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Abstract

In real-world project scheduling applications, activity durations are often uncertain.
Proactive scheduling can effectively cope with the duration uncertainties, by generating
robust baseline solutions according to a priori stochastic knowledge. However, most of
the existing proactive approaches assume that the duration uncertainty of an activity is
not related to its scheduled start time, which may not hold in many real-world scenar-
ios. In this paper, we relax this assumption by allowing the duration uncertainty to be
time-dependent, which is caused by the uncertainty of whether the activity can be exe-
cuted on each time slot. We propose a stochastic optimization model to find an optimal
Partial-order Schedule (POS) that minimizes the expected makespan. This model can
cover both the time-dependent uncertainty studied in this paper and the traditional time-
independent duration uncertainty. To circumvent the underlying complexity in evaluating
a given solution, we approximate the stochastic optimization model based on Sample Av-
erage Approximation (SAA). Finally, we design two efficient branch-and-bound algorithms
to solve the NP-hard SAA problem. Empirical evaluation confirms that our approach can
generate high-quality proactive solutions for a variety of uncertainty distributions.

1. Introduction

Resource-Constrained Project Scheduling Problem (RCPSP) is a general model for various
scheduling applications in manufacturing, logistics and business management. An instance
of RCPSP contains a set of non-preemptive activities and multiple renewable resources with
limited capacities. Each activity has certain amounts of requirement for one or more types of
resources, and may have precedence dependencies with other activities. Traditional research
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on RCPSP assumes a deterministic problem setting where the activity durations are fully
known as static values before execution (Demeulemeester & Herroelen, 1997; Laborie, 2005;
Song, Kang, Zhang, & Xi, 2017a). However, real-world activities are highly sensitive to
various sources of uncertainties (e.g. transportation time, manpower availability, weather
condition changes). Consequently, the activity durations become uncertain, which may
further lead to frequent disruptions of schedules generated by solving deterministic RCPSP
instances. Therefore, it is of great practical value to account for the uncertainties in solving
the scheduling problems.

In the literature, many approaches have considered the problem of scheduling in stochas-
tic environment. According to the taxonomy proposed by Bidot, Vidal, Laborie, and Beck
(2009), these approaches can be classified into three groups, namely proactive, revision, and
progressive approaches. More specifically, proactive approach refers to those techniques
that exploit a prior stochastic knowledge to generate a baseline solution before execution,
which can be a complete schedule or a policy that will be used during execution to gen-
erate a schedule. The baseline solution will never be modified in execution. In contrast,
revision techniques generate a complete schedule before execution, and revise it whenever
needed according to actual observations (e.g. schedule becomes infeasible, quality degrades
too much). Techniques in the last group, i.e. progressive approaches, do not generate any
solution before execution, instead all the scheduling decisions are made in an online fashion
during execution. Compared with the other two alternatives, proactive approaches tend
to produce solutions with higher quality and robustness, since the stochastic knowledge is
explicitly taken into account in generating the baseline solutions (Bidot et al., 2009). More-
over, because the decisions made in the baseline solution (e.g. activity start times, activity
dependencies, resource allocation commitments) will not be revised online, it can serve as
an important guideline in coordinating various aspects of the whole execution process, for
example material preparation, supply chain planning, subtask planning, and so on (Lamas
& Demeulemeester, 2016; Aytug, Lawley, McKay, Mohan, & Uzsoy, 2005). Thus, we study
the proactive scheduling problem of RCPSP in this paper.

Till now, a number of proactive scheduling approaches for RCPSP with stochastic du-
rations have been successfully developed in the literature. Most of these approaches are
designed for the model of stochastic RCPSP (Creemers, 2015), where the activity duration
is assumed to be a random variable having no relation to its scheduled start time. In reality,
however, this assumption could be violated quite often since it cannot reflect the impact of
all the uncertainty sources (Bruni, Beraldi, & Guerriero, 2015). As a motivating example,
suppose an activity can be executed (i.e. workable) only when certain weather conditions
(e.g. temperature, humidity, wind speed, and so on) are satisfied; meanwhile, the activity
needs to secure enough workable days to finish successfully. In this case, the activity dura-
tion uncertainty comes from the stochastic workability of each time slot (day). Due to the
seasonality of weather conditions, the duration uncertainty of an activity should depend on
its start time, which contradicts the assumption of time-independence in previous research.

In this paper, we study the proactive scheduling problem on a generalized uncertainty
model, which covers both the traditional stochastic RCPSP and the time-dependent worka-
bility uncertainty. Our approach adopts the minimization of expected makespan as the opti-
mization objective, and produces Partial-order Schedules (POS) (Policella, Smith, Cesta, &
Oddi, 2004) as proactive solutions. Compared to start-time schedules, POS is more flexible
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in handling unforeseen events, since activity start times are determined online based on ac-
tual durations (Fu, Lau, Varakantham, & Xiao, 2012). However, it is not trivial to find the
optimal solution for our problem, not only due to the well-known intractability of RCPSP
(Blazewicz, Lenstra, & Kan, 1983). Handling uncertainties is challenging, since even evalu-
ating a solution is intractable. Hagstrom (1988) showed that for stochastic RCPSP without
resource constraints, complexity of computing expected makespan is #P-complete.

We mitigate the complexity resulted from the stochasticity based on Sample Average
Approximation (SAA) (Kleywegt, Shapiro, & Homem-de Mello, 2002), which is a principled
approximation scheme for solving hard discrete stochastic optimization problems, with the
proven ability to converge to the optimal solution. Our approach first generates a set of sam-
ples from the probability distributions, then optimally solves the resulting SAA problem.
As will be shown later, the SAA problem is NP-hard due to the combinatorial structure of
RCPSP. Therefore, we design two branch-and-bound algorithms to solve the SAA problem
optimally by exploiting interesting problem structures. These two algorithms differ in the
way of how the POS is constructed. More specifically, the first algorithm constructs a POS
by linking the activities one by one using feasible resource flows. The second algorithm finds
a POS by iteratively resolving possible resource conflicts represented as Minimal Critical
Sets (MCS) (Laborie, 2005) using additional precedence constraints. To show the effec-
tiveness of our approach, we evaluate the two algorithms on multiple uncertainty models
from existing works and real-world data, and compare the solution quality with the best
approaches available.

This paper is an extension of our previous work (Song, Kang, Zhang, & Xi, 2017b),
where the flow-based branch-and-bound algorithm is proposed for solving the proactive
scheduling problems only with the workability uncertainty. Considerable improvements
have been made in this version, including:

• We generalize the activity duration model presented by Song et al. (2017b) to in-
corporate the traditional stochastic RCPSP model, such that our approach can be
applied to solve uncertainty models containing the time-independent components.

• We design another branch-and-bound algorithm, i.e. the MCS-based algorithm, which
finds a POS from a different angle than the flow-based algorithm. In addition, we
adopt the constraint propagation procedure presented by Song, Kang, Zhang, and
Xi (2018) to speed up the MCS-based searching process. As will be shown in the
experimental results, the MCS-based algorithm with constraint propagation performs
significantly better in terms of computational efficiency than the flow-based algorithm.

• We conduct additional empirical analysis to examine the performance of our approach,
including experiments on pure stochastic RCPSP models and mixture models with
both time-independent and time-dependent components.

The rest of this paper is organized as follows. Section 2 gives a review of existing works
that are related to our problem. In Section 3, we provide the basic notations and important
concepts that will be used in this paper. In Section 4, we formulate our proactive scheduling
problem and show how to approximate it using SAA. In Section 5, we study some interesting
properties of the SAA problem, which will be used in designing our algorithms. Section 6
is devoted to the detailed description of the two branch-and-bound algorithms. Finally, we
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present the empirical results on benchmark problem instances and different distributions in
Section 7, and conclude the paper in Section 8.

2. Related Work

Considerable amount of works have been done for planning and scheduling under uncer-
tainty. Several surveys (Bruni et al., 2015; Bidot et al., 2009; Herroelen & Leus, 2005) are
available for a complete review of the methodologies in this field. In this section, we focus on
reviewing existing works on proactive scheduling, which are closely related to our research.
Specifically, we classify existing approaches according to the type of solutions generated,
following the taxonomy established by Bidot et al. (2009).

The first category of approaches adopts start-time schedules as solutions, where the start
time of each activity is fixed. The optimization objective is often risk-aware, which is to
find a schedule with the minimal makespan and has a high chance of being feasible during
actual execution. State-of-the-art approaches in this category (Lamas & Demeulemeester,
2016; Varakantham, Fu, & Lau, 2016) achieve the risk-aware optimization by adding a
probabilistic constraint to the Mixed Integer Linear Program (MILP) for the deterministic
RCPSP. The additional constraint can guarantee that the probability of schedule viola-
tion is restricted to a certain risk level. However, the resulting probabilistic-constrained
MILP models are hard to solve and need to be tackled by sampling based methods. These
approaches are not applicable when the duration uncertainty is time-dependent, since the
duration samples cannot be obtained without knowing the activity start times.

Another type of solutions for proactive scheduling is flexible solutions. Different from
start-time schedule, a flexible solution does not directly determines the start time of each
activity. Instead, the complete schedule is determined along with execution, based on the
flexible solution and the actual execution situations. A typical example of flexible solution
is dynamically controllable Simple Temporal Network with Uncertainty (STNU) (Cui, Yu,
Fang, Haslum, & Williams, 2015; Morris, Muscettola, & Vidal, 2001; Morris & Muscettola,
2005). However, STNU-based approaches are not directly applicable to resource-constrained
settings, since they often focus on temporal reasoning only. Redundancy-based techniques
for machine breakdowns (Davenport, Gefflot, & Beck, 2001; Lambrechts, Demeulemeester,
& Herroelen, 2011) are another type of approaches that generate flexible solutions by pro-
tecting activities using extra temporal slacks. More specifically, the durations of some
activities which could be affected by the machine breakdowns will be elongated in a proac-
tive way, such that the impact of machine breakdowns can be absorbed. The uncertainty
model of machine breakdown is similar to our problem, since the breakdown probability
is often time-related. However, these approaches are heuristic solutions, and are limited
to specific probability distributions of machine breakdowns, for example normal (Daven-
port et al., 2001) and exponential distributions (Lambrechts et al., 2011). In contrast,
our approach is built on principled approximation scheme SAA, and does not require the
stochastic knowledge to follow certain distributions thanks to the sampling procedure.

For RCPSP, perhaps the most commonly used type of flexible solution is Partial-order
Schedule (POS). Essentially, a POS adds a set of additional precedence constraints be-
tween activities to resolve any possible resource conflict during execution. Policella et al.
(2004) proposed two approaches to directly generate POS from a deterministic RCPSP
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instance, including (a) Envelop Based Algorithm (EBA) and (b) Earliest Start Time Algo-
rithm (ESTA). EBA generates a POS by reasoning with the resource contention represented
as the resource envelope (Muscettola, 2002), while ESTA first constructs a start-time sched-
ule and then transforms it to a POS using a chaining procedure. More details about these
two approaches will be provided in Section 7.1. A desirable property of these approaches
is that they can be applied to handle any type of duration uncertainty, since they do not
require any stochastic knowledge. However, as will be shown in our experiments, when the
stochastic knowledge is available, it is of great advantage to exploit it to generate signif-
icantly better solutions. More recently, several approaches are proposed to generate POS
based on known stochastic knowledge (Beck & Wilson, 2007; Fu et al., 2012; Fu, Lau, &
Varakantham, 2015; Fu, Varakantham, & Lau, 2016), for optimizing the risk-aware robust
makespan. However, a major assumption in these works is that the probability models of
activity durations are independent of their start times. Therefore, they cannot be applied
to solve our proactive scheduling problem.

The last type of flexible solution mentioned by Bidot et al. (2009) is conditional schedule,
referring to solutions with a set of mutually exclusive decision branches. Decisions of which
branches to go will be made at certain time points during execution, contingently based
on the actual execution. A typical example of such kind of proactive model is Markov
Decision Process based techniques. For the traditional stochastic RCPSP which aims at
minimizing the expected makespan on time-independent duration uncertainties, a number
of approaches have been proposed to optimize the so-called elementary policies, which are
essentially conditional schedules (Igelmund & Radermacher, 1983; Möhring, 2000; Stork,
2001; Ballest́ın, 2007; Ashtiani, Leus, & Aryanezhad, 2011; Creemers, 2015). The current
best approach for stochastic RCPSP is the dynamic programming procedure proposed by
Creemers (2015). Our proactive approaches differ from this work in three aspects. Firstly,
elementary policy generalizes POS. Essentially, an elementary policy starts the activities at
the completion time of some other activity (equivalent to adding a precedence constraint),
based on the actual execution. But the resulting precedence network of an elementary
policy is not necessarily a POS, since the resource conflicts can only be resolved for the
actual scenario, instead of for all the possible scenarios. Hence, POS can be viewed as a
special case of elementary policy, therefore an optimal elementary policy could have better
expected makespan than an optimal POS. However, the solution space of elementary policy
is much larger than that of POS. In addition, the memory requirements for computing
and storing conditional schedules are very high (Bidot et al., 2009). Secondly, the proposed
dynamic programming procedure can only terminate when the optimal policy is found, while
our algorithms can be terminated anytime with high-quality feasible solutions. Finally, this
approach can only solve stochastic RCPSP with time-independent uncertainties, while our
approach is applicable to the time-dependent workability uncertainty.

3. Preliminaries

In this section, we introduce the basic notations used in this paper, and some important
concepts that are closely related to our approaches.
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Figure 1: An example of the AON network

3.1 Deterministic RCPSP

An instance of deterministic RCPSP involves a set of activities A = {a1, ..., aN} that need
to be scheduled in a horizon of T consecutive time slots, and a set of renewable resources
R = {r1, ..., rK} where each rk ∈ R has a finite capacity of Ck ∈ N units. Each activity
ai ∈ A has a fixed duration of dsi ∈ N time slots, and requires bik ∈ N units of resource rk.
We follow the common assumption of non-preemptive activities, i.e. an activity cannot be
interrupted once started. Usually two dummy activities a0 and aN+1 with zero durations
and no resource requirement are added to represent the start and completion of the project.
A pair of activities ai and aj in Ap = A∪{a0, aN+1} could have a precedence relation ai ≺ aj ,
which is a temporal constraint indicating that aj must start after the completion of ai. Let
Ep = {(ai, aj)|ai ≺ aj , ∀ai, aj ∈ Ap} be the set of all precedence constraints, and Pre(ai) =
{aj ∈ Ap|aj ≺ ai} be the immediate predecessors of an activity ai. Then, the temporal
constraints within a project can be represented as an Activity-On-Node (AON) network,
which is a directed acyclic graph (DAG) Gp = (Ap, Ep). The AON network of a sample
project containing 10 activities is shown in Figure 1, where a circle represent an activity, and
the number below it is the requirement for a single resource with limited capacity of 4 units.
In addition, the arrows between circles represent the precedence relations. Throughout this
paper, we let V (G) and E(G) be the vertex set and edge set of a graph G, respectively. We
also denote Tr(G) as the transitive closure of G, where (ai, aj) ∈ Tr(G) indicates there is
a path from ai to aj .

A solution to a deterministic RCPSP is a (start-time) schedule, which is a vector S =
(s0, ..., sN+1), where si is the start time of ai. For an activity ai in the deterministic RCPSP,
once si is determined, its completion time ci = si+d

s
i is also determined. A feasible schedule

must satisfy all the resource and precedence constraints. A feasible schedule S∗ is optimal
if it minimizes the makespan MS(S) = maxi{ci} = cN+1.

3.2 Partial-order Schedule and AON-flow Network

Under uncertain activity durations, a feasible schedule S generated by solving a determin-
istic instance could become infeasible during execution, since the activity completion times
are also uncertain. Whenever this happens, the schedule must be repaired (i.e. restore the
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feasibility) so that the project execution can be resumed. The repair procedures are often
expensive, since both temporal and resource constraints need to be taken into account.

Different from the start-time schedules, Partial-order Schedule (POS) (Policella et al.,
2004) is a type of flexible solution for proactive scheduling problems, where the start time
of each activity is determined during execution time instead of before execution. A POS is
a graph GR = (Ap, Ep ∪ ER) that augments the AON network Gp by adding an additional
set of precedence constraints ER, such that any temporal feasible solution of GR is also
resource feasible. A sample POS for the project in Figure 1 is shown in Figure 2, where the
dotted arrows represent the additional precedence constraints in ER. POS provides a very
efficient way for dealing with uncertain durations, by avoiding the requirement of reasoning
for complex resource constraints. Specifically, the start time of each activity is determined
solely based on the precedence constraints and realized activity durations. Given a POS
GR, let Pre(ai, GR) = {aj ∈ Ap|(aj , ai) ∈ Ep ∪ ER} be the immediate predecessors of an
activity ai specified by GR. During execution time, the start time si of ai can be computed
very easily using the equation below:

si = max{cj = sj + dj |aj ∈ Pre(ai, GR)}, (1)

where dj is the realized duration of aj . In other words, ai is started after the completion of
all its immediate predecessors. Along with execution, the start times of all ai ∈ Ap can be
determined, hence a feasible schedule is obtained. We refer to the set of all POS as GR.

Another concept that will be used here is the AON-flow Network (Artigues, Michelon,
& Reusser, 2003). Though POS eliminates the requirements for resource reasoning, the
resource allocation decision (i.e. which resource unit is allocated to which activity) is not
clearly specified. The resource allocation decision is considered to be very important in
practice, since it can provide great advantage in preparing and coordinating the execution
process (Leus & Herroelen, 2004). AON-flow Network explicitly specifies such resource
allocation decision by specifying resource flows between activities. Similar to POS, an
AON-flow Network GF = (Ap, Ep ∪ EF ) is also an augmented DAG of the original AON
network Gp. The difference lies in the set EF , where each element (ai, aj) ∈ EF carries a
resource flow from ai to aj . The flow is represented as a vector fij = (fij1, ..., fijK), where
0 ≤ fijk ≤ Ck is the amount of resource rk being transfered from ai to aj , i.e. ai will release
fijk of rk to aj after completion. It should be noted that Ep ∩ EF is not necessarily to be
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Figure 3: An example of AON-flow Network

∅, which means some edges in the original AON network Ep may also carry resource flows.
Figure 3 shows a sample AON-flow Network for the project in Figure 1, where the arrows
associated with values represent the resource carrying edges in EF , and the values indicate
the transfered resource units.

Artigues et al. (2003) mentioned that, the resource flows in a feasible AON-flow Network
should satisfy a set of conditions since the problem context is resource-constrained. For
convenience, let the requirement for each resource rk of the two dummy activities be bk0 =
bkN+1 = Ck.

1 Then GF should satisfy the conditions below:

• Positive flow:
∑

rk∈R fijk > 0, ∀(ai, aj) ∈ EF ;

• Inflow balance:
∑

(aj ,ai)∈EF
fjik = bki ,∀rk ∈ R, ai ∈ Ap \ {a0};

• Outflow balance:
∑

(ai,aj)∈EF
fijk = bki ,∀rk ∈ R, ai ∈ Ap \ {aN+1}.

The positive flow condition guarantees that no edge in EF carries zero resource flow. The
inflow and outflow balance guarantee that the total resource units received and sent by an
activity should equal its requirement. We denote the set of AON-flow Networks as GF .

Intuitively, POS and AON-flow Network have close relationship since they share some
similarities in their definitions and structures. For example, an AON-flow Network is also
a POS since all the possible resource conflicts are resolved by the resource flows. We will
further analyze the connections between these two concepts in Section 6.1.

4. Problem Formulation

In this section, we first model the uncertainty in Section 4.1, and then formulate the stochas-
tic optimization model of our proactive problem and its SAA approximation in Section 4.2.

4.1 The Model of Uncertainty

We first briefly describe the workability uncertainty model introduced by Song et al. (2017b).
Without loss of generality, we first classify all activities in A into Z types, such that activities

1. Note that this does not affect the problem, since a0 and aN+1 have zero durations.
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of the same type can be described by the same workability uncertainty model (e.g. requiring
the same weather condition). For each activity type z, its (uncertain) workability in a time
slot t ∈ {1, ..., T} can be represented by a binary random variable Xzt, where its realization
xzt ∈ {0, 1} and activities of type z can only work on t when xzt = 1.2 Then, the workability
model of activity type z can be represented by a random vector Xz = (Xz1, ...,XzT ). Note
that here we do not require Xzt to be independent with each other. Therefore, depending
on applications, Xz can also be described by complex models, e.g. a (truncated) random
process. The complete workability uncertainty model can be represented as a random ma-
trix X = [Xzt]Z×T , where row z is the random vector for activity type z. Such uncertainty
model may exist in many applications. Essentially, it describes the random workability
(when Xzt is binary) or working amount (when Xzt is non-binary) of an activity on each
time slot. One type of applications is the motivating example we described in the introduc-
tion, where the activity may not be executed on certain time slots if the weather condition
is not satisfied. Another type of related scenarios is in the transportation or vehicle routing
applications (Cao, Guo, Zhang, Oliehoek, & Fastenrath, 2017; Cao, Guo, Zhang, Niyato, &
Fastenrath, 2016), where the distance that can be traveled or goods that can be delivered
by a vehicle on each specific time period is random. It should be noted that though the
random matrix X is defined on all t, in many applications the model does not need to cover
the whole horizon due to the periodicity of uncertainty patterns (e.g. daily, weekly, yearly,
etc.).

Next, we discuss the probabilistic activity durations under the workability uncertainty.
We first assume that this is the only uncertainty source, and each activity ai has a fixed
baseline duration dsi . Specifically, dsi is the condition for determining the completion of an
activity: once started, ai must acquire at least dsi workable time slots before completion.
As Song et al. (2017b), we can formulate the cumulative distribution function (CDF) of
the random duration Di of an activity ai, conditioning on its start time si as:

FDi (di | si = t) = P (Di ≤ di | si = t)

= P

(
t+di−1∑
τ=t

Xziτ ≥ dsi

∣∣∣∣∣si = t

)
,

(2)

where di is a possible realization of Di, and zi ∈ {1, ..., Z} is the type of ai. Clearly, Di

depends on si since Xziτ is time-dependent.
Below we generalize the probabilistic duration model in Equation (2) to incorporate the

traditional time-independent duration model. In stochastic RCPSP, it is assumed that the
duration of ai can be represented as a random variable Yi that is not conditioned on its start
time si. In this case, the duration uncertainty model is a random vector Y = (Y1, ...,YN ). In
reality, it is possible that both X and Y exist at the same time, since they reflect different
sources of uncertainty. For example, suppose the execution of an activity is affected by
both the weather conditions and unforeseen resource breakdowns, which can be modeled
as a time-independent random elongation to the deterministic activity duration (Fu et al.,
2015; Lambrechts et al., 2011). Note that the two uncertainty sources affect the activity
duration in different ways: the random resource breakdown determines how many workable

2. The binary assumption is somehow restrictive; however our approach can be easily adapted to support
more “fine-grained” models where the domain of xzt has more values.
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time slots are needed (i.e. the baseline duration), while the weather condition determines
whether a time slot can be counted as workable. In this case, the baseline duration of ai is
not fixed as dsi , instead it is the time-independent random variable Yi. Then Di conditions
on si and Yi at the same time, and its CDF can be formulated as:

FDi (di | si = t,Yi = yi) = P (Di ≤ di | si = t,Yi = yi)

= P

(
t+di−1∑
τ=t

Xziτ ≥ yi

∣∣∣∣∣si = t,Yi = yi

)
,

(3)

where yi is a possible realization of Yi. We denote the uncertainty model studied in this
paper as U =<X,Y >, which is a tuple with two components. Clearly, when the baseline
durations are deterministic, i.e. P (Yi = dsi ) = 1 holds for all activity ai, Equation (3)
is equivalent to Equation (2) when Yi = dsi since the dependence on Yi can be removed.
Meanwhile, we can have the following observation:

Observation 1. When P (Xzt = 1) = 1 holds for all z and t, the random duration Di

specified by Equation (3) is time-independent, and shares the same distribution with Yi.

The correctness of Observation 1 can be verified as follows:

FDi (di | si = t,Yi = yi) = P (Di ≤ di | si = t,Yi = yi)

= P

(
t+di−1∑
τ=t

Xziτ ≥ yi

∣∣∣∣∣si = t,Yi = yi

)
= P (di ≥ yi|si = t,Yi = yi) = P (Yi ≤ di).

(4)

Therefore, the uncertainty model U =<X,Y > and the CDF in Equation (3) general-
ize both the traditional time-independent uncertainty and the time-dependent workability
uncertainty at the same time. Note that model U is a special case of the more general
time-dependent uncertainty model. It is an important future direction for us to explore
how to efficiently handle the general time-dependent uncertain durations.

4.2 The Proactive Problem and Sample Average Approximation

Now, we are ready to formulate the proactive problem studied in this paper: given a RCPSP
instance and the uncertainty model U , find a POS G∗R ∈ GR that minimizes the expected
makespan:

G∗R = argmin
GR∈GR

{g(GR) = E[MS(GR,U)]} , (5)

where E[·] is the expectation operator and MS(GR,U) is a random variable representing
the (stochastic) makespan of a solution GR on U . Note that in the above formulation and
the algorithms that will be presented in the following sections, we make the assumption
that the online decision making is purely based on Equation (1). If more complex online
procedures are allowed, then it must be explicitly incorporated in Equation (6) such that
the proactive scheduling problem is meaningful. Though this could lead to better expected
makespan, the proactive algorithm must be designed based on detailed analysis on the
specific online procedure.
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Equation (5) is a hard stochastic optimization problem, not only due to the combina-
torial nature of RCPSP. In fact, even evaluating a solution is intractable. When U only
contains component Y , the expected value computation of a given solution GR is equivalent
to the MEAN PERT problem, which is shown to be #P-complete (Hagstrom, 1988). When
U only contains component X, the number of possible realizations of X is 2ZT , which grows
exponentially with the problem size. To circumvent the hardness in computing the expected
makespan, here we use Sample Average Approximation (SAA) to approximate the prob-
lem in Equation (5). SAA is a Monte-Carlo simulation based approach for approximately
solving hard discrete stochastic optimization problems (Kleywegt et al., 2002). The basic
idea of SAA is very intuitive. Essentially, a set of independent random samples are drawn
from the distribution, and then a SAA problem, which is an approximation of the original
problem, is formulated by substituting the original objective function (i.e. expected value)
with the sample average function. By solving the SAA problem, an approximate solution
can be found, which is proved to converge to the optimal solution of the original problem
at an exponential rate with the increase of sample size (number of samples).

Now we show how to approximate the problem in Equation (5) using SAA. Given the
uncertainty model U =< X,Y >, a sample is a tuple u =< X,Y >, where X = [xzt]Z×T
and Y = (y1, ..., yN ) is a realization of X and Y , respectively. For convenience, we use
x(u, z, t) to represent the workability of activity type z in time slot t specified by sample
u, and let y(u, i) to be the baseline duration of activity ai in u. We first draw Q random
samples u = {u1, ..., uQ} independently from U . Then, the SAA problem of Equation (5)
can be formulated as:

Ĝ∗R = argmin
GR∈GR

ĝ(GR) =
1

Q

Q∑
q=1

MS(GR, u
q)

 , (6)

where Ĝ∗R is the optimal solution of the SAA problem, ĝ(GR) is the sample average function
of the original expected value function g(GR) in Equation (5), and MS(GR, u

q) is the
makespan of a solution GR on sample uq. As proved by Kleywegt et al. (2002), Ĝ∗R will
converge to G∗R at an exponential rate with the increase of Q. Meanwhile, Equation (6) is
a deterministic problem instead of a stochastic one, which can help to avoid reasoning on
the complex uncertainty models and facilitate the design of algorithms. More importantly,
in the next section, we will show that the complexity of computing ĝ(GR) for a given GR
is polynomial-time, which significantly simplifies the hardness of solution evaluation.

5. Properties of the SAA Problem

In this section, we study some interesting properties of the SAA problem in Equation (6).
First, we show how to compute the sample average function ĝ(GR) for a given solution
GR. More specifically, we only need to show the computation of MS(GR, u). According to
Equation (1), the start time si of an activity ai can be determined by the completion times
of all its predecessors specified by a solution GR. Therefore, we only need to determine the
durations of these predecessors on sample u. However, the duration of each activity is not
directly specified in u. Below we analyze how to compute such duration.
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Intuitively, the duration of an activity on a sample should be time-dependent. Specifi-
cally, for activity ai, if it starts at si on a sample u, then a duration di is feasible if ai can
obtain enough workable time slots before completion, i.e.

∑ci−1
τ=si

x(u, zi, τ) ≥ y(u, i), where
ci = si + di is the completion time. Many di values can satisfy the above condition, but we
can show that it is sufficient to use the minimum value of them, as given by the following
equation:

di(si, u) = min

{
d > 0

∣∣∣∣∣
si+d−1∑
τ=si

x(u, zi, τ) ≥ y(u, i)

}
. (7)

In other words, an activity should be completed once it acquires enough workable time slots.
By definition, di(si, u) is the smallest feasible duration. To show the rationale, we first show
that an activity can never finish earlier by starting later, by proving the following lemma:

Lemma 1. For an activity ai and a sample u, given two start times s1
i and s2

i , if s1
i ≤ s2

i ,
then for any feasible duration d2

i of s2
i , c

1
i (s

1
i , u) ≤ c2

i holds, where c1
i (s

1
i , u) = s1

i + di(s
1
i , u)

and c2
i = s2

i + d2
i .

Proof. We only need to show that c1
i (s

1
i , u) ≤ c2

i (s
2
i , u) = s2

i +di(s
2
i , u), since di(s

2
i , u) is less

than any other feasible d2
i . For convenience, below we denote c1

i (s
1
i , u) and c2

i (s
2
i , u) as ci(1)

and ci(2), respectively. According to Equation (7),

ci(1)−1∑
t=s1i

x(u, zi, t) =

ci(2)−1∑
t=s2i

x(u, zi, t) = y(u, i). (8)

It is easy to verify that the lemma holds if s2
i ≥ ci(1). When s1

i ≤ s2
i < ci(2), we first

assume ci(1) > ci(2). Then, we have

s2i−1∑
t=s1i

x(u, zi, t) +

ci(2)−1∑
t=s2i

x(u, zi, t) +

ci(1)−1∑
t=c2i

x(u, zi, t) = y(u, i). (9)

Since the second term in the left hand side of Equation (9) equals to y(u, i), we have∑s2i−1

t=s1i
x(u, zi, t) +

∑ci(1)−1
t=ci(2) x(u, zi, t) = 0, which indicates that

∑ci(1)−1
t=ci(2) x(u, zi, t) = 0 since

x(u, zi, t) ≥ 0. Hence, the third term in the left hand side of Equation (9) can be removed,
indicating d′i = ci(2) − s1

i is a feasible duration. However, based on the assumption, d′i <
ci(1) − s1

i = di(s
1
i , u), which contradicts Equation (7) which states that di(s

1
i , u) is the

minimum feasible duration.

According to Equations (1) and (7), we can now obtain a start time schedule of a POS
GR on a given sample u. We denote this schedule as S(GR, u). Then, based on Lemma 1, we
can show that the schedule obtained in such way is sufficient for our purpose of minimizing
makespan by proving the following proposition:

Proposition 1. Given a POS GR and a sample u, the schedule S(GR, u) produces the
lowest makespan.
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Algorithm 1: ComputeMakespan(GR, u)

Input: GR: a solution; u: a sample
Output: MS(GR, u): the makespan of GR on u

1 CS ← {a0}, ES ← {ai /∈ CS|Pre(ai) ⊆ CS} ;
2 while |CS| < |Ap| do
3 foreach ai ∈ ES do
4 si ← max{cj |aj ∈ Pre(ai)} ;
5 ci ← si + di(si, u) ;
6 CS ← CS ∪ {ai} ;

7 ES ← {ai /∈ CS|Pre(ai) ⊆ CS};
8 return MS(GR, u) ;

Proof. Let S′(GR, u) be a schedule obtained by setting the duration of an activity ai to
a feasible duration d′i > di(si, u). Then according to Equation (1), the start time of any
immediate successor aj of ai cannot be earlier than the corresponding start time in S(GR, u).
According to Lemma 1, the finish time of j determined by S′(GR, u) cannot be earlier
than that determined by S(GR, u), which indicates a non-negative delay of aj . By further
propagating this delay through GR, a makespan equal or larger than MS(S(GR, u)) will be
obtained.

It should be noted that Equation (7) does not exclude the possibility that an activity
could obtain a smaller duration by starting later, due to the time-dependent workability
uncertainty. However, Lemma 1 and Proposition 1 show that for activities in a POS, it is
not helpful to start late, since the delay will be propagated to the “downstream” activities
and finally lead to a non-negative increase of the makespan. Meanwhile, we can have the
following observation which will be used in designing our algorithms:

Observation 2. Given two POS G1
R and G2

R, if V (G1
R) = V (G2

R) = Ap and E(G1
R) ⊆

E(G2
R), then MS(G1

R, u) ≤MS(G2
R, u) holds for any sample u.

The reason is that, for any activity ai ∈ Ap, we can see that Pre(ai, G
1
R) ⊆ Pre(ai, G2

R).
Therefore, the start time of ai in schedule S(G2

R, u) cannot be earlier than that in S(G1
R, u),

according to Equation (1). This indicates that ai cannot complete earlier by using G2
R than

using G1
R, according to Lemma 1. Thus, G2

R results in an equal or larger makespan than
G1
R on u.

Let MS(GR, u) = MS(S(GR, u)) be the makespan of GR on u. The value of MS(GR, u)
can be computed in many efficient ways. In Algorithm 1, we give a simple algorithm with
a complexity of O(N2T ). Therefore, it is tractable to evaluate the objective ĝ(GR), with a
complexity of O(MN2T ). However, the SAA problem is intractable, as stated below:

Proposition 2. The SAA problem in Equation (6) is NP-hard.

Proof. The NP-hardness can be shown through reduction from the decision version of de-
terministic RCPSP, which is well-known to be NP-complete. Specifically, for a given de-
terministic RCPSP instance, we can construct an instance of the SAA problem, by adding
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one sample u where xzt = 1 for all z and t, and yi = dsi for each activity ai with dsi being
the deterministic duration of ai.

We claim that the SAA problem has a solution GR with ĝ(GR) ≤ t if and only if there
is a schedule S for the deterministic RCPSP instance with MS(S) ≤ t. If such a schedule S
exists, then a POS GR can be immediately obtained by the chaining procedure (Policella,
Cesta, Oddi, & Smith, 2009) in polynomial time. Propagating this GR on u will produce a
schedule with the makespan MS(GR, u) ≤ t, hence ĝ(GR) ≤ t. On the other hand, if we can
find a GR satisfying ĝ(GR) ≤ t, then the schedule S(GR, u) must satisfy MS(GR, u) ≤ t.

6. Branch-and-Bound Algorithms

Since the SAA problem is intractable, in this section, we design two branch-and-bound
algorithms to solve it efficiently. We begin with analyzing the relations between POS and
AON-flow Network. Then, we propose two branch-and-bound algorithms, namely the flow-
based algorithm and the MCS-based algorithm.

6.1 Relations between POS and AON-flow Network

As we have mentioned in Section 3.2, an AON-flow Network is also a POS, since all the
possible resource conflicts are resolved by the resource flows. However, the reverse relation,
i.e. whether an AON-flow Network can be obtained from a POS, is not straightforward.
Below we show that given a POS, such an AON-flow Network indeed exist, and can be
found in polynomial time using maximum flow algorithms.

First, for a given DAG G = (Ap, E), we introduce a method for determining whether an
AON-flow Network GF with E(GF ) ⊆ E(G) exist. When there is only one resource r with
capacity C, it has been shown by Leus and Herroelen (2004) that the existence of such an
AON-flow Network can be checked by computing a maximum flow in a transformed network
GT constructed as follows: 1) create two vertices asi and ati for each ai ∈ A, and one vertex
for a0 and aN+1 named as as0 and atN+1, respectively; 2) create two vertices, s and t with
an edge (t, s) as the virtual source and sink, and add edges (s, asi ), (ati, t) for all ai ∈ Ap;
3) for each (ai, aj) ∈ E(G), add an edge (asi , a

t
j). Each (s, asi ) and (ati, t) has a capacity bi

that is equal to the resource requirement of ai, while the capacities of other edges are +∞.
An example of this transformation is shown in Figure 4. Let f(GT ) be the maximum (s, t)
flow value in GT , then there exists an AON-flow Network GF with E(GF ) ⊆ E(G) if and
only if f(GT ) = fmax, where fmax = C +

∑
ai∈A bi. Moreover, a feasible flow in G can be

obtained by setting fij to the flow value on the edge (asi , a
t
j) in GT . Furthermore, based

on the well-known integral flow theorem, there exists an optimal integer flow, i.e. all fij
are integers. This integer maximum flow can be found very efficiently using maximum flow
algorithms (e.g. Edmonds-Karp algorithm).

Here we extend the above procedure to support multiple resources. For each rk ∈ R, we
maintain a transformed network GT (k) for a given DAG G. Note that these networks have
the same edge sets, while the edge capacities are set to bki for the corresponding GT (k). Let
fkmax = Ck +

∑
ai∈A b

k
i for rk, then we can conclude that there exists an AON-flow Network

GF with E(GF ) ⊆ E(G) if and only if f(GT (k)) = fkmax holds for all rk ∈ R. Based on this
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Figure 4: An Example of Network Transformation (left: original DAG G with N = 3; right:
transformed network GT , where bi beside edges represent capacities)

procedure, we can show that given a POS, we can find an AON-flow Network that uses the
same set or a subset of the precedence constraints in polynomial time:

Proposition 3. For any POS GR ∈ GR, there must be an AON-flow Network GF ∈ GF

such that E(GF ) ⊆ E(GR).

Proof. If no such AON-flow Network exists, then there must be a resource rk ∈ R with
f(GTR(k)) < fkmax. This means there must be some activity ai which cannot secure enough
amount of rk by the edges in E(GR), since the flow in GTR(k) is already maximized. Hence in
the actual execution, it is possible that rk is not enough for ai to start at the time determined
by GR, which implies that additional precedence constraints are needed to resolve resource
conflicts.

Proposition 3 indicates that a POS GR can “accommodate” at least one AON-flow
Network. In addition, it enables us to search for the optimal POS by searching in the space
of AON-flow Networks, which is to solve the following problem3:

Ĝ∗F = argmin
GF∈GF

ĝ(GF ) =
1

Q

Q∑
q=1

MS(GF , u
q)

 . (10)

This can be justified by the following conclusion:

Proposition 4. For any optimal solution Ĝ∗F of the problem in Equation (10), the corre-

sponding POS Ĝ∗R = (Ap, E(Ĝ∗F )) solves the problem in Equation (6) optimally.

Proof. Clearly we have ĝ(Ĝ∗F ) = ĝ(Ĝ∗R). Suppose there is another POS G′R 6= Ĝ∗R that has a

lower SAA objective value than Ĝ∗R, i.e. ĝ(G′R) < ĝ(Ĝ∗R). Then according to Proposition 3,
there must exist an AON-flow Network G′F with E(G′F ) ⊆ E(G′R). Based on Observation 2,

for any sample u, we have MS(G′F , u) ≤MS(G′R, u), leading to ĝ(G′F ) ≤ ĝ(G′R) < ĝ(Ĝ∗R) =

ĝ(Ĝ∗F ). This indicates that in the space of AON-flow Networks GF , G′F is a better solution

than Ĝ∗F , which contradicts the fact that Ĝ∗F is optimal.

3. Note that the computation of g(GF ) and MS(GF , u
q) follows the same procedure as that for POS, since

only the precedence relations in E(GF ) are needed.
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Next, we introduce our two branch-and-bound algorithms.

6.2 The Flow-based Algorithm

Our first algorithm, named BnB-Flow, searches for the optimal AON-flow Network to obtain
the optimal POS. This is done by linking each activity to a partial solution using feasible
flows, which will be detailed as follows.

6.2.1 Branching Scheme

Essentially, BnB-Flow is a depth-first tree search process that exploits the feasible domain
GF to find the optimal solution G∗F . Each search node is associated with a partial solution
G′F that contains a subset of activities, i.e. V (G′F ) ⊆ Ap, and each of them is provided
enough resources by the incoming resource-carrying edges in G′F . The branch-and-bound
process is based on a two-level branching scheme to determine the next activity to be added
to the partial solution, along with the corresponding edge set that we call it a link. The
first level is called the activity level, where an unlinked and precedence feasible activity will
be selected for branching. The second level is called the link level, where a resource and
precedence feasible link (a set of edges) will be selected for branching.

The branch-and-bound process can be described by the pseudo code in Algorithm 2,
which shows a BnB Flow function that will be called on each search node. This function
starts with identifying a set ES of activities that are eligible for being linked to the partial
solution G′F . An activity is feasible if it is not included in G′F , but all its immediate
predecessors are, therefore ES = {ai ∈ Ap|ai /∈ V (G′F ), P re(ai) ∈ V (G′F )}. If ES is
empty, then all activities are linked to G′F and a feasible solution is reached. Then the
algorithm computes the SAA objective of the solution G′F , updates the best solution, and
backtracks (Lines 3-7). If ES is not empty, then the algorithm enters the two-level branching
process. In the activity level, an eligible activity al ∈ ES will be chosen and removed from
ES (Lines 9-10) for branching, until ES is empty. The activity can be chosen based on
any criterion without affecting the correctness of the algorithm, but certain heuristic for
activity selecting may help in reducing the computational time. We will further discuss the
branching heuristics in Section 6.2.4. Once al is chosen, the algorithm computes the lower
bound of this branching choice (adding al to G′F ) (Line 11). If the lower bound is greater
than or equal to the current best objective value ĝ∗, the search path is pruned; otherwise
the algorithm enters the link level.

The first step in the link level is to identify all the feasible links for incorporating the
chosen activity al to G′F , and put them into set LK (Line 13) as branching candidates. A
link lk = {(ai, al)|ai ∈ V (lk)} is a set of edges that link a set of vertices V (lk) ⊆ V (G′F )
in the partial solution G′F to the chosen activity al. The approach of generating LK will
be further discussed in Section 6.2.2. Then, similar to the activity level, a feasible link lk
will be chosen and removed from LK for branching, until LK is empty (Lines 15-20). Once
a link lk is chosen, it will be used to link al to G′F , by calling the function LinkActivity
(Line 17). Then, a new partial solution Ḡ′F = (V (G′F ) ∪ {al}, E(G′F ) ∪ lk) is obtained,
and the algorithm continues by calling BnB Flow on Ḡ′F . Upon backtracking in the link
level, the function RemoveActivity (Line 19) will be called to conduct inverse operation as
LinkActivity, in order to remove al and lk from Ḡ′F . The branching heuristic and lower
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Algorithm 2: BnB Flow(G′F , Ĝ
∗
F , ĝ

∗, OC,u)

Input: G′F : current partial solution; Ĝ∗F : current best solution; ĝ∗: current best
objective value; OC: outgoing capacity matrix; u: the sample set

1 ES ← FindEligibleActivities(V (G′F )) ;
2 if ES = ∅ then
3 ĝ′ ←ComputeObj(G′F ,u) ;
4 if ĝ′ < ĝ∗ then
5 ĝ∗ ← ĝ′;

6 Ĝ∗F ← G′F ;

7 return;

8 while ES 6= ∅ do
9 al ← ChooseActivity(ES);

10 ES ← ES \ {al};
11 LB(G′F , al)← ComputeLB A(G′F , al,u);
12 if LB(G′F , al) < ĝ∗ then
13 LK ← FindFeasibleLinks(G′F , al, OC);
14 lk ←ChooseLink(G′F , LK, ĝ

∗,u);
15 while lk 6= null do
16 LK ← LK \ {lk};
17 Ḡ′F ←LinkActivity(al, G

′
F , lk, OC);

18 BnB Flow(Ḡ′F , Ĝ
∗
F , ĝ

∗, OC,u);
19 G′F ←RemoveActivity(al, Ḡ

′
F , lk, OC);

20 lk ←ChooseLink(G′F , LK, ĝ
∗,u);

21 return;

bounds for the link level are embedded in the ChooseLink function shown in Algorithm 3,
and will be discussed in Section 6.2.2.

In BnB-Flow, an outgoing capacity matrix OC = [ocik](N+2)×K is also maintained to
record the remaining available resource amounts for each activity. Specifically, ocik is the
current amount of resource rk that can be transfered from ai to another activity. Before
executing the algorithm, OC is set to be the initial value OC0, where for each rk ∈ R, oc0

ik

is set to bki for all ai ∈ A, while oc0
0k and oc0

N+1,k are set to Ck and 0, respectively. In the
LinkActivity function of Algorithm 2, if al is linked to G′F using a link lk, then for each
rk ∈ R and al ∈ V (lk), ocik will be set to ocik − filk if the edge (ai, al) carries positive
flow for rk. Accordingly, the reverse operation will be conducted by the RemoveActivity
function upon backtracking.

BnB-Flow is invoked by calling BnB Flow(G
′0
F , null, L,OC

0,u), where G
′0
F = ({0}, ∅)

is the initial partial solution which contains only the dummy start activity a0 and L is a
large double value. BnB-Flow is complete when the lower bounds are admissible (i.e. they
never overestimate the best objective that can be achieved by the subtree rooted from the
corresponding search node), since the solution domain GF is completely exploited.
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6.2.2 Finding and Choosing Feasible Links

In this section, we describe the approach of identifying and selecting the feasible links for a
chosen activity. We begin by defining the feasibility of a link. Given a partial solution G′F
and an unlinked activity al, a link lk is said to be feasible if the following conditions are
satisfied by the new partial solution Ḡ′F = (V (G′F ) ∪ {al}, E(G′F ) ∪ lk):

(ai, al) ∈ Tr(Ḡ′F ), ∀ai ∈ Pre(al) (11)∑
(ai,al)∈lk

filk = bkl , ∀rk ∈ R. (12)

The first condition in Equation (11) guarantees the original precedence constraints in Gp
is respected by Ḡ′F . The second condition in Equation (12) requires that al must obtain
enough resources from all the edges in lk. Below we give an observation that enables us to
limit the search space to integer resource flows only.

Observation 3. For all k and i, if Ck ∈ N and bki ∈ N, then it is sufficient to consider
only integer flows.

The correctness of this observation can be justified as follows. For any AON-flow Net-
work GF , clearly the DAG GR = (Ap, E(GF )) is a POS. According to Proposition 3, there
must be an AON-flow Network G′F with E(G′F ) ⊆ E(GR). As we mentioned in Section
6.1, the flow values in G′F should be integers. Based on the same procedure in the proof
of Proposition 4, we have ĝ(G′F ) ≤ ĝ(GF ). This means for any GF , there must exist a G′F
with integer flows that has a better SAA objective value.

Here we use an enumeration approach to generate the set LK. Firstly, for each resource
rk that al has a positive requirement (i.e. bik > 0), all activities ai ∈ G′F with positive
ocik values are identified as the candidates for linking al. Then, we find all the feasible
resource transfer combinations (i.e. a vector of resource flows filk ∈ [0, ocik]) that satisfy the
condition in Equation (12) and contain only positive resource flows (i.e.

∑
rk∈R filk > 0),

which form a set LK. Finally, each element lk ∈ LK is checked against the condition
in Equation (11). If any immediate predecessor ai ∈ Pre(al) cannot reach al by lk, i.e.
(ai, al) /∈ Tr(Ḡ′F ), an additional edge (ai, al) with zero resource flow is incorporated in lk
to make it precedence feasible. Note that this does not violate the positive flow condition
of AON-flow Network, since (ai, al) simply represents a precedence constraint in Ep.

The branching and pruning process in the link level is shown in Algorithm 3. When LK
is not empty, an element is selected based on certain criterion (will be further discussed in
Section 6.2.4) in Line 2. Then in Lines 3-5, the lower bound of this branching alternative
(i.e. link al to Ḡ′F using lk) is computed and compared with the current best objective
value ĝ∗ to determine if the search path should be pruned or not. If not, lk will be returned
to Algorithm 2 for branching.

Due to the combinatorial nature, the enumeration operations may produce many branch-
ing alternatives. Here we design an additional pruning step in Lines 6-7 of Algorithm 3 to
further reduce the size of LK. Essentially, whenever a link lk is pruned, then any link
lk′ ∈ LK satisfying V (lk) ⊆ V (lk′) can also be safely pruned, since they can only result in
equal or larger lower bound values than that of lk. The rationale is based on the following
observation:
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Algorithm 3: ChooseLink(G′F , LK, ĝ
∗,u)

Input: G′F : current partial solution; LK: current set of feasible links; ĝ∗: current
best objective value; u: the sample set

Output: lk: the chosen link
1 while LK 6= ∅ do
2 lk ←GetLink(LK);
3 LB(G′F , lk)←ComputeLB L(G′F , lk,u);
4 if LB(G′F , lk) < ĝ∗ then
5 return lk;

6 else
7 LK ←RemoveLinks(LK, lk);

8 return null;

Observation 4. In Algorithm 3 where ComputeLB L is used for lower bound computation,
given two links lk1 and lk2 for linking al to G′F , if V (lk1) ⊆ V (lk2), then LB(G′F , lk

1) ≤
LB(G′F , lk

2).

Observation 4 will be justified in Section 6.2.3 when the lower bounding function Com-
puteLB L is discussed. Note that not all admissible lower bounds satisfy this observation,
but the one we design in Section 6.2.3 does.

6.2.3 Lower Bounds

In this section, we introduce the lower bounds we designed for the two branching levels, i.e.
ComputeLB A for the activity level, and ComputeLB L for the link level. To guarantee
the optimality, these two lower bounds must be admissible. Before introducing the lower
bounding technique, we first give a general lower bound on the sample average function
defined in Equation (6). Given a partial solution G′F and a branching alternative ∆ (either
an activity or a link), it is straightforward to verify that the LB function defined in the
below equation is an admissible lower bound of ĝ:

LB(G′F ,∆) =
1

Q

Q∑
q=1

MSLB(G′F ,∆, u
q), (13)

where MSLB(G′F ,∆, u
q) is a lower bound of the makespan of choosing ∆ on sample uq. In

other words, to compute the lower bound of ∆ on ĝ, we only need to compute its lower
bound on each individual sample uq. Next, we give an observation based on the properties
of POS and SAA problem:

By leveraging Equation (13) and Observation 2, we construct the two lower bounds
based on the critical path lower bound for solving deterministic RCPSP (Demeulemeester
& Herroelen, 1997). Essentially, for the unlinked activities ai /∈ V (G′F ), only the original
precedence constraints in Ep are considered in computing the lower bounds. Below we first
discuss the lower bounding computation at the link level.
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ComputeLB L. Given a partial solution G′F , to compute the lower bound of a feasible
link lk, we construct an auxiliary graph Ḡ′′F and compute its makespan on each sample uξ.
Specifically, Ḡ′′F is an augmented graph of Ḡ′F where the unlinked activities ai /∈ V (Ḡ′F ) are
linked using the edges in Ep, i.e. Ḡ′′F = (Ap, E(Ḡ′F ) ∪Ep). Then Ḡ′′F is propagated on each
sample uξ to obtain a temporal feasible schedule S(Ḡ′′F , u

ξ), where ai /∈ Ḡ′F is not necessarily
resource feasible. We can conclude that the LB value defined in the below equation is an
admissible lower bound of the branching choice of linking al to G′F using lk:

LB(G′F , lk) =
1

Q

Q∑
q=1

MS(Ḡ′′F , u
q). (14)

This is because for any feasible solution GF ∈ GF obtained by extending Ḡ′F , we have
E(Ḡ′′F ) ⊆ E(GF ) since additional edges are added to resolve resource conflicts. According
to Observation 2, MS(Ḡ′′F , u

q) is a lower bound of the makespan obtained by using GF on
uq, indicating LB(G′F , lk) ≤ ĝ(GF ) according to Equation (13).

Now we show the the correctness of Observation 4. Given two links lk1 and lk2 for linking
the same activity al to a partial solution G′F , we can construct two auxiliary graphs Ḡ

′′1
F

and Ḡ
′′2
F . If V (lk1) ⊆ V (lk2), then we have E(Ḡ

′′1
F ) ⊆ E(Ḡ

′′2
F ). According to Observation

2, LB(G′F , lk
1) ≤ LB(G′F , lk

2).

ComputeLB A. Different from ComputeLB L, we cannot construct a common solution
and propagate it on all samples to compute a lower bound, since the feasible links have
not been identified yet. Below we take a different approach to compute the lower bound
of linking an activity al to a partial solution G′F . Basically, all activities are split into
three parts, namely those in G′F , al it self, and those not in G′F except al, denoted as
Arp = Ap \ (V (G′F ) ∪ {al}). For each sample u, we aim at obtaining a precedence feasible
(but may not be resource feasible) schedule S(G′F , al, u) by determining the start times of the
activities in the above three parts separately, such that MS(G′F , al, u) = MS(S(G′F , al, u))
is a lower bound for the branching decision (linking al to G′F ) on u. To achieve this,
we first propagate G′F on u to obtain a schedule S(G′F , u) that contains only the current
activities in G′F . Then, based on S(G′F , u), we compute the earliest precedence and resource
feasible start time sl of the chosen activity al, along with the duration dl(sl, u) computed
using Equation (7). Finally, based on S(G′F , u) and sl, we obtain the complete schedule
S(G′F , al, u) by determining the start times for all the activities in Arp, i.e. those not in G′F
except al, according to only the original precedence constraints.

Below we show that MS(G′F , al, u) is indeed a lower bound for the makespan of the
current branching decision on u. Let Ḡ′F be a partial solution obtained by linking al to
G′F using a feasible link. Then clearly for any GF ∈ GF obtained by extending any Ḡ′F ,
sl is the earliest possible start time for al on u. According to Lemma 1, MS(G′F , al, u) ≤
MS(Ḡ′F , u) ≤ MS(GF , u). Therefore, the LB value defined in the below equation is an
admissible lower bound of incorporating al to G′F using any feasible link:

LB(G′F , al) =
1

Q

Q∑
q=1

MS(G′F , al, u
q). (15)
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6.2.4 Branching Heuristics

In this section, we introduce the heuristics for selecting the branching alternatives in BnB-

Flow. In general, we aim at finding high-quality solutions as early as possible, so that more
search space can be pruned.

For the activity choosing step in Line 9 of Algorithm 2, we adopt two priority rules,
Maximum Total Successors (MTS) and minimum Latest Finish Time (LFT), which are
commonly used for solving deterministic RCPSP. These two rules are experimentally shown
to be able to produce good solutions with heuristic schedule generation schemes (Kolisch,
1996), in which the activities are scheduled in an order determined by these priority rules.
When used for choosing activity from the eligible set ES, MTS gives priority to the one
with more number of immediate successors, while LFT prefers the activity with smaller
LFT value. For a given activity, the number of total immediate successors can be easily
determined by the AON network Gp, and the LFT value can be computed by critical path
method (Kolisch, 1996).

For the link choosing step in Line 5 of Algorithm 3, we design two heuristics, minimum
Average Earliest Start Time (AEST) and Minimum Link Predecessors (MLP) based on
the properties of the SAA problem. Specifically, AEST is designed according to Lemma 1,
which prefers the link lk with smaller average earliest start time aest(lk) on all samples. To
compute aest(lk), we first compute the earliest start time est(lk, uq) of the chosen activity
on each sample uq, then take the average value, i.e. aest(lk) = 1/Q ·

∑Q
q=1 est(lk, u

q). The
intuition of designing MLP is based on Observation 4, which prefers a link with a smaller
number of vertices, i.e. |V (lk)|.

Discussion. Our algorithm BnB-Flow is conceptually similar to the precedence tree
based algorithms developed for deterministic RCPSP (Patterson, Talbot, Slowinski, &
Weg larz, 1990; Sprecher & Drexl, 1998). However, we need to emphasize that our problem
in Equation (10) differs from deterministic RCPSP in that we need to construct a common
AON-flow Network that produces the lowest average makespan on multiple samples. This
leads to two differences in algorithm design. Firstly, to find an AON-flow Network, we need
the second level in the branching scheme to decide how an eligible activity is connected to
a partial network. In contrast, for deterministic RCPSP, one level branching is sufficient
since there is no need to consider any additional precedence and resource transfer relations.
Secondly, due to the existence of multiple samples, the dominance rules (e.g. swapping rule,
local/global left shift rule) designed for deterministic RCPSP cannot be directly applied.
Nevertheless, we plan to study how to introduce effective dominance rules to BnB-Flow,
since they could help in significantly improving the computational efficiency.

6.3 The MCS-based Algorithm

The Flow-based algorithm searches for the optimal POS by searching for the optimal AON-
flow Network. However, the space of AON-flow Networks may be much larger than that of
POS, due to the one-to-many relation between POS and AON-flow Networks. Intuitively,
for an AON-flow Network GF , there is a POS GR = (V (GF ), E(GF )) with the same SAA
objective value, i.e. ĝ(GF ) = ĝ(GR). However, there could be a number of G′F ∈ GF with
E(G′F ) = E(GF ). Though the flow values are different, these AON-flow Networks have the
same SAA objective value as GF and GR, since the flow values are not used in computing
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ĝ. Therefore, search in the space of AON-flow Networks could be less efficient. Different
from BnB-Flow, our second algorithm, named BnB-MCS, directly searches for the optimal
solution in the space of POS. More specifically, starting from the original AON network, this
algorithm employs an iterative process of detecting possible resource conflicts represented as
Minimal Critical Set (MCS), and resolving them by adding precedence constraints. When
no MCS can be detected, a POS is found. Note that for a detected MCS, there could be
multiple ways to resolve it, i.e. adding a precedence constraint between different activity
pairs. Based on this fact, BnB-MCS systematically searches for the best way of constructing
POS by trying different alternatives of MCS resolution as branching candidates, which will
lead to the optimal solution of Equation (6).

6.3.1 Detecting and Resolving Minimal Critical Sets

We begin with the definitions of Critical Set and Minimal Critical Set, following the defini-
tions given by Lombardi and Milano (2012).

Definition 1. Given an instance of RCPSP, for an augmented DAG GV of the AON
network Gp, a set of activities Ac ⊆ A is a Critical Set (CS) of resource rk, if (a)∑

ai∈Ac
bki > Ck and (b) ∀ai, aj ∈ Ac, (ai, aj) /∈ Tr(GV ) and (aj , ai) /∈ Tr(GV ).

In other words, activities in a CS may temporally overlap, and have a total resource
requirement higher than the capacity. When no CS exists in a temporal network GR, it is
a POS where all the possible resource conflicts are resolved by the temporal constraints in
E(GR). The definition of MCS is given below:

Definition 2. If a critical set Amc satisfies ∀ai ∈ Amc,
∑

aj∈Amc\{ai} b
k
j ≤ Ck, then it is a

Minimal Critical Set (MCS).

Intuitively, a MCS is a CS satisfying the minimality condition, i.e. it is no longer a
CS if any activity is removed from it. Therefore, a MCS Amc can be resolved by adding a
precedence relation between any pair of activities (ai, aj) in it, which is called a resolver of
Amc. Let Res(Amc) = {(ai, aj)|ai, aj ∈ Amc, i 6= j} be the set of all the possible resolvers
of a MCS Amc. Note that the resource conflict in CS may not be able to be resolved by
adding precedence constraints for one pair of activities, since the minimality condition is
not satisfied. Therefore, a CS should be reduced to a MCS to resolve the resource conflicts.

It has been shown by Lombardi and Milano (2012) that for a temporal network G and a
resource rk, the problem of detecting a possible CS is equivalent to the problem of routing
the minimum amount of flow of rk from source (a0) to sink (aN+1), such that the resource
requirements bki of all the activities ai ∈ A are satisfied. Further, this problem can be solved
by solving a minimum flow problem on a transformed network4 GM (k), which can be solved
in polynomial time using the inverse Ford-Fulkerson’s algorithm (Lombardi & Milano, 2012).
Denote this minimum flow as f(GM (k)). When f(GM (k)) > Ck, a CS Ac for rk can be
extracted by identifying all the activities in the source-sink cut, and

∑
ai∈Ac

bki = f(GM (k)).

When f(GM (k)) ≤ Ck, all the possible conflicts for rk has been resolved by E(G). Therefore,
starting from the AON network Gp, all resource conflicts can be resolved by iteratively

4. Note that this network transformation is different from the one we described in Section 6.1. Here we
ignore the details of this transformation procedure for brevity.
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detecting and resolving MCS. This method is called Precedence Constraint Posting (PCP),
and has already been applied in designing branch-and-bound approaches for deterministic
RCPSP (Laborie, 2005; Lombardi & Milano, 2012; Lombardi, Milano, & Benini, 2013)5,
where temporal reasoning can be applied for branching and constraint propagation. In
contrast, our problem in Equation (5) is defined on multiple samples with time-dependent
durations, which makes it very difficult to conduct the temporal reasoning. Therefore, we
design the BnB-MCS algorithm, which purely reasons with resource constraints, except the
lower bound computation.

6.3.2 Branching Scheme

Similar to BnB-Flow, BnB-MCS also employs a depth-first branch-and-bound searching pro-
cess. Starting from the original AON network Gp, a POS is found by iteratively adding
precedence constraints to Gp to resolve MCS, until a conflict-free augmented DAG is ob-
tained. When a MCS is detected, BnB-MCS will try all the possible ways (i.e. adding
precedence constraint) to resolve it, which are considered as branching alternatives. For
MCS detection, we adopt the method proposed by Lombardi and Milano (2012) to detect
CS, and then reduce it to MCS based on a heuristic procedure which will be further discussed
in Section 6.3.4. In addition, we extend the constraint propagation procedure proposed by
Leus and Herroelen (2004), which is designed for single resource problems, to speed up the
searching process. Since a POS must be acyclic, the set of feasible edges that can be added
to Gp is FS = {(ai, aj) /∈ E(Gp)|(aj , ai) /∈ Tr(Gp)}. For each (ai, aj) ∈ FS, we maintain
lower bound fLijk and upper bound fUijk of the (integer) flow fijk that can be imposed on

it for rk, with 0 ≤ fLijk ≤ fUijk. Initially, fLijk = 0 and fUijk = min{bki , bkj }. During search-

ing, these bounds will be tightened by constraint propagation. Let sumL
ij =

∑
rk∈R f

L
ijk

and sumU
ij =

∑
rk∈R f

U
ijk. Then sumL

ij > 0 means there must be a flow on (ai, aj) while

sumU
ij = 0 indicates (ai, aj) cannot carry flow for any rk. Based on the bound values and

branching decisions, an edge (ai, aj) ∈ FS has four status: 1) included, if sumL
ij > 0;

2) banned, if sumU
ij = 0; 3) undecided, if sumL

ij = 0 and sumU
ijk > 0; 4) conflicted, if

(aj , ai) ∈ Tr(G′R) where G′R is the current partial solution. We will further discuss how to
maintain consistency of the flow bounds in Section 6.3.3.

Detail of this branching process is shown in the BnB MCS function in Algorithm 4.
Inputs of the algorithm include a partial solution G′R = (Ap, Ep∪E′R) which is an augmented

DAG ofGp, the incumbent Ĝ∗R and its objective ĝ∗, and the sample set u. The first operation
in Algorithm 4 is to detect an MCS Amc in the input partial solution G′R (Line 1). If Amc
is empty, then no resource conflict exists and a POS is found, hence the algorithm updates
Ĝ∗R and ĝ∗ if the found POS G′R has a better objective value. Note that when a POS GR
is reached, the algorithm can backtrack safely. Because for any G′R with E(GR) ⊆ E(G′R),
MS(GR, u) ≤ MS(G′R, u) holds for any sample u according to Observation 2, therefore
ĝ(GR) ≤ ĝ(G′R) holds. If Amc is not empty, then all its resolvers are retrieved as branching
candidates. Specifically, these resolvers are ranked and put into a list RESL(Amc) according
to some heuristic (Line 9).

5. Though Lombardi et al. (2013) aims at obtaining a POS for dynamic execution, it essentially solves a
deterministic RCPSP where the duration of each activity is replaced by the expected value.
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Algorithm 4: BnB MCS(G′R, Ĝ
∗
R, ĝ

∗,u)

Input: G′R: current partial solution; Ĝ∗R: current best solution; ĝ∗: current best
objective value; u: the sample set

1 Amc ← DetectMCS(G′R) ;
2 if Amc = ∅ then
3 ĝ′ ←ComputeObj(G′R,u) ;
4 if ĝ′ < ĝ∗ then
5 ĝ∗ ← ĝ′;

6 Ĝ∗R ← G′R;

7 return;

8 else
9 ResL(Amc)←GetRankedResolvers(Amc) ;

10 foreach (ai, aj) ∈ ResL(Amc) do
11 if sumU

ij = 0 then

12 continue;

13 if ComputeLB MCS(G′R, ai, aj ,u)< ĝ∗ then
14 G′R ← (Ap, E(G′R) ∪ {ai, aj});
15 RL ←GetRankedResources(ai, aj);
16 for rk ∈ RL do
17 if propagateLB(ai, aj , k)=true then

18 BnB MCS(G′R, Ĝ
∗
R, ĝ

∗,u);
19 Restore();

20 G′R ← (Ap, E(G′R) \ {(ai, aj)});
21 fUijk ← 0, fLijk ← 0 for all rk ∈ R;

22 if propagateUB(ai, aj)=true then

23 BnB MCS(G′R, Ĝ
∗
R, ĝ

∗,u);
24 Restore();

25 return;

In Lines 10-24, the ranked resolvers are selected for branching one by one. For a selected
resolver, the algorithm first checks if it is applicable, i.e. not being banned by the current
branching decisions (Lines 11-12). For an applicable resolver, the algorithm can enforce
two status to it, i.e. either included in or banned from G′R. For the option of including,
the algorithm first computes the lower bound of incorporating it into G′R, and compares
it with the incumbent value ĝ∗ to decide if the search path should be pruned or not (Line
13). If not, G′R will be updated to include the resolver (Line 14). Further, all resources
rk ∈ R will be ranked as a list RL to conduct constraint propagation. The ranking heuristic
will be detailed in Section 6.3.4. More specifically, if rk is chosen, we impose fLijk = 1 and
propagate it to maintain the bound consistency (Line 17). If the propagation is successful,
the algorithm branches to the next level, otherwise the search path is pruned. If all resources
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have been tested, the chosen resolver will be removed from G′R (Line 20) and the algorithm
will try the option of banning the chosen resolver from G′R, i.e. imposing fUijk = 0 (which

automatically imposes fLijk = 0) for all rk ∈ R (Line 21), and propagate it to maintain
bound consistency (Line 22). If the propagation is successful, the algorithm continues by
calling BnB MCS. The algorithm is invoked by calling BnB MCS(Gp, null, L,u). Upon
termination, the optimal POS can be found, if the lower bound is admissible.

Discussion. In a previous work (Song et al., 2018), we design a branch-and-bound
algorithm to search for the optimal POS of the risk-aware proactive scheduling problem.
Here we adopt the same constraint propagation procedure, but use a different branching
scheme. In the algorithm proposed by Song et al. (2018), given a partial solution G′R, the
next edge for branching is directly selected from the set FS(G′R) containing all the edges
that can be added to G′R, based on the ranking heuristic. Though this procedure does
not affect the correctness of the algorithm, the chosen edge may not resolve any resource
conflict. We call this algorithm BnB-Edge. In BnB-MCS, the next branching candidate is
selected from a subset of FS(G′R), i.e. the applicable resolvers of a detected MCS, therefore
adding this candidate can indeed help in reducing resource conflicts. Furthermore, these
resolvers will be at the same branching level, i.e. the algorithm will try each of them to
resolve the same MCS. Though this would lead to a search tree with larger width, the depth
may be smaller since the edges are organized in a meaningful way by the detected MCS. In
our experiments, we will show that BnB-MCS exhibits better performance than BnB-Edge.

6.3.3 Constraint Propagation

In this section, we present our constraint propagation method in detail. For single resource
problems, Leus and Herroelen (2004) proposed to maintain the flow bound consistency
by conducting constraint propagation on the remainder network GRD = (Ap, Ep ∪ ERD),
where ERD = {(ai, aj) ∈ FS|fUij > 0} is the set of edges not banned by the current
branching decisions. For (ai, aj) ∈ E(GRD), let OTij = {(ai, al) ∈ E(GRD)|l 6= j} and
INij = {(al, aj) ∈ E(GRD)|l 6= i} be the set of other edges in E(GRD) that starts from ai
and ends at aj , respectively. Since an AON-flow Network must satisfy inflow and outflow
balance, the bounds of fij can be tightened using the following equations:

fLij = max

fLij , bi − ∑
(ai,al)∈OTij

fUil , bj −
∑

(al,aj)∈INij

fUjl

 (16)

fUij = min

fUij , bi − ∑
(ai,al)∈OTij

fLil , bj −
∑

(al,aj)∈INij

fLjl

 (17)

Consistency can be achieved by updating bounds for all edges in E(GRD) till no bound
changes. The network GTRD transformed from GRD using the procedure in Section 6.1 is
also used for detecting infeasibility (Leus & Herroelen, 2004). If f(GTRD) < fmax, then
clearly the current branching decisions cannot lead to any AON-flow Network, hence no
POS can be generated according to Proposition 3.

For our problem with multiple resources, we maintain the flow bounds independently
for each rk based on Equations (16) and (17). The branching decisions on resources in
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Algorithm 4 enable the independent bound updates: when an edge (ai, aj) is included, fLijk
of a chosen rk changes from 0 to 1 which makes the positive flow condition satisfied, and
function propagateLB only maintains consistency for rk; when (ai, aj) is banned, function
propagateUB maintains consistency for all resources by setting fUijk to 0 (so as fLijk) for all

rk and propagating to other bounds. If any bound infeasibility (i.e. fUijk < fLijk) is detected
during propagation, a false value is returned to signal the algorithm for backtracking. In
addition to the early detection of infeasibility, another benefit of constraint propagation is
that it may imply that certain edges (ai, aj) /∈ E(Gp) should be included (if sumL

ij > 0) or

banned (if sumU
ij = 0).

If the flow bounds are updated successfully, propagateLB and propagateUB try to detect
flow infeasibility. For each rk, we maintain the transformed networks GTRD(k) and G

′T
R (k) for

the current remainder network GRD and partial solution G′R, and try to maximize flows in
GTRD(k) and G

′T
R (k) for the resource rk affected by constraint propagation. If f(GTRD(k)) <

fkmax or f(G
′T
R (k)) < fkmax, then according to Proposition 3, the current branching decisions

cannot lead to any POS and a false value is returned to signal backtracking.

6.3.4 Heuristics for CS Reduction and Resolver Selection

The procedure for reduction of CS to MCS proposed in Lombardi and Milano (2012) is based
on the so-called preserved space heuristic designed by Laborie (2005), which estimates the
amount of searching space left after adding a resolver. However, this heuristic is designed
for deterministic RCPSP hence is not applicable to our problem due to the existence of
multiple samples and time-dependent durations. Below we design a heuristic that evaluates
resolvers from the perspective of resource constraints.

Essentially, by adding edges to a partial solution G′R, we wish to increase the maximum
flow in each G

′T
R (k) to fkmax so that a POS is obtained. Note that when f(G

′T
R (k)) = fkmax

for all rk ∈ R, the MCS detection function returns an empty set (Line 1 of Algorithm 4)
since all resource conflicts have been resolved. Hence, we prefer the edge that can bring the
largest increment for each f(G

′T
R (k)) so that a POS is reached as early as possible. Here we

design a heuristic Resource Score to estimate the contribution that an eligible edge (ai, aj)
could have for reaching a POS as follows:

RS(ai, aj) =
∑
rk∈R

{
RSk(ai, aj) =

fRDijk

fkmax − f(G
′T
R (k))

}
, (18)

where RSk(ai, aj) is a normalized estimate for the contribution of (ai, aj) to resource rk,
with the nominator fRDijk being the flow for rk on edge (ai, aj) in the remainder network

GRD and the denominator being the current flow gap for G
′T
R to reach fkmax.

Based on the resource score heuristic, we use a greedy procedure to reduce a CS to
MCS in function DetectMCS (Line 1 of Algorithm 4). For a CS Ac, we define its resource
score as the summation of the resource scores of all its activity pairs, i.e. RS(Ac) =∑

(ai,aj)∈Res(Ac)RS(ai, aj). We aim at obtaining a MCS Amc ⊆ Ac with the highest resource

score. Therefore, DetectMCS employs the following procedure to select a MCS: 1) for each
rk ∈ R, detect a CS Akc and reduce it to a MCS Akmc using a greedy procedure iteratively
removes an activity from Akc that causes the smallest reduction in RS(Akc ) until a MCS is
obtained; 2) return the Akmc with the maximum RS(Akmc).
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Resource score is also used in ranking resolvers and resources for branching. More
specifically, function GetRankedResolvers in Line 9 of Algorithm 4 ranks the resolvers in
the descending order of their resource score values. Function GetRankedResources in Line
15 of Algorithm 4 ranks all resources also in the descending order, based on the values of
RSk(ai, aj) of each resource rk.

6.3.5 Lower Bound

Here we design an admissible lower bound for BnB-MCS following the similar idea in Section
6.2.3, based on Equation (13) and Observation 2. Specifically, in the ComputeLB MCS
function of Algorithm 4 (Line 13), given a partial solution G′R and a resolver (ai, aj), we
first generate the new solution Ḡ′R by including (ai, aj) to G′R, then propagate it on each
sample to obtain a lower bound for the makespan of using Ḡ′R, and finally take the average
value as the lower bound of ĝ.

7. Experimental Results

In this section, we conduct a series of experiments to examine the performance of our
algorithms on benchmark problem instances and different distributions from real-world data
and literature. In Section 7.1, we first describe the general settings of our experiments. Then
we examine different configurations of our algorithms and analyze the impact of different
problem parameters in Section 7.2. Finally, in Section 7.3, we compare our algorithms with
several benchmark algorithms on instances with different size and uncertainty models with
different configurations.

7.1 Experiment Setting

The RCPSP instances used in our experiments are generated using a widely used benchmark
problem generator RanGen2 (Vanhoucke, Coelho, Debels, Maenhout, & Tavares, 2008).
Five parameters are required to generate an instance, namely number of activities N , num-
ber of resources K, order strength (OS), resource factor (RF) and resource-constrainedness
(RC). The values of OS, RF and RC are all chosen from [0, 1]. OS specifies the structure
of the project network G, and a higher OS value indicates that G has more precedence
constraints. RF and RC are used to specify the resource utilization status. In an instance
with a higher RF value, more activities will have non-zero resource requirements bki . On the
other hand, a higher RC value specifies an instance where activities tend to require more
resources (i.e. bki is closer to Ck).

To have a more detailed study of our algorithms, we first generate small sized instances
with N ∈ {10, 20, 30}. Two sets of instances with K ∈ {1, 2, 3} are generated, with different
values of OS, RF and RC. More specifically, in Set1, the values of OS, RF and RC are chosen
from {0.2,0.7} to represent the “low” and “high” level, while in Set2 we set OS∈ {0.2, 0.4},
RF∈ {0.7, 0.9} and RC∈ {0.2, 0.4} to have more focused experiments since our approaches
tend to show better performance on instances with lower OS, higher RF and lower RC. For
each parameter combination, a subset with 10 instances are generated, therefore Set1 and
Set2 contain 720 instances each. The duration of each activity ai in these instances is an
integer in d0

i ∈ [1, 10]. These two instance sets will be used in Section 7.2 and the first
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Figure 5: The Trend of Monthly POW

Table 1: Monthly POW Data

Month 1 2 3 4 5 6 7 8 9 10 11 12

Type 1 0.536 0.579 0.576 0.579 0.44 0.231 0.184 0.136 0.107 0.165 0.253 0.447
Type 2 0.704 0.833 0.8 0.802 0.76 0.628 0.552 0.488 0.512 0.38 0.549 0.766
Type 3 0.56 0.684 0.664 0.702 0.624 0.488 0.472 0.4 0.314 0.223 0.341 0.521
Type 4 0.824 0.904 0.88 0.959 0.952 0.959 0.944 0.976 0.909 0.826 0.813 0.883

three subsections in Section 7.3. To examine the performance on large sized instances, we
generate another two sets of instances with N ∈ {60, 120} and the same configurations of
K, OS, RF and RC. Results on these instances will be discussed in Section 7.3.4.

To model the duration uncertainty U , we need to model its two components, i.e. the
time-dependent workability uncertainty X and the time-independent duration uncertainty
Y , respectively. Here we model X using a distribution dataset collected from a real-world
aero engine testing project. As shown in Table 1 and visualized in Figure 5, this dataset
describes the Probability of Workability (POW) of four types of activities in each month of
a year. In our experiments, we assume that the scheduling horizon starts from the first date
of a year. To obtain a sample of X, we conduct random sampling for each activity type on
each time slot of the horizon according to the corresponding POW value to determine the
workability xzt. For each activity in the generated RCPSP instances, we randomly assign
a type z ∈ {1, 2, 3, 4}. In addition, except the experiments in Section 7.3.3, we increase the
deterministic activity durations d0

i of each instance to elongate the critical path length to
a random integer value in [200, 300], such that most of the POW data can be covered. To
model the time-independent component Y , we use two distributions from the literature: 1)
a normal distribution Yi ∼ N (d0

i , σ
2) with σ = d0

i × 0.5, which is used by Beck and Wilson
(2007); 2) an exponential distribution Yi ∼ Exp(1/d0

i ), which is used by Creemers, Leus
and Herroelen (2015, 2004).
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Since existing approaches cannot handle the time-dependent uncertainty, in most part of
this section, we compare the quality of the solutions generated by our approaches with the
ones given by two general-purpose POS generation approaches ESTA-Iter and EBA-Min
ow

and a randomized local search heuristic RLS. More specifically, general-purpose approaches
refer to those that can directly generate POS for a given deterministic RCPSP instance,
without the need of any probabilistic knowledge about the uncertainty. Therefore they can
be applied to any type of uncertainty and is comparable in our experiments. Details of
these benchmark algorithms are listed as follows:

• ESTA-Iter: this algorithm first generates a start-time schedule for the deterministic
problem, then transforms it to a POS using a chaining procedure (Policella et al.,
2004). We implement the best version of this approach following (Policella et al.,
2009), where an iterative chaining procedure (100 iterations) is applied on the schedule
generated by the ESTA procedure (Policella, Cesta, Oddi, & Smith, 2007).

• EBA-Min
ow: this algorithm shares similarities with our algorithm BnB-MCS, which
also generates a POS by iteratively detecting and resolving MCS (Policella et al.,
2004). However, the resource conflicts are resolved greedily, i.e. the precedence re-
lations are added without backtracking. Here we implement this algorithm with the
state-of-the-art MCS detection method proposed by Lombardi and Milano (2012).

• RLS: we implement a randomized local search algorithm that is similar to the ones
used by Fu et al. (2015) and Fu et al. (2012), which can be considered as a heuristic
for solving the SAA problem in Equation (6). Essentially, RLS performs randomized
search on the neighborhood of an activity list that is compatible with the original
precedence constraints in Ep. As shown in Algorithm 5, RLS first generates an initial
activity list al randomly (Line 1). Then, up to maxIter times of local search iterations
are performed (Lines 3-10), where an earliest start schedule ss is generated (Line 4)
and then transformed to a POS G′R using ESTA-Iter (Line 5). The current best solution

Ĝ∗R will be updated if G′R has better objective value on the sample set u (Lines 6-9).
Finally, a local move will be applied to al, which is to randomly swap two activities
in al if the original precedence constraints in Ep is not violated (Line 10). Here we
set maxIter = 1000, which is also used by Fu et al. (2015) and Fu et al. (2012).

In Section 7.3.3 which presents our results on uncertainty models with only component
Y , we also compare our algorithms with two benchmark algorithms, including a state-of-the-
art solver for time-independent uncertain durations (Creemers, 2015) named as Creemers15,
and a simple heuristic named BPS (Best POS in Samples):

• Creemers15: this approach considers the stochastic scheduling procedures as a con-
tinuous time Markov Decision Process, and the optimal scheduling policy is found
by dynamic programming technique. When the activity duration follows exponential
distribution, i.e. Yi ∼ Exp(1/d0

i ), the expected makespan returned by Creemers15 is
the actual optimal value.

• BPS: similar as RLS, BPS is also a heuristic for solving Equation (6). In this algorithm,
for each sample u ∈ u, a deterministic RCPSP is constructed by setting the activity
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Algorithm 5: Randomized Local Search

Input: Gp: the original AON network; u: the sample set; maxIter : the maximum
number of iterations

Output: Ĝ∗R: the best solution found
1 numIter ← 0, ĝ∗ ←∞;
2 al←GenerateActivityList(Gp);
3 for numIter ← 1 to maxIter do
4 ss←GenerateSchedule(al);
5 G′R ←GetPOS(ss);
6 ĝ′ ←ComputeObj(G′R,u) ;
7 if ĝ′ < ĝ∗ then
8 ĝ∗ ← ĝ′;

9 Ĝ∗F ← G′F ;

10 al←ApplyLocalMove(al);

11 return Ĝ∗R;

durations to be the sampled values. Then, the RCPSP is solved and the optimal
start-time schedule is retrieved and transformed to a POS using ESTA-Iter. Finally,
the POS that has the best average makespan on all the samples in u is returned as
the solution. We use this benchmark algorithm for the uncertainty models with only
component Y , because the sample of X leads to time-dependent duration which is
not considered in deterministic RCPSP.

All algorithms are implemented using JAVA6, and run on an Intel Xeon Workstation
(3.5GHz, 16GB). The CPU time of our branch-and-bound algorithms are limited to 300
seconds. If the optimal solution is not found, we use the best solution returned. Since the
expected makespan defined in Equation (5) is intractable to compute, we use Monte Carlo
simulation to estimate the real objective g by ĝQs(GR), which is the value of the sample
average function in Equation (6) on a set of Qs testing samples. As suggested in (Kleywegt
et al., 2002), this is a reliable way to estimate the expected value when the number of testing
samples is large. Here we set Qs = 2000 as used by Kleywegt et al. (2002).

7.2 Examination of Our Algorithms

In this section, we experimentally investigate our algorithms in great detail, including per-
formance of different configurations and sensitivity to different instance parameters. We
conduct experiments on small sized instances with N ∈ {10, 20, 30} and uncertainty models
with both components X and Y . Specifically, X is modeled using the dataset in Table 1,
and Y is modeled using the normal distributions N (d0

i , σ
2). We first examine the impact

of different sample sizes in Section 7.2.1, followed by the experiments for analyzing differ-
ent algorithm configurations in Section 7.2.2. Finally, we examine the impact of problem
parameters on our algorithms in Section 7.2.3.

6. For Creemers15, we use the program from http://www.stefancreemers.be/software.php. For BPS, the
optimal start-time schedules are obtained using IBM ILOG CP Optimizer 12.8.
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Figure 6: Impact of Sample Size

7.2.1 Impact of Sample Size

We first examine the impact of sample size Q, which is an important parameter for SAA
based approaches. Intuitively, a SAA problem with larger number of samples could produce
solutions with higher quality, but requires longer computation time due to the increase of
problem size. For SAA based approaches, the solution quality is often evaluated using the
optimality gap proposed by Kleywegt et al. (2002). To compute the optimality gap ρ, first
we replicate the SAA process by solving Qrep SAA problems independently, each with its
own sample set uη, η ∈ {1, ..., Qrep}. Let GηR be the solution of each replication, and GrepR
be the solution with the minimum value of ĝ(GηR) on uη. Next, we generate Qs = 2000
samples, and compute SAA value of GrepR as ĝQs(G

rep
R ). Then the optimality gap value can

be computed as:

ρ =

∣∣∣∣∣∣ĝQs(G
rep
R )− 1

Qrep

Qrep∑
η=1

ĝ(GηR)

∣∣∣∣∣∣ . (19)

Furthermore, we can estimate the variance of ρ as:

Varρ =
VarQs

Qs
+

VarQrep

Qrep
, (20)

where VarQs and VarQrep are the variance of the SAA values in Qs times of simulations
and Qrep times of SAA replications, respectively. According to Kleywegt et al. (2002), the
lower values of ρ and V arρ, the higher quality of the produced solution.

Following Kleywegt et al. (2002), we set the number of replications Qrep to 20 in the
experiments. The values of ρ and V arρ are normalized by the estimated objective value
ĝQs(G

rep
R ). For the purpose of clarity and brevity, we report the results on two representative

instance subsets, each with 10 instances. Figure 6(a) shows the results for BnB-Flow, where
the average normalized ρ and V arρ for an instance subset are plotted, along with the average
computation time. Figure 6(b) shows the same curves for BnB-MCS on another subset. As
shown in these figures, there exists a clear trade-off effect between the solution quality and
computational cost. In general, the values of ρ and V arρ decrease with the increase of Q,
and become stable when Q ≥ 20. In the following experiments, we set Q = 20 according to
this observation.
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Table 2: Comparison of Branching Heuristics

Instance LFT+AEST LFT+MLP
group Best1 First2 Time3 PTO4 Best First Time PTO
K=1 624.33 638.88 92.65 30 627.36 678.08 92.68 30
K=2 682.65 694.07 120.41 40 688.15 744.35 120.58 40
K=3 721.44 733.87 147.7 48.75 753.81 798.8 151.41 50

OS=0.2 895.71 914.19 150.58 50 920.58 1006.39 153.26 50.83
OS=0.7 456.57 463.69 89.93 29.17 458.96 474.43 89.85 29.17
RF=0.2 516.34 523.08 57.74 19.17 516.41 545.01 57.75 19.17
RF=0.7 835.94 854.8 182.77 60 863.13 935.81 185.36 60.83
RC=0.2 602.63 606.35 33.23 10.83 623.51 696.13 35.82 11.67
RC=0.7 749.65 771.53 207.28 68.33 756.04 784.69 207.29 68.33

Instance MTS+AEST MTS+MLP
group Best First Time PTO Best First Time PTO
K=1 626.72 636.52 92.89 30 627.78 680.62 89.14 28.75
K=2 692.5 702.47 131.69 43.75 683.59 725.94 127.93 42.5
K=3 730.95 736.32 146.98 48.75 738.51 788.39 154.55 51.25

OS=0.2 908.31 918.78 165.66 55 908.54 989.36 165.65 55
OS=0.7 458.47 464.77 82.04 26.67 458.04 473.94 82.09 26.67
RF=0.2 514.51 521.68 57.72 19.17 516.39 537.48 57.73 19.17
RF=0.7 852.27 861.87 189.98 62.5 850.2 925.82 190.02 62.5
RC=0.2 595.5 597.99 42.82 14.17 613.86 688.38 42.83 14.17
RC=0.7 771.28 785.55 204.88 67.5 752.73 774.92 204.92 67.5

1 The average of the best objective values upon termination.
2 The average of the first objective values found in searching.
3 The average computation time (in seconds).
4 The percentage (%) of time-out instances.

7.2.2 Impact of Algorithm Configurations

In this section, we study the performance of different algorithm configurations. First, we
examine the performance of different branching heuristics we designed in Section 6.2.4
for BnB-Flow. The combination of these heuristics yields four possible configurations of
Algorithm 2, including LFT+AEST, LFT+MLP, MTS+AEST, and MTS+MLP. In this
section, we conduct experiments on the 240 instances from Set1 with N = 20 to examine the
performance of these four configurations. Specifically, when one heuristic is used, the other
one for the same branching level is used for tie-breaking. We classify the instances according
to the four parameters K, OS, RF and RC, and report the results in Table 2. As shown in
the table, LFT+AEST tends to give the best performance among all configurations. This
is probably because they are more “focused” on evaluating the branching alternatives from
the time aspect, which is in accord with the SAA objective function. On the other hand,
their counterparts (i.e. MTS and MLP) are more focused on the graph characteristics of
the solution. In the remaining experiments, we will use LFT+AEST as the configuration
for BnB-Flow.

Next, we examine the effectiveness of the constraint propagation (CP) module in BnB-

MCS. Here we also compare the performance with BnB-Edge (Song et al., 2018), which is a
POS searching algorithm with the edge-based branching scheme as introduced in Section
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Table 3: Effectiveness of Constraint Propagation

Instance BnB-Edge BnB-Edge+CP
group Best Time PTO Best Time PTO
K=1 636.6 144.58 47.5 632.47 98.15 32.5
K=2 706.9 173.09 56.25 711.82 159.1 52.5
K=3 745.53 206.28 66.25 750.64 192.01 63.75

OS=0.2 928.96 214.18 70.83 931.52 191.08 63.33
OS=0.7 463.73 135.12 42.5 465.1 108.43 35.83
RF=0.2 522.26 114.43 37.5 518.23 63.69 20.83
RF=0.7 870.42 234.87 75.83 878.39 235.82 78.33
RC=0.2 624.55 85.16 25.83 631.97 90.33 30
RC=0.7 768.14 264.13 87.5 764.64 209.18 69.17

Instance BnB-MCS BnB-MCS+CP
group Best Time PTO Best Time PTO
K=1 617.71 76.54 25 611.34 53.23 17.5
K=2 682.53 94.79 31.25 662.08 81.61 25.0
K=3 715.94 123.99 40 708.19 110.25 36.25

OS=0.2 891.14 145.42 47.5 868.5 124.12 40.83
OS=0.7 452.98 51.46 16.67 452.57 39.28 11.67
RF=0.2 507.62 10.08 25.0 507.43 0.79 0
RF=0.7 836.5 186.8 61.67 813.65 162.6 52.5
RC=0.2 597.01 60.2 20 598.37 48.08 15.83
RC=0.7 747.11 136.68 44.17 722.7 115.32 36.67

6.3.2. We run the two algorithms with and without constraint propagation on the 240 in-
stances from Set1 with N = 20, and summarize the results in Table 3. As shown in this
table, constraint propagation can significantly improve the efficiency of the two algorithms.
Specifically, for BnB-Edge, the improvements obtained by turning CP on are 14.3% in ex-
ecution time (174.7 versus 149.8 seconds) and 12.5% in the number of time-out instances
(136 versus 119). For BnB-MCS, the algorithm with CP achieves 17% less execution time
(98.4 versus 81.7 seconds) and 18.1% less time-out instances (77 versus 63). Moreover,
algorithm with the MCS-based branching scheme performs much better than the one with
the edge-based branching scheme: with constraint propagation, BnB-MCS is 45.4% faster
than BnB-Edge on average, and solves 56 more instances. In the remaining experiments, we
will use BnB-MCS with constraint propagation as the POS searching algorithm.

7.2.3 Impact of Problem Parameters

In this section, we examine the efficiency and solution quality of BnB-Flow and BnB-MCS,
and analyze the impact of different problem parameters. We use the 720 instances in Set1
for these experiments. In general, BnB-Flow solves 402 (55.8%) instances optimally with an
average computation time of 140.1 seconds. In comparison, BnB-MCS solves 559 (77.6%)
instances optimally in 71.4 seconds on average. We believe the better efficiency of the MCS-
based algorithm is because the search space of POS is smaller that of AON-flow Network,
since a POS could accommodate multiple feasible AON-flow Networks, as we have explained
in the beginning of Section 6.3. On the other hand, the solution quality given by both
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Figure 7: Impact of Problem Parameters on Algorithm Performance

algorithms is rather close (difference is within 3%), as shown in Figure 7(a) where we plot
the average expected makespan of the solutions produced by the two algorithms, classified
by the problem parameters. To further investigate this observation, we plot the average
SAA objective of the first feasible solutions found by the two algorithms in Figure 7(b).
As shown, the first solutions returned by BnB-Flow tend to have higher quality than that
of BnB-MCS (on average 9% improvement). An intuitive explanation is that, the resource
conflict detection in BnB-MCS focuses on activities with the tightest resource contention,
therefore resolving the detected MCS may not lead to a high quality solution in the time
aspect. On the contrary, the constructive procedure in BnB-Flow is more likely to link each
activity in the way that it can start as early as possible. Based on these observations, we
believe BnB-Flow can find high-quality solutions even if the search space is not exhausted.
In fact, BnB-Flow returns the optimal solutions for 66 instances in the 157 ones that are
closed by BnB-MCS but remain open for BnB-Flow.

To study the impact of different problem parameters on the algorithm efficiency, we
classify all instances in Set1 according to their parameters, and plot the average computation
time and the percentage of time-out instances of the two algorithms in Figure 7(c) and 7(d),
respectively. As shown in the figures, BnB-MCS shows better scalability for all instance
groups. We also observe that the two algorithms share a common pattern for different
parameter values, i.e. the hardness for solving an instance increases with N , K, RF and
RC, but decreases with OS. Below we briefly analyze the rationale for this observation.
Firstly, it is straightforward to see that the problem size grows with the increase of N and
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Table 4: Quality of Solutions on Models with Both Components - Set1

Instance BnB-Flow BnB-MCS RLS ESTA-Iter EBA-Min
ow

group AvgObj AvgObj AvgObj Diff(%)1 AvgObj Diff(%) AvgObj Diff(%)

N=10 772.66 762.16 792.03 3.92 793.21 4.07 804.31 5.53
N=20 683.39 660.54 697.83 5.65 705.18 6.76 743.33 12.53
N=30 689.72 665.68 695.12 4.42 709.22 6.54 782.34 17.52
K=1 665.4 651.03 674.2 3.56 669.69 2.87 704.75 8.25
K=2 704.9 689.26 726.96 5.47 726.91 5.46 767.59 11.36
K=3 775.46 748.08 783.83 4.78 811.01 8.41 857.63 14.64

OS=0.2 939.63 905.92 958.5 5.8 979.61 8.13 1059.12 16.91
OS=0.7 490.88 486.33 498.16 2.43 492.13 1.19 494.19 1.62
RF=0.2 562.43 554.03 575.54 3.88 565.6 2.09 564.93 1.97
RF=0.7 868.08 838.22 881.12 5.12 906.14 8.1 988.38 17.91
RC=0.2 615.58 620.49 637.79 3.61 644.39 4.68 727.3 18.15
RC=0.7 814.93 771.76 818.86 6.1 827.34 7.2 826.01 7.03

1 The difference (%) from the best value given by BnB-Flow and BnB-MCS.

K. Secondly, recall that the OS value determines original AON network G, and an instance
with a higher OS value has more precedence constraints. This will lead to a smaller search
space for the two algorithms due to a) smaller number of branching alternatives in the
activity level of BnB-Flow, and b) smaller number of MCS needed to be resolved by BnB-

MCS. On the contrary, for the two resource-related parameters RF and RC, a higher value
indicates a larger search space for the two algorithms, since a) more feasible links exist in
the link level of BnB-Flow, and b) more activity combinations satisfy the conditions of MCS
and need to be resolved by BnB-MCS.

7.3 Comparison with other Approaches

In this section, we compare the quality of solutions produced by our approaches with the
ones generated by the benchmark algorithms listed in Section 7.1. We first conduct a
relatively detailed comparison of all algorithms using the small sized instances with N ∈
{10, 20, 30} on the uncertainty models with both components, and with only individual
component X and Y in Sections 7.3.1, 7.3.2 and 7.3.3, respectively. Then, we present
the results on large sized instances with N ∈ {60, 120} in Section 7.3.4, using uncertainty
models with both components.

7.3.1 Results on Models with Both Components

The model U used in this subsection is the same as the one used in Section 7.2. We
first report and analyze the results on instances from Set1, which is listed in Table 4. As
shown in this table, the results of our two branch-and-bound algorithms are better than
all the three benchmark algorithms, and BnB-MCS are the best in most of the instance
groups. Meanwhile, BnB-Flow, BnB-MCS and RLS produce better results than the other
two general-purpose algorithms, which clearly shows the advantage of incorporating the
stochastic knowledge in generating proactive POS. We also observe that EBA-Min
ow per-
forms worse than ESTA-Iter. A possible reason is that EBA-Min
ow focuses more on the
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Table 5: Quality of Solutions on Models with Both Components - Set2

Instance BnB-Flow BnB-MCS RLS ESTA-Iter EBA-Min
ow

group AvgObj AvgObj AvgObj Diff(%) AvgObj Diff(%) AvgObj Diff(%)

N=10 1009.73 965.27 1036.21 7.35 1096.28 13.57 1176.56 21.89
N=20 1044.3 1014.6 1068.74 5.34 1168.89 15.21 1354.62 33.51
N=30 1094.51 1082.56 1094.76 1.13 1223.02 12.98 1532.78 41.59
K=1 955.17 934.31 980.43 4.94 1050.44 12.43 1252.15 34.02
K=2 1047.7 1021.09 1066.91 4.49 1166.48 14.24 1352.2 32.43
K=3 1145.68 1107.03 1152.37 4.1 1271.26 14.84 1459.61 31.85

OS=0.2 1276.89 1246.59 1296.93 4.04 1504.11 20.66 1819.71 45.97
OS=0.5 822.14 795.02 836.21 5.18 821.35 3.31 889.59 11.9
RF=0.7 977.05 956.29 1005.89 5.19 1068.64 11.75 1222.25 27.81
RF=0.9 1121.98 1085.32 1127.25 3.86 1256.82 15.8 1487.06 37.02
RC=0.2 852.82 854.07 900.58 5.6 932.21 9.31 1163.81 36.47
RC=0.4 1246.21 1187.55 1232.56 3.79 1393.24 17.32 1545.49 30.14

resource conflict detection and removing, but gives little attention to the precedence con-
straints between activities. On the contrary, ESTA-Iter explicitly considers minimizing the
“dependencies” between activities (i.e. reducing the edges in POS).

Another interesting observation from Table 4 is that the improvement of our approach
tends to be lower when the instances have higher OS, lower RF and higher RC. Here we
give an intuitive explanation for this observation. For instances with higher OS values,
the original project graph G is denser since more precedence constraints exist in E. In
this case, a majority of edges in the final solution belong to E. For instances with lower
RC values, the lower resource requirements of activities result in a relatively small number
of additional edges in the final solution. For instances with higher RC value, the smaller
improvement may result from the larger search spaces, in which our algorithms cannot
return high quality solutions within the time limit. To further study the performance of
our algorithms on lower OS, higher RF and lower RC, we conduct experiments on the 720
instances from Set2. In this test set, BnB-Flow and BnB-MCS close 133 and 324 instances
with the average computation time of 248.1 and 171.5 seconds, respectively. The results are
summarized in Table 5, which shows a more prominent improvement against the general-
purpose algorithms ESTA-Iter and EBA-Min
ow. For RLS which also exploits the stochastic
knowledge, the improvement is slightly lower than that in Table 4. We currently do not
have an explanation for this observation, and experimental study is needed in the future to
better understand the behavior of RLS.

7.3.2 Results on Models with Component X

In this section, we summarize the experiments on small sized instances and uncertainty
models with only component X modeled by the dataset in Table 1, while component Y
is deterministic (i.e. Pr(Yi = d0

i ) = 1 for all i). We report the results on Set1 and Set2
in Tables 6 and 7, respectively. Compared to the corresponding values in Tables 4 and 5,
the expected makespan values in these two tables are smaller. This is reasonable since now
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Table 6: Quality of Solutions on Models with Component X - Set1

Instance BnB-Flow BnB-MCS RLS ESTA-Iter EBA-Min
ow

group AvgObj AvgObj AvgObj Diff(%) AvgObj Diff(%) AvgObj Diff(%)

N=10 699.36 697.27 729.33 4.6 722.31 3.59 744.01 6.7
N=20 627.75 614.06 640.92 4.37 654.82 6.64 722.88 17.72
N=30 639.25 618.23 643.21 4.04 656.47 6.18 753.06 21.81
K=1 608.62 595.24 618.14 3.85 615.6 3.42 673.94 13.22
K=2 646.7 638.34 663.63 3.96 667.45 4.56 731.31 14.57
K=3 711.04 695.99 731.68 5.13 750.55 7.84 814.69 17.05

OS=0.2 842.39 821.37 865.27 5.34 887.06 8 1001.15 21.89
OS=0.7 468.51 465.01 477.03 2.58 468.67 0.79 478.81 2.97
RF=0.2 512.16 503.17 517.21 2.79 514.44 2.24 520.2 3.38
RF=0.7 798.75 783.21 825.09 5.35 841.29 7.41 959.76 22.54
RC=0.2 548.6 548.27 565.7 3.18 573.08 4.53 695.12 26.78
RC=0.7 762.31 738.11 776.61 5.22 782.65 6.03 784.84 6.33

Table 7: Quality of Solutions on Models with Component X - Set2

Instance BnB-Flow BnB-MCS RLS ESTA-Iter EBA-Min
ow

group AvgObj AvgObj AvgObj Diff(%) AvgObj Diff(%) AvgObj Diff(%)

N=10 897.02 878.16 945.64 7.68 996.22 13.44 1127.67 28.41
N=20 941.3 941.66 997.41 5.96 1079.82 14.72 1333.94 41.71
N=30 992.41 991.35 1013.05 2.19 1117.48 12.72 1513.08 52.63
K=1 852.64 862.31 901.3 5.71 957.02 12.24 1213.79 42.36
K=2 937.84 931.03 984.54 5.75 1070.7 15 1340.17 43.95
K=3 1040.23 1017.82 1070.27 5.15 1165.79 14.54 1420.72 39.58

OS=0.2 1119.1 1130.08 1195.1 6.79 1369.51 22.38 1754.99 56.82
OS=0.5 768.05 744.03 775.63 4.25 759.5 2.08 894.8 20.26
RF=0.7 874.67 870.4 917.82 5.45 968.65 11.29 1210.94 39.12
RF=0.9 1012.47 1003.71 1052.91 4.9 1160.36 15.61 1438.86 43.35
RC=0.2 750.16 749.57 797.98 6.46 826.36 10.24 1142.79 52.46
RC=0.4 1136.98 1124.54 1172.76 4.29 1302.65 15.84 1507 34.01

only one uncertainty source exists. We also have similar observations as the ones in Section
7.3.1, which can be explained by similar rationale.

7.3.3 Results on Models with Component Y

In this section, we report the experiments on small sized instances and uncertainty models
that only consist of component Y , i.e. Pr(Xzt = 1) for all z and t. We also restore the
deterministic durations d0

i to the original values (i.e. integers in [1, 10]) since X is not
considered here. In this case, the proactive scheduling problem in Equation (5) is reduced
to the traditional stochastic RCPSP. As mentioned in Section 7.1, we use two additional
benchmark algorithms in this section, including the state-of-the-art solver Creemers15 and
a heuristic BPS. Since Creemers15 gives the optimal expected makespan (w.r.t. elementary
policy) when the activity duration follows exponential distribution, i.e. Yi ∼ Exp(1/d0

i ),
here we conduct experiments on Set1 and Set2 with exponential distributions, and compare
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Table 8: Quality of Solutions on Models with Component Y - Set1

Instance
BnB-Flow1 BnB-MCS RLS BPS ESTA-Iter EBA-Min
ow

group

N=10 0.43 0.47 4.27 2.26 2.3 2.39
N=20 3.29 2.41 8.01 4.28 5.79 6.58
N=30 5.15 4.1 9.61 5.45 7.74 8.33
K=1 1.62 1.43 4.92 3.04 2.75 3.96
K=2 3.12 2.39 7.58 3.95 5.47 5.95
K=3 3.81 2.9 9.04 4.8 7.24 7.01

OS=0.2 4.75 4.19 9.69 4.72 8.49 10.06
OS=0.7 1.13 0.47 4.91 3.21 2.12 1.61
RF=0.2 0.75 0.24 3.81 2.15 1.73 1.13
RF=0.7 4.92 4.19 10.48 5.66 8.51 10.05
RC=0.2 1.77 1.87 5.92 4.83 5.4 6.38
RC=0.7 3.95 2.62 8.47 3.04 4.94 4.93

1 The average gap (%) to the value given by Creemers15.

Table 9: Quality of Solutions on Models with Component Y - Set2

Instance
BnB-Flow BnB-MCS RLS BPS ESTA-Iter EBA-Min
ow

group

N=10 5.78 5.34 10.39 4.56 11.88 13.44
N=20 13.01 13.27 20.24 12.44 23 25.15
N=30 17.56 17.96 22.62 15.32 24.56 23.21
K=1 8.3 9.28 13.79 8.13 15 20
K=2 12.43 12.41 17.84 11.03 19.99 19.55
K=3 14.7 13.94 20.79 12.4 23.62 21.82

OS=0.2 15.07 16.04 22.17 15.5 29.66 31.37
OS=0.5 8.92 8.15 13.29 6.06 10.46 10.62
RF=0.7 9.67 9.61 15.15 8.7 16.42 17.69
RF=0.9 14.02 14.18 19.86 12.38 22.73 23.26
RC=0.2 7.01 7.29 12.98 9.58 14.54 16.41
RC=0.4 16.76 16.59 22.13 11.52 24.7 24.61

the solution qualities by computing the gap (%) of a solution’s objective value given by our
algorithms or benchmarks to the optimal expected makespan given by Creemers15. As we
have mentioned in Section 2, the solution of Creemers15, i.e. elementary policy, represents a
much larger solution space than POS, therefore it is expected that the expected makespan
given by Creemers15 is lower than ours. However, Creemers15 is not anytime and can only
terminate when the optimal expected makespan is found. In our experiments, we give
Creemers15 the same computational resources as our algorithms, i.e. the same machine
and the same time limit. For Set1 and Set2, Creemers15 solves 690 and 685 instances,
respectively. Below we only report the results for the instances solved by Creemers15.

The results are summarized in Tables 8 and 9. For Set1, our two algorithms outperforms
all the benchmarks and can find solutions within 5% to the optimal expected makespan,
while BnB-MCS tends to perform better than BnB-Flow. For Set2, on one hand, the gaps
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Table 10: Quality of Solutions on Models with Both Components - Set1

Instance BnB-Flow BnB-MCS RLS ESTA-Iter EBA-Min
ow

group AvgObj AvgObj AvgObj Diff(%) AvgObj Diff(%) AvgObj Diff(%)

N=60 715.68 714.28 733.86 2.74 730.34 2.25 744.36 4.21
N=120 991.36 992.08 1011.14 2 1008.76 1.76 1029.87 3.88
K=1 802.06 801.4 817.81 2.05 814.81 1.67 837.78 4.54
K=2 867.54 866.81 889.65 2.64 883.23 1.89 901.12 3.96
K=3 890.96 891.33 910.04 2.14 910.62 2.21 922.46 3.53

OS=0.2 866.51 866.33 902.16 4.14 897.46 3.59 930.89 7.45
OS=0.7 840.54 840.03 842.84 0.33 841.64 0.19 843.34 0.39
RF=0.2 731.1 730.12 744.56 1.98 732.98 0.39 741.18 1.51
RF=0.7 975.95 976.24 1000.44 2.51 1006.12 3.09 1033.06 5.85
RC=0.2 705.03 705.07 721.23 2.3 727.83 3.23 762.25 8.12
RC=0.7 1002.02 1001.29 1023.77 2.25 1011.27 1 1011.99 1.07

Table 11: Quality of Solutions on Models with Component X - Set2

Instance BnB-Flow BnB-MCS RLS ESTA-Iter EBA-Min
ow

group AvgObj AvgObj AvgObj Diff(%) AvgObj Diff(%) AvgObj Diff(%)

N=60 719.32 721.09 763.09 6.08 822 14.27 849.05 18.03
N=120 894.16 894.84 945.04 5.69 990.47 10.77 1019.81 14.05
K=1 758.71 760.74 797.01 5.05 837.8 10.42 901.64 18.84
K=2 808 809.46 856.09 5.95 911.41 12.8 932.84 15.45
K=3 853.51 853.68 909.08 6.51 969.48 13.59 968.8 13.51

OS=0.2 879.28 882.08 960.7 9.26 1063.89 21 1103.43 25.49
OS=0.5 734.21 733.84 747.42 1.85 748.58 2.01 765.43 4.3
RF=0.7 768.17 769.39 812.18 5.73 852.04 10.92 899.15 17.05
RF=0.9 845.31 846.54 895.94 5.99 960.43 13.62 969.71 14.72
RC=0.2 670.88 670.87 709.77 5.8 733.54 9.34 779.83 16.24
RC=0.4 942.6 945.05 998.35 5.91 1078.93 14.46 1089.03 15.53

become larger for all algorithms, which is probably because the parameter configuration for
Set2 results in a larger policy space for Creemers15, hence gives more possibility for finding
an optimal policy that has a much better expected makespan than the optimal POS. On
the other hand, our algorithms BnB-Flow and BnB-MCS are outperformed by BPS on most
of the instance groups. This may be caused by the low computational efficiency of our
algorithms on this instance set: 610 and 411 instances are time-out for BnB-Flow and BnB-

MCS, respectively. This leaves us a direction for future work, which is to further improve
the efficiency by exploiting useful properties of the component Y .

7.3.4 Results on Large Sized Instances

In this section, we compare our algorithms and the three benchmarks RLS, ESTA-Iter and
EBA-Min
ow on large sized instances with 60 and 120 activities. We conduct experiments
on two sets of instances generated as we described in Section 7.1, each with 480 instances,
on the same uncertainty model with both components as the one we used in Section 7.3.1.
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Results are summarized in Tables 10 and 11. As shown in these tables, our algorithms
still can outperform the other ones, but the improvements are lower than those shown in
Tables 4 and 5. This observation is expected, since these instances are much harder to be
solved optimally than the small sized ones, due to the NP-hardness of the SAA problem.
Within the time limit of 300 seconds, BnB-Flow closes 138 and 34 instances in Set1 and Set2
respectively, while BnB-MCS can solve 220 and 77 ones optimally in the corresponding sets.
Another observation is that in these large sized instances, BnB-Flow may perform better
than BnB-MCS on some instance groups, especially in Set2. This is probably because the
CP procedure in BnB-MCS is less efficient on these large sized instances.

8. Conclusion and Future Work

Most of the existing works on proactive project scheduling are based on the assumption
that the duration uncertainty is not related to the start time of the activity, which may
not hold in real-world scenarios. In this paper, we relax this assumption and study the
problem of proactive scheduling under a generalized model of uncertain activity durations,
which covers both the traditional time-independent uncertainty and the time-dependent
workability uncertainty. Based on this model, we formulate the proactive scheduling prob-
lem as a stochastic optimization problem, which aims at finding a POS that minimizes the
expected makespan. However, this problem is very challenging, since even evaluating a
solution is computationally intractable. To tackle the hardness in solution evaluation, we
approximate the problem based on SAA, which is a principled approximation scheme with
convergence guarantee. We prove that the resulting SAA problem is still NP-hard, due to
the combinatorial nature of RCPSP.

We then propose two branch-and-bound algorithms to solve the SAA problem optimally.
The first algorithm uses a constructive approach to extend a partial temporal network
with part of activities to a full feasible solution, by identifying precedence and resource
feasible links. The second algorithm finds a feasible solution by iteratively detecting and
removing possible resource conflicts, until a temporal network is proved to be conflict-free.
By exploiting some properties of the SAA problem, we design several components for the
branch-and-bound algorithms, including branching heuristics and lower bounds. To verify
the performance of our algorithms, we conduct a series experiments on pure workability
uncertainty, pure time-independent duration uncertainty, and mixture models with two
uncertainty sources that are built from real-world dataset and common distributions used
in the literature. Results show that our algorithms can effectively generate high-quality
proactive solutions by exploiting the stochastic knowledge of the uncertainty.

In the future, we plan to improve our current approaches in several ways. Firstly, an
immediate direction is to further improve the computational efficiency of our algorithms
by introducing other components, such as stronger lower bounds, more effective branching
heuristics, and dominance rules. Secondly, we aim at study how to apply our current algo-
rithms on the general time-dependent uncertainty models. Finally, we intend to extend the
current approach to handle RCPSP with minimum and maximum time lags (RCPSP/max)
(Fu et al., 2012), which could further improve the generality of our approach.
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