
Journal of Artificial Intelligence Research 67 (2020) 35-80 Submitted 05/2019; published 01/2020

The Impact of Treewidth on Grounding and Solving of
Answer Set Programs

Bernhard Bliem bernhard.bliem@gmail.com
University of Helsinki
Constraint Reasoning and Optimization Group
Helsinki, Finland

Michael Morak michael.morak@aau.at
University of Klagenfurt
Semantic Systems Group
Klagenfurt, Austria

Marius Moldovan moldovan@dbai.tuwien.ac.at

Stefan Woltran woltran@dbai.tuwien.ac.at

TU Wien

Databases and Artificial Intelligence Group

Vienna, Austria

Abstract

In this paper, we aim to study how the performance of modern answer set programming
(ASP) solvers is influenced by the treewidth of the input program and to investigate the
consequences of this relationship. We first perform an experimental evaluation that shows
that the solving performance is heavily influenced by treewidth, given ground input pro-
grams that are otherwise uniform, both in size and construction. This observation leads to
an important question for ASP, namely, how to design encodings such that the treewidth of
the resulting ground program remains small. To this end, we study two classes of disjunc-
tive programs, namely guarded and connection-guarded programs. In order to investigate
these classes, we formalize the grounding process using MSO transductions. Our main
results show that both classes guarantee that the treewidth of the program after grounding
only depends on the treewidth (and the maximum degree, in case of connection-guarded
programs) of the input instance. In terms of parameterized complexity, our findings yield
corresponding FPT results for answer-set existence for bounded treewidth (and also degree,
for connection-guarded programs) of the input instance. We further show that bounding
treewidth alone leads to NP-hardness in the data complexity for connection-guarded pro-
grams, which indicates that the two classes are fundamentally different. Finally, we show
that for both classes, the data complexity remains as hard as in the general case of ASP.

1. Introduction

Answer set programming (ASP) (Marek & Truszczyński, 1999; Brewka, Eiter, & Truszczyn-
ski, 2011; Gebser, Kaminski, Kaufmann, & Schaub, 2012) is a well-established logic pro-
gramming paradigm based on the stable model semantics. Its main benefit is an intuitive,
declarative language, and the fact that, generally, each answer set of a given logic program
describes a valid solution of the original problem. Solving ASP programs is often defined
as a two-step process. First, a (usually fixed) encoding for a given problem is written in
the language of non-ground ASP. This encoding, together with a set of input facts repre-

c©2020 AI Access Foundation. All rights reserved.

Bliem, Morak, Moldovan, & Woltran

senting the actual problem instance, gets passed to a grounder which transforms it into an
equivalent propositional ASP program. In the second step, this ground program is then
evaluated by a solver. Such ASP solvers are now readily available (Gebser, Kaufmann, &
Schaub, 2012; Alviano, Dodaro, Leone, & Ricca, 2015; Elkabani, Pontelli, & Son, 2005;
Leone, Pfeifer, Faber, Eiter, Gottlob, Perri, & Scarcello, 2006, inter alia) and have made
huge strides in efficiency.

This leads to the following interesting practical question: What is the relationship of
solver efficiency and different parameters of the ground input program, and how is the solv-
ing time influenced by these parameters? On the theoretical side, computational complexity
investigations were carried out for the classical parameter of input size (Eiter & Gottlob,
1995; Truszczyński, 2011; Dantsin, Eiter, Gottlob, & Voronkov, 2001), while several struc-
tural parameters were studied in the field of parameterized complexity (Gottlob, Pichler,
& Wei, 2010; Pichler, Rümmele, Szeider, & Woltran, 2014; Fichte & Szeider, 2015; Fichte,
Kronegger, & Woltran, 2017). This has also led to specialized implementations that try to
explicitly exploit these parameters (Jakl, Pichler, & Woltran, 2009; Fichte, Hecher, Morak,
& Woltran, 2017). While these theoretical investigations provide us with valuable insight
into the problem of ASP solving, it is not obvious what conclusions can be drawn for the
actual practical solving performance of today’s top-of-the-line ASP solvers. It would be
interesting to see how current CDCL-based solvers are influenced, in practice, by variations
in such structural parameters and whether guidelines for ASP modeling can be derived from
such interactions. One of the few results in this direction is the discovery of a strong corre-
lation between the rule-to-atom ratio of a ground ASP program and the solving time (Zhao
& Lin, 2003), a property that carries over from similar studies for SAT (Selman, Mitchell,
& Levesque, 1996). Some more recent studies on phase transitions in ASP also deals with
this topic (Wen, Wang, Shen, & Lin, 2016; Amendola, Ricca, & Truszczynski, 2017). Beside
these results, however, the practical impact of structural parameters on solving time has
not, in the authors’ opinion, received adequate attention in the literature.

1.1 Contributions

In this paper we focus on the parameter of treewidth, a measure of how closely a ground
ASP program structurally resembles a tree. Our goal is to study how the performance of
modern ASP solvers is influenced by the treewidth of the given ground input program and
to investigate the consequences of this relationship. To this end, our first main contribu-
tion is to carry out an extensive experimental evaluation of two top-of-the-line ASP solver
implementations and investigate how the solving performance behaves when the solvers are
presented with hard instances of uniform size and construction, but variable treewidth, us-
ing a carefully crafted ASP problem encoding and adequately generated, tree-like instances.
Our experiments show that the solving time for programs of the same size and construction
indeed increases drastically with the treewidth. This is an interesting result, which shows
that similar results for SAT solvers and resolution-width (Atserias, Fichte, & Thurley, 2011)
do indeed carry over to the more complex world of ASP. Our observations suggest that,
when encoding problems in (non-ground) ASP, it is not only important that the resulting
ground program is small, but also that its treewidth is kept as small as possible, given a set
of input facts. Let us illustrate this on a small example.

36

The Impact of Treewidth on ASP Grounding and Solving

Example 1. Reachability can be modeled in different ways using ASP. One way would be
to model the transitive closure of a graph as follows (where e is the predicate representing
graph edges and r the predicate to mark reachable vertices):

t(X,Y) :- e(X,Y).

t(X,Z) :- t(X,Y), e(Y,Z).

r(Y) :- t(X,Y), start(X).

However, when used as a sub-program that the grounder has to instantiate, such an encoding
causes any two (connected) vertices in the input graph to appear together in a rule after
grounding (in place of the variables X and Z in the second rule). This then causes the graph
representation of the ground program to contain a clique whose size equals the number of
vertices of the original input graph, resulting in a high treewidth. Conventional wisdom in
ASP would recommend the following encoding:

r(X) :- start(X).

r(Y) :- e(X,Y), r(X).

Here, not only is the grounding smaller, but also the treewidth decreases dramatically. In
fact, it now solely depends on the treewidth (and not the size) of the input graph. 4

This example illustrates that the way a problem is encoded can influence the treewidth
of the ground program considerably. Due to the grounding step, however, it is not obvious
at the time of writing a non-ground ASP encoding how to achieve a low-treewidth grounding
and the benefits that come with it. This is as opposed to, for example, SAT formulas that
can be generated directly while keeping treewidth in mind.

The second main contribution of this paper addresses this issue and allows us to leverage
the treewidth-sensitivity of ASP solvers. We define classes of disjunctive logic programs that
aim to capture the intuition described above; that is, to guarantee that treewidth of the
grounding of a given program stays small, as long as the input instance has small treewidth
as well. In order to achieve this goal, we propose two classes. Firstly, the class of guarded
programs is inspired by similar classes defined in the datalog world; see e.g. Gottlob, Grädel,
and Veith (2002). The main idea is that each rule body must contain a so-called guard
atom, that is, an extensional atom in the positive body of the rule that contains every
variable that appears in the rule. Our second class, namely the class of connection-guarded
programs, relaxes the condition of guarded rules in the sense that the guard can be divided
into several atoms under the condition that these guard atoms are sufficiently connected
via their variables. Our main results show that both classes guarantee that the treewidth
of a program after grounding does not increase arbitrarily but only depends (a) on the
treewidth of the input facts, in the case of guarded programs; (b) on the treewidth and
degree of the input facts, in the case of connection-guarded programs. In order to prove
these results, we make use of the notion of MSO transductions (Courcelle & Engelfriet,
2012), a formal framework for graph-to-graph transformations. We use this framework to
formally represent the grounding process and investigate its influence on the treewidth. To
our knowledge, this is the first time that this technique has been used in the context of ASP.

As a third contribution, we provide an analysis of our classes in terms of computational
complexity. In particular, we are interested in the data complexity, that is, the complexity
of checking whether, given a fixed non-ground program and an input structure represented
as a set of facts, the combined program has at least one answer set. While our results on

37

Bliem, Morak, Moldovan, & Woltran

grounding imply FPT results for inputs parameterized by treewidth (and degree, in case
of connection-guarded programs), we show that programs in our classes are, at the same
time, expressive enough to encode relevant problems from the second level of the polynomial
hierarchy in general. In fact, we show that data complexity for both classes remains ΣP

2 -
complete, even for inputs parameterized by degree only. Finally, we show that our two
proposed classes are indeed different by proving that the data complexity of answer set
existence is in FPT for guarded programs, but NP-hard for connection-guarded programs
if the input is parameterized by treewidth.

1.2 Structure

The remainder of the paper is structured as follows. In Section 2, we give relevant defi-
nitions for ASP, treewidth, and MSO transductions. Section 3 deals with our first main
contribution, the experimental evaluation of solver performance with respect to treewidth,
and shows that there is a significant correlation. Section 4 presents our second main con-
tribution, namely, proposing the classes of guarded and connection-guarded ASP programs
that aim to preserve the treewidth of the given instance after grounding. Section 5 contains
the complexity analysis and Section 6 discusses related work and implications of our results
for ASP solving and modeling. Finally, we conclude the paper with some final remarks in
Section 7.

2. Preliminaries

This section provides an overview of the definitions and basic notions and constructs used
throughout the rest of the paper.

2.1 Graphs, Tree Decompositions, and Treewidth

We assume all graphs to be undirected, simple, and ordered, which means that there is an
arbitrary but fixed total order over the vertices of the graph. For a graph G, V (G) denotes
the set of vertices and E(G) the set of edges. A graph H is a minor of a graph G if H can
be obtained from G by deleting edges or vertices, or by contracting edges (i.e., removing an
edge and merging its two vertices). The Cartesian product G�H of graphs G and H has
vertices V (G�H) = V (G)× V (H) and an edge between vertices 〈u, u′〉 and 〈v, v′〉 iff u = v
and (u′, v′) ∈ E(H), or u′ = v′ and (u, v) ∈ E(G). A (square) grid of size n is the Cartesian
product of two paths of length n. The line graph GL of a graph G has V (GL) = E(G), and
(e1, e2) ∈ E(GL) iff edges e1 and e2 share a vertex in G.

Let G be a graph, T a rooted tree, and χ a labeling function that maps every node t of T
to a subset of V (G) called the bag of t. The pair (T, χ) is a tree decomposition (Robertson &
Seymour, 1986) of G if the following holds: (i) for each v ∈ V (G), there exists a t ∈ T , such
that v ∈ χ(t); (ii) for each {v, w} ∈ E(G), there exists a t ∈ T , such that {v, w} ⊆ χ(t); and
(iii) for each r, s, t ∈ T , such that s lies on the path from r to t, we have χ(r)∩χ(t) ⊆ χ(s).
The width of a tree decomposition is defined as the cardinality of its largest bag minus
one. The treewidth of a graph G, denoted by tw(G), is the minimum width over all tree
decompositions of G. For a minor H of a graph G it holds that tw(G) > tw(H). Trees
have treewidth 1. Grids of size n, the complete graph Kn with n nodes, and the complete

38

The Impact of Treewidth on ASP Grounding and Solving

bipartite graph Kn,n all have treewidth n. Checking whether a graph has treewidth less
than some number k is NP-hard in general, but can be done in linear time for fixed integers
k (Bodlaender, 1996). For a more thorough overview of tree decompositions, we refer the
reader to standard sources (Bodlaender & Koster, 2010; Niedermeier, 2006; Kloks, 1994).

2.2 Relational Structures

Relational structures are defined over signatures. A signature σ is a set of relation symbols,
where each symbol R has a non-negative arity ρσ(R). We write ρ(σ) to denote the maximum
arity of any relation symbol in σ. A structure A over a signature σ consists of a finite
domain dom(A) and, for every R ∈ σ, a relation RA ⊆ dom(A)ρσ(R). Whenever a relation
RA contains a tuple a, we say that R(a) is a fact in A, and we say that the elements of a
are the arguments of that fact.

Example 2. For representing directed graphs, it is customary to use the signature σ = {E}
with ρσ(E) = 2. We can now represent a directed graph G as a structure G over σ by
choosing dom(G) = V(G) and EG = E(G).

Alternatively, we can also represent G in a slightly more complex way as an “incidence
structure”: For this, we use the signature τ = {E, in1, in2}, where ρτ (E) = 1 and ρτ (in1) =
ρτ (in2) = 2. The intended meaning of the abbreviation “in” is “incident”. Now we can
define the structure S over τ via dom(S) = V(G) ∪ E(G), and for each edge e from vertex
a to b it holds that e ∈ ES , 〈e, a〉 ∈ inS1 and 〈e, b〉 ∈ inS2 . 4

Generalizing this example, the incidence structure of a structure A is a structure Inc(A).
We call A the base structure of Inc(A). The signature of Inc(A) is called the incidence
signature and denoted Inc(σ), where σ is the signature of A, called the base signature.
Inc(A) is defined as follows. Firstly, the domain dom(Inc(A)) is the smallest set such that
dom(A) ⊆ dom(Inc(A)) and, for each fact R(a) in A, 〈R,a〉 ∈ dom(Inc(A)). Note that,
thus, every fact in A becomes a domain element in Inc(A). Secondly, for each relation
symbol R in σ, there is a unary relation symbol R in Inc(σ). Finally, there are binary
relation symbols in0, . . . , ink in Inc(σ), where k = ρ(σ). Now, to complete the definition
of Inc(A), the following facts exist in Inc(A): (1) for each fact R(a) in A, there is a
fact R(〈R,a〉) in Inc(A); and (2) for each fact R(a) in A, where a is the i-th argument,
ini(〈R,a〉, a) is a fact in Inc(A). In this way, the unary relations in Inc(A) represent the
facts from A, and the incidence relations ini represent the arguments of each fact from A.

In order to apply graph-theoretic concepts (like treewidth) to a structure A, we usually
represent A as its Gaifman graph, which is an undirected graph whose vertices are the
domain elements of A and that has an edge between two different elements if they occur
together in a fact of A. When we speak of “degree”, “distance” or “treewidth” in the
context of a structure A, we mean the respective concepts applied to its Gaifman graph.

2.3 MSO Transductions

Monadic second-order (MSO) logic is an extension of first-order logic by quantification over
sets. MSO transductions, as defined by Courcelle and Engelfriet (2012), use MSO logic to
define transformations between structures. Interestingly, they guarantee that, for any fixed

39

Bliem, Morak, Moldovan, & Woltran

MSO transduction, the treewidth of the output structure remains bounded if the treewidth
of the input structure is bounded as well.

An MSO definition scheme, or, simply, definition scheme, from a signature σ to a sig-
nature σ′ is a tuple 〈∆,Θ〉 where ∆ and Θ are sequences of MSO formulas of the following
kind, where I denotes a finite set of arbitrary objects:

• For each i ∈ I, ∆ contains a formula δi with one free variable x. These formulas are
called domain formulas.

• For each R′ ∈ σ′ with arity k and 〈i1, . . . , ik〉 ∈ Ik, Θ contains a formula θR′,i1,...,ik
with k free variables x1, . . . , xk. These formulas are called relation formulas.

The intended meaning of the formulas in a definition scheme 〈∆,Θ〉 is that they define
how to transform an input structure A into an output structure A′ in the following way:
For every element a ∈ dom(A) and each formula δi such that A � δi(a), we put a copy of
a called (a, i) into dom(A′). The domain formulas thus define the domain of the output
structure. The relation formulas in turn define the relations in the output structure by
determining which of the copies of the old domain elements are together in a relation.

A definition scheme 〈∆,Θ〉 that maps a structure A over signature σ to a structure A′
over signature σ′ is an MSO transduction from σ to σ′ if it satisfies the following conditions.

• For each a ∈ dom(A) and δi in ∆, dom(A′) contains an element (a, i) iff A � δi(a).

• For each R′ ∈ σ′ of arity k, all δi1 , . . . , δik occurring in ∆ and all 〈a1, . . . , ak〉 ∈
dom(A)k, if A � θR′,i1,...,ik(a1, . . . , ak) holds in addition to A � δij (aj) for every j,

then R′A
′

contains a tuple 〈(a1, i1), . . . , (ak, ik)〉.

Here, A is the input structure of the transduction and A′ is the corresponding output
structure. Note that the first and second conditions precisely characterize the domain and
the relations of A′, respectively.

Thus a (fixed) MSO transduction allows us to copy an input structure a fixed number
of times, to filter those domain elements that satisfy a domain formula, and to define the
relations of the output structure in terms of the relations of the input structure via the
relation formulas. The following examples, taken from Courcelle and Engelfriet (2012),
illustrate how such MSO transductions can be used.

Example 3. The following definition scheme formalizes an MSO transduction that trans-
forms a structure G representing a directed graph into a structure G′ representing the same
graph but without self-loops and isolated vertices. We represent directed graphs as struc-
tures as in Example 2 using the signature consisting just of the binary relation symbol
E.1

δ1(x) ≡ ∃y
(
(E(x, y) ∨ E(y, x)) ∧ x 6= y

)
θ1,1(x, y) ≡ E(x, y) ∧ x 6= y

As there is only one domain formula, we make at most one copy for each vertex in G. In
fact, by δ1, we put a copy (v, 1) into G′ for each vertex v that is adjacent to another vertex.

1 Since there is only a single relation symbol E in the signature, we write θi,j instead of θE,i,j .

40

The Impact of Treewidth on ASP Grounding and Solving

This removes isolated vertices. The relation formula θ1,1 then makes sure that we draw an
edge from a copy (v, 1) to a copy (w, 1) if and only if G contains an edge from v to w and
v 6= w. 4

Example 4. We define an MSO transduction that makes two copies of a directed graph
and, for each vertex v with copies (v, 1) and (v, 2), draws an edge from (v, 1) to (v, 2).

δ1(x) ≡ δ2(x) ≡ >
θ1,1(x, y) ≡ θ2,2(x, y) ≡ E(x, y)

θ1,2(x, y) ≡ x = y

θ2,1(x, y) ≡ ⊥

The domain formulas unconditionally make two copies of each vertex. The formula θ1,1

then draws an edge from (v, 1) to (w, 1) if there was an edge from v to w, and θ2,2 does the
same for the copies with number 2. So far we get two copies of the input graph. Now θ1,2

draws an edge from (v, 1) to (v, 2) for any vertex v. 4

As stated earlier, in this paper we will use MSO transductions to investigate the in-
fluence of grounding on the treewidth of ASP programs. The following theorem will be
an important part of this investigation. It follows straightforwardly from the definition of
incidence structures, and Theorem 7.47 in Courcelle and Engelfriet (2012).

Theorem 5. Let σ and σ′ be relational signatures and let f be a function from structures
over σ to structures over σ′. If there is an MSO transduction τ corresponding to f in the
sense that τ(Inc(A)) = Inc(f(A)) holds for every structure A over σ, then f preserves
bounded treewidth, i.e., for every structure A over σ, the treewidth of f(A) depends only on
the treewidth of A.

2.4 Answer Set Programming (ASP)

ASP is a declarative problem modeling and solving framework with a complex language that
we only briefly introduce here.2 For a full, formal introduction, we refer to other sources
(Gebser et al., 2012; Brewka et al., 2011; Gebser et al., 2012).

An atom has the form p(t1, . . . , tn), where p is called a predicate. The elements t1, . . . , tn
in an atom are called terms. A term is either a constant or a variable. It is customary to
write predicates and constants as (strings starting with) lower-case symbols and variables
as (strings starting with) upper-case symbols. Moreover, constants may be integers. A
program in ASP is a set of rules, which have the following form:

a1 ∨ . . . ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm,

where each ai, 0 < i ≤ n, and bi, 0 < i ≤ m, is an atom. The head of a rule r is the
set denoted by H(r) = {a1, . . . , an}, the positive body of r is the set B+(r) = {b1, . . . , bk},
and the negative body of r is the set B−(r) = {not bk+1, . . . , not bm}. The body of r is now

2 We base our definitions on the ASP core language (Calimeri, Faber, Gebser, Ianni, Kaminski, Kren-
nwallner, Leone, Ricca, & Schaub, 2015). However, we omit advanced constructs like aggregates or
choice rules, in order to ease presentation.

41

Bliem, Morak, Moldovan, & Woltran

defined as B(r) = B+(r) ∪ B−(r). If the head of a rule is empty, then we call the rule a
constraint. When writing a constraint, we may write ⊥ before the ← symbol or we may
just omit ⊥. If the body of a rule is empty, then we we may omit the ← symbol. If the
body of a rule is empty and the head consists of a single (variable-free) atom, then we call
the rule a fact. A program Π is called positive if the negative body of each rule in Π is
empty.

We call a program (or rule, or atom) ground if it contains no variables. A predicate
is called extensional in a program Π if it only occurs in rule bodies of Π. A literal is an
atom a or its negated form not a. A rule r is safe if each variable that occurs in the head
or negative body of r also occurs in its positive body. A program is safe if all its rules are
safe. We only admit ASP programs that are safe.

Semantics. We define the semantics of ASP in terms of ground programs. To this end, let
the Herbrand universe of a program Π, denoted by UΠ, be the set of all constants occurring
in Π. The Herbrand base of Π is the set of all atoms that can be constructed using predicates
occurring in Π and constants in UΠ. We denote this set by BΠ. Subsets of BΠ are called
interpretations and intuitively correspond to the atoms that we set to true while all other
atoms are set to false.

We now define the ground instantiation of a program Π as the set of all ground instances
of all rules in Π, that is, the set of ground rules obtained from the rules in Π by replac-
ing all variables by all different combinations of constants from the Herbrand universe UΠ.
However, modern ASP grounders perform many optimizations and do not blindly ground
programs in the described way. In order for our investigation in this paper to be mean-
ingful, we assume that the following optimization, present in all reasonable ASP grounder
implementations today, is made: let Π+ denote the positive program obtained from Π by
removing the negative bodies of all rules and replacing disjunctions in the heads with con-
junctions3. We say that an atom is possibly true in Π iff it is contained in the unique
minimal model of Π+. We will use the following idealized definition of grounding for the
remainder of our paper.

Definition 6. The grounding of an ASP program Π, denoted gr(Π), is the set of all those
rules r in the ground instantiation of Π where every atom in B+(r) is possibly true.

Given an interpretation I of a program Π, we say that a ground atom a is true under
I if a ∈ I, otherwise it is false. Similarly, we say that a negated ground atom a, written
as not a, is true under I if a /∈ I, otherwise it is false. An interpretation I of a program Π
satisfies a rule r in gr(Π) if B(r) being true under I implies H(r) being true under I. We
say that I is a model of Π if it satisfies every rule in gr(Π).

The central notion for ASP is that of the answer set. Also called stable model, this
was originally introduced by Gelfond and Lifschitz (1988) and later extended to disjunctive
programs by (Gelfond & Lifschitz, 1991) (1991). In order to define answer sets, we first
define the reduct of a program Π w.r.t. an interpretation I, denoted ΠI , as the set of those
rules in gr(Π) whose body elements are all true under I. Now I is an answer set of Π if I
is a model of Π and no proper subset of I is a model of ΠI . Given an answer set I and a

3 That is, we replace a rule r whose head is h1 ∨ · · · ∨ hk by rules r1, . . . , rk such that H(ri) = {hi} and
the body of ri is B+(r).

42

The Impact of Treewidth on ASP Grounding and Solving

predicate p, we say that the set {〈t1, . . . , tn〉 | p(t1, . . . , tn) ∈ I} is the extension of p under
I.

Complexity. In this work, we are mainly interested in the complexity of the Answer
Set Existence decision problem, defined below.

Answer Set Existence

Input: An ASP program Π

Question: Does Π have an answer set?

If the program is ground, this problem is at the second level of the polynomial hierarchy,
namely complete for ΣP

2 (Eiter & Gottlob, 1995). We are particularly interested in the data
complexity of Answer Set Existence. The term data complexity comes from the study
of query languages, where we are faced with problem instances consisting of a query and
data, and the question is whether the query holds on the data (or, more generally, to
evaluate the query on the data). ASP fits well into this framework, since it is commonly
used for encoding a problem as a fixed non-ground program and then combining this fixed
encoding with ground facts that represent an actual input instance of that problem. Hence,
the Answer Set Existence problem can be reformulated as follows:

Answer Set Existence

Input: A non-ground ASP program Π, and a set of facts F

Question: Does Π ∪ F have an answer set?

Eiter, Gottlob, and Mannila (1997) showed that for fixed programs Π it remains ΣP
2 -

complete to decide whether Π ∪ F has an answer set for some set of input facts F . This
can be seen from the fact that the size of gr(Π ∪ F) remains polynomial in the size of F .

2.5 Treewidth of Ground ASP Programs

We can easily apply the parameter treewidth to ground ASP programs by defining a suitable
representation as a graph. The primal graph of a ground ASP program Π is a graph whose
vertices are the atoms in Π and there is an edge (a, b) if atoms a and b appear together in a
rule in Π. The incidence graph of Π is a bipartite graph whose vertices are the atoms and
rules in Π and there is an edge between a rule r and an atom a iff a appears in r. When
we speak of the treewidth of a ground ASP program, we usually refer to the treewidth of its
primal graph.

On ground ASP programs, the Answer Set Existence problem parameterized by the
treewidth of the primal graph is fixed-parameter tractable (Gottlob et al., 2010). In fact,
it can even be solved in linear time when the treewidth is bounded by a constant.

Example 7. Consider again the transitivity-based reachability encoding from Example 1:

t(X,Y) :- e(X,Y).

t(X,Z) :- t(X,Y), e(Y,Z).

r(Y) :- t(X,Y), start(X).

43

Bliem, Morak, Moldovan, & Woltran

Let C be the class of graphs consisting of all chains of finite length. Each element of C has
treewidth 1, hence C is a class of graphs of bounded treewidth. Grounding the reachability
encoding together with elements of C as input (using the straightforward encoding as facts),
however, leads to ground programs with unbounded treewidth. Indeed, if we ground it with
a chain involving vertices 1, . . . , n, then the primal graph of the grounding will contain an
edge between t(i, j) and t(i, k), for each i, j, k ∈ {1, . . . , n}, because these atoms occur
together in a ground instantiation of the second rule. The grounding for this chain thus
contains Kn as a subgraph and therefore has treewidth n. Hence, even though the class of
input graphs has bounded treewidth, the groundings have unbounded treewidth. 4

2.6 Input Facts as Relational Structures

We will, throughout this paper, often see sets of ASP facts as relational structures, relative to
some (non-ground) program Π. To do this formally, we choose the extensional predicates in
Π as the signature and interpret each such predicate as its extension in the facts. In addition,
since ASP systems always assume that the Herbrand base is ordered (in an arbitrary way),
we can assume that the signature also contains a binary successor relation denoted by succ,
which is interpreted according to an arbitrary order of the domain elements.

Let Π be an ASP program whose set of extensional predicates we denote by τ . For
every set F of input facts for Π, we define the fact structure of F to be the structure F
over τ ∪ {succ} where dom(F) consists of all ASP constants occurring in F , and for every
predicate p ∈ τ it holds that pF is the set of all k-tuples a such that p(a) is a fact in F . We
interpret the succ relation as an arbitrary, fixed successor relation of the ASP constants.
By slight abuse of notation, we sometimes write F in place of F . For instance, we may
write gr(Π∪F) instead of gr(Π∪F) to denote the ground instantiation of Π together with
the input facts F . The input structures of a program Π comprise the fact structures of all
sets of input facts for Π.

Example 8. Let Π be an ASP program whose only extensional predicate is p, and let F
be the set of input facts for Π consisting of p(a, b) and p(a, c). The fact structure F of
F contains the domain elements a, b and c, and it interprets the binary relation symbol p
as {〈a, b〉, 〈a, c〉}. Moreover, it contains an arbitrary interpretation of the succ relation, for
instance succF = {〈a, b〉, 〈b, c〉}. 4

Sometimes we are also interested in the incidence structure of a fact structure. For
illustration purposes, this is done in the following example.

Example 9. Continuing Example 8, we denote the facts 〈a, b〉 and 〈a, c〉 in pF by abp and
acp, respectively, and we denote the facts 〈a, b〉 and 〈b, c〉 in succF by absucc and bcsucc ,
respectively. Now the domain of Inc(F) is {a, b, c, abp, acp, absucc , bcsucc}. The relations are
interpreted as follows:

pInc(F) = {abp, acp}
succInc(F) = {absucc , bcsucc}

in
Inc(F)
1 = {〈abp, a〉, 〈acp, a〉, 〈absucc , a〉, 〈bcsucc , b〉}

in
Inc(F)
2 = {〈abp, b〉, 〈acp, c〉, 〈absucc , b〉, 〈bcsucc , c〉}4

44

The Impact of Treewidth on ASP Grounding and Solving

1 a s s i g n (X,Y, 1) | a s s i g n (X,Y, 0) :− edge (X,Y) .
2 sum(V, S\2) :− ver tex (V) , S = #sum{ A,W : a s s i g n (W,V,A) ; A,W :

a s s i g n (V,W,A) } .
3 :− sum(V, S) , capac i ty (V,C) , S != C.

Listing 1: Finding valid assignments in capacitated graphs.

3. Impact of Treewidth on ASP Solvers

In this section, our goal is to establish that current ASP solvers are impacted by the
treewidth of a given ground input ASP program. We will demonstrate, by experimen-
tal evaluation, that state-of-the-art systems have an inherent sensitivity to treewidth in
practice, and hence perform faster on ground programs of small treewidth. To show this
claim, a carefully designed experiment is needed in order to actually reveal the influence of
the treewidth (and not some other parameter) on the solving time. We therefore need to fix
several other parameters in order to exclude them from influencing the runtime of the ASP
system throughout our benchmarks. In particular, we want to establish four conditions.
The ground programs used for this experiment should

(1) have the same number of answer sets,
(2) have a uniform structure,
(3) have constant size, and
(4) vary in the treewidth.

To this end, we consider the problem of deciding whether a capacitated graph has a
valid assignment:

Definition 10. A capacitated graph is a pair (G, c), where G is an undirected graph and
c is a function mapping each vertex to 0 or 1. A function mapping each edge to 0 or 1 is
called an assignment, and we call it valid if for each v ∈ V (G) the sum modulo 2 of the
values assigned to incident edges equals c(v).

This problem was used by Urquhart to construct hard SAT formulas (Urquhart, 1987)
using the method of Tseitin (1983). Formally, it is defined as follows:

Valid Assignment Existence

Input: A capacitated graph (G, c)

Question: Does a valid assignment exist for (G, c)?

Listing 1 shows an ASP encoding for this problem4. Line 1 assigns either 0 or 1 to
each edge. Line 2 calculates for each vertex the sum modulo 2 of the values assigned to
incident edges (the backslash represents the modulo operation in ASP). Finally, Line 3 is

4 Note that in this problem encoding, we use some advanced constructs of the ASP-Core-2 language not
introduced in Section 2. However, we do explain the meaning in the main text, and advanced constructs
like aggregates are removed by the grounding process. For exact semantic definitions, we refer the reader
to Calimeri et al. (2015) and Gebser, Kaminski, Kaufmann, Lindauer, Ostrowski, Romero, Schaub,
and Thiele (2015).

45

Bliem, Morak, Moldovan, & Woltran

Figure 1: Example for an input instance graph.

a constraint that eliminates all assignments where for some vertex the sum and capacity
do not agree. We will now show how we can generate instances that fulfill all four of our
conditions and are thus usable for our experiment.

Input Instances. In order to satisfy condition (1), we will only construct unsatisfiable
instances. It is known that a connected capacitated graph has a valid assignment iff the
sum of all vertex capacities is even (Urquhart, 1987). To construct unsatisfiable instances,
we thus generate graphs where all vertices except for one have capacity 0.

To satisfy condition (2), we choose Listing 1 as our fixed problem encoding and construct
instances in the following way. We generate so-called grid-tree instances, which are random
binary trees of grids as illustrated in Figure 1, according to two parameters: treesize (the
number of grids in the tree) and gridsize (the size of each grid).

Given a grid-tree instance, we can find other grid-tree instances that lead to the same
grounding size by increasing the treesize while decreasing the gridsize (or vice versa). Thus,
in order to satisfy condition (3), we first fix a grounding size (in terms of the number of
atoms), and then find combinations of treesize and gridsize to achieve this grounding size.

Finally, we need to establish condition (4). For a (non-empy) graph G consisting only
of a disjoint union of grids G1, . . . , Gk plus some edges that do not create any new cycles,
it holds that tw(G) ≤ max{tw(G1), . . . , tw(Gk)}, since we can easily obtain an appropriate
tree decomposition of G from those of G1, . . . , Gk. Hence the treewidth of a grid-tree
instance A only depends on the gridsize. We now need to show that the treewidth of A
determines the treewidth of the grounding.

Proposition 11. Given program Π from Listing 1 and a grid-tree instance A, the treewidths
of the primal and incidence graphs of gr(Π ∪ A) are both linear in the treewidth of A.

Assume, for simplicity, that A is just a single grid of size 4. We call the nodes in the
first row of the grid v1, . . . , v4, the nodes in the second row v5, . . . , v8, and so on. In order
to show the above proposition for A, first note that Line 1 and Line 3 in Listing 1 cannot
cause any cycles in the primal graph of gr(Π ∪ A). Now consider Listing 2, which shows
the grounding for Line 2 of Listing 1 for vertex v7 of A. Figure 2b shows the primal graph
of this partial grounding (where M,N represents the atom assign(vM,vN,1)). Clearly, the rule

46

The Impact of Treewidth on ASP Grounding and Solving

1 a t l e a s t (v7 , 1) :− 1 { a s s i g n (v3 , v7 , 1) , a s s i g n (v6 , v7 , 1) , a s s i g n (v7 , v8 , 1) ,
a s s i g n (v7 , v11 , 1) } .

2 a t l e a s t (v7 , 2) :− 2 { a s s i g n (v3 , v7 , 1) , a s s i g n (v6 , v7 , 1) , a s s i g n (v7 , v8 , 1) ,
a s s i g n (v7 , v11 , 1) } .

3 a t l e a s t (v7 , 3) :− 3 { a s s i g n (v3 , v7 , 1) , a s s i g n (v6 , v7 , 1) , a s s i g n (v7 , v8 , 1) ,
a s s i g n (v7 , v11 , 1) } .

4 a t l e a s t (v7 , 4) :− 4 { a s s i g n (v3 , v7 , 1) , a s s i g n (v6 , v7 , 1) , a s s i g n (v7 , v8 , 1) ,
a s s i g n (v7 , v11 , 1) } .

5 sum(v7 , 0) :− not a t l e a s t (v7 , 1) .
6 sum(v7 , 0) :− a t l e a s t (v7 , 2) , not a t l e a s t (v7 , 3) .
7 sum(v7 , 0) :− a t l e a s t (v7 , 4) .
8 sum(v7 , 1) :− a t l e a s t (v7 , 1) , not a t l e a s t (v7 , 2) .
9 sum(v7 , 1) :− a t l e a s t (v7 , 3) , not a t l e a s t (v7 , 4) .

Listing 2: Grounding of Line 2 in Listing 1 for vertex v7.

13,14 14,15 15,16

9,13 10,14 11,15 12,16
9,10 10,11 11,12

5,9 6,10 7,11 8,12
5,6 6,7 7,8

1,5 2,6 3,7 4,8
1,2 2,3 3,4

13,14 14,15 15,16

9,13 10,14 11,15 12,16
9,10 10,11 11,12

5,9 6,10 7,11 8,12
5,6 6,7 7,8

1,5 2,6 3,7 4,8
1,2 2,3 3,4

13,14 14,15 15,16

9,13 10,14 11,15 12,16
9,10 10,11 11,12

5,9 6,10 7,11 8,12
5,6 6,7 7,8

1,5 2,6 3,7 4,8
1,2 2,3 3,4

(a) The line graph of a grid of size 4.

3,7

7,11

7,86,7

atleast(v7,3)

atleast(v7,4)

atleast(v7,2)

atleast(v7,1)

sum(v7,1)

sum(v7,0)

(b) Primal graph of Listing 2.

Figure 2: Structure of the primal graph of Listing 2.

bodies of the first four lines in Listing 2 cause the central clique between vertices 3, 7; 7, 8;
7, 11; and 6, 7 to appear. Note that this forms a clique precisely between the incident edges
of vertex v7. Now, take only the rule bodies of Lines 1 to 4 in Listing 2, and the same also
from the analogous groundings of every other vertex in A. The corresponding partial primal
graph is shown in Figure 2a. In fact, this is precisely the line graph of the grid in A. The
full primal graph of gr(Π ∪ A) can now be obtained by replacing every clique in Figure 2a
(which represents some vertex v from A) with a gadget analogous to the one in Figure 2b,
but for vertex v. Note that this gadget has constant size (and, therefore, treewidth). We
thus have that the treewidth of gr(Π∪A) is asymptotically upper-bounded by the treewidth
of the line graph of A. It is not difficult to extend this argument to the case where A is a
grid-tree instead of a single grid.

To complete our line of argument, note that it is known that the treewidth of the line
graph is linear in the treewidth of the original graph if the maximum degree of the latter
is bounded by a constant, as is the case for grids (Călinescu, Fernandes, & Reed, 2003).
Since the treewidth of the incidence graph is upper-bounded by the treewidth of the primal
graph (Szeider, 2003), this establishes condition (4).

47

Bliem, Morak, Moldovan, & Woltran

Clasp Runtime on
 Groundings of the Same Size

Treewidth

R
un

tim
e

2 3 4 5 6 7 8 9

0.1
0.2

0.5
1
2

5
10
20

50
100
200

500
Number of Variables

3750
10300
16700

Figure 3: Results for clasp.

Benchmark Setting. In our tests we used three batches of instances constructed as
presented before, each batch for a different grounding size. The size of the ground program
was determined by the number of variables reported by clasp. For the first batch the
number of variables in the grounding is approximately 3750, for the second it is 10300,
and for the third 16700, where each instance is allowed to deviate up to ± 100 variables.
In each batch we generated 20 instances for each treewidth between 2 and 9 in order to
account for fluctuations in the running time.5 Grounding was done using the grounder
gringo 4.5.4 (Gebser, Kaufmann, Kaminski, Ostrowski, Schaub, & Schneider, 2011). We
then measured the running time of the ASP solvers clasp 3.1.4 (Gebser et al., 2011) and
WASP 2.0 (Alviano et al., 2015).

Results and Discussion. Figures 3 and 4 show how the average solving time of clasp
and WASP changes with the treewidth for our three batches of instances. Recall that
the treewidth of the corresponding ground program is linear in the input treewidth by
Proposition 11. Since the running time in the figures is plotted on a logarithmic scale,
but, starting at treewidth 4, seems to form a line, it seems that the running time increases
exponentially with the treewidth while the grounding size remains constant. Moreover, the
running time for small programs with high treewidth can be substantially longer than for
large programs with small treewidth.

From these benchmark results, we thus conclude that the treewidth of the grounding
has a major impact on the running time of current ASP solvers and that, for good solving

5 Full archive: http://dbai.tuwien.ac.at/proj/decodyn/ijcai17-benchmarks.zip

48

The Impact of Treewidth on ASP Grounding and Solving

WASP Runtime on
 Groundings of the Same Size

Treewidth

R
un

tim
e

2 3 4 5 6 7 8 9

0.05

0.1

0.2

0.5

1

2

5

10

20

50

100

200
Number of Variables

3750
10300
16700

Figure 4: Results for WASP.

performance, it is important to keep the treewidth of ground programs as low as possible.
The following observation formalizes this.

Observation 12. For programs of constant size but varying treewidth and current CDCL-
based ASP solvers, it holds that higher treewidth implies exponentially higher solving time.

4. Treewidth-Preserving Classes of Programs

As Observation 12 shows us, the influence of the treewidth of an ASP program on the
solving time with today’s state-of-the-art ASP solvers is quite substantial. Ground ASP
programs can be solved much faster if their treewidth is low. This begs the question of
what can be done to formulate ASP programs in such a way as to keep the treewidth as
low as possible.

Recall that ASP programs are not usually written directly in their ground form, but are
written as a (usually fixed) non-ground ASP encoding for a given problem. This encoding,
together with a problem instance encoded as ground ASP facts, is then grounded using an
ASP grounder. In this section, we will therefore investigate how encodings can be written
in such a way that, after grounding, the structure present in the ground facts (i.e., the
problem instance) is preserved as best as possible.

To this end, we will study two classes of non-ground ASP programs that guarantee that
the ground ASP program obtained from a set of facts and an encoding that falls into the
class has bounded treewidth if the set of facts already has certain structural properties,
specified below. In the following let Π be a non-ground ASP program, and A a set of input
facts.

49

Bliem, Morak, Moldovan, & Woltran

Guarded ASP Programs: For programs Π in this class, the treewidth of a ground pro-
gram gr(Π ∪ A) depends only on the treewidth of the fact structure of A.

Connection-Guarded ASP Programs: For programs Π in this class, the treewidth of
the ground program gr(Π ∪ A) depends only on the treewidth and degree of the fact
structure of A.

This section defines these classes. Following these definitions, we formally show that the
properties claimed above indeed hold for ground programs obtained from non-ground ASP
encodings that fall into one of our two classes. In addition, we discuss why our classes are,
in a certain sense, “optimal” in that any restrictions they impose are actually needed to
guarantee those properties.

In Section 5, we will then investigate computational properties of our classes. In partic-
ular, we will show that guarded programs, despite a rather restrictive syntax, are still ex-
pressive enough to encode relevant problems on the second level of the polynomial hierarchy.
Since every guarded program is connection-guarded, this also holds for connection-guarded
ASP, which offers a richer syntax.

The remainder of this section is structured as follows: Section 4.1 provides an overview of
our techniques (i.e., our “plan of attack”) and lays out some basic definitions and properties
needed later to define our two classes. Then, in Section 4.2, we define the class of guarded
ASP programs and prove that grounding fixed programs in this class preserves bounded
treewidth of the input. In Section 4.3, this is then followed by our definition of connection-
guarded ASP programs and the proof that grounding fixed programs in this class preserves
bounded treewidth of the input if additionally the degree of the input is bounded.

4.1 Overview

In order to define and investigate our two classes of ASP programs, we will make use of
MSO logic to express properties of arbitrary structures, in order to formalize the grounding
process for our classes as MSO transductions. This will allow us to establish the relevant
properties described above.

Let us first introduce some notation, which will apply throughout the remainder of this
section. Let Π be some fixed, non-ground ASP program that falls within one of our classes,
and let A be a fact structure representing the input instance consisting of a set of facts. We
will denote the signature of A (and Π) with σ (also called the base signature). As stated
in Section 2, we will assume that every such signature contains a binary successor relation
predicate succ that specifies an order over the domain elements in A. This assumption
is natural, since ASP solvers and grounders, in practice, always assume an order over the
constants in a program. We will also assume that A has the same signature as Π. Therefore,
note that σ is fixed, since so is Π. Finally, let ρmax be the maximum arity of any predicate
within σ (i.e., ρmax = ρ(σ)).

Now, in order to show our results, our plan of attack is as follows. Each non-ground
program Π gives rise to an MSO transduction γ that simulates the grounding process for Π.
These MSO transductions will always start from the incidence structure Inc(A), which serves
as the input to our MSO formulas. The output of the MSO transduction, that is γ(Inc(A)),
will be the incidence structure of the primal graph of the ground program gr(Π∪A). Recall

50

The Impact of Treewidth on ASP Grounding and Solving

that this primal graph contains the atoms in gr(Π ∪ A) as vertices, and an edge between
them if they appear together in a rule in gr(Π∪A). Hence, our MSO transductions must be
able to identify the atoms that appear in gr(Π ∪ A), and, more importantly, only generate
exactly one vertex per such atom. Hence, before giving the proofs of our main theorems,
we will define MSO subformulas that we will later use to uniquely identify an atom that
appears in gr(Π∪A) based on a lexicographic order of the domain elements in A, given by
the succ predicate. In our MSO formulas, we will use the symbol < as shorthand for the
strict total order on the domain elements of A that naturally arises from the succ relation6.

4.2 Guarded Answer Set Programs

In this section, we define the class of guarded ASP programs and show that they lead to
groundings whose treewidth depends only on the treewidth of the input structure.

Definition 13. Let Π be an ASP program. A guard of a rule r in Π is an extensional atom
in the positive body of r that contains every variable occurring in r. We call Π guarded if
every rule has a guard. We designate an arbitrary guard of r as the guard of r.

The objective of this section is to establish the following, central theorem about guarded
ASP programs.

Theorem 14. Let Π be a fixed guarded ASP program, and A be an input structure of Π.
If A has bounded treewidth, then the primal graph of gr(Π ∪ A) has bounded treewidth.

Note that this theorem immediately implies that the treewidth of the primal graph
depends only on the treewidth of input structure A. This ensures that ASP programs that
are written in such a way that they are guarded ensure that ASP solvers will be able to
solve them efficiently, in accordance with Observation 12 in Section 3.

In order to prove this main theorem, we need to introduce several preliminary notions
first. The formulas defined below will allow us to identify certain tuples 〈a1, . . . , ak〉 of
domain elements by a fact and a tuple of integers 〈i1, . . . , ik〉 such that each aj is the ij-th
argument of that fact. Note that this is the general idea underlying the class of guarded
ASP programs: only if some domain elements already occur together in a fact of A can
they give rise to a new ground atom in gr(Π ∪ A).

We begin with the formula fact(x), which is true under a structure Inc(A) if x is a fact
in the base structure A. Recall that the domain of Inc(A) consists of the domain of A
and the facts in A, and that the relation symbols in the base signature σ are all unary in
Inc(σ). Recall that all subformulas presented in this section are formulated to operate on
the incidence signature Inc(σ).

fact(x) ≡
∨
R∈σ

R(x)

6 We can easily define< from the succ relation because transitive closure can be defined in MSO (Courcelle
& Engelfriet, 2012, Section 1.3.1). Moreover, note that succ only gives us an ordering on the ASP
constants in A, but not on the facts. However, these are also present as domain elements of Inc(A),
which we use as the input to our MSO transductions. This is not a problem, however, since we can
define a lexicographical order on tuples of constants based on the ordering on the individual constants.

51

Bliem, Morak, Moldovan, & Woltran

The following formula expresses that x is a fact that contains y as some argument.

in(x, y) ≡ in1(x, y) ∨ · · · ∨ inρmax(x, y)

If a fact in a base structure A contains every element of a tuple a of elements of dom(A),
then we say that this fact covers a. For each nonnegative integer k, we define the following
formula, which states that x is a fact that covers 〈y1, . . . , yk〉.

coversk(x, y1, . . . , yk) ≡ fact(x) ∧ in(x, y1) ∧ · · · ∧ in(x, yk)

Furthermore, if some fact of a base structure A covers a, then we define the first cover of
a in A to be the smallest fact covering a according to the order of the domain elements,
which we can construct from the successor relation that is guaranteed to be present in the
input structure. For each nonnegative integer k, we therefore define a formula to express
that x is the first cover of 〈y1, . . . , yk〉:

fcovk(x, y1, . . . , yk) ≡ coversk(x, y1, . . . , yk) ∧ ¬∃z
(
z < x ∧ coversk(z, y1, . . . , yk)

)
We say that a tuple 〈i1, . . . , ik〉 of integers extracts a tuple 〈a1, . . . , ak〉 of domain ele-

ments from a fact R(d1, . . . , d`) if both 1 ≤ ij ≤ ` and aj = dij hold for every j. Clearly
there is a tuple of integers that extracts a tuple a of domain elements from a fact x if and
only if x covers a. For each nonnegative integer k and every tuple 〈i1, . . . , ik〉 of integers
between 1 and ρmax, we define the following formula to express that 〈i1, . . . , ik〉 extracts
〈y1, . . . , yk〉 from x:

extract〈i1,...,ik〉(x, y1, . . . , yk) ≡ ini1(x, y1) ∧ · · · ∧ inik(x, yk)

If a fact x covers a, then we define the first tuple extracting a from x as the lexicographically
smallest tuple of integers between 1 and ρmax that extracts a from x. For this we first define
the relation ≺ρmax among tuples of integers between 1 and ρmax such that a ≺ρmax b holds
if a is lexicographically smaller than b. For every nonnegative integer k and every k-tuple
i of integers between 1 and ρmax, we now define the following formula, which is true if and
only if i is the first tuple extracting 〈y1, . . . , yk〉 from x:

fexti(x, y1, . . . , yk) ≡ extracti(x, y1, . . . , yk) ∧
∧

j≺ρmaxi

¬ extractj(x, y1, . . . , yk)

If a fact in a base structure A covers a tuple a of domain elements, we define the cover-
based identifier of a in A to be the unique combination of a fact x and a tuple i of integers
such that x is the first cover of a in A and i is the first tuple extracting a from x. For
each nonnegative integer k and every k-tuple i of integers between 1 and ρmax, we now
define the following formula to express that x together with i is the cover-based identifier
of 〈y1, . . . , yk〉:

cidi(x, y1, . . . , yk) ≡ fcovk(x, y1, . . . , yk) ∧ fexti(x, y1, . . . , yk)

Whenever a fact covers a, the cover-based identifier of a clearly exists because then a has
a first cover and a can be extracted from this cover. For every fact x and each tuple i

52

The Impact of Treewidth on ASP Grounding and Solving

of integers, the combination of x and i is the cover-based identifier of at most one tuple
of domain elements. Hence there is a bijection between the set of all tuples that have a
cover-based identifier and the set of all cover-based identifiers. Note that, in particular,
every tuple of constants that appears in an atom of gr(Π ∪A) has exactly one cover-based
identifier.

Example 15. LetA be a structure over a signature consisting of the binary relation symbols
R and succ such that dom(A) = {a, b}, RA = {〈a, a〉} and succA = {〈a, b〉}. We denote
the domain elements of Inc(A) corresponding to the facts 〈a, a〉 in RA and 〈a, b〉 in succA

by aa and ab, respectively. We assume that the ordering of the domain elements of Inc(A)
that we extracted from succA is a < b < aa < ab. The following formulas are true under
Inc(A):

• fact(aa), fact(ab).

• in(aa, a), in(ab, a), in(ab, b).

• covers1(aa, a), covers2(aa, a, a), covers3(aa, a, a, a), . . .

covers1(ab, a), covers1(ab, b). covers2(ab, a, a), covers2(ab, a, b), covers2(ab, b, a),
covers2(ab, b, b). covers3(ab, a, a, a), . . .

• fcov1(aa, a), fcov2(aa, a, a), fcov3(aa, a, a, a), . . .

fcov1(ab, b). fcov2(ab, a, b), fcov2(ab, b, a), fcov2(ab, b, b), fcov3(ab, a, a, b), . . .

But note that, e.g., fcov1(ab, a) is not true even though ab covers a, since a is also
covered by aa, which is less than ab.

• extract〈1〉(aa, a), extract〈2〉(aa, a), extract〈1,1〉(aa, a, a), extract〈1,2〉(aa, a, a),
extract〈2,1〉(aa, a, a), extract〈2,2〉(aa, a, a), extract〈1,1,1〉(aa, a, a, a), . . .

extract〈1〉(ab, a), extract〈2〉(ab, b), extract〈1,1〉(ab, a, a), extract〈1,2〉(ab, a, b),
extract〈2,1〉(ab, b, a), extract〈2,2〉(ab, b, b), extract〈1,1,1〉(ab, a, a, a), . . .

• fext〈1〉(aa, a), fext〈1,1〉(aa, a, a), fext〈1,1,1〉(aa, a, a, a), . . .

fext〈1〉(ab, a), fext〈2〉(ab, b), fext〈1,1〉(ab, a, a), fext〈1,2〉(ab, a, b), fext〈2,1〉(ab, b, a),
fext〈2,2〉(ab, b, b), fext〈1,1,1〉(ab, a, a, a), . . .

But note that, e.g., fext〈2〉(aa, a) is not true even though the tuple 〈2〉 extracts the
tuple 〈a〉 from aa, since we can also extract 〈a〉 from aa with the tuple 〈1〉, which is
lexicographically smaller than 〈2〉.

• cid〈1,1〉(aa, a, a), cid〈1,2〉(ab, a, b), cid〈2,1〉(ab, b, a), cid〈2,2〉(ab, b, b), cid〈1,1,1〉(aa, a, a, a),
cid〈1,1,2〉(ab, a, a, b), . . .

But note that, e.g., cid〈1,1〉(ab, a, a) is not true since ab is not the first cover of 〈a, a〉.
Also, cid〈2,2〉(aa, a, a) is not true since 〈2, 2〉 is not the first tuple that extracts 〈a, a〉
from aa. 4

We next show an important property for guarded ASP programs without constants,
based on the notions introduced above, namely, that for each possible input and every
tuple a of constants that can occur in an atom of the grounding, a has a cover-based
identifier.

53

Bliem, Morak, Moldovan, & Woltran

Π ∪ A

Grounder

gr(Π ∪ A)

Inc(A)

Transduction γΠ

Inc(A′)=̂

treewidth of A bounded

treewidth of A′ bounded

Theorem 5

Figure 5: Strategy for proving that grounding a fixed guarded program Π together with an input
structure A preserves bounded treewidth of A. A′ represents the primal graph of gr(Π ∪ A).

Lemma 16. Let Π be a guarded ASP program without constants, A an input structure of
Π and p(a) an atom that occurs in gr(Π∪A). Then the tuple a has a cover-based identifier
in A.

Proof. While defining the notion of cover-based identifier, we have seen that a has such
an identifier in A if a fact covers a. Since the atom p(a) is part of gr(Π ∪ A), it occurs
in one of its rules. Let r be a rule in the grounding such that p(a) occurs in r, and let r′

denote the corresponding non-ground rule. The atom p(a) occurs in r as an instantiation
of a non-ground atom p(X) in r′. Moreover, the positive body of r contains an atom g(b)
as an instantiation of the guard g(Y) of r′. Since g(Y) is the guard of r′, each variable in
X also occurs in Y . Hence each element of a is also an element of b. Since the fact g(b)
thus covers a, the latter has a cover-based identifier in A.

We can also prove the related result that for all tuples a and b of constants that can
occur in two atoms of the same rule in the grounding, the joint tuple ab has a cover-based
identifier.

Lemma 17. If Π is a guarded ASP program without constants, A is an input structure of
Π and both p(a) and q(b) are atoms that occur together in a rule of gr(Π ∪ A), then the
joint tuple ab has a cover-based identifier in A.

Proof. Since p(a) and q(b) occur together in a rule r of the grounding, the fact that instan-
tiates the guard in r covers both a and b, and therefore it also covers ab.

With the above notions and lemmas defined, we are now ready to prove our main
theorem.

Proof of Theorem 14. Our proof strategy is illustrated in Figure 5. In order to formally
represent the grounding process and investigate its influence on the treewidth, we use MSO
transductions. Our methodology for proving that grounding Π ∪ A preserves bounded
treewidth of A works as follows: We study the transformation of A into the primal graph of
gr(Π ∪ A). We do this by providing an MSO transduction γΠ that transforms Inc(A) into
the incidence structure of the primal graph of gr(Π∪A). By constructing the transduction
in such a way that it only depends on Π (and is thus fixed as Π is fixed), we obtain the
desired result by virtue of Theorem 5.

54

The Impact of Treewidth on ASP Grounding and Solving

We will, for the moment, assume that Π is constant-free; we will later refer to literature
showing how to handle the general case. Note that the primal graph is undirected, but
we assume that for representing undirected graphs as structures we use symmetric edge
relations, so we treat an undirected edge as two directed edges of opposing orientation.
Thus, when we speak of the primal graph in this proof, we refer to a directed graph with a
symmetric edge relation. The signature of the output structure of our transduction is thus
{E, in1, in2}, where E is unary and the other relations are binary.

We call the domain elements in the output structure that correspond to vertices and
edges of the primal graph vertex elements and edge elements, respectively. In the following,
we define γΠ by the definition scheme 〈∆,Θ〉, where the tuple ∆ is the concatenation
of tuples ∆v and ∆e, which contain domain formulas that generate the vertex and edge
elements, respectively, and Θ contains relation formulas that state which vertex is incident
to which edge.7

Formulas in ∆v. These formulas shall produce the vertex elements. For each predicate p of
arity k, we first define Op to be the following set of objects: If a rule r in Π is guarded by an
atom g(X1, . . . , X`) and contains an atom p(Xi1 , . . . , Xik), then Op contains 〈g, i1, . . . , ik〉.
With this, we define a formula occursp(x), where x is a k-ary tuple of variables, to express
that the ground atom p(x) occurs in gr(Π ∪ A).8

occursp(x) ≡
∨

〈g,i1,...,ik〉∈Op

∃y
(
g(y) ∧ extract〈i1,...,ik〉(y,x)

)
We can now define the formula δp[i](x) to be an element of ∆v, for every predicate p of arity
k and each k-ary tuple i of integers between 1 and ρmax.

δp[i](x) ≡ ∃y
(

cidi(x,y) ∧ occursp(y)
)

This formula is true if and only if x together with i is the cover-based identifier of some
tuple a of domain elements and p(a) occurs in gr(Π ∪ A); the resulting copy of x in the
output structure then corresponds to the atom p(a).

For each atom p(a) in the grounding, we thus produce a vertex element, since a has
a cover-based identifier by Lemma 16. Moreover, different atoms produce different vertex
elements: If they have different arguments, they have different cover-based identifiers, and
otherwise they differ in their predicate symbol. In both cases, they clearly produce differ-
ent copies. Finally, every vertex element that we produce corresponds to an atom in the
grounding by our construction of the occursp formulas. This proves that there is a bijection
between the atoms in the grounding and the vertex elements.

Formulas in ∆e. These formulas shall produce the edge elements. Before we define them,
we introduce an auxiliary formula. For all predicates p and q of arity k and `, respectively,

7 As mentioned in Section 2.3, the formulas in ∆ and Θ are denoted by symbols with subscripts, which
rely on a set I. For our purpose, i.e., for defining γΠ, we choose as I the set containing (a) an element
p[i] for every predicate p of arity k and each k-ary tuple i of integers between 1 and ρmax, and (b) an
element p[i]q[j] for all predicates p and q, and all tuples i and j of integers between 1 and ρmax, such
that the arities of i and j are the same as those of p and q, respectively. All elements of ∆ and Θ that
we do not explicitly mention are defined as ⊥.

8 We slightly abuse notation by sometimes using tuples where lists would be required.

55

Bliem, Morak, Moldovan, & Woltran

we define Tp,q to be the following set of objects: If there is a rule r in Π guarded by an
atom g(X1, . . . , Xm) such that r contains two atoms p(Xi1 , . . . , Xik) and q(Xj1 , . . . , Xj`),
then Tp,q contains 〈g, i, j〉, where i = 〈i1, . . . , ik〉 and j = 〈j1, . . . , j`〉. With this, we now
define a formula togetherp,q(x,y), where x and y are tuples of variables with arity k and
`, respectively. This formula expresses that the two ground atoms p(x) and q(y) occur
together in some rule of gr(Π ∪ A).

togetherp,q(x,y) ≡
∨

〈g,i,j〉∈Tp,q

∃z
(
g(z) ∧ extracti(z,x) ∧ extractj(z,y)

)
With this auxiliary formula in hand, we define the following formula δp[i]q[j](x) to be an

element of ∆e, for all predicates p and q, and all tuples i and j of integers between 1 and
ρmax, such that the arities of i and j are the same as those of p and q, respectively.

δp[i]q[j](x) ≡

{
⊥ if p[i] = q[j]

∃y∃z
(

cidij(x,y, z) ∧ togetherp,q(y, z)
)

otherwise

This formula is true if and only if there are tuples a and b of the same arity as p and
q, respectively, such that (1) x together with ij is the cover-based identifier of ab, and
(2) the atoms p(a) and q(b) are different and occur together in some rule of gr(Π ∪ A).
The resulting copy of x in the output structure then corresponds to the edge from p(a) to
q(b) in the primal graph. Due to symmetry, we can see that then also an edge in the other
direction will be created. Since both atoms are different if the formula is true, we do not
introduce self-loops.

For each pair of different atoms p(a) and q(b) that jointly occur in a rule of the ground-
ing, we thus correctly produce two edge elements, since ab has a cover-based identifier by
Lemma 17. Moreover, different such pairs of atoms produce different edge elements, and
every edge element that we produce corresponds to a joint occurrence of two different atoms
in a rule of the grounding by our construction of the togetherp,q formulas.

Formulas in Θ. These formulas shall ensure that each edge element is incident to the two
appropriate vertex elements. First, let p and q be predicates occurring in Π, and let i and
j be tuples of integers between 1 and ρmax such that i and j have the same arity as p and
q, respectively. We define a formula eqp[i],q[j](x, y) to express that the atoms p(a) and q(b)
are equal, where a is the tuple extracted from x by i, and b is the tuple extracted from y
by j.

eqp[i],q[j](x, y) ≡

{
∃z
(

extracti(x, z) ∧ extractj(y,z)
)

if p = q

⊥ otherwise

Let p, q and q′ be predicates occurring in Π, and let i, j and j′ be tuples of integers
between 1 and ρmax with the same arity as p, q and q′, respectively. We define the following
formulas to be elements of Θ9:

θin1, p[i], q[j]q′[j
′](x, y) ≡ eqp[i],q[j](x, y)

θin2, p[i], q[j]q′[j
′](x, y) ≡ eqp[i],q′[j′](x, y)

9 If we do not explicitly mention relation formulas like the remaining relation formulas for defining in1

and in2 (those having subscripts of different forms than the shown formulas), then these are defined as
⊥.

56

The Impact of Treewidth on ASP Grounding and Solving

We only explain the first of these formulas, as the other case is symmetric; instead of
outgoing edges (due to in1 in the subscript) it concerns incoming edges (due to in2 in the
subscript).

The formula θin1, p[i], q[j]q′[j
′](x, y) is true if and only if the atom p(a) is equal to q(b),

where a is the tuple extracted from x by i, and b is the tuple extracted from y by j. If this
formula is true, it makes the edge represented by the respective copy of y an outgoing edge
of p(a) because of the subscript in1.

We first show that, whenever this formula causes an edge element to be incident to
a vertex element, the corresponding edge in the primal graph is indeed an outgoing edge
of the appropriate vertex. Suppose there are predicates p, q and p′, tuples i, j and j′,
as well as domain elements x and y such that (1) δp[i](x) is true, (2) δq[j]q′[j′](y) is true,
and (3) θin1, p[i], q[j]q′[j

′](x, y) is true. As observed in our definition of ∆v, (1) means that
x together with i is the cover-based identifier of some tuple a, and the grounding contains
an atom p(a). From (2) we get that there are tuples b and b′ such that y together with
jj′ is the cover-based identifier of bb′. We have also seen that by (2) there is a rule in the
grounding that contains both q(b) and q′(b′), hence there is an edge from q(b) to q′(b′) in
the primal graph. By (3) and the definition of cover-based identifiers (in particular those of
a, b and b′), we know that p(a) is equal to q(b). Hence the edge in the primal graph from
q(b) to q′(b′) is indeed an outgoing edge of p(a).

Finally we prove the other direction: Whenever an edge in the primal graph is an out-
going edge of a vertex, a formula in Θ defining the relation in1 causes the corresponding
edge element to be an outgoing edge of the appropriate vertex element. Suppose that the
primal graph contains an edge from atom p(a) to atom q(b). Then these atoms occur
together in a rule of the grounding, so there is a non-ground rule r guarded by an atom
g(X1, . . . , Xm) such that r contains both p(Xi1 , . . . , Xik) and q(Xj1 , . . . , Xj`), and A con-
tains a fact g(c1, . . . , cm) such that a = 〈ci1 , . . . , cik〉 and b = 〈cj1 , . . . , cj`〉. Moreover, we
have seen in our definition of ∆v and ∆e that then our transduction produces a vertex
element v for p(a) and an edge element e for the edge from p(a) to q(b). Now let x and y
be domain elements of A, and let i, j and j′ be tuples of integers, such that x together with
i is the cover-based identifier of a, and y together with jj′ is the cover-based identifier of
ab. By definition of cover-based identifiers, i extracts a from x; moreover, j and j′ extract
a and b from y, respectively. Since a can be extracted from x by i, as well as from y by
j, the formula eqp[i],p[j](x, y) is clearly true. Hence the formula θin1, p[i], p[j]q[j

′](x, y) is true,
which correctly makes the edge element e an outgoing edge of the vertex element v.

We are still missing the relation formulas for defining the remaining unary relation E,
which identifies the edge elements. This is easy: We can just set θE, p[i] to ⊥ (for all p[i] as
before) and θE, p[i]q[j] to >.

This completes the construction of the MSO transduction γΠ. Let A be an input struc-
ture for Π of bounded treewidth. We have argued that γΠ(Inc(A)) yields the incidence
structure of the primal graph of gr(Π ∪ A) as desired. By Theorem 5 and the fact that A,
by assumption, has bounded treewidth, this proves our claim for constant-free programs.

We can also generalize this proof to programs with constants (Bliem, 2017).

We now illustrate this transduction for an example program.

57

Bliem, Morak, Moldovan, & Woltran

Example 18. Let Π be the following guarded program for solving the 2-Colorability
problem on directed graphs, where the input graph is given via the binary edge predicate
e, and the colors are r and g:

r(X) ∨ g(X)← e(X, Y).

r(Y) ∨ g(Y)← e(X, Y).

← e(X, Y), r(X), r(Y).

← e(X, Y), g(X), g(Y).

Next, let G be the input structure for Π that represents a graph consisting of vertices
a and b, with an edge from b to a. Moreover, we assume that the order on the domain
elements is such that a < b. That is, dom(G) = {a, b}, succG = {〈a, b〉} and eG = {〈b, a〉}.
We denote the domain element of Inc(G) for the fact 〈b, a〉 in eG and for 〈a, b〉 in succG by
ba and ab, respectively, and we assume the ordering a < b < ab < ba. We show how γΠ

transforms Inc(G) into the incidence structure of the primal graph of gr(Π ∪ G).
For the vertex elements, first observe that all of the formulas occurse(b, a), occursr(a),

occursr(b), occursg(a) and occursg(b) are true. For instance, to see that occurse(b, a) is true,
observe that Oe = {〈e, 1, 2〉} (under the assumption that the first variable of each rule is X
and the second is Y). The definition of occurse(b, a) thus boils down to

occurse(b, a) ≡ ∃y
(
e(y) ∧ extract〈1,2〉(y, b, a)

)
.

Clearly e(ba) ∧ extract〈1,2〉(ba, b, a) is true, so occurse(b, a) is true.
Next we show that we correctly construct vertex elements corresponding to the atoms

e(b, a), r(a) and r(b) in the grounding. Since the cover-based identifier of 〈b, a〉 is ab in
combination with 〈2, 1〉, the formula cid〈2,1〉(ab, b, a) is true. We can conclude that δe[2,1](ab)
is true by looking at its definition

δe[2,1](ab) ≡ ∃y1∃y2

(
cid〈2,1〉(ab, y1, y2) ∧ occurse(y1, y2)

)
and observing that cid〈2,1〉(ab, b, a) ∧ occurse(b, a) is true. We thus produce the vertex
element for e(b, a).

Similarly, Or = {〈e, 1〉, 〈e, 2〉}, and the cover-based identifier of 〈a〉 and 〈b〉 is ab together
with 〈1〉 and 〈2〉, respectively. This makes δr[1](ab) and δr[2](ab) true and produces the vertex
elements for r(a) and r(b), respectively.

We illustrate the edge elements just by the construction for the edge from atom r(a) to
atom e(b, a). Recall that togetherr,e(〈a〉, 〈b, a〉) is defined as

togetherr,e(〈a〉, 〈b, a〉) ≡
∨

〈g,i,j〉∈Tr,e

∃z
(
g(z) ∧ extracti(z, a) ∧ extractj(z, b, a)

)
.

Observe that this formula is true because Tr,e contains the tuple 〈e, 〈2〉, 〈1, 2〉〉 and clearly
e(ba) ∧ extract〈2〉(ba, a) ∧ extract〈1,2〉(ba, b, a) is true. Moreover, observe that ab together
with 〈1, 2, 1〉 is the cover-based identifier of 〈a, b, a〉. We can see that δr[1]e[2,1](ab) is true
by looking at its definition

δr[1]e[2,1](ab) ≡ ∃y1∃z1∃z2

(
cid〈1,2,1〉(ab, y1, z1, z2) ∧ togetherr,e(〈y1〉, 〈z1, z2〉)

)
and observing that cid〈1,2,1〉(ab, a, b, a)∧ togetherr,e(〈a〉, 〈b, a〉) is true. Thus we produce the
desired edge element.

58

The Impact of Treewidth on ASP Grounding and Solving

Finally we show that our transduction indeed makes the edge that should go from r(a)
to e(b, a) an outgoing edge of r(a). Recall that the vertex element for r(a) exists due to
δr[1](ab) being true, and the edge element exists due to δr[1]e[2,1](ab) being true. We can see
that eqr[1],r[1](ab, ab) is true be looking at its its definition

eqr[1],r[1](ab, ab) ≡ ∃z
(

extract〈1〉(ab, z) ∧ extract〈1〉(ab, z)
)

and observing that extract〈1〉(ab, a) ∧ extract〈1〉(ab, a) is true. Now we can immediately
conclude that θin1, r[1], r[1]e[2,1](ab, ab) is true by considering its definition

θin1, r[1], r[1]e[2,1](ab, ab) ≡ eqr[1],r[1](ab, ab).

This makes the vertex incident to the edge element as desired. 4

Alternatively, we can prove that guarded encodings preserve bounded treewidth in a
more direct way by modifying a tree decomposition of the input so that the result is a tree
decomposition of the grounding. This gives us a simpler, more elementary proof and it also
allows us to derive an explicit bound on the treewidth of the grounding. Nevertheless, the
preceding proof based on MSO transductions may be of interest because it facilitates the
understanding of the MSO transduction in Section 4.3, which is more complex.

Theorem 19. If Π is a guarded ASP program containing c constants and k predicates of
arity at most `, and A is an input structure of Π having treewidth w, then the treewidth of
the primal graph of gr(Π ∪ A) is at most k · (w + c+ 1)` − 1.

Proof. Let T be a tree decomposition of A having width w, and let C denote the constants
in Π. We construct a tree decomposition T ′ having width k · (w+c+1)`−1 of a supergraph
of the primal graph of gr(Π∪A). Since the treewidth of a subgraph is at most the treewidth
of the whole graph, the statement follows.

We define the tree in T ′ to be isomorphic to the tree in T . Let N be a node in T and
B be its bag. We define the bag B′ of the corresponding node N ′ in T ′ to consist of all
atoms p(x) such that p is a predicate occurring in Π and x is a tuple of elements of B ∪C.
The size of B′ is then at most k · (w + c+ 1)`. It remains to show that T ′ is indeed a tree
decomposition of a supergraph of the primal graph of gr(Π ∪ A).

For every atom p(x) in a rule r of the grounding, we know from guardedness that there
is a ground atom g(y) in the positive body of r such that g is extensional and every element
of x that is not a constant is also an element of y. Since g is extensional, there is a node in
T whose bag contains all elements of y. By our construction, the bag of the corresponding
node in T ′ contains p(x).

If two atoms p(x) and q(y) occur together in a rule r of the grounding, then from
guardedness we infer that r also contains an atom g(z) in the positive body of r such that
g is extensional and every element of x or y that is not a constant is also an element of z.
As before, it follows that the bag of a node in T contains all elements of x and y that are
not constants, and the bag of the corresponding node in T ′ contains both p(x) and q(y).

If the bags of two nodes N ′,M ′ of T ′ both contain an atom p(x), then the bags of
the corresponding nodes N,M in T contain all elements of x that are not constants. By
the connectedness condition, every bag of each node between N and M in T contains all

59

Bliem, Morak, Moldovan, & Woltran

elements of x that are not constants. Hence, by our construction, the bags of all nodes
between N ′ and M ′ in T ′ contain p(x). This proves that T ′ is a tree decomposition of a
supergraph of the primal graph of gr(Π∪A), and its width is at most k · (w+c+1)`−1.

Since the guarded program Π and thus c, k and ` are fixed, this shows that the treewidth
of the primal graph of gr(π ∪ A) is polynomial in the treewidth of the input A.

4.3 Connection-Guarded Answer Set Programs

In this section, we define the class of connection-guarded ASP programs and show that they
lead to groundings whose treewidth depends only on the treewidth and the degree of the
input structure. We first require the following concept.

Definition 20. The join structure of a set S of atoms is the following relational structure
J over the signature consisting of the predicate symbols occurring in S, with the same
respective arities as in S. The domain of J consists of the variables and constants occurring
in S and for each predicate symbol p it holds that pJ = {t | p(t) ∈ S}. The join graph of
S is the Gaifman graph of the join structure of S.

With this notion in hand, we can define our ASP class of interest.

Definition 21. Let Π be an ASP program. A connection-guard of a rule r in Π is a set G
of extensional atoms occurring in B+(r) such that all variables that occur in r also occur in
G and the join graph of G is connected. We call Π connection-guarded if every rule has a
connection-guard. We designate an arbitrary connection-guard of r as the connection-guard
of r.

As mentioned above, the intention of connection-guarded programs is to guarantee that
the treewidth of the grounding remains bounded, provided that the treewidth and degree of
the input instance is also bounded. The following theorem is the main result of this section
and states this formally.

Theorem 22. Let Π be a fixed connection-guarded program and let A be an input structure
of Π. If A has bounded treewidth and degree, then the primal graph of gr(Π∪A) has bounded
treewidth.

Again, we need to introduce several intermediate notions and lemmas in order to estab-
lish correctness of the statement above in a formal proof. To this end, recall the notions
defined in Section 4.2, which we will reuse in the present section. Furthermore, we now in-
troduce several additional formulas that enable us to identify certain tuples 〈a1, . . . , ak〉 by
a “source” element s together with a tuple of objects 〈π1, . . . , πk〉, where each πj determines
a path from s to aj in A. Note that this is the idea underlying the class of connection-
guarded ASP programs: only if some domain elements are reachable, via a constant number
of steps, from a fact in A can they give rise to a new ground atom in gr(Π ∪ A).

First we define a formula to express that x and y are neighbors in the sense that they
are adjacent to each other in the Gaifman graph of the base structure (cf. Section 2.2).

neigh(x, y) ≡ x 6= y ∧ ∃z
(

in(z, x) ∧ in(z, y)
)

60

The Impact of Treewidth on ASP Grounding and Solving

The order of the domain elements of a structure induces an order on the neighborhood
of each domain element. For each positive integer i, the following formula expresses that y
is the i-th neighbor of x according to this order.

neighi(x, y) ≡ neigh(x, y) ∧ ∀z
(
z < y ∧ neigh(x, z)→

∨
1≤j<i

neighj(x, z)
)

A relative path of length k is a k-tuple of positive integers. It is called a relative d-path if
each integer in the tuple is less than or equal to d. Moreover, we say that a relative d-path
is a relative (`, d)-path if its length is at most `. A path of length k between two domain
elements x and y of A is a sequence of domain elements a0, a1, . . . , ak such that a0 = x,
ak = y, and aj is a neighbor of aj−1, for 1 ≤ j ≤ k. Each path can be uniquely identified by
a relative path π together with a starting point s ∈ dom(A) in the obvious way by starting
from the first element of the path, and we also write sπ to denote the end point of this path.
For a tuple π = 〈π1, . . . , πk〉 of relative paths, we write sπ to denote 〈sπ1 , . . . , sπk〉. We say
that a path p is a d-path if its corresponding relative path is a relative d-path, and we call
p an (`, d)-path if it is a d-path of length at most `.

For every integer k and each relative path π = 〈i1, . . . , ik〉, we define the formula
reachπ(x, y) to express that xπ is defined and equal to y. We write ε to denote the rel-
ative path of length 0.

reachε(x, y) ≡ x = y

reach〈i1,...,ik〉(x, y) ≡ ∃z
(

reach〈i1,...,ik−1〉(x, z) ∧ neighik(z, y)
)

for k > 1

Since two domain elements may be connected via more than one path, we next describe
how we can designate a single representative among them. We define the strict total order
≺d over relative d-paths such that π ≺d ψ if π is shorter than ψ or they have the same
length but π is lexicographically smaller than ψ. If there is a d-path from a to b in A, we
define the first relative d-path from a to b as the smallest relative d-path π such that aπ = b,
where “smallest” refers to ≺d. For each nonnegative integer d and every relative d-path π,
we now define the formula frpdπ(x, y) to represent that π is the first relative d-path from x
to y. (Note that the intended meaning of the abbreviation “frp” is “first relative path”.)

frpdπ(x, y) ≡ reachπ(x, y) ∧
∧
ψ≺dπ

¬ reachψ(x, y)

Let `, d and k be arbitrary nonnegative integers, and a be a tuple of domain elements
such that there is a domain element from which there is an (`, d)-path to each element of a.
We want to be able to identify a by a combination of a domain element s and a tuple π of
relative (`, d)-paths such that sπ = a. Of course, there may be multiple choices for s and
π that identify a in such a way, so we want to single out a unique representative. To this
end, we define the (`, d)-path-based identifier of a as the unique combination of a domain
element s and a tuple of relative (`, d)-paths π that satisfies the following properties:

1. For every i, the i-th element of π is the first relative d-path from s to the i-th element
of a.

61

Bliem, Morak, Moldovan, & Woltran

2. There is no domain element t smaller than s for which there is a tuple ψ of relative
(`, d)-paths such that tψ = a.

We now define the formula pid`,d〈π1,...,πk〉(x, y1, . . . , yk) to express that x together with the

tuple 〈π1, . . . , πk〉 is the (`, d)-path-based identifier of 〈y1, . . . , yk〉. For this, let P k`,d denote
the set of all k-tuples of relative (`, d)-paths. Note that this set is finite.

pid`,d〈π1,...,πk〉(x, y1, . . . , yk) ≡
∧

1≤i≤k
frpdπi(x, yi) ∧ ¬∃z

(
z < x ∧

∨
〈ψ1,...,ψk〉∈Pk`,d

∧
1≤i≤k

frpdψi(z, yi)
)

Note that for the empty tuple ε, the formula pid`,dε (x) becomes ¬∃z (z < x), which is
true if and only if x is the smallest domain element.

Any tuple a of domain elements has an (`, d)-path-based identifier whenever there is
a domain element s and a tuple of relative (`, d)-paths π such that a = sπ: Then for
each a ∈ a, there is an (`, d)-path from s to a, so there is also a first relative (`, d)-path
from s to a. Moreover, for every domain element s and each tuple π of relative (`, d)-
paths, the combination of s and π is the (`, d)-path-based identifier of at most one tuple
of domain elements. Hence there is a bijection between the set of all tuples that have an
(`, d)-path-based identifier and the set of all (`, d)-path-based identifiers.

Example 23. Let A be a structure over a signature consisting of the binary relation
symbols R and succ such that dom(A) = {a, b, c, d}, RA = {〈a, b〉, 〈a, d〉, 〈b, c〉, 〈d, c〉} and
succA = {〈a, b〉, 〈b, c〉, 〈c, d〉}. We assume that a < b < c < d holds for the ordering of the
domain elements of Inc(A), and that the domain elements corresponding to facts are all
greater than d – their exact order is irrelevant for this example. The following formulas are
true under Inc(A):

• neigh(a, b), neigh(a, d), neigh(b, c), neigh(d, c).

neigh(b, a), neigh(d, a), neigh(c, b), neigh(c, d).

• neigh1(a, b), neigh2(a, d), neigh1(b, a), neigh2(b, c), neigh1(c, b), neigh2(c, d).
neigh1(d, a), neigh2(d, c)

• reachε(a, a), reach〈1〉(a, b), reach〈2〉(a, d), reach〈1,1〉(a, a), reach〈1,2〉(a, c),
reach〈2,1〉(a, a), reach〈2,2〉(a, c), reach〈1,1,1〉(a, b), . . .

reachε(b, b), reach〈1〉(b, a), reach〈2〉(b, c), reach〈1,1〉(b, b), . . .

reachε(c, c), reach〈1〉(c, b), reach〈2〉(c, d), reach〈1,1〉(c, a), . . .

reachε(d, d), reach〈1〉(d, a), reach〈2〉(d, c), reach〈1,1〉(d, b), . . .

• frp1
ε(a, a), frp1

〈1〉(a, b).

But note that, e.g., frp1
〈1,1〉(a, a) is not true even though 〈1, 1〉 is a relative 1-path and

it leads to a when starting from a, since so does ε, which is lexicographically smaller
than 〈1, 1〉. Moreover, neither frp1

π(a, c) nor frp1
π(a, d) are true for any relative 1-path

π, since going from a to c or d requires visiting the “second neighbor” of at least one
element.

62

The Impact of Treewidth on ASP Grounding and Solving

frp1
〈1〉(b, a), frp1

ε(b, b).

frp1
〈1,1〉(c, a), frp1

〈1〉(c, b), frp1
ε(c, c).

frp1
〈1〉(d, a), frp1

ε(d, d).

frp2
ε(a, a), frp2

〈1〉(a, b), frp2
〈2〉(a, d), frp2

〈1,2〉(a, c).

But note that, e.g., frp2
〈2,2〉(a, c) is not true even though 〈2, 2〉 is a relative 2-path

and it leads to c when starting from a, since so does 〈1, 2〉, which is lexicographically
smaller than 〈2, 2〉.
. . .

• We only illustrate the formulas concerning (`, d)-path-based identifiers for ` = d = 1.

pid1,1
ε (a).

pid1,1
〈ε〉(a, a), pid1,1

〈ε〉(b, b), pid1,1
〈ε〉(c, c), pid1,1

〈ε〉(d, d).

pid1,1
〈ε,ε〉(a, a, a), pid1,1

〈ε,〈1〉〉(a, a, b), pid1,1
〈〈1〉,ε〉(d, a, d).

. . .

Even though b〈〈1〉,ε〉 = 〈a, b〉, the (1, 1)-path-based identifier of 〈a, b〉 is not constituted
by b and 〈〈1〉, ε〉 because a < b and there is a tuple ψ of relative (1, 1)-paths such that
aψ = 〈a, b〉, namely ψ = 〈ε, 〈1〉〉. Moreover, 〈a, c〉 has no (1, 1)-path-based identifier
because the distance between a and c is 2 and for all elements that are within distance 1
of both a and c (namely b and d), there is no path leading to c that only visits the
first neighbor.

This already suggests a property that we will exploit later: A tuple a of domain
elements of A is guaranteed to have an (`, d)-path-based identifier if the distance
between any two elements of a is at most ` and the degree of A is at most d. 4

The following statement is rather obvious but crucial:

Lemma 24. Let Π be a connection-guarded program without constants, let r be a rule in
Π and let A be an input structure of Π. For any two constants a and b in any ground rule
r′ ∈ gr(Π ∪ A) obtained from r during grounding, the distance between a and b in A is at
most the number of variables in r minus one.

Proof. If Π is connection-guarded, the distance between any two variables in the join struc-
ture of a rule r with n variables is at most n − 1. By the nature of grounding, a ground
instance of r is only produced if there is a homomorphism from the join structure of r to
the input structure A. Hence the distance between a and b in A is at most n− 1.

We next show an important property for connection-guarded ASP programs without
constants: For each possible input and every tuple a of constants that can occur in an atom
of the grounding, a has an (`, d)-path-based identifier.

Lemma 25. Let Π be a connection-guarded ASP program without constants, ` the maximum
number of variables in any rule of Π, A an input structure of Π, d the degree of A, and
p(a) an atom that occurs in gr(Π∪A). Then, the tuple a has an (`, d)-path-based identifier
in A.

63

Bliem, Morak, Moldovan, & Woltran

Proof. By Lemma 24, the distance between any two elements of a = 〈a1, . . . , ak〉 is at most
`, so there is a domain element s such that, for each i, there is a relative (`, d)-path πi
satisfying sπi = ai. As observed when we defined (`, d)-path-based identifiers above, a then
has such an identifier in A.

We can again generalize this as follows.

Lemma 26. Let Π be a connection-guarded ASP program without constants, ` the maximum
number of variables in any rule of Π, A an input structure of Π, d the degree of A, and
p(a) and q(b) atoms that occur together in a rule of gr(Π ∪ A). Then, the joint tuple ab
has an (`, d)-path-based identifier in A.

Proof. Since p(a) and q(b) occur together in a rule r of the grounding, the distance between
any two elements of ab is at most ` by Lemma 24. Hence there is an element s of dom(A)
whose distance to each element of ab is at most `, so there is a relative (`, d)-path from s to
each element of ab. As observed when we defined (`, d)-path-based identifiers, this means
that ab has an (`, d)-path-based identifier in A.

With the above notions and lemmas established, we are now ready to prove our main
theorem in this section.

Proof of Theorem 22. Our proof is similar to that of Theorem 14 for guarded ASP (cf.
Figure 5), but here we use the bound d on the degree of input structures in our construction
of an appropriate MSO transduction κΠ,d. In this case the transduction thus depends on
both Π and the degree bound d, and it is only defined for input structures of degree at most
d. Since both Π and d are fixed, we get the desired result by Theorem 5.

The incidence structure Inc(A) will be an input structure of κΠ,d, and the incidence
structure of the primal graph of gr(Π ∪ A), which we again consider directed, will be
the corresponding output structure. By Theorem 5, this shows our claim. Let ` be the
maximum number of variables in any rule of Π. Furthermore, assume that A has bounded
treewidth and degree, and let d denote the degree of A. For each rule r of Π, we denote
the set of variables of r by Var(r), and we assume that these variables are denoted by
X1, . . . , X|Var(r)|. We will, for the moment, assume that Π is constant-free; we will later
refer to relevant literature that shows how to handle the general case.

We call the domain elements in the output structure that correspond to vertices and
edges of the primal graph vertex elements and edge elements, respectively. In the following,
we define κΠ,d by the definition scheme 〈∆,Θ〉, where the tuple ∆ is the concatenation
of tuples ∆v and ∆e, which contain domain formulas that generate the vertex and edge
elements, respectively, and Θ contains relation formulas that state which vertex is incident
to which edge.10

Formulas in ∆v. These formulas shall produce the vertex elements. First we define a
formula instr(x) for every rule r to express that the tuple x is an instantiation of the

10 For defining κΠ,d, we choose as the set I, which is used for the subscripts of the formulas, the set
containing (a) an element p[π] for each predicate p of arity k occurring in Π and for each k-tuple π of
relative (`, d)-paths, and (b) an element p[π]q[ψ] for all predicates p and q, and all tuples π and ψ of
relative (`, d)-paths, such that the arities of π and ψ are the same as those of p and q, respectively. All
elements of ∆ and Θ that we do not explicitly mention are defined as ⊥.

64

The Impact of Treewidth on ASP Grounding and Solving

variables in r such that the instantiated connection-guard of r indeed appears in the input
facts. To this end, let r be a rule in Π. We first define Ir to be the following set of objects:
If the connection-guard of r contains an atom g(Xi1 , . . . , Xik), then Ir contains an element
〈g, i1, . . . , ik〉.

instr(x1, . . . , x|Var(r)|) ≡
∧

〈g,i1,...,ik〉∈Ir

∃y
(
g(y) ∧ in1(y, xi1) ∧ · · · ∧ ink(y, xik)

)
For convenience, we now define the following formula for all nonnegative integers k and m,
and for each tuple 〈i1, . . . , ik〉 of integers between 1 and m:

select〈i1,...,ik〉(x1, . . . , xm, y1, . . . , yk) ≡ y1 = xi1 ∧ · · · ∧ yk = xik

The formula selecti(x,y) is true if and only if the elements of y are those elements of x
given by the indices in i.

Next, for each predicate p, we define Op to be the following set of objects: If a rule r in
Π contains an atom p(Xi1 , . . . , Xik), then the set Op contains 〈r, i〉, where i = 〈i1, . . . , ik〉.
With this, we define a formula occursp(x) to express that the ground atom p(x) occurs in
gr(Π ∪ A).

occursp(x) ≡
∨

〈r,i〉∈Op

∃y
(

instr(y) ∧ selecti(y,x)
)

We now put this auxiliary formula to use: For each predicate p of arity k occurring in Π
and for each k-tuple π of relative (`, d)-paths, we define the following formula δp[π](x) to
be an element of ∆v.

δp[π](x) ≡ ∃y
(

pid`,dπ (x,y) ∧ occursp(y)
)

This formula is true if and only if x together with π is the (`, d)-path-based identifier of
some tuple a of domain elements and p(a) occurs in gr(Π ∪ A); the resulting copy of x in
the output structure then corresponds to the atom p(a).

For each atom p(a) in the grounding, we thus produce a vertex element, since a has
an (`, d)-path-based identifier by Lemma 25. Moreover, different atoms produce different
vertex elements and every vertex element that we produce corresponds to an atom in the
grounding by our construction of the occursp formulas. This proves that there is a bijection
between the atoms in the grounding and the vertex elements.

Formulas in ∆e. These formulas shall produce the edge elements. We again define an
auxiliary formula.

For all predicates p and q of arity k and m, respectively, we define Tp,q to be the
following set of objects: If there is a rule r in Π such that r contains atoms p(Xi1 , . . . , Xik)
and q(Xj1 , . . . , Xjm), then Tp,q contains 〈r, i, j〉, where i = 〈i1, . . . , ik〉 and j = 〈j1, . . . , jm〉.
With this, we now define a formula togetherp,q(x,y), where x and y are tuples of variables
with arity k and m, respectively. This formula expresses that the two ground atoms p(x)
and q(y) occur together in some rule of gr(Π ∪ A).

togetherp,q(x,y) ≡
∨

〈r,i,j〉∈Tp,q

∃z
(

instr(z) ∧ selecti(z,x) ∧ selectj(z,y)
)

65

Bliem, Morak, Moldovan, & Woltran

With this auxiliary formula in hand, we define the following formula δp[π]q[ψ](x) to be
an element of ∆e, for all predicates p and q, and all tuples π and ψ of relative (`, d)-paths,
such that the arities of π and ψ are the same as those of p and q, respectively.

δp[π]q[ψ](x) ≡

{
⊥ if p[π] = q[ψ]

∃y∃z
(

pid`,dπψ(x,y, z) ∧ togetherp,q(y, z)
)

otherwise

This formula is true if and only if there are tuples a and b of the same arity as p and q,
respectively, such that (1) x together with πψ is the (`, d)-path-based identifier of ab, and
(2) the atoms p(a) and q(b) are different and occur together in some rule of gr(Π ∪ A).
The resulting copy of x in the output structure then corresponds to the edge from p(a) to
q(b) in the primal graph. Due to symmetry, we can see that then also an edge in the other
direction will be created. Since both atoms are different if the formula is true, we do not
introduce self-loops.

For each pair of different atoms p(a) and q(b) that jointly occur in a rule of the ground-
ing, we thus correctly produce two edge elements, since ab has an (`, d)-path-based identifier
by Lemma 26. Moreover, different such pairs of atoms produce different edge elements, and
every edge element that we produce corresponds to a joint occurrence of two atoms in a
rule of the grounding by our construction of the togetherp,q formulas.

Formulas in Θ. These formulas shall ensure that each edge element is incident to the two
appropriate vertex elements. First we define the formula meetπ,ψ(x, y) for each integer k
and all k-tuples π and ψ of relative paths. The formula is true if and only if xπ = yψ.

meet〈π1,...,πk〉,〈ψ1,...,ψk〉(x, y) ≡
∧

1≤i≤k
∃z
(

reachπi(x, z) ∧ reachψi(y, z)
)

Now let p and q be predicates occurring in Π, and let π and ψ be tuples of relative
(`, d)-paths. We define a formula eqp[π],q[ψ](x, y) to express that the atoms p(xπ) and q(yψ)
are equal.

eqp[π],q[ψ](x, y) ≡

{
meetπ,ψ(x, y) if p = q

⊥ otherwise

Let p, q and q′ be predicates occurring in Π, and let π, ψ and ψ′ be tuples of relative
(`, d)-paths with the same arity as p, q and q′, respectively. We define the following formulas
to be an element of Θ:

θin1, p[π], q[ψ]q′[ψ′](x, y) ≡ eqp[π],q[ψ](x, y)

θin2, p[π], q[ψ]q′[ψ′](x, y) ≡ eqp[π],q′[ψ′](x, y)

We only explain the first of these formulas, as the other case is symmetric.
The formula θin1, p[π], q[ψ]q′[ψ′](x, y) is true if and only if the atom p(a) is equal to q(b),

where a = xπ and b = yψ. If this formula is true, it makes the edge represented by the
respective copy of y an outgoing edge of p(a) because of the subscript in1.

We first show that, whenever our transduction causes an edge element to be incident to
a vertex element, the corresponding edge in the primal graph is indeed an outgoing edge
of the appropriate vertex. Suppose there are predicates p, q and p′, tuples π, ψ and ψ′,

66

The Impact of Treewidth on ASP Grounding and Solving

as well as domain elements x and y such that (1) δp[π](x) is true, (2) δq[ψ]q′[ψ′](y) is true,
and (3) θin1, p[π], q[ψ]q′[ψ′](x, y) is true. As observed in our definition of ∆v, (1) means that
x together with π is the (`, d)-path-based identifier of some tuple a, and the grounding
contains an atom p(a). From (2) we get that there are tuples b and b′ such that y together
with ψψ′ is the (`, d)-path-based identifier of bb′. We have also seen that by (2) there is a
rule in the grounding that contains both q(b) and q′(b′), hence there is an edge from q(b)
to q′(b′) in the primal graph. By (3) and the definition of (`, d)-path-based identifiers (in
particular those of a, b and b′), we know that p(a) is equal to q(b). Hence the edge in the
primal graph from q(b) to q′(b′) is indeed an outgoing edge of p(a).

We now prove the other direction: Whenever an edge in the primal graph is an outgoing
edge of a vertex, a formula in Θ defining the relation in1 causes the corresponding edge
element to an outgoing edge of the appropriate vertex element. Suppose that the primal
graph contains an edge from atom p(a) to atom q(b). Then these atoms occur together in a
rule of the grounding and, as we have seen in our definition of ∆v and ∆e, our transduction
produces a vertex element v for p(a) and an edge element e for the edge from p(a) to q(b).
Now let x and y be domain elements of A, and let π, ψ and ψ′ be tuples of relative (`, d)-
paths, such that x together with π is the (`, d)-path-based identifier of a, and y together with
ψψ′ is the (`, d)-path-based identifier of ab. By definition of (`, d)-path-based identifiers,
xπ = a; moreover, yψψ

′
= ab, which entails yψ = a. Since both a = xπ and a = yψ,

the formula eqp[π],p[ψ](x, y) is clearly true. Hence the formula θin1, p[π], p[ψ]q[ψ′](x, y) is true,
which correctly makes the edge element e an outgoing edge of the vertex element v.

For the remaining relation formulas, which define the relation E, we proceed in the same
way as in the proof of Theorem 14.

This completes the construction of the MSO transduction κΠ,d. Let A be an input
structure for Π with degree bounded by d. Clearly, since Π, d and ` are fixed, so is κΠ,d.
We have argued that κΠ,d(Inc(A)) yields the incidence structure of the primal graph of
gr(Π ∪ A) as desired. By Theorem 5 and the fact that A, by assumption, has bounded
treewidth, this proves our claim for constant-free programs.

We can also generalize this proof to programs with constants (Bliem, 2017).

We now illustrate this transduction for the same program as in Example 18.

Example 27. Let Π be the connection-guarded program from Example 18. We denote the
rules by r1, . . . , r4 from top to bottom. Again let G be the input structure for Π satisfying
dom(G) = {a, b}, succG = {〈a, b〉} and eG = {〈b, a〉}, and whose degree is bounded by some
integer d. We denote the domain element of Inc(G) for the fact 〈b, a〉 in eG and for 〈a, b〉 in
succG by ba and ab, respectively, and we assume the ordering a < b < ab < ba. We show
how κΠ,d transforms Inc(G) into the incidence structure of the primal graph of gr(Π ∪ G).

For the vertex elements, first observe that the formula instr(b, a) is true for every rule
r because each rule has the guard e(X, Y) and the only input fact is e(b, a). Now observe
that all of the formulas occurse(b, a), occursr(a), occursr(b), occursg(a) and occursg(b) are
true. For instance, observe that Oe = {〈r1, 1, 2〉, 〈r2, 1, 2〉, 〈r3, 1, 2〉, 〈r4, 1, 2〉} (under the
assumption that the first variable of each rule is X and the second is Y); now clearly the
subformula instr(b, a) ∧ select〈1,2〉(b, a, b, a) is true for every rule r. Hence occurse(b, a) is
true. Since the (2, d)-path-based identifier of 〈b, a〉 is b in combination with 〈ε, 〈1〉〉, the

formula pid2,d
〈ε,〈1〉〉(b, b, a) is true. It is now easy to verify that δe[ε,〈1〉](b) is true by looking at

67

Bliem, Morak, Moldovan, & Woltran

its definition

δe[ε,〈1〉](b) ≡ ∃y1∃y2

(
pid2,d
〈ε,〈1〉〉(b, y1, y2) ∧ occurse(y1, y2)

)
.

Thus we produce the vertex element for e(b, a).
Similarly, Or = {〈r1, 1〉, 〈r2, 2〉, 〈r3, 1〉, 〈r3, 2〉}, by which we can see that both occursr(a)

and occursr(b) are true due to the elements of Or containing 2 and 1, respectively. The
(2, d)-path-based identifiers of 〈a〉 and 〈b〉 are a together with 〈ε〉 and b together with 〈ε〉,
respectively. This makes δr[ε](a) and δr[ε](b) true and produces the vertex elements for r(a)
and r(b), respectively.

We illustrate the edge elements just by the construction for the edge from atom r(a)
to atom e(b, a). Note that togetherr,e(〈a〉, 〈b, a〉) is true because Tr,e contains the tu-
ple 〈r1, 〈2〉, 〈1, 2〉〉 as well as 〈r3, 〈2〉, 〈1, 2〉〉, and clearly both subformulas instr1(b, a) ∧
select〈2〉(b, a, a) ∧ select〈1,2〉(b, a, b, a) and instr3(b, a) ∧ select〈2〉(b, a, a) ∧ select〈1,2〉(b, a, b, a)
are true. Moreover, observe that b together with 〈〈1〉, ε, 〈1〉〉 is the (2, d)-path-based iden-

tifier of 〈a, b, a〉. So the formula pid2,d
〈〈1〉,ε,〈1〉〉(b, a, b, a) is true. Hence, by looking at the

definition

δr[〈1〉]e[ε,〈1〉](b) ≡ ∃y1∃z1∃z2

(
pid2,d
〈〈1〉,ε,〈1〉〉(b, y1, z1, z2) ∧ togetherr,e(〈y1〉, 〈z1, z2〉)

)
,

we can conclude that δr[〈1〉]e[ε,〈1〉](b) is true, which produces the desired edge element.
Finally we show that our transduction indeed makes the edge that should go from r(a)

to e(b, a) an outgoing edge of r(a). Recall that the vertex element exists due to δr[ε](a)
being true, and the edge element exists due to δr[〈1〉]e[ε,〈1〉](b) being true. Looking at the
definition

θin1, r[ε], r[〈1〉]e[ε,〈1〉](a, b) ≡ eqr[ε],r[〈1〉](a, b),

we can observe that clearly eqr[ε],r[〈1〉](a, b) is true, so the vertex is incident to the edge
element as desired. 4

Obviously every guarded ASP program is also connection-guarded. The other direction,
however, is not true. Consider, for example, the connection-guarded program consisting
of the rule p(X, Z) ← e(X, Y), e(Y, Z). As an input for this program, consider a path of
length 2. The atoms over predicate p in the unique answer set contains both endpoints
of the path. However, there can be no equivalent guarded program since answer sets of
groundings resulting from guarded programs have the property that the atoms over any
predicate can only be a subset of the atoms over an extensional predicate.

While connection-guarded ASP is a strict superset of guarded ASP in the sense that
each guarded program is connection-guarded but not vice versa, there seems to be a price
to pay for the higher generality when the objective is to keep the treewidth of the grounding
low: Comparing Theorem 14, which concerns guarded ASP programs, with Theorem 22,
which concerns connection-guarded programs, we notice that we rely on the input hav-
ing bounded degree for showing that grounding connection-guarded programs preserves
bounded treewidth of the input, whereas there is no such assumption for guarded programs.

It is natural to ask whether this additional condition is necessary for connection-guarded
programs. Unfortunately it is, as witnessed by the rule p(X, Z) ← e(X, Y), e(Y, Z), where e

is extensional: When given a tree of height 1 with n vertices (and thus of treewidth 1 and

68

The Impact of Treewidth on ASP Grounding and Solving

maximum degree n − 1), the primal graph of the grounding has linear treewidth, as the
complete bipartite graph Kn−1,n−1 is a subgraph of it.

Also the restrictions in Definition 21 cannot easily be relaxed without destroying bounded
treewidth already with very simple programs: If we allow “unconnected” rules like p(X, Y)←
v(X), v(Y), then the complete graph Kn is a subgraph of the primal graph of the grounding
for any n-vertex instance.

Moreover, if we change the definition of the extensional join graph by drawing edges
also for intensional atoms, then the first encoding in Example 1 is allowed, which generates
Kn for any connected graph.

5. Complexity

We have seen that the restrictions imposed by the class of connection-guarded ASP are
optimal in the sense that removing any one of them destroys the desired property that
grounding preserves bounded treewidth of the input when the degree is also bounded. On
the other hand, guarded ASP does not require the bound on the degree, but it is syntactically
even more restrictive. This raises suspicions about whether the classes are too restrictive
to be useful.

Luckily, straightforward encodings for problems like Graph Coloring or Hamiltonian
Cycle even fall into the class of guarded ASP (cf. the second encoding in Example 1), and
consequently also into connection-guarded ASP. Moreover, it turns out that the restrictions
imposed by guardedness and connection-guardedness do not alleviate the complexity of
deciding answer set existence when the program is fixed:

Theorem 28. It is ΣP
2 -complete to decide for a fixed guarded or connection-guarded ASP

program Π and a given input structure A whether Π ∪ A has an answer set.

Proof. Membership follows from the general case. For hardness, we present a guarded
encoding for the well-known ΣP

2 -complete problem Qsat2. We are given a formula

∃x1 · · · ∃xk∀y1 · · · ∀y` ϕ,

where ϕ is a formula in 3-DNF (i.e., a disjunction of conjunctive terms, each containing at
most three literals), and the question is whether there are truth values for the x variables
such that for all truth values for the y variables ϕ is true. We assume that each disjunct in
ϕ contains exactly three literals, which can be achieved by using the same literal multiple
times in a disjunct.

Consider the ASP program in Figure 6, which is based on the encoding in Section 3.3.5
of Leone et al. (2006). The Qsat2 formula is represented as a structure A as follows: The
domain of A consists of all variables in ϕ and two special elements > and ⊥. We choose
verumA = {>} and falsumA = {⊥}. The relations existsA and forallA consist of all
existentially and universally quantified variables, respectively. Finally, for each disjunct
l1 ∧ l2 ∧ l3 in the formula, we put an element 〈p1, p2, p3, q1, q2, q3〉 into termA, where pi
denotes vi if li is a positive atom vi, otherwise pi = >, and qi denotes vi if li is an atom
of the form not vi, otherwise qi = ⊥. The element 〈p1, p2, p3, q1, q2, q3〉 thus represents
p1 ∧ p2 ∧ p3 ∧¬q1 ∧¬q2 ∧¬q3, which is equivalent to the original disjunct. This program is

69

Bliem, Morak, Moldovan, & Woltran

t(T)← verum(T).

f(F)← falsum(F).

t(X) ∨ f(X)← exists(X).

t(Y) ∨ f(Y)← forall(Y).

w← term(X, Y, Z, Na, Nb, Nc), t(X), t(Y), t(Z), f(Na), f(Nb), f(Nc).

t(Y)← w, forall(Y).

f(Y)← w, forall(Y).

← not w.

Figure 6: An encoding of Qsat2 in guarded ASP

treewidth degree treewidth + degree

guarded FPT (29) ΣP
2 -complete (32) FPT

connection-guarded NP-hard (31) ΣP
2 -complete FPT (30)

Table 1: Parameterized complexity of answer set existence for our considered classes when the
program is fixed. In parentheses: Number of the theorem proving the result. Results without
parentheses are implied by other results.

clearly guarded and indeed encodes the Qsat2 problem, as can be seen by the arguments
in Leone et al. (2006).

Having concluded our investigation of the classical complexity of the answer set ex-
istence problem for our classes, we now turn to the parameterized complexity of solving
fixed guarded and connection-guarded ASP programs. The parameters we consider are
the treewidth and the degree of the input structures, as well as the combined parameter
treewidth + degree. Our most important results are summarized in Table 1. In the following
we prove these results (and more) individually.

When we consider the treewidth of the input structures as the parameter, we will see
that answer-set solving for fixed guarded programs is in fact fixed-parameter tractable. It
is also fixed-parameter tractable if we consider fixed connection-guarded programs and the
combination of treewidth and degree as the parameter. In other words, the ASP classes we
defined are not only useful for encoding problems in such a way that we implicitly benefit
from the treewidth-sensitivity inherent to state-of-the-art ASP solvers due to the results
in Theorem 14 and Theorem 22, but they are also amenable to algorithms that explicitly
exploit small treewidth.

Theorem 29. For every fixed guarded ASP program Π and every family A of input struc-
tures of bounded treewidth, the problem of deciding whether, given any input structure
A ∈ A, the program Π ∪ A has an answer set can be decided in linear time.

Proof. As we have shown in Theorem 14, grounding a fixed guarded ASP program Π to-
gether with an input structure A leads to a grounding Γ whose treewidth only depends on
the treewidth of A. The size of the grounding is linear in the size of A, since every rule in
Π is guarded and thus has at most one ground instance in Γ for every fact in A. We can
now simply use Γ as the input for a fixed-parameter linear algorithm solving ground ASP.
Gottlob et al. (2010) showed that such an algorithm exists.

70

The Impact of Treewidth on ASP Grounding and Solving

Unsurprisingly, an analogous statement can be shown for connection-guarded ASP.

Theorem 30. For every fixed connection-guarded ASP program Π the problem of deciding
for a given input structure A whether Π ∪ A has an answer set is fixed-parameter linear
when parameterized by the combination of the treewidth and degree of A.

Proof. Since Π is connection-guarded, observe that the size of gr(Π ∪ A) is in O(n · d`),
where n and d denote the size and degree of A, respectively, and ` is the maximum number
of variables in a rule of Π. Hence, for bounded d and `, the size of the grounding is linear in
n. We can now prove the statement in the same way as Theorem 29, with the modification
that we invoke Theorem 22 instead of Theorem 14.

We obtained our positive results on connection-guarded ASP by parameterizing the
problem by the combination of treewidth and degree, whereas guarded ASP for any fixed
non-ground encoding is already FPT when parameterized by treewidth only. It is thus
natural to ask whether, for fixed encodings, connection-guarded ASP is FPT when param-
eterized only by either treewidth or degree.

Recall that in Section 4.3 we pointed out that grounding a connection-guarded encoding
together with an input structure of arbitrary degree may lead to unbounded treewidth of
the grounding. It is therefore not very surprising that the degree bound is indeed necessary
for obtaining fixed-parameter tractability (unless P = NP):

Theorem 31. The problem of deciding whether a fixed connection-guarded program Π to-
gether with a given input structure A has an answer set is NP-hard. This even holds if the
treewidth of A is at most three and Π contains no disjunctions.

Proof. We reduce from the following NP-complete problem.

Subgraph Isomorphism

Input: Graphs G and H

Question: Is there a subgraph of G that is isomorphic to H?

This problem remains NP-hard even if the treewidth of both G and H is at most two
(Matoušek & Thomas, 1992).

Let 〈G,H〉 be an instance of Subgraph Isomorphism. We will present a connection-
guarded ASP encoding for the Subgraph Isomorphism problem using the signature σ =
{vg, vh, eg, eh, bridge, eq}, where vg and vh are unary predicates used to represent the
vertices of G and H, respectively; eg and eh are binary predicates for the respective edges;
the binary predicate bridge is used to connect each vertex ofG with a new “bridge element”,
which is in turn connected to each vertex of H also via the bridge predicate; and the binary
eq predicate contains all pairs of equal vertices. According to this intended meaning, we
define a structure A over σ by dom(A) = V(G) ∪ V(H) ∪ {b} (where b is a new element),
vgA = V(G), vhA = V(H), egA = E(G), ehA = E(H), bridgeA = {(g, b), (b, h) | g ∈
V(G), h ∈ V(H)} and eqA = {(v, v) | v ∈ V(G)∪V(H)}. Note that for every pair (x, y) in
egA or ehA there is also (y, x) in egA or ehA, respectively, since the graphs are undirected.

71

Bliem, Morak, Moldovan, & Woltran

% Guess a subgraph S of G using predicates vs/1 and es/2.

vs(X)← vg(X), not not vs(X).

not vs(X)← vg(X), not vs(X).

es(X, Y)← eg(X, Y), vs(X), vs(Y), not not es(X, Y).

not es(X, Y)← eg(X, Y), vs(X), vs(Y), not es(X, Y).

% Guess a relation representing an isomorphism using predicate iso/2.

iso(G, H)← vs(G), vh(H), not not iso(G, H), bridge(G, B), bridge(B, H).

not iso(G, H)← vs(G), vh(H), not iso(G, H), bridge(G, B), bridge(B, H).

% The guessed relation must be a bijection from V(S) to V(H).

← iso(G, H1), iso(G, H2), not eq(H1, H2),

bridge(G, B), bridge(B, H1), bridge(B, H2).

← iso(G1, H), iso(G2, H), not eq(G1, G2),

bridge(G1, B), bridge(G2, B), bridge(B, H).

used(G)← iso(G, H), bridge(G, B), bridge(B, H).

used(H)← iso(G, H), bridge(G, B), bridge(B, H).

← vg(G), vs(G), not used(G).

← vh(H), not used(H).

% The guessed relation must be an isomorphism.

← iso(G1, H1), iso(G2, H2), es(G1, G2), not eh(H1, H2),

bridge(G1, B), bridge(G2, B), bridge(B, H1), bridge(B, H2).

← iso(G1, H1), iso(G2, H2), eh(H1, H2), not es(G1, G2),

bridge(G1, B), bridge(G2, B), bridge(B, H1), bridge(B, H2).

Figure 7: An encoding of Subgraph Isomorphism in connection-guarded ASP

72

The Impact of Treewidth on ASP Grounding and Solving

The connection-guarded program in Figure 7 encodes Subgraph Isomorphism.11 By
construction, H is isomorphic to a subgraph of G if and only if Π ∪ A has an answer set.

The treewidth of A is the maximum of the treewidth of G and of H plus one: Given tree
decompositions TG and TH of G and H, respectively, we can obtain a tree decomposition of
A by taking the disjoint union of TG and TH , adding the bridge element b to every bag and
drawing an edge between an arbitrary node from TG and an arbitrary node from TH .

ASP solving for connection-guarded programs thus remains hard if only the treewidth
of the input is bounded. In fact our result not only rules out fixed-parameter tractable
algorithms but even polynomial-time algorithms when we consider the treewidth of the
input as a constant (unless P = NP).

If we allow disjunctions, answer set existence for fixed programs becomes ΣP
2 -complete

in general, whereas we have shown in Theorem 31 that the problem is NP-hard when the
program is connection-guarded and the input has bounded treewidth. Since this is only
a hardness result, there might still be hope for disjunctive ASP that bounded treewidth
lowers the complexity by one level of the polynomial hierarchy. However, we consider this
unlikely and we suspect that answer set existence for fixed connection-guarded programs
is ΣP

2 -complete for bounded treewidth. Since we are not aware of any problems that have
been shown to be complete for this class on instances of bounded treewidth, we leave this
as an open question.

We now prove that the degree alone is also not sufficient for obtaining fixed-parameter
tractability, even if the fixed program is guarded.

The following statement says that it is not enough to consider the degree alone as a
parameter. Indeed, even for guarded programs, the complexity of answer set existence
remains as hard under this assumption as it is in the case of general ASP.

Theorem 32. It is ΣP
2 -complete to decide for a fixed guarded program Π and a given input

structure A whether Π ∪ A has an answer set even if the degree of A is at most 15.

Proof. Membership follows from the general case. For hardness, we present a reduction from
the well-known ΣP

2 -complete problem Qsat2. We are given a formula ∃x1 · · · ∃xk∀y1 · · · ∀y` ϕ,
where ϕ is a formula in 3-DNF, and the question is whether there are truth values for the
x variables such that for all truth values for the y variables ϕ is true. We may assume that
every variable occurs at most three times in ϕ (Peters, 2017).

We can use the same ASP encoding as in the proof of Theorem 28, but we need to
choose a slightly different input structure because the domain elements > and ⊥ from that
construction have unbounded degree. Recall that the old construction puts an element
〈p1, p2, p3, q1, q2, q3〉 into termA for each disjunct in ϕ and that some pi or qj may be > or
⊥ in order to represent the equivalent term p1 ∧ p2 ∧ p3 ∧ ¬q1 ∧ ¬q2 ∧ ¬q2. The only thing
that matters for > and ⊥ is that they are always interpreted as true and false, respectively,
which the old construction ensures by putting them in verumA and falsumA, respectively.
We can thus just use a certain number of copies of > and ⊥ such that every copy occurs

11 In practice, we could simplify this encoding substantially by using convenient language constructs
provided by ASP systems. For the purpose of this proof, we use our rather restrictive base language.
Moreover, note that the positive body of many rules contains atoms whose only purpose is to make the
rules connection-guarded. Such redundant atoms could be omitted in practice.

73

Bliem, Morak, Moldovan, & Woltran

exactly once in termA and every copy is in the respective verumA or falsumA relation.
Clearly this reduction to ASP is still correct. The degree of A is at most 15 because every
domain element has at most five neighbors in each tuple of termA and every variable occurs
in at most three tuples.

6. Discussion

In our investigation of the effect of grounding on the treewidth, we rely on the rather
primitive notion of grounding from Definition 6. State-of-the-art grounders, on the other
hand, produce groundings whose primal graphs are generally subgraphs of the output of
our transductions. However, since degree and treewidth of a graph can only decrease for a
subgraph, our results apply also to state-of-the-art grounders.

Moreover, state-of-the-art grounders are capable of solving problems without needing
to call an ASP solver if the program has an answer set that is a deterministic consequence
of the input, i.e., if no non-deterministic guessing is involved. This is the case, for instance,
for Horn programs (that is, ASP programs without negation, disjunction and aggregates).
Our notion of grounding, on the other hand, assumes that the grounder does not propagate
deterministic consequences and thus cannot solve such simple problems by itself. This is
in fact a reasonable assumption: The question we are concerned with in this work is which
form a non-ground rule may have so it does not “destroy” bounded treewidth of the input.
Any encoding can be made “nasty” in the sense that a grounder cannot solve the problem,
namely by forcing atoms to be guessed. This prevents the grounder from eliminating atoms
from rule bodies, and it does not change the form of rules.

There have been some investigations concerning treewidth in the context of ASP. Beside
parameterized complexity results (Gottlob et al., 2010; Pichler et al., 2014) for ground pro-
grams, there was also work on tree-decomposition-based dynamic programming algorithms
(Jakl et al., 2009) and their implementations (Morak, Pichler, Rümmele, & Woltran, 2010;
Fichte et al., 2017). However, in contrast to the current work, most studies of treewidth in
ASP solving only considered the ground case.

Tree decompositions have been applied in the context of non-ground ASP for rule decom-
position techniques (Bichler, Morak, & Woltran, 2017, 2016). The goal of this, however, is
improving efficiency without explicitly aiming at fixed-parameter tractability. Hence those
efforts go in a different direction than the current work.

The FPT result in Theorem 29 (or Theorem 30) has the side effect that (connection-)
guarded ASP can also serve as a tool for establishing that a problem is fixed-parameter
tractable when parameterized by treewidth (or by the combination of treewidth and degree).
Using our ASP classes in this way is similar to a very established technique for classifying
a problem parameterized by treewidth as FPT: If the problem can be expressed in MSO,
then by Courcelle’s theorem the FPT membership follows. It is therefore a natural question
how our ASP classes relate to MSO.

It is well known that MSO model checking, just as first-order model checking, is PSPACE-
complete (Stockmeyer, 1974; Vardi, 1982), and it is PSPACE-hard even if the input structure
is fixed and contains only two domain elements (Kreutzer, 2012). In contrast, we know
that we cannot express problems harder than ΣP

2 in ASP unless the polynomial hierarchy

74

The Impact of Treewidth on ASP Grounding and Solving

collapses to the second level. Hence there are problems that can be expressed using MSO
but not in our ASP classes.

Nevertheless, there are also problems that can be expressed in connection-guarded ASP
but not in MSO. As we have seen in Theorem 31, answer set existence for fixed connection-
guarded programs is NP-hard for instances of bounded treewidth. But by Courcelle’s the-
orem, a reduction to MSO would imply FPT membership.

Of course, the fact that connection-guarded ASP allows us to define some problems that
we cannot define with MSO is only of limited significance because connection-guarded ASP
allows us to obtain FPT results when the parameter is the combination of treewidth and
degree, whereas we only need treewidth as the parameter for an FPT result using MSO.
Still, the class of connection-guarded programs may be of interest for algorithmic purposes
because it allows us to classify a problem as FPT when parameterized by treewidth plus
degree, as we have shown in Theorem 30. We are not aware of any extensions of MSO that
allow us to obtain new FPT results using this more restrictive parameter. Hence our result
may lead to an extension of MSO that can be used for classifying problems as FPT when
the parameter is treewidth + degree. This is subject of future work.

MSO has been extended in several ways to increase its expressive power while retaining
FPT (or at least XP) membership of model checking when parameterized by treewidth. For
overviews, we refer the reader to Knop, Koutecký, Masaŕık, and Toufar (2017) and Langer,
Reidl, Rossmanith, and Sikdar (2014). On the other hand, also our results on (connection-)
guarded ASP can be extended to more powerful languages. This has, in fact, been done by
Bliem (2017) for weak constraints and aggregates. We believe that especially connection-
guarded ASP with aggregates and weak constraints is an attractive language because it
allows us to express interesting problems and FPT classification tools for the parameter
treewidth + degree seem to be rare.

Even though in many cases a problem can also be expressed in (an extension of) MSO,
this is mostly interesting from a theoretical perspective, whereas the actual solving per-
formance of algorithms based on MSO model checking is usually clearly worse than that
of dedicated tools (Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, &
Saurabh, 2015, pp. 184–185), even though there have been considerable advances in this ef-
fort (Langer, Reidl, Rossmanith, & Sikdar, 2012; Bannach & Berndt, 2018). Even for rather
simple problems, MSO formulas can unfortunately be quite complex. For many problems in
ΣP

2 , expressing a problem in one of our classes not only yields a result about its complexity
by Theorems 29 and 30, but it should in most cases also give quite good performance in
practice due to the efficiency of ASP systems.

7. Conclusions

In this paper, we experimentally showed that modern ASP solvers perform better when the
ground input programs have small treewidth, all other things being equal. This is strong
evidence that one should not only aim for small groundings when encoding problems in
ASP, but also for groundings of small treewidth.

With this observation in mind, we identified two classes of ASP programs, namely
guarded and connection-guarded programs, with favorable properties. In particular, we
could show that guarded programs yield groundings of small treewidth whenever a graph

75

Bliem, Morak, Moldovan, & Woltran

representation of the input facts has small treewidth. For connection-guarded programs,
the same holds if additionally also the maximum degree of this graph is small.

Furthermore, we investigated the complexity of relevant reasoning problems on these
classes of programs. While guarded and connection-guarded programs have a restrictive
syntax, they can still express problems that are complete for the second level of the poly-
nomial hierarchy.

We also give theoretical evidence that (connection-)guarded programs are promising
for solving problems on instances of small treewidth. Indeed, when parameterized by the
treewidth of the input, answer set solving is fixed-parameter tractable for fixed guarded pro-
grams, and an analogous result holds for connection-guarded programs when the parameter
consists of both treewidth and maximum degree. Finally, we showed that the additional
dependency on the maximum degree in the case of connection-guarded ASP cannot be
dropped (unless P = NP) as this makes the problem NP-hard.

The results presented in this paper thus shed light on the relationship between treewidth
and solving performance and provide us with tools to obtain more efficient ASP encodings.
Future work includes the investigation of alternative classes of programs that preserve small
treewidth (for instance, taking the concept of tightness (Erdem & Lifschitz, 2003) addition-
ally into account) and extending our research to other width measures from the litera-
ture (Eiben, Ganian, & Szeider, 2018; Courcelle, Engelfriet, & Rozenberg, 1991; Gajarský,
Lampis, & Ordyniak, 2013).

Acknowledgments

This work is an improved and significantly extended version of the conference publications
by Bliem, Moldovan, Morak, and Woltran (2017) and Bliem (2018), and contains additional
proofs, constructions, and discussions, based on the PhD thesis of Bliem (2017). It was
funded in part by the Austrian Science Fund (FWF) under grant numbers Y698, P30930,
and P32830, as well as by the Academy of Finland under grants 276412 and 312662.

76

The Impact of Treewidth on ASP Grounding and Solving

References

Alviano, M., Dodaro, C., Leone, N., & Ricca, F. (2015). Advances in WASP. In Proceedings
of LPNMR 2015, pp. 40–54. Springer.

Amendola, G., Ricca, F., & Truszczynski, M. (2017). Generating hard random boolean for-
mulas and disjunctive logic programs. In Sierra, C., & Bacchus, F. (Eds.), Proceedings
of IJCAI 2017, pp. 532–538. AAAI Press.

Atserias, A., Fichte, J. K., & Thurley, M. (2011). Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. (JAIR), 40, 353–373.

Bannach, M., & Berndt, S. (2018). Practical access to dynamic programming on tree
decompositions. In Proceedings of ESA 2018, Vol. 112 of LIPIcs, pp. 6:1–6:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

Bichler, M., Morak, M., & Woltran, S. (2016). The power of non-ground rules in answer
set programming. Theory and Practice of Logic Programming, 16 (5-6), 552–569.

Bichler, M., Morak, M., & Woltran, S. (2017). lpopt: A rule optimization tool for answer set
programming. In Revised Selected Papers of LOPSTR 2016, pp. 114–130. Springer.

Bliem, B. (2017). Treewidth in Non-Ground Answer Set Solving and Alliance Problems in
Graphs. Ph.D. thesis, Fakultät für Informatik an der Technischen Universität Wien.
http://permalink.obvsg.at/UTW/AC14478683.

Bliem, B. (2018). ASP programs with groundings of small treewidth. In Proceedings of
FoIKS 2018, pp. 97–113. Springer.

Bliem, B., Moldovan, M., Morak, M., & Woltran, S. (2017). The impact of treewidth on
ASP grounding and solving. In Proceedings of IJCAI 2017, pp. 852–858. ijcai.org.

Bodlaender, H. L. (1996). A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25 (6), 1305–1317.

Bodlaender, H. L., & Koster, A. M. C. A. (2010). Treewidth computations I. upper bounds.
Information and Computation, 208 (3), 259–275.

Brewka, G., Eiter, T., & Truszczynski, M. (2011). Answer set programming at a glance.
Commun. ACM, 54 (12), 92–103.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,
N., Ricca, F., & Schaub, T. (2015). ASP-core-2 input language format. https:

//www.mat.unical.it/aspcomp2013/ASPStandardization.

Călinescu, G., Fernandes, C. G., & Reed, B. A. (2003). Multicuts in unweighted graphs
and digraphs with bounded degree and bounded tree-width. Journal of Algorithms,
48 (2), 333–359.

Courcelle, B., & Engelfriet, J. (2012). Graph Structure and Monadic Second-Order Logic
– A Language-Theoretic Approach, Vol. 138 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press.

Courcelle, B., Engelfriet, J., & Rozenberg, G. (1991). Context-free handle-rewriting hyper-
graph grammars. In Graph-Grammars and their Application to Computer Science,

77

Bliem, Morak, Moldovan, & Woltran

4th International Workshop, Bremen, Germany, March 5–9, 1990, Proceedings, Vol.
532 of LNCS, pp. 253–268.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., & Saurabh, S. (2015). Parameterized Algorithms. Springer International Publish-
ing, Cham, Switzerland.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and expressive
power of logic programming. ACM Comput. Surv., 33 (3), 374–425.

Eiben, E., Ganian, R., & Szeider, S. (2018). Solving problems on graphs of high rank-width.
Algorithmica, 80 (2), 742–771.

Eiter, T., & Gottlob, G. (1995). On the computational cost of disjunctive logic programming:
Propositional case. Ann. Math. Artif. Intell., 15 (3-4), 289–323.

Eiter, T., Gottlob, G., & Mannila, H. (1997). Disjunctive datalog. ACM Trans. Database
Syst., 22 (3), 364–418.

Elkabani, I., Pontelli, E., & Son, T. C. (2005). Smodelsa - A system for computing answer
sets of logic programs with aggregates. In Proceedings of LPNMR 2005, pp. 427–431.
Springer.

Erdem, E., & Lifschitz, V. (2003). Tight logic programs. Theory and Practice of Logic
Programming, 3 (4-5), 499–518.

Fichte, J. K., Hecher, M., Morak, M., & Woltran, S. (2017). Answer set solving with
bounded treewidth revisited. In Proceedings of LPNMR 2017, pp. 132–145. Springer.

Fichte, J. K., & Szeider, S. (2015). Backdoors to tractable answer set programming. Artif.
Intell., 220, 64–103.

Fichte, J. K., Kronegger, M., & Woltran, S. (2017). A multiparametric view on answer set
programming. In Proceedings of ASPOCP 2017. CEUR-WS.org.

Gajarský, J., Lampis, M., & Ordyniak, S. (2013). Parameterized algorithms for modular-
width. In Proceedings of IPEC, Vol. 8246 of LNCS, pp. 163–176. Springer.

Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J., Schaub,
T., & Thiele, S. (2015). Potassco user guide. https://sourceforge.net/projects/
potassco/files/guide/.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer Set Solving in
Practice. Morgan & Claypool.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., & Schneider, M. T.
(2011). Potassco: The Potsdam answer set solving collection. AI Commun., 24 (2),
107–124.

Gebser, M., Kaufmann, B., & Schaub, T. (2012). Conflict-driven answer set solving: From
theory to practice. Artif. Intell., 187, 52–89.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In
Proc. ICLP, pp. 1070–1080.

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9 (3/4), 365–386.

78

The Impact of Treewidth on ASP Grounding and Solving

Gottlob, G., Grädel, E., & Veith, H. (2002). Datalog LITE: a deductive query language
with linear time model checking. ACM Trans. Comput. Log., 3 (1), 42–79.

Gottlob, G., Pichler, R., & Wei, F. (2010). Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artif. Intell., 174 (1), 105–132.

Jakl, M., Pichler, R., & Woltran, S. (2009). Answer-set programming with bounded
treewidth. In Proceedings of IJCAI 2009, pp. 816–822.

Kloks, T. (1994). Treewidth, Computations and Approximations, Vol. 842 of Lecture Notes
in Computer Science. Springer.

Knop, D., Koutecký, M., Masaŕık, T., & Toufar, T. (2017). Simplified algorithmic metathe-
orems beyond MSO: treewidth and neighborhood diversity. In Graph-Theoretic Con-
cepts in Computer Science - 43rd International Workshop, WG. Revised Selected Pa-
pers, pp. 344–357.

Kreutzer, S. (2012). On the parameterized intractability of monadic second-order logic.
Logical Methods in Computer Science, 8 (1).

Langer, A., Reidl, F., Rossmanith, P., & Sikdar, S. (2012). Evaluation of an mso-solver. In
Bader, D. A., & Mutzel, P. (Eds.), Proceedings of ALENEX 2012, pp. 55–63. SIAM /
Omnipress.

Langer, A., Reidl, F., Rossmanith, P., & Sikdar, S. (2014). Practical algorithms for MSO
model-checking on tree-decomposable graphs. Computer Science Review, 13-14, 39–
74.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F. (2006).
The DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log., 7 (3), 499–562.

Marek, V. W., & Truszczyński, M. (1999). Stable models – an alternative logic programming
paradigm. In The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398.
Springer.

Matoušek, J., & Thomas, R. (1992). On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Mathematics, 108 (1-3), 343–364.

Morak, M., Pichler, R., Rümmele, S., & Woltran, S. (2010). A dynamic-programming based
ASP-solver. In Proceedings of JELIA 2010, pp. 369–372. Springer.

Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms, Vol. 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press.

Peters, D. (2017). Precise complexity of the core in dichotomous and additive hedonic
games. In Proceedings of ADT 2017, pp. 214–227. Springer.

Pichler, R., Rümmele, S., Szeider, S., & Woltran, S. (2014). Tractable answer-set program-
ming with weight constraints: bounded treewidth is not enough. Theory and Practice
of Logic Programming, 14 (2), 141–164.

Robertson, N., & Seymour, P. D. (1986). Graph minors. II. algorithmic aspects of tree-
width. Journal of Algorithms, 7 (3), 309–322.

79

Bliem, Morak, Moldovan, & Woltran

Selman, B., Mitchell, D. G., & Levesque, H. J. (1996). Generating hard satisfiability prob-
lems. Artif. Intell., 81 (1-2), 17–29.

Stockmeyer, L. J. (1974). The Complexity of Decision Problems in Automata Theory. Ph.D.
thesis, Department of Electrical Engineering, MIT.

Szeider, S. (2003). On fixed-parameter tractable parameterizations of SAT. In Proceedings
of SAT 2003, pp. 188–202. Springer.

Truszczyński, M. (2011). Trichotomy and dichotomy results on the complexity of reasoning
with disjunctive logic programs. Theory and Practice of Logic Programming, 11 (6),
881–904.

Tseitin, G. S. (1983). On the complexity of derivation in propositional calculus. In Au-
tomation of Reasoning, pp. 466–483. Springer.

Urquhart, A. (1987). Hard examples for resolution. JACM, 34 (1), 209–219.

Vardi, M. Y. (1982). The complexity of relational query languages (extended abstract). In
Lewis, H. R., Simons, B. B., Burkhard, W. A., & Landweber, L. H. (Eds.), Proceedings
of STOC 1982, pp. 137–146. ACM.

Wen, L., Wang, K., Shen, Y., & Lin, F. (2016). A model for phase transition of random
answer-set programs. ACM Trans. Comput. Log., 17 (3), 22:1–22:34.

Zhao, Y., & Lin, F. (2003). Answer set programming phase transition: A study on randomly
generated programs. In Proc. ICLP, pp. 239–253. Springer.

80

