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Abstract

The CFR+ algorithm for solving imperfect information games is a variant of the pop-
ular CFR algorithm, with faster empirical performance on a range of problems. It was
introduced with a theoretical upper bound on solution error, but subsequent work showed
an error in one step of the proof. We provide updated proofs to recover the original bound.

1. Introduction

CFR+ was introduced (Tammelin, 2014) as an algorithm for approximately solving imper-
fect information games, and was subsequently used to essentially solve the game of heads-up
limit Texas Hold’em poker (Bowling, Burch, Johanson, & Tammelin, 2015). Another paper
associated with the poker result gives a correctness proof for CFR+, showing that approxi-
mation error approaches zero (Tammelin, Burch, Johanson, & Bowling, 2015).

CFR+ is a variant of the CFR algorithm (Zinkevich, Johanson, Bowling, & Piccione,
2007), with much better empirical performance than CFR. One of the CFR+ changes is
switching from simultaneous updates to alternately updating a single player at a time. A
crucial step in proving the correctness of both CFR and CFR+ is linking regret, a hindsight
measurement of performance, to exploitability, a measurement of the solution quality.

Later work pointed out a problem with the CFR+ proof (Farina, Kroer, & Sandholm,
2019), noting that the CFR+ proof makes reference to a folk theorem making the necessary
link between regret and exploitability, but fails to satisfy the theorem’s requirements due
to the use of alternating updates in CFR+. Farina et al. give an example of a sequence of
updates which lead to zero regret for both players, but high exploitability.

We state a version of the folk theorem that links alternating update regret and ex-
ploitability, with an additional term in the exploitability bound relating to strategy im-
provement. By proving that CFR and CFR+ generate improved strategies, we can give a
new correctness proof for CFR+, recovering the original bound on approximation error.

2. Definitions

We need a fairly large collection of definitions to get to the correctness proof. CFR and
CFR+ make use of the regret-matching algorithm (Hart & Mas-Colell, 2000) and regret-
matching+ algorithm (Tammelin, 2014), respectively, and we need to show some properties
of these component algorithms. Both CFR and CFR+ operate on extensive form games, a
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compact tree-based formalism for describing an imperfect information sequential decision
making problem.

2.1 Regret-Matching and Regret-Matching+

Regret-matching is an algorithm for solving the online regret minimisation problem. Exter-
nal regret is a hindsight measurement of how well a policy did, compared to always selecting
some action. Given a set of possible actions A, a sequence of value functions vt ∈ R|A|, and
sequence of policies σt ∈ ∆|A|, the regret for an action is

rt+1 := rt + vt − σt · vt

r0 := 0 (1)

An online regret minimisation algorithm specifies a policy σt based on past value functions
and policies, such that maxa r

t
a/t→ 0 as t→∞.

Let x+ := max (x, 0), x+ :=
[
x+

1 , ..., x
+
n

]
, and

σrm(x) :=

{
x+/(1 · x+) if ∃a s.t. xa > 0
1/|A| otherwise

(2)

Then for any t ≥ 0, regret-matching uses a policy

σt := σrm(rt) (3)

Regret-matching+ is a variant of regret-matching that stores a set of non-negative regret-
like values

qt+1 := (qt + vt − σt · vt)+

q0 := 0 (4)

and uses the same regret-matching mapping from stored values to policy

σt := σrm(qt) (5)

2.2 Extensive Form Games

An extensive form game (Von Neumann & Morgenstern, 1947) is a sequential decision-
making problem where players have imperfect (asymmetric) information. The formal de-
scription of an extensive form game is given by a tuple 〈H,P, p,σc, u, I〉.

H is the set of all states h, which are a history of actions from the beginning of the game
∅. Given a history h and an action a, ha is the new state reached by taking action a at h.
To denote a descendant relationship, we say h v j if j can be reached by some (possibly
empty) sequence of actions from h, and h @ j ⇐⇒ h v j, h 6= j.

We will use Z := {h ∈ H | @j ∈ H s.t. h @ j} to denote the set of terminal histories,
where the game is over. We will use Z(h) := {z ∈ Z | h v z} to refer to the set of terminal
histories that can be reached from some state h.

A(h) gives the set of valid actions at h ∈ H \ Z. We assume some fixed ordering
a1, a2, ..., a|A| of the actions, so we can speak about a vector of values or probabilities across
actions. a ≺ b denotes that action a precedes b, with a ≺ b ⇐⇒ ai = a, aj = b, i < j.

430



Revisiting CFR+ and Alternating Updates

P is the set of players, and p : H \ Z → P
⋃
{c} gives the player that is acting at

state h, or the special chance player c for states where a chance event occurs according to
probabilities specified by σc(h) ∈ ∆|A(h)|. Our work is restricted to two player games, so
will say P = {1, 2}.

The utility of a terminal history z for Player p is given by up(z). We will restrict
ourselves to zero-sum games, where

∑
p∈P up(z) = 0.

A player’s imperfect information about the game state is represented by a partition I
of states H based on player knowledge. For all information sets I ∈ I and all states h, j ∈ I
are indistinguishable to Player p(h) = p(j), with the same legal actions A(h) = A(j). Given
this equality, we can reasonably talk about p(I) := p(h) and A(I) := A(h) for any h ∈ I.
For any h, we will use I(h) := I ∈ I such that h ∈ I to refer to the information set
containing h. It is convenient to group information sets by the acting player, so we will use
Ip := {I ∈ I | p(I) = p} to refer to Player p’s information sets.

We will also restrict ourselves to extensive form games where players have perfect recall.
Informally, Player p has perfect recall if they do not forget anything they once knew: for
all states h, j in some information set, both h and j passed through the same sequence of
Player p information sets from the beginning of the game ∅, and made the same Player p
actions.

A strategy σp : Ip → ∆|A(I)| for Player p gives a probability distribution σp(I) over legal
actions for Player p information sets. For convenience, let σp(h) := σp(I(h)). A strategy
profile σ := (σ1, σ2) is a tuple of strategies for both players. Given a profile σ, we will use
σ−p to refer to the strategy of p’s opponent.

Because states are sequences of actions, we frequently need to refer to various products
of strategy action probabilities. Given a strategy profile σ,

πσ(h) :=
∏
iavh

σp(i)(h)a (6)

refers to the probability of a game reaching state h when players sample actions according
to σ and chance events occur according to σc.

πσ(h | j) :=
∏
iavh
jvi

σp(i)(h)a (7)

refers to the probability of a game reaching h given that j was reached.

πσp (h) :=
∏
iavh

p(h)=p

σp(i)(h)a

πσ−p(h) :=
∏
iavh

p(h)6=p

σp(i)(h)a (8)

refer to probabilities of Player p or all actors but p making the actions to reach h, given
that p’s opponent and chance made the actions in h. Note that there is a slight difference in
the meaning of the label −p here, with πσ−p considering actions by both Player p’s opponent
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and chance, whereas σ−p refers to the strategy of p’s opponent.

πσp (h | j) :=
∏
iavh
jvi

p(h)=p

σp(i)(h)a (9)

refers to the probability of Player p making the actions to reach h, given j was reached and
p’s opponent and chance make the actions to reach h. There are a few useful relationships:

πσ(h) = πσp (h)πσ−p(h)

∀j v h, πσ(h) = πσ(j)πσ(h | j) (10)

The expected utility of a strategy profile σ is

uσp :=
∑
z∈Z

πσ(z)up(z) (11)

The counterfactual value of a history or information set are defined as

vσp (h) :=
∑

z∈Z(h)

πσ−p(z)π
σ
p (z | h)up(z)

vσ(I) :=
∑
h∈I

(vσp(h)(ha1), ..., vσp(h)(ha|A(I)|)) (12)

For later convenience, we will assume that for each player there exists an information set
I∅p at the beginning of the game, containing a single state with a single action, leading to

the rest of the game. This lets us say that uσp = vσ(I∅p )a0 .
Given a sequence σ0

p, ..., σ
t
p of strategies, we denote the average strategy from a to b as

σ̄[a,b]
p :=

b∑
i=a

σip
b− a+ 1

(13)

Given a sequence σ0, ...,σt−1 of strategy profiles, we denote the average Player p regret as

rtp := max
σ∗p

t−1∑
i=0

(u
(σ∗p ,σ

i
−p)

p − uσi

p )/t

= max
σ∗p

u
(σ∗p ,σ̄

[0,t−1]
−p )

p −
t−1∑
i=0

uσ
i

p /t (14)

The exploitability of a strategy profile σ is a measurement of how much expected utility
each player could gain by switching their strategy:

expl(σ) := max
σ∗1

u
(σ∗1 ,σ2)
1 − uσ1 + max

σ∗2
u

(σ1,σ∗2)
2 − uσ2

= max
σ∗1

u
(σ∗1 ,σ2)
1 + max

σ∗2
u

(σ1,σ∗2)
2 by zero-sum (15)

Achieving zero exploitability – a Nash equilibrium (Nash, 1950) – is possible. In two player,
zero-sum games, finding a strategy with low exploitability is a reasonable goal for good play.
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2.3 CFR and CFR+

CFR and its variant CFR+ are both algorithms for finding an extensive form game strategy
with low exploitability. They are all iterative self-play algorithms that track the average of
a current strategy that is based on many loosely coupled regret minimisation problems.

CFR and CFR+ track regret-matching values rt(I) or regret-matching+ values qt(I) re-
spectively, for all I ∈ I. At time t, CFR and CFR+ use strategy profile σt(I) := σrm(rt(I))
and σt(I) := σrm(qt(I)), respectively. When doing alternating updates, with the first up-
date done by Player 1, the values used for updating regrets are

vt(I) :=

{
vσ

t
(I) if p(I) = 1

v(σt+1
1 ,σt

2)(I) if p(I) = 2
(16)

and the output of CFR is the profile of average strategies (σ̄
[1,t]
1 , σ̄

[0,t−1]
2 ), while the output

of CFR+ is the profile of weighted average strategies ( 2
t2+t

∑t
i=1 iσ

i
1,

2
t2+t

∑t−1
i=0(i+ 1)σi2).

3. Theoretical Results

The CFR+ proof of correctness (Tammelin et al., 2015) references a folk theorem that links
regret and exploitability. Farina et al. show that the folk theorem only applies to simul-
taneous updates, not alternating updates, giving an example of a sequence of alternating
updates with no regret but constant exploitability (Farina et al., 2019). Their observation
is reproduced below using the definitions from this work.

Observation 1 Let P = {X,Y }, A = {0, 1}, and Z = {00, 01, 10, 11}. A game consists
of each player selecting one action. Let uX(11) = 1, and uX(z) = 0 for all z 6= 11.
Consider the sequence of strategies σtX = σtY = t mod 2, with Player X regrets computed

using v(σt
X ,σ

t
Y ) and Player Y regrets computed using v(σt+1

X ,σt
Y ). Then at any time 2T the

accumulated regret for both players is 0 and the average strategy is σ̄
[1,2T ]
X = σ̄

[0,2T−1]
Y =

0.5, with exploitability expl(σ̄
[1,2T ]
X , σ̄

[0,2T−1]
Y ) = 0.5. So both players have 0 regret, but the

exploitability does not approach 0.

As a first step in correcting the CFR+ proof, we introduce an analogue of the folk
theorem, linking alternating update regret and exploitability.

Theorem 1 Let σt be the strategy profile at some time t, and rtp be the regrets computed

using alternating updates so that Player 1 regrets are updated using v(σt
1,σ

t
2) and Player

2 regrets are updated using v(σt+1
1 ,σt

2). If the regrets are bounded by rtp ≤ εp, then the

exploitability of (σ̄
[1,t]
1 , σ̄

[0,t−1]
2 ) is bounded by ε1 + ε2 − 1

t

∑t−1
i=0(u

(σi+1
1 ,σi

2)
1 − u(σi

1,σ
i
2)

1 ).

Proof. Consider the sum of regrets for both players, rt1 + rt2

= max
σ∗1

u
(σ∗1 ,σ̄

[0,t−1]
2 )

1 − 1

t

t−1∑
i=0

u
(σi

1,σ
i
2)

1 + max
σ∗2

u
(σ̄

[1,t]
1 ,σ∗2)

2 − 1

t

t−1∑
i=0

u
(σi+1

1 ,σi
2)

2 by Eq. 14

= expl (σ̄
[1,t]
1 , σ̄

[0,t−1]
2 )− 1

t

t−1∑
i=0

(u
(σi

1,σ
i
2)

1 + u
(σi+1

1 ,σi
2)

2 ) by Eq. 15
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Given rtp ≤ εp for all players p, we have expl (σ̄
[1,t]
1 , σ̄

[0,t−1]
2 )

≤ε1 + ε2 +
1

t

t−1∑
i=0

(u
(σi

1,σ
i
2)

1 + u
(σi+1

1 ,σi
2)

2 )

=ε1 + ε2 +
1

t

t−1∑
i=0

(u
(σi

1,σ
i
2)

1 − u(σi+1
1 ,σi

2)
1 ) by zero-sum

=ε1 + ε2 −
1

t

t−1∑
i=0

(u
(σi+1

1 ,σi
2)

1 − u(σi
1,σ

i
2)

1 )

The gap between regret and exploitability in Observation 1 is now apparent as a trailing
sum in Theorem 1. Each term in the sum measures the improvement in expected utility for
Player 1 from time t to time t+ 1. Motivated by this sum, we show that regret-matching,
CFR, and their + variants generate new policies which are not worse than the current policy.
Using these constraints, we construct an updated correctness proof for CFR+.

3.1 Regret-Matching and Regret-Matching+ Properties

We will show that when using regret-matching or regret-matching+, the expected utility
σt+1 · vt is never less than σt · vt. To do this, we will need to show these algorithms have
a couple of other properties. We start by showing that once there is at least one positive
stored regret or regret-like value, there will always be a positive stored value.

Lemma 2 For any t, let st be the stored value rt used by regret-matching or qt used by
regret-matching+, and σt be the associated policy. Then for all t where ∃a ∈ A such that
sta > 0, there ∃b ∈ A such that st+1

b > 0.

Proof. Consider any time t where ∃a ∈ A such that sta > 0. The policy at time t is then

σt = st,+/(1 · st,+) by Eqs. 2, 3, 5 (17)

Consider the stored value st+1
a . With regret-matching st+1

a = rt+1
a = rta + vta − σt · vt by

Equation 1, and with regret-matching+ st+1
a = qt+1

a = (qta + vta − σt · vt)+ by Equation 4.
For both algorithms, the value of st+1

a depends on vta − σt · vt. There are two cases:

1. vta − σt · vt ≥ 0

st+1
a > 0 by Lemma assumption, Eq. 1, 4
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2. vta − σt · vt < 0

σta(v
t
a − σt · vt) < 0 by sta > 0, Eq. 17

0 < σt · vt − σt · vt − σta(vta − σt · vt)

0 <
∑
b∈A

(
σtb(v

t
b − σt · vt)

)
− σta(vta − σt · vt) by

∑
b∈A σ

t
b = 1

0 <
∑
b6=a

(
σtb(v

t
b − σt · vt)

)
∃b s.t. σtb > 0, vtb − σt · vt > 0 by σta′ ≥ 0 for all a′ ∈ A
stb > 0, vtb − σt · vt > 0 by Eq. 17

st+1
b > 0 by Eqs. 1, 4

In both cases, ∃b such that st+1
b > 0.

There is a corollary to Lemma 2, that regret-matching and regret-matching+ never
switch back to playing the default uniform random policy once they switch away from it.

Corollary 3 When using regret-matching or regret-matching+, if there exists a time t such
that σt = st,+/(1 · st,+) where st are the stored regrets rt or regret-like values qt at time t,
then σt

′
= st

′,+/(1 · st′,+) for all t′ ≥ t.

Proof. Assume that at some time t, σt = st,+/(1 · st,+). We can show by induction
that σt

′
= st

′,+/(1 · st′,+) for all t′ ≥ t. The base case t′ = t of the hypothesis holds by
assumption. Now, assume that σt

′
= st

′,+/(1 · st′,+) for some time t′ ≥ t. We have

∃a ∈ A s.t. st
′
a > 0 by Eq. 2

∃b ∈ A s.t. st
′+1
b > 0 by Lemma 2

σt
′+1 = st

′+1,+/(1 · st′+1,+) by Eq. 2

Therefore, by induction the hypothesis holds for all t′ ≥ t.

Lemma 4 For any t, let st be the stored value rt used by regret-matching or qt used by
regret-matching+, and σt be the associated policy. Then for all t and a ∈ A,
(st+1,+
a − st,+a )(vta − σt · vt) ≥ 0.

Proof. Consider whether vta − σt · vt is positive. There are two cases.

1. vta − σt · vt ≤ 0

For regret-matching, where sta = rta, we have

rt+1
a = rta + vta − σt · vt by Eq. 1

rt+1
a ≤ rta
rt+1,+
a ≤ rt,+a
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For regret-matching+, where sta = qta, we have

qt+1,+
a = (qta + vta − σt · vt)+ by Eq. 4

qt+1,+
a = (qt,+a + vta − σt · vt)+ by Eq. 4

qt+1,+
a ≤ qt,+a by monotonicity of (·)+

Therefore for both algorithms we have

st+1,+
a − st,+a ≤ 0

(st+1,+
a − st,+a )(vta − σt · vt) ≥ 0

2. vta − σt · vt > 0

st+1
a = sta + vta − σt · vt by Eqs. 1, 4

st+1
a > sta

st+1,+
a ≥ st,+a

(st+1,+
a − st,+a )(vta − σt · vt) ≥ 0

In both cases, we have (st+1,+
a − st,+a )(vta − σt · vt) ≥ 0.

Theorem 5 If σ0,σ1, ... is the sequence of regret-matching or regret-matching+ policies
generated from a sequence of value functions v0,v1, ..., then for all t, σt+1 · vt ≥ σt · vt.

Proof. Let st be the stored value rt used by regret-matching or qt used by regret-
matching+. Consider whether all components of st or st+1 are negative. By Lemma 2
we know that it can not be the case that ∃a sta > 0 and ∀b st+1

b ≤ 0. This leaves three cases.

1. ∀a sta ≤ 0 and ∀a st+1
a ≤ 0

σt = σt+1 = 1/|A| by Eqs. 2, 3, 5

σt+1 · vt = σt · vt

2. ∀a sta ≤ 0 and ∃a st+1
a > 0

σt+1 = st+1,+/(1 · st+1,+) by Eqs. 2, 3, 5

∀b, σt+1
b > 0 =⇒ st+1

b > 0

∀b, σt+1
b > 0 =⇒ vtb > σ

t · vt by Eqs. 1, 4∑
b∈A

σt+1
b vtb >

∑
b

σt+1
b σt · vt by σt+1

b ≥ 0

σt+1 · vt > σt · vt by
∑

b∈A σ
t+1
b = 1

3. ∃a sta > 0 and ∃b st+1
b > 0

Let

σ(w) := w+/(w+ · 1) (18)
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Then we have

σt = σ(st), σt+1 = σ(st+1) by Eqs. 2, 3, 5 (19)

Consider any ordering a1, a2, ..., a|A| of actions such that b ≺ a. Let

wij :=

{
st+1
j j ≤ i
stj j > i

(20)

Note that ∀i < a, wia = sta > 0, and ∀i ≥ a, wib = st+1
b > 0, so that σ(wi) is always

well-defined. We can show by induction that for all i ≥ 0

σ(wi) · vt ≥ σt · vt (21)

For the base case of i = 0, we have

w0 = st by Eq. 20

σ(w0) · vt = σ(st) · vt

σ(w0) · vt = σt · vt by Eq. 19

Now assume that Equation 21 holds for some i ≥ 0. By construction,

∀j 6= i+ 1, wi+1
j = wij by Eq. 20 (22)

For notational convenience, let ∆w := wi+1,+
i+1 − wi,+i+1 = st+1,+

i+1 − st,+i+1.

σ(wi+1) · vt − σt · vt

=
wi+1,+ · vt

wi+1,+ · 1
− σt · vt by Eq. 18

=
∆wv

t
i+1 +wi,+ · vt

∆w +wi,+ · 1
− σt · vt by Eqs. 20, 22

=
∆wv

t
i+1 + (wi,+ · 1)σ(wi) · vt

∆w +wi,+ · 1
− σt · vt by Eq. 18

≥
∆wv

t
i+1 + (wi,+ · 1)σt · vt

∆w +wi,+ · 1
− σt · vt by ind. hypothesis

=
∆wv

t
i+1 + (wi,+ · 1)σt · vt

∆w +wi,+ · 1
− ∆wσ

t · vt + (wi,+ · 1)σt · vt

∆w +wi,+ · 1

=
∆w(vti+1 − σt · vt)

∆w +wi,+ · 1
≥ 0 by Lemma 4

σ(wi+1) · vt ≥ σt · vt, so by induction Equation 21 holds for all i ≥ 0. In particular,
we can now say

σ(w|A|) · vt ≥ σt · vt

σ(st+1) · vt ≥ σt · vt by Eq. 20

σt+1 · vt ≥ σt · vt by Eq. 19

In all cases, we have σt+1 · vt ≥ σt · vt.
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3.2 CFR and CFR+ Properties

We now show that CFR and CFR+ have properties that are similar to Theorem 5. After a
player updates their strategy, that player’s counterfactual value does not decrease for any
action at any of their information sets. Similarly, the expected value of the player’s new
strategy does not decrease. Finally, using the property of non-decreasing value, we give an
updated proof of an exploitability bound for CFR+.

Lemma 6 Let p be the player that is about to be updated in CFR or CFR+ at some time
t. Let σtp be the current strategy for p, and σo be the opponent strategy σt−p or σt+1

−p used by

Equation 16. Then ∀I ∈ Ip and ∀a ∈ A(I), v(σt+1
p ,σo)(I)a ≥ v(σt

p,σo)(I)a.

Proof. We will use some additional terminology. Let the terminal states reached from I
by action a ∈ A(I) be

Z(I, a) :=
⋃
h∈I

Z(ha) (23)

and for any descendant state of I, we will call the ancestor h in I

hI(j) := h ∈ I s.t. h v j (24)

Let D(I, a) be the set of information sets which are descendants of I given action a ∈ A(I),
and let C(I, a) be the set of immediate children:

D(I, a) := {J ∈ Ip(I) | ∃h ∈ I, j ∈ J s.t. ha v j}

C(I, a) := D(I, a) \
⋃

J∈C(I,a),b∈A(J)

D(J, b) (25)

Note that by perfect recall, for J ∈ C(I, a), ∃h ∈ I such that ha v j for all j ∈ J : if one
state in J is reached from I by action a, all states in J are reached from I by action a. Let
the distance of an information set from the end of the game be

d(I) :=

{
maxa∈A(I),J∈C(I,a)(d(J) + 1) if ∃a s.t. C(I, a) 6= ∅
0 if ∀a, C(I, a) = ∅ (26)

Using this new terminology, we can re-write

vσp (I)a =
∑
h∈I

∑
z∈Z(h)

πσ−p(z)π
σ
p (z | ha)up(z) by Eq. 12

=
∑

z∈Z(I,a)

πσ−p(z)π
σ
p (z | hI(z)a)up(z) by Eqs. 23, 24 (27)

We will now show that ∀i ≥ 0

∀I ∈ Ip s.t. d(I) ≤ i, ∀a ∈ A(I), v(σt+1,σo)(I)a ≥ v(σt
p,σo)(I)a (28)
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For the base case i = 0, consider any I ∈ Ip such that d(I) = 0. Given these assumptions,

∀a ∈ A(I), C(I, a) = ∅ by Eqs. 25, 26

∀σ, ∀a ∈ A(I), ∀z ∈ Z(I, a), πσp (z | hI(z)a) = 1 by Eq. 9 (29)

Now consider v
(σt+1

p ,σo)
p (I)a

=
∑

z∈Z(I,a)

π
(σt+1

p ,σo)
−p (z)π

(σt+1
p ,σo)

p (z | hI(z)a)up(z) by Eq. 27

=
∑

z∈Z(I,a)

π
(σt

p,σo)
−p (z)π

(σt+1
p ,σo)

p (z | hI(z)a)up(z) by Eq. 8

=
∑

z∈Z(I,a)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z | hI(z)a)up(z) by Eq. 29

= v(σt
p,σo)(I)a by Eq. 27

Assume the inductive hypothesis, Equation 28, holds for some i ≥ 0. If ∀I ∈ Ip, d(I) ≤ i,
Equation 28 trivially holds for i+ 1. Otherwise, consider any I ∈ Ip such that d(I) = i+ 1.
Let T (I, a) be the (possibly empty) set of terminal histories in Z(I, a) that do not pass
through another information set in Ip(I).

T (I, a) := Z(I, a) \
⋃

J∈C(I,a),b∈A(J)

Z(J, b) (30)

Because we require players to have perfect recall, terminal histories which pass through
different child information sets are disjoint sets.

Z(J, b) ∩ Z(J ′, b′) = ∅ ⇐⇒ J = J ′, b = b′

Therefore, we can construct a partition P of Z(I, a) from these disjoint sets and the terminal
histories T (I, a) which do not pass through any child information set.

P :={Z(J, b) | J ∈ C(I, a), b ∈ A(J)} ∪ {T (I, a)} (31)

Note that by the induction assumption, because d(I) = i+ 1

∀J ∈ C(I, a), d(J) ≤ i by Eqs. 25, 26

∀J ∈ C(I, a), b ∈ A(J), v(σt+1,σo)(J)b ≥ v(σt
p,σo)(J)b (32)
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Given this, we have v(σt+1
p ,σo)(I)a

=
∑

z∈Z(I,a)

π
(σt+1

p ,σo)
−p (z)π

(σt+1
p ,σo)

p (z | hI(z)a)up(z) by Eq. 27

=
∑

z∈Z(I,a)

π
(σt

p,σo)
−p (z)π

(σt+1
p ,σo)

p (z | hI(z)a)up(z) by Eq. 8

=
∑

J∈C(I,a)

∑
b∈A(J)

∑
z∈Z(J,b)

π
(σt

p,σo)
−p (z)π

(σt+1
p ,σo)

p (z | hI(z)a)up(z)

+
∑

z∈T (I,a)

π
(σt

p,σo)
−p (z)π

(σt+1
p ,σo)

p (z | hI(z)a)up(z) by Eq. 31

=
∑

J∈C(I,a)

∑
b∈A(J)

∑
z∈Z(J,b)

π
(σt

p,σo)
−p (z)π

(σt+1
p ,σo)

p (z | hI(z)a)up(z)

+
∑

z∈T (I,a)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z | hI(z)a)up(z) by Eqs. 9, 30 (33)

Looking at the terms inside
∑

J we have∑
b∈A(J)

∑
z∈Z(J,b)

π
(σt

p,σo)
−p (z)π

(σt+1
p ,σo)

p (z | hI(z)a)up(z)

=
∑

b∈A(J)

∑
z∈Z(J,b)

π
(σt

p,σo)
−p (z)σt+1

p (J)bπ
(σt+1

p ,σo)
p (z | hJ(z)b)up(z) by Eqs. 9, 25

=
∑

b∈A(J)

σt+1
p (J)bv

(σt+1
p ,σo)(J)b by Eq. 27

= σt+1
p (J) · v(σt+1

p ,σo)(J)

≥ σt+1
p (J) · v(σt

p,σo)(J) by Eq. 32

≥ σtp(J) · v(σt
p,σo)(J) by Theorem 5

=
∑

b∈A(J)

∑
z∈Z(J,b)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z | hI(z)a)up(z)

Substituting the terms back into Equation 33, we have v(σt+1
p ,σo)(I)a

≥
∑

J∈C(I,a)

∑
b∈A(J)

∑
z∈Z(J,b)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z | hI(z)a)up(z)

+
∑

z∈T (I,a)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z | hI(z)a)up(z)

=
∑

z∈Z(I,a)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z | hI(z)a)up(z) by Eq. 31

=v(σt
p,σo)(I)a by Eq. 27
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Therefore Equation 28 holds for i + 1, and by induction holds for all i. In particular, it
holds for i = maxI∈Ip d(I), and applies to all I ∈ Ip.

Theorem 7 Let p be the player that is about to be updated in CFR or CFR+ at some time
t. Let σtp be the current strategy for p, and σo be the opponent strategy σt−p or σt+1

−p used by

the values defined in Equation 16. Then u
(σt+1

p ,σo)
p ≥ u(σt

p,σo)
p .

Proof. This immediately follows from Lemma 6 and uσp = vσ(I∅p )a0 .

As a corollary of Theorems 1 and 7, when using alternating updates with either CFR

or CFR+, the average strategy (σ̄
[1,t]
1 , σ̄

[0,t−1]
2 ) has O(

√
t) exploitability. From the original

papers, both algorithms have an O(
√
t) regret bound, and the trailing sum in Theorem 1

is non-negative by Theorem 7. However, this only applies to a uniform average, so we need
yet another theorem to bound the exploitability of the CFR+ weighted average.

Theorem 8 Let σt be the CFR+ strategy profile at some time t, using alternating updates
so that Player 1 regret-like values are updated using v(σt

1,σ
t
2) and Player 2 regrets are updated

using v(σt+1
1 ,σt

2). Let l = maxy,z∈Z(u1(y)−u2(z)) be the bound on terminal utilities. Then the
exploitability of the weighted average strategy ( 2

t2+t

∑t
i=1 iσ

i
1,

2
t2+t

∑t−1
i=0(i+ 1)σi2) is bounded

by 2|I|l
√
k/t, where k := maxI |A(I)|.

Proof. Consider two expanded sequences S1 and S2 of strategy profiles where the original
strategy profile σt occurs t+ 1 times

S1 :=
(σ0

1, σ
0
2),︸ ︷︷ ︸ (σ1

1, σ
1
2), (σ1

1, σ
1
2),︸ ︷︷ ︸ ..., (σt−1

1 , σt−1
2 ), ..., (σt−1

1 , σt−1
2 )︸ ︷︷ ︸

1 copy 2 copies t copies

S2 :=
(σ1

1, σ
0
2),︸ ︷︷ ︸ (σ2

1, σ
1
2), (σ2

1, σ
1
2),︸ ︷︷ ︸ ..., (σt1, σ

t−1
2 ), ..., (σt1, σ

t−1
2 )︸ ︷︷ ︸

1 copy 2 copies t copies

Then with respect to Sp, the total Player p regret for any information set I and action a is

r
t2+t
2

p (I)a ≤ tl
√
kt by CFR+ Lemma 4 (Tammelin et al., 2015)

and the average Player p regret is

r
t2+t
2

p ≤ 2

t2 + t

∑
I∈Ip

max
a

r
t2+t
2 (I)a by CFR Theorem 3 (Zinkevich et al., 2007)

≤ 2

t2 + t

∑
I∈Ip

tl
√
kt

≤ 2|Ip|l
√
k/t (34)
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Because we have two sequences of profiles, we can not directly use Theorem 1, but we can
follow the same form as that proof to get

r
t2+t
2

1 + r
t2+t
2

2

= max
σ∗1

t2+t
2
−1∑

i=0

(
u

(σ∗1 ,S
1
i,2)

1 − uS
1
i

1

)
2

t2 + t
+ max

σ∗2

t2+t
2
−1∑

i=0

(
u

(σ∗2 ,S
2
i,1)

2 − uS
2
i

2

)
2

t2 + t

= max
σ∗1

u

(
σ∗1 ,S̄

1
[0, t

2+t
2 −1]

2

)
1 + max

σ∗2
u

(
S̄2

[0, t
2+t
2 −1]

1 ,σ∗2

)
2 −

t2+t
2∑
i=0

(
u
S1

i
1 + u

S2
i

2

)
2

tt + t

= max
σ∗1

u

(
σ∗1 ,

2
t2+t

∑t−1
i=0(i+1)σi

2

)
1 + max

σ∗2
u

(
2

t2+t

∑t
i=1 iσ

i
1,σ
∗
2

)
2 −

t−1∑
i=0

2(i+ 1)

tt + t

(
u

(σi
1,σ

i
2)

1 − u(σi+1
1 ,σi

2)
1

)

= expl

(
2

t2 + t

t∑
i=1

iσi1,
2

t2 + t

t−1∑
i=0

(i+ 1)σi2

)
−

t−1∑
i=0

2(i+ 1)

tt + t

(
u

(σi
1,σ

i
2)

1 − u(σi+1
1 ,σi

2)
1

)

Given Equation 34, we have expl
(

2
t2+t

∑t
i=1 iσ

i
1,

2
t2+t

∑t−1
i=0(i+ 1)σi2

)
≤ 2|I|1|l

√
k/t+ 2|I|2|l

√
k/t+

2

tt + t

t−1∑
i=0

(
i+ 1

)(
u

(σi
1,σ

i
2)

1 − u(σi+1
1 ,σi

2)
1

)
≤ 2|I|1|l

√
k/t+ 2|I|2|l

√
k/t by Theorem 7

= 2|I|l
√
k/t

4. Conclusions

The original CFR+ convergence proof makes unsupported use of the folk theorem linking
regret to exploitability. We re-make the link between regret and exploitability for alternat-
ing updates, and provide a corrected CFR+ convergence proof that recovers the original
exploitability bound. The proof uses a specific property of CFR and CFR+, where for
any single player update, both algorithms are guaranteed to never generate a new strategy
which is worse than the current strategy.

With a corrected proof, we once again have a theoretical guarantee of correctness to fall
back on, and can safely use CFR+ with alternating updates, in search of its strong empirical
performance without worrying that it might be worse than CFR.

The alternating update analogue of the folk theorem also provides some theoretical
motivation for the empirically observed benefit of using alternating updates. Exploitability
is now bounded by the regret minus the average improvement in expected values. While
we proved that the improvement is guaranteed to be non-negative for CFR and CFR+, we
would generally expect non-zero improvement on average, with a corresponding reduction
in the bound on exploitability.
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