
Journal of Artificial Intelligence Research 64 (2019) 445–495 Submitted 03/18; published 02/19

Dynamic Controllability of Controllable Conditional
Temporal Problems with Uncertainty

Jing Cui cui.jing@anu.edu.au

Patrik Haslum patrik.haslum@anu.edu.au

Research School of Computer Science,

Australian National University

& Decision Sciences Programs, DATA61, CSIRO

108 North Rd, Acton ACT 2601, Australia

Abstract

Dynamic Controllability (DC) of a Simple Temporal Problem with Uncertainty (STPU)
uses a dynamic decision strategy, rather than a fixed schedule, to tackle temporal uncer-
tainty. We extend this concept to the Controllable Conditional Temporal Problem with
Uncertainty (CCTPU), which extends the STPU by conditioning temporal constraints on
the assignment of controllable discrete variables. We define dynamic controllability of a
CCTPU as the existence of a strategy that decides on both the values of discrete choice
variables and the scheduling of controllable time points dynamically. This contrasts with
previous work, which made a static assignment of choice variables and dynamic decisions
over time points only. We propose an algorithm to find such a fully dynamic strategy.
The algorithm computes the “envelope” of outcomes of temporal uncertainty in which a
particular assignment of discrete variables is feasible, and aggregates these over all choices.
When an aggregated envelope covers all uncertain situations of the CCTPU, the problem is
dynamically controllable. However, the algorithm is complete only under certain assump-
tions. Experiments on an existing set of CCTPU benchmarks show that there are cases in
which making both discrete and temporal decisions dynamically it is feasible to satisfy the
problem constraints while assigning the discrete variables statically it is not.

1. Introduction

For an autonomous system to operate in real problems, its execution has to be flexible to
deal with uncertain situations. In the research of temporal planning and scheduling, flexible
solutions such as Partial Order Plans (Weld, 1994; Muise, Beck, & McIlraith, 2016) and
Partial Order Schedules (Policella, Cesta, Oddi, & Smith, 2007) instead of fixed schedules
or plans enables dynamic execution to deal with the uncertain situations (Muise, 2014).

On behalf of providing flexible solutions, adding uncertainty into temporal reasoning
models such as Simple Temporal Problems (Dechter, Meiri, & Pearl, 1991) enables us to
study uncertainty directly. Vidal and Fargier (1999) introduced Simple Temporal Prob-
lems with Uncertainty (STPU) that assume the durations of uncontrollable events can be
represented by intervals. During execution, the exact durations may be any value within
their intervals. When the durations of the uncertain events are not observable, it requires a
universal solution that can deal with any uncertain situations. If such a solution exists, the
problem is strongly controllable (SC). Additionally, if the uncertain durations are observ-
able after they have finished, this enables a dynamic strategy to adjust for different past

c©2019 AI Access Foundation. All rights reserved.

Cui & Haslum

situations. If such a dynamic strategy exists, the problem is dynamically controllable (DC).
A dynamic control strategy of an STPU postpones decisions on time points to allow more
flexibility to deal with temporal uncertainty than a fixed schedule does.

Scheduling and planning problems contain more decisions than deciding when to sched-
ule each time point, so different extensions of the STPU have been introduced for different
application purposes. The pSTN (Tsamardinos, 2002) extends the STPU by representing
uncertainties as probabilistic distributions instead of intervals. The Disjunctive Tempo-
ral Network with Uncertainty (DTNU) (Venable & Yorke-Smith, 2005; Peintner, Venable,
& Yorke-Smith, 2007) builds on the DTN (Stergiou & Koubarakis, 2000) and STPU, and
represents each free constraint as a disjunction of any controllable constraints and each con-
tingent link as a disjunction of intervals for the same pair of controllable and uncontrollable
nodes. From the Conditional Temporal Problem (CTP) (Tsamardinos, Vidal, & Pollack,
2003), which attaches labels to nodes to represent the situations in which the node will be
executed, the Conditional STNU (Hunsberger, Posenato, & Combi, 2012) and Controllable
Conditional Temporal Problem with Uncertainty (CCTPU) (Yu, Fang, & Williams, 2014)
were introduced by adding uncertainty. The Conditional STNU (CSTNU) extends to un-
certain conditions that are not controllable but observable after a specific observation time
point; after the observation, certain links attached to observed conditions are activated.
Yu et al. (2014) extended the STPU to the Controllable Conditional Temporal Problem
with Uncertainty (CCTPU) by considering controllable choices as discrete variables. In
a CCTPU, links with a label, which is a partial assignment of the discrete variables, are
activated by the conjunction of those assignments. Barták and Čepek (2007) introduced
Temporal Networks with Alternatives (TNAs) which can also represent controllable discrete
choices, but not temporal uncertainty. TNAs, however, are restricted and can not represent
the same range of choice structures as the CCTPU. Yu, Fang & Williams (2014) introduced
a relaxation method to solve over-constrained CCTPUs, by making a static assignment of
the discrete choice variables and relaxing time constraints to produce a dynamically con-
trollable STPU. However, their notion of dynamic controllability of a CCTPU makes a
fixed assignment of values to discrete variables, reducing it to an STPU that is dynamically
controllable.

In this paper, to implement the original intent of dynamic control, we introduce a
definition of dynamic controllability of a CCTPU that considers making assignments of
both time points and discrete choices dynamically by extending it to the discrete variables
of the CCTPU. From Yu et al. (2014), we borrow the idea of using dynamic controllability
checking algorithms for the STPU (see Section 4.1) to find conflicts, which represent the
reason why an STPU is not dynamically controllable, but modify their iterative process
which can find a single best solution but not the whole solution space. From Morris (2014),
we borrow the procedure of propagating negative links backwards to find conflicts, but
instead of stopping when finding one conflict, we extend it to extract a complete set of
conflicts.

When implementing the dynamic controllability checking process, some assumptions
are needed: (1) each discrete choice is made at one time point, which is no later than any
other time point that depends on the choice; (2) only the uncontrollable events definitely
completed before the time point to make a choice can be treated as observable conditions;
and (3) each discrete choice is made following the observation of one, or a sequence of,

446

Dynamic Controllability of CCTPUs

uncertain events. These assumptions are more conservative than the original concept of
dynamic controllability. Thus, our dynamic controllability checking algorithm for CCTPUs
is sound but only complete with respect to these assumptions. It is guaranteed to a find
dynamic strategy under these assumptions.

1.1 Contributions

The following are the main contributions of this paper:

• We present a definition of dynamic controllability of both temporal and discrete
choices; this definition is essentially the same as the one we have previously proposed
(Cui & Haslum, 2017) but reformulated to make it clearer and more rigorous.

• We provide a sound and complete algorithm to extract the dynamically controllable
envelope of an STPU. We do this by modifying Morris’s cubic algorithm to extract a
complete set of DC conflicts, such that the solution space of the conflict constraints
is the dynamically controllable envelope.

• We propose a sound algorithm to find dynamically controllable envelopes by aggregat-
ing the DC envelopes of fully or partially assigned CCTPUs that represent different
choices for the controllable discrete variables. If the DC envelope of any fully or par-
tially assigned CCTPU covers its prehistory, the problem is dynamically controllable.
Additionally, the algorithm is complete with respect to our assumptions.

• We demonstrate that making dynamic assignments enables more flexibility than fixed
assignments using a set of benchmark problems due to Yu et al. (2014).

• We also test a simple optimisation method on CCTPUs under dynamic controllability
and further show that dynamic assignments enable better objective value than fixed
assignments. We do this by adding a binary search on the objective value over the
DC checking algorithm.

The work in this paper extends the conference publication by Cui and Haslum (2017).
We have refined the definition of dynamic controllability of the CCTPU, added proofs of
correctness of the algorithms and an optimisation method, and expanded the discussion of
previous work on related temporal reasoning problems.

1.2 Organisation

We start with motivations in Section 2 by showing a simple but illustrative example. In
Section 3 we present the problem statement, which includes the definitions of the CCTPU,
dynamic assignment of discrete variables, our assumptions, and dynamic controllability of
the CCTPU. We briefly review the dynamic controllability checking algorithms and the
conflict resolution of STPU in Sections 4.1 and 4.2, which form the basis of our algorithm
that extracts a complete set of conflicts (Section 4.3) in order to find the dynamically con-
trollable envelope of an STPU (Section 4.4). In Section 5, we show how to check dynamic
controllability of a CCTPU by aggregating and checking its dynamically controllable en-
velopes. Section 6 shows the correctness and completeness of the algorithms. Section 7, 8
and 9 present experiments, related work and conclusions, respectively.

447

Cui & Haslum

2. Motivation

In this paper, we focus on solving CCTPU, which is a temporal problem with uncertainty
and controllable choices. This model has been used in several applications, for example
trip planning for Zipcar ride sharing (Yu et al., 2014), control of Autonomous Underwater
Vehicles (AUV) (Timmons & Williams, 2015), and controlling traffic on the Red Line subway
in Boston (Yu, Williams, Fang, Cui, & Haslum, 2017). In this section, we present a simple
example, based on a new application, to show the motivation for dynamic controllability of
a CCTPU.

2.1 Illustrative Example – Evacuation Planning

The evacuation planning problem (Even, Pillac, & Van Hentenryck, 2014) studies how to
find a feasible or optimal evacuation plan, when an area faces a serious disaster (major flood
or fires). Figure 1 shows a small example: Each cube represents a unit (vehicle) to evacuate
before the flood approaching from the northeast corner of the city cuts off the roads. A
successful plan must evacuate all or most units to safe places before roads are blocked or
destroyed by the disaster. Evacuation is done by areas (such as suburbs). An evacuation
plan assigns each area a specific route, and a scheduled time to begin evacuation. Vehicles
from the area will form a traffic flow along their assigned route. Due to the limited road
capacity and the limited number of alternative routes, traffic flows from different areas may
need to be scheduled to follow one another along overlapping routes. How to schedule the
evacuation times so that traffic flows efficiently is a challenging problem.

After generating different routes, evacuation planning can be represented as a temporal
network with route options. In the temporal network, time points represent events, such
as when to begin evacuation of each region, when the flow of vehicles from each region
enter and finish passing a road segment and when each road will be made impassable by
the approaching flood. The durations among pairs of the events are modeled by temporal
constraints.

In the evacuation planning problem shown in Figure 1, units in Area A are going to
evacuate through road G and units in Area B have two options, either evacuate through G
after the flow from A has left it, or to evacuate via a longer route G′. To the people who
organise the evacuation, it is uncontrollable when exactly the flood will block each road
and how fast the traffic will flow. However, the duration of these uncontrollable events can
be estimated within some intervals, in other words, they can be modelled by contingent
links with lower and upper bounds. During execution, the exact duration may be any value
within the bounds. Therefore, we can study whether there exists solutions that can deal
with the uncertain durations.

Figure 2 shows a temporal network with uncertainty and options for the example in
Figure 1:

• the controllable nodes (ellipses) are Start, Evacuate A and Evacuate B;

• the uncontrollable nodes (rectangles) represent when the traffic flow from area A/B
reaches and leaves road G/G′, and when G/G′ are blocked;

• the uncontrollable events (dashed lines) are the travel time of traffic flows and the
flood;

448

Dynamic Controllability of CCTPUs

G

Area A

Area B

G′

Flood

Copyright 2013-2018. NICTA & DATA61. All rights reserved.

Figure 1: An evacuation situation for flood, generated by the NICTA Evacuation Planning
Simulator (Even et al., 2014). (Image from https://research.csiro.au/data61/
nicta-evacuation-planner/)

Start

Evacuate B

Evacuate A A reaches G A passes G

B reaches G B passes G

Blocked G

B reaches G′ B passes G′ Blocked G′

[50, 70] [30, 35]

[0,
5]

[0,∞]

[0,
∞][0,

0]

[0,∞]
[25, 30]

c = G

[30, 35]
c = G

[0,∞]

[30, 40]c = G ′ [50, 60]
c = G′

[90, 110]

[130, 140]

[170, 190]

Figure 2: A CCTPU representing the Evacuation Planning example.

• the choice for evacuating B through road G or G′ is represented by the discrete variable
c ∈ {G,G′}.

• To coordinate with the evacuation of other suburbs, we have the extra constraints that
(1) area B will begin evacuation after the flow from A reaches G so that the traffic
flows won’t cause a congestion at G, but with a waiting time less than 5 minutes, and

449

https://research.csiro.au/data61/nicta-evacuation-planner/
https://research.csiro.au/data61/nicta-evacuation-planner/

Cui & Haslum

(2) the time window for the flow from B to arrive at G′, if taking that route, is 90 to
110 minutes after the start of the evacuation plan.

• The other controllable constraints (solid lines) are precedence constraints.

If the choice of route for evacuating Area B has to be made before the start of execution,
neither option can satisfy all constraints. If we assign B to go through G, units from Area B
may still be on road G during [130, 135] minutes after the start of the evacuation when this
road is cut off, if the worst case happens. Figure 3 shows the subnetwork for this option,
with the conflicting temporal constraints highlighted.

Start

Evacuate B

Evacuate A A reaches G

B reaches G B passes G

Blocked G
[50,70]

[0,
5]

[0,
∞][0,

0]

[25,30]

c = G

[30,35]
c = G

[130, 140]

Figure 3: The subnetwork representing the option of Area B evacuating through route G,
with the conflicting temporal constraints highlighted in red.

Otherwise, if we assign B to go through G′, the traffic flow from B may arrive at G′ in
the interval [85, 90] minutes after the start of the evacuation and cause a traffic congestion
at G′ since it arrives too early. This case is highlighted in Figure 4.

Start

Evacuate B

Evacuate A A reaches G

B reaches G′

[50, 70]

[0,
5][0,

0]

[30, 40]c = G ′[90, 110]

Figure 4: The conflict occurring in the subnetwork for the option of Area B going through
route G′.

However, making a dynamic decision for the discrete variable c after observing the key
event “A reaches G” can avoid both infeasible cases because the two options share the
uncertainty in their common prehistory. When the duration of the contingent link from
“Evacuate A” to “A reaches G” is no more than 65, the constraint violation shown in

450

Dynamic Controllability of CCTPUs

Figure 3 won’t occur, so that we can assign B to go via G. When the duration of the
link is 55 or greater, the conflict shown in Figure 4 is avoided, so that B can go through
G′. Furthermore, the conditions “no more than 65” and “no less than 55”, which make
each option feasible, cover the whole interval of uncertainty for the link “Evacuate A”–“A
reaches G”; in other words, no matter when the key event occurs, a valid option will always
exist to be chosen after it finishes. This example, although simple, shows that a CCTPU
may have a feasible solution with dynamic choice of options for the discrete variables also
when it does not have a feasible solution with a static choice of assignments. This is the
motivation for studying fully dynamically controllable strategies for CCTPUs.

3. Problem Statement

In this section, we introduce definitions leading up to the dynamic controllability of Con-
trollable Conditional Temporal Problems with Uncertainty (CCTPU). The CCTPU extends
the STPU with controllable discrete choices (Yu et al., 2014). We adopt Yu et al.’s defini-
tion of the CCTPU, but omit the reward and cost functions since, in this paper, we consider
its controllability only. The remainder of this section defines the solution of a CCTPU and
different levels of controllability of the CCTPU.

3.1 Preliminary Definitions

An STPU is a constraint satisfaction problem over real-valued time point variables, with
constraints that are (upper and lower) bounds on the differences between pairs of variables.
However, some time points are uncontrollable, meaning that in any execution of the sched-
ule or plan, their values will be chosen non-deterministically (by the environment) within
the given bounds, while the values of remaining time point variables are selected by the
executing agent, subject to the constraints.

Definition 1. An STNU or STPU (Vidal & Fargier, 1999) is a tuple, < V,E >.

• V is a set of nodes V = VE ∪ VU , representing executable (VE) and uncontrollable
(VU) time points,

• E = ER∪EC is a set of links, called requirement and contingent links. The contingent
links are links ending in an uncontrollable time point, and there is only one contingent
link ending in each such time point.

• Each link eij has a lower bound Lij and upper bound Uij , representing the constraints
Lij ≤ tj − ti ≤ Uij . For contingent links, 0 < Lij < Uij .

In order to provide solutions that can be executed more robustly, the CCTP with un-
certainty was introduced to solve over-constrained temporal problems with uncertainty and
choices (Yu et al., 2014).

Definition 2. A Controllable Conditional Temporal Problem with Uncertainty
(CCTPU) is a 5-tuple < V,E,C,D, `E >, where

• < V,E > is an STPU,

451

Cui & Haslum

• C is a set of controllable discrete variables,

• D(c) is the domain of variable c ∈ C,

• `E is a mapping that attaches to each link in E a (possibly empty) conjunction of
assignments to variables in C.

Note that when C = ∅ the CCTPU reduces to an STPU.

Before defining the dynamic controllability of a CCTPU, we introduce the definitions
of schedules, execution strategies and strong controllability of a CCTPU. The following
definitions extend concepts from the STPU (Vidal & Fargier, 1999; Morris, Muscettola, &
Vidal, 2001; Hunsberger, 2009) to the CCTPU.

Definition 3. A schedule S for a CCTPU is a tuple 〈A, T 〉.

• A is an assignment of each discrete variable c to a value in its domain, i.e., A(c) ∈
D(c), ∀c ∈ C. A link e ∈ E is activated if A |= `E(e); A link e ∈ E is deactivated
if A 6|= `E(e).

• T is a mapping T : V → <+ ∪ {0}, where T (v) is the scheduled time of time point
v ∈ VE .

A schedule S is consistent if it satisfies all the constraints of links activated by its assign-
ments of discrete variables.

Although a schedule is defined as a pair of functions, we will, with slight abuse of
notation, treat it as just one function assigning values to both discrete variables and time
points. Thus, if S = 〈A, T 〉 is a schedule, we may write S(c), meaning A(c), for a discrete
variable c and S(x), meaning T (x), for a time point x.

Definition 4. A projection p of a CCTPU is constructed by replacing every uncontrollable
link eui = [li, ui] in EU by the singleton eui = [pi, pi], where pi ∈ [li, ui].

Each projection of a CCTPU is a possible outcome of uncertainties that may occur, and
it is a CCTP.

Definition 5. An execution strategy for a CCTPU is a tuple 〈DT,ES〉, where

• DT : C → V ∪ {0} maps each discrete variable c to the time point DT (c) at which
the choice for c will be made, the range of DT (c) is the union of all nodes and the
beginning time of the network and

• ES : P → S is a mapping from the set P of all projections of the CCTPU to the set
S of schedules.

An STPU is a special CCTPU without discrete variables, and its execution strategy ES
is viable iff ES(p) is consistent for every projection p ∈ P . Based on the above, Vidal
and Fargier (1999) introduced three levels of controllability for the STPU: weak, strong and
dynamic. Extending strong controllability to the CCTPU is straightforward:

452

Dynamic Controllability of CCTPUs

Definition 6. A CCTPU is strongly controllable when there is execution strategy
〈DT,ES〉 such that DT (c) = 0 for all c ∈ C, ES is viable, and satisfying ES(p1) = ES(p2)
for any two projections p1 and p2.

In other words, strong controllability means there is a universal schedule which satisfies
all constraints in every projection of the problem, and the strong execution strategy maps
every projection to this schedule. This means the schedule can be made before execution.

Yu et al. (2014) define a dynamically controllable solution of a relaxed CCTPU as a
fixed assignment of the discrete variables such that the resulting STPU is dynamically
controllable. Relaxing an STPU means tightening contingent links (reducing uncertainty)
and/or loosening requirement links. The cost of a relaxation is a function of the change to
each link, and some links may be excluded from change. Specifically, Yu et al.’s notion of a
dynamic controllability of a CCTPU, expressed in our terms, means that there is a viable
execution strategy 〈DT,ES〉 such that

• DT (c) = 0 for all c ∈ C, and

• for any two projections p1 and p2,

– ES(p1){≺ t} = ES(p2){≺ t} ⇒ ES(p1)(x) = ES(p2)(x) for each controllable
time point x, t = ES(p1)(x) and

– ES(p1)(c) = ES(p2)(c) for each discrete variable c ∈ C.

That is, the decisions on discrete variables are strongly controllable.
Definition 12 extends the concept of dynamic controllability to both the discrete and

temporal variables of the CCTPU. Before we can state it, however, we present some pre-
liminary definitions and state our assumptions in the following subsection.

3.2 Dynamic Assignments for Discrete Variables

In this subsection, we define the dynamic assignment and prehistory for discrete variables
in a CCTPU. The basic idea of dynamic assignments is to assign values to discrete variables
based on past observations as dynamic decisions on time points.

As the first thing, we can define the dynamic assignment based on previous definitions.

Definition 7. A dynamic assignment A(c) = dci is made at DT (c) and it deactivates
links with labels c = dcj ,∀dcj 6= dci.

In order to make the definition valid in a dynamically controllable strategy, we have to
define the prehistory of the assignment and restrict DT (c) with respect to the links having
labels mentioning c.

However, several obstacles prevent us from giving a direct definition of the prehistory:
(1) the assignment is not explicitly associated to time points; and (2) the contingent links
included in the past observations may be completely different for different choices that have
been made. Due to these difficulties, we have to introduce basic definitions, such as partial
assignments, precedences and conditional precedences, along with our assumptions.

Making dynamic choices for controllable discrete variables in a temporal problem is
not a new topic. Conrad and Williams (2011) define the dynamic execution for an STN

453

Cui & Haslum

with controllable discrete variables. This dynamic execution decides to activate an event or
not in real-time and maintains a consistent labelled value set. We adopt their definition of
environment for the STN with discrete variables as a partial assignment of discrete variables.

Definition 8. (Partial Assignment) The environment is a partial assignment PA of
the discrete variables. Before execution, the environment is empty PA = ∅; after a feasible
execution, the environment consists of assignments of all discrete variables PA = A.

In execution, the dynamic decisions on discrete variables in a strategy are made at spe-
cific time points that obey the chronological orders implied by constraints. The observations
of contingent links on which these decisions can depend have to complete before the decision
time points. As a necessary condition, we introduce the definition of precedence between
time points in order to represent the set of contingent links that each decision of discrete
variable can observe. Furthermore, the precedence definition can also help to describe and
find the chronological order to assign discrete variables.

Definition 9. (Precede) For any pair of time points vi, vj ∈ V , vi precedes vj , denoted
as vi � vj , iff S(vi) ≤ S(vj), for every consistent schedule S. For any link ei ∈ E and
vj ∈ V , ei precedes vj , ei � vj , iff start(ei) � vj and end(ei) � vj ; vj precedes ei, vj � ei,
iff vj � start(ei) and vj � end(ei).

This definition excludes some labelled precedences. For instance, in the example in
Figure 5, precedences A � B and C � D hold in every consistent schedule, but precedence
B � C and D � A do not exist because they only hold in the environments of {c3 = 1}
and {c3 = 2}, respectively. With the given precedences, the order of contingent links AB
and CD is not decidable, so neither of them is guaranteed to be an observation of deciding
discrete variables c1, c2 or c3. Thus, the dynamically controllable decisions of time points
and discrete variables cannot be assumed to happen after the observation of any of the
contingent links, and therefore have to work for any value in their range. Therefore, we
define the conditional precedence under a certain partial assignment PA:

Definition 10. In the environment of partial assignment PA, any pair of time points
vi, vj ∈ V , vi precedes vj under PA, denoted as vi �PA vj , iff S(vi) ≤ S(vj), for every
consistent schedule S such that its assignment A |= PA. For any link ei ∈ E and vj ∈ V ,
ei precedes vj under PA, ei �PA vj , iff start(ei) �PA vj and end(ei) �PA vj ; vj precedes ei
under PA, vj �PA ei, iff vj �PA start(ei) and vj �PA end(ei).

With Definition 10, the example in Figure 5 has conditional precedences B �c3=1 C and
D �c3=2 A that enable different dynamic assignments after choosing c3. Link AB can be
the observation to decide c2, when c3 = 1; Link CD can be the observation to decide c1,
otherwise.

3.3 Assumptions

We introduce three assumptions before describing the rest of the problem formulation. Each
of the assumptions will be discussed in more detail later on, where their role in the definition
and algorithm become clear, but we state all three of them here for ease of reference.

454

Dynamic Controllability of CCTPUs

A B C D

[0, x1]
c1 = 1

[0, x2]

c1 = 2

[0, y1]
c2 = 1

[0, y2]

c2 = 2

[0, 1]
c3 = 1

[0, 1]
c3 = 2

Figure 5: An Example Showing Precedences

Assumption 1. The assignment A(c) is made once, at the time point DT (c), which must
precede any link e ∈ E such that `E(e) mentions c. That is, DT (c) � e,∀e s.t. `(e)∩D(c) 6=
∅.

Assumption 2. Given a projection p under a certain partial assignment PA, the pre-
history of a discrete variable c is the observed durations of contingent links which are
activated by PA and must finish before or at DT (c) in every execution, denoted PPA(p){�
c} = {pij |eij �PA DT (c) and PA |= `(eij), pij ∈ p}.

Assumption 3. For each discrete variable c, the DT (c) must be the end point of a con-
tingent link or time point 0.

3.3.1 Limitation of Assumption 1

Assumption 1 associates discrete variables to time points and restricts their decision time
to be no later than any link whose label includes an assignment of the variable.

With Assumption 1, Definition 7 means that during execution, before DT (c), the strat-
egy is the same for different options of c, after DT (c), the strategy only needs to respect
the sub-network without links deactivated by A(c).

The first part of this assumption is implied by the definition of execution strategy, which
is that the decision time point DT (c) is associated with a single time point in V . The other
part is that the associated decision time point should be chosen among nodes that precede
every link mentioned by c. However, in principle a dynamic execution strategy could make
separate decisions that c 6= dci can be made at different time points. For example, if we
have the choice of performing a task today, tomorrow, or the day after, we could decide
now to not do it today without committing to which of the other two days it will be done.

A CCTPU modelling a situation like this is shown in Figure 6. It has four uncertain
events Ex → E′x and a discrete variable c. According to Assumption 1, the decision time
for the discrete variable c has to be no later than E4; thus, it cannot be delayed until E1′

and so cannot be made depending on the observation of event E1→ E1′. To some extent,
this limitation can be overcome by remodelling the problem. Figure 7 shows an alternative
formulation of the CCTPU in Figure 6, where the variable c with three options has been
replaced by two binary choices, c1 and c2. This allows the choice between c1 = K and
c1 = S to be postponed. (Sometimes a dummy node for the decision time point of the
introduced discrete variables may be needed.) The remodelled example in Figure 7 has a

455

Cui & Haslum

S E1 E1′

E2

E3

E2′

E3′

E
[0, 5]

[15, 2
0]

c = K

[5, 15]c = S

[15, 20]c = K

[5, 1
5]

c = S

[30, 50]

[20, 30]
c = K

[40, 60]
c = S

[100, 110]

E4 E4′

[0,
20

]

[30, 50]
c = N

[0, 20]

Figure 6: Discrete variable c has to be assigned no later than E4 according to Assumption
1.

S E1 E1′

E2

E3

E2′

E3′

E
[0, 5]

[15, 2
0]

c1
= K

[5, 15]c1 = S

[15, 20]c1 = K

[5, 1
5]

c1
= S

[30, 50]
c2 = Y

[20, 30]
c1 = K

[40, 60]
c1 = S

[100, 110]

E4 E4′

[0,
20

]

[30, 50]
c2 = N

[0, 20]

Figure 7: Remodelling the CCTPU in Figure 6, so that the assignment of c1 can be made
at E1′.

dynamic strategy with DT (c2) = S and DT (c1) = E1′. At the beginning, c2 = Y . At E1′,
we can choose c1 = K when the duration of E1→ E1′ is 40 or more, and c1 = S otherwise.

3.3.2 Limitation of Assumption 2

Assumption 2 restricts the observation on which the assignment of a discrete variable de-
pends. Comparing to the dynamic controllability of an STPU, the observed situation (Vidal
& Fargier, 1999), or prehistory (Morris et al., 2001; Hunsberger, 2009), at any time consists
of the observed durations of contingent links that have finished before that time. Given
schedule S of an STPU, the prehistory of a time point x is

S{≺ x} = {pij |S(vi) + pij ≤ S(x)},

where pij is the observed duration of contingent link eij . However, we restrict the prehistory
of discrete variables to only those contingent links that must finish before the variable’s

456

Dynamic Controllability of CCTPUs

decision time point, so that the set of contingent links in the prehistory is stable under a
given partial assignment.

Assumption 2 restricts the observation when making the choice of a discrete variable.
The contingent links that are not guaranteed to complete before or at the decision time
point are ruled out from the observation set.

Under a certain partial assignment, the prehistory of a set of unassigned discrete
variables is the union of the prehistories of the variables in the set,

PPA{≺ Cs} =
⋃
c∈Cs

PPA{≺ c}.

Different from the observation of time point scheduling, contingent links that may end,
but must not yet end, before the decision time point of a discrete variable are not observa-
tions for making the decision. In the DC reduction for an STPU, in a triangle ABC with
contingent link AC, if the contingent link A–C may end but must not end before a time
point B, it indicates that B is in the unordered case in the triangle reduction. Thus, B has
a wait constraint with A–C. This means that whether A–C has finished or not can be used
as an observation in the execution of the STPU.

A

B

C

D1

D2

[10, 10]

[0, 20]

[0,∞]
c1 = 1

[0,∞]
c2 = 1

[0,∞]

[1,∞]
c1 = 0

[1,∞]
c2 = 0

Figure 8: Example illustrating the limitation of Assumption 2.

An example is shown in Figure 8. The precedence constraints between D1 and D2 force
at least one of the choices c1 = 1 or c2 = 1. At C, we can decide that c2 = 1 iff the duration
of A–C is less than 10, and c2 = 0 otherwise. The choice for c1 must be made no later than
at time point B: at this point, we have to choose c1 = 1 if and only if event C has not yet
occurred. Under our Assumption 2, however, the A–C link is not part of the prehistory
of B, and thus cannot be used to make the decision. Extending our methods to relax this
assumption and consider on-going contingent links as observations is one of our avenues for
future work (cf. Section 3.6).

Based on the prehistory which is the projections of contingent links that must finish be-
fore the decision time point, the dynamic assignment of a discrete variable is the choice made
at its decision time point which must precede every link with labels where the assignment
is occurring, and the decision activates and deactivates subnetworks accordingly.

3.3.3 Limitation of Assumption 3

Assumption 3 restricts the choice of decision time points to be either the start of the
execution or the end points of contingent links. The remaining nodes cannot be decision time

457

Cui & Haslum

points, because different decisions are made according to different observations. However,
the observable prehistory that can be used for making assignments, that is, the durations
of contingent links that necessarily precede the time point, at those nodes is the same as at
some node that is the end point of a contingent link. Figure 9 shows a schematic illustration:
The dashed lines are contingent links, and the diamond node is the latest possible decision
time for choice c. If the decision is made at r2, the observation set only contains the
prehistory up to and including t1. Thus, potential decision time points are S, t1, t2 and the
diamond node.

This assumption guarantees that the observable prehistory differs when making choice
c, because it includes the duration of the link just finished. We call the observation of this
contingent link the key observation for assigning c at this time point. Before deciding on
c, the dynamically controllable execution strategy makes consistent decisions regardless of
the following options, which means decisions before the key observation are the same for
different options of c. However, after observing the key contingent link, different following
decisions are made depending on the options of c.

s c1 t1 r1 r2 c2 t2 c

Figure 9: Alternatives forDT (c). Squares are uncontrollable time points, circles controllable
time points and the diamond is the latest decision time of c.

A

B1

B2

C

D1

D2

D3

[30, 1
20]

[40, 110]

[0, 80]

[0,
80]

[20, 5
0]

c =
1

[10, 60]
c = 2
[30, 90]c =

3

Figure 10: Example showing the limitation of Assumption 3: Time point C cannot be the
decision time for c, although making the decision at this point would have both A–B1 and
A–B2 in the prehistory.

However, Assumption 3 does rule out strategies that wait for parallel contingent links
to finish before making a decision. An example is shown in Figure 10.

458

Dynamic Controllability of CCTPUs

3.4 Dynamic Controllability of CCTPU

Dynamic controllability means that there is a viable execution strategy in which each deci-
sion only depends on observations before the decision. Based on the definition of dynamic
assignment of discrete variables and the assumptions made in the preceding section, we now
present a definition of dynamic controllability of CCTPU. This definition is sound but only
complete with respect to our assumptions. It is possible to broaden the definition to more
fully capture the intent of dynamic controllability, and we will discuss this briefly in Section
3.6 below. However, the dynamic controllability algorithm in Section 5 is complete only
with respect to the definition we present here.

Definition 11. A CCTPU execution strategy 〈DT,ES〉 is viable iff

• DT (c) precedes the start of every link e ∈ E such that c appears in `E(e)

• and ES(p) is consistent for every projection p.

We now define dynamic controllability of a CCTPU as follows.

Definition 12. A CCTPU is dynamically controllable if there is a viable execution
strategy 〈DT,ES〉 such that for any two projections p1 and p2,

• ES(p1){≺ t} = ES(p2){≺ t} ⇒ ES(p1)(x) = ES(p2)(x), where t = ES(p1)(x), for
each controllable time point x,

• PPA(p1){≺ c} = PPA(p2){≺ c} ⇒ ES(p1)(c) = ES(p2)(c), for each discrete variable
c and partial assignment PA.

In this definition, the decisions on time points are the same as dynamic controllability of
STPU, the decisions on discrete variables only depend on the prehistories before the schedul-
ing time of their decision time points, which also obey the origin of dynamic controllability.

3.5 Dynamically Controllable Envelopes

In this section, we define the dynamically controllable envelope of an STPU and a
CCTPU under a partial assignment. The DC envelope is an important concept to explain
our dynamic controllability checking algorithm later in this paper.

Dynamically controllable envelopes intend to define the conditions under which the
following CCTPU has a viable dynamic execution strategy. In other words, the subset
of uncertain prehistory with which the following CCTPU is dynamically controllable is the
dynamically controllable envelope, which can be regarded as a relaxation of contingent links
in the prehistory. For example, in the illustrative example shown in Figure 2, the subset
[50, 65] of the contingent link “Evacuate A”→ “A reaches G” is the dynamically controllable
envelope of making decision c = G and [55, 70] is the envelope of making decision c = G′.

The dynamically controllable envelope of a CCTPU can be aggregated from fully as-
signed branches which are STPUs. In the example, if we combine the two envelopes [50, 65]
and [55, 70], their union covers the whole interval that uncertain event “Evacuate A”→ “A
reaches G” may take. Thus, making a dynamic choice between c = G and c = G′ based on
the observation of the uncertain event makes the whole strategy viable and dynamic.

459

Cui & Haslum

The dynamically controllable envelope of a fully assigned CCTPU is the set of relaxations
that can make the STPU dynamically controllable. A relaxation reduces the uncertainty
by increasing lower bounds and/or decreasing upper bounds of contingent links. In the
dynamically controllable envelope of a fully assigned CCTPU, the relaxable links are all
contingent links not deactivated by its assignment. One relaxation EU ′ of a given set of
contingent links EU can be formulated as for all eu ∈ EU , there exists eu′ ∈ EU ′, such
that eu′ ⊆ eu and eu′ and eu start from and end at a same pair of nodes.

EU ′ = relaxed(EU) = {eu′ij = [l′ij , u
′
ij]|eu ∈ EU, eu = [lij , uij], lij ≤ l′ij ≤ u′ij ≤ uij}. (1)

Given a relaxation EU ′ and the CCTPU N , an updated network

N ′ = updated(N,EU ′) = N \ EU ∪ EU ′

replaces the set of contingent links with their relaxed counterparts.

Definition 13. The dynamically controllable envelope of a CCTPU with a full as-
signment A is Env(A) = {EU ′|EU ′ = relaxed(EU), N ′ = updated(N,EU ′), N ′ is a dy-
namically controllable STPU under assignment A.}, where EU ′ is a relaxation of EU .

Envelopes with a common prehistory can be aggregated. For instance, two envelopes
with full assignments Env(A1) and Env(A2), where A1 = PA∪{c = d1} and A2 = PA∪{c =
d2} have the common partial assignment PA, and aggregate to Env(PA, c) on prehistory
PPA{≺ c}. After aggregating all branches from assigning c to Env(PA, c), the combined
envelope Env(PA, c) describes the previous condition, in which one of the options of c can
make a dynamically controllable strategy.

Definition 14. The dynamically controllable envelope of assigning a discrete vari-
able c in a CCTPU after a certain partial assignment PA is Env(PA, c) = {EU ′|EU ′ =
relaxed(EU,PA, c), N ′ = updated(N,EU ′) is dynamically controllable.} where EU ′ =
relaxed(EU,PA, c) is the set of relaxed bounds of contingent links belonging to PPA{≺
PA ∪ c} and make the updated CCTPU dynamically controllable.

If given c′ � c, after aggregating envelopes from all branches Env(PA ∪ {c = di})
to Env(PA, c), we want to aggregate Env(PA \ {c′ = d′}), where {c′ = d′} ⊂ PA. The
combined envelope Env(PA, c) cannot be used directly in the next level aggregation that
combining branches for discrete variable c′ ∈ PA because it may contain links belong to
PPA{≺ c} not PPA\c′{≺ c′}. Thus, we present Definition 15.

Definition 15. The dynamically controllable envelope of a CCTPU under partial
assignment PA is Env(PA) = {EU ′|EU ′ = relaxed(EU,PA) ∧ N ′ = updated(N,EU ′) is
dynamically controllable}, where relaxed(EU,PA) is the set of relaxed bounds of contin-
gent links where relaxable links belong to PPA{≺ PA} and make the updated CCTPU
dynamically controllable.

Therefore, the aggregating process to compute the envelope of the CCTPU with partial
assignment PA before assigning the next discrete variable c is the set of unions of selected
subsets of envelopes of branches PA′d = PA ∪ {c = d}, which is

Env(PA, c) = {
⋃

d∈D(c)

EU ′d|EU ′d ∈ Env(PA′d)}. (2)

460

Dynamic Controllability of CCTPUs

Next, envelope Env(PA) selects a subset of Env(PA, c) containing only the relaxations
such eu′x = eux for all eux 6∈ PPA{≺ PA}, i.e., only the relaxations whose relaxed links are
in the prehistory of PA, since only those can be observed when making the choice for c.

Env(PA) = {EU ′ ∈ Env(PA, c) | eux 6∈ PPA{≺ PA} → eu′x = eux} (3)

The envelope of a CCTPU can be collected by implementing the aggregation in Equation
2 repeatedly until PA = ∅,

A CCTPU is dynamically controllable if and only if its dynamically controllable envelope
with an empty partial assignment is the set of the original bounds,

Env(∅) = EU.

Additionally, the dynamically controllable envelopes of a CCTPU satisfy the following re-
lation:

Env(A) = EU ⇒ Env(PA) = EU ⇒ Env(∅) = EU. (4)

This means a CCTPU is dynamically controllable if it has a dynamically controllable enve-
lope with a partial assignment, which covers the uncertainty in the prehistory of the partial
assignment, and if a CCTPU has a dynamically controllable STPU branch, it is dynamically
controllable.

3.6 Relaxing the Assumptions

Assumptions 2 and 3 are essentially limitations on the dynamic execution strategies that
can be found by the algorithm we present in the remainder of the paper. Removing them
from the definition of dynamic controllability is straightforward. Assumption 3 does not
influence Definition 12 or the definitions it depends on at all. Relaxing Assumption 2
would only change the definition of the prehistory of a discrete choice, making it S{≺
DT (c)}, analogously with the prehistory of any time point. Where these assumptions play
a significant part is in the definition of the DC envelope of a partially assigned CCTPU
and the envelope aggregation process (Section 3.5). As will be shown in Section 5, this
aggregation process is central to our DC checking algorithm for the CCTPU.

Relaxing Assumption 1 is not so easy. If we view the assignment of a discrete variable as
a choice, e.g., a choice between taking different actions, then a dynamic execution strategy
must ensure that choices are made so that there is no ambiguity about the activation of a link
when the starting time point of the link is scheduled. The assumption that a discrete choice
between more than two alternatives is made at one time is somewhat restrictive, as shown by
the example in Figure 6, and could be relaxed as long as this requirement is met. If, on the
other hand, we view the assignment of a discrete variable simply as a disjunction between
different sets of constraints, i.e., that at least one option must eventually be satisfied, then
the choice of which one is could be postponed. We will return to this distinction in Section
8.1 when discussing related temporal reasoning models.

4. Extracting Dynamically Controllable Envelopes of STPU

Given an STPU, the algorithm in this section returns its dynamically controllable envelope.
The dynamically controllable envelope of an STPU is the observable condition under which

461

Cui & Haslum

the STPU is dynamically controllable. Finding the dynamically controllable envelope of
an STPU is to find the subset of situations in which no conflict of dynamic controllability
occurs. Our approach starts from a current dynamic controllability checking algorithm, but
modifies it to return all conflicts. The envelope is then formulated as a set of constraints
that must be satisfies to resolve all the found conflicts.

4.1 Checking Dynamic Controllability for the STPU

Different algorithms that can verify if a given STPU is dynamically controllable have been
well studied. The approaches in this paper are mainly based on Morris’s algorithms (2006,
2014) which will be discussed in this subsection. Besides Morris’s cubic algorithm, Nils-
son, Kvarnström, and Doherty (2014) introduced an O(N3) incremental algorithm based
on Shah, Stedl, Williams, and Robertson (2007)’s incremental algorithm, and Hunsberger
(2015) introduced Inky which is also an incremental algorithm with time complexity O(N3)
which are the most efficient approaches.

The first dynamic controllability checking algorithm was introduced by Vidal and Fargier
(1999) with the original definition of dynamic controllability of STPU. The approach is a
two-player game – one decision agent plays against the other nature agent. An STPU
is dynamically controllable if and only if the decision agent can always make successive
decisions based the past no matter what the nature agent has done.

The first polynomial algorithm for checking dynamic controllability of the STPU was
introduced by Morris et al. (2001), based on boundary projection and safe networks (Morris
& Muscettola, 2000). This algorithm repeatedly tightens requirement links and introduces
wait constraints according to the triangular reduction and wait reduction (which are dis-
cussed later) and checks if the tightened network is pseudo-controllable until no link can
be tightened or the network is not pseudo-controllable. Nilsson, Kvarnström, and Doherty
(2015) have proved that this algorithm is in essence O(N4).

Morris and Muscettola (2005) provided an O(N5) algorithm by representing the STPU
by a labelled distance graph and obtaining a cutoff bounds analogous to Bellman-Ford struc-
ture instead of exhausting the tightenings. In the labelled distance graph, the requirement
links are formulated in the same way as in the distance graph introduced by Dechter et al.

(1991). Each link A
[l,u]−−→ B is represented by two directed links A

u−→ B and B
−l−→ A. The

contingent links are represented with labelled edges. Each link A
[l,u]−−→ B is presented by

A
b:l−→ B and B

B:−u−−−→ A, which are called the lower-case and upper-case edges respectively.
Thus, the reduction rules of dynamic controllability can be more uniform and those rules
are still applicable in the following and more efficient algorithms.

In 2006, Morris introduced an O(N4) algorithm. The author first rephrased the reduc-

tion rules by transforming the labelled edges for contingent link A
[l,u]−−→ B to A

l−⇀↽−
−l

A′
b:0−−−−⇀↽−−−−

B:l−u
B. Thus, the label removal condition x ≥ lc can be changed to x ≥ 0. The reduction rules

462

Dynamic Controllability of CCTPUs

are shown in Equation 5. The conditions in the reduction rules are about checking if the
weights are negative or not, which helps to introduce a faster propagation algorithm.

(Upper-case Reduction) A
B:x←−− C y←− D adds A

B:(x+y)←−−−−− D.

(Lower-case Reduction) If x < 0, A
x←− C c:y←−− D adds A

x+y←−− D.

(Cross-case Reduction) If x < 0, B 6= C, A
B:x←−− C c:y←−− D adds A

B:(x+y)←−−−−− D.

(No-case Reduction) A
x←− C y←− D adds A

x+y←−− D.

(Label Removal) If x ≥ 0, A
B:x←−− C adds A

x←− C.

(5)

Using these reduction rules, a sequence of labelled edges can be transformed into a new
edge. Furthermore, if a path of edges after the reductions have been applied does not have
any lower-case edges, it is called semi-reducible.

Theorem 4.1. (Morris, 2006) An STPU is Dynamically Controllable if and only if it does
not have a semi-reducible negative cycle.

In this paper, we call these semi-reducible negative cycles dynamic controllability con-
flicts or just conflicts. With Theorem 4.1, a faster dynamic controllability checking al-
gorithm was introduced, which propagates lower-case edges with Dijkstra’s algorithm and
checks for semi-reducible negative cycles with the Bellman-Ford algorithm iteratively. The
number of iterations is no more than the number of contingent links, so the algorithm is
O(N4).

The current fastest algorithms areO(N3) (Morris, 2014; Hunsberger, 2015; Nilsson et al.,
2014). Morris’s method propagates negative links backwards in order to find potential moat
edge, which is the first edge e′ following a lower-case edge e in path P and its reduced
distance on path P DP (end(e), end(e′)) is negative. The key process in this algorithm
is called DCbackprop that propagates the end of a negative link backwards in Dijkstra’s
algorithm while applying the reduction rules of dynamic controllability. When meeting the
end of another negative link, it calls DCbackprop again. Otherwise, it sums up the weights
of paths until they are not negative. The non-negative paths are reduced as new edges
without a lower-case label.

Theorem 4.2. (Morris, 2014) The DCbackprop procedure encounters a recursive repetition
if and only if the STPU is not Dynamically Controllable.

Theorem 4.2 was proved by Morris (2014). He showed that the DCbackprop procedure
encounters a recursive repetition if and only if the STPU has a semi-reducible negative cycle.
Therefore, a dynamically controllable STPU can pass the checking algorithm without early
termination caused by a conflict.

463

Cui & Haslum

A B C D
[1, 10] [−1,] [10,]

[, 9]

Figure 11: An STPU contains a conflict. Because the temporal constraints on BD and CD
infer that uBC ≤ −1, which means C has to be scheduled before the observation of B. Thus,
triangle ACB is in the precede case, and the upper bound of AC uAC ≤ lAB − uCB = 0.
However, if C is scheduled no later than A and the uncertain duration of AB is greater
than 1, the requirement link on BC cannot be satisfied.

A A’ B C D

1

−1

b : 0

B : −9
1 −10

9

Figure 12: The labelled distance graph of Figure 11.

4.2 Conflict Resolutions of STPU

Finding the dynamically controllable envelope of an STPU is to find the subset of prehisto-
ries in which all conflicts do not exist. This problem is similar to relaxing an over-constrained
(non-DC) problem. Yu et al. (2014) formulated the relaxation problem as a linear program-
ming model with a set of constraints derived from conflicts, and proposed an algorithm,
called CDRU, to iteratively generate conflicts. The conflicts represent the reasons why the
STPU is not dynamically controllable. A conflict is a semi-reducible negative cycle in the
network after applying dynamic controllability reduction rules (see Section 4.1). A conflict
can be represented as follows: ∑

i∈confj

xi < 0, (6)

where xi are the original bounds (li or ui) of links ei in the conflict. A conflict resolution is
a linear constraint ∑

i′∈confj∩ER

x′i′ +
∑

i∈confj\ER

xi ≥ 0 (7)

where ER is the set of relaxable links and x′i′ are variables for the relaxed bounds.
Another way to resolve conflicts with connected lower- and upper-case labels of the same

node is to break the reduction, since the cross-case reduction rule (Equation 5) has a label
condition:

(Cross-case Reduction) If x < 0, B 6= C, A
B:x←−− C c:y←−− D adds A

B:(x+y)←−−−−− D.

For example, the STPU in Figure 11 has a conflict that can be found by any dynamic
controllability checking algorithms. The reduction process of Morris’s O(N3) algorithm

464

Dynamic Controllability of CCTPUs

represented by the labelled distance graph is shown in Figure 12. Equation 8 illustrates the

reduction process. The pair of parentheses shows an added link C
0←− A reduced from the

labelled distance graph.

A
−1←−− A′ B:−9←−−− B 1←− (C

−10←−− D 9←− B b:0←− A′ 1←− A) (8)

A resolution of the found conflict is

−u′AB − l′BC − l′CD + u′BD + l′AB ≥ 0.

In order to resolve the conflict, the total amount of relaxation is 9.

However, this conflict can also be resolved by only relaxing C ← D by 1. It will make

the back propagation of C
−9←−− D stop at B and add a new link C

0←− B. Then the back

propagation of A
−10←−− B is

A
−1←−− A′(B:−9←−−− B 1←− C 0←− B b:0←− A′ 1←− A)

which has to stop before B
b:1←− A because the propagated path A

B:−9+1←−−−−− B has a label
of B which does not satisfy the condition of cross-case reduction. The complete conflict
resolution of the conflict in Equation (8) is

−u′AB − l′BC − l′CD + u′BD + l′AB ≥ 0 ∨ l′CD + u′BD ≥ 0.

Therefore, the resolution of a single conflict is a disjunction with one linear constraint
of the form (7) and other linear constraints over the links whose relaxations can break the
reductions: ∨

k∈resj

∑
i′∈resjk∩ER

x′i′ +
∑

i∈resjk\ER

xi ≥ 0 (9)

where resj is the set of conflict resolutions of confj .

Yu et al. (2014) solved an LP over constraints of form (7) to find a single relaxation.
Bhargava, Vaquero, and Williams (2017) enhanced the conflict exploration process by using
an incremental method. However, provided we find all conflicts in the STPU, the solution
of conflict resolution constraints of Equation 9 represents the space of all relaxations, which
is the same as the dynamically controllable envelope.

4.3 Extracting Conflicts from a STPU

In this subsection, we describe the method to extract a complete conflict set of a given
STPU. Since the conflicts are negative cycles, the number of conflicts is infinite when there
is one negative cycle, and the edges can reduce along the negative cycle infinitely. However,
our algorithm only finds conflicts that cannot be divided into other found conflicts, which
makes the found conflicts a complete conflict set.

Our algorithm is a variation of the dynamic controllability checking algorithm by Morris
(2014). Morris’s cubic algorithm identifies a non-dynamically controllable STPU by find-
ing a semi-reducible negative cycle during propagation according to dynamic controllability
reduction rules. It propagates every negative link backwards along non-negative links only,

465

Cui & Haslum

adds a new link when the weight of the propagated path is non-negative and raises another
propagation when meeting another negative link. A conflict is found when the raised prop-
agation is a negative link that has an unfinished ancestor propagation, and the algorithm
terminates. It guarantees that every negative link is propagated once at most.

Our approach expands Morris’s O(N3) algorithm by propagating through non-shortest
paths and recording a complete set of conflicts. The conflict resulting in the termination
can be learned by memorising the path when tracing back.

However, iteratively extracting and resolving one conflict learned from the dynamic con-
trollability checking algorithm does not lead to such a complete conflict set, since resolving
one conflict may prevent us from finding other conflicts. For example in Figure 13, where
solid lines are edges and dotted lines are paths consisting positive links to be propagated.
Both paths p1 and p2 formulate negative cycles A ← B ← A, but only the shorter one

will be found when calling backpropagation from A
L1:−x←−−−− B. Furthermore, if the conflict

resolution relaxes A ← B, it may resolve the other conflict in the instance, in which case
the the other conflict may never be found.

Another example in Figure 14 shows a case with cyclic calls of backpropagations. If

it first calls backpropagation from A
L1:−x←−−−− B, the algorithm will terminate when finding

negative cycle I. Furthermore, if the conflict resolution relaxes the overlapped part of the
two negative cycles, it may prevent from finding negative cycle II.

A B A
L1 : −x

0 ≤ p1 < x

0 ≤ p2 < x

Figure 13: Alternative conflicts I

A B C D A B C
L1 : −x p1 < x L2 : −y p2 < y L1 : −x p3 < x

Negative Cycle I

Negative Cycle II

Figure 14: Alternative Conflicts II

Based on these observations, to find all necessary conflict resolutions, we have to modify
Morris’s algorithm in the following ways: (1) replacing the shortest path process by a
method that can propagate through all possible paths and (2) propagating some negative
links more than once. If the backpropagation of a negative link is involved in a conflict,
but the conflict is learned at cyclic propagations ending at another negative link, this
propagation may be incomplete. For instance in Figure 14, if negative cycle I is found by

the back propagation starting from A
L1:−x←−−−− B, the raised propagation of C

L2:−y←−−−− D is

466

Dynamic Controllability of CCTPUs

not complete which needs to be propagated again. If we start a new round of propagation

of C
L2:−y←−−−− D, negative cycle II will be found and the propagation is complete. The

propagations without ancestor propagations and involving no conflict are complete.

The approach to extract a complete set of conflicts is summarised in Algorithms 1, 2
and 3. Algorithm 3 and Lines 7 – 11 of Algorithm 2 describe the Depth First Search (DFS)
process, while the rest is the same as Morris’s method.

Algorithm 1 calls BackPropagation once on every negative edge of the labelled dis-
tance graph of a given STPU. NegPathEnds records negative paths when tracing back to
formulate NegCycles.

BackPropagation (Algorithm 2) terminates if the current node recursively reached itself
through a negative path (lines 1 – 3) or if propagation from the current node has already
been successfully completed (lines 4 – 6). disEdge[i] is the reduced distance edge from i to
the end of srcLink in the current round of propagation.

In DFS (Algorithm 3), we enumerate edges ending at the current node crtNode (Line
2 – 29). Lines 3 – 5 prevent cross-case reductions that do not satisfy the label condition.
As proven by Morris’s algorithm, the algorithm only propagates through non-negative links
ending in crtNode (Line 6 – 15). The function Reduction(X,Y) (Line 7) adds two links X
and Y based on the dynamic controllability reduction rules (Equation 5) and keeps a record
of the reduction history. If the propagated path is positive, a new edge is added (Line 9),
else, propagation continues to call DFS (Line 13). When encountering a negative link, the
algorithm will call BackPropagation again (Line 17). bReturn marks the existence of a re-
cursively called negative link. If there exists a recursive call, the current path from crtNode
to srcNode can be part of the found conflict, so we add the path disEdge[crtNode] to
NegPathEnds[srcNode] in line 19. Furthermore, NegPathEnds[crtNode] keeps a record

of negative paths (as NodeX
e1−→ crtNode) ending at the current node, which can prop-

agate through crtNode
disEdge[crtNode]−−−−−−−−−−−→ srcNode and formulate a new negative path as

NodeX
NewPath−−−−−−→ srcNode ending at the source node, where NewPath propagates e1

through path disEdge[crtNode]. Line 23 adds the negative cycle if it can be found in
the propagation of NewPath; Line 25 adds the negative path, otherwise.

Algorithm: DCEnvelopeSTPU(N)
Input: An STPU N .
Output: A set of conflicts NegCycles

1 global LabelN = labelledDistanceGraph(N)
2 NegCycles = ∅
3 for e in negative edges of LabelN do
4 NegPathEnds = {∅}
5 BackPropagation(e, NegPathEnds, NegCycles)

6 end
7 return NegCycles

Algorithm 1: Extracting the DC envelope of an STPU.

The complexity of our conflict extraction method is O(E3) in the worst case, when all
links are negative and the network is fully connected, where E is the number of links. It
is slower than the state-of-art DC checking methods and the CDRU relaxation algorithm.

467

Cui & Haslum

Algorithm: BackPropagation(srcLink,NegPathEnds,NegCycles)
Input: A negative link srcLink, the vector of sets of negative paths end at same nodes

NegPathEnds, the set of negative cycles NegCycles.
Output: Return the propagation result and an updated NegCycles

1 if ancestor call with same srcLink then
2 return False

3 endif
4 if prior successfully terminated call with srcLink then
5 return True

6 endif
7 disEdge = {}
8 disEdge[srcLink.start] = srcLink
9 if DFS(srcLink.start, srcLink.end,NegPathEnds,NegCycles) then

10 return True

11 endif
12 return False

Algorithm 2: Modified backpropagation process that can extract all conflicts.

However, it returns the complete set of conflict resolution constraints, not only whether
conflicts exist, or one relaxation.

4.4 Dynamically Controllable Envelopes of STPU

After finding the complete set of conflicts, the dynamically controllable envelope of an
STPU is the solution space of a constraint model, which is a conjunction of constraints that
represent conflict resolutions.

Given the set of relaxable edges ER that represents the uncertain situations which can
be partially considered in the STPU, the dynamically controllable envelope of the STPU is
x′i′ satisfying the following constraints∧

j∈Conf

∨
k∈resj

∑
i′∈resjk∩ER

x′i′ +
∑

i∈resjk\ER

xi ≥ 0. (10)

The dynamically controllable envelope of an STPU can be used to aggregate the dy-
namically controllable envelopes of the CCTPU.

5. Dynamic Controllability Checking of CCTPU

Central to our algorithm for finding a dynamic execution strategy is the notion of the
envelope of a partial assignment of the discrete variables. In Section 3.5, we defined the
envelope of a partially assigned CCTPU in terms of the envelopes of the same CCTPU with
one further assignment made. The key property of the DC envelope can be stated as follows:
Given a partial assignment to a subset of discrete variables, CAss ⊆ C, the dynamically
controllable envelope of an unassigned variable, c ∈ (C−CAss), is the set of prehistories
of c for which there exists a viable dynamic execution strategy.

In other words, the envelope of a decision, given a partial assignment, is the subset of
possible outcomes of earlier contingent links for which a viable strategy exists. It is similar

468

Dynamic Controllability of CCTPUs

Algorithm: DFS(crtNode, srcNode,NegPathEnds,NegCycles)
Input: Current node crtNode, the source node of back-propagation srcNode, the vector of sets

of negative paths end at same nodes NegPathEnds and the set of conflicts NegCycles.
Output: Return DFS result and the updated NegCycles and NegPathEnds

1 bReturn = True
2 for e ends with crtNode do
3 if e is unusable then
4 continue

5 endif
6 if e.weight ≥ 0 then
7 NewE = Reduction(disEdge[crtNode], e); // Equation (5)
8 if NewE.weight ≥ 0 then
9 LabelN .addEdge(NewE)

10 else
11 TmpDis = disEdge[e.start]
12 disEdge[e.start] = NewE
13 bReturn& = DFS(e.start, srcNode,NegPathEnds,NegCycles)
14 disEdge[e.start] = TmpDis

15 endif

16 else
17 if !BackPropagation(e,NegPathEnds,NegCycles) then
18 bReturn = False
19 NegPathEnds[srcNode].add(disEdge[crtNode])
20 for e1 in NegPathEnds[crtNode] do
21 NewPath = Reduction(disEdge[crtNode], e1)
22 if NewPath contains conflicts then
23 NegCycle.add(NewPath)

24 else
25 NegPathEnds[srcNode].add(NewPath)
26 endif

27 end

28 endif

29 endif

30 end
31 return bReturn

Algorithm 3: The DFS process that do reductions through positive links.

to the notion of a relaxation of an over-constrained CCTPU, which also allows tightening
contingent links, but captures all ways of making the subproblem dynamically controllable.
A detailed example of a DC envelope, for the problem in Figure 18, is given by Equation
(15) at the end of Section 5.4.

The DC envelope of a set of discrete variables is a combination of the variables’ envelopes.
For a contingent link in the prehistory of two or more variables, all conditions on the link
apply, so that the envelope is the intersection. Where two variables have different links in
their prehistory, the envelope is defined over the union of their prehistories.

A CCTPU is dynamically controllable if the DC envelope of any partial assignment
covers all possible outcomes of uncertainties in the problem. It means the partial assignment
can be made statically, and there exists a dynamic strategy for the future (discrete and

469

Cui & Haslum

scheduling) choices. Hence, our approach (1) builds a search tree by expanding on variables,
(2) extracts the dynamically controllable envelopes of STPUs at leaves and (3) aggregates
those envelopes as the dynamically controllable envelopes of non-leaf nodes. If the DC
envelope of any node covers all uncertainty, a dynamic execution strategy can be extracted
from this node in the tree.

Next, we describe the general idea of the approach; the details are introduced in the
following four subsections.

5.1 Algorithm Structure

Our dynamic controllability checking algorithm for a CCTPU (Algorithm 4) is a recursive
tree search. Each leaf node is the STPU obtained from a full assignment to discrete variables,
while interior nodes are CCTPUs with partial assignments. The root is the original CCTPU.
Every other node has one parent that eliminates the assignment to the “latest” variable.
The chronological order of variables is defined in the next subsection.

The algorithm traverses the tree depth-first, assigning variables in chronological order.
NextUnassignedVariable (line 1) returns the next variable to be assigned. If every variable
has been assigned, the current node is a leaf (lines 2 – 8); in this case, we extract the con-
flict resolution constraints that must be satisfied to make the leaf dynamically controllable
and record those in Node.S as its DC envelope (line 3). The detailed description of DCEn-
velopeSTPU is in section 4. A non-leaf node (lines 9 –18) is expanded by assigning values to
the next variable and exploring those nodes recursively. After the child branches of a node
have been investigated, their DC envelopes are combined and recorded as the DC envelope
of the current node (line 14). If the envelope of a node is dynamically controllable, then
so is the CCTPU and the algorithm returns successfully. In the worst case, the algorithm
is exponential since it may have to explore the whole tree to verify that a CCTPU has no
fully dynamic strategy. However, if a dynamic execution strategy exists, it may be found
without enumerating all assignments of the discrete variables.

The following subsections explain the three subroutines besides DCEnvelopeSTPU : Nex-
tUnassignedVariable, which determines the order to assign discrete variables, Union (line
14), which combines envelopes from branches of the same node, and isDC (line 15), which
checks if the current solution includes a dynamic strategy for the original problem. We
explain these procedures in the following subsections.

5.2 Branching Rule

The order in which the algorithm assigns variables obeys the execution process. During
execution, a decision can observe and depend on previous assignments. Even when some
variables are decided in parallel, the branching rule assigns them in a sequence that respects
this order.

If a variable’s decision time point is after any links that may be activated by another
discrete variable, there is a dependency from the earlier to the later variable. For ex-
ample, in Figure 18 the choice between c2 = 1 and c2 = 2 depends on the choice for c1.
Dependencies among discrete variables form a directed graph.

To find the chronological order, we build dependencies among variables. Recall our
definition of precedences (Definitions 9 and 10), we give the following definition.

470

Dynamic Controllability of CCTPUs

Algorithm: TreeSearch(Node, A, S)
Input: A Node =< N,A, S > includes a CCTPU N , a vector of assignments A and the solution

of the current node S.
Output: TRUE/FALSE

1 c← NextUnassignedVariable(Node)
2 if isNull(c) then
3 Node.S ←DCEnvelopeSTPU(Node)
4 if isDC(Node.S) then
5 return TRUE
6 endif
7 return FALSE

8 endif
9 for dci in D(c) do

10 NewNode← Assign(Node, c, dci)
11 if TreeSearch(NewNode) then
12 return TRUE
13 endif
14 Node.S ← Union(Node.S,NewNode.S)
15 if isDC(Node.S) then
16 return TRUE

17 endif

18 end
19 return FALSE

Algorithm 4: Checking dynamic controllability of a CCTPU.

Definition 16. If a link e � DT (ci) and e can be activated or deactivated by cj , then ci
depends on cj , denoted as ci ≺ cj . If a link e �PA DT (ci) and e can be deactivated (the
same as activated) by A(cj), then ci depends on cj under partial assignment PA, denoted
as ci ≺PA cj .

With these definitions, we can formulate a dependency graph from which we can extract
a chronological order in which to assign variables. If the dependency graph does not have a
cycle, we can use topological sort to find any possible chronological order. Otherwise, the
dependency cycles can be treated as conflicts. If the network is dynamically controllable,
at least one of the links within a cycle need to be deactivated by assignments. Therefore,
we can just try different possible orders, if a feasible dynamic strategy is available under
one such order, the network is still dynamically controllable.

Figures 5 and 15 (the diamond nodes are decision time points) show examples of cyclic
dependencies, which will cause a failure to select the next unassigned variable. The cyclic
dependencies containing links with different assignments from the same variable, like in
Figure 5, are ruled out by our Assumption 1 because the decision time DT (c3) has to be
placed before node A,B,C and D which breaks the dependencies c1 ≺ c3 and c2 ≺ c3.
Therefore, assigning c3 before entering the cycle will break the cyclic dependency. However,
cyclic dependencies that contain links with labels of different variables, as in Figure 15,
cannot be solved in the same way. To deal with this case, we can remodel the problem
by adding a discrete variable c0, attaching assignments to each link included in the cyclic

471

Cui & Haslum

dependency in Figure 16, so that the cyclic dependency will be broken by any assignment
of c0 which is made before assigning c1, c2 and c3.

Because all cyclic dependencies either contain links with labels of repeated variables
or different variables, which can be broken by either assumption 1 or remodelling, we can
always find the next unassigned variable that does not depend on any other unassigned
variables. The order to assign variables is the chronological order we use to branch the
search tree.

DT (c1) DT (c2)

DT (c3)

A

B

C

[0, x1]
c1 = 1

[0,x
2]

c
1

=
2

[0,x
3]

c
2

=
1

[0, x4]
c2 = 2

[0, x
5]c

3 =
1

[0, x6]
c3 = 2

Figure 15: Cyclic Dependencies among Variables II

DT (c1) DT (c2)

DT (c3)

A B

CDT (c0)

[0, x1]
c1 = 1, c0 6= 1

[0, x2]
c1 = 2

[0,x
3]

c
2

=
1,c

0
6=

2

[0, x4]
c2 = 2

[0, x
5]

c
3 =

1, c
0 6=

3
[0, x6]
c3 = 2

[0, x7] [0,
x8

]

[0, x9]

Figure 16: Remodelling Cyclic Dependencies among Variables II

472

Dynamic Controllability of CCTPUs

5.3 Combining DC Envelopes

The combining process aims to answer under which condition an assignment of the current
discrete variable, c, can be made at its decision time point DT (c) such that the future part
of the problem is dynamically controllable. This condition is the DC envelope of the current
node.

Ideally, dynamic choices should be based on the whole prehistory beforeDT (c). Conflicts
with different paths have different prehistories before DT (c). Recall our Assumption 3, that
DT (c) is the end point of a contingent link. Since no more than one contingent link can
finish at a node, this means we only consider one contingent link (or the sum of a sequence
of contingent inks) as the latest observation in each combining process.

In combining envelopes, we may split observable uncertainty, which is before DT (c), so
that each child branch only tackles part of it. This may resolve conflicts, or at least relax
them, meaning less strict constraints on the prehistory may replace the original conflict res-
olution. Therefore, a conflict can be resolved through several combining processes, and each
combining process aggregates child envelopes according to Equation (2). The dynamically
controllable envelope as defined in Formula 2 helps us understand the combining process,
but the elements of the dynamically controllable envelope are uncountable since the do-
main of bounds is continuous. Therefore, we use the constraints of conflict resolutions to
represent dynamically controllable envelopes, whose solution space is the set of relaxations
according to Definition 15.

The envelope of the node to assign discrete variable c under partial assignment PA is a
disjunction of child nodes’ envelopes:

Φ =
∨

dcl∈D(c)

∧
j∈Conf

∨
k∈resj

∑
i′∈resjk∩ER

x′i′ ≥ ajkl, (11)

where ER = {ei|ei ∈ EU such that ei ≺PA DT (c)} and ajkl = −
∑

i∈resjk\ER xi is the sum

of bounds of links after DT (c). As the selection in Equation (3) may fail because no suitable
element can be found, the child envelopes may be infeasible when reducing relaxable links.
Those envelopes will be removed before being combined. Furthermore, if no child envelope
is available to be combined, the current envelope does not contain dynamically controllable
execution strategy, which does not need to be combined in upper levels.

The envelope can be expanded into a conjunction of disjunctions, as shown in the fol-
lowing equation.

Φ =
∧∨ ∑

i′∈resjk∩ER

x′i′ ≥ ajkl (12)

Each conjunct takes one conflict resolution (which is a disjunction of linear constraints) from
every child node branch in equation (11), so the number of conjuncts can be the product
of the number of constraints in each child node’s envelope. Transforming the envelope into
this form, same as that of equation (10), makes the combining process uniform at all levels
of the tree. Φ can cover the whole uncertainty if and only its negation is infeasible within

473

Cui & Haslum

the original bounds of relaxable contingent links.

¬Φ = ¬
∧∨ ∑

i′∈resjk∩ER

x′i′ ≥ ajkl

=
∨

(¬
∨ ∑

i′∈resjk∩ER

x′i′ ≥ ajkl)

=
∨∧ ∑

i′∈resjk∩ER

x′i′ < ajkl (13)

As each disjunct in equation (13) contains a conjunction of linear constraints, we can
use an LP solver to perform its test. A disjunct can be removed, when it is infeasible, which
means its negation covers the whole uncertainty. We only keep the remaining disjunctions
for the following combining processes. Additionally, if every disjunct is infeasible, Φ covers
every uncertain situation in the prehistory, which means the current node is dynamically
controllable and an execution strategy can be found within the combined envelope.

5.3.1 Decision Consistency in Prehistory

The decision consistency aims to explain why and how we consider one contingent link in
each combining process.

During execution, the strategy splits at a decision time point DT (c) by assigning variable
c. For example in the illustrative Figure 2, after deciding which way B will choose, the
constraints representing the other option do not matter any more. However, even though
we keep all contingent links preceding the decision time point as relaxable links in the
dynamically controllable envelopes, only one of them can be chosen to have its uncertainty
split into branches each time. In Figure 9, there may exist more than one contingent link
before the latest decision time point c. If one child branch tackles both s→ t1 and r2 → t2
partially, the temporal scheduling of r1 and r2 separates the two observations. The strategy
is related to dynamic controllability reduction rules. The temporal scheduling of r1 and r2

only deals with the relaxed s→ t1.

When combining envelopes from branching decisions of a discrete variable, the envelopes
must contain relaxable variables on no more than one contingent link. If the envelope con-
tains linear constraints on variables of both contingent links in Figure 9, deciding require-
ment links between two partial observations means the decision has to be made before the
observation of the second contingent link, which is not dynamically controllable. Otherwise,
the envelope contains separate constraints on both contingent links. Although several such
envelopes can combine and cover the whole prehistory, the decision on the discrete variable
has been partially made in the decision of the requirement link in this case, which breaks
our assumption 1.

In each combining process, we consider one contingent link as the critical observation
that can be partially tackled in child branches by making a choice for one discrete variable.
We try the end node of every contingent link that precedes the latest decision time of c as
DT (c), replacing the variables representing its lower and upper bounds by a single variable
xij . Then, the envelope answers under which condition for all xij ∈ [lcij , u

c
ij] there exists a

choice dci such that xij satisfies constraints in the envelope of the child node with c = dci.

474

Dynamic Controllability of CCTPUs

After selecting the key observation, we check the feasibility of each disjunct in equation (13)
with the following linear programming problem.

s.t.
∧ ∑

i′∈resjk∩ER\{xij}

pi′ + xij < ajkl (14)

lcij ≤ xij ≤ ucij

Besides the change of xij , we also temporally use pi′ to represent the other edges in the
conflict resolutions. It is because both lower and upper bounds of contingent links in the
envelope represent the uncertain projection in prehistory, which is observed at the time the
choice will be made.

Figure 17 illustrates situations of the reduction of a disjunction of constraints with a
common contingent link. Figure 17(a) shows an easy situation, where EI

c = {[−∞, a]},
EII

c = {[b,∞]} and a ≥ b, so the union of envelopes I and II covers the whole space. It
means that for all situations in the prehistory, no matter what is observed, there will always
be a feasible option that leads to a dynamic strategy. Figure 17(b) illustrates a general and
feasible situation. Envelopes I and II cover the area from the lower bound of EI

c to the
upper bound of EII

c . The intersections of the observation bounds [lc, uc] with the edges of
Envelopes I and II are p1 and p2. The combined envelope indicates that if the prehistory
is within [lp, up], there will be a feasible choice for c. Figure 17(c) illustrates an infeasible
situation. The uncertainty is so significant that the combined envelope cannot provide a
viable range for the prehistory before the observation.

prehistory

observation

Env I

Env II

(a) An feasible example

prehistory

observation

Env I

Env II

lc uc

p1
p2

lp

up

(b) A possibly
feasible example

prehistory

observation

Env I

Env II

l′c uc

p′1
p2

l′p

up

(c) An infeasible example

Figure 17: Combined Envelope

Following our assumptions, the DC envelope (1) is represented by constraints on bounds
of links prior to the decision time point of the variable, (2) enables different assignments to
the variable, which also implies different following schedules, and (3) contains a dynamic
strategy over the prehistory that is consistent for different assignments.

5.4 DC Checking for the Combined Envelope

This subsection aims to answer what kind of combined envelopes means the problem is
solved or unsolvable.

475

Cui & Haslum

A node is dynamically controllable if its DC envelope covers all uncertain situations
implied by the problem. If the negation of an envelope is infeasible within the original
bounds of the problem, which means every uncertain situation can be solved within one
disjunctive branch, the problem is dynamically controllable. The envelope is disjunctive,
and a separate check is done for each disjunct.

If the problem is not solved during the combining process at any interior nodes of the
search tree and the DC envelope of the root is still not dynamically controllable, then a
dynamic strategy satisfying our assumptions does not exist.

A B C

D2

D1

E

F2

F1

G
[1, 10] [0, 1]

[1
, 1

0]

c 1
=

1

[10, 16]
c
1 =

2 [0
, 1

]

c 1
=

2

[0, 1]c
1 =

1
[1
, 3

0]

c 2
=

1

[2, 40]
c
2 =

2

[0, 1]c
2 =

1

[0
, 1

]

c 2
=

2

[10, 50]

Figure 18: An example of CCTPU with two discrete variables

We explain the combining process and node checking with an example with two discrete
variables, shown in Figure 18. The circles are controllable nodes, the squares are uncontrol-
lable nodes and the diamond nodes are latest decision time points. The dashed lines are
contingent links and the solid lines are requirement links. There two decision variables c1

and c2 and each of them has two options.
This problem cannot be solved with a fixed assignment because the STPU in each leaf

node contains conflicts.
The algorithm first arrives at the leaf {c1 = 1, c2 = 1} and extracts the conflict

A
b:1−→ B

1−→ C
d1:1−−→ D1

1−→ E
f1:1−−→ F1

1−→ G
−10−−→ A

Then in leaf {c1 = 1, c2 = 2}, the conflicts are

(1) A
B:−10←−−−− B 0←− C D1:−10←−−−− D1

0←− E F2:−40←−−−− F2
0←− G 50←− A

(2) A
b:1−→ B

1−→ C
d1:1−−→ D1

1−→ E
f2:2−−→ F2

1−→ G
−10−−→ A

Potential DT (c2) is B or D1 (due to Assumption 3). Because making decision of c2 at B
will never satisfy the branch {c1 = 1, c2 = 2}, we illustrate the solution of making decision
at D1.

The envelope at node {c1 = 1} when making decision at D1 is the solution space of the
following constraints:

l′AB + u′BC + l′CD1
+ uD1E + lEF1 + uF1G − lAG ≥ 0

∨
{
−u′AB − l′BC − u′CD1

− lD1E − uEF2 − lF2G + uAG ≥ 0

l′AB + u′BC + l′CD1
+ uD1E + lEF2 + uF2G − lAG ≥ 0

(15)

476

Dynamic Controllability of CCTPUs

where the variables x′ are links before the decision time point, variables x are links not
before the decision time point and the two disjuncts of constraints represent the conflict
resolutions of the two options.

Because of the decision consistency in the prehistory, variables of links that are not the
critical observation have to represent the consistent decision (See Equation 14). Equation
(15) can be rewritten as

p′AB + p′BC + x′CD1
≥ 7 (c2 = 1)

∨
{
p′AB + p′BC + x′CD1

≤ 10 (c2 = 2)

p′AB + p′BC + x′CD1
≥ 6 (c2 = 2)

(16)

Here, the bounds of each relaxable link in the prehistory have been replaced with a single
variable pij representing the projection, and the bounds of the key observation likewise with
a variable xCD1 . The bounds of the non-relaxable links, which are just constants, have been
added up on the right-hand side of each inequality.

Equation 16 is then expanded to a conjunction of disjunctions:{
p′AB + p′BC + x′CD1

≥ 7 (c2 = 1)

∨ p′AB + p′BC + x′CD1
≤ 10 (c2 = 2)

∧
{

p′AB + p′BC + x′CD1
≥ 7 (c2 = 1)

∨ p′AB + p′BC + x′CD1
≥ 6 (c2 = 2)

(17)

The first branch in Equation (17) can be cut because its negation causes infeasibility.
The other branch’s negation is still feasible, which means it does not cover all uncertainty
in its prehistory. Recovering variables to their original bounds, the left constraint l′AB +
u′BC +lCD1 ≥ 6 must be kept to the next combining process. In the next step, our algorithm
explores node {c1 = 2}. Using the same process, the envelope of node {c1 = 2} is {u′AB +

l′BC + uCD2 ≤ 20}. The decision time point is DT (c1) = B, the observation is A
[1,10]−−−→ B

and the prehistory before the observation is empty. The combining process results

p∅ + xAB ≥ 4 (c1 = 1)
∨ p∅ + xAB ≤ 4 (c1 = 2)

whose negation is infeasible. The problem is dynamically controllable.
The dynamic strategy is: (1) If pAB ≥ 4 at B, then make assignment c1 = 1, otherwise

c1 = 2. (2) After choosing c1 = 1, C is scheduled based on pAB, so that AD1 will always be
at least 6. Since we have from the combined envelope (Equation 16) that c2 = 1 if viable
when pAD1 ≥ 7 and c2 = 2 when pAD1 ∈ [6, 10], at D1 if pAD1 ∈ [6, 7], then choose c2 = 2,
if pAD1 ∈ [7, 10], we can choose c2 = 1 or c2 = 1, and if pAD1 ≥ 10 the only choice is c2 = 1.
(3) After choosing c1 = 2, C is scheduled immediately after B, and c2 = 1 at D2. (4) The
scheduling of other controllable time points are inferred by the reduction rules of dynamic
control.

6. Correctness

If the approach in Section 5 finds a node whose envelope passes the DC check, then the
CCTPU is dynamically controllable. The strategy is to make choices according to the partial

477

Cui & Haslum

assignment statically and following the observation of one of the contingent links for the
remaining variables. It is valid within the bounds of the prehistory, which are verified by the
final DC check to contain all potential outcomes uncertain links. However, the algorithm is
not complete, in the sense that it will find only strategies that meet Assumptions 2 and 3.

In this section, we prove that (1) given an STPU, the conflicts extracted by Algorithm
1 is a complete set of conflicts; (2) given a CCTPU, the solution of our method has a
dynamically controllable execution strategy with the dynamic assignment on discrete vari-
ables satisfying assumptions we have made. By proving (1), we show the correctness and
completeness of extracting DC envelopes of STPU.

6.1 Validation of Dynamically Controllable Envelopes of STPU

In section 4, the modified dynamic controllability checking algorithm extracts a complete
set of conflicts of a given STPU. Using disjunctive linear constraints as conflict resolutions,
we represent the dynamically controllable envelopes of STPU by the solution space of the
constraint model. To validate the correctness and completeness of our method, we prove
that (1) all solutions satisfying constraints of their dynamically controllable envelope are
dynamically controllable; (2) a dynamically controllable STPU satisfies its dynamically
controllable envelope constraints.

In order to prove correctness, we introduce the following theorem.

Theorem 6.1. If in a conflict, one negative link has more than one occurrences and one
occurrence can propagate to another occurrence via a negative path, this conflict resolution
can be the sum of other conflict resolutions.

Proof. We use {e−1 , e
−
2 , ..., e

−
n , } to represent the existence of negative link e− in conflict C.

e−i can propagate to e−j via a negative path in C. The distance of the negative path on C is

DC(start(e−i), start(e−j)) which is negative. Because start(e−i) and start(e−j) are the same
node, the negative path is a negative cycle which can be resolved by a conflict resolution. If
the rest part of C is negative, it is another conflict DC(start(e−j), start(e−i)) < 0. Otherwise,

C can be resolved by resolving DC(start(e−i), start(e−j)).

Proof. Let C be a conflict, and e− a negative link that occurs more than once in C. Let
e−1 , e

−
2 , ..., e

−
n represent the ordered occurrences of e− in C. Suppose e−i can propagate to e−j

via a negative path in C. The distance of the negative path on C is DC(start(e−i), start(e−j))

which is negative. Because start(e−i) and start(e−j) are the same node, this path is actually
a negative cycle which can be resolved by a conflict resolution. If the remaining part of C is
negative, it is another conflict DC(start(e−j), start(e−i)) < 0. Otherwise, C can be resolved

by resolving DC(start(e−i), start(e−j)).

Thus, multiple occurrences of a negative link in a conflict must be part of added links,
not the start of any negative sequences. In other words, those multiple occurrences are not
in the piled-up backpropagation processes (of Morris’s cubic algorithm and our algorithm).
Their backpropagation has been completed before finding the negative cycle. With Theorem
6.1, our algorithm only has to propagate one negative link once in a recursive process.

To prove the correctness, we only need to prove we found all conflicts that do not have
multiple repetitions of a single negative link or where the distances among repetitions are

478

Dynamic Controllability of CCTPUs

non-negative. We also use Theorems 4.1 and 4.2 proved by Morris (2006, 2014) to prove
the following:

Theorem 6.2. Correctness: The solutions satisfying constraints of conflict resolutions
extracted by the modified dynamic controllability checking method (Algorithm 1) are dynam-
ically controllable.

Proof. To prove the correctness, we suppose conversely there is a solution N satisfying
constraints of conflict resolutions extracted by the modified DC checking method but not
dynamically controllable. According to Theorem 4.1 N has a semi-reducible negative cycle
C. By Theorem 4.2, C can be found by DCbackprop procedure in the Morris’s DC checking
algorithm.

Based on the process of DCbackprop procedure, C results from a series of calling
DCbackprop on negative edges {e−1 , e

−
2 , ..., e

−
k } and each propagating backwards through

positive edges. These positive edges are either original or added edges (the added edges are
positive paths in DCbackprop procedure, see line 9 in Algorithm 3).

First, we prove the case that all edges in C are original edges. The structure of C is
shown in figure 19, where {p+

1 , p
+
2 , ..., p

+
k } are the paths of positive links propagated through,∑

i(e
−
i + p+

i) < 0 and e−i + p+
i < 0 for all i. Calling backpropagation from one negative

edge e−i in C, all negative paths starting from e−i including p+
i in C will be enumerated

by the DFS process until meeting other negative edges (line 17 in Algorithm 3) including
the next negative edge e−i+1. Another backpropagation process will be called when meeting
e−i+1. The recursive calls result in a termination of calling an ancestor negative link e−i .
Therefore, C will be found. It contradicts that N satisfying the constraint of all conflict
resolutions.

Then we consider the situation where C consists of original and added edges. In this
situation shown in Figure 20, where e′+add is the added edge, which split p+

i into two parts,
from the propagation of e−x through p+

x and e−x + p+
x > 0, the rest edges are kept as before.

In this case, we have to prove that e′+add is added while propagating e−i (line 2 in Algorithm
3)to the end point of e−x . There are four situations when calling backpropagation on e−x
in the backpropagation of e−i : (1) it is an ancestor call, (2) the backpropagation of e−x is
successfully terminated before, (3) the backpropagation has not been called or (4) it has
been unsuccessfully called. In situation (1), C is a conflict that contains a negative path
between two occurrences of e−x , so it can be resolved by other found conflict resolutions as
shown by Theorem 6.1. In situation (2), e′+add has been added. In situation (3) and (4),
e′+add is going to be added unless, in p+

x , there is a negative link that has been called in an
open ancestor call, which makes C contain a negative path between two existences of that
negative link.

Therefore, C will be found. It contradicts that N satisfying the constraint of conflict
resolution of C.

Theorem 6.3. Completeness: Every dynamically controllable STPU that is a relaxed
instance (tightening contingent links) of the given STPU satisfies the constraints of conflict
resolutions extracted by the modified dynamic controllability checking method (Algorithm 1).

479

Cui & Haslum

e−1 p+
1 e−2 p+

2
e−3 , p+

3 , ... , e−k−1, p+
k−1 e−k

p+
k

Figure 19: A semi-reducible negative cycle without added edges

e−1 , p+
1 , ... , e−i−1, p+

i−1 e
−
i p

+(1)
i

e−x p+
x

e−i+1, p+
i+1, ... , e−k−1, p+

k−1 e−k

p+
k

e′+add = e−x + p+
x

p
+(2)
i

Figure 20: A semi-reducible negative cycle with added edges

Proof. We assume there is a dynamically controllable STPU N that is a relaxed instance
of the given STPU and N does not satisfy the constraints of conflict resolutions extracted
by the modified DC checking method.

Thus, N violates a constraint CR0 in the form of Equation 7, which means it violates
every branch of the disjunctive linear constraint. However, the variables in CR0 represent
the bounds of links in conflict C0. The dissatisfaction of N means the bounds of links of N
formulate a conflict the same as C0, which contradicts that N is dynamically controllable.

6.2 Validation of Dynamic Controllability of CCTPU

In this subsection, we show that if a CCTPU is found to be dynamically controllable by
our approach, there is a viable strategy that makes both temporal decisions and discrete
variable assignments dynamically.

To validate our approach, we add the dynamic decisions of discrete variables to the
dynamic execution algorithm for STPUs by Morris and Muscettola (2000). The dynamic
decisions of discrete variables contain its decision time point DT (c), which is the end of a
contingent link or the start time point, and A(c) based on the situation of the prehistory. If
a CCTPU is dynamically controllable, it has a dynamically controllable envelope Env(PA)
that covers all uncertain situations in its prehistory. Env(PA) is either in a leaf node
when PA is A, or combined from child nodes that have one more assignment of a discrete
variable c. If the algorithm finds a dynamically controllable STPU with a full assignment,
its execution assigns all discrete variables at the beginning and executes the CCTPU as an
STPU. Otherwise, a sequence of DT (c) and A(c) can be extracted from tracing back the
combining process. Therefore, the execution is represented in Figure 21. The executions

480

Dynamic Controllability of CCTPUs

of discrete variables are added in the lines with star marks, the rest lines are the same as
executing an STPU.

Algorithm: ExecuteCCTPU
Input: A dynamically controllable CCTPU N .

0 Perform initial propagation from the start time point.

1* Assign discrete variables whose decision time has been reached, according to their
prehistory and the envelope calculated. If there is more than one such variable, assign
them following the same chronological order used to prove dynamic controllability of
N . Then immediately execute any controllable time points that have reached their
upper bounds.

2 Arbitrarily pick a controllable time point TP that is live and enabled and not yet
executed, and whose waits, if any, have all been satisfied.

3 Execute TP. Halt if network execution is complete. Otherwise, propagate the effect
of the execution.

4* Advance current time, propagating the effect of any contingent time points that occur,
until either
• the contingent time point is the decision time of a discrete variable c: go to 1*; or
• a controllable time point becomes eligible for execution under 1* or 2.

5 Go to 1*.

Figure 21: Execution of the dynamic strategy of CCTPU

Figure 21 shows the general dynamic execution strategy for a CCTPU that has been
shown to be dynamically controllable. It follows the execution algorithm for STPUs pro-
vided by Morris et al. (2001), with instructions for assignment of discrete variables added to
steps 1 and 4 (marked with asterisks); otherwise the algorithm is the same as the original.

The critical step is (1*), where the decision to assign a discrete variable is taken. Let
PA be the partial assignment made so far, and suppose c is the next variable to be assigned:
the algorithm selects a value d for c such that the observed values of contingent links in
the prehistory of c belong to Env(PA ∪ {c = d}). At the end of execution, the complete
assignment A defines an STPU that consists of only the activated links. The scheduling
of controllable time points made by the algorithm satisfies all requirement links of that
STPU Morris et al. (2001). It remains for us to show that at each decision time point
DT (c) all contingent links in PPA{≺ c} have been observed and that there exists a value
d ∈ D(c) such that the observed prehistory belongs to Env(PA ∪ {c = d}). The first part
is immediate from the definition of the precedence relation and Assumption 2.

Because the checking algorithm has found the CCTPU to be dynamically controllable,
there exists a (possibly empty) partial assignment PA such that Env(PA) covers every
outcome of the contingent links in its prehistory. This assignment can be made at the
start of execution. Consider the next variable, c, to be assigned. Env(PA) is a subset of

481

Cui & Haslum

Env(PA, c), which relaxes only contingent links in PPA{≺ PA}; thus it covers any outcome
of any contingent link that is in the prehistory of c but not the prehistory of the PA, and
thus the observed outcome before DT (c) is also in Env(PA, c). But Env(PA, c) is simply
the union of Env(PA ∪ {c = d}) for all d ∈ D(c). Thus, there is some value for c whose
envelope contains the observed outcome.

Hunsberger (2009) introduced the Real-Time Execution Decision (RTED) formalism to
describe the actions that an agent may take while executing an STPU that is dynamically
controllable. It could also be used to represent the dynamic execution strategy for a CCTPU.

7. Experimental Results

We illustrate the benefit of fully dynamic strategies for CCTPUs by comparing implementa-
tions of DC checking methods for the CCTPU with and without dynamic discrete choices.
The DC checking method for the CCTPU which does not make assignments to discrete
variables dynamically only considers scheduling time points dynamically. Our implementa-
tion of this method checks each leaf node (full set of assignments) in turn and considers the
CCTPU dynamically controllable if it finds one leaf that induces a dynamically controllable
STPU.

7.1 Experimental Setup

We use the benchmark generator by Yu (2016), based on Zipcar problems (Yu & Williams,
2013; Yu et al., 2014). Its application background is a car-sharing network. Each test case
consists of missions with temporal requirements, each mission has a sequence of activities,
and each activity can be done by choosing one option. An option contains controllable and
uncontrollable links. All links are represented by their lower and upper bounds.

We use discrete variables to represent the choices between options and attach assign-
ments as labels to the links of each option. All temporal links are randomly generated
except for the requirement on the overall duration of the missions, which randomly deviates
by ±20% from the estimated bounds of the sequence of activities.

We generated 16000 test cases, with 1–8 discrete variables and 1–10 options for each
variable. Regarding the size of the networks, the numbers of nodes, links and contingent
links are in the ranges 11–170, 11–330 and 4–162, respectively.

7.2 Results

The result is shown in Figure 22. The tests are grouped by DC checking results in the
chart: “infeasible” means the problem is not dynamically controllable; “feasible with fixed
option” means the algorithm found a viable strategy with a static assignment of the discrete
variables; and “feasible with dynamic options” means it found a strategy that both assigns
discrete variables and schedules time points dynamically.

The white bars represent the result of our implementation with a fixed assignment.
77.1% of the test cases are infeasible when using a static assignment, compared to just
22.4% which are still infeasible when assigning also discrete variables dynamically. The
number of instances in which the implementation of our fully dynamic algorithm found a
strategy with a static assignment is slightly fewer than the number that can actually be

482

Dynamic Controllability of CCTPUs

solved by such a strategy; this is because the algorithm sometimes finds a viable strategy
with dynamic assignment earlier in the search, and then stops. Those instances are counted
in the last group, rather than in the middle.

Figure 23 shows the runtime comparison between the implementations of dynamic con-
trollability with fixed and dynamic assignments. The y-axis describes the number of prob-
lems solved, where solved means the implementation terminates with a checking result of
dynamically controllable or not. The runtime difference between two implementations is not
obvious. It shows that making assignment dynamically does not cost much extra runtime.
Furthermore, the implementation with dynamic assignment solves slightly more problems
at runtime limits over 1 second, which may be because in test cases that have dynamic
strategy with dynamic assignment, it terminates before exploring the whole search tree.

infeasible feasible with
 fixed option

feasible with
 dynamic option

0

2000

4000

6000

8000

10000

12000

#p
ro
bl
em

s

Fixed Assignment
Dynamic Assignment

Figure 22: Distribution of the number of instances for which a strategy with fixed and
dynamic assignments of the discrete choices, respectively, was found.

7.3 A Simple Optimisation Experiment

Answering the question how controllable, flexible, robust or generally well a temporal prob-
lem with uncertainty and choices could be provides more information than just checking the
feasibility or controllability of the problem. Furthermore, it is more challenging to answer
those questions because we need to formulate and solve an optimisation problem instead of
checking feasibility.

It is still an open problem that how to formulate an optimisation model which can
represent the fully dynamic strategy for a CCTPU. The difficulties of formulating the opti-
misation model are associating decision time points to the temporal networks, representing
the “splitting” of uncertainty of key contingent links dealt by each branch, and so on. How-

483

Cui & Haslum

10−2 10−1 100 101 102 103
log10 runtime(s)

0

2000

4000

6000

8000

10000

12000

14000

16000

nu
m
be

r o
f p

ro
bl
em

s s
ol
ve

d

Fixed Assignment
D namic Assignment

Figure 23: Number of problems solved as a function of runtime.

ever, besides a complete optimisation model, we can use alternative methods to perform
optimisation, for example the framework of the binary search with DC checking at the core.

In this section, we present a simple optimisation experiment that is based on the dy-
namic controllability checking algorithm introduced in Section 5 to further demonstrate the
advantage of making assignments dynamically. The experiment is based on optimising a
robustness measure called maximum deviation, introduced by Cui, Yu, Fang, Haslum, and
Williams (2015). It maximises the deviation (delay) of uncertain durations under which the
problem is still dynamically controllable. It is a worst-case measure, so after setting the
maximum deviation, the worst case is a CCTPU. Thus, we can use the algorithm introduced
in this paper to test how dynamically controllable the worst case is.

In this experiment, we set the lower bounds of the contingent links to their original lower
bounds and upper bounds are the sum of their lower bounds and the maximum deviation.
The maximum deviation is found by a binary search on top of the checking algorithm.

Our test set comprises 2000 networks with one discrete variable. The result of the
experiment is shown in Figure 24. In less than half of the test cases, the worst case deviation
that can be handled by dynamic control remains the same if we use dynamic assignments
instead of fixed assignments. In 171, 302, 336 and 285 test cases, the maximum deviation
improves by up to 10%, 20%, 30%, and more than 30%, respectively.

8. Related Work

In addition to the techniques and methods that we have used as a basis in this paper, we
discuss other related work in this section.

484

Dynamic Controllability of CCTPUs

0 10% 20% 30% more than 30%
Max Delay Improvement

0

200

400

600

800

1000

#
p
ro
b
le
m
s

Figure 24: Improvement of Max Delay from Fixed Assignment to Dynamic Assignment

8.1 Related Temporal Reasoning Models

In the recent trend of introducing various variants of temporal networks, CCTPU is not the
only one that considers uncertainty, conditions and discrete choices. In this subsection, we
discuss three temporal reasoning models – CSTNU, DTNU and CSTNUD – that also adds
these factors to temporal networks.

8.1.1 Conditional Simple Temporal Network with Uncertainty

Among the variety of temporal reasoning models, the Conditional Simple Temporal Network
with Uncertainty (CSTNU) is closely related to the CCTPU. Both CSTNU and CCTPU
consider temporal problems with uncertainty and discrete conditions, but the CSTNU mod-
els uncontrollable and observable conditions.

The Conditional Simple Temporal Network with Uncertainty (CSTNU) (Hunsberger
et al., 2012) combines the Conditional Simple Temporal Network (CSTN) and Simple Tem-
poral Network with Uncertainty (STNU). A CSTN attaches logical conditions, formulated
over a set of binary proposition symbols (P), to time points and links, with the interpreta-
tion that only time points whose conditions are true will be executed, and only requirement
links whose conditions are true need to be satisfied. An assignment of truth values to the
propositions is called an execution scenario, and represents a particular outcome or mode
of execution of the temporal network.

The CSTNU adds to the CSTN contingent links, which are links ending in uncontrollable
time points just like in an STNU. The label of an uncontrollable node must be the same
as the label of the contingent link that ends in it, and of the controllable node at the start

485

Cui & Haslum

of that link, so that a contingent link is executed in full if and only if it is started. In a
CSTNU, the execution scenario is initially unknown. Each proposition p is associated with
an observation time point, O(p), which is the time point when the agent will find out the
value of p. Hence, the uncertain situation in a CSTNU is a combination of the uncertain
execution scenario, sc, and the projection of the contingent links, ω, which is the same as
the projection of an STNU. The pair (sc, ω) is called a drama. The projection of a CSTNU
onto a drama, denoted by drPrj(sc, ω), is an STN. An execution strategy for a CSTNU is a
mapping from dramas to schedules of the controllable time points. The controllability of a
CSTNU considers how well the execution strategy can deal with the drama. If an execution
strategy is able to solve every drama of the CSTNU, it is dynamically controllable.

An algorithm for checking the dynamic controllability of a CSTNU was introduced
by Combi, Hunsberger, and Posenato (2014). It is based on the algorithm for checking
dynamic controllability of STNU (Morris et al., 2001) which has a complexity of O(N5).
The authors revised the reduction rules by considering the consistency of labels and adding
label modification rules to the process to tackle the conditions of the CSTNU.

8.1.2 Conditional Disjunctive Temporal Networks with Uncertainty

Another temporal reasoning model that considers uncertainty and options is the Disjunc-
tive Temporal Networks with Uncertainty (DTNU) (Venable & Yorke-Smith, 2005). The
DTNU extends the STNU by considering disjunctive temporal constraints. Each require-
ment constraint is a disjunction of temporal constraints between any pairs of nodes. Each
contingent link has a set of disjoint intervals, instead of a single interval, for the uncertain
duration.

The uncertain situations and schedules of the DTNU are not very different from those
of the STNU. A strongly controllable DTNU has a time assignment to every controllable
time point that ensures all constraints will be satisfied (Peintner et al., 2007). The strong
controllability of disjunctive temporal problems can be solved by SMT (Cimatti, Micheli,
& Roveri, 2015). A dynamically controllable DTNU has a dynamic strategy that, like
the dynamic strategy of an STNU, depends only on past observations, and ensures all
constraints are satisfied for any outcome of the contingent durations (Venable, Volpato,
Peintner, & Yorke-Smith, 2010; Cimatti, Micheli, & Roveri, 2016).

A DTNU that does not have disjunctions on contingent links can be approximately
modelled as a CCTPU by introducing a discrete variable for each requirement constraint
that has disjunctions and adding labels accordingly. This, however, disregards the difference
in when decisions are made: a dynamic execution strategy for a DTNU is only required to
eventually satisfy one disjunct in each disjunctive constraint, whereas a dynamic strategy
for a CCTPU, under our assumptions, is required to choose which option will be satisfied
before scheduling any time point that is conditioned on the choice.

The difference is illustrated by the example in Figure 25: the disjunctive constraint
B −A ∈ [30, 60]∨B −A ∈ [60, 90]∨B −A ∈ [90, 120] is of course satisfied by any outcome
of the contingent link A–B, but there is no way to make a choice of which disjunct will be
true before observing it.

There is also no way to express disjunctive contingent links in a CCTPU, since these cor-
respond to uncontrollable discrete choices, made by nature rather than the executing agent.

486

Dynamic Controllability of CCTPUs

A B
[30, 120]

[30, 60], c1 = 1

[60, 90], c1 = 2

[90, 120], c1 = 3

Figure 25: Illustration of the difference between a choice and a disjunctive constraint.

Conversely, not every CCTPU can be modelled as a DTNU since the controllable discrete
choices in the CCTPU can model disjunctions of conjunctions of temporal constraints, but
the DTNU is not able to represent these conjunctions, i.e., to enforce a correlation between
the choices of disjuncts to satisfy different constraints. Also, the CCTPU allows to model
a controllable choice of which contingent links to activate or deactivate, which is also not
expressible in the DTNU. Neither type of problem subsumes the other.

The Conditional Disjunctive Temporal Network with Uncertainty (CDTNU) is a com-
bination of CSTNU and DTNU, which models uncontrollable conditions and disjunctive
constraints at the same time (Cimatti, Hunsberger, Micheli, Posenato, & Roveri, 2016).
However, this also does not subsume the CCTPU, as it also does not allow to model a
controllable choice between uncertainties.

8.1.3 Conditional Simple Temporal Networks with Uncertainty and
Decisions

Zavatteri (2017) introduced a temporal reasoning model called the Conditional Simple Tem-
poral Networks with Uncertainty and Decisions (CSTNUD) which considers uncontrollable
and controllable conditions at the same time. The controllable conditions are named deci-
sions in the CSTNUD. A CSTNUD is a tuple, < V,E,L,OV,DV,O, P, `,O >, where:

• < V,E,L,OV,O, P, ` > is a CSTNU,

• DV is a set of decision time points such that DV ∩OV = ∅,

• O : P → OV ∪ DV is a bijection associating a unique observation or decision time
point to each proposition. If O(p) ∈ OV , p is observable (and uncontrollable), whereas
if O(p) ∈ DV , p is a controllable decision.

The proposition set is P = OP ∪DP , where OP are the uncontrollable conditions that are
observable, and DP are the controllable conditions.

The CCTPU and CSTNUD temporal reasoning models have some differences. The
CCTPU model does not include uncertainty over discrete choices, as modelled by the un-
controllable conditions in the CSTNUD. On the other hand, in the CCTPU we have defined
the mapping from discrete variables to their decision time points as part of the solution
strategy, whereas in the CSTNUD they are given a fixed decision time point as part of the
problem statement. Although smart choices of fixed decision time points could be as good
as dynamic decision time points, it depends on the wellness of the model formulation.

487

Cui & Haslum

For example in Figure 26, the choice of c1 can be made at B or D. If we model the
problem by CSTNUD (without any uncontrollable conditions) and assign the fixed decision
time point at D, we cannot find a feasible strategy since the envelopes [16, 20] when c1 = 1
and [10, 15] when c1 = 2 cannot cover the uncertain situations from A to D (there is a gap
[15, 16]). In contrast, if we formulate the problem by CCTPU, the algorithm introduced
in this paper will try both B and D to be the decision time point of c1 and the decision
made at B is part of a dynamically controllable strategy. Because the envelopes [2, 10] when
c1 = 1 and [1, 5] when c1 = 2 can cover the uncertain situations from A to B. Even though
the CSTNUD model may have the same feasible solution by modelling the fixed decision
time point at B, it is not guaranteed.

A B C D

F2

F1

G
[1, 10] [0, 1] [8, 10]

[1
0,

15
]

c 1
=

1

[16, 20]
c
1 =

2

[0, 0]c
1 =

1

[0
, 0

]

c 1
=

2

[26, 35]

Figure 26: An example to show the benefit of dynamic decision time point

The dynamic controllability of a CSTNUD can be decided by a reduction to a Timed
Game Automaton (Zavatteri, 2017). We discuss this method in the next subsection.

8.2 Verification Approaches for Temporal Problems with Uncertainty

The DC checking algorithm in this paper is based on a constraint programming technique
– bound propagation. However, the controllability of different temporal problems can also
be represented using formalisms such as Timed Game Automata (TGA), and solved with
TGA verification tools.

8.2.1 Representing Dynamic Controllability by Timed Game Automata

Cimatti et al. (2016) used Timed Game Automata (TGA) to represent the dynamic con-
trollability of STNU, CSTNU, DTNU and CDTNU. Using TGA to represent the dynamic
controllability is the first sound and complete approach for DTNU and CDTNU. Zavatteri
(2017) also used TGA to represent the dynamic controllability of the CSTNUD, and im-
plemented the model in UPPAAL-TIGA (Behrmann, Cougnard, David, Fleury, Larsen, &
Lime, 2007), which is a verification tool for TGA. In the following, we will briefly outline
the reductions of some temporal reasoning models to TGA, and discuss the possibility and
practicality of modelling dynamic controllability of the CCTPU as a TGA.

A Timed Automaton (TA) (Alur & Dill, 1990) is a tuple < Σ, S, s0, C,E >, which adds
a finite set of real-valued clocks C to a finite automaton < Σ, S, s0, E >, where Σ is an
alphabet, S is the finite set of states (also known as “locations”), s0 is the initial state and
E are the transitions. A transition represents the change from one state to another state

488

Dynamic Controllability of CCTPUs

on input. Each transition of a TA has a guard condition over clocks, which describes the
requirement to make the transition, and a set of clocks that will be reset to zero when the
transition is taken.

A Timed Game Automaton (TGA) (Maler, Pnueli, & Sifakis, 1995) divides the set of
transitions into controllable and uncontrollable. Formulating the dynamic controllability of
STNU as a TGA, Cimatti et al. (2016) used two states in which the agent or environment,
respectively, execute their transitions, and a goal state to model the agent achieves the goal.
Thus, the agent’s aim is to find a counter-strategy to reach the goal location against the
prevention from the environment. The TGA model of an STNU has one clock that measures
global time, which is never reset, one clock that measures time since the last contingent time
point, and one clock for each time point which is reset once, when that node is executed.

To model the uncontrollable conditions of the CSTNU, the TGA is augmented with a
clock for each proposition and a controllable transition for the location representing the
environment that resets this clock if the proposition is observed to be true. That the
proposition was observed to be false can be inferred if the observation time point has been
executed and this clock has not been reset. In the same way, a clock and transition pair is
added to model the decisions in a CSTNUD (Zavatteri, 2017).

It seems plausible that dynamic controllability of the CCTPU, with dynamic discrete
choices, can also be modelled as a TGA, and therefore decided using TGA verification tools.
As mentioned above, the only additional complication required to model a CCTPU that is
not already present in the CSTNUD is allowing the agent to chose the decision time point
for controllable variables. This could be potentially be handled using two different clocks
to represent when the decision is taken and what the decision is, essentially introducing a
new time point representing the decision time, which is constrained to be executed no later
than any link whose label depends on the decision. However, we have not developed such
an encoding in detail. Moreover, even if the TGA approach is feasible, verifying dynamic
controllability by using bound propagations may be more efficient. Zavatteri (2017) solved
an example with two decisions, 4 contingent links and 11 nodes by implementing the TGA
in UPPAAL-TIGA, which took about one minute (running on a virtual machine with Intel
i7 2.8GHz CPU and 5G RAM). Solving a problem of the same size with the DC checking
algorithm in this paper needs less than a second (running on a desktop with Intel i5 3.2GHz
CPU and 4G RAM). Furthermore, solving the optimisation, rather than decision, version
of the problem (relaxing an over-constrained problem) in the same setting takes about five
seconds. While this comparison is limited and not exactly rigorous, it does suggest that
the greater generality of the TGA as a method of implementing dynamic controllability
checking comes at a computational cost

8.2.2 Other Approaches for Temporal Problem Verification

In the context of uncertainty, the robust execution of plans or schedules is a main concern of
automated systems. A reactive execution strategy can respond when uncertainty is resolved
through observation; a proactive-reactive approach (Herroelen & Leus, 2005) involves some
combination of planning, i.e., formulating a strategy ahead of execution, and leaving some
flexibility in the strategy to react at execution time. Verifying dynamic controllability is

489

Cui & Haslum

an example of a proactive-reactive approach, but the concept exists more widely in the
scheduling and AI literature.

Musliner, Durfee, and Shin (1993) used a two-level architecture to build a real-time
control system, called CIRCA, focusing on meeting hard deadlines. CIRCA has an AI sub-
system focused on task level goals and a real-time subsystem that can achieve controllability.
It sacrifices completeness of the task level calculation to guarantee a certain notion of safety
in the real-time system. Muscettola, Nayak, Pell, and Williams (1998) developed a real-time
system that focuses on tight deadlines, resource constraints and concurrent activities for the
spacecraft domain that works over long periods of time. A dynamic execution strategy for a
temporal problem achieves task level completeness under the assumption that the uncertain
durations are within certain bounds. However, using intervals to describe the durations of
uncertain events sacrifices some accuracy. Verifying dynamic controllability can be viewed
as a proactive process with assumptions on the reactive process, which guarantees that the
process will satisfy constraints at execution time as long as the environment satisfies the
assumption. Furthermore, using flexibility metrics related to dynamic controllability to de-
sign the reactive process can be an intelligent way to enhance its robustness. For example,
in a scheduling problem, adding temporal slacks to achieve dynamic controllability can be
more efficient than adding them uniformly.

9. Conclusion and Future Work

In this paper, we extend the definition and verification of dynamic controllability to tem-
poral problems with uncertainty and controllable options, the CCTPU, which can solve
the problem with an entirely dynamo control strategy in which both temporal scheduling
and controllable options are decided dynamically. The dynamic decisions on the discrete
options enable a fully flexible strategy in which every decision is based on past observations.
Compared to previous work on dynamic control of the CCTPU, which considered making
only scheduling decisions dynamically and discrete choice assignments statically, we showed
that fully dynamic strategies can be found in more test cases.

Since our dynamic controllability checking algorithm relies on a set of assumptions,
relaxing those assumptions is one of our directions for future work. Although some of
our limiting assumptions can be circumvented by remodelling the problem, finding a more
intelligent approach that can describe the dynamic decision time points would be a useful
extension.

The addition of controllable discrete variables makes the CCTPU a better model for
many problems than the STPU, but also more difficult to solve. Many real-world problems
that can be represented as a CCTPU are not controllable even with dynamic variable
assignment, because the temporal constraints are too tight or the uncertainty is too high.
Instead of only checking dynamic controllability, it is in this situation more useful to answer
how far from controllable the problem is. On the other hand, schedules made without
considering uncertainty may fail when executing in uncertain circumstances. Similar to
the optimisation problems of STPU (Cui et al., 2015; Casanova, Pralet, Lesire, & Vidal,
2016), an optimisation model of the CCTPU with fully dynamic strategy can answer how
robust or flexible these schedules are. Thus, developing approaches to CCTPU relaxation
and optimisation is also an important direction for future work.

490

Dynamic Controllability of CCTPUs

Extending the verification of dynamic controllability to more general decision-making
problems such as scheduling and planning is also a potential are of future work. Control-
lable discrete variables can be used to model different ways of resolving resource allocation
conflicts that arises when some activities cannot be executed at the same time because the
sum of their resource demands exceeds the resource capacity. Different ways to add prece-
dence constraints to resolve the conflict can then be modelled as the values of a controllable
discrete variable. Using a CCTPU to represent a set of different partial-order schedules
for a scheduling problem enhances the flexibility contained in the solution set beyond the
flexibility that is afforded by one partial-order schedule. More robust or flexible schedules
may be achieved by modeling resource conflicts as a CCTPU and using the method in this
paper to verify if this problem is dynamically controllable or not. However, encoding all re-
source conflicts and their resolutions is likely to result in a too large CCTPU. Furthermore,
planning problems are more complicated than scheduling problems. (Cimatti, Do, Micheli,
Roveri, & Smith, 2018) tackled the problem of temporal planning with uncontrollable action
durations and applied strong controllability for temporal networks to the planning prob-
lem. A possible compromise is to use controllable discrete variables to describe the choice
of alternative plans obtained from planners, then analysing robustness, controllability and
other performances of the plan set.

10. Acknowledgement

We would like to thank Peng Yu and Cheng Fang for providing the data sets of the Zipcar
problem and discussing the work. We would like to thank Caroline Even for providing
the test cases of the evacuation planning problem. We also would like to thank the JAIR
reviewers and editor for their insightful and helpful suggestions, which helped us consider
the work in different views and make the paper more solid and understandable.

References

Alur, R., & Dill, D. (1990). Automata for modeling real-time systems. In Paterson, M. S.
(Ed.), Automata, Languages and Programming: 17th International Colloquium War-
wick University, England, July 16–20, 1990 Proceedings, pp. 322–335, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Barták, R., & Čepek, O. (2007). Temporal networks with alternatives: Complexity and
model. In Proceedings of the Twentieth International Florida Artificial Intelligence
Research Society Conference, pp. 641–646.

Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K. G., & Lime, D. (2007).
Uppaal-tiga: Time for playing games!. In Computer Aided Verification: 19th Inter-
national Conference, CAV 2007, Berlin, Germany, July 3-7, 2007. Proceedings, pp.
121–125, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bhargava, N., Vaquero, T., & Williams, B. (2017). Faster conflict generation for dynamic
controllability. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 4280–4286. AAAI Press.

491

Cui & Haslum

Casanova, G., Pralet, C., Lesire, C., & Vidal, T. (2016). Solving dynamic controllability
problem of multi-agent plans with uncertainty using mixed integer linear program-
ming. In Proc. 22nd European Conference on Artificial Intelligence (ECAI), pp. 930–
938.

Cimatti, A., Do, M., Micheli, A., Roveri, M., & Smith, D. E. (2018). Strong temporal
planning with uncontrollable durations. Artificial Intelligence, 256, 1 – 34.

Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., & Roveri, M. (2016). Dynamic
controllability via timed game automata. Acta Informatica, 53 (6), 681–722.

Cimatti, A., Micheli, A., & Roveri, M. (2015). Solving strong controllability of temporal
problems with uncertainty using smt. Constraints, 20 (1), 1–29.

Cimatti, A., Micheli, A., & Roveri, M. (2016). Dynamic controllability of disjunctive tem-
poral networks: Validation and synthesis of executable strategies. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 3116–3122.
AAAI Press.

Combi, C., Hunsberger, L., & Posenato, R. (2014). An algorithm for checking the dynamic
controllability of a conditional simple temporal network with uncertainty - revisited. In
Proc. 5th International Conference on Agents and Artificial Intelligence (ICAART),
pp. 314–331.

Conrad, P. R., & Williams, B. C. (2011). Drake: An efficient executive for temporal plans
with choice. J. Artif. Int. Res., 42 (1), 607–659.

Cui, J., & Haslum, P. (2017). Dynamic controllability of controllable conditional temporal
problems with uncertainty. In Proceedings of the 27th International Conference on
Automated Planning and Scheduling (ICAPS), pp. 61–69.

Cui, J., Yu, P., Fang, C., Haslum, P., & Williams, B. (2015). Optimising bounds in simple
temporal networks with uncertainty under dynamic controllability constraints. In Pro-
ceedings of the 25th International Conference on Automated Planning and Scheduling
(ICAPS), pp. 52–60.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artif. Intell.,
49 (1-3), 61–95.

Even, C., Pillac, V., & Van Hentenryck, P. (2014). Nicta evacuation planner: Actionable
evacuation plans with contraflows. In Proceedings of the Twenty-first European Con-
ference on Artificial Intelligence (ECAI), ECAI’14, pp. 1143–1148, Amsterdam, The
Netherlands, The Netherlands. IOS Press.

Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research
potentials. European Journal of Operational Research, 165 (2), 289 – 306. Project
Management and Scheduling.

Hunsberger, L. (2009). Fixing the semantics for dynamic controllability and providing a
more practical characterization of dynamic execution strategies. In Proc. 16th Interna-
tional Symposium on Temporal Representation and Reasoning (TIME), pp. 155–162.

Hunsberger, L. (2015). New techniques for checking dynamic controllability of simple tem-
poral networks with uncertainty. In Agents and Artificial Intelligence, Vol. 8946 of
Lecture Notes in Computer Science, pp. 170–193. Springer International Publishing.

492

Dynamic Controllability of CCTPUs

Hunsberger, L., Posenato, R., & Combi, C. (2012). The dynamic controllability of condi-
tional STNs with uncertainty. In Proc. Planning and Plan Execution for Real-World
Systems: Principles and Practices (PlanEx) Workshop, pp. 2–4.

Maler, O., Pnueli, A., & Sifakis, J. (1995). On the synthesis of discrete controllers for timed
systems. In Mayr, E. W., & Puech, C. (Eds.), STACS 95: 12th Annual Symposium
on Theoretical Aspects of Computer Science Munich, Germany, March 2–4, 1995
Proceedings, pp. 229–242, Berlin, Heidelberg. Springer Berlin Heidelberg.

Morris, P. (2006). A structural characterization of temporal dynamic controllability. In Proc.
12th International Conference on Principles and Practice of Constraint Programming
(CP), pp. 375–389.

Morris, P. (2014). Dynamic controllability and dispatchability relationships. In Proc. 11th
Integration of AI and OR Techniques in Constraint Programming (CPAIOR), pp.
464–479.

Morris, P., & Muscettola, N. (2000). Execution of temporal plans with uncertainty. In
In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI), pp.
491–496.

Morris, P., & Muscettola, N. (2005). Temporal dynamic controllability revisited. In In
Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-2005,
pp. 1193–1198. AAAI Press / The MIT Press.

Morris, P., Muscettola, N., & Vidal, T. (2001). Dynamic control of plans with temporal
uncertainty. In Proc. 17th International Conference on Artificial Intelligence (IJCAI),
pp. 494–499.

Muise, C. (2014). Exploiting Relevance to Improve Robustness and Flexibility in Plan Gen-
eration and Execution. Ph.D. thesis, University of Toronto.

Muise, C., Beck, J. C., & McIlraith, S. A. (2016). Optimal partial-order plan relaxation via
maxsat. Journal of Artificial Intelligence Research (JAIR), 57 (1), 113–149.

Muscettola, N., Nayak, P. P., Pell, B., & Williams, B. C. (1998). Remote agent: To boldly
go where no ai system has gone before. Artif. Intell., 103 (1-2), 5–47.

Musliner, D. J., Durfee, E. H., & Shin, K. G. (1993). Circa: a cooperative intelligent real-
time control architecture. IEEE Transactions on Systems, Man, and Cybernetics,
23 (6), 1561–1574.

Nilsson, M., Kvarnström, J., & Doherty, P. (2015). Revisiting Classical Dynamic Control-
lability: A Tighter Complexity Analysis. In Duval, B., van den Herik, J., Loiseau, S.,
& Filipe, J. (Eds.), Proceedings of the Fifth International Conference on Agents and
Artificial Intelligence (ICAART), pp. 243–261. Springer International Publishing.

Nilsson, M., Kvarnström, J., & Doherty, P. (2014). Incremental dynamic controllability in
cubic worst-case time. In Proc. 21st International Symposium on Temporal Represen-
tation and Reasoning (TIME), pp. 17–26.

Peintner, B., Venable, K. B., & Yorke-Smith, N. (2007). Strong controllability of disjunctive
temporal problems with uncertainty. In Bessière, C. (Ed.), Principles and Practice of

493

Cui & Haslum

Constraint Programming (CP) 2007, pp. 856–863, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Policella, N., Cesta, A., Oddi, A., & Smith, S. F. (2007). From precedence constraint
posting to partial order schedules: A csp approach to robust scheduling. In AI Com-
munications, Special Issue on Constraint Programming for Planning and Scheduling,
pp. 163–180.

Shah, J. A., Stedl, J., Williams, B. C., & Robertson, P. (2007). A fast incremental algo-
rithm for maintaining dispatchability of partially controllable plans. In Proceedings of
the Seventeenth International Conference on International Conference on Automated
Planning and Scheduling (ICAPS), pp. 296–303.

Stergiou, K., & Koubarakis, M. (2000). Backtracking algorithms for disjunctions of temporal
constraints. Artificial Intelligence, 120 (1), 81 – 117.

Timmons, E., & Williams, B. (2015). Enumerating preferred solutions to conditional simple
temporal networks quickly using bounding conflicts. In AAAI Workshops.

Tsamardinos, I. (2002). A probabilistic approach to robust execution of temporal plans
with uncertainty. In Methods and Applications of Artificial Intelligence, pp. 97–108,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Tsamardinos, I., Vidal, T., & Pollack, M. E. (2003). CTP: A new constraint-based formalism
for conditional, temporal planning. Constraints, 8 (4), 365–388.

Venable, K. B., Volpato, M., Peintner, B., & Yorke-Smith, N. (2010). Weak and dynamic
controllability of temporal problems with disjunctions and uncertainty. In Proc. of the
Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Prob-
lems (COPLAS-20910) in ICAPS-2010, pp. 50–59.

Venable, K. B., & Yorke-Smith, N. (2005). Disjunctive temporal problems with uncertainty.
In Proceedings of the 19th International Joint Conference on Artificial Intelligence,
IJCAI’05, pp. 1721–1722, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Vidal, T., & Fargier, H. (1999). Handling contingency in temporal constraint networks:
From consistency to controllabilities. Journal of Experimental and Theoretical AI,
11 (1), 23–45.

Weld, D. (1994). Introduction to least commitment planning. AI Magazine, 15 (4), 27–61.

Yu, P. (2016). BCDR Test Generator. https://github.com/yu-peng/
BCDRTestGenerator.

Yu, P., Fang, C., & Williams, B. C. (2014). Resolving uncontrollable conditional temporal
problems using continuous relaxations. In Proc. 24th International Conference on
Automated Planning and Scheduling (ICAPS), pp. 341–349.

Yu, P., & Williams, B. (2013). Continuously relaxing over-constrained conditional tem-
poral problems through generalized conflict learning and resolution. In Proc. 23rd
International Joint Conference on Artificial Intelligence (IJCAI), pp. 2429–2436.

494

https://github.com/yu-peng/BCDRTestGenerator
https://github.com/yu-peng/BCDRTestGenerator

Dynamic Controllability of CCTPUs

Yu, P., Williams, B., Fang, C., Cui, J., & Haslum, P. (2017). Resolving over-constrained
temporal problems with uncertainty through conflict-directed relaxation. Journal of
Artificial Intelligence Research, 60, 425–490.

Zavatteri, M. (2017). Conditional Simple Temporal Networks with Uncertainty and Deci-
sions. In Schewe, S., Schneider, T., & Wijsen, J. (Eds.), 24th International Symposium
on Temporal Representation and Reasoning (TIME 2017), Vol. 90 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pp. 23:1–23:17, Dagstuhl, Germany.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

495

	Introduction
	Contributions
	Organisation

	Motivation
	Illustrative Example – Evacuation Planning

	Problem Statement
	Preliminary Definitions
	Dynamic Assignments for Discrete Variables
	Assumptions
	Limitation of Assumption 1
	Limitation of Assumption 2
	Limitation of Assumption 3

	Dynamic Controllability of CCTPU
	Dynamically Controllable Envelopes
	Relaxing the Assumptions

	Extracting Dynamically Controllable Envelopes of STPU
	Checking Dynamic Controllability for the STPU
	Conflict Resolutions of STPU
	Extracting Conflicts from a STPU
	Dynamically Controllable Envelopes of STPU

	Dynamic Controllability Checking of CCTPU
	Algorithm Structure
	Branching Rule
	Combining DC Envelopes
	Decision Consistency in Prehistory

	DC Checking for the Combined Envelope

	Correctness
	Validation of Dynamically Controllable Envelopes of STPU
	Validation of Dynamic Controllability of CCTPU

	Experimental Results
	Experimental Setup
	Results
	A Simple Optimisation Experiment

	Related Work
	Related Temporal Reasoning Models
	Conditional Simple Temporal Network with Uncertainty
	Conditional Disjunctive Temporal Networks with Uncertainty
	Conditional Simple Temporal Networks with Uncertainty and Decisions

	Verification Approaches for Temporal Problems with Uncertainty
	Representing Dynamic Controllability by Timed Game Automata
	Other Approaches for Temporal Problem Verification

	Conclusion and Future Work
	Acknowledgement
	References

