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Abstract
We present a new algorithm for computing pure-strategy ε-Bayes-Nash equilibria (ε-BNEs) in
combinatorial auctions with continuous value and action spaces. An essential innovation of our
algorithm is to separate the algorithm’s search phase (for finding the ε-BNE) from the verification
phase (for computing the ε). Using this approach, we obtain an algorithm that is both very fast and
provides theoretical guarantees on the ε it finds. Our main technical contribution is a verification
method which allows us to upper bound the ε across the whole continuous value space without
making assumptions about the mechanism. Using our algorithm, we can now compute ε-BNEs in
multi-minded domains that are significantly more complex than what was previously possible to
solve. We release our code under an open-source license to enable researchers to perform algorith-
mic analyses of auctions, to enable bidders to analyze different strategies, and to facilitate many
other applications.

1. Introduction

Combinatorial auctions (CA) are used to allocate multiple, indivisible goods to multiple bidders.
CAs allow bidders to express complex preferences on the space of all bundles of goods, taking into
account that goods can be complements or substitutes (Cramton et al., 2006). They have found
widespread use in practice, including for the sale of radio spectrum licenses (Cramton, 2013), for
the procurement of industrial goods (Sandholm, 2013), and for the allocation of TV ad slots (Goet-
zendorff et al., 2015).

Unfortunately, the strategyproof VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973)
has several serious flaws when applied to the CA setting: most notably, it can lead to very low
or even zero revenues despite high competition for the goods (Ausubel & Milgrom, 2006). Fur-
thermore, it leaves incentives for collusion (Day & Milgrom, 2008). For these reasons, many CAs
conducted in practice do not use VCG, instead opting for alternative payment rules, such as first-
price payments (also known as “pay-as-bid”) or other payment rules, typically from the class of
core-selecting rules, which are designed to make the winners’ payments high enough to guarantee
envy-freeness (Day & Milgrom, 2008). These alternative mechanisms are not strategyproof in gen-
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eral settings, and the behavior of bidders under them is not well understood. If we want to predict
auction outcomes in terms of desirable properties (such as incentives, revenue, efficiency), we must
therefore study them in equilibrium instead of at truth. As a first step, this requires us to choose a
suitable equilibrium concept.

1.1 Equilibria in CAs

In the full information setting, significant theoretical work has been done towards characterizing
the equilibria of CAs. For first-price payments, the set of Nash equilibria has been fully charac-
terized (Bernheim & Whinston, 1986); see the work of Milgrom (2004, Chapter 8.2) for a modern
treatment. Day and Raghavan (2007) showed that an analogous characterization holds for any pay-
ment rule that always selects bidder-Pareto-optimal core payments. While the full information Nash
equilibrium (NE) may be a good approximation of bidder behavior in some settings (e.g., repeated
auctions where bidders can reasonably be assumed to know others’ values), it has several issues:
there is a high multiplicity of equilibria, and each equilibrium must be supported by very precise
bids on losing packages. The latter issue is especially problematic, since in a full information set-
ting, a losing bidder would know a priori that he will not win any items, and thus has no reason
to participate in the auction at all. However, this bidder’s losing bid may be needed to keep the
winners in equilibrium. For more details on the issues of equilibrium selection and stability, see the
discussions in Bernheim and Whinston (1986) and Day and Raghavan (2007).

In addition to these theoretical issues, many real-world high-stakes auctions such as spectrum
auctions are only conducted once, and bidders work hard to keep their private information secret,
motivating the study of incomplete information settings. In such a setting, private information is
explicitly modelled by assuming that each bidder knows his own valuation but only has a prior
belief (i.e., a distribution) over the valuations of others. This leads to the solution concept of the
Bayes-Nash Equilibrium (BNE), where bidders maximize their expected utility over many possible
auction outcomes, weighted according to their beliefs.

Some analytical research into BNEs already exists. Non-combinatorial single-item auctions
have been studied extensively (Klemperer, 1999), but comparatively little is known about multi-
item auctions, as the difficulty of finding BNEs by hand increases markedly, requiring the solution
of challenging differential equations. For this reason, only a few analytical results exist in small
settings, most notably the Local-Local-Global (LLG) domain with two goods and three bidders
(which we define in Section 2.2). Goeree and Lien (2016) as well as Ausubel and Baranov (2020)
have independently derived the analytical BNE of the VCG-nearest or “quadratic” rule, which is
commonly used in practice (Day & Cramton, 2012). Furthermore, Ausubel and Baranov (2013)
have also derived analytical BNEs of three other payment rules. For first-price payments, Baranov
(2010) provides some necessary properties of BNEs, but does not fully characterize them.

As known analytical methods are not amenable to larger settings, the only feasible approach
to finding BNEs in such settings is through algorithmic methods. However, one challenge we face
when designing algorithms for finding BNEs in CAs is that equilibria are not known to exist in
general, but only in specific settings.1 Fortunately, every strategy profile is an ε-BNE for some

1. The general CA problem has a structure much richer than what is covered by the single crossing condition (Athey,
2001) or other approaches for games with discontinuous payoffs (McLennan et al., 2011). There have been some
results for restricted classes of auctions, such as uniform price auctions (McAdams, 2006), double auctions (Jackson
& Swinkels, 2005), and games with discrete actions and continuous single-dimensional types (Rabinovich et al.,
2013).
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ε. Thus, finding an ε-BNE with ε being as small as possible is a well-defined problem, and an
algorithm for solving this problem can be an important tool for auction designers to analyze existing
mechanisms and to design new ones.

1.2 Prior Algorithmic Work on Computing BNEs

Computer scientists have long worked on algorithms for computing equilibria in non-cooperative
games. The Gambit software package provides a number of algorithms to find NEs and BNEs
(McKelvey & McLennan, 1996; McKelvey et al., 2016), but only for finite games (with finite type
and action spaces). Solving auction games with even a modest number of types (valuations) and
actions quickly becomes infeasible with these general solvers; therefore, infinite games can only be
modeled with significant loss of fidelity. This is why researchers have turned towards developing
special-purpose algorithms for computing BNEs in CAs. One important class of BNE algorithms is
based on iterated best response. The algorithms proposed by Reeves and Wellman (2004), Vorobey-
chik and Wellman (2008) and Rabinovich et al. (2013) belong to this class. To keep the computation
manageable, all three algorithms simplify the strategy space (using piecewise linear strategies, mul-
tiplicative shading strategies, or a finite set of actions, respectively) before solving the simplified
auction game.

A fundamental limitation of this “simplify, then solve” approach is that the ε-BNE computed
is only valid within the space over which the algorithm searches for best responses. If this issue is
not handled carefully, it can lead to what we call the false precision problem: the modelling choices
that were made to speed up the computation end up distorting the auction game in meaningful ways,
and the equilibrium that is calculated might not be as good as the algorithm reports.2 To illustrate
this point, consider the following simple but striking thought experiment: We search for an ε-BNE
in a CA, but restrict the bidders’ actions to bidding zero on all bundles of items. Any iterated best
response algorithm will immediately find an ε-BNE with ε = 0, as there is no beneficial deviation.
Obviously, this 0-BNE only “survives” because bidders are artificially prevented from meaningfully
participating in the auction.

Restricting the action space of a game in order to make equilibrium computation easier is known
as action abstraction (Sandholm, 2015). For some types of finite games, abstraction methods have
been developed that guarantee that an equilibrium of the abstracted game can be translated into
an equilibrium of the original game, with a bound on how much the coarseness of the abstraction
affects the solution quality (Sandholm & Singh, 2012). Unfortunately, no such methods exist for
infinite games. A recent algorithm proposed by Bosshard et al. (2018) could be interpreted as a
kind of action abstraction for CAs, but it is only applicable to CAs where the payment rule is non-
decreasing (e.g., first-price auctions).

1.3 Overview of our Contribution

In this paper, we develop a fast algorithm for computing pure-strategy ε-BNEs in CAs, without
sacrificing accuracy in the formalization of the auction game or the equilibrium computed within
this game. For this purpose, we set up an algorithm framework (Section 3) that protects against the

2. Note that Vorobeychik and Wellman (2008)[Sec. 7.4] correctly state this limitation of their algorithm. Rabinovich
et al. (2013) also handle this issue correctly by only claiming to find the BNE in the “game with the restricted strategy
space.”. Reeves and Wellman (2004) restrict themselves to a class of auctions where the best response is guaranteed
to lie in the subset of the strategy space they search through.
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false precision problem. This framework splits the task of computing an ε-BNE into a search phase
and a verification phase.

In the search phase, our goal is to find an ε-BNE as quickly as possible. For this, we design an
algorithm based on iterated best response that is highly optimized to CAs (Section 4). We use many
numerical techniques to cut down on computation time. The result of the search phase is a BNE
candidate: a strategy profile likely to offer only small incentives to deviate for any bidder, but for
which the algorithm, at this time, only has an estimate of the ε (i.e., the incentives to deviate).

In the verification phase, our goal is to find an ε such that the equilibrium candidate is in fact
an ε-BNE. For this, it is important to compare the quality of the equilibrium candidate against the
best alternative strategies available in the full strategy space, without the restrictions imposed dur-
ing search. The main technical contribution of our paper is a verification procedure that computes
a theoretical upper bound on ε, taking into account the full strategy space of the auction game, i.e.,
the entire continuum of valuations and actions (Section 5). It is surprising that it is even possible
to derive such a theoretical bound, given that any algorithm can only evaluate a finite number of
individual valuations and actions, while the bound requires reasoning over the continuous value and
action spaces. To the best of our knowledge, our approach is the first to achieve such guarantees for
infinite games without restricting the strategy space. Our results require some mild theoretical con-
ditions to hold (most notably, independent distributions of bidders’ valuations), so we also provide
a second verification procedure that robustly estimates ε in arbitrary CA settings. This alternative
approach ensures that our algorithm is fully general. While it only produces an estimated ε, we also
show experimentally that, with sufficient computation time, the estimated ε and the upper bound on
ε converge towards each other.

We validate our approach by running a series of experiments in the LLG domain with two items
and three bidders. Our experiments show that the techniques we use significantly speed up our
algorithm’s runtime and that our algorithm converges consistently despite the use of randomness.
Moving beyond single-dimensional domains like LLG, we also discuss the difficulties of scaling
any BNE algorithm to high-dimensional auctions (Section 7). We introduce the new multi-minded
LLLLGG domain with eight goods and six bidders, which is much larger than any domain that
previous algorithms have been able to tackle. In this domain, we find accurate ε-BNEs for both
the VCG-nearest and first-price payment rules, which demonstrates the scaling capabilities of our
algorithm, and sets a benchmark for future work on BNE algorithms.

There are multiple use cases for our BNE algorithm. First, researchers may use it for the pur-
pose of auction design, e.g., when automatically searching for optimal payment rules within a given
design space (Lubin et al., 2015; Bünz et al., 2018). Other researchers may find our algorithm
useful when analyzing specific aspects of CAs, like the impact of reserve prices (Day & Cram-
ton, 2012), incentives for overbidding in CAs (Beck & Ott, 2013), or as a supporting tool for
finding and validating new analytical results (Baranov, 2010). Actual bidders participating in an
auction could use our algorithm to optimize their bidding, e.g., by analyzing the effect of different
strategies under a given CA design. Further, bidders that are contemplating whether to partici-
pate in an auction could use our algorithm to better understand their economic position in a given
competitive landscape. To enable all of these use cases, we explain how to use our software and
describe its main features (Section 8), and we release our code under an open-source license at
https://github.com/marketdesignresearch/CA-BNE.
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2. Preliminaries

This section specifies the notation and terminology used throughout the paper. It also introduces the
LLG domain which we use extensively as a benchmark.

2.1 Formal Model

2.1.1 COMBINATORIAL AUCTIONS

A combinatorial auction (CA) is used to sell a set M = {1, 2, . . . ,m} of goods to a set N =
{1, 2, . . . , n} of bidders. Each bidder i has a value vi(K) ∈ R≥0 for each bundle of goodsK ∈ 2M .
We assume that these values are normalized such that vi(∅) = 0. It is often the case that a bidder
is only interested in a small set of d different bundles {K1, . . . ,Kd}, having strictly positive value
for each of those d bundles, and value 0 for all others. Therefore, it is convenient to represent the
bidder’s valuation vi as a point in the d-dimensional value space Vi ⊆ Rd≥0, where d can be between
1 and 2m − 1, depending on the setting.

The bidder submits a (possibly non-truthful) bid to the auction. To simplify the exposition, we
adopt the XOR bidding language (Nisan, 2006), but our algorithm and results generalize to other
bidding languages. In our model, every bidder is allowed to submit an XOR bid with exactly r ∈ N
atomic bids (i.e., expressing a value for r different bundles), where the r and the set of atoms is fixed
a priori for each bidder. Note that setting r = 2m − 1 allows bidders to express arbitrary valuations
over the entire bundle space. This modeling choice is thus without loss of generality. However,
our model also allows for smaller r, capturing bidders who focus their attention on a specific set of
bundles. Given this, bidder i’s bid can be represented by a point bi in the action space Rr≥0. We do
not assume free disposal, and therefore the value for all bundles for which a bidder does not submit
a bid is implicitly zero. The bid profile b = (b1, . . . , bn) is the vector of all bids. The bid profile of
every bidder except i is denoted b-i.

The CA has an allocation rule X assigning bundle Xi(b) to bidder i, in such a way that the
allocation it produces is feasible, i.e., ∀i, j ∈ N : Xi(b) ∩Xj(b) = ∅.3 The CA also has a payment
rule pwhich is a function assigning a payment pi(b) ∈ R≥0 to each bidder. We let ui(vi, X(b), p(b))
denote bidder i’s utility for an auction outcome, given his own valuation vi, an allocation X(b), and
payments p(b).4 Since the allocation and payment rules X and p are always fixed in each auction,
bidder i’s utility only depends on the bid profile b, so we abbreviate the utility as ui(vi, b), or
equivalently ui(vi, bi, b-i).

2.1.2 CAS AS BAYESIAN GAMES

We model the process of bidding in a CA as a Bayesian game.5 Each bidder knows his own valuation
vi, but he only has probabilistic information (i.e., a prior) over each other bidder j’s valuation vj .
This information is represented by the random variable Vj drawn from the distribution Vj with
support Vj (i.e., all valuations in Vj have strictly positive probability under Vj). The joint prior
V = (V1, . . . ,Vn) is common knowledge and consistent among all bidders.

3. In much of the literature, it is typically assumed that the allocation rule is also efficient (i.e., maximizes the sum
of bidders’ reported values). Of course, our model covers this case, but it is much more general, as it can handle
arbitrary allocation rules, including approximately efficient ones, or rules targeting other objectives such as revenue.

4. To simplify the language, we always use he/his when referring to a bidder.
5. In the game theory literature, a bidder would be called a player, and his valuation vi would be called his type.
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The goal of bidder i is to maximize his utility ui(vi, bi, b-i) in expectation over the distribution
of bids b-i of all other bidders. To capture a bidder’s belief about b-i, we model every bidder j as
having a strategy sj : Rd≥0 7→ Rr≥0, which is a function mapping all of his possible valuations to
bids.6 From the point of view of bidder i, the bids b-i are thus induced by the valuations v-i through
the strategies: b-i := s-i(v-i). This allows us to introduce the expected utility ūi, defined as

ūi(vi, bi) := E
V-i∼V-i|Vi=vi

[ui(vi, bi, s-i(V-i))] , (1)

where V-i|Vi = vi is the conditional distribution of valuations of all other bidders, which can depend
on the realization of Vi (when the distributions of valuations are not independent).

The highest possible expected utility that can be achieved with any bid is the best response
utility, given by

ūBRi (vi) = sup
b′i∈Rr≥0

ūi(vi, b
′
i). (2)

Note that we take the supremum over bids instead of the maximum, because the maximum might
not exist due to discontinuities in the utility function.7 Whenever a bidder i submits a bid bi that is
not optimal he leaves a certain amount of utility “on the table.” We call this quantity the utility loss,
given by

li(vi, bi) := ūBRi (vi)− ūi(vi, bi). (3)

Bidders are in an ε-Bayes-Nash equilibrium when the utility loss is smaller than ε for all possible
valuations of all bidders, i.e., no bidder has a profitable deviation from the equilibrium netting him
more than ε utility in expectation:

Definition 1. An ε-Bayes-Nash equilibrium (ε-BNE) is a strategy profile s∗ such that

∀i ∈ N, ∀vi ∈ Vi : li(vi, s
∗
i (vi)) ≤ ε.

We take the ε-BNE as our solution concept because we use numerical algorithms with limited
precision to find the BNEs. Thus, when we solve a CA, we mean that we find an ε-BNE, where ε is
a suitably small constant fixed a priori.

Remark 1. Throughout the paper, we sometimes refer to the “true” ε of a strategy profile s∗. By
this we mean the smallest ε such that s∗ is an ε-BNE.

6. With this definition, we assume that all bidders’ strategies are pure and not mixed. This assumption is quite natural
from a behavioral perspective. Furthermore, pure-strategy ε-BNEs (introduced further below) always exist for some
ε > 0. This, together with our verification method (Section 5), ensures that the ε-BNE-finding problem is well-
defined. Nevertheless, allowing for mixed strategies would be an interesting avenue for future work, as it models
different economic behavior and could even improve the accuracy and convergence of our algorithm.

7. Consider, e.g., a single-item first-price auction with complete information. If opponents bid a maximum amount of
x, the best response is often to outbid them by a small amount, i.e., to bid limδ→0 x+ δ. Analogues of this situation
can arise even in incomplete information settings, where a discontinuity arises due to i’s bid crossing over a threshold
where his probability of winning a certain bundle jumps by a discrete amount. Such thresholds are caused by point
masses in the distribution of s-i(V-i), which can occur even if the distribution of V-i itself is smooth, e.g., when
strategies have flat segments.
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2.2 The LLG Domain and Straightforward Bundle Bidding

In this paper, we study the performance of our BNE algorithm, first in a small domain, where
analytical results are available, and later in a novel larger domain (Section 7). For the former, we
use the widely-studied Local-Local-Global (LLG) domain (Ausubel & Milgrom, 2006). LLG is
one of the smallest examples of an auction where combinatorial interactions between bidders arise.
There are three bidders, with bidders 1 and 2 being local, interested in two different single goods,
and bidder 3 being global, interested in the package of both goods.

This domain has been widely studied, and analytical BNE results for it are available under sev-
eral mechanisms. Ausubel and Baranov (2013) study the case where the global bidder’s valuation
is drawn from U [0, 2], while the local bidders’ valuations are drawn from U [0, 1], with cumulative
distribution function F (v) = vα. Furthermore, the local bidders’ valuations are perfectly correlated
with probability γ, and independent otherwise. Within this framing, they derive analytical BNEs for
four different mechanisms. All of the mechanisms use the efficient allocation rule but each of them
uses a different core-selecting payment rule (VCG-nearest, Nearest-bid, Proxy and Proportional).
These BNEs are unique under the assumption that local bidder strategies are symmetric. Adopt-
ing their results as our benchmark, we assemble a set of 16 auction settings to be used as a test
suite: four payment rules each applied to four domains (α ∈ {1, 2} × γ ∈ {0, 0.5}). Note that our
selection of settings covers all payment rules for which analytical results are known and all inter-
esting regions in the (α, γ)-parameter space for which the analytical results have distinct functional
forms (Ausubel & Baranov, 2013).8 Importantly, we did not exclude any settings for modeling or
algorithmic tractability reasons.

In the literature on LLG, it is often assumed (sometimes implicitly) that the local bidders can
only bid on the good that is of direct interest to them (Goeree & Lien, 2016; Ausubel & Baranov,
2020).9 This implements what we call “straightforward bundle bidding:” The bidder submits an
atomic bid on each bundle that has strictly positive marginal value, i.e., where removing any part of
the bundle would strictly decrease the value. Formally:

Definition 2. An XOR bid bi is a straightforward bundle bid if the bid contains one atomic bid for
each bundle in the set

{K ⊆M | ∀K ′ ⊂ K : vi(K
′) < vi(K)} (4)

and no other atomic bids.

The interpretation of the set (4) is simple: To declare the valuation vi truthfully, the bid bi must
include an atomic bid for each of the subsets in (4), and no other atomic bids are necessary. A
straightforward bundle bid is thus the smallest bid capable of expressing a bidder’s true valuation.
For our analysis of LLG, we follow the majority of prior work and also assume straightforward bun-
dle bidding. Because in LLG, every bidder is single-minded (i.e., only interested in one bundle), we
thus set r = 1. Given that all of our payment rules are minimum-revenue core-selecting, we know
that it is a dominant strategy for the global bidder to be truthful (Beck & Ott, 2013). Thus, in LLG,
computing the ε-BNE only involves computing the strategies for the local bidders. Furthermore, to
match the analytical results of Ausubel and Baranov (2013), we only consider symmetric equilibria

8. We excluded some simple settings where the analytical solution is just a multiplicative shade.
9. There are two noteworthy exceptions. Beck and Ott (2013) analyzed a specific payment rule in LLG with r = 3, thus

allowing bids on all non-empty bundles in this case. More recently, Bosshard and Seuken (2020) studied bidders’
incentives for exploiting an exponentially large action space, requiring r = 2m.
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Algorithm 1: Iterated Best Response with Verification
input : MechanismM, Distribution V of bidder valuations
output : ε-BNE strategy profile

1 s := truthful strategies
2 repeat
3 repeat
4 foreach bidder i do
5 s′i := BestResponseInner(M,V, s-i)
6 end
7 ε̃ := UtilityLoss(s, s′)
8 s := Update(s, s′)

9 until ConvergedInner(ε̃)
10 foreach bidder i do
11 s′i := BestResponseOuter(M,V, s-i)
12 end
13 ε̃ := UtilityLoss(s, s′)
14 s := Update(s, s′)

15 until ConvergedOuter(ε̃)
16 s∗ := ConvertStrategies(s)
17 ε := Verification(s∗)
18 return (s∗, ε)

outer
loop

inner
loop

search
phase

verification
phase

in this domain (though this simplification is not essential to our algorithm). Thus, the whole strategy
profile in LLG can be described by a single function slocal : [0, 1] 7→ R≥0.

3. BNE Algorithm Framework

In this section, we present a high-level overview of our BNE algorithm. At its core, the algorithm
is based on iterated best response, which simulates the process of each bidder repeatedly updating
his strategy to be a best response to the other bidders’ previous strategies, terminating when the
utility loss across all bidders is small enough. As such, our algorithm belongs to a broad class
of algorithms based on adaptive dynamics (Milgrom & Roberts, 1990), which also includes the
well-known fictitious play algorithm (Brown, 1951). Reeves and Wellman (2004) provide a brief
historical overview of this type of algorithm.

The key difference between our algorithm and the standard iterated best response procedure
is that our algorithm is separated into a search phase and a verification phase (with the search
phase being further split into an inner loop and an outer loop). Our full algorithm is presented as
Algorithm 1 and described below at a high level.

In the first step, we initialize the strategy profile to be used during the search at truth (Line 1).10

The search phase constitutes the first part of the algorithm (Lines 2-15). The core of the search

10. The algorithm can alternatively be initialized at any other strategy profile, which could lead to finding different
equilibria. However, starting at the truthful strategy profile is quite natural, and we expect it to lead to equilibria more
likely to be encountered in practice. With the proper experiment setup and given enough computational resources,
our algorithm can be used to investigate questions regarding equilibrium multiplicity and robustness as well.
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phase consists of the inner loop (Lines 3-9), in which iterated best response is performed. Each
iteration consists of calculating a best response for each bidder in turn (Lines 4-6), computing the
utility loss (Line 7), updating the current strategy profile (Line 8), and checking for convergence
(Line 9). Note that the strategy update we perform is a dampened update such that each bidder’s
new strategy is a mixture of his old strategy and his best response.11 When the inner loop converges,
we repeat the same steps in the outer loop (Lines 10-15), this time configured with higher precision.
If the outer loop fails to converge, we go back into the inner loop again, and so on. These two
nested loops help the algorithm to converge reliably without expending too much computational
effort; we will discuss the role of the outer loop in more detail in Section 6. Once the outer loop has
converged as well (Line 15), we have arrived at a strategy profile that is an equilibrium candidate,
which concludes the search phase. We then proceed to the verification phase (Lines 16-17), where
the ε corresponding to this equilibrium candidate is computed. Finally, we return a strategy profile
s∗ and ε (Line 18), such that s∗ is an ε-BNE.

To instantiate Algorithm 1, we still need to define how to compute best responses (Line 5) and
how to perform verification (Line 17). Turning to the former, the best response BRi is a strategy
for bidder i maximizing i’s expected utility ūi(vi, bi) for each possible valuation vi:

BRi(vi) := arg max
bi∈Rr≥0

ūi(vi, bi). (5)

Here, the expected utility ūi(vi, bi) is calculated with respect to the strategy profile s-i of the previ-
ous round.12 In the rest of this section, we go into the details of how to compute the best response
according to Equation (5), and we provide an overview of the verification phase.

3.1 Modeling Strategies

To compute best responses efficiently, we construct bidders’ strategies using linear interpolation.
The strategy si is constructed by specifying a series of control points, which are simply valuations
(e.g., elements of [0, 1] in the case of LLG), and then assigning a bid to each control point. To
extend this to a strategy over the full value space, we perform linear interpolation between the bids
at neighboring control points.13 There are many other methods that one might use to interpolate
strategies (e.g., piecewise constant interpolation, splines, etc); we find piecewise linear interpolation
to be particularly attractive as it is simple (and thus fast to evaluate) but the resulting strategy can
approximate any bounded function well, given a sufficient number of control points.

Using piecewise linear interpolation, the task of constructing the best response BRi given in
Equation (5) simplifies to finding the bid BRi(vi) for each control point vi, which we call the
pointwise best response at vi. We will discuss the subproblem of finding pointwise best responses
in the next subsection. Note that this algorithm design implies that there are many valuations for
which a bidder’s expected utility is not directly optimized. However, this is not problematic since
we later verify that the final ε-BNE is valid for all possible valuations.

11. This is a standard method to prevent oscillations around the solution, a phenomenon typical of any procedure that
iteratively searches for fixed points.

12. Note that a best response need not always exist due to discontinuities in the utility function (as discussed in Sec-
tion 2.1.2). Because of this, in our algorithm, we must accept a bid bi with utility very close to the best response
utility ūBRi (vi) in place of a true best response.

13. For strategies in more than one dimension, we place the control points on a grid and perform multilinear interpolation
between them. The grid structure of the control points will be helpful for applying our theoretical results (Section 5),
which is why we prefer this method over alternatives such as linear interpolation on an arbitrary triangulation.
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(a) Search phase. (b) Verification phase.

Figure 1: Illustration of piecewise linear interpolation as used in our algorithm when applied to LLG, with
the proxy payment rule, α = 1.0, and γ = 0.5. (a) Strategies after two iterations (shown in blue) and three
iterations (shown in purple), with pointwise best responses used to perform the update (shown in red). (b)
Strategy after eleven iterations, with pointwise best responses used for verification.

An example of a strategy update for the LLG domain is shown in Figure 1a. There we show
the pointwise best responses, the dampened update of the bids at each control point, and the linear
interpolation to the full strategy.

3.2 Pointwise Best Responses

To compute the best responseBRi over the whole value space, we need to compute many pointwise
best responses BRi(vi), i.e., find the bid bi that maximizes the expected utility ūi(vi, bi) for a fixed
valuation vi. This means that at each such vi, we must solve an unconstrained optimization problem
over the whole action space (i.e., the set of possible bids). This is computationally expensive and
can only be approximated with numerical algorithms that evaluate ūi(vi, bi) at many different bids
bi. Furthermore, the function to be optimized may be non-convex and/or non-differentiable in bi (as
discussed in Section 2.1.2). There are no known algorithms that can solve non-convex optimization
problems to global optimality in finite computation time. For this reason, we employ a sophisticated
version of pattern search (see Section 4.7) which can quickly find highly accurate best responses.14

Evaluating the expected utility ūi(vi, bi) is already a challenge for a fixed vi and bi because it
involves solving the following high-dimensional integral:

ūi(vi, bi) =

∫
v-i∼V-i|Vi=vi

ui(vi, bi, s-i(v-i))f-i(v-i) dv-i. (6)

14. Vorobeychik and Wellman (2008) proposed a best response procedure with global convergence guarantees that can
be applied to auctions. However, because their procedure is not guaranteed to converge in finite time, we do not
employ it in our algorithm.
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Here, f-i is the joint PDF associated with the distribution of v-i. The dimensionality of the integral
is (n−1) ·d for an auction with n bidders and value space dimension d. Consequently, to solve this
integral, we use Monte Carlo (MC) integration, a technique that works by averaging the integrand
ui(vi, bi, s-i(v-i))f-i(v-i) over many samples of the variable of integration v-i, taken uniformly at
random over all its possible realizations.15

Remark 2. In the simple LLG setting, the integral in Equation (6) is only two-dimensional and thus
may alternatively be solved via numerical quadrature in less time. In larger domains, however, only
Monte Carlo techniques will scale efficiently with the problem dimension. To keep the presentation
of the algorithmic techniques comparable throughout the paper, we exclusively evaluate their per-
formance using Monte Carlo integration. Our released source code includes both implementations.

3.3 Verification

In the search phase, we are free to simplify the strategy space or make use of any other heuristics
to speed up the search. As a consequence, we only have an estimate of the ε of our current strategy
profile, i.e., the maximum of the utility loss li at all control points. This estimate is precise enough
to decide when to break out of the search phase. But to know that we have found an ε-BNE strategy
profile, we need to make sure that the utility loss is indeed less than ε at all valuations.

At first sight, it is not obvious how to achieve this, given that the value space is continuous, and
we can thus not simply evaluate the utility loss at every possible valuation. To address this problem,
we have developed Theorem 2 which enables us to bound the epsilon over the full value space using
only a finite number of verification points (as illustrated in Figure 1b). We devote Section 5 to
a detailed explanation of this approach. For now, we highlight that the verification phase of the
algorithm (Lines 16-17) is significantly enhanced by this theory. Note that in those settings where
the conditions of the theorem are not met, we fall back on an alternative verification method that
computes an estimate of the ε (Section 5.3).

In the next section, we describe the design of the search phase in detail. Note that our experi-
mental setup in that section will already require us to be able to compute the ε of a given strategy
profile using a verification method. For the moment, we will simply treat the verification phase as
a black box that provides us with the ε for any given strategy profile. Then, in Section 5, we will
explain our verification methods in detail.

4. The Search Phase

In this section, we turn our attention towards the details of the search phase. Recall that in the search
phase, our goal is to find an ε-BNE as quickly as possible. For this, it is important to observe that
the runtime of each iteration of our inner loop depends on three key parameters: (1) the number of
Monte Carlo samples used for integrating the expected utility, (2) the number of times the expected
utility is evaluated to find each pointwise best response, and (3) the number of control points at
which the pointwise best response is computed. To achieve a fast runtime of our algorithm, these

15. Note that Monte Carlo integration only computes an estimate of the true value of the integral. We could use a
concentration inequality (Hoeffding, 1963) to derive a confidence interval around this estimate. In our experiments,
we choose a very large number of Monte Carlo samples such that the estimate becomes very accurate (by the central
limit theorem); given this, we forego computing confidence intervals, following standard practice using Monte Carlo
integration. However, in Section 6.2, we provide an analysis of the numerical robustness of the overall algorithm.
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parameters need to be kept as small as possible, while ensuring that we are still able to find ε-BNEs
across a wide variety of settings. This whole section shows how to achieve this. Towards this end,
we first present a baseline algorithm for computing best responses, and then provide a series of
algorithmic improvements, explaining and testing each of them in turn. The application of all of our
techniques leads to a cumulative 203.1-fold speedup of our algorithm over the baseline, allowing us
to find ε-BNEs in only a few seconds in LLG.

4.1 Experimental Set-up

We evaluate the runtime of each algorithmic improvement on the test set of 16 different variations
of the LLG domain (as introduced in Section 2.2). We use this test set because finding ε-BNEs is
still tractable in this small setting, and it enables us to compare our results against known analytical
BNEs, as we will do in Section 6.2. We run each version of our algorithm 50 times on each of the
16 auction settings, and we report the average of these 800 runs.16 Runtime results for finding a
0.00001-BNE are presented in Table 1. Each run is performed single-threaded on a 2.8Ghz Intel
Xeon E5-2680 v2.

Note that several of our techniques make a trade-off between speed and accuracy, so it is im-
portant to evaluate their effectiveness as a whole to capture how changes in accuracy affect the
convergence rate and thus the speed of the overall algorithm. Therefore, we do not just measure a
single best response calculation in isolation, but measure the runtime of the entire algorithm from its
start at the truthful strategy profile until reaching convergence. However, the runtime of the whole
algorithm is also affected by (a) how the transition between search and verification is done, and (b)
the runtime of the verification phase itself. This introduces additional ambiguity regarding the true
performance of our search techniques. For this reason, in this section, we separate these effects by
only measuring the runtime of the inner loop of Algorithm 1 (i.e., the core of the search phase). We
do this by skipping the convergence check in Line 9 and running the inner loop for a large, fixed
number of iterations instead. For each of the strategy profiles visited by this process, we then run
our verification phase to determine the first iteration at which ε falls below the threshold of 0.00001
(our target ε), at which point we consider the search to have converged. Importantly, the runtime
numbers we report in this section exclude the time needed for verification. To understand the per-
formance of the full algorithm, we will perform an end-to-end analysis in Section 6, including the
outer loop of the search phase and the verification phase.

4.2 Naive Monte Carlo Sampling and the Problem of Variance

We first present a straightforward implementation of our BNE algorithm. We lay an evenly-spaced
grid of 160 control points over the value space, and at each control point vi, we maximize ūi(vi, .)
by running Brent search, a commonly-used form of unconstrained optimization over the space of
possible bids (Brent, 1971). Each evaluation of ūi(vi, bi) is done via Monte Carlo integration as
described in Section 3.2.

This version of the algorithm is a reasonable first step, but it fails to converge to our target
ε = 0.00001, even when using 200, 000 Monte Carlo samples. The reason for this is that the com-
putation of the expected utility ūi has very high variance. In MC integration methods, any reduction

16. To simplify replicability, we use a different but fixed random seed for each of the runs. This set-up makes our experi-
ments deterministic (in the sense that they are perfectly repeatable) while still capturing the effects of randomness on
our algorithm’s runtime.
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Algorithm Average
Iterations

Average Runtime
in Seconds

Cumulative
Speedup

Naive Monte Carlo - - -
+ Importance Sampling - - -
+ Quasi-Random Numbers (baseline) 8.9 (0.082) 950.5 (10.94) -
+ Common Random Numbers 8.4 (0.073) 26.7 (0.37) 35.7 x
+ Adaptive Dampening 5.9 (0.049) 18.7 (0.24) 50.7 x
+ Pattern Search 5.9 (0.048) 15.0 (0.14) 63.2 x
+ Adaptive Control Points 6.1 (0.052) 4.7 (0.04) 203.1 x

Table 1: Runtimes for the inner loop of our algorithm, with standard errors shown in paretheses. We compare
the time required for different variants of our algorithm to achieve an estimated 0.00001-BNE, averaged over
50 runs in each of our 16 auction settings. Note that the first two variants of the algorithm did not converge
on all 800 instances.

in variance is always desirable, of course, but in our application this consideration is especially
important. In an iterated best response algorithm, computing an equilibrium is fundamentally a dy-
namic process, where the output of one iteration is fed as input into the next. When we have high
variance in the expected utility computation, this causes the computed best response to deviate from
the true best response in a random direction at each control point. Since an ε-BNE is defined by the
worst-case utility loss over all valuations of all bidders, a large error at a single control point during
the best response computation prevents the entire algorithm from converging. This can produce the
counter-intuitive effect that increasing the number of control points actually decreases the accuracy
of the algorithm.

Our first two algorithmic improvements address this issue, reducing the variance of the Monte
Carlo integration to acceptable levels. The third version of the algorithm is the first one that con-
verges to our target ε, so we will use that one as the baseline algorithm against which we measure
the performance impact of later improvements.

4.3 Importance Sampling

When using MC integration to determine the expected utility of bidder i, it is often desirable to
adapt the sampling process to exclude realizations of other bidders’ valuations V-i that lead bidder i
to win the empty bundle. This is because, in most auctions, the utility in this situation is simply zero,
and the computational effort used to evaluate that sample is wasted without providing any additional
information about the expected utility. Excluding such valuations can be achieved by implementing
a variant of importance sampling (Press et al., 2007), where we truncate the distribution that we
sample from, and correct for this change by appropriately weighting the samples obtained.

In general, importance sampling is difficult to implement in CAs, as it requires characterizing
the realizations of V-i where bidder i wins the empty bundle. Thus, the implementation of this
technique is domain specific, as it must exploit the properties of the domain at hand to be efficient.
In LLG, we know that local bidder 1 wins exactly when b1 + s2(v2) > s3(v3). Therefore, we can
provide the following implementation in LLG: we first draw the valuation v2 from U [0, 1] as usual,
but then we draw the valuation v3 from U [0, b1 + s2(v2)] instead of from U [0, 2]. This guarantees
that the local bidders are winners, because we know that the global bidder is truthful and thus
s3(v3) = v3. The resulting sample is then multiplied with the factor (b1 + s2(v2))/2 to correct
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the bias we have introduced. This technique is especially important for small bids where bidder 1
only wins rarely, where otherwise very few samples would fall in the winning region, leading to
high variance. We have added this LLG-specific implementation to our algorithm, but we leave the
exploration of more general implementations to future work.

While highly useful, even with this improvement our algorithm still fails to converge on all
instances, so this version of the algorithm is also not suitable as a baseline. For that, we need to add
another improvement.

4.4 Quasi-Random Numbers

Another effective method for reducing variance is to replace pseudo-random numbers (i.e., the
standard random number implementation available in most programming languages) with quasi-
random numbers in the sampling process. While pseudo-random numbers try to reproduce the
properties of true random numbers as closely as possible (including their tendency to form clumps),
quasi-random numbers cover the sampled region more evenly (Morokoff & Caflisch, 1995). In our
algorithm, we use a multi-dimensional Sobol sequence. This improvement enables convergence to
our target of ε = 0.00001, using 200,000 MC samples. On average, the search converges in 8.9
iterations and 950.5 seconds (see Table 1). As this is the first variant of the algorithm that reaches
convergence, we use it as the baseline algorithm against which we compare additional techniques.

Remark 3. The number of MC samples required for convergence might seem surprisingly high.
Many of our auction instances would also converge using considerably fewer samples, but 200,000
is the minimum number required to make each of our 16 auction settings converge in all 50 out of
50 runs. In fact, most of the auction instances converge with as little as 20,000 - 50,000 samples,
but some specific instances, in particular those using the proxy payment rule, need larger numbers
for convergence. We have also observed a small trend for instances with non-uniform value distri-
butions (α = 2) to require more samples for convergence than their uniform counterparts. To keep
our experimental set-up simple and consistent, we did not optimize the number of samples for each
setting individually, but rather chose a single number that makes our full set of 800 runs converge.

4.5 Common Random Numbers

When computing a pointwise best response for a given valuation, we repeatedly compare the ex-
pected utility of two different bids. If X and Y are the random variables representing the expected
utility associated with two bids, then we want to determine if E[X]−E[Y ] is greater or smaller than
zero to decide which bid is better. Using common random numbers (Glasserman & Yao, 1992),
we can compute E[X − Y ] instead and get the same result with lower variance. We integrate this
idea by using the same sequence of samples to compute both E[X] and E[Y ]. The samples used for
both integrals are pairwise perfectly correlated but still quasi-random when considering each of the
integrals in isolation. Adding this technique improves the convergence behavior of our algorithm
substantially. Correspondingly, we reduce the number of samples used to 10,000, which is enough
for all runs to converge to our target ε. This is only 5% of the samples needed by the baseline
algorithm, resulting in a 35.7-fold speedup. Note that we get more than a 20-fold speedup because,
in addition to saving a factor 20 in the expected utility computation, this change decreases the num-
ber of function evaluations required by Brent search for finding the best response, and additionally
makes the algorithm converge in slightly fewer iterations.

544



COMPUTING BAYES-NASH EQUILIBRIA IN COMBINATORIAL AUCTIONS WITH VERIFICATION

4.6 Adaptive Dampening of Strategy Updates

As mentioned in Section 3, in each iteration of the inner loop we perform a dampened update of
the strategy profile. This means that instead of just replacing the previous strategy with its best
response (as would be done in a naive implementation of iterated best response), we make the
current strategy at each control point vi a weighted combination of the previous strategy and the
best response: si(vi) = (1 − w) · si(vi) + w · BRi(vi, s-i), for some update weight w ∈ [0, 1].
However, if w is chosen too high, the iterative process might fall into an oscillating behavior around
the solution and converge very slowly or not at all. Conversely, if w is chosen too low, convergence
is slowed down when the current strategy is far from equilibrium. In the baseline algorithm, we use
an update weight w = 0.5 to balance these two concerns, but of course a fixed update weight is
suboptimal.

To make the convergence process of the algorithm smoother, we now design an adaptive form
of strategy updates (see the work of Fudenberg and Levine (1995) and Lubin and Parkes (2009)
for earlier examples of adaptive dampening). Concretely, we set the update weight dynamically for
each individual control point, based on how close to a solution we expect to be:

w(vi) =
2

π
arctan(c · li(vi, si(vi))) · (wmax − wmin) + wmin. (7)

To understand the effect of the rule, observe that 2
π arctan maps all positive numbers into the

[0, 1) interval, and therefore Equation (7) creates a weight between wmin and wmax, separately for
each control point.17 Thus, when the utility loss li at the control point vi is large, the weight w(vi) is
also large, resulting in an aggressive update step that reaches the neighborhood of an equilibrium in
few iterations. Conversely, when the utility loss is small, the update step is much more conservative,
reducing the risk of overshooting the equilibrium. This adaptive dampening technique combines the
benefits of a rule with a fixed large weight (which allows taking big steps) and a rule with a fixed
small weight (which leads to high stability). Adding adaptive dampening results in another 1.42-fold
speedup, leading to a cumulative 50.7-fold speedup over the baseline algorithm.

4.7 Pattern Search

So far, we have used Brent search to compute pointwise best responses. While Brent search is a very
accurate method for function maximization, it has two problems. First, it evaluates the function to
be maximized many times. Second, it can only be applied to single-dimensional functions and thus
prevents us from applying our algorithm to larger, multi-dimensional auction settings (including
those we will study in Section 7). What we need is an optimization procedure that requires fewer
function evaluations and scales to an arbitrary number of dimensions.

To this end, we replace Brent search with a slightly modified version of pattern search (Hooke &
Jeeves, 1961). Pattern search is a type of hierarchical local search that evaluates a number of points
around a center according to a fixed pattern. The center is initialized to a guess of the solution (in our
case, we use the current strategy at the given control point). Whenever a better solution is found,
pattern search moves the center of the pattern there and continues searching. If a better solution
could not be found, it reduces the size of the pattern by half and continues searching around the
center at a smaller scale. Thus, there are two kinds of steps that can occur during the search: moving
steps and shrinking steps. Standard pattern search terminates when the pattern reaches a sufficiently

17. In our experiments we use the constants wmin = 0.2, wmax = 0.7, and c = 1
2ε

.
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small scale. However, choosing the correct scale to stop the search is particularly challenging in
our case, which we resolve as follows. Recall that, in our BNE algorithm, each bidder’s strategy
is repeatedly updated to be a best response to the other bidders’ previous strategies. In the early
iterations of this process, high precision is not needed, because we are far away from an ε-BNE, and
thus very small differences in utilities can be ignored because strategies will undergo major changes
from one iteration to the next anyway. In contrast, once the iterative process has roughly settled on
the final strategies, high precision is required to actually converge with the ε we are aiming for.

To properly serve both of these needs, we slightly modify pattern search to choose its precision
adaptively. Concretely, we equip the algorithm with a budget that denotes the maximal number of
steps the algorithm is allowed to take. We subtract two steps from the budget whenever the algorithm
takes a moving step, and only one step whenever the algorithm takes a shrinking step. This has the
effect of only allowing the algorithm to take many steps when pattern search stays close to the
initial strategy at the given control point (which is an indicator that we are close to convergence). In
LLG, we use a pattern of 3 points and a budget of 12 steps. Overall, this budgeted pattern search
technique requires fewer evaluations of the expected utility than Brent search when high precision
is unnecessary, and is almost as accurate when high precision is needed. Adding budgeted pattern
search to our algorithm results in a 1.24-fold speedup, leading to a cumulative 63.2-fold speedup
over the baseline algorithm.

4.8 Adaptive Control Point Placement

A bidder’s BNE strategy often has regions of both high and low curvature (see, e.g., Figure 1b in
Section 3). Thus, when constructing a piecewise linear function to approximate this BNE strategy,
using an equal spacing of control points either has too many unnecessary points in flat regions (wast-
ing computational effort) or not enough points in curved regions (not achieving sufficient accuracy
when needed). In particular, if we used a spacing of control points that is too coarse, then the linear
interpolation between the control points may not approximate the true best response well enough in
those regions where the best response is strongly curved (or even non-smooth). This can lead to a
large utility loss at some valuations in the value space (and thus a large ε), even when the utility loss
at the control points themselves is very small.

To avoid this, we use an adaptive control point placement method which iteratively constructs
an irregular grid with a higher density of control points in regions where this is deemed necessary.
This is a well-known technique (Huang & Russell, 2010); however, applying it to a specific problem
requires specifying a criterion by which to determine the highest priority region where the next
control point should be placed. In LLG, we initialize this method with an evenly spaced grid of
only 10 control points. We then iteratively place additional control points at the midpoint between
two neighboring control points where the estimated curvature of the best response function is largest.
Using this adaptive method, the control points are spaced further apart in regions of low curvature,
allowing us to reduce the overall amount of work done in the best response computation, while
retaining the same accuracy where needed. We provide pseudocode for this method in Appendix A.

Using adaptive control point placement, we obtain convergence in all 16 auction settings with
only 40 control points (10 in the initial grid plus 30 adaptively placed) instead of the 160 previously
required. Adding adaptive control points to our algorithm results in a 3.21-fold speedup, leading
to an overall 203.1-fold speedup. The cumulative improvement achieved by adding all of the tech-
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niques in this section means that our algorithm can find very precise ε-BNEs in the LLG domain
using only a few seconds of computation time.

5. The Verification Phase

Now that we have a fast algorithm to find an ε-BNE candidate, it remains to show how to accurately
compute ε. This is the task of the verification phase. We have already established that the utility
loss is small at each control point used in the search phase; otherwise, the algorithm would not have
broken out of the iterated best response loop. However, a computation of ε requires us to find the
maximum utility loss at every point in the continuum of valuations. Unfortunately, the maximum is
not a well-behaved statistic, in the sense that even if we were to check the utility loss at more and
more control points, we would never be sure that there is no gap remaining between the worst utility
loss we have observed and the worst utility loss that exists.18 This is why we need to think carefully
about the design of the verification phase.

On a high level, our verification method (and main technical contribution of the paper) involves
reasoning about the utility loss in terms of intervals [vi, v

′
i] of valuations. The key insight lies in

using certain properties of the endpoints vi and v′i to provide an upper bound that holds for any
valuation contained in the interval. This approach is almost fully general: it works for auctions with
any allocation and payment rule, but we must make a few assumptions on the bidders’ valuations
and utilities. We formalize our results as Theorems 1 and 2 in Section 5.1, and we then discuss how
to compute the upper bound on ε based on these theorems in Section 5.2.19

For those settings where the assumptions of Theorems 1 and 2 are not satisfied, we fall back on
an alternative verification method that computes an estimate of ε instead of an upper bound. We
present this alternative verification method in Section 5.3. In Section 5.4, we show that, when using
sufficient computation time, the upper bound on ε as well as the estimated ε are very close to the
true ε.

5.1 Deriving an Upper Bound on ε

Our upper bound on ε requires three properties to hold regarding the bidders in the CA:

Assumption 1 (Linear Utilities). Each bidder’s utility function is of the form

ui(vi, b,X, p) = vi(Xi(b))− pi(b), (8)

i.e., linear in the valuation vi.

Assumption 2 (Bounded Value Spaces). Each bidder’s value space Vi is bounded.

Assumption 3 (Independently Distributed Valuations). The valuations Vi are mutually independent
random variables.

18. This is a different dynamic than, e.g., computing the average of a function, where taking more and more samples
guarantees convergence towards the exact solution, even in continuous domains.

19. Note that Theorems 1 and 2 are significantly stronger versions of the theorem found in our earlier work (Bosshard
et al., 2017), producing much tighter bounds on ε. The general idea of using a finite subset of the value space to
obtain a bound on the whole value space was also used more recently by Balcan et al. (2019) who employ learning
theory to estimate approximate incentive compatibility of non-truthful mechanisms.
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Assumption 1 is relatively standard in auction theory. This class of utility functions is a subset of
quasi-linear utilities (Mas-Colell et al., 1995); it excludes some bidder models that are less common,
e.g., quasi-linear utilities with risk aversion. Assumption 2 is also standard and not very restrictive.
In contrast, Assumption 3 is more restrictive. It excludes all CAs with interdependent valuations
(which includes settings where bidders’ private values depend on publicly observable signals).

To derive a bound on ε, we need to know the gap between the expected utility ūi(vi, bi) obtained
at an equilibrium candidate s, and the expected utility ūBRi (vi) that can be obtained by playing a best
response against s-i. To bound the gap between these two functions, we now make two observations.
First, the fact that utilities are linear in the valuation implies that the expected utilities are linear in
the valuation as well:

Lemma 1. In a CA satisfying Assumption 1 (linear utilities) and Assumption 3 (independently
distributed valuations), for a fixed bid bi, the expected utility ūi(vi, bi) is a linear function in vi.

Proof. This follows directly from linearity of expectation. In detail:

ūi(vi, bi) = E
v-i∼V-i|Vi=vi

[vi(Xi(bi, s-i(v-i)))− pi(bi, s-i(v-i))]

= E
v-i∼V-i|Vi=vi

 ∑
K⊆M

vi(K) · [Xi(bi, s-i(v-i)) = K]− pi(bi, s-i(v-i))


=
∑
K⊆M

vi(K) · E
v-i∼V-i|Vi=vi

[Xi(bi, s-i(v-i)) = K]− E
v-i∼V-i|Vi=vi

[pi(bi, s-i(v-i))]

=
∑
K⊆M

vi(K) · cKi − ci.

Note that cKi and ci are constants independent of vi because valuations are independently distributed.

Second, we show that the best response utility ūBRi (vi) is convex:

Lemma 2. In a CA satisfying Assumption 1 (linear utilities) and Assumption 3 (independently
distributed valuations), the best response utility ūBRi (vi) is convex.

Proof. Per Lemma 1, the expected utility ūi(vi, bi) is linear in vi for a particular bid bi and therefore
also convex. The best response utility ūBRi (vi) is the pointwise supremum of the expected utilities
associated with each possible bid bi. Therefore, it is the upper envelope of a set of convex functions,
which is known to be convex.

In addition to Assumptions 1, 2 and 3, Theorems 1 and 2 require the use of piecewise constant
strategies. In Section 5.2, we provide a detailed description of how our BNE algorithm converts an
arbitrary (candidate) strategy profile into a piecewise constant strategy profile at the beginning of
the verification phase.

5.1.1 UPPER BOUND IN ONE DIMENSION

As a first step, we state a theorem for the upper bound for one-dimensional value spaces, i.e., when
bidders are single-minded. This will help in developing the necessary intuition. Afterwards, we will
state our result for the general case and provide a formal proof.
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ui(vi, s
∗
i (vi))

uBRi (vi)

vi valuation

utility

(a) Equilibrium utility (blue) and best response
utility (red).

wj−1
i wj

i valuation

utility

(b) The maximum utility loss is bounded by two
linear functions.

Figure 2: Illustration of Theorem 1. Plots are from valuations to utility. Left: the utility that bidder i obtains in
equilibrium (which is piecewise linear), plotted against the highest utility he could achieve for any bid (which
is convex). Right: The utility loss at any valuation between two control points is at most the difference
between two linear functions. The maximum of this difference must be achieved at one of the control points.

In the one-dimensional case, Assumption 2 (bounded value spaces) implies that there are two
valuations vmin

i and vmax
i , such that Pr

[
Vi < vmin

i

]
= 0 and Pr [Vi > vmax

i ] = 0. Then, a piecewise
constant strategy si is uniquely defined by a finite set of grid points w1

i < w2
i < . . . < wJi , and a

bid si(w
j
i ) for each grid point wji . The grid must cover the entire value space, that is w1

i ≤ vmin
i and

wJi ≥ vmax
i . For any valuation vi, we then have that si(vi) = si(w

j
i ), where wji is the grid point

closest to vi from below.
Having defined piecewise constant strategies for the single-minded case, we are now ready to

state our first theorem, upper bounding the ε for this case:

Theorem 1. Consider a CA satisfying Assumption 1 (linear utilities), Assumption 2 (bounded value
spaces), and Assumption 3 (independently distributed valuations). Let s∗ be a strategy profile where
each strategy s∗i : R≥0 7→ R≥0 is piecewise constant with grid points w1

i , . . . , w
J
i . Then s∗ is an

ε-BNE with

ε ≤ max
i∈N

max
j∈{2,...,J}

max
wi∈{wj−1

i ,wji }
ūBRi (wi) − ūi

(
wi, s

∗
i

(
wj−1i

))
. (9)

The way the theorem works is as follows: In Equation (9), we bound ε separately for each
bidder and each interval between two grid points, with bidders being indexed by i and intervals
being indexed by j. For a pair of adjacent grid points wj−1i and wji , we observe two things. First,
all values vi in the interval [wj−1i , wji ) have the same equilibrium bid, namely s∗i (w

j−1
i ), yielding

linearly increasing expected utility by Lemma 1. Thus, the equilibrium utility is a piecewise linear
function. Second, the best response utility is convex in vi by Lemma 2, and can thus be bounded
from above by the secant between wj−1i and wji . Figure 2 illustrates the situation graphically. At
any vi, the vertical distance between these two lines is an upper bound for the utility loss. Now,
the difference between two linear functions is also linear, and thus achieves its maximum at the
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boundary of the interval. Therefore, it is enough to check this distance at wj−1i and wji to compute
a bound on the utility loss for all vi between them.

5.1.2 UPPER BOUND IN HIGHER DIMENSIONS

We now proceed to the general case, where bidders can be arbitrarily multi-minded. This is more
technically involved, as it requires considering the topology of high-dimensional partitions of the
value space, and the best response utility must be bounded by a set of simplices. We begin by
introducing the notation required to define piecewise constant strategies in the general case.

Definition 3 (Cell). A cell [x, y) ⊆ Rd≥0 is a half-open multi-dimensional interval with lower corner
x and upper corner y, i.e.,

[x, y) :=
d
×
j=1

[xj , yj).

For convenience, we consider [x, x) to be the singleton {x}, instead of ∅.

Definition 4 (Vertex). The vertices of a cell [x, y) are

Vert(x, y) := {xi + (yi − xi) · z | z ∈ {0, 1}d}, (10)

where “·” denotes coordinate-wise vector multiplication.

Definition 5 (Cell Partition). A cell partition Pi of a bounded value space Vi ⊆ Rd≥0 is a set of cells
such that each point in Vi falls into exactly one cell, i.e.,

∀vi ∈ Vi ∃! [wi, w
′
i) ∈ Pi : vi ∈ [wi, w

′
i).

See Figure 3 for some examples of cell partitions on the 2-dimensional unit cube. Note that
the upper boundary of the cube needs to be covered by cells as well, which is why the partitions
include not only 2-dimensional rectangles, but also 1-dimensional lines and even a 0-dimensional
point. Furthermore, note that cell partitions do not always form regular grids, but can contain cells
of different sizes that are not necessarily aligned with each other. This would be especially relevant
if one wanted to adaptively place control points in higher dimensions, e.g., by iteratively refining a
coarse initial partition through subdivision of some of its cells, producing a final partition that is not
a grid.

Definition 6 (Piecewise Constant Strategy on a Partition). Let Pi be a cell partition of bidder i’s
value space Vi ⊆ Rd≥0. A strategy si is piecewise constant on Pi if every value has the same bid as
the lower corner of the cell it belongs to, i.e.,

∀[w,w′) ∈ Pi ∀vi ∈ [w,w′) : si(vi) = si(w).

With all definitions properly in place, we are now ready to state and prove our main result, which
is an exact multi-dimensional analogue of Theorem 1.
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Figure 3: Top row: three examples of partitioning the 2-dimensional unit cube. Bottom row: Individual cells
of each partition, including lower-dimensional boundary cells. Left: regular grid. Center: non-uniform grid.
Right: partition not based on a grid.

Theorem 2. Consider a CA satisfying Assumption 1 (linear utilities), Assumption 2 (bounded value
spaces), and Assumption 3 (independently distributed valuations). Let s∗ be a strategy profile where
each strategy s∗i : Rd≥0 7→ Rr≥0 is piecewise constant on a partition Pi of bidder i’s value space
Vi ⊆ Rd≥0. Then s∗ is an ε-BNE with

ε ≤ max
i∈N

max
[wmin
i ,wmax

i )∈Pi
max

wi∈Vert(wmin
i ,wmax

i )
ūBRi (wi) − ūi

(
wi, s

∗
i

(
wmin
i

))
. (11)

Proof. To establish that s∗ is an ε-BNE, we need to show that

∀i∀vi : ε ≥ li(vi, s∗i (vi)). (12)

Consider an arbitrary bidder i and valuation vi. Let [wmin
i , wmax

i ) be the unique cell in Pi with
vi ∈ [wmin

i , wmax
i ). We triangulate Vert(wmin

i , wmax
i ) with a set of simplices that cover the entire cell

(Haiman, 1991). This means that vi is contained in some simplex Z with vertices {z1i , . . . , z
r+1
i } ⊆

Vert(wmin
i , wmax

i ). We have that vi is a convex combination of the zki , i.e.,

∃λ1, . . . , λr+1 ∈ [0, 1] :
r+1∑
k=1

λk = 1 ∧ vi =
r+1∑
k=1

λkzki . (13)

It follows from convexity of ūBRi that

ūBRi (vi) = ūBRi

(
r+1∑
k=1

λkzki

)
≤

r+1∑
k=1

λkūBRi (zki ) =: f(vi), (14)

and because strategies are piecewise constant, we have that

ūi(vi, s
∗
i (vi)) = ūi(vi, s

∗
i (w

min
i )) =: g(vi). (15)
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Note that both f and g are linear functions over Z. The utility loss li(vi, s∗i (vi)) is at most the
difference f(vi) − g(vi), which is also linear and thus attains its maximum at one of Z’s vertices.
Note that at a vertex zki , f(zki ) = ūBRi (zki ), and by construction zki ∈ Vert(wmin

i , wmax
i ). Therefore,

the term f(zki ) − g(zki ) corresponding to each vertex of Z is included in the maximization of (11)
which implies that the utility loss at each valuation contained in the simplex Z is smaller than ε.

5.2 Efficiently Computing the Verified ε

Having proven a theoretical upper bound on ε, we now show how our algorithm computes this upper
bound in an efficient way in the verification phase. As a first step, this requires us to have a strategy
profile with piecewise constant strategies. Our BNE candidate s does not fulfill this requirement,
as the strategies are constructed through piecewise linear interpolation in the search phase of our
algorithm. To deal with this, Algorithm 1 includes the ConvertStrategies subroutine (Line
16), which takes an arbitrary strategy profile and converts all strategies therein into piecewise con-
stant strategies. To convert each strategy si, we first define a cell partition Pi and evaluate si at all
cell vertices of this partition. It is important that this partition Pi is based on a grid, as will become
clear in the following paragraph; in our implementation we use a regular grid. We then construct
the piecewise constant strategy s∗i such that the bid for a given valuation vi ∈ [wi, w

′
i) is equal to

si(wi) (i.e., the original bid at the lower corner of the cell that contains vi). Finally, even though our
algorithm searches in the space of piecewise linear strategies, it returns a pair (s∗, ε), where s∗ is
an ε-BNE which only contains piecewise constant strategies. This way, we eliminate any ambiguity
about the exact strategy profile to which the ε bound applies.

Now that we have a strategy profile s∗ consisting of piecewise constant strategies, we next com-
pute the corresponding ε bound according to Equation (11) in Theorem 2. This corresponds to the
Verification subroutine (Line 17) in Algorithm 1. Note that Equation (11) is a maximization
over terms of the form: ūBRi (wi) − ūi

(
wi, s

∗
i

(
wmin
i

))
. When the value space is d-dimensional,

there are 2d such terms per cell. Fortunately, when computing all these terms, we do not need to
evaluate each of them individually (which would be very expensive); instead our algorithm only
requires one pointwise best response computation per grid point. Thus, the number of pointwise
best response calls made by our verification method is linear in the number of grid points. Note that
this is also the same number of pointwise best response calls made during one full best response
iteration (at the same grid size). Concretely, we save on evaluations of terms in Equation (11) by
observing two facts: the first sub-term (i.e., ūBRi (wi)) is repeated many times (once for each cell
that has wi as a vertex), and can thus simply be cached and re-used. Furthermore, for the second
sub-term (i.e., ūi

(
wi, s

∗
i

(
wmin
i

))
), we can exploit that the expected utility is linear in the valuation

(Lemma 1), to jointly compute this sub-term for all vertices of a cell [wmin
i , wmax

i ). Specifically,
we only compute the expected utility ūi

(
wmin
i , s∗i

(
wmin
i

))
at a single vertex wmin

i , while now also
deriving and storing its linear coefficients (which are just the probabilities of winning each bundle).
The result of this computation can then be easily extrapolated to all other vertices of the cell. Note
that our algorithm requires some small amount of bookkeeping, but the computational cost of this
is insignificant compared to the cost of the pointwise best response computations themselves.

Note that Theorem 2 can be applied no matter how we come up with the ε-BNE candidate s.
In this paper, we use an iterated best response algorithm, but this could be exchanged for any other
equilibrium finding procedure. For example, our verification step can also be applied to compute
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the incentives to deviate from truth-telling under a given mechanism, by simply using the truthful
strategy profile as the “ε-BNE candidate.”

While we have focused on the application of our results to infinite games, Theorem 2 can easily
handle finite, but very large value and action spaces. In either case, it is infeasible to perform
computations for each individual value or action, which is where our approach shines. The key
ingredient that makes our theory work is that for a fixed action, the payoffs in the auction game are
linear in the valuation.

5.3 An Estimate of ε

Theorems 1 and 2 only hold under certain conditions, given as Assumptions 1, 2 and 3 above. These
assumptions do not hold for all CAs that might be of interest: in particular, half of our set of 16 LLG
settings have correlated valuations (i.e, γ = 0.5), which violates Assumption 3. For such auction
instances, we fall back on a simpler verification procedure, which consists of computing pointwise
best responses on a densely spaced grid of valuations, and estimating ε as the highest utility loss
observed among these valuations. This ε estimate is obviously a lower bound for ε. However, as
mentioned earlier, the maximum is not a well-behaved (smooth) statistic, so it is not clear if our ε
estimate is close to the true ε or not.

In practice, we have found that this heuristic is a sensible fallback for domains where our the-
oretical assumptions do not hold. The worst case scenario for the heuristic is when two valuations
that are very close to each other in value space have very different utility losses. In the auction
games we have studied so far, this situation does not seem to arise.20 We reinforce this claim by
comparing both our verification methods with each other in Section 5.4.

Remark 4. Recall that, in the runtime experiments performed in Section 4 in the LLG domain, we
required an implementation of the verification phase as part of our experimental setup (to accurately
measure the performance of the search phase). In those experiments, half the auction settings
have correlated valuations, and thus Theorem 2 is not applicable. To keep our experimental set-up
simple and consistent, we chose to always use the heuristic method described above to compute an
estimated ε, even for settings where our theoretical assumptions hold. For this, we used a grid of
1, 000 evenly spaced verification points, which is a very large increase in precision when compared
to only 40 adaptively placed control points used during search.

5.4 The Theoretical Bound on ε vs. the Estimate of ε

We have now established the theory necessary to get an upper bound on the utility loss, but this
would not be very useful if the bound was far from the true ε. It is thus natural to ask: how tight
is our bound really? We can answer this question using our ε estimate, which is a lower bound on
the utility loss, since it is derived by considering a finite subset of all valuations. We consider the
8 of our 16 LLG auction settings to which Theorem 2 applies, namely those with independently

20. While we have never observed such a scenario, it is theoretically possible. For some joint value distributions, a small
change in bidder i’s valuation might imply a very large shift in the marginal distribution of other bidders’ bids, due to
correlations between bidders’ valuations. In this case, i’s utility could drastically change, even when i himself does
not change his bid. Furthermore, some payment rules might amplify this effect (e.g., by having discontinuities), such
that even a small shift in other bidders’ marginal distributions can have a large impact on i’s utility. Therefore, any
bound akin to Theorem 2 for correlated settings would need to be domain specific, placing restrictions both on the
payment rule and the correlation structure between bidders’ valuations.
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Figure 4: Estimate (lower bound) and upper bound for ε of the ε-BNEs obtained by our algorithm, aver-
aged over eight different auction settings with uncorrelated bidder valuations. The estimate is computed as
described in Section 5.3, while the upper bound is given by Theorem 2.

distributed valuations (γ = 0). For each setting, we take the strategy profile resulting from a full
run of our algorithm and compare the lower and upper bounds on ε using the same number of
verification points in both cases.

The result is shown in Figure 4, with the number of verification points varying from 2 to 213, and
the bounds being the average over the 8 auction settings. We observe that the lower bound remains
practically constant, while the upper bound decreases polynomially in the number of verification
points until converging.21 At 213 verification points, the upper and lower bounds match within
machine precision. Even with as few as 29 verification points, the gap between the two bounds
already becomes extremely small. The results are qualitatively the same when considering each
auction separately.

Note that the true ε always lies between the upper and lower bounds. Because the two bounds
converge towards each other, this shows that both bounds are very close to the true εwith sufficiently
many verification points. Since we used 1, 000 verification points in our experiments in Section 4,
this strongly suggests that the ε estimate we reported there was indeed a very good estimate.

Remark 5. Note that the accuracy of the ε obtained by either of our verification methods also
depends on how we parameterize the pointwise best response algorithm during the verification
phase. Concretely, the parameters we have to choose that affect the accuracy of the pointwise best
responses are the number of MC samples and the pattern search configuration. Thus, the ε obtained
must always be interpreted in light of the parameters used, and any reporting of results must include
these parameters. In our work, we take special care to set the relevant parameters conservatively.
Specifically, in LLG, we use twice as many Monte Carlo samples for verification as for search (i.e.,

21. Note that a polynomial relationship corresponds to a straight line on the plot, since it is drawn on a log-log scale.
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20, 000 instead of 10, 000). Furthermore, we increase the budget of steps for pattern search from 12
to 20, which implies that our pattern search can perform up to 20 halvings of the initial pattern size
and can thus achieve a search resolution in the action space on the order of 10−6. In Section 6.2, we
present an empirical convergence analysis, which shows that we set our parameters high enough in
relation to our target ε.

6. Putting it all Together

Now that we have detailed specifications of both the search and verification phases, we can put
them together into a full algorithm. Recall that, for the design of the search phase, we focused
on the performance of the inner loop of the algorithm, to keep our experimental set-up simple
(Section 4). We then designed the verification phase (Section 5). Now we analyze the performance
of the algorithm as a whole, which includes the decision regarding when to transition from search
to verification.

6.1 Transitioning from Search to Verification

Recall that our BNE algorithm has a target ε it is trying to achieve. During the search phase, the
algorithm only maintains an estimate ε̃ of the true current ε, but does not yet have an upper bound
on it. Thus, if the algorithm spends too little computational effort in search and stops early, there is
a high risk that the verification phase will show that the target ε has not in fact been reached. On the
other hand, if the algorithm expends lots of effort in the search phase, this risk can be minimized.
The question thus is how long to search, and when exactly to transition from search to verification.

The amount of computational effort spent is primarily driven by the number of control points
used, and this in turn determines to a large degree the accuracy of ε̃ which the search phase uses
for its decision regarding when to transition to verification. This motivates our design of two nested
loops, with an inner and an outer loop. When the inner loop converges, a best response calculation
with higher precision is performed in the outer loop, increasing the accuracy of the strategy update
and of the ε̃ calculation. If this increase in accuracy still leads to an acceptably small ε̃, the algo-
rithm proceeds to verification. Otherwise, the inner loop is resumed, and we require at least two
further iterations before breaking out of the inner loop again. In this way, the outer loop acts as a
gate between the inner loop and the verification phase, only letting through a strategy profile that
“generalizes” to higher precision parameters. For this to work properly, we eschew adaptive control
points when in the outer loop, instead using evenly spread out control points densely covering the
entire value space. Furthermore, to account for the lower accuracy of the inner loop, we consider
the inner loop to be converged only when an ε̃ less than or equal to 0.8 times our target ε is reached.

With this transition from search to verification in place, we can now measure the full runtime
of the algorithm from start to end, i.e., from the (truthful) starting strategy profile to a verified ε-
BNE. For this experiment only, we choose the number of control points in the outer loop to match
those in the verification phase. This simplifies interpreting our runtime results, because this set of
parameters achieves an ε below our target in all 800 out of 800 runs, and thus we don’t have to
account for the failure rate of the algorithm. In practice, tuning the configuration of the outer loop
involves a classical speed / accuracy trade-off, and it is up to the user of our BNE algorithm to make
this trade-off appropriately.
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Figure 5: Runtimes for the whole algorithm in LLG including both the search and verification phases, for 50
runs on each of our 16 auction settings. All runs have been verified with ε < 0.00001. The box plots provide
the first, second and third quartiles; the whiskers are at the 5th and 95th percentile.

The runtimes of all 800 runs are shown in Figure 5. Across all rules and settings, the median
runtime of our whole algorithm is 107.1 seconds (see the right-most box plot in the figure). Of
course, there is some variance in the runtimes, both across our 16 settings and within each set-
ting. However, overall, the runtimes are remarkably consistent, with 90% of all auction instances
completing within 83.9 and 157.5 seconds. Thus, a user of our BNE algorithm can expect similar
runtimes when applying our algorithm to similar settings.

6.2 Convergence Analysis

When our algorithm has converged to a strategy profile s∗ and computed an ε, how much certainty
should we attribute to this result? Given that our algorithm uses random numbers quite extensively,
one might worry that s∗ and ε may be subject to large variance. To address this concern, we run
some additional experiments and show that this randomness only negligibly affects the quality of
our results.

However, testing the consistency of the ε is not straightforward: the ε is “self-reported” by the
algorithm, and thus any variance in ε could be due to differences in the strategy profiles found in the
search phase, or differences in the computation of ε in the verification phase. To deal with this, we
consider the variance of the search and verification phases in isolation from each other, by running
two separate experiments for each auction setting. In the first experiment, we perform 50 runs
with different random seeds during search, which are then run through verification using a single
fixed seed. This tells us the variance of ε caused by search. In the second experiment, we again
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Mechanism Standard Deviation of ε Max L∞ to
Search Verification Analytical BNE

Nearest-Bid, α = 1.0, γ = 0.0 4.2728× 10−7 2.3365× 10−7 0.0027
Nearest-Bid, α = 1.0, γ = 0.5 1.2367× 10−7 6.3426× 10−8 0.0014
Nearest-Bid, α = 2.0, γ = 0.0 4.4019× 10−7 1.8765× 10−7 0.0025
Nearest-Bid, α = 2.0, γ = 0.5 1.2306× 10−7 6.6614× 10−8 0.0016
Proportional, α = 1.0, γ = 0.0 1.2454× 10−9 2.0800× 10−9 0.0014
Proportional, α = 1.0, γ = 0.5 3.2826× 10−9 2.8195× 10−9 0.0009
Proportional, α = 2.0, γ = 0.0 1.6587× 10−9 2.5590× 10−9 0.0015
Proportional, α = 2.0, γ = 0.5 1.1225× 10−7 3.9069× 10−9 0.0011
Proxy, α = 1.0, γ = 0.0 1.4144× 10−9 1.6041× 10−9 0.0025
Proxy, α = 1.0, γ = 0.5 5.5414× 10−7 5.0385× 10−9 0.0016
Proxy, α = 2.0, γ = 0.0 2.0589× 10−7 1.5618× 10−9 0.0039
Proxy, α = 2.0, γ = 0.5 5.3069× 10−9 4.0216× 10−9 0.0017
Quadratic, α = 1.0, γ = 0.0 1.2856× 10−9 1.9825× 10−9 0.0014
Quadratic, α = 1.0, γ = 0.5 2.6187× 10−9 2.7807× 10−9 0.0009
Quadratic, α = 2.0, γ = 0.0 1.8548× 10−9 2.3149× 10−9 0.0015
Quadratic, α = 2.0, γ = 0.5 1.5953× 10−7 3.7011× 10−9 0.0011

Table 2: Robustness measures of our algorithm in the LLG setting. The second and third columns show how
much randomness is introduced by Monte Carlo integration in the search and verification phase, respectively,
measured as the standard deviation of ε over 50 runs each. The forth column shows the maximum L∞
distance between the known analytical BNEs and our ε-BNEs (ε = 0.00001), also measured over 50 runs.

perform 50 runs, this time using a fixed random seed during search (thus converging on the exact
same strategy profile), and different random seeds during verification. This tells us the variance of
ε caused by verification.

The results are shown in columns two and three of Table 2. We observe that the standard
deviation of ε is extremely small in all cases, never exceeding 5.5414× 10−7. This shows that,
even though our algorithm is optimized to use as few Monte Carlo samples as possible, we can
expect the algorithm’s behavior to be very consistent across different runs.

Now that we have shown that our BNE algorithm converges in a very consistent way, one may
wonder about what BNE strategy profile it converges to. Recall that we have analytical results
for all of our 16 settings. Thus, we can measure the distance between the true, analytical BNEs
and the ε-BNEs our algorithm finds. However, we would like to emphasize that minimizing this
distance is not part of the definition of an ε-BNE and therefore not an objective of our algorithm.
Nevertheless, some readers may be interested in knowing this distance. To this end, we consider the
BNEs resulting from the previous experiment in each setting. In Table 2, we show the maximum
(across all 50 runs) of the L∞ distances between the analytical BNEs derived by Ausubel and
Baranov (2013) and the 0.00001-BNEs we find.22 As we can see, all analytical BNEs are very close

22. Originally, we found a discrepancy between some of the ε-BNEs reached by our algorithm (for Nearest-Bid with
α = 2 and 0 ≤ γ ≤ 1) and the analytical BNEs of Ausubel and Baranov (2013). We contacted the authors,
who promptly confirmed a small mistake in their analytical results and quickly provided us with the correct BNE
formula for this setting, which is: si(vi) = 1/

√
8 · (1− γ)

(
log(

√
2/(1− γ) + vi)− log(

√
2/(1− γ)− vi)

)
.
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to our ε-BNEs, never differing by more than 0.0039. This also shows that our ε-BNEs are close to
each other, further confirming the low variance of our algorithm.

7. Scaling to Higher Dimensions

In this section, we show how to scale our BNE algorithm to higher dimensions. To this end, we
introduce a new domain that is larger than LLG, called LLLLGG, where bidders are multi-minded,
i.e., they have a positive value for more than one bundle. Numerically finding ε-BNEs in this setting
is much more complex compared to single-minded domains like LLG. Thus, our algorithm signifi-
cantly surpasses the previous state of the art, which allows us to analyze new types of combinatorial
interactions between bidders in much larger settings.

7.1 The Multi-minded LLLLGG Domain

Bidder Bundle 1 Bundle 2
L1 AB BC
L2 CD DE
L3 EF FG
L4 GH HA
G1 ABCD EFGH
G2 CDEF GHAB

Table 3: Bundles of interest of each of the six bidders
in the multi-minded LLLLGG domain with goods A-
H. Each bidder is interested in exactly two bundles.

Figure 6: Graphical representation of bundle overlap
in the multi-minded LLLLGG domain.

We now introduce the multi-minded LLLLGG domain, which is a synthetic domain along the
lines of LLG, but with significantly increased complexity. The domain has six bidders and eight
goods (labeled A −H for ease of exposition), with each bidder being interested in two bundles as
enumerated in Table 3. There are four “local” bidders L1 - L4 who draw each of their two bundle
values from U [0, 1], and two “global” bidders G1 and G2 who draw their two bundle values from
U [0, 2]; all draws are independent. For the global bidders, the two bundles are perfect substitutes
(even though they are not overlapping), such that a bidder will never want to win both bundles
at the same time. For the local bidders, their bundles of interest are partially overlapping such
that they can obviously only ever win one of them. We assume straightforward bundle bidding as
defined in Section 2, and thus each bid bi consists of r = 2 atomic bids. Because the domain exhibits
significant symmetries (see Figure 6), we can search for symmetric equilibria where all local bidders
have the same strategy and both global bidders have the same strategy. Thus, a strategy profile is
fully described by a pair of strategies slocal : [0, 1]2 7→ R2

≥0 and sglobal : [0, 2]2 7→ R2
≥0.

Our comparison in Table 2 takes this correction into account. Such a correction highlights the value of having
numerical techniques for finding BNEs, even in simple domains, as a complement to analytical methods.
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The Source of Complexity. Note that LLLLGG is larger than LLG in several aspects: it has more
bidders, more goods, each bidder bids on more bundles, and no bidder has a truthful strategy. It is
thus natural to ask how exactly these characteristics influence the difficulty of finding ε-BNEs in
this domain. Some effects are very easy and intuitive to understand. First and most importantly, to
find a pointwise best response, a nonlinear optimization problem over the action space Rr≥0 must be
solved, which is considerably harder when r = 2 than when r = 1. Second, our algorithm’s runtime
increases linearly with the number of (non-symmetric) bidders, because best responses need to be
computed for each of them. Third, the more atomic bids we have, the harder the implementation
of the mechanism itself becomes (e.g., because in general CAs, computing an efficient allocation or
computing core payments are both NP-hard problems).

However, there is a source of complexity that is much subtler, namely the combinatorial way
in which bidders interact. To this end, we now want to provide some intuition. First, consider a
first-price auction with a single good but many bidders. In this auction, finding a best response BRi
is not much more difficult than in the same auction with fewer bidders, because only the highest
competing bid is relevant for bidder i’s utility, and other bids can be safely ignored.23 Similarly,
having an auction with a large number of goods does not necessarily mean that finding an ε-BNE is
hard. For instance, if two goods are perfect complements for all bidders, then this pair of goods will
only ever be bid on together, effectively acting as a single good. It is thus possible for an auction
with many goods to have a combinatorial structure that is as simple as LLG.

The true difficulty of an auction setting is determined by the way in which the bundles that bid-
ders are interested in overlap with each other. To make this concrete, consider the integral that must
be solved each time the expected utility ūi is computed. It is well-known that the convergence rate
of Monte Carlo integration is directly proportional to the variance of the function to be integrated,
and is independent of the dimension (Press et al., 2007). Thus, the number of Monte Carlo samples
we need to ensure convergence only depends on how complex the distribution of bidder i’s utility is,
not on how many bidders and goods are involved. The ε-BNEs we compute next will demonstrate
that the LLLLGG domain is indeed complex in this sense, exhibiting several novel and interesting
equilibrium features.

7.2 Experimental Results

For our experiments, we consider two auction mechanisms in the LLLLGG domain. Both use the
efficient allocation rule, but they use different payment rules, namely VCG-nearest and first-price.
The first-price payment rule is straightforward: It charges each bidder his bid on the bundle he
wins. VCG-nearest is more involved: It produces a payment vector that minimizes the Euclidean
distance to the VCG payment vector, under the constraint that the payments are minimum-revenue
core-selecting. Informally, this means that the payments have to be large enough to ensure that no
coalition of bidders is willing to pay more in total than what the seller receives from the current
winners. Day and Raghavan (2007) and Day and Cramton (2012) provide formal definitions and
further discussion of VCG-nearest.

We apply our full BNE algorithm to find ε-BNEs for these two payment rules, using the verifi-
cation method that produces a theoretical upper bound on ε (as described in Section 5). The results

23. This idea has recently been formalized by Hoang et al. (2019), who define a variant of best response dynamics based
on return functions, which can explicitly model a large number of players by their aggregated effect on a game’s
outcome. Our algorithm framework is compatible with this concept, as are most of the techniques we discuss in
Section 4.
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Mechanism Grid Size MC Samples Runtime (core-hours) Upper
Bound on εInner Outer Verif. Search Verif. Search Verif. Total

VCG-nearest 15×15 25×25 35×35 100,000 200,000 959.7 2961.0 3920.7 0.0019
VCG-nearest 8×8 12×12 16×16 20,000 40,000 38.0 120.3 158.4 0.0091
First-price 50×50 75×75 100×100 100,000 200,000 82.6 115.2 197.8 0.0019
First-price 15×15 20×20 25×25 20,000 40,000 1.4 1.8 3.2 0.0097

Table 4: Results of our BNE algorithm applied to VCG-nearest and first-price in the multi-minded LLLLGG
domain (each row corresponds to one run of the BNE algorithm). For each payment rule, we show two runs,
one parameterized to achieve a small ε bound and one parameterized to achieve a looser ε bound.

are shown in Table 4. For each payment rule, we show two runs with different parameterizations.
The runs reported in rows one and three target a highly accurate epsilon bound of 0.002; this is the
lowest ε bound we could target with our algorithm using a reasonable number of core-hours. The
runs reported in rows two and four target a less accurate ε bound of 0.01; we include these runs
to illustrate the runtime improvement that is possible if a less accurate ε bound is acceptable. For
each run, we show the parameters that vary between the runs, i.e., the grid sizes and the number
of Monte Carlo samples used in the search and verification phases. For all runs, as the pattern in
pattern search, we use a grid of 3 × 3 points, with an initial grid spacing of 0.1, and a budget of 8
steps in search and 12 steps in verification.24

As the outcome, we report the runtime in core-hours and the obtained upper bound on ε.25 As
we see in rows one and three, our parameterizations for the highly accurate runs lead to an upper
bound on ε of 0.0019. Note that we used a large number of MC samples for verification (i.e.,
200,000) such that we have high confidence in the obtained ε bound.26 No prior work has been able
to compute an ε-BNE with this accuracy for a domain this complex.

As expected, we see that the runtime is significantly lower for the less accurate runs than for the
more accurate runs. This reduction in runtime is driven by multiple factors. First, when targeting
a higher ε bound, we can parameterize the search phase with coarser grid sizes and fewer MC
samples. Second, to verify an ε-BNE with a larger ε bound, a coarser grid in the verification phase
suffices, and we also need fewer MC samples because a larger ε bound can tolerate less precise
pointwise best response computations. Given that the verification phase is the most expensive part
of the BNE algorithm, the largest runtime gains come from the smaller grid size and the smaller
number of MC samples in that phase.

24. Note that we do not use importance sampling and adaptive control points for the experiments described in this section,
as these two techniques are not yet implemented in our code base for higher-dimensional value spaces. Of course,
our algorithm would only get faster with these additions.

25. Note that the runtime for VCG-nearest is orders of magnitude higher than that for first-price. This is to be expected,
because the payment rule itself requires solving a quadratic program to find prices satisfying all core constraints,
which is very expensive, even employing constraint generation (Day & Raghavan, 2007; Bünz et al., 2015). Also note
that, in this experiment, we parallelized our BNE algorithm by performing the pointwise best response computations
for all grid points in parallel on different cores of a large compute cluster. However, we report the runtime in core-
hours in a linearized way, i.e., as if the whole algorithm had been run sequentially on a single machine.

26. Based on our experience, we believe that the number of MC samples we used in verification is a conservative choice
that produces a low-variance ε. In fact, our algorithm’s performance in LLLLGG can likely be improved by using
fewer MC samples. However, given that, in this domain, a detailed analysis of how the number of MC samples affects
the variance of the ε is quite costly, we leave this to future work.
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Figure 7: 0.0019-BNE of the multi-minded LLLLGG domain for the VCG-nearest payment rule. The top
two plots show the BNE strategies for the local bidders for the two bundles they bid on, and the bottom two
show the same for the global bidders.

The final strategy profiles found for the highly accurate runs (with an ε of 0.0019) for both VCG-
nearest and first-price are depicted in Figures 7 and 8, respectively. To enhance visual clarity, we
show the equilibrium strategies in their piecewise bilinear form, before being converted to piecewise
constant, as is required for our upper bound (see Section 5.2). We now discuss these strategies in
more detail.

Equilibrium of VCG-nearest. In Figure 7, we show the ε-BNE for the VCG-nearest payment
rule. The first thing we observe in the equilibrium is that strategies are overall very close to truthful
bidding. The most striking feature, however, is that the global bidders exhibit significant over-
bidding behavior. Specifically, the global bidders bid higher than their value on modestly valued
bundles when their other bundle has a very high value. At first sight, this may seem irrational.
However, by overbidding the bidder shifts the VCG reference point, which can indirectly decrease
his payment. For instance, suppose that bidders G1, L3 and L4 win bundles ABCD, EF and GH
respectively. Bidder G1 has an incentive to overstate the value for EFGH: this will cause the
VCG reference point to increase for L3 and L4. If the value for ABCD is very high for G1, then
this manipulation carries little risk of accidentally winning the low-valued EFGH bundle, and it
decreases the expected payment forABCD. Of course, the bidder must balance the possible upside
of overbidding with the potential risk of winning the lower-valued bundle at negative utility. Thus,
it is somewhat surprising to find such a strong overbidding effect in BNE. Note that the general
concept of overbidding in CAs has first been identified by Beck and Ott (2013), who studied this
phenomenon analytically in LLG for a stylized payment rule. We are the first to demonstrate that
VCG-nearest, the rule most commonly used in practice, also exhibits this effect.
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Figure 8: 0.0019-BNE of the multi-minded LLLLGG domain for the first-price payment rule. The top two
plots show the BNE strategies for the local bidders for the two bundles they bid on, and the bottom two show
the same for the global bidders.

Equilibrium of first-price. In Figure 8, we show the ε-BNE for the first-price payment rule. We
observe that, in contrast to VCG-nearest, here the strategies involve significantly more shading.
This is to be expected, given the incentive properties of the two rules. We also see that, for the
local bidders, their strategy is to bid close to zero for one bundle in a large region of their value
space (specifically, where their value for that bundle is low). This behavior is known as free-riding.
It allows a bidder to still win when other bidders make high bids on complementary bundles and
obtain his bundle for low or even zero payment. If the bidder increased his own bid, the winning
probability would not increase enough to justify the resulting higher payment. While Baranov
(2010) has previously observed this effect in LLG (where each bidder only optimizes for a single
allocation), it is interesting that it also shows up so clearly in the LLLLGG domain (where bidders’
BNE strategies must take several possible allocations into account). For the global bidder, the most
striking feature of his equilibrium strategy is that, when the value for one bundle is high and the
value for the other is low, the bid for the low-valued bundle is strongly shaded. This can again be
explained by the structure of the LLLLGG domain, where the two bundles of interest of the global
bidder are non-overlapping. Thus, in ε-BNE, the global bidder’s optimal strategy requires him to
“get out of his own way” such that he avoids winning a low-profit bundle when instead he could be
winning a much higher-profit bundle.

As we have shown in this section, our algorithm scales well to a domain that is significantly
larger than LLG. We would like to emphasize that no prior analytical or algorithmic work has been
able to solve domains of the size of LLLLGG. We thus expect that other researchers will use this
domain as a benchmark for future algorithmic work.
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Our discussion of the VCG-nearest and first-price equilibria clearly demonstrates that optimiz-
ing the bidding strategy of a multi-minded bidder (as in LLLLGG) is significantly more complex
than optimizing the strategy of a single-minded bidder (as in LLG). Note that we consider our ex-
periments only as a first step towards exploring the properties of payment rules in larger domains
where there are still many open questions that can be analyzed using our algorithm.

8. Software Implementation of our BNE Algorithm

In this section, we describe the software implementation of our BNE algorithm, which is written
in Java 8. In particular, we briefly explain how to use the software and then discuss its main fea-
tures. We release the software publicly under an open-source license at https://github.com/
marketdesignresearch/CA-BNE. The code repository also contains three examples illustrat-
ing how to use our algorithm: the VCG-nearest rule applied to LLG, the first-price rule applied to
LLG (which is more challenging, since the global bidder is no longer truthful), and the first-price
rule applied to LLLLGG (with a modest default configuration that can be run on a laptop).

8.1 Usage

We provide example code in Listing 1 to show the overall structure of the code (we omit some
details in the listing for the purpose of clarity). The code is highly modular: it consists of a series
of different components, each responsible for one single aspect of the problem. Each component is
implemented as a Java class, so one implementation can easily be swapped out for another. These
components are plugged together via the BNESolverContext class. The overall algorithm is
then managed and executed via the BNEAlgorithm class. We first create the context that holds
the algorithm’s configuration (Line 1). Then we specify several of the algorithm’s core elements,
including pattern search (Line 3), Monte Carlo integration (Line 4), common random numbers
(Line 5), and dampened updates (Line 6). Next, we specify the auction setting which consists of a
mechanism class that specifies the allocation and payment rules (Line 8), and a sampler class that
specifies the value distributions of bidders (Line 9).27 Then the BNE Algorithm class is initialized
with the context carrying all the configuration data (Line 10). Finally, the actual BNE algorithm is
started (Line 12).

8.2 Main Features

We wrote our code with performance, ease of use, and extensibility in mind. Note that these three
goals are sometimes at odds with each other, but we have attempted to do justice to each of them,
through careful software engineering. Our code provides the following main features:

1. Flexible Bidder Models. The value distributions and utility functions are simply imple-
mented as classes. All possible joint value distributions are supported, even those with com-
plex correlation structures. Nonlinear utilities (e.g., risk aversion) can easily be added. The
action space is not restricted to Rr≥0, as our algorithm can also handle domain-specific bidding
languages, for example.

27. Note that the sampler class provides a method for sampling from the marginal value distribution V-i|Vi = vi for a
given vi. This design choice makes our Monte Carlo sampling more efficient, more so than if the valuations were
implemented explicitly as a joint probability distribution.
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1 BNESolverContext<Double,Double> context = new BNESolverContext<>();
2 ...
3 context.setOptimizer(new PatternSearch<>(...));
4 context.setIntegrator(new MCIntegrator<>(...));
5 context.setRng(2, new CommonRandomGenerator(...));
6 context.setUpdateRule(new UnivariateDampenedUpdateRule(...);
7 ...
8 context.setMechanism(new FirstPrice());
9 context.setSampler(new FirstPriceLLGSampler(context));

10 BNEAlgorithm<Double,Double> bneAlgo = new BNEAlgorithm<>(3,context);
11 ...
12 result = bneAlgo.run();

Listing 1: Example code for running our BNE Algorithm. The “...”s indicate code or function
arguments that we omit for clarity.

2. Flexible Mechanism Specification. It is straightforward to implement new allocation and
payment rules because they are simply provided by the user as new classes. This also allows
for writing fast, specialized implementations (e.g., for domains where special-purpose algo-
rithms for the winner determination problem are available) or the addition of features like
reserve prices.

3. No hard-coded Assumptions. Our BNE algorithm can also be run in settings where the
assumptions we make in Section 5 to derive the theoretical upper bound on ε are not satisfied.
In these settings, our algorithm simply falls back to our alternative verification method that
computes an estimated ε.

With these features, our code is easy to use and extend. It can thus immediately be used in
exploratory research and as a basis for further algorithmic work. We hope that providing access
to our source code will enable the study of mechanisms and domains that were not previously
amenable to analytic or algorithmic analysis.

9. Conclusion

In this paper, we have presented a new algorithm for finding pure-strategy ε-BNEs in CAs with
continuous value and action spaces. The key difference between our approach and prior work is
that our algorithm is separated into a search phase and a verification phase. This has enabled us to
design a search phase that is highly optimized for speed while still obtaining a provable bound on ε
in the verification phase.

To address the high dimensionality that drives the difficulty of the BNE search problem, sampling-
based approaches are needed, which in turn introduces variance. Therefore, we have employed
multiple variance reduction techniques in the search phase. Additionally, the key to obtain large
speed improvements was to think carefully about when and where to exert computational effort
(e.g., using adaptive control points). In the theory section, our key assumption was the linearity of
the utility function. This enabled us to make the necessary convexity argument to characterize the
gap between the equilibrium utility and the best response utility and to ultimately derive our theoret-
ical bound. Surprisingly, we were able to derive this bound without making any assumptions about
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the allocation or payment rules, while at first sight, one may have expected that certain assumptions
(like Lipschitz-continuity) would have been necessary. For practical applications, it is important to
note that our algorithm computes an upper bound that is relatively ”tight,” in the sense that, with
sufficiently many verification points, the upper bound is very close to the true ε.

Our BNE algorithm can be used in several ways. First, researchers can use it, e.g., for the
purpose of auction design, for analyzing certain aspects of CAs, or for validating analytical re-
sults. Importantly, by enabling the algorithmic analysis of multi-minded domains like LLLLGG,
researchers can now explore many new effects that are not present in simple domains like LLG.
Second, bidders can use our algorithm, e.g., to analyze the effect of different strategies or when
contemplating whether to enter an auction in the first place. We hope that releasing our code under
an open-source license will enable those and many other applications in the future.

Finally, our work gives rise to promising directions for future research. First, an important
question is how to derive a bound for settings with correlation or non-linear utilities (which includes
risk-averse bidders). Note that without assumptions on the mechanism, no bound for correlated
settings can be derived. Thus, future work could explore which assumptions on the mechanism are
necessary/sufficient to extend our theoretical bound to richer settings. Second, in the long run, it
would be interesting to develop BNE algorithms that scale to real-world-sized problems. As we
have discussed, the main difficulty in scaling our algorithm lies in the richness of the bidding space.
Thus, future work targeting scalability could investigate how to exploit certain structure inherent to
the problem of interest (e.g., monotonicity properties of the mechanism) to focus the computational
effort on the most relevant parts of the value or action spaces.
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Appendix A. Pseudocode for Adaptive Control Point Placement

Here, we describe the details of our adaptive control point placement algorithm as introduced in
Section 4.8. We only describe it for the one-dimensional case (as needed for LLG) and it would
have to be generalized to work in multiple dimensions. Recall that the method is based on the
idea of repeatedly finding a valuation where the best response function has high curvature, such
that placing an additional control point there improves how well the corresponding piecewise linear
strategy approximates the best response.

The pseudocode for our adaptive control point placement method is provided in Algorithm 2.
The input to the algorithm is a function PointwiseBestResponse which, for a fixed bidder i,
takes a control point vi as its only argument and computes the bid bi that maximizes the expected
utility ūi(vi, bi). This function thus encompasses all the details about the auction mechanismM,
the joint value distribution V , and the current strategy profile s.
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input : function PointwiseBestResponse that computes a pointwise best
response for a fixed bidder i, at any valuation vi

parameters: initial number of control points initialPoints
maximum number of control points maxPoints

output : strategy s′i
1 controlPoints := list of valuations initialized to an evenly spaced grid of size initialPoints
2 bestResponses := map of (valuation, pointwise best response) pairs, initially empty
3 priorities := map of (valuation, priority) pairs, initially empty
4 foreach vi ∈ controlPoints: compute bi := PointwiseBestResponse(vi) and add

(vi, bi) to bestResponses
5 foreach vi ∈ controlPoints: compute πi :=

CurvatureBasedPriority(vi, bestResponses) and add (vi, πi) to priorities
6 repeat
7 vi := control point with highest priority in priorities
8 v′i := neighbor of vi in controlPoints furthest away from vi (and in case of a tie, select

the neighbor v′i where the difference between the best responses at vi and v′i is larger)
9 v′′i := (vi + v′i)/2

10 add v′′i to controlPoints in between vi and v′i
11 compute b′′i := PointwiseBestResponse(v′′i ) and add (v′′i , b

′′
i ) to bestResponses

12 foreach wi ∈ {vi, v′i, v′′i }: compute πi :=
CurvatureBasedPriority(wi, bestResponses) and add/update (wi, πi) to/in
priorities

13 until |controlPoints| = maxPoints
14 s′i := MakePiecewiseLinearStrategy(bestResponses)
15 return s′i
Algorithm 2: Computing a best response for one bidder with adaptive control point placement

Algorithm 2 works as follows. In Lines 1-3, we initialize the data structures that keep track of
all valuations we have selected as control points, their associated pointwise best responses, and a
priority score for each of them. The initial set of control points is a coarse, evenly spaced grid. In
Line 4, we compute the pointwise best responses for the initial control points. In Line 5, we then
compute a priority for each of those control points. For this, we make use of the helper function
CurvatureBasedPriority which assigns a priority score for a given control point based on
the curvature of the best response function at that control point (see Algorithm 3). In each iteration
of the main loop of the algorithm (Lines 6-13), we add one new control point. For this, we first
find the control point vi with the highest priority and then place a new control point at the midpoint
between vi and one of its neighbors (Lines 7-10). Concretely, the new control point is placed on
the side where the distance to the neighboring control point is larger; in case of a tie, we select the
side where the slope of the best response is estimated to be steeper. We then compute a pointwise
best response at the new control point and recompute all priority scores that might have changed
(Lines 11-12). When we reach the maximum number of allowed control points (Line 13), we con-
struct a piecewise linear strategy based on all the control points and their pointwise best responses
(Line 14). Finally, we return the new strategy (Line 15).
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function : CurvatureBasedPriority(vi, bestResponses)
input : control point vi, map of (valuation, bid) pairs bestResponses
parameters: smallest permissible interval size minIntervalSize
output : priority πi ∈ R≥0

1
¯
vi, v̄i := lower and upper neighbors of vi in bestResponses

2 bi,
¯
bi, b̄i := bids corresponding to vi,

¯
vi, and v̄i in bestResponses, respectively

3 if min (vi −
¯
vi, v̄i − vi) ≤ minIntervalSize then

4 return 0
5 end
6 lowerSlope := (bi −

¯
bi)/(vi −

¯
vi)

7 upperSlope := (b̄i − bi)/(v̄i − vi)
8 return |upperSlope− lowerSlope|
Algorithm 3: Computing the priority of a control point based on the curvature of a bidder’s
strategy

To complete the description of our method we provide pseudocode for the helper function
CurvatureBasedPriority in Algorithm 3. The inputs to the algorithm are the control point
vi for which we compute a priority and a map of best responses for the set of current control points.
In Lines 1-2, we find the two neighboring control points of vi and retrieve the best responses associ-
ated with vi and its two neighbors. If either of vi’s neighbors is too close to vi then we return 0 (the
lowest possible priority) to ensure that the grid is not subdivided too many times in any one region
(Lines 3-5). Otherwise, we approximate the second derivative of the best response at vi through
finite differences and return the magnitude of this derivative as the priority of vi (Lines 6-8).
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