As a result, we were limited in the number
of repeated experiments for each set of n, k,m values. We conducted 100 for the UCM
experiments and 90 for the WCM experiments. Naturally, future existence of a separation
oracle LP solver would remove this limitation. We chose n = 2k, because having one
manipulator for every two truthful voters represents a sweet-spot where manipulators have
enough power to change outcomes, but not too much.

5.2.1 Borda-UCM

We compared our results to those obtained by Average Fit, and to the fractional solution,
T ?. We performed two sets of experiments, where we drew the non-manipulator votes
from either a uniform distribution, or from a Pólya-Eggenberger urn model, similar to the
experiments performed by Davies et al. (2014). This urn model can be described as follows.
At first, we hold all possible m! permutations of order m in an urn. Then we iterate over
the voters where each voter picks a permutation from the urn as his ballot, and then returns
it, alongside b = m! copies of it, to the urn.

In our experiments, we chose k ≈
√
m or smaller, because our algorithms are suitable

for low k values. As noted, our algorithm for Borda-UCM is theoretically competitive when
k = o(

√
m/ logm), and we wanted to verify this also in an empirical setting. Lower k values

are also the cases which are more difficult for the Average Fit heuristic of Davies et al.
(2014). The results are depicted in Figure 1 (uniform model) and Figure 2 (urn model).

As can be seen, our algorithm performs comparably to Average Fit. In the uniform
model our algorithm seems to have a slight advantage for low k values, while the situation is
opposite for higher k values. In the urn model, both performances seem to be very similar.

For a good example in which our algorithm outperforms Average Fit, consider our
running example. Recall that k = 2, m = 5 and (σ0, . . . , σ5) = (0, 5, 6, 6, 6, 7). Obviously
both methods will award p with 5 + 5 = 10. However, in our algorithm the top score of a
candidate who is not p will be 10, and in Average Fit (as seen before in Table 4) it will
be 12. Therefore, the choice of the algorithm will determine if p wins or not by a difference
of 2.

5.2.2 Borda-WCM

For the weighted case, since Average Fit has no weighted generalization, our competitor is
the weighted variant of Reverse. To model what we see as a relatively realistic setting, we
randomly chose weights according to the Zeta distribution (or equivalently, the unbounded
Zipf law), which is the discrete equivalent of the Pareto distribution. These types of power
law distributions are commonly used to model the distribution of wealth, and of income,
in the population, and were most notably used by Pareto (1964). In principle, such distri-
butions model the number of people whose wealth is w as proportional to 1/wa for some
constant a > 1. The results are depicted in Figure 3.

These results are similar to the unweighted case. Our algorithm performs comparably to
Reverse, and as before, seems to have a slight advantage for low k values while Reverse
possesses a slight advantage for higher k values.

138

New Approximations for Coalitional Manipulation in General Scoring Rules

20 40 60 80 100

1.0000

1.0050

1.0100

1.0150

1.0200

n = 4,k = 2

Ours
AVERAGE FIT

20 40 60 80 100

1.0050

1.0075

1.0100

1.0125

1.0150

n = 8,k = 4

Ours
AVERAGE FIT

20 40 60 80 100

1.0060

1.0080

1.0100

n = 12,k = 6

Ours
AVERAGE FIT

20 40 60 80 100

1.0080

1.0100

1.0120

n = 16,k = 8

Ours
AVERAGE FIT

Figure 1: Experiments with voters whose preferences are drawn uniformly. Different sub-
plots depict different values of n and k. The x-axis corresponds to different values of m. For
each set of n, k,m, 100 experiments were conducted. The solid line represents the mean of
the ratio between the value T obtained by our algorithm, and the C-LP fractional optimum
T ?, averaging over the 100 experiments. The dashed line represents the same mean w.r.t.
Average Fit.

6. Related Work

We detail some of the previous work to help present our new results in context.

Tractability Results. The computational complexity of coalitional manipulation prob-
lems was studied extensively. For any scoring rule Rα, much of the earlier work considered
the case where the number of candidates is bounded. Conitzer, Sandholm, and Lang (2007,
see Proposition 1) show that when m is bounded, Rα-UCM is solvable in polynomial time.

Even when m is unbounded, Plurality-UCM and Veto-UCM are still easy using the
greedy algorithm of Zuckerman et al. (2009). This also holds for t-approval-UCM, which
generalizes both (Lin, 2012).

Recently Hemaspaandra and Schnoor (2016) showed that every scoring rule where α
consists of a constant number of unique coefficients is easy as well.

NP-Hardness Results. In the weighted case, the situation is different. For all positional
scoring rules Rα, except Plurality-like rules, Rα-WCM is NP-hard when m ≥ 3 (Conitzer
et al., 2007; Hemaspaandra & Hemaspaandra, 2007; Procaccia & Rosenschein, 2007b).
These results are based on a reduction from the well-known partition problem, which has a
pseudo-polynomial algorithm; therefore, they do not immediately extend to the case where

139

Keller, Hassidim, & Hazon

20 40 60 80 100

1.0000

1.0020

1.0040

1.0060

n = 4,k = 2

Ours
AVERAGE FIT

20 40 60 80 100

1.0000

1.0001

1.0002

1.0003

1.0004

n = 8,k = 4

Ours
AVERAGE FIT

20 40 60 80 100
1.0000

1.0002

1.0004

1.0006

1.0008
n = 12,k = 6

Ours
AVERAGE FIT

20 40 60 80 100

1.0000

1.0005

1.0010

n = 16,k = 8

Ours
AVERAGE FIT

Figure 2: Experiments with voters whose preferences are drawn from an urn model. Differ-
ent subplots depict different values of n and k. The x-axis corresponds to different values of
m. For each set of n, k,m, 100 experiments were conducted. The solid line represents the
mean of the ratio between the value T obtained by our algorithm, and the C-LP fractional
optimum T ?, averaging over the 100 experiments. The dashed line represents the same
mean w.r.t. Average Fit.

the weights are relatively small, e.g., are integers bounded by a polynomial in the input size.
When this is indeed the case, or the weights are encoded in a unary encoding, Veto-WCM,
and t-approval-WCM for t ≥ 2 remain NP-hard when the number of candidates is not fixed,
by a reduction from unary-3-partition (Brelsford et al., 2008).

The computational hardness of Borda-UCM still remained open for quite some time,
until it was finally shown to be NP-hard as well (Davies et al., 2011; Betzler et al., 2011),
even for the case of n = 3 and adding k = 2 manipulators.

Approximating the number of manipulators. Zuckerman et al. (2009) presented a
greedy algorithm later referred to as Reverse. As mentioned, for Borda-UCM, Reverse
can be seen as an additive +1-approximation for the objective of finding the minimum
number of manipulators needed.

For Borda-WCM, their approximation can be described as follows. Let w = (w1, . . . , wk)
be the weights of the k given weighted manipulators. If a p-winning strategy using these
k manipulators exists, a p-winning strategy using additional manipulators will be found, if
the sum of weights of the additional manipulators equals max`=1,...,k w`.

140

New Approximations for Coalitional Manipulation in General Scoring Rules

20 40 60 80

1.005

1.010

1.015

n = 4,k = 2

Ours
REVERSE

20 40 60 80

1.004

1.006

1.008

1.010

n = 8,k = 4

Ours
REVERSE

20 40 60 80

1.005

1.006

1.007

n = 12,k = 6

Ours
REVERSE

20 40 60 80

1.003

1.004

1.005

1.006
n = 16,k = 8

Ours
REVERSE

Figure 3: Experiments for weighted voters whose weights are drawn from the Zeta distribu-
tion, and their preferences are drawn uniformly. Different subplots depict different values
of n and k. The x-axis corresponds to different values of m. For each set of n, k,m, 90
experiments were conducted. The solid line represents the mean of the ratio between the
value T obtained by our algorithm, and the C-LP fractional optimum T ?, averaging over
the 90 experiments. The dashed line represents the same mean w.r.t. Reverse.

For more general results, Xia et al. (2010) provide an additive (m − 2)-approximation
for Rα-UCM. In the case of Rα-WCM, each of the extra manipulators will have a weight
of at most max`=1,...,k w`/2.

Approximating the Maximum Score of a Competitor. For Rα-WCM, when m is
bounded, Brelsford et al. (2008, see Lemma 3 therein) provide an FPTAS with respect
to the maximum score of a competitor. In their work, this FPTAS paves the way for an
FPTAS for another objective, namely the difference between the score margin when not
including the manipulator votes and the optimal score margin when including them.

Heuristics for Borda. Davies et al. (2014) present two heuristics that iteratively assign
the largest un-allocated score either to the candidate with the largest gap (Largest Fit),
or to the candidate with the largest ratio of gap divided by the number of scores yet-to-be-
allocated to this candidate (Average Fit). To the best of our knowledge, these algorithms
do not have a counterpart for the weighted case.

Configuration Linear Programs. As discussed, configuration linear programs were
used for scheduling problems, e.g., for the following two problems which were extensively
studied in the past:

141

Keller, Hassidim, & Hazon

• In the so-called Santa Claus problem (Bansal & Sviridenko, 2006), Santa Claus has
t presents that he wishes to distribute between m kids, and pi,j is the value that kid
i has to present j. The goal is to maximize the happiness of the least happy kid:
mini

∑
j∈Si

pi,j , where Si is the presents allocated to kid i.

• In the problem of scheduling on unrelated machines (Svensson, 2012). We need to
assign t jobs to m machines, and pi,j is the time required for machine i to execute
job j. The goal is to minimize the makespan maxi

∑
j∈Si

pi,j , where Si is the jobs
assigned to machine i.

Both papers researched a natural and well-studied ‘restricted assignment’ variant of their
respective problems where each present (resp. job) can be allocated only to a subset of the
children (resp. machines), and that for this specific subset, it has the same value (resp.
required time) pj . Formally, this means that pi,j ∈ {pj , 0} (in the Santa Claus problem) or
that pi,j ∈ {pj ,∞} (in scheduling on unrelated machines). Bansal and Sviridenko (2006)
obtained a multiplicative O(log logm/ log log logm)-approximation to the first problem and
Svensson (2012) obtained a multiplicative (33/17 + ε)-approximation to the second.

7. Conclusions

In this work, we studied both the weighted and unweighted variants of the coalitional
manipulation problem, for the case in which the voting rule can be any scoring rule. We
believe the innovation in this paper is twofold, one conceptual and the other technical.

Conceptually, we have somewhat rekindled the line of research which focuses on objective
functions that are not necessarily the number of manipulators required in order to make p
win – in our case, the score margin.

We justified the return to this line of research by arguing that sometimes, “one extra
manipulator” is too coarse of a resolution when studying the approximation factors provided
by algorithms for the problem. Consequently, focusing instead on the margin yields a more
fine-grained approximation which enables us to find a winning strategy for p in cases where
other methods would not have found one. In another paper published by the current
authors (Keller et al., 2018), we also showed that approximating the score margin is a
key to obtaining an approximation on the number of manipulators, but this time for the
related Bribery problem. Our previous work is thus providing an additional argument for
the significance of this view.

On the technical side, we showed that the natural linear program formulations of our
problems have an inherent limitation w.r.t. the approximation that they can provide, and
thus we presented and advocated the use of configuration linear programs, which—to the
best of our knowledge—is the first use of such LPs in this field.

There are several interesting directions for future work which we provide below. Re-
garding open problems:

1. Can we aim at tighter approximations, or prove the NP-hardness of finding a p-winning
strategy when p can win by only a small margin, for example O(

√
m) for Borda (in

other words, when the optimal score margin is negative, but has an absolute value in
O(
√
m))?

142

New Approximations for Coalitional Manipulation in General Scoring Rules

2. Find other approximation factor trade-offs w.r.t. m and k. For instance, in another
work (Keller et al., 2018), we showed that the natural LP formulation for Rα-UCM
enables—using an elaborate rounding scheme—an additive Õ(α1

√
k)-approximation.

However, given the Ω(m) integrality gap for Borda we have shown in the current
paper, this raises the immediate question: are approximation guarantees in the Ω(α1),
Õ(α1

√
k) range obtainable?

3. For scoring rules Rα, there is a clear dichotomy as to when Rα-WCM is NP-hard.
Can a similar dichotomy be defined for Rα-UCM and for Rα-WCM when weights are
known to be polynomial?

4. Define a taxonomy of instances according to which different manipulation strategies
outperform others.

As for more general directions, we believe that configuration LPs are an important tool,
with more applications yet to be revealed. Specifically, it would be interesting to investigate
whether they can be applied to other voting methods, or even more generally, to other
problems in computational social choice, such as fair division of multiple indivisible goods.

Acknowledgments

We thank Sarit Kraus and Ariel Procaccia for insightful discussions.

This work was supported by the Israel Science Foundation, under Grant No. 1488/14
and Grant No. 1394/16.

References

Andersen, M. S., Dahl, J., & Vandenberghe, L. (2016). CVXOPT: A Python package for
convex optimization, version 1.1.9. cvxopt.org.

Bansal, N., & Sviridenko, M. (2006). The Santa Claus problem. In STOC, pp. 31–40. ACM.

Bartholdi, III, J. J., Tovey, C. A., & Trick, M. A. (1989). The computational difficulty of
manipulating an election. Social Choice and Welfare, 6 (3), 227–241.

Betzler, N., Niedermeier, R., & Woeginger, G. J. (2011). Unweighted coalitional manipula-
tion under the borda rule is NP-hard. In IJCAI, pp. 55–60. IJCAI/AAAI.

Brelsford, E., Faliszewski, P., Hemaspaandra, E., Schnoor, H., & Schnoor, I. (2008). Ap-
proximability of manipulating elections. In AAAI, pp. 44–49. AAAI Press.

Caprara, A., Kellerer, H., Pferschy, U., & Pisinger, D. (2000). Approximation algorithms
for knapsack problems with cardinality constraints. European Journal of Operational
Research, 123 (2), 333–345.

Cary, D. (2011). Estimating the margin of victory for instant-runoff voting. In EVT/WOTE.
USENIX Association.

Chevaleyre, Y., Lang, J., Maudet, N., & Ravilly-Abadie, G. (2009). Compiling the votes of
a subelectorate. In IJCAI, pp. 97–102.

143

Keller, Hassidim, & Hazon

Conitzer, V., Sandholm, T., & Lang, J. (2007). When are elections with few candidates
hard to manipulate?. J. ACM, 54 (3), 14.

Conitzer, V., & Walsh, T. (2016). Barriers to manipulation in voting. In Handbook of
Computational Social Choice, pp. 127–145. Cambridge University Press.

Davies, J., Katsirelos, G., Narodytska, N., & Walsh, T. (2011). Complexity of and algorithms
for Borda manipulation. In AAAI. AAAI Press.

Davies, J., Katsirelos, G., Narodytska, N., Walsh, T., & Xia, L. (2014). Complexity of
and algorithms for the manipulation of Borda, Nanson’s and Baldwin’s voting rules.
Artificial Intelligence, 217, 20–42.

Elkind, E., & Faliszewski, P. (2010). Approximation algorithms for campaign management.
In WINE, Vol. 6484 of Lecture Notes in Computer Science, pp. 473–482. Springer.

Elkind, E., Faliszewski, P., & Slinko, A. M. (2009). Swap bribery. In SAGT, Vol. 5814 of
Lecture Notes in Computer Science, pp. 299–310. Springer.

Ephrati, E., & Rosenschein, J. S. (1993). Multi-agent planning as a dynamic search for
social consensus. In IJCAI, pp. 423–431. Morgan Kaufmann.

Faliszewski, P. (2008). Nonuniform bribery. In AAMAS (3), pp. 1569–1572. IFAAMAS.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. A. (2009). How hard is bribery in
elections?. J. Artif. Intell. Res., 35, 485–532.

Faliszewski, P., & Procaccia, A. D. (2010). AI’s war on manipulation: Are we winning?. AI
Magazine, 31 (4), 53–64.

Faliszewski, P., & Rothe, J. (2016). Control and bribery in voting. In Handbook of Compu-
tational Social Choice, pp. 146–168. Cambridge University Press.

Gibbard, A. (1973). Manipulation of voting schemes: a general result. Econometrica: journal
of the Econometric Society, 587–601.

Grötschel, M., Lovász, L., & Schrijver, A. (1981). The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1 (2), 169–197.

Hemaspaandra, E., & Hemaspaandra, L. A. (2007). Dichotomy for voting systems. J.
Comput. Syst. Sci., 73 (1), 73–83.

Hemaspaandra, E., & Schnoor, H. (2016). Dichotomy for pure scoring rules under manip-
ulative electoral actions. In ECAI, Vol. 285 of Frontiers in Artificial Intelligence and
Applications, pp. 1071–1079. IOS Press.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Jour-
nal of the American statistical association, 58 (301), 13–30.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combi-
natorica, 4 (4), 373–396.

Karush, W. (1939). Minima of functions of several variables with inequalities as side con-
ditions. Master’s thesis, University of Chicago.

Keller, O., Hassidim, A., & Hazon, N. (2017). New approximation for Borda coalitional
manipulation. In AAMAS, pp. 606–614. ACM.

144

New Approximations for Coalitional Manipulation in General Scoring Rules

Keller, O., Hassidim, A., & Hazon, N. (2018). Approximating bribery in scoring rules. In
AAAI. AAAI Press.

Khachiyan, L. G. (1980). Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20 (1), 53–72.

Kuhn, H. W., & Tucker, A. W. (2014). Nonlinear programming. In Traces and emergence
of nonlinear programming, pp. 247–258. Springer.

Létocart, L., & Wiegele, A. (2016). Exact solution methods for the k-item quadratic knap-
sack problem. In ISCO, Vol. 9849 of Lecture Notes in Computer Science, pp. 166–176.
Springer.

Lin, A. P. (2012). Solving hard problems in election systems. Ph.D. thesis, Rochester
Institute of Technology.

Magrino, T. R., Rivest, R. L., & Shen, E. (2011). Computing the margin of victory in IRV
elections. In EVT/WOTE. USENIX Association.

Makhorin, A. (2017). GLPK: GNU linear programming kit, version 4.61.
www.gnu.org/software/glpk/glpk.html.

Pareto, V. (1964). Cours d’économie politique, Vol. 1. Librairie Droz.

Procaccia, A. D., & Rosenschein, J. S. (2007a). Average-case tractability of manipulation
in voting via the fraction of manipulators. In AAMAS, p. 105. IFAAMAS.

Procaccia, A. D., & Rosenschein, J. S. (2007b). Junta distributions and the average-case
complexity of manipulating elections. J. Artif. Intell. Res., 28, 157–181.

Satterthwaite, M. A. (1975). Strategy-proofness and Arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions. Journal
of economic theory, 10 (2), 187–217.

Schrijver, A. (1998). Theory of linear and integer programming. John Wiley & Sons.

Svensson, O. (2012). Santa Claus schedules jobs on unrelated machines. SIAM J. Comput.,
41 (5), 1318–1341.

Xia, L. (2012). Computing the margin of victory for various voting rules. In EC, pp.
982–999. ACM.

Xia, L., & Conitzer, V. (2010). Compilation complexity of common voting rules. In AAAI.
AAAI Press.

Xia, L., Conitzer, V., & Procaccia, A. D. (2010). A scheduling approach to coalitional
manipulation. In EC, pp. 275–284. ACM.

Zuckerman, M., Procaccia, A. D., & Rosenschein, J. S. (2009). Algorithms for the coalitional
manipulation problem. Artificial Intelligence, 173 (2), 392–412.

145

