
Journal of Artificial Intelligence Research 65 (2019) 181-208 Submitted 10/2018; published 06/2019

Dependency Learning for QBF

Tomáš Peitl peitl@ac.tuwien.ac.at

Friedrich Slivovsky fs@ac.tuwien.ac.at

Stefan Szeider sz@ac.tuwien.ac.at

Algorithms and Complexity Group, TU Wien

Favoritenstraße 9-11, 1040 Vienna, Austria

Abstract

Quantified Boolean Formulas (QBFs) can be used to succinctly encode problems from
domains such as formal verification, planning, and synthesis. One of the main approaches to
QBF solving is Quantified Conflict Driven Clause Learning (QCDCL). By default, QCDCL
assigns variables in the order of their appearance in the quantifier prefix so as to account
for dependencies among variables. Dependency schemes can be used to relax this restric-
tion and exploit independence among variables in certain cases, but only at the cost of
nontrivial interferences with the proof system underlying QCDCL. We introduce depen-
dency learning, a new technique for exploiting variable independence within QCDCL that
allows solvers to learn variable dependencies on the fly. The resulting version of QCDCL
enjoys improved propagation and increased flexibility in choosing variables for branching
while retaining ordinary (long-distance) Q-resolution as its underlying proof system. We
show that dependency learning can achieve exponential speedups over ordinary QCDCL.
Experiments on standard benchmark sets demonstrate the effectiveness of this technique.

1. Introduction

Conflict Driven Clause Learning (CDCL) represents the state of the art in propositional
satisfiability (SAT) solving (see, e.g., the work of Marques-Silva, Lynce, & Malik, 2009).
Modern CDCL solvers can handle input formulas with thousands of variables and millions
of clauses (Malik & Zhang, 2009). Their remarkable performance has led to the adoption
of SAT solving in electronic design automation (see the survey of Vizel, Weissenbacher, &
Malik, 2015), it has turned algorithms relying on SAT oracles into viable tools for solving
hard problems (see, e.g., the work of Meel et al., 2016), and it has even helped resolve open
questions in combinatorics (Heule, Kullmann, & Marek, 2016).

Encouraged by this success, researchers are turning to an even harder problem: the
satisfiability problem of Quantified Boolean Formulas (QSAT). Quantified Boolean Formu-
las (QBFs) enrich propositional formulas with universal and existential quantification over
truth values and offer much more succinct encodings of problems from domains such as
planning and synthesis (Faymonville et al., 2017). This expressive power comes at a price:
QSAT is complete for the complexity class PSPACE and thus believed to be significantly
harder than SAT.

Quantified CDCL (Cadoli et al., 2002; Zhang & Malik, 2002) is a natural generalization
of CDCL and one of the two1 dominant algorithmic paradigms in QSAT solving. While the

1. The other paradigm can be broadly characterized by the use of quantifier expansion (or abstraction) in
combination with SAT oracles (Biere, 2004; Lonsing & Biere, 2008; Janota, Klieber, Marques-Silva, &

c©2019 AI Access Foundation. All rights reserved.

Peitl, Slivovsky, & Szeider

performance of QCDCL solvers has much improved over the past years, they have so far
failed to replicate the success of CDCL in the domain of SAT.

One of the main obstacles in lifting CDCL to QSAT is that the alternation of existen-
tial and universal quantifiers in the quantifier prefix of a QBF (we consider formulas in
prenex normal form) introduces dependencies among variables that have to be respected by
the order of variable assignments. The resulting constraints not only reduce the empirical
effectiveness of branching heuristics but impose severe theoretical limits on the power of
QCDCL (Janota, 2016). By default, QCDCL only considers variables from the outermost
quantifier block with unassigned variables for branching. In the worst case, this forces solvers
into a fixed branching order. Among several techniques that have been introduced to relax
this restriction, dependency schemes are arguably the most general. Given a QBF, a depen-
dency scheme efficiently computes an overapproximation of its variable dependencies—that
is, the result contains every pair of variables for which there is a “real” dependency, but
it may contain “spurious” dependencies. Lonsing and Biere (2010) introduced a generaliza-
tion of QCDCL that uses dependency schemes to relax constraints on the order of variable
assignments and implemented this algorithm in the solver DepQBF.

The use of dependency schemes within DepQBF often leads to performance improve-
ments, but it has several drawbacks. First, it changes the proof system underlying constraint
learning. Proving soundness of the resulting algorithm is nontrivial even for a simple version
of QCDCL and common dependency schemes (Slivovsky & Szeider, 2016; Peitl, Slivovsky,
& Szeider, 2016). The continuous addition of solver features makes QCDCL a moving tar-
get, and the integration of dependency schemes with any new technique usually requires a
new soundness proof. Second, even if soundness of the resulting proof system can be estab-
lished, efficient (linear-time) strategy extraction from proofs—a common requirement for
applications—does not follow. Third, and perhaps most importantly, the syntactic criteria
for identifying dependencies used by common dependency schemes (such as the standard
dependency scheme or the resolution-path dependency scheme) are fairly coarse, so that
the set of dependencies computed by such schemes frequently coincides with the “trivial”
dependencies implicit in the quantifier prefix (see Table 3 in Section 5).

In this paper, we describe a new approach to exploiting variable independence in QCDCL
solvers we call dependency learning. The idea is that the solver maintains a set D of depen-
dencies that is used in propagation and choosing variables for branching just like in QCDCL
with dependency schemes: a clause is considered unit under the current assignment if it con-
tains a single existential variable that does not depend, according to D, on any universal
variable remaining in the clause; a variable is eligible for branching if it does not depend,
according to D, on any variable that is currently unassigned (cf. Biere & Lonsing, 2010). But
instead of initializing D using a dependency scheme, dependencies are added on the fly as
needed. Initially, the set D is empty, so every clause containing a single existential variable
is considered unit and variables can be assigned in any order. When propagation runs into
a conflict, the solver attempts to derive a new clause by long-distance Q-resolution (Bala-
banov & Jiang, 2012; Egly, Lonsing, & Widl, 2013). Because propagation implicitly performs
universal reduction relative to D, but Q-resolution applies universal reduction according to
the prefix order, the solver may be unable to generate a learned clause. Whenever such a

Clarke, 2012; Rabe & Tentrup, 2015; Janota & Marques-Silva, 2015; Tentrup, 2016; Scholl & Pigorsch,
2016).

182

Dependency Learning for QBF

situation arises during learning, a set of missing variable dependencies is identified as the
(local) cause and added to D. The resulting version of QCDCL potentially improves on
the flexibility afforded by dependency schemes but retains long-distance Q-resolution as its
underlying proof system and thus enjoys linear-time strategy extraction (Balabanov et al.,
2015).

To explore the effectiveness of this technique, we implemented Qute, a QCDCL solver
that supports dependency learning. In experiments with benchmark instances from the
2016–2018 QBF Evaluations, Qute is highly competitive with state-of-the-art QBF solvers
on both formulas in prenex conjunctive normal form (PCNF), as well as non-CNF formulas
in the QCIR format. A comparison of various configurations shows that dependency learning
has a significant positive impact on Qute’s performance.

Additional experiments show that the number of dependencies learned by Qute on
PCNF instances preprocessed by HQSPre (Wimmer et al., 2017) is typically only a fraction
of those identified by the standard dependency scheme and even the (reflexive) resolution-
path dependency scheme, and that Qute can deal with formulas that are provably hard to
solve for vanilla QCDCL (Janota, 2016). We explain the latter result by formally proving
that QCDCL with dependency schemes can solve these formulas in polynomial time.

The remainder of this paper is organized as follows. In Section 2, we cover basic defi-
nitions and notation. In Section 3, we introduce QCDCL and (long-distance) Q-resolution,
its underlying proof system. In Section 4, we describe how to modify QCDCL to support
dependency learning, and prove that the resulting algorithm is sound and terminating. In
Section 5, we provide an experimental evaluation of Qute. In Section 6, we prove that de-
pendency learning can achieve an exponential speedup over ordinary QCDCL. In Section 7,
we study some theoretical properties of dependencies (not) learned by a dependency-learning
solver, and in Section 8, we conclude with a discussion of our results and future research
directions.

2. Preliminaries

We consider QBFs in Prenex Conjunctive Normal Form (PCNF), i.e., formulas Φ = Q.ϕ
consisting of a (quantifier) prefix Q and a propositional CNF formula ϕ, called the matrix
of Φ. The prefix is a sequence Q = Q1x1 . . . Qnxn, where Qi ∈ {∀,∃} is a universal or
existential quantifier and the xi are variables. We write xi ≺Φ xj if 1 ≤ i < j ≤ n and
Qi 6= Qj , dropping the subscript if the formula Φ is understood. A CNF formula is a finite
conjunction C1 ∧ · · · ∧Cm of clauses, a clause is a finite disjunction (`1 ∨ · · · ∨ `k) of literals,
and a literal is a variable x or a negated variable ¬x. Dually, a DNF formula is a finite
disjunction T1∨· · ·∨Tk of terms, and a term is a finite conjunction (`1∧· · ·∧ `k) of literals.
Whenever convenient, we consider clauses and terms as sets of literals, CNF formulas as
sets of clauses, and DNF formulas as sets of terms. We assume that PCNF formulas are
closed, so that every variable occurring in the matrix appears in the prefix, and that each
variable appearing in the prefix occurs in the matrix. We write var(x) = var(¬x) = x to
denote the variable associated with a literal and let var(C) = { var(`) : ` ∈ C } if C is a
clause, var(ϕ) =

⋃
C∈ϕ var(C) if ϕ is a CNF formula, and var(Φ) = var(ϕ) if Φ = Q.ϕ is a

PCNF formula.

183

Peitl, Slivovsky, & Szeider

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

The resolution rule allows the derivation of C1 ∨ C2 from clauses C1 ∨ e and ¬e ∨ C2,
provided that the pivot variable e is existential and that e ≺ var(`u) for each universal
literal `u ∈ C1 such that `u ∈ C2. The clause C1 ∨C2 is called the resolvent of C1 ∨ e and
¬e ∨ C2.

C (universal reduction)
C \ {u,¬u}

The universal reduction rule admits the deletion of a universal variable u from a clause C
under the condition that e ≺ u for each existential variable e in C.

Figure 1: Long-distance Q-resolution.

An assignment is a sequence σ = (`1, . . . , `k) of literals such that var(`i) 6= var(`j) for
1 ≤ i < j ≤ n. If S is a clause or term, we write S[σ] for the the result of applying σ
to S. For a clause C, we define C[σ] = > if `i ∈ C for some 1 ≤ i ≤ k, and C[σ] =
C \ {`1, . . . , `k} otherwise, where x = ¬x and ¬x = x. For a term T , we let T [σ] = ⊥
if `i ∈ T for some 1 ≤ i ≤ k, and T [σ] = T \ {`1, . . . , `k} otherwise. An assignment σ
falsifies a clause C if C[σ] = ∅; it satisfies a term T if T [σ] = ∅. For CNF formulas ϕ, we let
ϕ[σ] = {C[σ] : C ∈ ϕ,C[σ] 6= >}, and for PCNF formulas Φ = Q.ϕ, we let Φ[σ] = Q′.ϕ[σ],
where Q′ is obtained by deleting variables from Q not occurring in ϕ[σ].

The semantics of a PCNF formula Φ is defined as follows. If Φ does not contain any
variables, then Φ is true if its matrix is empty and false if its matrix contains the empty
clause ∅. Otherwise, let Φ = QxQ.ϕ. If Q = ∃ then Φ is true if Φ[(x)] is true or Φ[(¬x)] is
true, and if Q = ∀ then Φ is true if both Φ[(x)] and Φ[(¬x)] are true.

3. QCDCL and Q-resolution

We briefly review QCDCL and Q-resolution (Kleine Büning, Karpinski, & Flögel, 1995), its
underlying proof system. More specifically, we consider long-distance Q-resolution, a version
of Q-resolution that admits the derivation of tautological clauses in certain cases. Although
this proof system was already used in early QCDCL solvers (Zhang & Malik, 2002), the
formal definition shown in Figure 1 was given more recently (Balabanov & Jiang, 2012). A
dual proof system called (long-distance) Q-consensus, which operates on terms instead of
clauses, is obtained by swapping the roles of existential and universal variables (the analog
of universal reduction for terms is called existential reduction).

A (long-distance) Q-resolution derivation from a PCNF formula Φ is a sequence of
clauses such that each clause appears in the matrix of Φ or can be derived from clauses
appearing earlier in the sequence using resolution or universal reduction. A derivation of
the empty clause is called a refutation, and one can show that a PCNF formula is false,
if, and only if, it has a long-distance Q-resolution refutation (Balabanov & Jiang, 2012).
Dually, a PCNF formula is true, if, and only if, the empty term can be derived from a DNF
representation of its matrix by Q-consensus, the dual of Q-resolution.

184

Dependency Learning for QBF

Starting from an input PCNF formula, QCDCL generates (“learns”) constraints—
clauses and terms—until it produces an empty constraint. Every clause learned by QCDCL
can be derived from the input formula by Q-resolution, and every term learned by QCDCL
can be derived by Q-consensus (Giunchiglia, Narizzano, & Tacchella, 2006; Egly et al.,
2013). Accordingly, the solver outputs true if the empty term is learned, and false if the
empty clause is learned.

One can think of QCDCL solving as proceeding in rounds. Along with a set of clauses
and terms, the solver maintains an assignment σ (the trail). During each round, this assign-
ment is extended by quantified Boolean constraint propagation (QBCP) and—possibly—
branching.

Quantified Boolean constraint propagation consists of exhaustive application of universal
and existential reduction in combination with unit assignments.2 More specifically, QBCP
reports a clause C as falsified if C[σ] 6= > and universal reduction can be applied to C[σ] to
obtain the empty clause. Dually, a term T is considered satisfied if T [σ] 6= ⊥ and T [σ] can be
reduced to the empty term. A clause C is unit under σ if C[σ] 6= > and universal reduction
yields the clause C ′ = (`), for some existential literal ` such that var(`) is unassigned.
Dually, a term T is unit under σ if T [σ] 6= ⊥ and existential reduction can be applied to
obtain a term T ′ = (`) containing a single universal literal `. If C = (`) is a unit clause,
then the assignment σ has to be extended by ` in order not to falsify C, and if T = (`) is
a unit term, then σ has to be extended by ` in order not to satisfy T . If several clauses or
terms are unit under σ, QBCP nondeterministically picks one and extends the assignment
accordingly. This is repeated until a constraint is empty or no unit constraints remain.

If QBCP does not lead to an empty constraint, the assignment σ is extended by branch-
ing. That is, the solver chooses an unassigned variable x such that every variable y with
y ≺ x is assigned, and extends the assignment σ by x or ¬x.

The resulting assignment can be partitioned into so-called decision levels. The decision
level of an assignment σ is the number of literals in σ that were assigned by branching. The
decision level of a literal ` in σ is the decision level of the prefix of σ that ends with `. Note
that each decision level greater than 0 can be associated with a unique variable assigned by
branching.

Eventually, the assignment maintained by QCDCL must falsify a clause or satisfy a term.
When this happens (this is called a conflict), the solver proceeds to conflict analysis to derive
a learned constraint C. Initially, C is the falsified clause (satisfied term), called the conflict
clause (term). The solver finds the existential (universal) literal in C that was assigned
last by QBCP, and the antecedent clause (term) R responsible for this assignment. A new
constraint is derived by resolving C and R and applying universal (existential) reduction.
This is done repeatedly until the resulting constraint C is asserting. A clause (term) S is
asserting if there is a unique existential (universal) literal ` ∈ S with maximum decision
level among literals in S, its decision level is greater than 0, the corresponding decision
variable is existential (universal), and every universal (existential) variable y ∈ var(S) such
that y ≺ var(`) is assigned at a lower decision level (an asserting constraint becomes unit
after backtracking). Once an asserting constraint has been found, it is added to the solver’s

2. We do not consider the pure literal rule as part of QBCP.

185

Peitl, Slivovsky, & Szeider

set of constraints. Finally, QCDCL backtracks, undoing variable assignments until reaching
a decision level computed from the learned constraint.

Example 1. We present a run of QCDCL on a simple PCNF formula Φ shown below.

Φ = ∀x∃y∃z.(x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (¬x ∨ z)

We use the notation x
d
= c to denote that variable x that is assigned value c by decision.

If x is assigned c by unit propagation, we write x = c. A possible run of QCDCL on Φ
looks as follows. The formula does not contain any unit clauses, so QCDCL has to make a

decision, and the variable x is the only variable eligible for a decision. Setting x
d
= c satisfies

the first clause and turns the third clause into the unit clause (z). Setting z = 1 turns the
second clause into the unit clause (y), and setting y = 1 satisfies the matrix. This allows
us to derive (x ∧ z ∧ y) as an initial term using the model generation rule (Giunchiglia
et al., 2006). By applying existential reduction we can derive the unit term (x) as a learned
term. QCDCL then backtracks to decision level 0 and assigns x = 0. This turns the first
clause into the unit clause (¬y) and results in the assignment y = 0. Now the second clause
simplifies to (¬z) and the algorithm assigns z = 0. The resulting assignment satisfies the
matrix and we derive (¬x ∧ ¬y ∧ ¬z) as an initial term. Existential reduction leads to the
unit term (¬x) which is resolved with the term (x) responsible for assigning x = 0. The
resolvent is the empty term and QCDCL returns true.

4. QCDCL with Dependency Learning

We now describe how to modify QCDCL to support dependency learning. First, the solver

Algorithm 1 QCDCL with Dependency Learning

1: procedure solve()
2: D = ∅
3: while true do
4: conflict = QBCP()
5: if conflict == none then
6: decide()
7: else
8: constraint , btlevel = analyzeConflict(conflict)
9: if constraint != none then

10: if isEmpty(constraint) then
11: return isTerm(constraint)
12: else
13: addLearnedConstraint(constraint)
14: end if
15: end if
16: backtrack(btlevel)
17: end if
18: end while
19: end procedure

186

Dependency Learning for QBF

Algorithm 2 Conflict Analysis with Dependency Learning

1: procedure analyzeConflict(conflict)
2: constraint = getConflictConstraint(conflict)
3: while not asserting(constraint) do
4: pivot = getPivot(constraint)
5: reason = getAntecedent(pivot)
6: if existsResolvent(constraint , reason, pivot) then
7: constraint = resolve(constraint , reason, pivot)
8: constraint = reduce(constraint)
9: else

10: illegal merges = illegalMerges(constraint , reason, pivot)
11: D = D ∪ { (v, pivot) : v ∈ illegal merges }
12: return none, decisionLevel(pivot)
13: end if
14: end while
15: btlevel = getBacktrackLevel(constraint)
16: return constraint , btlevel
17: end procedure

maintains a set D ⊆ { (x, y) : x ≺ y } of variable dependencies. Second, both QBCP and
the decision rule must be modified as follows:

• qbcp() uses universal and existential reduction relative to D. Universal reduction
relative to D removes each universal variable u from a clause C such that there is no
existential variable e ∈ var(C) with (u, e) ∈ D (existential reduction relative to D is
defined dually).

• decide() may assign any variable y such that there is no unassigned variable x
with (x, y) ∈ D (note that (x, y) ∈ D implies x ≺ y).

These rules correspond to how DepQBF uses the dependency relation D computed by a
dependency scheme in propagation and decisions (Biere & Lonsing, 2010). Unlike DepQBF,
QCDCL with dependency learning does not use the generalized reduction rules during
conflict analysis (resolve and reduce in lines 7 and 8 refer to resolution and reduction
as defined in Figure 1). As a consequence, the algorithm cannot always construct a learned
constraint during conflict analysis (see Example 2 below). Such cases are dealt with in lines 9
through 12 of analyzeConflict (Algorithm 2):

• existsResolvent(constraint , reason, pivot) determines if the resolvent of constraint
and reason exists.

• If this is not the case, there has to be a variable v (universal for clauses, existential
for terms) satisfying the following condition: v ≺ pivot and there exists a literal
` ∈ constraint with var(`) = v and ` ∈ reason. The set of such variables is computed
by illegalMerges. For each such variable, a new dependency is added to D. No
learned constraint is returned by conflict analysis, and the backtrack level (btlevel) is
set so as to cancel the decision level at which pivot was assigned.

187

Peitl, Slivovsky, & Szeider

The criteria for a constraint to be asserting must also be slightly adapted: a clause
(term) S is asserting with respect to D if there is a unique existential (universal) literal ` ∈ S
with maximum decision level among literals in S, its decision level is greater than 0, the
corresponding decision variable is existential (universal), and every universal (existential)
variable y ∈ var(S) such that (y, var(`)) ∈ D is assigned (again, this corresponds to the
definition of asserting constraints used in DepQBF (Lonsing, 2012, p.119)). Finally, in the
main QCDCL loop, we have to implement a case distinction to account for the fact that
conflict analysis may not return a constraint (line 9).

Example 2. We revisit the PCNF formula Φ from Example 1 to illustrate a run of QCDCL
with dependency learning.

Φ = ∀x∃y∃z.(x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (¬x ∨ z)

Initially, the set D of learned dependencies is empty. Accordingly, universal reduction rela-
tive to D would simplify the first clause to (¬y) and the third clause to (z). The algorithm
thus assigns y = 0 and z = 1, falsifying the second clause. Conflict analysis first resolves
the second clause with the third clause (which is responsible for propagating the last literal
in the falsified clause) to obtain the clause (¬x∨ y). Since universal reduction is performed
according to the prefix order during conflict analysis, the literal ¬x cannot be removed
from this clause even though there is no dependency of y on x. Next, conflict analysis
attempts to resolve (¬x ∨ y) with (x ∨ ¬y). These clauses do not have a resolvent in long-
distance Q-resolution since x ≺ y. Variable x is identified as involved in an illegal merge,
the dependency (x, y) is added to D, and the solver backtracks before decision level 0 (the
level where ¬y was propagated), undoing all assignments. Because of the learned depen-
dency (x, y) ∈ D the first clause can no longer be simplified by universal reduction, but the
third clause still simplifies to (z) and z = 1 is propagated. This simplifies the second clause
to (y) and y = 1 is propagated. Thus the first clause becomes (x) and universal reduction
results in a conflict. Conflict analysis resolves the first and second clause to derive (x∨¬z).
Because x ≺ z universal reduction cannot simplify this clause. Conflict analysis then at-
tempts to resolve (x ∨ ¬z) and (¬x ∨ z). These clauses do not have a resolvent and x is
identified as the cause of an illegal merge. The dependency (x, z) is added to D and the solver
backtracks to remove decision level 0 where z was propagated. Since D = {(x, y), (x, z)}
now contains all possible dependencies of Φ, QCDCL with dependency learning behaves
exactly like ordinary QCDCL from that point onward.

4.1 Soundness and Termination

Soundness of QCDCL with dependency learning is an immediate consequence of the follow-
ing observation.

Observation 1. Every constraint learned by QCDCL with dependency learning can be
derived from the input formula by long-distance Q-resolution or Q-consensus.

To prove termination, we argue that the algorithm learns a new constraint or a new
dependency after each conflict. Just as in QCDCL, every learned constraint is asserting, so
learning does not introduce duplicate constraints.

188

Dependency Learning for QBF

Observation 2. QCDCL with dependency learning never learns a constraint already present
in the database.

The only additional argument required to prove termination is one that tells us that the
algorithm cannot indefinitely “learn” the same dependencies.

Lemma 1. If QCDCL with dependency learning does not learn a constraint during conflict
analysis, it learns a new dependency.

Proof. To simplify the presentation, we are only going to consider clause learning (the
proof for term learning is analogous). We first establish an invariant of intermediate clauses
derived during conflict analysis: they are empty under the partial assignment obtained by
backtracking to the last literal in the assignment that falsifies an existential literal in the
clause. Formally, let C be a clause and let σ = (`1, . . . , `k) be an assignment. We define
lastC(σ) = max({ i : 1 ≤ i ≤ k and `i ∈ C, var(`i) ∈ E } ∪ {0}), where E is the set
of existential variables of the input PCNF formula, and let σC = (`1, . . . , `lastC(σ)). In
particular, if lastC(σ) = 0 then σC is empty.

We now prove the following claim: if σ is an assignment that falsifies a clause, then,
for every intermediate clause C constructed during conflict analysis, C[σC] is empty after
universal reduction. The proof is by induction on the number of resolution steps in the
derivation of C. If C is the conflict clause then C[σ] reduces to the empty clause. That
means C[σC] can only contain universal literals and can also be reduced to the empty clause
by universal reduction. Suppose C is the result of resolving clauses C ′ and R and applying
universal reduction, where C ′ is an intermediate clause derived during conflict analysis and
R is a clause that triggered unit propagation. The induction hypothesis tells us that C ′[σC′]
reduces to the empty clause. Since the pivot literal ` is chosen to be the last existential literal
falsified in C ′, we must have σC′ = (`1, . . . , `k) where `k = `. Let τ = (`1, . . . , `k−1). We must
have C ′[τ] = U ′ ∪ {`}, where U ′ is a purely universal clause. Because R is responsible for
propagating `, we further must have R[τ] = U ′′ ∪ {`}, where U ′′ again is a purely universal
clause. It follows that their resolvent C[τ] = (C ′ \{`})[τ]∪ (R\{`})[τ] = U ′∪U ′′ is a purely
universal clause. Since τ is a prefix of σ, it follows that C[σC] is a purely universal clause
as well and therefore empty after universal reduction. This proves the claim.

We proceed to prove the lemma. If the algorithm does not learn a clause during conflict
analysis, this must be due to a failed attempt at resolving an intermediate clause C with a
clause R responsible for unit propagation. That is, if e is the existential pivot variable, there
must be a universal variable u ≺ e such that u ∈ var(C) ∩ var(R) and {u,¬u} ⊆ C ∪ R.
Towards a contradiction, suppose that (u, e) ∈ D. Let σ denote the assignment that caused
the conflict and assume without loss of generality that {u, e} ⊆ R and {¬u,¬e} ⊆ C. Since
R caused propagation of e but (u, e) ∈ D, the variable u must have been assigned before e
and ¬u ∈ σ. As the pivot ¬e is the last existential literal falsified in C, it follows that
¬u ∈ σC . Because ¬u ∈ C, this implies that the assignment σC satisfies C, in contradiction
with the claim proved above.

For a formula with n variables the number of dependencies is O(n2) and the number of
distinct constraints is 22n+1. QCDCL runs into a conflict at least every n variable assign-
ments, so Observation 2 and Lemma 1 imply termination.

Theorem 1. QCDCL with dependency learning is sound and terminating.

189

Peitl, Slivovsky, & Szeider

5. Experiments

To see whether dependency learning works in practice, we implemented a QCDCL solver
that supports this technique named Qute.3 We evaluated the performance of Qute in sev-
eral experiments. First, we measured the number of instances solved by Qute on the union
of benchmark sets from the 2016–2018 QBF Evaluations (Pulina, 2016). We compare these
numbers with those of the best performing publicly available solvers for each input type. In
a second experiment, we computed the dependency sets given by the standard dependency
scheme (Samer & Szeider, 2009; Biere & Lonsing, 2009) and the reflexive resolution-path de-
pendency scheme (Van Gelder, 2011; Slivovsky & Szeider, 2016) for preprocessed instances,
and compared their sizes to the number of dependencies learned by Qute. Finally, we re-
visit an instance family which is known to be hard to solve for QCDCL (Janota, 2016) and
show they pose no challenge to Qute. In fact, we reinforce the last experimental result by
a formal proof that QCDCL with dependency learning can indeed solve instances from this
family efficiently. For our experiments, we used a cluster with Intel Xeon E5649 processors
at 2.53 GHz running 64-bit Linux.

5.1 Decision Heuristic, Restart Strategy, and Constraint Deletion Policy

We briefly describe a few design choices for key components of Qute. The exact values of
parameters (parameter names are shown in italics) used in the experiments are listed in
Appendix A.

• We rely on a version of the variable move-to-front (VMTF) heuristic for selecting
decision variables (Ryan, 2004; Biere & Fröhlich, 2015). VMTF maintains a list of
variables and selects a decision variable that is closest to the head of the list. Upon
learning a new constraint, variables occurring in the constraint are moved to the front
of the list.

• Restarts are determined by a simple inner-outer restart scheme (Biere, 2008). A restart
is triggered every time the conflict counter reaches a number referred to as the inner
restart distance. After every restart, the inner restart distance is multiplied by a
fixed restart multiplier and the conflict counter is reset. After a number of restarts
corresponding to the outer restart distance, the inner restart distance is reset and the
outer restart distance is multiplied by the restart multiplier.

• Qute keeps limits on the number of learned clauses and terms, respectively. Upon
hitting the limit for clauses or terms, the corresponding constraints are ordered lex-
icographically according to their literal blocks distance (LBD) (Audemard & Simon,
2009) in increasing order and activity (Eén & Sörensson, 2003) in decreasing order.
A fraction (determined by the clause deletion ratio and term deletion ratio) of these
constraints is then deleted starting from the back of the list, skipping constraints that
are locked because they are the antecedent of a literal on the current trail. The limit
on the number of learned clauses or terms is then increased by a fixed constant (the
clause database increment and term database increment, respectively).

3. http://github.com/perebor/qute

190

Dependency Learning for QBF

Table 1: Instances from the 2016–2018 QBF Evaluation prenex non-CNF (QCIR) bench-
mark sets solved within 10 minutes.

solver total sat unsat

QuAbS 705 313 392
CQESTO 695 310 385
Qute 681 315 366
GhostQ 681 296 385
Qfun 663 296 367
Qute (no DL) 617 281 336
RAReQS 518 218 300

5.2 Solved Instances for QBF Evaluation 2016–2018 Benchmark Sets

In our first experiment, we used the prenex non-CNF (QCIR, Jordan, Klieber, & Seidl,
2016) benchmark sets from the 2016–2018 QBF Evaluation, consisting in total of 1240
formulas. Time and memory limits were set to 10 minutes and 4 GB, respectively. The
results are summarized in Table 1 and Figure 2. Qute’s performance is competitive with
other state-of-the-art circuit solvers, and this appears to be in large part due to dependency
learning: when dependency learning is deactivated, the number of solved instances drops
significantly.

It is folklore within the QBF community that the number of quantifier alternations
has a strong influence on solver performance. Generally speaking, expansion/abstraction
solvers tend to do better on instances with few alternations, whereas QCDCL solvers are
at an advantage on instances with many alternations. Standard benchmark sets contain
many instances with only a single alternation (Lonsing & Egly, 2018), presumably because
many problems of interest can be encoded in such formulas. Figure 3 shows the number of
solved prenex non-CNF instances broken down by the number of quantifier alternations.
While the number of instances with up to 100 alternations solved by Qute with depen-
dency learning is slightly subpar (even compared to Qute without dependency learning),
dependency learning shines when it comes to the subset of instances with the highest num-
ber (100+) of quantifier alternations.4 This is also clearly visible in Figure 4, which shows
the runtimes of Qute with and without dependency learning for individual instances. On
average, dependency learning incurs a slight performance penalty for instances solved by
both configurations but leads to many more solved instances among those with at least 100
quantifier alternations.

Many of these formulas have a number of quantifier alternations that is close to the
overall number of variables. Apparently, most of the corresponding variable dependencies
are spurious, and dependency learning allows Qute to ignore them.

4. This matches recent experimental results on portfolio-based algorithm selection for QCIR, where se-
lectors favored Qute with dependency learning over other solvers for instances with many quantifier
alternations (Hoos, Peitl, Slivovsky, & Szeider, 2018).

191

Peitl, Slivovsky, & Szeider

0

200

400

600

400 500 600 700

tim
e

(s
)

CQESTO

GhostQ

QFun

QuAbS

Qute (no DL)

Qute

RAReQS

Figure 2: Solved instances from the 2016–2018 QBF Evaluation prenex non-CNF (QCIR)
benchmark sets (x-axis) sorted by runtime (y-axis).

192

Dependency Learning for QBF

0

100

200

300

400

1−2 3−4 5−19 20−99 100+

CQESTO

GhostQ

QFun

QuAbS

Qute (no DL)

Qute

RAReQS

Figure 3: Solved instances from the 2016–2018 QBF Evaluation Prenex non-CNF (QCIR)
benchmark sets (y-axis) by number of quantifier alternations (x-axis).

193

Peitl, Slivovsky, & Szeider

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

Runtime − Dependency Learning (s)

R
un

tim
e

−
 N

o
D

ep
en

de
nc

y
Le

ar
ni

ng
 (

s)

Alternations

1−2

3−4

5−19

20−99

100+

Figure 4: Runtimes of Qute with and without dependency learning on the 2016–2018 QBF
Evaluation Prenex non-CNF (QCIR) benchmark sets, by number of quantifier
alternations.

194

Dependency Learning for QBF

Table 2: Instances from the QBF Evaluation 2016–2018 prenex CNF (PCNF) benchmark
sets solved within 10 minutes without preprocessing (left) and with preprocess-
ing using HQSPre (right). Configurations labeled with +CR use partial circuit
reconstruction.

solver total sat unsat

GhostQ 752 350 402
Qute+CR 712 315 397
Qute (no DL)+CR 667 313 354
DepQBF 637 259 378
CAQE 549 216 333
RAReQS 510 152 358
Qute 499 166 333
Qute (no DL) 488 172 316

solver total sat unsat

CAQE 978 442 536
RAReQS 945 410 535
DepQBF 888 396 492
Qute+CR 871 374 497
Qute (no DL)+CR 866 377 489
Qute (no DL) 858 381 477
GhostQ 833 369 464
Qute 827 347 480

For our second experiment, we used the prenex CNF (PCNF) benchmark sets from the
2016–2018 QBF Evaluations consisting of 1314 instances. Time and memory limits were
again set to 10 minutes and 4 GB. We performed this experiment twice: with and without
preprocessing using HQSPre (Wimmer et al., 2017). In order not to introduce variance
in overall runtime through preprocessing, each instance was preprocessed only once, and
solvers were run on the preprocessed instances with a timeout corresponding to the overall
timeout minus the time spent on preprocessing.

Since Qute shows good performance on QCIR instances, we included configurations
that perform partial circuit reconstruction using qcir-conv5 and then solve the resulting
QCIR instance.

The results obtained without using HQSPre are shown on the left-hand side of Table 2.
When using qcir-conv, Qute solves significantly more instances with dependency learning
than without dependency learning. Without qcir-conv, the difference is less pronounced,
but dependency learning remains beneficial. Overall, we see that circuit reconstruction (also
used internally by GhostQ (Klieber et al., 2010) substantially increases the performance
of Qute.

The results including preprocessing with HQSPre are shown on the right-hand side
of Table 2. The power of the preprocessor strikes the eye: any solver/configuration solves
more instances when paired with HQSPre, than any other without it. While dependency
learning does not seem to provide as much as in the previous cases, it is still part of the
best-performing configuration of Qute.

5.3 Learned Dependencies Compared to Dependency Relations

To get an idea of how well QCDCL with dependency learning can exploit independence, we
compared the number of dependencies learned by Qute with the number of standard and

5. http://www.cs.cmu.edu/~wklieber/qcir-conv.py

195

Peitl, Slivovsky, & Szeider

Table 3: Learned dependencies, standard dependencies, and reflexive resolution-path de-
pendencies for instances preprocessed by HQSPre, as a fraction of trivial depen-
dencies.

dependencies mean median variance

standard 0.929 1.000 0.029
resolution-path 0.628 0.798 0.139
learned 0.033 0.007 0.004

resolution-path dependencies for instances from the PCNF benchmark set after preprocess-
ing with HQSPre. We only considered instances with at least one quantifier alternation
after preprocessing. Qute was run with a 10 minute timeout (excluding preprocessing). If
an instance was not solved, we used the number of dependencies learned within that time
limit.6

Summary statistics are shown in Table 3. On average, the standard dependency scheme
only provides a mild improvement over trivial dependencies. The reflexive resolution-path
dependency scheme does better, but the set of trivial dependencies it can identify as spurious
is still small in many cases. The fraction of learned dependencies is much smaller than either
dependency relation on average, and the median fraction of trivial dependencies learned is
even below 1%.

This indicates that proof search in QCDCL with dependency learning is less constrained
than in QCDCL with either dependency scheme: since QCDCL is allowed to branch on a
variable x only if every variable that x depends on has already been assigned, decision
heuristics are likely to have a larger pool of variables to choose from if fewer dependencies
are present.

5.4 Dependency Learning on Hard Instances for QCDCL

For our third experiment, we chose a family of instances CRn recently used to show that
ordinary QCDCL does not simulate tree-like Q-resolution (Janota, 2016). Since the hard-
ness of these formulas is tied to QCDCL not propagating across quantifier levels, they
represent natural test cases for QCDCL with dependency learning. We recorded the num-
ber of backtracks required to solve CRn by Qute with and without dependency learning,
for n ∈ {1, ..., 50}. As a reference, we used DepQBF.7 For this experiment, we kept the
memory limit of 4 GB but increased the timeout to one hour. The results are summarized
in Figure 5. As one would expect, Qute without dependency learning and DepQBF were
only able to solve instances up to n = 7 and n = 8, respectively. Furthermore, it is evident

6. We cannot rule out that, for unsolved instances, Qute would have to learn a larger fraction of trivial
dependencies before terminating. However, the solver tends to learn most dependencies at the beginning
of a run, with the fraction of learned trivial dependencies quickly converging to a value that does not
increase much until termination.

7. For the sake of comparing with Qute in prefix mode, we disabled features recently added to DepQBF
such as dynamic quantified blocked clause elimination (Lonsing et al., 2015) and oracle calls to the
expansion-based solver Nenofex.

196

Dependency Learning for QBF

101

103

105

0 10 20 30 40 50

DepQBF

Qute

Qute (no DL)

Figure 5: Backtracks for instances CRn based on the Completion Principle (Janota, 2016),
as a function of n.

from the plot that the number of backtracks grows exponentially with n for both solvers.
By contrast, Qute with dependency learning was able to solve all instances within the
timeout. In the next section, we will formally prove that QCDCL with dependency learning
can find short proofs of the formulas CRn for all n.

6. An Exponential Speedup over QCDCL

We will now show that there is a run of QCDCL with dependency learning on CRn that
terminates in time polynomial in n. The corresponding short proof of CRn that we identify
is, up to a symmetry, the one presented by Janota (2016). Let us first recall the definition
of CRn.

Definition 1. Let n ∈ N, let X = {xij : 1 ≤ i, j ≤ n }, and L = { ai, bi : 1 ≤ i ≤ n } be
sets of variables. The formula CRn has the prefix ∃X∀z∃L, and the matrix consisting of the
following clauses:

Aij = xij ∨ z ∨ ai for 1 ≤ i, j ≤ n
Bij = ¬xij ∨ ¬z ∨ bj for 1 ≤ i, j ≤ n

A =
n∨
i=1

¬ai B =
n∨
j=1

¬bj

197

Peitl, Slivovsky, & Szeider

Lemma 2. Assume that the current trail of a QCDCL solver with dependency learning
contains only literals from the set {a1, . . . , an}. Then, assigning any ai that is not on the
trail to false causes unit propagation to derive a conflict, and the clause (z ∨ ai) is derived
during conflict analysis.

Proof. Assigning ai to false causes the clause Aij to propagate xij for j = 1, . . . , n. In turn,
assigning xij to true causes the clause Bij to propagate bj for j = 1, . . . , n (because there
is no dependency of bj on z). This causes a conflict with the clause B.

During conflict analysis, we will resolve B with the clauses Bij on b1, . . . , bn, effectively
removing all ¬bj from B, and introducing ¬xi1, . . . ,¬xin and ¬z. At that point, ¬z is trailing
and can be reduced. Afterwards, we will resolve away all the ¬xij using Aij , and we will
end up with the clause (z ∨ ai) as required. Note that each intermediate clause contains
at least two literals from the set {ai,¬b1, . . . ,¬bn,¬xi1, . . . ,¬xin} which are existential and
assigned at the same decision level as ai (which is the highest decision level) so none of
these clauses can be asserting.

Consider the following run of QCDCL with dependency learning. Each clause contains
at least two existential literals, so (even with an empty dependency relation) no variable
is assigned by unit propagation at decision level 0. As the first decision, the variable a1 is
assigned to false. By Lemma 2 the clause (z ∨ a1) is derived during conflict analysis. This
clause is asserting, so it is learned, the algorithm backtracks to decision level 0, and unit
propagation sets a1 to true. This is repeated for a1, . . . , an−1. During propagation of the
assignment a1 ∧ · · · ∧ an−1 the clause A propagates ¬an, which by Lemma 2 again leads
to a conflict and the derivation of the clause (z ∨ an) during conflict analysis. This time,
because ¬an is assigned at decision level 0, the clause (z∨an) is not asserting. Thus conflict
analysis proceeds to resolve (z∨an) with A, and then subsequently with the clauses (z∨ai)
for i = 1, . . . , n − 1. This yields the unit clause (z), which is reduced to the empty clause,
resulting in QCDCL terminating and outputting false.

This run requires n invocations of propagation and conflict analysis. Since both unit
propagation and conflict analysis can be carried out in polynomial time, we get a polynomial
bound on the overall runtime.

Theorem 2. QCDCL with dependency learning can solve CRn in polynomial time.

Since ordinary QCDCL requires time exponential in n to solve CRn (Janota, 2016),
dependency learning achieves an exponential speedup on these instances.

7. An Interpretation of Learned Dependencies

Dependencies in QBF naturally arise in a semantic context. The formula ∀x∃y.ϕ(x, y) says
that we can choose a value for y, depending on x, such that ϕ(x, y) evaluates to true. In
other words, the assertion that this formula is true is equivalent to saying that there is a
function fy, which depends on x as its input, and which chooses values for y so that ϕ
evaluates to true. Such a function is called a model of the formula, and one way of thinking
about dependencies in a given formula is to think about the dependencies exploited by a
model/all models of the formula. For instance, in this example, it could be the case that a
constant function fy that does not exploit the information about x at all suffices to make

198

Dependency Learning for QBF

ϕ(x, y) evaluate to true—in such a case we would say that the dependency of y on x, while
present syntactically, is spurious semantically.

QCDCL with dependency learning does not directly extract semantic information about
the formula it is solving in the sense outlined in the previous paragraph—it simply relaxes
the rules of QCDCL, and refines the relaxation (by learning a dependency) to avoid an
illegal merge during constraint learning. Nevertheless, there is something that can be said
about the relationship between learned and “actual”, semantic dependencies of a formula.
In this section, we formalize what we mean by semantic dependencies, and study how they
relate to learned dependencies.

Our notion of semantic dependencies is based on changes (or lack thereof) in the truth
value of a formula when certain variables are shifted around in the prefix. As an example,
consider the formula

Φ = ∀u∀x∃z∀v∃y∃e.ϕ

for some matrix ϕ. We define the y-x shift of Φ as the formula

Φ′ = ∀u∃y∀x∃z∀v∃e.ϕ,

i.e., the variable y is moved “just in front of” x, maintaining the relative order of other
variables. This is formalized in the definition below.

Definition 2. Let Φ = Q1x1 . . . Qnxn.ϕ be a QBF, and let x = xk and y = xm, k < m. Let
gmk (j) for j = 1, . . . , n be defined in the following way:

gmk (j) =


j if j < k or m < j

m if j = k

j − 1 otherwise

The y-x shift of Φ is the formula Φy
x = Qgmk (1)xgmk (1) . . . Qgmk (n)xgmk (n).ϕ.

Notice that the mapping gmk is a permutation of the set {1, . . . , n}, and the prefix
Qgmk (1)xgmk (1) . . . Qgmk (n)xgmk (n) is what results from Q1x1 . . . Qnxn when y is shifted just in
front of x. This notion can naturally be extended to shifting in front of arbitrary sets of
variables.

Definition 3. Let Φ = Q1x1 . . . Qnxn.ϕ be a QBF, let y = xm, and ∅ 6= X ⊆ var(Φ).
Let k = min

xj∈X
j < m. The y-X shift of Φ is the formula Φy

X = Φy
xk .

For a given variable y, any set of variables on which a model for y is allowed to depend
(syntactically), i.e., a set of variables left of y and of opposite quantifier type, will be called
a syntactic dependency set.

Definition 4. Let Φ = Q.ϕ be a QBF, X ⊆ var(Φ), and y ∈ var(Φ) \ X. If x ≺Φ y for
each x ∈ X, then we say that X is a syntactic dependency set of y. If X = {x }, we say
that x is a syntactic dependency of y.

199

Peitl, Slivovsky, & Szeider

Finally, we define potential and critical semantic dependencies. Intuitively, X is a critical
dependency set of y if moving y in front of X in the prefix makes the formula change its
truth value. X is a potential dependency set of y if the player who owns y loses when y is
shifted in front of X, but does not necessarily win when y is in its original place. This is akin
to a necessary condition—X must be left of y if there should be a chance to win, but maybe
not even that is sufficient. Every critical dependency set is also a potential dependency set.

Definition 5. Let Φ = Q.ϕ be a QBF, y one of its existential (universal) variables, and X
a syntactic dependency set of y. If Φy

X is false (true), then we say that X is a potential
dependency set of y. If, moreover, Φ is true (false), then we say that X is a critical de-
pendency set of y. If X = {x }, we say that x is a potential or critical dependency of y,
respectively.

We note that in the above definition, a critical (potential) dependency is a critical
(potential) dependency set of cardinality 1, and that this is different from being an element
of a larger critical (potential) dependency set. It can be easily seen that any superset of
a critical (potential) dependency set is also a critical (potential) dependency set, but the
same does not necessarily hold for subsets.

Example 3. Consider the formula

Φ = ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y).

Clearly Φ is true, as is witnessed by the model fy(x) = x, and x is a syntactic dependency
of y. If we shift y in front of x, we get the formula Φy

x = ∃y∀x (x ∨ ¬y) ∧ (¬x ∨ y), which
is false, witnessed by the countermodel fx(y) = ¬y. Hence, we conclude that x is a critical
dependency of y.

Example 4. Consider the formula

Φ = ∀x∃y. (x ∨ ¬y) ∧ (x ∨ y).

If we shift y in front of x, we get the formula Φy
x = ∃y∀x (x ∨ ¬y) ∧ (x ∨ y), which is false,

witnessed by the countermodel fx(y) = 0. Hence, x is a potential dependency of y. However,
in this case Φ itself is false, and so x is not a critical dependency of y.

The results of this section show that learning certain seemingly necessary dependencies
can be avoided, and provide a characterization of learned dependencies and the context
in which they are learned. Theorem 3 says that QCDCL with dependency learning can
solve formulas with many critical dependencies (critical dependency sets of size 1) without
learning any of them. Theorem 4 on the other hand says that any learned dependency must
be contained in a potential dependency set in a restriction of the input formula.

Theorem 3. For every n ∈ N there is a QBF Φn with O(n2) variables and Ω(n2) critical
dependencies, and a run of QCDCL with dependency learning on Φn that terminates in
polynomial time and learns no dependency.

200

Dependency Learning for QBF

Proof. Let Φn = CRn (see Definition 1). The required run of QCDCL with dependency
learning has already been presented in the previous section. It remains to show that there
are indeed the required critical dependencies.

Let 1 ≤ i0, j0 ≤ n, and consider the QBF (Φn)zxij , which results from swapping xij and z

in the prefix of Φn. It can be verified that the following set of (mostly constant) functions
is a model of (Φn)zxij :

xi0j = 1 for j 6= j0,

xij0 = 0 for i 6= i0,

xi0j0 = ¬z,
ai = bj = 1 for i 6= i0 ∧ j 6= j0,

ai0 = bj0 = 0,

and hence (Φn)zxij is true. Since Φn is false, we get that xi0j0 is a critical dependency of z,

and there are n2 choices of i0, j0.

Theorem 4. Assume QCDCL with dependency learning is solving the formula Φ and learns
a dependency of a variable y on a variable x. Let τ be the current trail assignment, and
let σ be τ restricted to literals of the same quantifier type as y. Then there is X ⊆ var(Φ),
such that x ∈ X and X is a potential dependency set of y in Φ[σ].

Proof. Without loss of generality, let us assume that x is universal and y is existential.
Consider QCDCL with dependency learning in the state when it learns a new dependency
of y on x. The learned dependency stems from a failed attempt at long-distance resolution of
two clauses R, the clause that became unit during search, and C, the intermediate learned
clause, derived from Φ, over the pivot y, without loss of generality y ∈ R. Let τ be the
trail assignment at the point when the resolution of R and C is attempted, i.e., up to but
excluding y, and let σ be τ restricted to existential literals. Since R was unit under τ and
propagated y, and C is the intermediate learned clause, which must contain only universal
literals after the application of τ ∪ {y} (cf. proof of Lemma 1), we have that y is the only
existential literal in R[σ] and y is the only existential literal in C[σ]. The reason why long-
distance resolution of R and C fails is that there is at least one universal variable x′ ≺ y
blocking the resolution, i.e., without loss of generality, x′ ∈ R and x′ ∈ C. Let X be the set
of all universal variables blocking the resolution of R and C, clearly a syntactic dependency
set of y. We will show that σ and X satisfy the stated conditions.

First, by definition of dependency learning, the learned dependency x is in the set X.
We need to prove that X is a potential dependency set of y in Φ[σ], i.e., we need to show
that Φ[σ]yX is false. We will do that by restricting the long-distance Q-resolution derivations
of the clauses R and C, which are implicitly generated by QCDCL, by the assignment σ.
Since neither R, nor C are satisfied by σ, and σ only assigns existential variables, the
restricted derivations derive clauses R′ ⊆ R[σ] and C ′ ⊆ C[σ] (Peitl et al., 2016, Lemma 1).
If no literal on y is present in either of R′ and C ′, we already have a long-distance Q-
resolution derivation of a purely universal clause, and so Φ[σ], and therefore also Φ[σ]yX , is
false (shifting an existential variable to the left can only make a true formula false, not the
other way around). Otherwise, consider the shifted prefix in Φ[σ]yX . With this prefix, we

201

Peitl, Slivovsky, & Szeider

can reduce all literals that are possibly blocking the resolution of R′ and C ′, and hence we
can derive the empty clause. Since shifting the existential variable y left in the prefix does
not invalidate any previous reductions or resolution steps, we have a valid long-distance
Q-resolution refutation of Φ[σ]yX , and hence X is really a potential dependency set of y
in Φ[σ].

Example 5. Theorem 4 can be illustrated with the following example. Consider the formula

Φ = ∃z∀x∃y. (z ∨ x ∨ ¬y) ∧ (z ∨ ¬x ∨ y),

which essentially says if not z, then y = x. One of the models of Φ is fz = 1, which remains
a model even if we shift y in front of x. Hence, x is not even a potential dependency of y.
However, assume QCDCL with dependency learning is solving this formula and starts with

the decision z
d
= 0. Subsequently, because no dependencies have been learned yet, unit

propagation w.l.o.g. sets y = 1, and the clause (z ∨ x ∨ y) becomes falsified by universal
reduction. Conflict analysis will attempt to resolve the (only) two clauses of Φ, which is
however prevented by x, and a dependency of y on x will have to be learned.

Theorem 4 says there is a σ and a potential dependency set X of y in Φ[σ]. In particular,
σ = ¬z, the decision made by the solver, and X = {x }. Therefore, we could also paraphrase
Theorem 4 in the following way: if a dependency of y on x is learned, then even if perhaps x
is not contained in any potential dependency set of y in the original formula Φ, it is definitely
contained in a potential dependency set of Φ restricted by the “current trail assignment”,
which can be thought of as the actual formula that the solver is solving at the moment of
learning the dependency. In this example, at the moment of learning the dependency of y
on x, z is assigned to false, and hence the restricted formula says y = x, and so learning
the dependency is justified.

Note that this example also shows that it is unlikely that we could provide a stronger
condition for learned dependencies than Theorem 4, because even when solving a fairly
trivial formula with no potential dependency sets dependencies can still be learned.

8. Discussion

Dependency learning has several advantages over the use of dependency schemes within
QCDCL. First, it is arguably easier to implement. The integration of the standard depen-
dency scheme with DepQBF required the development of data structures for the succinct
representation of standard dependencies (Biere & Lonsing, 2009), and no such compact
representation is currently known for the resolution-path dependency scheme. By contrast,
dependency sets in Qute are encoded in arrays containing a list of variables. Second, our
experiments indicate that proof search is less constrained since Qute typically learns only a
fraction of the dependencies computed by dependency schemes. Third, by keeping long-dis-
tance Q-resolution as the underlying proof system, QCDCL with dependency learning is
amenable to a simple correctness proof and enjoys linear-time strategy extraction.

Blinkhorn and Beyersdorff (2017) offered a strong proof-theoretic argument in favor
QCDCL with dependency schemes over “vanilla” QCDCL by proving an exponential sep-
aration of Q(Drrs)-resolution and ordinary Q-resolution, where Q(Drrs)-resolution is the
proof system used by QCDCL with the reflexive resolution-path dependency scheme Drrs

202

Dependency Learning for QBF

and a form of constraint learning that avoids long-distance resolution (e.g. Lonsing, Egly,
& Van Gelder, 2013). However, this separation was proved against a class of formulas intro-
duced by Kleine Büning, Karpinski, & Flögel (1995) which is known to have short proofs
in long-distance Q-resolution (Egly et al., 2013), so it does not speak about the relative
strength of QCDCL with the resolution-path dependency scheme and QCDCL with depen-
dency learning.

In our experiments, Qute performed much better when presented with non-CNF in-
put. In particular, dependency learning was most effective on the prenex non-CNF (QCIR)
benchmark set, accounting for a 10% increase in the number of solved instances. Even for
PCNF formulas, the best configuration(s) used tools for partially recovering circuit structure
from CNF. This is consistent with the fact that dependency learning had a more limited ef-
fect on Qute when preprocessing was used, since preprocessing is known to adversely affect
circuit reconstruction (Goultiaeva & Bacchus, 2013), and so it would impair Qute’s best-
performing configurations. Whether this bias towards non-CNF representations is inherent
to QCDCL with dependency learning or an artifact of other design choices implemented in
our solver remains to be seen.

Sometimes, the additional freedom afforded by dependency learning appears to be detri-
mental to performance. In particular, this seems to be the case when quantifier alternations
reflect strict temporal or logical dependencies, such as in formulas encoding two-player
games. Freed from the restrictions normally imposed by the quantifier prefix, decision heuris-
tics originally devised for SAT steer Qute into regions of the search space that make little
sense semantically and force it to learn many useless constraints and dependencies. We see
two ways of addressing this issue. First, we want to design new decision heuristics that take
the quantifier prefix into account, possibly by penalizing out-of-order assignments. Second,
we plan to develop techniques for initializing learned dependencies with a small set of de-
pendencies that might help steer proof search in the right direction. For instance, Qute
uses Tseitin conversion to obtain a set of initial clauses and terms from non-CNF (QCIR)
instances. We found that assigning a Tseitin variable before a variable used in its definition
often results in learning a dependency, so that it pays off to simply include dependencies of a
Tseitin variable on the variables used in its definition from the start. For similar reasons, it
might make sense to include dependencies induced by implicit variable definitions (Lang &
Marquis, 2008). Efficient techniques for detecting implicit variable definitions have been de-
veloped for preprocessing in propositional model counting (Lagniez et al., 2016; Ivrii et al.,
2016).

In recent research (Peitl, Slivovsky, & Szeider, 2019), we showed that dependency learn-
ing can also be fruitfully combined with dependency schemes: when the solver is about to
learn a missing dependency, we dynamically query a dependency scheme to discover inde-
pendent variables, which are then excluded from the set of learned dependencies (cf. the
else branch of Algorithm 2 starting on line 10).

Finally, it is worth noting that dependency learning supports the removal of learned
dependencies just as well as their addition. Although we did not encounter instances where
the set of learned dependencies grows so large that it significantly affects performance, it
is possible that the management of learned dependencies causes an overhead during longer
solver runs. For that reason, removing learned dependencies at regular intervals in analogy
to constraint deletion might be beneficial.

203

Peitl, Slivovsky, & Szeider

Acknowledgments

We want to thank Florian Lonsing for helpful discussions related to QCDCL and the review-
ers for their thoughtful comments on our manuscript. This research was kindly supported
by FWF grants P27721 and W1255-N23.

Appendix A. Solver Parameters for Experiments in Section 5

parameter value description

--decision-heuristic VMTF Decision heuristic, see Section 5.
--restarts inner-outer Restart strategy, see Section 5.
--inner-restart-distance 250 Initial number of conflicts before restart.
--outer-restart-distance 20 Initial number of restarts before outer

restart.
--restart-multiplier 2.5 Multiplier for increasing inner and outer

restart distance.
--initial-clause-DB-size 1000 Initial limit on learned clauses.
--initial-term-DB-size 4000 Initial limit on learned terms.
--clause-DB-increment 1000 Upon reaching the current limit on the

number of learned clauses, increase the
limit by this value.

--term-DB-increment 500 Upon reaching the current limit on the
number of learned terms, increase the
limit by this value.

--clause-removal-ratio 0.4 Fraction of learned clauses to delete upon
reaching the current limit.

--term-removal-ratio 0.3 Fraction of learned terms to delete upon
reaching the current limit.

--LBD-threshold 5 Only delete constraints whose LBD is
greater than this value.

--constraint-activity-decay 0.99 Multiply constraint activities with this
value after each conflict.

--constraint-activity-inc -2 Add this value to the activity score of
a constraint whenever it is seen during
conflict analysis.

--dependency-learning all Add all variables involved in an illegal
merge as learned dependencies.

--phase-heuristic invJW Heuristic for choosing the assignment of
a decision variable.

--model-generation depQBF Use DepQBF-style model generation for
PCNF instances: pick the first satisfying
literal in each clause, with a preference
for existential literals.

204

Dependency Learning for QBF

References

Audemard, G., & Simon, L. (2009). Predicting learnt clauses quality in modern SAT solvers.
In Boutilier, C. (Ed.), IJCAI 2009, Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pp.
399–404.

Balabanov, V., & Jiang, J. R. (2012). Unified QBF certification and its applications. Formal
Methods in System Design, 41 (1), 45–65.

Balabanov, V., Jiang, J. R., Janota, M., & Widl, M. (2015). Efficient extraction of QBF
(counter)models from long-distance resolution proofs. In Bonet, B., & Koenig, S.
(Eds.), Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., pp. 3694–3701. AAAI Press.

Biere, A. (2004). Resolve and expand. In Proceedings of SAT 2004 (Seventh International
Conference on Theory and Applications of Satisfiability Testing, 10–13 May, 2004,
Vancouver, BC, Canada), pp. 59–70.

Biere, A. (2008). Adaptive restart strategies for conflict driven SAT solvers. In Kleine
Büning, H., & Zhao, X. (Eds.), Theory and Applications of Satisfiability Testing -
SAT 2008, 11th International Conference, SAT 2008, Guangzhou, China, May 12-
15, 2008. Proceedings, Vol. 4996 of Lecture Notes in Computer Science, pp. 28–33.
Springer Verlag.

Biere, A., & Fröhlich, A. (2015). Evaluating CDCL variable scoring schemes. In Heule, M.,
& Weaver, S. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2015 -
18th International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings,
Vol. 9340 of Lecture Notes in Computer Science, pp. 405–422. Springer Verlag.

Biere, A., & Lonsing, F. (2010). Integrating dependency schemes in search-based QBF
solvers. In Strichman, O., & Szeider, S. (Eds.), Theory and Applications of Satisfiabil-
ity Testing - SAT 2010, Vol. 6175 of Lecture Notes in Computer Science, pp. 158–171.
Springer Verlag.

Biere, A., & Lonsing, F. (2009). A compact representation for syntactic dependencies in
QBFs. In Kullmann, O. (Ed.), Theory and Applications of Satisfiability Testing - SAT
2009, Vol. 5584 of Lecture Notes in Computer Science, pp. 398–411. Springer Verlag.

Blinkhorn, J., & Beyersdorff, O. (2017). Shortening QBF proofs with dependency schemes.
In Gaspers, S., & Walsh, T. (Eds.), Theory and Applications of Satisfiability Testing
- SAT 2017, Vol. 10491 of Lecture Notes in Computer Science, pp. 263–280. Springer
Verlag.

Cadoli, M., Schaerf, M., Giovanardi, A., & Giovanardi, M. (2002). An algorithm to evaluate
Quantified Boolean Formulae and its experimental evaluation. Journal of Automated
Reasoning, 28 (2).

Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In Giunchiglia, E., & Tacchella,
A. (Eds.), Theory and Applications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, Vol. 2919 of Lecture Notes in Computer Science, pp. 502–518. Springer Verlag.

205

Peitl, Slivovsky, & Szeider

Egly, U., Lonsing, F., & Widl, M. (2013). Long-distance resolution: Proof generation and
strategy extraction in search-based QBF solving. In McMillan, K. L., Middeldorp, A.,
& Voronkov, A. (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning
- LPAR 2013, Vol. 8312 of Lecture Notes in Computer Science, pp. 291–308. Springer
Verlag.

Faymonville, P., Finkbeiner, B., Rabe, M. N., & Tentrup, L. (2017). Encodings of bounded
synthesis. In Legay, A., & Margaria, T. (Eds.), Tools and Algorithms for the Con-
struction and Analysis of Systems - 23rd International Conference, TACAS 2017, Vol.
10205 of Lecture Notes in Computer Science, pp. 354–370.

Giunchiglia, E., Narizzano, M., & Tacchella, A. (2006). Clause/term resolution and learning
in the evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res., 26, 371–416.

Goultiaeva, A., & Bacchus, F. (2013). Recovering and utilizing partial duality in QBF.
In Järvisalo, M., & Van Gelder, A. (Eds.), Theory and Applications of Satisfiability
Testing - SAT 2013, Vol. 7962 of Lecture Notes in Computer Science, pp. 83–99.
Springer Verlag.

Heule, M. J. H., Kullmann, O., & Marek, V. W. (2016). Solving and verifying the Boolean
Pythagorean Triples problem via cube-and-conquer. In Creignou, N., & Berre, D. L.
(Eds.), Theory and Applications of Satisfiability Testing - SAT 2016 - 19th Interna-
tional Conference, Bordeaux, France, July 5-8, 2016, Proceedings, Vol. 9710 of Lecture
Notes in Computer Science, pp. 228–245. Springer Verlag.

Hoos, H. H., Peitl, T., Slivovsky, F., & Szeider, S. (2018). Portfolio-based algorithm selec-
tion for circuit QBFs. In Hooker, J. N. (Ed.), Principles and Practice of Constraint
Programming - 24th International Conference, CP 2018, Vol. 11008 of Lecture Notes
in Computer Science, pp. 195–209. Springer Verlag.

Ivrii, A., Malik, S., Meel, K. S., & Vardi, M. Y. (2016). On computing minimal independent
support and its applications to sampling and counting. Constraints, 21 (1), 41–58.

Janota, M. (2016). On Q-resolution and CDCL QBF solving. In Creignou, N., & Berre,
D. L. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2016 - 19th
International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, Vol. 9710 of
Lecture Notes in Computer Science, pp. 402–418. Springer Verlag.

Janota, M., Klieber, W., Marques-Silva, J., & Clarke, E. M. (2012). Solving QBF with
counterexample guided refinement. In Cimatti, A., & Sebastiani, R. (Eds.), Theory
and Applications of Satisfiability Testing - SAT 2012, Vol. 7317 of Lecture Notes in
Computer Science, pp. 114–128. Springer Verlag.

Janota, M., & Marques-Silva, J. (2015). Solving QBF by clause selection. In Yang, Q., &
Wooldridge, M. (Eds.), Proceedings of the Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2015, pp. 325–331. AAAI Press.

Jordan, C., Klieber, W., & Seidl, M. (2016). Non-CNF QBF solving with QCIR. In
Darwiche, A. (Ed.), Beyond NP, Papers from the 2016 AAAI Workshop., Vol. WS-
16-05 of AAAI Workshops. AAAI Press.

Kleine Büning, H., Karpinski, M., & Flögel, A. (1995). Resolution for quantified Boolean
formulas. Information and Computation, 117 (1), 12–18.

206

Dependency Learning for QBF

Klieber, W., Sapra, S., Gao, S., & Clarke, E. M. (2010). A non-prenex, non-clausal QBF
solver with game-state learning. In Strichman, O., & Szeider, S. (Eds.), Theory and
Applications of Satisfiability Testing - SAT 2010, Vol. 6175 of Lecture Notes in Com-
puter Science, pp. 128–142. Springer Verlag.

Lagniez, J., Lonca, E., & Marquis, P. (2016). Improving model counting by leveraging
definability. In Kambhampati, S. (Ed.), Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15
July 2016, pp. 751–757. IJCAI/AAAI Press.

Lang, J., & Marquis, P. (2008). On propositional definability. Artificial Intelligence, 172 (8-
9), 991–1017.

Lonsing, F. (2012). Dependency Schemes and Search-Based QBF Solving: Theory and Prac-
tice. Ph.D. thesis, Johannes Kepler University, Linz, Austria.

Lonsing, F., Bacchus, F., Biere, A., Egly, U., & Seidl, M. (2015). Enhancing search-based
QBF solving by dynamic blocked clause elimination. In Davis, M., Fehnker, A.,
McIver, A., & Voronkov, A. (Eds.), Logic for Programming, Artificial Intelligence,
and Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, Novem-
ber 24-28, 2015, Proceedings, Vol. 9450 of Lecture Notes in Computer Science, pp.
418–433. Springer Verlag.

Lonsing, F., & Biere, A. (2008). Nenofex: Expanding NNF for QBF solving. In Büning,
H. K., & Zhao, X. (Eds.), Theory and Applications of Satisfiability Testing - SAT
2008, Vol. 4996 of Lecture Notes in Computer Science, pp. 196–210. Springer Verlag.

Lonsing, F., & Egly, U. (2018). Evaluating QBF solvers: Quantifier alternations matter.
In Hooker, J. N. (Ed.), Principles and Practice of Constraint Programming - 24th
International Conference, CP 2018, Vol. 11008 of Lecture Notes in Computer Science,
pp. 276–294. Springer Verlag.

Lonsing, F., Egly, U., & Van Gelder, A. (2013). Efficient clause learning for quantified
Boolean formulas via QBF pseudo unit propagation. In Järvisalo, M., & Van Gelder,
A. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2013, Vol. 7962 of
Lecture Notes in Computer Science, pp. 100–115. Springer Verlag.

Malik, S., & Zhang, L. (2009). Boolean satisfiability from theoretical hardness to practical
success. Communications of the ACM, 52 (8), 76–82.

Marques-Silva, J. P., Lynce, I., & Malik, S. (2009). Conflict-driven clause learning SAT
solvers. In Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook of
Satisfiability, pp. 131–153. IOS Press.

Meel, K. S., Vardi, M. Y., Chakraborty, S., Fremont, D. J., Seshia, S. A., Fried, D., Ivrii, A.,
& Malik, S. (2016). Constrained sampling and counting: Universal hashing meets SAT
solving. In Darwiche, A. (Ed.), Beyond NP, Papers from the 2016 AAAI Workshop,
Phoenix, Arizona, USA, February 12, 2016., Vol. WS-16-05 of AAAI Workshops.
AAAI Press.

Peitl, T., Slivovsky, F., & Szeider, S. (2016). Long distance Q-resolution with dependency
schemes. In Creignou, N., & Berre, D. L. (Eds.), Theory and Applications of Satis-
fiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July

207

Peitl, Slivovsky, & Szeider

5-8, 2016, Proceedings, Vol. 9710 of Lecture Notes in Computer Science, pp. 500–518.
Springer Verlag.

Peitl, T., Slivovsky, F., & Szeider, S. (2019). Combining resolution-path dependencies with
dependency learning. In Janota, M., & Lynce, I. (Eds.), Theory and Applications of
Satisfiability Testing - SAT 2019 - 22nd International Conference, Lisbon, Portugal,
July 9-12, 2019, Proceedings, Lecture Notes in Computer Science. Springer Verlag. To
appear.

Pulina, L. (2016). The ninth QBF solvers evaluation - preliminary report. In Lonsing,
F., & Seidl, M. (Eds.), Proceedings of the 4th International Workshop on Quantified
Boolean Formulas (QBF 2016)., Vol. 1719 of CEUR Workshop Proceedings, pp. 1–13.
CEUR-WS.org.

Rabe, M. N., & Tentrup, L. (2015). CAQE: A certifying QBF solver. In Kaivola, R., &
Wahl, T. (Eds.), Formal Methods in Computer-Aided Design - FMCAD 2015, pp.
136–143. IEEE Computer Soc.

Ryan, L. (2004). Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon
Fraser University.

Samer, M., & Szeider, S. (2009). Backdoor sets of quantified Boolean formulas. Journal of
Automated Reasoning, 42 (1), 77–97.

Scholl, C., & Pigorsch, F. (2016). The QBF solver AIGSolve. In Lonsing, F., & Seidl, M.
(Eds.), Proceedings of the 4th International Workshop on Quantified Boolean Formulas
(QBF 2016), Vol. 1719 of CEUR Workshop Proceedings, pp. 55–62. CEUR-WS.org.

Slivovsky, F., & Szeider, S. (2016). Soundness of Q-resolution with dependency schemes.
Theoretical Computer Science, 612, 83–101.

Tentrup, L. (2016). Non-prenex QBF solving using abstraction. In Creignou, N., & Berre,
D. L. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2016, Vol. 9710
of Lecture Notes in Computer Science, pp. 393–401. Springer Verlag.

Van Gelder, A. (2011). Variable independence and resolution paths for quantified Boolean
formulas. In Lee, J. (Ed.), Principles and Practice of Constraint Programming - CP
2011, Vol. 6876 of Lecture Notes in Computer Science, pp. 789–803. Springer Verlag.

Vizel, Y., Weissenbacher, G., & Malik, S. (2015). Boolean satisfiability solvers and their
applications in model checking. Proceedings of the IEEE, 103 (11), 2021–2035.

Wimmer, R., Reimer, S., Marin, P., & Becker, B. (2017). HQSpre - an effective preprocessor
for QBF and DQBF. In Legay, A., & Margaria, T. (Eds.), Tools and Algorithms for
the Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Vol. 10205 of Lecture Notes in Computer Science, pp. 373–390.

Zhang, L., & Malik, S. (2002). Conflict driven learning in a quantified Boolean satisfi-
ability solver. In Pileggi, L. T., & Kuehlmann, A. (Eds.), Proceedings of the 2002
IEEE/ACM International Conference on Computer-aided Design, ICCAD 2002, San
Jose, California, USA, November 10-14, 2002, pp. 442–449. ACM / IEEE Computer
Society.

208

