Journal of Artificial Intelligence Research 66 (2019) 123-150 Submitted 05/2019; published 09/2019

From Support Propagation to Belief Propagation
in Constraint Programming

Gilles Pesant GILLES.PESANT@QPOLYMTL.CA
Polytechnique Montréal, Montreal, Canada
CIRRELT, Université de Montréal, Montreal, Canada

Abstract

The distinctive driving force of constraint programming to solve combinatorial problems
has been a privileged access to problem structure through the high-level models it uses.
From that exposed structure in the form of so-called global constraints, powerful inference
algorithms have shared information between constraints by propagating it through shared
variables’ domains, traditionally by removing unsupported values. This paper investigates
a richer propagation medium made possible by recent work on counting solutions inside
constraints. Beliefs about individual variable-value assignments are exchanged between
contraints and iteratively adjusted. It generalizes standard support propagation and aims
to converge to the true marginal distributions of the solutions over individual variables.
Its advantage over standard belief propagation is that the higher-level models featuring
large-arity (global) constraints do not tend to create as many cycles, which are known
to be problematic for convergence. The necessary architectural changes to a constraint
programming solver are described and an empirical study of the proposal is conducted on
its implementation. We find that it provides close approximations to the true marginals
and that it significantly improves search guidance.

1. Introduction

Many forms of message passing algorithms have been investigated in AI. One of the earliest
and best known, Belief Propagation (BP) also known as sum-product message passing, was
proposed by Pearl (1982) to perform inference on graphical models. From a joint probabil-
ity distribution it computes approximations of the marginal distributions onto individual
variables (i.e. beliefs). Each message is a real-valued function over the domain of a variable
that expresses a probability that the variable takes a given value in a model. BP is known
to converge to the exact marginal distributions on tree topologies but may not converge in
general.

Constraint Propagation can also be viewed as a message passing algorithm, announcing
value deletions from domains through the constraint network and necessarily converging
because some quantity, namely the size of the Cartesian product of the domains, decreases
monotonically (Horsch & Havens, 2013; Werner, 2015). From the perspective of mes-
sage passing, the deleted values being propagated are messages taking the form of simpler
Boolean-valued functions evaluating to false for these deleted values and to true otherwise,
which is rather flat information since all non-deleted values are on an equal footing. One
way to view a variable’s filtered domain with respect to a constraint is as a set of variable-
value pairs having non-zero frequency among its solution set (Dechter, Bidyuk, Mateescu,
& Rollon, 2010) — if instead we share the whole frequency distribution over individual vari-

(©2019 AI Access Foundation. All rights reserved.

PESANT

ables we can discriminate between values from the perspective of each constraint and, for
example, use it for branching in the search tree. Since in general we don’t have an explicit
description of the solution set of a constraint, that frequency distribution is not readily
available and would have to be approximated, perhaps very coarsely. However recent work
on solution counting is bringing it within reach to compute exact (or close) distributions
for several families of constraints (Pesant, 2017). Once we consider the frequency of a
variable-value pair as its likelihood, or probability, of appearing in a solution to the given
constraint, we come very close to belief propagation and other message passing algorithms
for probabilistic inference.

Among the different types of graphical models, factor graphs are closest to constraint
networks: they are bipartite graphs featuring variable nodes and factor nodes, the latter
corresponding to constraints, with edges between variables and the constraints in which
they appear. Messages are sent back and forth between variable and factor nodes, thereby
solving in an iterative manner a set of mutually recursive equations defining these messages.
Let pz—. denote the message from variable x to constraint ¢ and p.,, the message from
constraint ¢ to variable x. We give their definition for Bp:

frel0) = M peel®) v € D(x) 1)
eN(@)\{c}
pese(v) = 3 fe(v) TI parse(vla’])) Vv e D(x) (2)
v:v[z]=v z’eN(c)\{z}

where D(x) is the domain of possible values for variable x, N(x) is the neighbourhood of

variable x i.e. the constraints in which x appears, N(c¢) is the neighbourhood of constraint

c i.e. its scope, v is a tuple from the Cartesian product of the domains of all variables in

N(c), v[z] stands for the value taken by variable z in v, and f, is the function associated

with ¢, often given as a conditional probability table but in our specific case of a CSP it is

better viewed as a decision procedure returning 1 if tuple v satisfies ¢ and 0 otherwise.
The (unnormalized) marginal or bias 6, of variable x is computed as

O.(0) = [[#ese(v) Vo€ D(x)

ceEN(z)

The distinctive driving force of Constraint Programming (CP) to solve combinatorial
problems has been a privileged access to problem structure through the high-level models
it uses. From that exposed structure in the form of so-called global constraints, powerful
inference algorithms have been developed over the years to identify and remove unsupported
values, and also more recently to explain conflicts and to count solutions. In particular the
latter has led to counting-based search (Pesant, Quimper, & Zanarini, 2012), a family of
effective branching heuristics. These are expressed through the concept of solution density:
given a constraint c(xi,...,x), its number of solutions #c(x1,...,xx), respective finite
domains D(x;) 1<j<k, a variable x; in the scope of ¢, and a value v € D(x;),

o(zi,v,c) = #OEL, - Tin1, U T - Tk
#He(xy, ..., xp)

defines the solution density of pair (z;,v) in ¢, measuring how often a certain assignment
is part of a solution to c. It is interesting to note that the numerator above corresponds

124

FROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

exactly to

> felw), (3)

v[z]=v

the initial part of the constraint-to-variable message in Equation 2. The solution density
can thus be seen as a normalized form of the latter message but assuming a uniform dis-
tribution of values in each domain since it does not take into account the belief acquired
by each variable from the other constraints (i.e. the rest of Equation 2). Summation 3
essentially counts the models (local to ¢) in which x = v. Depending on the constraint and
the combinatorial structure it encapsulates, such counting may be intractable (e.g. Valiant,
1979). Nevertheless the recent work on counting-based search has provided efficient algo-
rithms to count either exactly or approximately for several constraints (Pesant et al., 2012;
Brockbank, Pesant, & Rousseau, 2013; Pesant, 2015). An efficient implementation of belief
propagation with global constraints needs to perform counting weighted by the beliefs about
variables: this is close in spirit to other work on counting for optimization constraints in
which individual costs are associated with each variable assignment (Pesant, 2016; Delaite
& Pesant, 2017).

This paper promotes a richer propagation medium in CP, made possible by extending
such previous work to weighted counting inside constraints and close in spirit to message
passing algorithms. It also contributes an instantiation of belief propagation that is less
affected by cycles through the use of higher-order potentials corresponding to CP’s global
constraints, weighted-counting algorithms for some of the latter, and a publicly-available
implementation for further research. The rest of the paper is organized as follows. Section 2
provides a motivating example. Section 3 presents the related work. Section 4 describes
the architecture of our implementation in a CP solver. Section 5 gives weighted-counting
algorithms for some families of constraints. Section 6 offers some empirical results to an-
alyze and support the proposed enhanced propagation in CP. Section 7 concludes with a
discussion.

2. An Example

Consider the following example to illustrate the approach:
i. alldifferent(a,b,c)
ii.a+b+c+d=7
iii. ¢<d

Together with these three constraints consider identical domain {1,2,3,4} for variables
a, b, ¢, and d. There are two solutions to that csp: (a = 2,b = 3,¢ = 1,d = 1) and
(a = 3,b=2,¢c=1,d =1). Even if we enforce domain consistency on each constraint,
no filtering occurs. To solve this ¢SP we would thus be left to branch on variables having
identical domains.

Variable a takes value 2 in one of the two solutions, value 3 in one solution as well,
and values 1 and 4 in no solution. If we look at the set of solutions as a multivariate

125

PESANT

1 2 3 4
0 1/4 1/4 1/4 1/4

|) 5 5 A 6y | 10/20 6/20 3/20 1/20

5 5 2 /2 5 0 1/4 1/4 1/4 1/4
GZ 0 12 12 0 6y | 10/20 6/20 3/20 1/20
0) 0 0 0 0. 1/4 1/4 1/4 1/4
92) 0 0 0 6i | 10/20 6/20 3/20 1/20
g 4/10 3/10 2/10 1/10

0y | 10/20 6/20 3/20 1/20

gL /10 2/10 3/10 4/10

Table 1: True marginals (left) and local marginals (right) for the running example in Sec-

tion 2

1 2 3 4 1 2 3 4
0, .25 .25 .25 .25 0, .50 .30 .15 .05
0, .25 .25 .25 .25 0, .50 .30 .15 .05
0. .25 .25 .25 .25 0. .62 .28 .09 .01
04 .25 .25 .25 .25 04 .29 .34 .26 11

1 2 3 4 1 2 3 4
0, 12 41 .40 .07 0, .01 .52 .46 .01
0, 12 41 .40 .07 0, .01 .52 .46 .01
0. .84 .15 .01 .00 0. .98 .02 .00 .00
04 .65 .28 .06 .01 04 .90 .10 .00 .00

Table 2: Initial marginals (top left) and computed marginals after 1st (top right), 5th (bot-
tom left), and 10th (bottom right) iteration for the running example in Section 2

discrete distribution, its projection onto a yields (0,1, 1,0) and under the assumption that
either solution is equally likely the marginal probability distribution for a is then 6, =
(0,1/2,1/2,0). Table 1 gives on the left the marginal for each variable and on the right
the marginals local to each constraint taken individually and over its own set of solutions.
We see that from the point of view of the alldifferent constraint and for variable a (line
0%) each value is equally likely since it appears in the same number of solutions to that
constraint. Whereas for that same variable but from the point of view of the linear equality
constraint (line #%) value 1 is ten times more likely than value 4. Note also that for variable
d the two local marginals give conflicting beliefs.

Successful branching heuristics based on local marginals have been proposed before,
such as maxSD that branches on the variable-value pair with the highest overall solution
density (i.e. local marginal) (Pesant et al., 2012). Given the information in Table 1 it would
branch on one of the four variables, assigning it value 1, since overall the highest solution
density (marginal) is 1/2, supplied by constraint ii indiscriminately for each variable.

126

FROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

| 1 2 3 4 | 1 2 3 4
Oa 29 A1 25 .05 Oa 37 40 20 03
O 29 41 25 .05 O 37 40 20 03
0. 66 31 .03 .00 0. 61 37 02 .00
04 A8 38 12 02 04 40 45 13 02

Table 3: Computed marginals after 5th (left) and 10th (right) iteration using a decompo-
sition of alldifferent for the running example in Section 2

| 1 2 3 4 | 1 2 3 4
Oa 01 91 .08 .00 Oa 53 40 07 .00
O .00 10 90 .00 O 29 30 37 .04
0. 99 01 .00 .00 0. 64 35 01 .00
04 97 03 .00 .00 04 A1 A7 11 01

Table 4: Computed marginals after 10 iterations with alldifferent (left) vs its decom-
position (right) for the running example in Section 2, having added constraint
a<b

Table 2 presents the evolution of the computed marginals as the number of belief prop-
agation iterations performed increases. Top left are the initial uniform marginals over
supported values. Top right is the result of a single iteration: its effect for each variable is
to take the product of the local marginals from all constraints in which it appears. Then it
becomes more interesting as variables send back messages that are not necessarily uniform
distributions and constraints compute local marginals weighted by these distributions. The
two bottom tables show the marginals computed after five and ten iterations — note how
these get closer to the true marginals in Table 1.

To motivate our interest in taking advantage of the high-level modelling typically present
in CP, made up of a relatively low number of high-arity constraints, consider Table 3 show-
ing the impact of replacing the alldifferent constraint by its decomposition into three
disequality constraints: a # b, a # ¢, b # c¢. It is much further from the true marginals and
does not even appear to converge.

Finally if we add constraint a < b there is only one solution left: (a =2,b=3,c=1,d =
1). Again we see in Table 4 that the marginals computed from the higher-level model get
very close to that solution but not so when using the decomposition.

3. Related Work

In this section we review the related work in the area of branching heuristics and about
handling cycles in message passing algorithms.

127

PESANT

3.1 Belief-Based Branching Heuristics

Horsch and Havens (2013) proposed Probabilistic Arc Consistency for binary Csps as a
generalization of arc consistency and a specialization of BP. An empirical study on random
binary CsPs is reported in which the authors use the resulting approximate marginals to
branch on the strongest belief, which significantly reduced the size of the search tree but at
an overall computational cost that made it less attractive than simpler branching heuristics.
Building on the Expectation Maximization Belief Propagation (EMBP) framework of Hsu,
Kitching, Bacchus, and Mcllraith (2007) and considering general csps, LeBras, Zanarini,
and Pesant (2009) obtain more accurate approximations of marginals inside constraints
by exploiting consistency techniques. They probe for each variable-value pair whose bias
we wish to estimate (i.e. making this assignment and reaching some level of consistency)
and then take the product over the other variables of the sum of biases over their reduced
domain. Two variants are evaluated: with (global) or without (local) propagation between
constraints during the probing process. Branching as well on the strongest belief, they
achieve good results for the global variant despite the heavier computational burden of
probing, possibly because at the same time they gain the additional domain filtering of
singleton consistency. Kask, Dechter, and Gogate (2004) investigate Iterative Join-Graph
Propagation, belonging to the BP family, to estimate the number of solutions extending a
partial assignment for a cSp and use it as a value ordering heuristic. Montanari, Ricci-
Tersenghi, and Semerjian (2007) consider a simple randomized branching algorithm based
on BP and analyze its behaviour on random k-SAT instances. To ease their analysis they
choose an unbound variable to branch on uniformly at random and choose the value to assign
to it randomly according to its computed marginal distribution, but mention that choosing
the variable with the most strongly biased marginal would probably be more effective.
Like most of these previous efforts we aim to branch on the strongest belief according to
computed variable biases. But unlike them we compute more precise distributions locally
by a deeper exploitation of constraint structure made possible by recent progress on the
counting problem over the corresponding combinatorial structures (Pesant, 2017).

3.2 Message Passing in the Presence of Cycles

As indicated earlier Belief Propagation may not converge when the graphical model on which
it is applied contains cycles, even though there are a few documented cases for which it still
performs very well. Generalized Belief Propagation (Yedidia, Freeman, & Weiss, 2000)
and Iterative Join-Graph Propagation (Dechter, Kask, & Mateescu, 2002) were proposed to
improve the convergence of BP in networks with cycles by clustering nodes of the network in
an effort to encompass (short) cycles. More generally in probabilistic graphical models the
idea of clustering manifests itself in the definition and use of higher-order potentials. Despite
the latter generally requiring time exponential in their size to compute, in some applications
they may take a special form that allows efficient inference without even relying on message
passing algorithms: for example in computer vision, Kohli, Ladicky, and Torr (2009) define
Robust P™ Potts potentials on which they apply a gradient descent algorithm with very
good results. Previously introduced EMBP is guaranteed to converge to a local maximum but
not necessarily to the exact marginals (Hsu et al., 2007). Ibrahim, Pal, and Pesant (2017)
propose a variational message-passing algorithm based on Expectation Maximization in an

128

FROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

effort to handle cycles, combined with some local consistency to better handle determinism
in graphical models. In the context of deriving lower bounds on model counting for Boolean
formulas, Kroc, Sabharwal, and Selman (2011) propose BPCount which repeatedly uses BP to
identify “balanced” variables to branch on. They address the convergence issue by applying
message damping which helps reduce oscillation and they avoid fatal mistakes of fixing a
variable to an unsupported value due to potential inaccuracies by adding safety checks to
ensure satisfiability. They also write that the previous works mentioned above typically are
not fast enough to be used repeatedly for branching.

Our contribution bears some similarity to generalized BP in its aim to encapsulate cycles
but goes about it differently by exploiting the large arity of the global constraints naturally
present in the CP model instead of building clusters. Higher-order potentials can be viewed
as global constraints and, like them, they will lead to efficient inference if they can exploit
special structure, as examplified by the previously mentioned computer vision application
whose potentials resemble a soft allEqual constraint. Using the special structure of each
global constraint, we aim to be just as accurate and efficient.

4. Richer Propagation in MiniCP

Our prototype! is built on top of MiniCP, a recent bare-bones open-source CP solver de-
veloped for academic purposes and written in Java (Michel, Schaus, & Hentenryck, 2017).
Though few constraints and filtering algorithms are currently implemented, its small and
clean architecture made it easier to implement the required architectural changes to the
core of the solver without worrying about the potential impacts on a more complex sys-
tem. We focus here on our main changes to MiniCP and refer the interested reader to its
documentation for a complete description of its architecture.

4.1 engine.core package

This package includes classes defining domains as reversible sparse sets and various other
classes implementing the IntVar, Constraint, and Solver interfaces. In order to maintain
the marginal distribution of a variable, we created a reversible weighted sparse set that adds
the marginal of each value in the domain as a weight attribute.

Algorithm 1: IntVar.receiveMessage(v, fic—z(V))

input: value v, message ti.—,(v) from some constraint ¢ to this variable
marginal[v] < marginal[v] X . (v);

Algorithm 2: IntVar.sendMessage(v,0°(v))

input: value v, its marginal 6¢(v) local to some constraint ¢
output: message fi,.(v) about v from this variable to ¢
return marginalfv]/0¢(v);

1. Its current implementation is available at https://github.com/PesantGilles/MiniCPBP

129

PESANT

4.1.1 INTERFACE INTVAR

As its name suggests, this interface describes integer finite-domain variables. We added
the marginal distribution of the variable over its domain and simple methods to receive
and send messages (Algorithm 1 and 2). Recall that incoming messages are combined by
multiplying them and that the message sent to a constraint excludes its corresponding factor
(Equation 1).

Algorithm 3: Constraint.receiveMessages|()

foreach variable x in the scope of the constraint do
foreach value v in the domain of x do
outsideBelief|z][v] < x.sendMessage(v, localBelief[z|[v]);
normalize outsideBelief[z];

Algorithm 4: Constraint.sendMessages ()

updateBelief();
foreach variable x in the scope of the constraint do
normalize localBelief[x];
foreach value v in the domain of x do
if localBelief[z|[v] =0 then
‘ x.remove(v);
else if localBelief[z][v] =1 then
‘ x.assign(v);
x.receiveMessage(v, localBelief[z][v]);

4.1.2 INTERFACE CONSTRAINT

We extended the class implementing this interface with a localBelief and outsideBelief,
corresponding respectively to the marginal distributions for the variables in the scope of
the constraint according to its local set of solutions and to the marginal distributions of the
same variables according to the other constraints. We also added methods to receive and
send messages (Algorithm 3 and 4), and abstract method updateBelief () to be defined
in each family of constraints (see Section 5). Note that sendMessages() subsumes the
domain filtering traditionally taking place in propagate() by acting on domains whenever
an extreme belief (i.e. 0 or 1) is encountered. Therefore whenever the weighted counting
performed in updateBelief () for some constraint is not exact, we take care not to return
such extreme beliefs so that inference remains sound.

4.1.3 INTERFACE SOLVER

This interface has method fixPoint () that propagates unsupported variable/value pairs
from constraints until no more changes occur in domains. We add method beliefPropa()
that drives the richer propagation we propose (Algorithm 5). Before initiating the BP it-
erations we reset to 1 all marginals and local beliefs. Note that in contrast to standard

130

FROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

Algorithm 5: Solver.beliefPropa()

foreach variable x do

‘ reset rx.marginal,
foreach constraint ¢ do

‘ reset c.localBelief;
repeat
foreach constraint ¢ do

‘ c.receiveMessages();
foreach variable x do

‘ reset x.marginal,
foreach constraint ¢ do

‘ c.sendMessages ();
foreach variable x do

‘ normalize x.marginal;

until stopping condition;

(support) propagation, termination is not a given here since the propagation process is not
limited by the number of variable/value pairs we can remove and it may not even converge.
For the moment we leave the stopping condition unspecified — we will come back to it in
Section 6. Message passing is synchronized in two phases: in the first phase constraints
receive messages from the variables; in the second phase marginals for the variables are
reset, constraints send messages to the variables, and marginals are normalized.

4.2 engine.constraints package

This package contains the classes for the constraints currently implemented in MiniCP. Each
constraint requires a dedicated implementation of method updateBelief () that adjusts its
localBelief by taking into account the current outsideBelief. In principe we can achieve
this simply by enumerating the current solutions to a constraint (as in Equation 2) but in
general it is too time-consuming. The next section describes more efficient ways of doing
this for a few common constraints by exploiting their combinatorial structure.

5. Weighted Model Counting Inside Constraints

Many exact and approximate algorithms have been proposed for the difficult problem of
Model Counting (Gomes, Sabharwal, & Selman, 2009), which has several applications, no-
tably for probabilistic inference (e.g. Sang, Beame, & Kautz, 2005; Chavira & Darwiche,
2008). Recent algorithmic focus has been on fully polynomial randomized approximation
schemes (FPRAS) using Monte Carlo or hashing-based techniques (see e.g. (Meel, Shrotri,
& Vardi, 2018) for a recent exposition). More broadly, Weighted Counting is also of in-
terest in complexity theory, quantum computation, and stochastic combinatorial optimiza-
tion (de Campos, Stamoulis, & Weyland, 2017). Our interest here lies not in Weighted
Model Counting for general models but instead for specific combinatorial structures en-
capsulated in constraints. Pesant (2017) discusses a few design patterns to perform (un-

131

PESANT

weighted) model counting: adding some information to an existing compact representa-
tion of the solution set, sampling interleaved with constraint propagation, using known
lower /upper bounds, or transforming finite-domain variables into discrete random variables
under a uniform distribution. They can serve as a source of inspiration for weighted model
counting. Recall that unless weighted counting is exact we refrain from fixing local beliefs to
extreme values 0 or 1, since that would trigger value removal or variable fixing respectively.

Algorithm 6: NotEqual.updateBelief ()

foreach value v in the domain of x do
if v — k is in the domain of y then

‘ localBelief[z][v] <~ 1 — outsideBelief[y|[v — k;
else

| localBelief(z][v] « I;
foreach value v in the domain of y do
if v+ k is in the domain of x then

‘ localBelief[y|[v] <~ 1 — outsideBelief[x][v + k];
else

‘ localBelief[y|[v] < 1;

5.1 Binary Disequality

We start with a simple binary disequality constraint x # y + k, for some integer constant
k, to illustrate how marginals are taken into account. For a given value v in the domain
of x (respectively y), any value for y (resp. x) that is different from v—k (resp. v + k) is
a support and we could simply sum the corresponding marginals over such values. But it
is sufficient and more efficient to subtract from 1 the marginal of v—k for y (resp. v + k
for x; see Algorithm 6). Keep in mind that these computed local marginals are normalized
afterwards (see Algorithm 4).

5.2 Alldifferent

For the alldifferent constraint, Hsu et al. (2007) essentially apply Algorithm 6 to the de-
composition into disequality constraints and thus only approximate the distribution. LeBras
et al. (2009) propose more accurate approximations that are not restricted to alldifferent
by first applying some level of consistency, either locally to individual constraints or glob-
ally, but then make the simplifying assumption that every combination of values over these
reduced domains constitutes a support.

As is the case for domain filtering, when the disequality relationship is extended to
more than two variables then a more global view pays off for (weighted) counting. The one-
to-one correspondence between solutions to an alldifferent constraint and maximum
matchings in the associated bipartite graph is well known. Counting such matchings in
turn corresponds to computing the permanent of the adjacency matrix A = (a;;) of the
bipartite graph,

per(A) = Ypepllia; ()

132

FROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

where P denotes the set of all permutations of {1,2,...,n}. Unfortunately this is a # P-
complete problem (one of the so-called “hard to count — easy to decide” problems) (Valiant,
1979). Nevertheless it is a well-studied problem, even for more general nonnegative matri-
ces, for which several upper bounds have been proposed (Soules, 2003) and even polytime
randomized approximation algorithms (Jerrum, Sinclair, & Vigoda, 2001). We will cast our
weighted counting problem as that of computing the permanent of a nonnegative matrix
built from the marginals.

Algorithm 7: Al1Different.updateBelief ()

foreach unbound variable x; in the scope of the constraint do
foreach unassigned value j in the domain of x; do
‘ a;j < outsideBelief[z;][j];

@

dd enough rows of 1’s to A to make it square;
if A.order —1 < 7 then
foreach unbound variable x; in the scope of the constraint do
foreach unassigned value j in the domain of x; do

‘ localBelief[z;][j] ¢ permanentExact(i, j, A);
else
foreach unbound variable x; in the scope of the constraint do
foreach unassigned value j in the domain of x; do

‘ localBelief|z;][j] < permanentU3(i, j, A);

Algorithm 8: Al1Different.permanentU3(i, j, A)
input: row and column indices ¢ and j, nonnegative square matrix A
output: upper bound on the permanent of A without row ¢ and column j
U+ 1;
for k < 1 to A.order do
if k # i then
sum < 0;
mazx <+ 0;
for £ + 1 to A.order do
if ¢ # j then
sum — sum —+ agg;
if app > max then

‘ max <— Qgy;
if maxz = 0 then
‘ return 0;

z < sum/max;

U<+ U xmazr x (y(|z]) + (z = [2]) x (v([2]) = ~(L2])));
return U;

Algorithm 7 describes our weighted counting for alldifferent. We first construct
matrix A by setting a;; to the outside belief about variable x; taking value j. Note that we

133

PESANT

only consider unbound variables and unassigned values in an effort to keep matrix A small.
If there are more values than variables, we add fake variables (rows of A) whose belief is the
same for every value. We interpret the permanent of A as a weighted counting of maximum
matchings: if a;; = 1 its participation in a matching is fully counted; the smaller a;; is, the
more it will be discounted; a;; = 0 still means that no matching includes the corresponding
assignment. For each variable z; and value j, the (unnormalized) local belief is equal to the
weighted counting of matchings that include assignment z; = j, which we evaluate as the
permanent of the sub-matrix of A obtained by removing row ¢ and column j. We compute
that permanent exactly for sub-matrices whose size does not exceed a given threshold 7 and
use a fast upper bound otherwise (bound U? from Soules, 2003). Algorithm 8 describes the
computation of bound U3, where y(m) = ¥/m! and is precomputed.

5.3 Sum

Algorithm 9: Sum.Sum()

fwd + 0;
bwd + 0;
for i + 1 ton do
‘ bwd + bwd — min{v : v € D(x;)};
Jmax < 0;
for i <+ 1 ton do
Jmax < Max(jmax, min(fwd, bwd));
fwd < fwd+ max{v:v € D(x;)};
bwd < bwd + min{v : v € D(x;)};
fwd + 0;
bwd + 0;
for i + 1 ton do
‘ bwd < bwd — max{v : v € D(x;)};
jmin < 0;
for i+ 1tondo
Jmin Min(jmin, max(fwd, bwd));
fwd + fwd+ min{v : v € D(x;)};
bwd < bwd + max{v : v € D(x;)};

Next we present weighted counting for sum constraints. As previously proposed to
achieve domain consistency and to compute solution densities for knapsack constraints
(Pesant & Quimper, 2008), conceptually we build a layered graph where each path from
the first to the last layer represents a solution, with each component arc corresponding to
an individual variable assignment. The only difference here is that now each arc carries a
weight equal to the outside belief of the corresponding variable assignment and that instead
of storing the number of incoming and outgoing paths at each node, we store weighted

134

FROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

Algorithm 10: Sum.updateBelief ()
initialize m;, to 0;
Win[l] [O] «— L
fori<1ton—1do
foreach value v € D(x;) do
for j + jmin — min(0,v) to jmax — max(0,v) do
if 7, [i][j] > O then
| minli 4+ 1][j + 0] < minli + 1)[j + v] + min[i][j] ¥ outsideBelief|x;][v];
initialize myy+ to O;
Tout [Tl] [0] — 1
for i < n to 2 do
foreach value v € D(x;) do
b« 0;
for j « jmin — min(0,v) to jmax — max(0,v) do
if moueli][j + v] > 0 then
Toutlt — 1[j] = mout[t — 1][J] + mout[i][j + v] X outsideBelief[x;][v];
b <= b+ min[i][j] X Toutli][j + v];
localBelief[x;][v] < b;
foreach value v € D(x;) do
localBelief[x1][v] < moue[1][V];

sums 7, and 7oy, of incoming and outgoing paths respectively where a path’s weight is
the product of the weights on its component arcs. Let the variables in the scope of our
constraint be identified as x1, xo,...,x,. We first determine the range of prefix and suffix
sums of values that can satisfy the constraint, [jmin, - - -, Jjmax|, in order to define the size
of our data structures in the constructor (Algorithm 9). Weighted sums 7;;, and 7y, are
two-dimensional arrays ranging over [1,...,n] X [Jmin,-- -, Jmax]. Algorithm 10 computes
them through standard forward and backward passes and then uses these weighted sums to
compute the local beliefs for each variable-value pair.

Note that the previous algorithms can easily be adapted in order to provide the same for
general linear constraints and regular constraints since a similar layered graph has been
proposed to achieve domain consistency and to count solutions (Pesant et al., 2012). It
could apply as well to other constraints such as mdd (Cheng & Yap, 2008).

6. Empirical Evaluation

In this section we attempt to answer several research questions empirically. All experiments
were run on a cluster of dual core AMD Opteron 275 @ 2.2 GHz processors running Java
SE 11 on Linux CentOS 7.6 and our prototype was built on top of MiniCP 1.0. We use four
combinatorial problems that can be modelled using the constraints from the previous sec-
tion: Partial Latin Square, Cost-Constrained Rostering, Partial Magic Square, and Primes.
With the exception of Sections 6.3 and 6.7 we perform exact weighted counting even for
alldifferent by using instances whose size situates us below any reasonable threshold 7 in

135

PESANT

order to evaluate our proposal given perfect counting information. We now describe these
problems.

Partial Latin Square Problem An n x n grid is partially filled with integers from
{1,2,...,n} and must be completed such that each integer appears exactly once per row
and column (problem 67 of the CSPLib Jefferson, Miguel, Hnich, Walsh, & Gent, 1999).
This can be modeled using a matrix of integer variables and an alldifferent constraint
for each row and each column. We randomly generated two sets of ten instances of size
n = 10 with 50% (pls-10-50) and 55% (pls-10-55) free cells respectively, using the instance
generator of (Gomes & Shmoys, 2002) with the “balanced” setting. For Section 6.7 we use
the challenging set of forty larger (n = 30) instances LatinSquare/m1/gp from the XCSP3
collection of benchmark instances?.

Cost-Constrained Rostering Problem In this simplified rostering problem m employ-
ees have to accomplish a set of tasks in a n-day schedule (Pesant & Quimper, 2008). Each
daily task has a distinct duration and must be performed by exactly one employee. More-
over, there is an hourly cost for making someone work, which varies both across employees
and days. For each employee, the total cost must be equal to a given value. Finally, each
instance specifies some days in which a given employee cannot perform a given task (for-
bidden shifts). This can be modeled using a matrix of integer variables, an alldifferent
constraint on each day, and a weighted sum constraint for each employee. We randomly
generated ten instances with m = 4, n = 10, and 10 forbidden shifts (roster-4-10).

Partial Magic Square Problem An n x n grid is partially filled with integers from
{1,2,...,n?} and must be completed such that each integer appears exactly once and such
that the sum of the entries in each row, column, and main diagonal is the same (problem 19
of the CSPLib). This can be modeled using a matrix of integer variables, an alldifferent
constraint over all variables, and a sum constraint for each row, column, and main diagonal.
We use the set of forty 9 x 9 instances MagicSquare/m1/gp from XCSP3.

Primes Problem We are asked to solve a sparse system of linear equalities over a given
finite subset of the integers. We use the set of thirty-two instances Primes/m1/p10 from
XCSP3, featuring 100 variables taking their value from subset {2,3,...,29} and between
twenty and eighty linear equalities (i.e. weighted sum constraints) each over a relatively
small subset of these variables.

6.1 Q;: How well does it approximate marginal distributions over the solution
set?

To try to answer this question we track the evolution of the marginals computed by our belief
propagation and compare them to the true marginals. For each size-10 Partial Latin Square
instance and each Cost-Constrained Rostering instance we compute the set of solutions a
priori (these are fairly small instances), thereby allowing us to know the true frequency
distributions over individual variables. We will report the Kullback-Leibler divergence of
the computed marginal distributions from the true distributions for these instances.

2. http://www.xcsp.org

136

FRrROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

0.6 14
1
05 12 09
8 8 g 08
& 04 B
5 1) j=d 07
2 3 08 2 06
5 03 2 s 5 05
2 g O -
3 02 I g3 04
30 3
] g 04 % 03
g g g L
2 o1 2 02 £ 02
< =~ — 2 o
0 0 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

iteration iteration iteration

Figure 1: Average KL-divergence of computed variable marginals with respect to the true
marginals as we iterate message passing between constraints and variables for sets
of instances pls-10-50 (left), pls-10-55 (center), and roster-4-10 (right). Each line
corresponds to an instance.

1841 1E+1 1E+1
%1&0 8 140 8 1E+0
4 & &

g 8 5
s S 3
S1E 5 1E = 5 1E-1
3 3 g
] 3 3
N H H
S1E2 8 1E2 8 1E-2
el 5 2
2 2 2

1E-3 1E-3 1E-3

1 10 100 1 10 100 1 10 100

iteration iteration iteration

Figure 2: A presentation of the same results as in the previous figure but using a logarithmic
scale and up to 100 iterations.

The Kullback-Leibler divergence is a measure of dissimilarity between two probability
distributions. In the case of two discrete distributions P and @) it is expressed as

Dia(P[|Q) =Y PG) 1ogggg

It is asymmetric with P typically representing the true probability distribution and it
measures the amount of information lost if we use) to approximate P.

Figure 1 reports the behaviour of Algorithm 5 on the test instances. Iteration 0 cor-
responds to the initial domains of the variables with an implicit uniform distribution and
Iteration 1, to the simple product of the marginals initially returned by the constraints.
Observe that within just a few iterations the computed marginals become quite close to the
true ones, though convergence is slower for about half of the roster-4-10 instances. Note
also that the divergence eventually increases for some of the pls-10-% instances.

The first set of instances (left) generally has fewer solutions. The instance shown in green
has a single solution, which is identified after four iterations. The two instances in yellow
and light green, which start to diverge, have the largest number of solutions (respectively
20 and 9) in that set. That apparent divergence is actually a convergence to a subset of
the solutions — for example for the light green instance one of the 9 solutions is dropped

137

PESANT

1E+1 1E+1
8 1E+0 g 1E+0
c
5 5
g g
© T
5 1E-1 5 1E-1
] 8
] [
) -
% %
© ©
3 1E2 S 1E-2
S 5
X X

1E-3 1E-3

1 10 100 1 10 100
iteration iteration

Figure 3: Average KL-divergence for the roster-4-10 instances using a decomposition of
the sum constraints into ternary linear equalities (left) or a decomposition of the
alldifferent constraints into binary disequality constraints (right).

at iteration 15, caused by the removal of a valid variable-value pair which translates to a
corresponding zero frequency in () that drives the KL-divergence to infinity. This appears
more clearly at Figure 2 which presents the same results but over 100 iterations and using
logarithmic scale. We also observe an oscillation pattern for several instances: for example
on the purple instance, which has 2 solutions, it quickly identifies the 96 cells that are fixed
in both solutions but then cycles through four combinations of marginal distributions for
the remaining four cells (variables).

The second set of instances (middle) has more solutions (from 4 to 889). Here each
instance eventually converges to a subset of the solutions (and hence yields an infinite KL-
divergence, shown as an interrupted line) but in the first few iterations it approaches the
true marginals, albeit not as closely as for the first set.

The set of rostering instances (right) exhibits slower convergence and only the green
instance eventually drops some solutions. The lower KL-divergence seem to concide with
the instances having the larger number of solutions. In particular the yellow instance (with
1471 solutions, the largest number) reaches a divergence of 0.002: as an indication the true
marginal for the first variable is (0.2345,0.3188,0.3379,0.1088) whereas the final computed
one is (0.2347,0.3325,0.3244,0.1083).

So a few iterations in Algorithm 5 are often sufficient here to reduce significantly the
KL-divergence to the true marginal distribution. The fact that we may eventually drop
some solutions is an issue if we wish to enumerate all solutions or to perform near-uniform
sampling over the whole solution set, but not necessarily so if we are simply solving the
instance, i.e. looking for any one solution. We come back to this in Section 7.

6.2 Qo: Does it converge faster or better than classic BP with small factors?

With respect to classic belief propagation the advantage here should be the large factors
directly obtainable from the CcP model, for which we have weighted counting algorithms
and which should improve convergence by reducing the number of constraints and lessening
the occurrence of loops in the constraint network. Figure 3 shows what happens on the

138

FRrROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

1E+1

fEv0 %g

1E+1

1E+0

N
m
L

1E-1

—~
m
N

1E-2

Kullback-Leibler divergence
Kullback-Leibler divergence

1E-3 1E-3
1 10 100 1 10 100

iteration iteration

Figure 4: Average KL-divergence for the pls-10-50 (left) and pls-10-55 (right) instances
using a decomposition of the alldifferent constraints into binary disequality
constraints.

rostering instances if we replace each sum (left) or alldifferent (right) constraint by its
decomposition into ternary or binary constraints respectively. Comparing the plot on the
left to the one at Figure 2 right, we note a similar trend but with slower convergence. In
contrast the plot on the right (alldifferent decomposition) is quite different: there is not
much improvement over the initial KL-divergence and, even worse, it typically stabilizes to
a higher value. In the former case the decomposition increases the number of constraints
while decreasing their arity but these smaller constraints form a tree. In the latter, it
also adds many short cycles to the constraint network and this seems to degrade belief
propagation, as expected. Figure 4 confirms this behaviour on the Latin Square instances
with the alldifferent decomposition. Worse, the green instance on the left (top line at
iteration 1) — previously converging correctly to its single solution in Figure 2 — eventually
becomes infeasible. The advantage appears clearly here even though the factors are not that
large: each alldifferent constraint has arity 4 or 5 (ignoring bound variables), whose
decomposition features 6 or 10 binary constraints; each sum constraint has an arity around
8 and therefore decomposes into about 7 ternary constraints.

6.3 Q3: How does the accuracy of weighted counting affect the accuracy of the
computed marginals?

In Section 5.2 we proposed an approximate weighted counting algorithm for alldifferent,
to be used whenever its arity is above a given threshold 7, since the problem is intractable
in general. We set 7 = 1, thereby forcing the approximation, and report the result on our
test instances at Figure 5. Compared to Figure 1 there is a noticeable impact, with less of a
reduction of the KL-divergence on most instances followed by some stagnation. The effect
is less noticeable on the rostering instances, for which the alldifferent constraint plays a
smaller role. Note that similar upper bounds on the permanent of 0-1 matrices were found
to be an effective trade-off between computational effort and accuracy for counting-based
search heuristics (Zanarini & Pesant, 2010)— it appears that accuracy is more critical here
in order to converge to the true marginals.

139

PESANT

o
@
L ES

Kullback-Leibler divergence
o o o
w r w
Kullback-Leibler divergence
o -
CHEE
Kullback-Leibler divergence
o oo oo
>N ® o

o ¢
o

o

o
o

0 0 1 2 3 4 5 6 7 8 9 10

iteration

0 1 2 3 4 5 6 7 8 9 10 [1 2 3 4 5 6 7

iteration iteration

Figure 5: Effect of approximate weighted counting (using an upper bound for the perma-
nent) on pls-10-50 (left), pls-10-55 (center), and roster-4-10 (right).

Kullback-Leibler divergence
Kullback-Leibler divergence

N
1 10 100

iteration

Figure 6: Effect of message damping on a few pls-10-50 (left), pls-10-55 (center), and roster-
4-10 (right) instances for four values of parameter .

6.4 Q4: Should we use a damping exponent on the product of
constraint-to-variable messages?

As mentioned in Section 3 some authors found that message damping, which sets some
parameter 0 < x < 1 as an exponent to the product of messages in Equation 1, was
beneficial to convergence. We investigate that possibility by studying the effect of setting
k € {0.5,0.9,1.0,1.1} for some representative instances. Because each variable in our test
problems appears in exactly two constraints, parameter value 0.5 corresponds to taking the
geometric mean; value 1.0 means no damping and the other two values are mild corrections
on either side of the latter.

Figure 6 shows how the choice of x (identified by line style) affects convergence on a few
instances (grouped by colour) of varying number of solutions. On the left: the blue instance
has a single solution and is not really affected by the choice of k; the red and green instances
have respectively two and twenty solutions and are affected by x, though not so much in
early iterations. On the middle and right plots a clearer trend emerges across instances of
the same set: stagnation at x = 0.5 and some discriminating effect of the other values but
really only after several iterations. Overall there is no strong indication that a value other
than 1.0 is beneficial, especially in the early iterations, so we do not apply message damping
and thus keep the usual message passing equations.

140

FROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

1E+30 1E+27 1E+24
A

1E+24 1E+21

1E+28
- 1E+21 -\ 1E+18
1E+26

1E+18 1E+15

1E+24 1E+15 TEH12

1E+12 1E+9

1E+22

search space size
search space size
search space size

1E+9 1E+6

1E+20

1E+6 1E+3

1E+18 1E+3 1E+0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

iteration iteration iteration

Figure 7: Search space reduction at root node for instances pls-10-55.1 (left), pls-10-55.7
(center), and roster-4-10.4 (right). The solid blue curve shows the progression for
our belief propagation. The dotted red line gives the result of standard propaga-
tion achieving a fixed point with domain consistency being enforced on individual
constraints. The dashed green line corresponds to every variable’s domain being
shrunk to values appearing in at least one solution (i.e. to the supports of the
true marginals, or global domain consistency).

6.5 Qs5: Can it enforce a stronger level of consistency?

Whenever we perform exact weighted counting for a constraint it is clear that we achieve
domain consistency for it and after some iterations of belief propagation we should reach
standard propagation’s fixed point (in terms of the contents of the domains). But since we
are exchanging finer-grained information, could we reach a stronger level of consistency? As
an indication, in an effort to unify computational approaches to inference tasks over commu-
tative semirings Werner (2015) introduced the concept of marginal consistency — achieved
by making to coincide the marginal distributions of variables shared by pairs of constraints
— that is said to generalize some standard forms of local consistency in cP. Figure 7 reports
search space size (taken as the product of domain sizes) for some representative instances.
Sometimes the situation is as depicted on the left: standard propagation only leaves glob-
ally supported values (our instances are rather small) i.e. the red and green lines coincide
and belief propagation reaches the same domains after just a few iterations but eventually
shrinks some domains further by removing some little-supported values and thus converging
to a subset of the solutions. Keep in mind that while search space size may plateau, the
computed marginals still evolve. Other times standard propagation does not filter out all
globally unsupported values (as is generally the case for more challenging instances) and
so there is a gap between the red and green lines (e.g. Fig. 7 middle). Interestingly belief
propagation (blue curve) removes more unsupported values (Iterations 11-16) before cross-
ing the green line (which coincides with dropping some little-supported values). In such a
case we do observe stronger consistency. Finally on the right, where there is a significant
gap between the red and green lines, we immediately reach standard propagation’s fixed
point, stay there for many iterations but ultimately (at Iteration 79) start removing other
values, though in this case these are supported. So here there is no transitional stronger
consistency between the usual fixed point and the loss of some solutions.

141

PESANT

Can we take advantage of stronger consistency without losing solutions? The varied
behaviour exemplified at Figure 7 suggests that there is no simple answer to that question
and we believe this warrants further investigation.

6.6 Qs: What is a good stopping condition?

In general this iterative computation of the marginals may not reach a fixed point and so
we require a stopping condition. Since in practice we do not know the true marginals it
cannot be the point at which the average KL-divergence from them starts to increase. We
looked at the KL-divergence of computed marginals between successive iterations but did
not observe any correlation with the divergence to the true marginals. Judging from the
empirical results presented so far, a few iterations generally suffice to get closer to the true
marginals without starting to drop solutions. Therefore we propose to use simply some low
maximum number of iterations in order for inference to remain sound.

6.7 Q7: Does it help solve problems?

In this section we investigate the efficacy of cpP-based belief propagation search guidance
to find a solution to constraint satisfaction problems, measured as the number of fails and
the computation time. We consider two parameters: the number of BP iterations and
whether or not standard support propagation is applied before BP. We use the following
two-way branching heuristic: max-strength assigns the variable-value pair exhibiting the
largest positive difference between its marginal and the reciprocal of the domain size (i.e.
its marginal strength) and disallows it upon backtracking. As a baseline we use minimum
domain size variable ordering with random value ordering and report the average result
over ten runs.

In order to make the problem more challenging for these experiments we use the larger
Partial Latin Square instances, the Magic Square instances, and the Primes instances.
On the constraints we apply commonly-used consistency levels: domain consistency on
alldifferent and bounds consistency on sum. We set 7 = 6, triggering approximate
counting for alldifferent until enough variables are fixed to count exactly. We stop an
individual run after one hour of computation time.

6.7.1 PRIMES

The P model for the Primes instances features 100 variables whose domain ranges from 2 to
29 and many sum constraints on 2 to 10 variables each, for which weighted counting is exact.
Figure 8 plots the number of instances solved against the number of failed search-tree nodes
reached during search (left) and against the computation time (right). Each curve represents
a particular configuration of the algorithm: mindom is our baseline branching heuristic
(minimum domain size with random value ordering) with standard support propagation;
all the others use the max-strength branching heuristic, with SBP/BP indicating that belief
propagation is used with/without prior application of support propagation and the integer
label (1, 2, 5, 10) representing the number of BP iterations used at each search-tree node.
We start with the number of fails. The SBP curves show that search guidance improves
with the number of BP iterations, as expected, though the 5-iteration configuration ulti-
mately performs a little better than the 10-iteration one and solves two more instances

142

FRrROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

30

—

SBP 1
SBP 2
SBP 5
SBP 10
--------- BP 1
0, mmmmmmes BP 2
BP5
5 . mmmme==— BP 10
mindom

instances solved
instances solved

0 1E+0 1E+2 1E+4 1E+6 1E+8 1 10 100 1000

fails time (s)

Figure 8: Number of instances solved with respect to the number of fails (left) and compu-
tation time (right) for the Primes instances.

within the time limit. Remarkably the max-strength branching heuristic solves most in-
stances without any fails, culminating at 10 iterations with 26 out of 32 instances being
solved backtrack-free. Because in this case weighted counting is exact and therefore sub-
sumes bounds (or even domain) consistency, it is interesting to consider not applying sup-
port propagation. Comparing each SBP curve to its BP counterpart we see that they are
not the same but that their difference lessens as the number of iterations increases, with
that difference disappearing at 10 iterations. This can be explained by the fact that we
are using a fixed number of iterations which may at times be insufficient to reach the usual
propagation fixpoint. Branching heuristic mindom does not guide nearly as well and only
solves 4 instances backtrack-free. In general it exhibits several orders of magnitude more
fails.

Turning to computation time (right plot) we see that the gap between mindom and
max-strength almost closes because of the computational cost of exact counting over the
many sum constraints but the latter nevertheless solves a few more instances within the
time limit.

6.7.2 MAGIC SQUARE

The cP model for these 9 x 9 partially-filled instances features 81 variables whose domain
ranges from 1 to 81, but with 10 (respectively 50) of them being already fixed. There
are twenty sum constraints, each over 8 (resp. 4) variables on average, for which weighted
counting is exact, and one alldifferent constraint over at least (due to possible repeats in
randomly-filled squares) 71 (resp. 31) variables for which weighted counting is approximate
until the number of unbound variables falls below 7. Figure 9 plots the number of instances
solved against the number of failed search-tree nodes reached during search (left) and the
computation time (right).

143

PESANT

40
—_—————— sBP1
35 ——— sBr2
SBP5
30 S0

25

Y it BP 10

mindom

15

instances solved
instances solved

10

0 1E+0 1E+2 1E+4 1E+6 1 10 100 1000

fails time (s)

Figure 9: Number of instances solved with respect to the number of fails (left) and compu-
tation time (right) for the Magic Square instances.

These are harder to solve even though they typically admit many solutions: mindom
requires on average tens of thousands of fails to solve any of them but manages to solve
almost all of them given one order of magnitude more fails. A single iteration of BP —
that is, sending initial local beliefs from constraints to variables but without receiving back
the outside beliefs from which local beliefs are adjusted — performs poorly but 2 iterations
already make a big difference, with 5 and 10 iterations guiding best and requiring a few
orders of magnitude fewer fails than mindom. Note that SBP 5 solves 4 instances without
any backtracks. Because weighted counting on the alldifferent constraint is not exact
until few unbound variables remain, not applying support propagation (the BP curves)
deteriorates performance.

Turning to computation time, even though mindom eventually catches up on the last
few instances solved, for the most part it is about one order of magnitude slower than
max-strength.

6.7.3 LATIN SQUARE

The cp model here features 900 variables whose domain ranges from 1 to 30, but with
374/375 of them being already fixed. There are sixty alldifferent constraints over about
17 unbound variables each for which weighted counting is approximate until the number of
unbound variables falls below 7. Figure 10 plots the number of instances solved against the
number of failed search-tree nodes reached during search (left) and against the computation
time (right).

These instances are even harder to solve: mindom only manages to solve 17 out of 40
instances within the time limit on average. Again max-strength’s search guidance improves
with the number of iterations and SBP 5 solves all but one instance. Because no constraint
initially performs exact weighted counting here and therefore very little domain filtering

144

FRrROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

SBP 1

35 e SBP 2 35

SBP 5

30 30
SBP 10

B 25 BPS B 25
I IEEEEEEEEEE BP 10 / %

z 20 — mindom g 20
3 3

§ 15 § 15
%] %]
= £

10 10

5 5

0 0

0 1E+0 1E+2 1E+4 1E+6 1 10 100 1000
fails time (s)

Figure 10: Number of instances solved with respect to the number of fails (left) and com-
putation time (right) for the Latin Square instances.

will occur, not applying support propagation (the BP curves) is not advisable. The plot
on the right confirms the clear superiority of max-strength over mindom for these instances
in terms of computation time as well. Observing the foot of the SBP curves, where the
number of fails is almost the same, gives an indication of the computational cost of each
iteration of BP.

Based on these experiments, the recommended configuration with the max-strength
branching heuristic is SBP 5: applying support propagation before BP adds a negligible
computation cost while significantly boosting search when weighted counting is not exact,
and five iterations seem sufficient to benefit from the exchange of messages between variables
and constraints.

7. Closing Discussion

CP features high-level models and solves problems through a combination of inference and
search. We proposed to extend recent work on counting-based search to its complementary
approach that is inference, taking advantage again of the large combinatorial substructures
explicit in the models. We hope this paper laid down the foundations of a more powerful
propagation of information within CP models. It also raises some issues deserving further
investigation which we discuss below.

Soundness. In contrast to standard (support) propagation this iterated belief propaga-
tion could eventually remove supported values and thus exclude some solutions, as an arti-
fact of the limitations of floating-point representation for real numbers when some marginals
become very small. This was sometimes observed in Section 6.1 after many iterations but
it no longer occurred once we set a small limit on the number of iterations for our investiga-
tion of search guidance in Section 6.7. Ultimately a safeguard could be put in place in the

145

PESANT

form of a tiny threshold beyond which marginals would not be allowed to fall. But there
is also an opportunity here for both inference and search. The possibility of reaching a
stronger level of consistency through vanishing tiny marginals was identified in Section 6.5.
If we are satisfied with finding any solution, even removing little-supported values could
be acceptable as long as some of the solutions (or ultimately at least one) remain. Note
that if we don’t reinitialize marginals and local beliefs at each search-tree node before per-
forming BP (see Algorithm 5), going down the left branch accumulates BP iterations and
will exhibit a behaviour similar to what was observed with a large number of iterations,
albeit interleaved with “branching decisions” that fix variables. This could be used as a
strongly-informed greedy heuristic to quickly find a solution, but at the risk of not finding
any even though there are some.

Efficiency. We showed in Section 6.7 that our proposal can significantly reduce the time
required to solve combinatorial problems. But of course there is still room for improvement.
The cpP-based belief propagation process described in Algorithm 5 is reminiscent of AC1
and potentially wasteful since it reconsiders every constraint and every variable at each
iteration. Following AC3 and subsequent constraint propagation algorithms, can we make
it more efficient by reconsidering only the subset of constraints concerned by the latest
modifications? Because in the present case the information exchanged is much finer —
an evolving real-valued marginal for each element in a domain — every constraint may
have variables whose marginals have been modified and so it will need to be reconsidered.
Therefore improving that basic belief propagation algorithm may not be as simple as in the
case of standard propagation. In order to avoid at least the systematic recomputation of
weighted counting, recent work on lowering computation time in the unweighted case could
serve as a source of inspiration here (Gagnon & Pesant, 2018). Given that exact weighted
counting can be time consuming on high-arity constraints, those of them that admit an
acyclic decomposition could provide an interesting trade-off (Section 6.2).

This first implementation was built from MiniCP because of its simplicity but it lacks
some of the optimizations found in state-of-the-art solvers. It would be interesting to
implement this new propagation framework in some of the latter. We also need to equip
more constraints with weighted model counting. As mentioned in Section 5 some of the
existing (unweighted) counting algorithms only require a simple adaptation and there are
design patterns to try for the others.

Extensions. The proposed framework solves constraint satisfaction problems but com-
binatorial optimization problems abound. A natural next step would be to generalize the
framework to constraint optimization problems, inspired by the work described in (Pesant,
2016).

We borrowed ideas from probabilistic inference to apply them to deterministic constraint
networks. But a more general framework combining deterministic and probabilistic infor-
mation makes it possible to model even more challenging problems — for example Mateescu
and Dechter (2008) proposed a mixed deterministic and probabilistic network in which a
constraint network (for deterministic inference) and a belief network (for probabilistic causal
inference) co-exist. In our framework we could incorporate probabilistic non-causal rela-
tionships inside constraints to replace the implicit uniform distributions used to compute
the initial local beliefs.

146

FROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

Acknowledgements

The author wishes to thank Arthur Godet for an initial implementation of this work,
Alessandro Zanarini for early discussions, and the anonymous referees for their constructive
criticism that helped improve this work. Financial support for this research was provided
by NSERC Discovery Grant 218028/2017.

References

Brockbank, S., Pesant, G., & Rousseau, L.-M. (2013). Counting Spanning Trees to Guide
Search in Constrained Spanning Tree Problems. In Schulte, C. (Ed.), Principles and
Practice of Constraint Programming - 19th International Conference, CP 2013, Up-
psala, Sweden, September 16-20, 2013. Proceedings, Vol. 8124 of Lecture Notes in
Computer Science, pp. 175-183. Springer.

Chavira, M., & Darwiche, A. (2008). On Probabilistic Inference by Weighted Model Count-
ing. Artif. Intell., 172(6-7), 772-799.

Cheng, K. C. K., & Yap, R. H. C. (2008). Maintaining Generalized Arc Consistency on Ad
Hoc r-Ary Constraints. In Stuckey, P. J. (Ed.), Principles and Practice of Constraint
Programming, 14th International Conference, CP 2008, Sydney, Australia, September
14-18, 2008. Proceedings, Vol. 5202 of Lecture Notes in Computer Science, pp. 509—
523. Springer.

de Campos, C. P., Stamoulis, G., & Weyland, D. (2017). A Structured View on Weighted
Counting with Relations to Counting, Quantum Computation and Applications.
CoRR, abs/1701.06386.

Dechter, R., Bidyuk, B., Mateescu, R., & Rollon, E. (2010). On the Power of Belief Propa-
gation: A Constraint Propagation Perspective. In Festschrift book in honor of Judea
Pearl.

Dechter, R., Kask, K., & Mateescu, R. (2002). Iterative Join-Graph Propagation. In Dar-
wiche, A., & Friedman, N. (Eds.), UAI ’02, Proceedings of the 18th Conference in Un-
certainty in Artificial Intelligence, University of Alberta, Edmonton, Alberta, Canada,
August 1-4, 2002, pp. 128-136. Morgan Kaufmann.

Delaite, A., & Pesant, G. (2017). Counting Weighted Spanning Trees to Solve Constrained
Minimum Spanning Tree Problems. In Salvagnin, D., & Lombardi, M. (Eds.), In-
tegration of AI and OR Techniques in Constraint Programming - 14th International
Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings, Vol. 10335 of
Lecture Notes in Computer Science, pp. 176-184. Springer.

Gagnon, S., & Pesant, G. (2018). Accelerating Counting-Based Search. In van Hoeve, W. J.
(Ed.), Integration of Constraint Programming, Artificial Intelligence, and Operations
Research - 15th International Conference, CPAIOR 2018, Delft, The Netherlands,
June 26-29, 2018, Proceedings, Vol. 10848 of Lecture Notes in Computer Science, pp.
245-253. Springer.

147

PESANT

Gomes, C., & Shmoys, D. (2002). Completing Quasigroups or Latin Squares: A Structured
Graph Coloring Problem.. In Proceedings of Computational Symposium on Graph
Coloring and Generalizations, COLOR-02, pp. 22-39.

Gomes, C. P., Sabharwal, A., & Selman, B. (2009). Model Counting. In Biere, A., Heule, M.,
van Maaren, H., & Walsh, T. (Eds.), Handbook of Satisfiability, Vol. 185 of Frontiers
in Artificial Intelligence and Applications, pp. 633—654. 10S Press.

Horsch, M. C., & Havens, W. S. (2013). Probabilistic Arc Consistency: A Connection
between Constraint Reasoning and Probabilistic Reasoning. CoRR, abs/1301.386.

Hsu, E. 1., Kitching, M., Bacchus, F., & Mecllraith, S. A. (2007). Using Expectation
Maximization to Find Likely Assignments for Solving CSP’s. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Van-
couver, British Columbia, Canada, pp. 224-230. AAAI Press.

Ibrahim, M. H., Pal, C. J., & Pesant, G. (2017). Improving probabilistic inference in
graphical models with determinism and cycles. Machine Learning, 106(1), 1-54.

Jefferson, C., Miguel, 1., Hnich, B., Walsh, T., & Gent, I. P. (1999). CSPLib: A Problem
Library for Constraints. http://www.csplib.org.

Jerrum, M., Sinclair, A., & Vigoda, E. (2001). A Polynomial-time Approximation Algorithm
for the Permanent of a Matrix with Non-negative Entries. In Proceedings of the Thirty-
third Annual ACM Symposium on Theory of Computing, STOC 01, pp. 712-721, New
York, NY, USA. ACM.

Kask, K., Dechter, R., & Gogate, V. (2004). Counting-Based Look-Ahead Schemes for
Constraint Satisfaction. In Wallace, M. (Ed.), Principles and Practice of Constraint
Programming - CP 2004, 10th International Conference, CP 2004, Toronto, Canada,
September 27 - October 1, 2004, Proceedings, Vol. 3258 of Lecture Notes in Computer
Science, pp. 317-331. Springer.

Kohli, P., Ladicky, L., & Torr, P. H. S. (2009). Robust Higher Order Potentials for Enforcing
Label Consistency. International Journal of Computer Vision, 82(3), 302-324.

Kroc, L., Sabharwal, A., & Selman, B. (2011). Leveraging Belief Propagation, Backtrack
Search, and Statistics for Model Counting. Annals OR, 184(1), 209-231.

LeBras, R., Zanarini, A., & Pesant, G. (2009). Efficient Generic Search Heuristics within
the EMBP Framework. In Gent, I. P. (Ed.), Principles and Practice of Constraint
Programming - CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal,
September 20-24, 2009, Proceedings, Vol. 5732 of Lecture Notes in Computer Science,
pp- 539-553. Springer.

Mateescu, R., & Dechter, R. (2008). Mixed Deterministic and Probabilistic Networks. Ann.
Math. Artif. Intell., 54(1-3), 3-51.

Meel, K. S., Shrotri, A. A., & Vardi, M. (2018). Not all FPRASs are Equal: Demystifying
FPRASSs for DNF-Counting. Constraints.

Michel, L., Schaus, P., & Hentenryck, P. V. (2017). Mini-CP: A Minimalist Open-Source
Solver to Teach Constraint Programming. http://www.minicp.org.

148

FROM SUPPORT PROPAGATION TO BELIEF PROPAGATION IN CP

Montanari, A., Ricci-Tersenghi, F., & Semerjian, G. (2007). Solving Constraint Satisfaction
Problems through Belief Propagation-Guided Decimation. CoRR, abs/0709.1667.

Pearl, J. (1982). Reverend Bayes on Inference Engines: A Distributed Hierarchical Ap-
proach. In Waltz, D. L. (Ed.), Proceedings of the National Conference on Artificial
Intelligence. Pittsburgh, PA, August 18-20, 1982., pp. 133-136. AAAI Press.

Pesant, G. (2015). Achieving Domain Consistency and Counting Solutions for Dispersion
Constraints. INFORMS Journal on Computing, 27(4), 690-703.

Pesant, G. (2016). Counting-Based Search for Constraint Optimization Problems. In Schu-
urmans, D., & Wellman, M. P. (Eds.), Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, February 12-17, 2016, Phoeniz, Arizona, USA., pp. 3441—
3448. AAAI Press.

Pesant, G. (2017). Getting More Out of the Exposed Structure in Constraint Program-
ming Models of Combinatorial Problems. In Singh, S. P.,; & Markovitch, S. (Eds.),
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA., pp. 4846-4851. AAAI Press.

Pesant, G., & Quimper, C.-G. (2008). Counting Solutions of Knapsack Constraints. In
Perron, L., & Trick, M. A. (Eds.), Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, 5th International Confer-
ence, CPAIOR 2008, Paris, France, May 20-23, 2008, Proceedings, Vol. 5015 of Lec-
ture Notes in Computer Science, pp. 203—217. Springer.

Pesant, G., Quimper, C.-G., & Zanarini, A. (2012). Counting-Based Search: Branching
Heuristics for Constraint Satisfaction Problems. J. Artif. Intell. Res., 48, 173-210.

Sang, T., Beame, P., & Kautz, H. A. (2005). Performing Bayesian Inference by Weighted
Model Counting. In Veloso, M. M., & Kambhampati, S. (Eds.), Proceedings, The
Twentieth National Conference on Artificial Intelligence and the Seventeenth Inno-
vative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, pp. 475-482. AAAT Press / The MIT Press.

Soules, G. (2003). New Permanental Upper Bounds for Nonnegative Matrices. Linear and
Multilinear Algebra, 51(4), 319-337.

Valiant, L. (1979). The Complexity of Computing the Permanent. Theoretical Computer
Science, 8(2), 189-201.

Werner, T. (2015). Marginal Consistency: Upper-Bounding Partition Functions over Com-
mutative Semirings. IEEE Trans. Pattern Anal. Mach. Intell., 37(7), 1455-1468.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2000). Generalized Belief Propagation. In
Leen, T. K., Dietterich, T. G., & Tresp, V. (Eds.), Advances in Neural Information

Processing Systems 13, Papers from Neural Information Processing Systems (NIPS)
2000, Denver, CO, USA, pp. 689-695. MIT Press.

Zanarini, A., & Pesant, G. (2010). More Robust Counting-Based Search Heuristics with
Alldifferent Constraints. In Lodi, A., Milano, M., & Toth, P. (Eds.), Integration of
Al and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, Tth International Conference, CPAIOR 2010, Bologna, Italy, June 14-18,

149

PESANT

2010. Proceedings, Vol. 6140 of Lecture Notes in Computer Science, pp. 354-368.
Springer.

150

