
Journal of Artificial Intelligence Research 66 (2019) 1057–1098 Submitted 06/2019; published 12/2019

Approximating Weighted and Priced Bribery
in Scoring Rules

Orgad Keller orgad.keller@gmail.com
Department of Computer Science, Bar-Ilan University, Israel

Avinatan Hassidim avinatan@cs.biu.ac.il
Department of Computer Science, Bar-Ilan University, Israel

Noam Hazon noamh@ariel.ac.il

Department of Computer Science, Ariel University, Israel

Abstract

The classic Bribery problem is to find a minimal subset of voters who need to change
their vote to make some preferred candidate win. Its important generalizations consider
voters who are weighted and also have different prices. We provide an approximate solution
for these problems for a broad family of scoring rules (which includes Borda, t-approval,
and Dowdall), in the following sense: for constant weights and prices, if there exists a

strategy which costs Ψ, we efficiently find a strategy which costs at most Ψ + Õ(
√

Ψ). An
extension for non-constant weights and prices is also given.

Our algorithm is based on a randomized reduction from these Bribery generalizations
to weighted coalitional manipulation (WCM). To solve this WCM instance, we apply the
Birkhoff-von Neumann (BvN) decomposition to a fractional manipulation matrix. This
allows us to limit the size of the possible ballot search space reducing it from exponential
to polynomial, while still obtaining good approximation guarantees. Finding a solution
in the truncated search space yields a new algorithm for WCM, which is of independent
interest.

1. Introduction

In the well-studied preferential model, an election consists of a set of n voters who need to
decide on a winner among a set of candidates C.1 In order to do so each voter reveals his
ballot in the form of a linear ordering of the candidates according to his preference. We also
call this his preference order. For example, if the candidate set is {c1, c2, c3}, a voter might
submit the preference order c1 � c3 � c2. By ranking—for example—c1 before c3, the voter
indicates that he prefers c1 to c3. The collection of the preference orders submitted by all
voters is known as the preference profile. Following the submission of the preference profile,
the winner is determined according to some protocol, or voting rule.

Ideally, we would like the voters to be truthful: namely, that the preference order sub-
mitted by each voter will correspond to his true preference over the alternatives. When the
voters might have the incentive to do otherwise, we refer to the voting rule as manipulable.
Unfortunately, a celebrated result in social choice theory achieved independently by Gib-

1. Voters are also called agents, and candidates are also called alternatives, emphasizing the fact that such
alternatives might not necessarily correspond to people. We will mainly use voters and candidates.

c©2019 AI Access Foundation. All rights reserved.

Keller, Hassidim, & Hazon

bard (1973) and Satterthwaite (1975) shows that when the number of candidates is at least
3, any reasonable voting rule is manipulable.

Manipulation can take several different forms. In Bribery—introduced by Faliszewski,
Hemaspaandra, and Hemaspaandra (2009)2 as a natural way to model the act of influencing
the outcome of elections by changing the preference of a subset of the voters—an interested
party preferring a specific candidate p is willing to pay some of the voters to change their
vote into a given ballot, such that p will prevail. In (unweighted) coalitional manipulation
(UCM), an interested party is willing to convince additional people to join the election
as voters and vote using a strategy supplied by the party of interest. We refer to these
additional voters as manipulators. All original voters are assumed to be truthful with
known preferences. UCM models the event of canvassing, especially when the targeted
audience comprises people who were not planning to exercise their right to vote. In both
cases, the goal is to find a strategy that makes p win using minimal resources, for example,
the number k of bribed voters or manipulators, respectively.

Several natural generalizations of the problems exist; for instance, in their weighted
counterparts (Weighted-Bribery and WCM, respectively), all voters have associated
weights; essentially this means that the ballot of a voter having weight w is counted as if
it was replaced with w unweighted copies of it. Such weighted settings are common, for
example, in the votes of company shareholders, and in some political scenarios (such as
the European council) where voters are delegates who represent states, which are weighted,
e.g., by their population size. For Bribery, in addition to the basic, unit-price variant,
where all voters have a unit price for changing their ballot, other price functions exist: in
$Bribery, each voter ` has his own price ψ` for changing his ballot. We will consider both
generalizations simultaneously (i.e., Weighted-$Bribery). Another important scenario
which is beyond the scope of the present work, is modeled by the destructive variants,
in which the sole purpose of the manipulative party-of-interest is to prevent the currently
leading candidate from winning.

The importance of the aforementioned manipulation forms stretches beyond their im-
mediate definition. First, various manipulation forms model various aspects of campaign
management. For instance, which electorate or demographic should a candidate target
during her campaign? Where should her campaign manager direct the campaign funds?
In recent years, the significance of targeting specific electorates in election campaigns has
skyrocketed (see article by Peters & Alcindor, 2016, for one example of many). In this
context, Bribery models the act of targeting prospective voters and convincing them to
change their vote, and UCM models the act of urging people who are not planning to vote
to exercise their right to do so (when this is done by an interested third party supporting
a specific candidate).

Second, the problems can be formulated as optimization problems in which the goal is
to find the minimum k enabling p to win. In this context, they can be treated as a measure
of how far candidate p is from winning the election, or equivalently, they define the notion
of a margin by which she loses, or the effort needed to sufficiently promote her to win
(Faliszewski, Skowron, & Talmon, 2017). It can be argued that such measures are more

2. Their journal paper was preceded by a conference version from 2006.

1058

Approximating Weighted and Priced Bribery in Scoring Rules

robust compared to intrinsic measures like the candidate score in the election: for instance,
they are comparable across different voting rules and election types.

In this paper, we shall focus on one of the most important families of voting rules,
known as (positional) scoring rules, which are defined as follows. For a given score vector
α = (α0, . . . , α|C|−1), where α0 ≥ · · · ≥ α|C|−1 ≥ 0, a scoring rule Rα is a voting rule where
each voter awards α0, . . . , α|C|−1 points to the candidates he ranked in places 0, 1, . . . , |C| −
1, respectively. The winners are the candidates with the maximum aggregate score. A
prominent example of a scoring rule is the Borda rule, for which α = (|C|−1, |C|−2, . . . , 0),
i.e., every voter awards 0 points to to the candidate he ranked last, 1 to the candidate before
her, 2 to the one before her, etc. Other popular cases of scoring rules are the Plurality,
Veto, and t-approval voting rules.

With the Gibbard-Satterthwaite Theorem providing a pessimistic view as to the poten-
tial effect of manipulation, extensive research has focused on providing hope in the battle
against manipulation by means of computational hardness. In a seminal paper by Bartholdi,
Tovey, and Trick (1989), who focused on the single manipulator case, as well as in many
other works which followed it, it was shown that for many voting rules, while being sus-
ceptible to manipulation, it is computationally-hard to discover the manipulation strategy
itself.

Research then shifted to the coalitional variants described above. For several common
voting protocols, and several forms of manipulation, it was shown that computing a suc-
cessful voting strategy for the manipulators is NP-hard, see surveys by Faliszewski and
Procaccia (2010), Conitzer and Walsh (2016), and Faliszewski and Rothe (2016).

In the following paragraphs we briefly describe some of the previous work on scoring
rules, which places our work in context. Please refer to Section 5 for a more elaborate
overview.

For Bribery, Faliszewski et al. (2009) first studied the various Bribery settings w.r.t.
Plurality. They showed that Plurality-Weighted-$Bribery is NP-hard, but that both
Plurality-$Bribery and Plurality-Weighted-Bribery are easy. Moving away from Plu-
rality, the situation quickly changes: t-approval-Bribery is NP-hard (Lin, 2012) for general
values of t, and Borda-Bribery is NP-hard as well (Brelsford, Faliszewski, Hemaspaandra,
Schnoor, & Schnoor, 2008). More generally, for any non-Plurality-like scoring rule Rα,
Rα-Weighted-Bribery is NP-hard (Faliszewski et al., 2009) even for fixed values of |C|.
In order to overcome the hardness, several efforts were made to approximate k. Of interest
is Faliszewski’s (2008) fully polynomial-time approximation scheme (FPTAS) for Plurality-
Weighted-$Bribery. Additional results concern cost models in which different types of
bribery operations have different prices, see e.g., Elkind, Faliszewski, and Slinko (2009),
Elkind and Faliszewski (2010). Further results are detailed in Faliszewski and Rothe’s
(2016) Bribery survey.

The equivalent landscape for UCM and WCM is richer. We provide an overview of the
results in Section 5. Nonetheless, note that two main objectives for approximation appear
in the literature. The first—as mentioned before—tries to approximate k, the number of
manipulators (e.g., Zuckerman, Procaccia, & Rosenschein, 2009; Xia, Conitzer, & Procaccia,
2010). The second tries to approximate the minimal score margin—that is, the difference
in points—between the highest non-preferred candidate and p, or some additive function
thereof (e.g., Brelsford et al., 2008; Keller, Hassidim, & Hazon, 2019).

1059

Keller, Hassidim, & Hazon

We aim to fill the gap in approximations for Bribery, by providing results that hold
for broad families of scoring rules (encompassing well-known ones, like t-approval variants
and Borda) and for various Bribery models. At the same time, we show a new connec-
tion between Bribery and WCM with the margin minimization objective, and use it for
our Bribery algorithm. Specifically, we show that approximating the score margin for
WCM translates to approximations on the number of manipulators (i.e., bribed voters) for
Bribery. While doing so, we also advance the state-of-the-art in approximating WCM.
Our methods are based on relaxed linear programs that are transformed into a valid solution
(i.e., a manipulation strategy) using a seminal result from the interplay of combinatorics
and geometry, namely the Birkhoff-von Neumann (BvN) decomposition (Birkhoff, 1946; von
Neumann, 1953; Kőnig, 2001), and specifically the constructive proof to its related theorem.
We use them as a tool to reduce the size of the valid strategy search space from exponential
to polynomial. It thus provides an important insight about the underlying combinatorial
properties of manipulation under scoring rules, and is interesting in its own right.

A recent conference publication by the authors (Keller, Hassidim, & Hazon, 2018) fo-
cused on the classic unweighted setting where the goal is to minimize the number of bribed
voters. There we showed that for many scoring rules, if there exists a strategy that makes
a preferred candidate p win by bribing k voters, then we can efficiently find a strategy that
will make her win while bribing Õ(

√
k) additional voters, with a high probability.3

In this work we provide similar results even for Weighted-Bribery, $Bribery, and
Weighted-$Bribery. Specifically, if the voter weights and prices are constant in the input
size, then:

If there exists a strategy that makes a preferred candidate p win with a cost
of at most Ψ, then we can efficiently find a strategy that will make her win with
an additional cost of Õ(

√
Ψ), with high probability.

We provide strong generalizations for the cases in which the voters’ weights and prices are
not constant in the input size, without adding much to the Õ(

√
Ψ) factor.

It should be noted that it is a non-trivial feat to provide a guarantee tighter than any
constant-factor multiplicative approximation. To provide an intuition as to why a constant-
factor approximation is sometimes relatively simple, let us focus on t-approval Bribery. If
kOPT is the optimal number of manipulators needed, then the gap between any candidate
and p can be at most 2kOPT, as bribing a voter can decrease the gap between some candidate
and p by at most 2. Now imagine the following strategy: iteratively, pick a voter who did not
vote for p (if no such voter exists, then p is already winning), and bribe him to transfer one
point from any candidate he currently supports, to p. This decreases the aforementioned
gap by at least 1, and therefore at most 2kOPT bribed voters are required by this procedure.
Thus, we have just described a 2-multiplicative approximation to t-approval-Bribery.

En route to providing our approximation for Weighted-$Bribery using the reduction
to min-margin-WCM, we also present new approximations for WCM for both mentioned
approximation objectives. The advantage of our new method (compared to e.g., the work
by Keller et al., 2019) is that when it is used as a sub-procedure of our bribery algorithm,
the additive term it introduces into the overall approximation factor is dominated (in the
asymptotic sense) by the additive terms incurred by other stages of the bribery algorithm.

3. The Õ(·) notation suppresses factors which are poly-logarithmic in n and |C|.

1060

Approximating Weighted and Priced Bribery in Scoring Rules

1.1 Our Results and Contributions

We assume an unbounded number of candidates |C|. We consider two broad classes of
scoring rules that we call constant scoring rules and non-concentrated scoring rules. These
classes contain the well-known scoring rules, like Borda (and its truncated forms), t-approval
and its specific cases of Plurality and Veto. In constant scoring rules, as the name suggests,
all values in α are integers which are constant in the input size. In non-concentrated

scoring rules, the average score when excluding α0, i.e., ᾱ = 1/(|C| − 1) ·
∑|C|−1

i=1 αi is at
most (1− ε)α0, for some constant ε > 0.

We summarize our results in the following subsections.

1.1.1 Weighted-$Bribery

Consider Weighted-$Bribery under constant or non-concentrated Rα, and let ΨOPT be
the minimum cost required in order to make p win. Then:

• If the voter weights and prices are constant in the input size, then there exists a
polynomial-time randomized algorithm finding a strategy having a cost of at most
ΨOPT + Õ(

√
ΨOPT) with high probability (Corollary 23).

• If the voter weights and prices are not constant in the input size, then there exists
a similar result where the additive factor depends also on the maximum weight and
price (Theorem 22).

Compared to previous results, to the best of our knowledge we are the first to provide
approximations for a vast family of scoring rules, and in the classic cost settings.

1.1.2 WCM

Consider WCM under any scoring rule Rα. Let T (resp. TOPT) be the maximum score
of a non-preferred candidate as obtained by our algorithm (resp. according to the optimal
strategy). Minimizing T is equivalent to minimizing the score margin, and any additive
approximation to the optimal maximum competitor score TOPT is a same-factor additive
approximation to the optimal score margin.

• We provide a randomized algorithm for WCM (resp. UCM) which finds a strategy
that obtains a bound T ≤ TOPT + Õ(α1

√
wMmax ·WM) (resp. T ≤ TOPT + Õ(α1

√
k))

with a high probability, where wMmax is the maximum manipulator weight, and WM is
the sum of manipulator weights (Theorem 5).

• Based on the previous result, we can also derive novel approximation results w.r.t.
the number of manipulators. Let kOPT be the minimum number of manipulators
required to make p win. For non-concentrated scoring rules, we provide a randomized
algorithm for UCM which, with a high probability, finds a strategy using at most
kOPT + Õ(

√
kOPT) manipulators (Theorem 7).

The main advantages of our methods are:

• They support many scoring rules (all scoring rules in the case of the first WCM
result), compared to e.g. Zuckerman et al.’s (2009) results (for manipulation) and
Faliszewski’s (2008) FPTAS (for bribery).

1061

Keller, Hassidim, & Hazon

• As detailed further in Section 5, some previous work (e.g., Brelsford et al., 2008;
Faliszewski et al., 2009) had made the simplifying assumption—when providing results
for general scoring rules Rα—that the number of candidates |C| is constant. They
support this view by assuming that α is a fixed vector within their algorithms and
thus—since it is of size |C|—|C|must be seen as constant. We do not make this limiting
assumption for two main reasons. First, we can always assume that our algorithms are
universal in the sense that they acceptRα as part of the input. Second, the interesting
scoring rules are the ones that can be succinctly encoded; for instance, Borda can be
encoded by the recurrence relation αi+1 = αi−1 with the initial condition α0 = |C|−1.

• They generalize to the weighted setting and to voters having varied prices.

• The second of the results for coalitional manipulation, which applies to UCM, has
an advantage over previous methods for the specific case of non-concentrated scoring
rules. It improves the additive (|C|−2)-approximation given by Xia et al. (2010) when
kOPT = O(|C|2−δ) for some constant δ > 0.

Our algorithms are worst-case and do not rely on any assumption on the distribution of
voter ballots and weights: they are guaranteed to supply the guaranteed approximation
factors regardless of such distributions. Specifically, and for the avoidance of any doubt,
they do not rely on the votes being independent of one another, and on the weights being
small.

2. Preliminaries

Here we detail some basic definitions, as well as the problem definitions, notation and
prerequisites.

2.1 Basic Definitions

We first define the basic scenario of elections under positional scoring rules.

Candidate Set. Let C = {c0, c1, . . . , cm} be a candidate set consisting of the preferred
candidate p = c0 and the m = |C| − 1 non-preferred candidates c1, . . . , cm. Hereafter we
refer to the non-preferred candidates as competitors, and let C′ = C \ {p} denote the set of
competitors. As mentioned, |C′| = m is not assumed to be constant.

Election. An election E = (C, V) is defined by a candidate set C and a set N = {1, . . . , n}
of n voters where each voter submits a preference order, i.e., a ranking of the candidates
according to his preference. Formally, V = (v1, . . . , vn) is the preference profile, that is a list
of the preference orders v` for each voter ` ∈ N . For example, v` = c1 � p � c2 is one such
possible preference order if C = {p, c1, c2}, where � is a transitive and antisymmetic relation
with the meaning that if c � c′, then c is preferred over c′. For convenience, we sometimes
also treat a preference order v` as a function such that v`(c) is the rank of a candidate c,
i.e., its (0-based) index in the preference order. For example, if v` = c1 � p � c2, then
v`(c1) = 0, v`(p) = 1, and v`(c2) = 2.

Given E = (C, V), some decision rule R is applied in order to decide on the winner(s).

1062

Approximating Weighted and Priced Bribery in Scoring Rules

Weighted Election. A weighted election E = (C, V,w) is defined similarly to an election,
with the following twist: a weight-vector w of dimension n of positive integers is given as
part of the input as well. w represents the weights of the n voters, with the following
meaning: the ballot v` of a voter ` with a weight w` is considered as if it is replaced by w`
identical but unweighted copies of itself. That is, when applying the voting rule R to the
election, we first reduce it to an unweighted election by repeating each ballot according to
its respective voter’s weight.

Winning Model. We assume the non-unique-winner/co-winner model where p is consid-
ered a winner even if she is not the only winner.

Positional Scoring Rules. A (positional) scoring rule Rα is described by a vector α =
(α0, α1, . . . , α|C|−1) for which α0 ≥ α1 ≥ · · · ≥ α|C|−1 ≥ 0, which is used as follows: each
voter awards αi to the candidate ranked in (0-based) position i. Finally, the winning
candidate is the one with the highest aggregated score. In the specific case of the Borda
scoring rule, we have that α = (|C|−1, |C|−2, . . . , 1, 0). In t-approval, α = (1t; 0|C|−t) where
0t
′

(resp. 1t
′
) is 0 (resp. 1) concatenated t′ times. Plurality (resp. Veto) is the specific case

of 1-approval (resp. (|C| − 1)-approval). In the Dowdall rule—also known as the harmonic
scoring rule—α = (1, 1/2, 1/3, . . . , 1/|C|).

Constant and Non-Concentrated Scoring Rules. A scoring rule Rα is called con-
stant if the values in α are integral, and α0 = O(1). A scoring rule is called non-concentrated

if ᾱ ≤ (1− ε)α0, for some constant ε > 0, where ᾱ = 1/(|C|−1) ·
∑|C|−1

j=1 αj = 1/m ·
∑m

j=1 αj
is the average of the values in α excluding α0.

These two classes encompass the well-known scoring rules: t-approval is a constant
scoring rule, where Plurality is also non-concentrated (more generally, when t ≤ (1−ε)(|C|−
1) for some constant ε > 0, then t-approval is also non-concentrated). Borda is non-
concentrated as ᾱ = (|C| − 1)/2 = (1 − 1/2)α0, and Dowdall is non-concentrated as ᾱ ≤
ln(|C|)/(|C| − 1) � 1 = α0. Another example, mentioned by Put and Faliszewski (2016),
is exponential-Borda, defined by α = (2|C|−1, 2|C|−2, . . . , 21, 20). For exponential-Borda, it
holds that ᾱ = (2|C|−1 − 1)/(|C| − 1) = o(α0), thus it is non-concentrated as well.

For a somewhat artificial example of a scoring rule which is neither constant nor non-
concentrated, consider α = (|C|2, |C|2 − 1, |C|2 − 2, . . . , |C|2 − |C| + 1) and notice that ᾱ >
α|C|−1 > |C|2 − |C| = (1− 1/|C|)α0.

2.2 Problem Definitions

We define the following problems of interest, in their simpler, unweighted version.

SR-$Bribery. Given an election E under a scoring rule Rα, a price ψ` for each voter `,
and a preferred candidate p, the goal is to make p win, by bribing a subset of voters
having a minimum overall price Ψ. Prices are assumed to be positive integers. Bribing
a voter is the act of replacing his ballot by a preference order to our choosing. The
output is thus the identity of the bribed voters along with their new ballots.

Min-manipulator-SR-UCM. Given an election E under a scoring rule Rα and a pre-
ferred candidate p, the goal is to add the least amount of additional voters (manipu-
lators), and to determine their strategies, such that p will win.

1063

Keller, Hassidim, & Hazon

Min-margin-SR-UCM. Given an election E under a scoring rule Rα, a preferred can-
didate p, and the number of allowed manipulators k, the goal is to determine the
manipulator strategies, such that the margin maxc∈C′ s(c)− s(p) is minimized, where
s(c′) is c′’s final score. Notice that as the number of manipulators is limited, p will
not necessarily win.

Note the following remarks:

• Prepending “SR-” to the basic names of the problems above is to indicate that they
accept various scoring rules Rα, and thus α is regarded as part of the input. As such,
the algorithms we will provide will be universal in the sense that they are not limited
to one specific scoring rule, and that the representation of such a specific scoring
rule is not hard-coded into them. In contrast, when discussing algorithms from the
literature which operate on a specific rule R (i.e., R is hard-coded, either succinctly
or not, in the algorithm), we will prepend either the rule name or the variable R to
the problem name. For instance, R-Bribery or Borda-$Bribery.

• Notice the similarity in the definitions of coalitional manipulation and bribery. In both
scenarios, we need to decide on a strategy for a set of manipulators M . However, in the
manipulation problems it holds that M ∩N = ∅, i.e., the manipulators are additional
voters (besides the original ones). In contrast, for the bribery problems, M ⊆ N and
therefore an additional aspect of the problem is selecting voters for inclusion in M .

• Both UCM variants can be seen as optimization versions of the classic UCM decision
problem, in which we are given k as part of the input, and need to answer whether k
manipulators are enough in order to make p win.

For all the above problems, we consider the more general weighted variant (SR-Weighted-
$Bribery, min-manipulator-SR-WCM, and min-margin-SR-WCM, respectively) where the
election is a weighted election.

For the specific case of min-margin-SR-WCM, as we focus on scoring rules Rα, we can
define the score profile σ such that σ(c) is the initial score of c (that is, the score of c given the
non-manipulator votes). Having σ in the input makes V redundant. Notice that minimizing
the margin boils down to minimizing the maximum competitor score T = maxc∈C′ s(c),
as s(p) is determined in advance (every manipulator will award her the maximum score
possible and thus s(p) = σ(p) + kα0). Therefore, we can effectively discard p when solving
the problem, and use α′ = (α1, α2, . . . , αm) instead of α (i.e., α0 is excluded). Thus min-
margin-SR-WCM can be seen as a min-max problem: minimizing the maximum competitor
score T .

2.3 Notation

We let N = n|C| denote the natural size of the preference profile, i.e., the number of
values it is comprised of. As a corner case, notice that if N is constant, then the problems
become easy as both the number of voters and the number of candidates are constant. Let
[m] = {1, . . . ,m}. For two parameters a, b, we denote the continuous set [a − b, a + b] as
[a± b].

1064

Approximating Weighted and Priced Bribery in Scoring Rules

When a voter ` having weight w` ranks some candidate c in (0-based) position j, the
following statements are equivalent: ` awards a score αj to c (or c was awarded a score of αj
by `), and c is given αjw` points by `. In words, when discussing ‘points’ we already factor
in the effect of the weight of the voter. On the other hand, when discussing the score of a
candidate at a specific time, we refer to the number of points awarded to the candidate.

We let wmax be the maximum voter weight, and ψmax be the maximum voter price.
For any set U of voters, we let WU =

∑
`∈U w` be the sum of the weights of voters in U ,

ΨU =
∑

`∈U ψ` be the sum of the prices of voters in U , and wUmax = max`∈U w` be the
maximum weight of a voter in U .

2.4 Prerequisites

All of the new algorithms in this work are randomized. In many of the lemmas used to
analyze their behavior, a constant λ > 1 will be used, and its value will be determined later
in the main theorems. Such lemmas will contain mathematical expressions that are said to
hold with a probability of at least 1−cN−λ+d for some constants c and d < λ. That is, their
failure probability is arbitrarily-chosen polynomially-small (in N), based on our selection
of λ, where ‘failure’ refers to the event that the discussed expression does not hold, and
later—when discussing the main theorems—to the event that algorithm does not provide
the desired approximation guarantee. Sometimes we will write “with a failure probability
of at most cN−λ+d” when presenting such expressions, and sometimes we will informally
use the term “with a high probability” when the exact probability is clear from context. As
the aforementioned λ is a constant, it would not have an effect on the asymptotic behavior
of the approximation factor.

We will put to heavy use the following concentration inequality, which follows quite
directly from some of the well-known forms of the Chernoff bound when focusing on their
asymptotic behavior.

Lemma 1. Let X1, . . . , Xn be independent random variables where Xi ∈ [0, u] for all i, λ
be some constant, and N be some large enough value. Let X =

∑n
i=1Xi. Then

Pr[X /∈ [E[X]±R1(λ, u,E[X])]] ≤ N−λ ,

where R1(λ, u,E[X]) = 6λmax{
√
uE[X], u} lnN is the deviation we allow w.r.t. the ex-

pected value E[X].

See further discussion and proof in the appendix. The choice of notation for the value
N in Lemma 1 was made since in our work it will always coincide with N = n|C|,
the size of the preference profile. The deviation term defined above, R1(λ, u,E[X]) =
6λmax{

√
uE[X], u} lnN , will be used extensively in the approximation analysis of our

algorithms.
One of the novel methods we shall use will be based on the seminal Birkhoff-von Neu-

mann (BvN) theorem (Birkhoff, 1946; von Neumann, 1953; Kőnig, 2001), and the matrix
decomposition it relies upon. This theorem studies the following families of matrices.

Doubly-Stochastic Matrices. A doubly-stochastic matrix is a matrix Y ∈ [0, 1]m×m for
which the sum of every row, and the sum of every column, equals 1. That is

∑m
j=1 yi,j = 1

for each i and
∑m

i=1 yi,j = 1 for each j.

1065

Keller, Hassidim, & Hazon

Permutation Matrices. Given some permutation π : [m]→ [m], the permutation matrix
Pπ ∈ {0, 1}m×m is the matrix where for each (i, j) ∈ [m] × [m], P πi,j equals 1 if i = π(j),
and 0 otherwise.

Trivially, every permutation matrix is also a doubly-stochastic matrix. However, the
BvN theorem sheds light on the other direction. It shows that every doubly-stochastic
matrix can be obtained by a convex combination (a weighted sum with coefficients in [0, 1]
which sum to 1) of all permutation matrices. Moreover, some of the constructive proofs of
the theorem show how to find such a convex combination in which the number of nonzero
coefficients is at most m2.

Theorem 2 (BvN Theorem). Let Y ∈ [0, 1]m×m be a doubly-stochastic matrix. We can
decompose Y to a convex combination of at most m2 permutation matrices, that is, we
decompose Y = λ1P

τ1 + · · · + λqP
τq where each τt is a permutation with Pτt being its

corresponding permutation matrix, each λt ∈ [0, 1] and
∑q

t=1 λt = 1, and q ≤ m2. This
decomposition can be found in polynomial time.

See discussion and a classic proof to this form of the theorem in the appendix.

3. Algorithm for SR-WCM

In this section, we will devise approximation algorithms for SR-WCM by using a natural
formulation of min-margin-SR-WCM as a linear program (LP). Let us first recall the prob-
lem; in min-margin-SR-WCM, we are given as input the scoring rule Rα in the form of
a vector α, a score profile σ, a designated preferred candidate p ∈ C, and a dimension-k
vector w = (w`)`∈M of positive integers representing the weights of a set M of k manip-
ulators who will be added to the election. Specifically, the case where w is the all-ones
vector defines the min-margin-SR-UCM problem. The goal is to minimize the maximum
competitor score maxc∈C′ s(c), where s(c′) is c′’s final score. Since the score margin is de-
fined as maxc∈C′ s(c)− s(p), any additive approximation to the maximum competitor score
is a same-factor additive approximation to the score margin. For the specific case of SR-
UCM under a non-concentrated Rα, we will later see how to convert this algorithm to
a min-manipulator approximation algorithm, where our goal is to approximate kOPT, the
minimum number of manipulators required in order to enable p to win.

3.1 Linear Program for Min-Margin-SR-WCM

We can formulate the min-margin-SR-WCM as an integer program (IP). As solving IPs
is NP-hard, we will relax it to the corresponding LP. As opposed to the LP for SR-UCM
found in Keller et al.’s (2018) work, when switching to SR-WCM, because manipulators have
different weights, the LP needs to be adapted to maintain the identity of the manipulators.
Therefore, we define the variables xi,j,` for (i, j, `) ∈ [m] × [m] ×M , with the intent that
xi,j,` will equal 1 if competitor ci receives the score αj from manipulator `, and 0 otherwise.
We also define the variable T , with the intent that T will equal the maximum competitor
score. The relaxed LP is defined as follows.

1066

Approximating Weighted and Priced Bribery in Scoring Rules

min
x,T

T

subject to:

m∑
i=1

xi,j,` = 1 ∀j ∈ [m], ` ∈M , (1)

m∑
j=1

xi,j,` = 1 ∀i ∈ [m], ` ∈M , (2)

σ(ci) +
∑

j∈[m],`∈M

w`αjxi,j,` ≤ T ∀i ∈ [m] , (3)

xi,j,` ∈ [0, 1] ∀i ∈ [m], j ∈ [m], ` ∈M , (4)

where eq. (1) guarantees that every score type was awarded exactly once by each manip-
ulator, eq. (2) guarantees that every competitor was awarded exactly one score by each
manipulator, and eq. (3) guarantees that T upper-bounds the score of each competitor.
When eq. (3) is combined with the minimization of T in the objective function, T should
equal the maximum competitor score. The constraint xi,j,` ∈ [0, 1] is a relaxation of the
constraint xi,j,` ∈ {0, 1}, as the latter would have caused the LP to become an IP. We
denote the relaxed LP as LPCM(α, σ,w).

It should be noted that when treating the problem as a min-max problem, we need
to take T as a variable that we wish to minimize (this is done by the objective function).
However, if we consider the original definition in which our aim is to make the preferred
candidate p win, T can be set to σ(p) + kα0 (the final score of p), and the LP will not have
an objective function.

3.2 Rounding the Linear Program Solution

Assume that we solve the above LP, and let (x?, T ?) be the resulting solution where T ?

is the optimal objective value. As an optimum of the LP, x? denotes some allocation of
scores such that the maximum competitor score is minimized. However, as this allocation
is fractional, it does not translate into a valid strategy. Many algorithms work around such
scenarios by using some form of randomized rounding over the fractional variables: roughly
speaking, they try to round the values in x? randomly such that w.h.p. a good enough
integral solution will be found. In our case, this seems quite problematic as the variables
are highly interdependent, where their dependency is described by the LP constraints (1)
and (2). These constraints should still hold even after the rounding.

To work around this, notice that each possible manipulator preference order—excluding
p who will always be placed in the top position—corresponds to some permutation π : [m]→
[m] (namely, cπ(j) is ranked in the j-th position—or equivalently—ci receives a score of
απ−1(i)). To maintain this property, randomized rounding should be done on the ballot
level. However, to do so we have to define some distribution over the ballots (permutations),
and there are m! of them. This is where the BvN decomposition comes to the rescue.

Recall that M is the manipulator set. For some manipulator ` ∈M , observe the matrix

Y(`) = [y
(`)
i,j](i,j)∈[m]×[m] where y

(`)
i,j = x?i,j,` and notice that it is doubly-stochastic, that

1067

Keller, Hassidim, & Hazon

Algorithm 1: Min-margin-SR-WCM approximation algorithm

1 Solve LPCM(α, σ,w), and let (x?, T ?) be the resulting solution.
2 foreach manipulator ` ∈M do

3 Define Y(`) = [y
(`)
i,j]i,j where y

(`)
i,j = x?i,j,`.

4 Apply the BvN decomposition to Y(`), and let Π` = {τ1, . . . , τq} be the resulting
permutations with respective coefficients λ1, . . . , λq.

5 Define a distribution p̂` : Π` → [0, 1] over Π` such that p̂`(τt) = λt.
6 Draw a random permutation π` ∼ p̂`.
7 Define v` to be the preference order p � cπ`(1) � cπ`(2) � · · · � cπ`(m), and assign

it to ` as his ballot. /* such that ` will award απ−1
` (i) to ci. */

8 return the resulting manipulator preference profile (v`)`∈M .

is
∑

i y
(`)
i,j =

∑
j y

(`)
i,j = 1. Roughly speaking, the Birkhoff-von Neumann theorem states

that each doubly-stochastic matrix is a point in the Birkhoff polytope, whose vertices are
all the m! permutation matrices. In other words, every doubly-stochastic matrix can be
obtained by a convex combination of all permutation matrices. As mentioned, a convex
combination in which the number of nonzero coefficients is at most m2 can be efficiently
found. A suitable variant of the Birkhoff-von Neumann theorem was given as Theorem 2.
The remarkable thing about this form of the BvN decomposition, is that it implies that
when choosing ballots for each of the manipulators, we only have to consider at most m2

ballots—a polynomial number—out of the m! possible ballots (that is, permutations of
order m).

We proceed as follows. For each manipulator ` ∈ M , consider Y(`) and apply the BvN
decomposition to it. Let Π` = {τ1, . . . , τq} (resp. λ1, . . . , λq) be the set of permutations (resp.
coefficients) used in the above decomposition, and let p̂` : Π` → [0, 1] be a distribution over
Π` such that p̂`(τt) = λt. We draw a random permutation π` ∼ p̂`, and assign the preference
order p � cπ`(1) � cπ`(2) � · · · � cπ`(m) to ` as his ballot. Notice that as π` maps a 1-based
rank j to some candidate index i, we can also say that ci will be awarded a score of απ−1

` (i)

by `.

The above algorithm is summarized as Algorithm 1. To analyze it, we define Q?i =∑
j∈[m],`∈M w`αjx

?
i,j,` to be the overall number of points awarded to ci by the manipulators

according to the fractional solution of the LP—as seen in Constraint (3). We also define
Q?max = maxi∈[m]Q

?
i . In contrast, we let Q̃i =

∑
`∈M w`απ−1

` (i) denote the number of

points awarded to ci by the manipulators—following the BvN-based rounding. Recall that
R1(λ, u,E[X]) = 6λmax{

√
uE[X], u} lnN , where N = n|C| = n(m + 1). Let WM be

the sum of manipulator weights, and wMmax be the maximum manipulator weight. In the
next lemma we analyze Q̃i for each competitor ci, specifically addressing the effect of the
randomized rounding described by the algorithm.

Lemma 3. With a failure probability of at most N−λ+1, at most R1(λ, α1w
M
max, Q

?
max)

points will be added by Algorithm 1 to the score that each one of the competitors received
according to the LP.

1068

Approximating Weighted and Priced Bribery in Scoring Rules

Proof. According to the BvN decomposition, it holds that Y(`) =
∑

π∈Π`
p̂`(π)Pπ, where

Pπ is the permutation matrix corresponding to π. Therefore for each i, j:

y
(`)
i,j =

∑
π∈Π`

p̂`(π) · P πi,j =
∑
π∈Π`
π(j)=i

p̂`(π) .

Then:

E[Q̃i] =
∑
`∈M

w`Eπ`∼p̂` [απ−1
` (i)]

=
∑
`∈M

w`
∑
π∈Π`

p̂`(π)απ−1(i)

=
∑
`∈M

w`

m∑
j=1

αj
∑
π∈Π`
π(j)=i

p̂`(π)

=
∑
`∈M

w`

m∑
j=1

αjy
(`)
i,j

=
∑

j∈[m],`∈M

w`αjx
?
i,j,`

≤ Q?max .

Applying Lemma 1 to Q̃i =
∑

`∈M w`απ−1
` (i) and recalling that w`απ−1

` (i) ∈ [0, α1w
M
max],

we get that with a failure probability of at most N−λ:∣∣∣Q̃i − E[Q̃i]
∣∣∣ ≤ R1(λ, α1w

M
max,E[Q̃i])

≤ R1(λ, α1w
M
max, Q

?
max) .

In words, when we created valid ballots for each of the voters, the score of each competi-
tor increased by at most R1(λ, α1w

M
max, Q

?
max) with a failure probability of at most N−λ.

By applying the union-bound over all m ≤ N competitors, this property can be made to
hold for all competitors simultaneously with failure probability of at most N−λ+1.

Corollary 4. With a failure probability of at most N−λ+1, Algorithm 1 adds at most
R1(λ, α1w

M
max, α1WM) points to the score each competitor received according to the LP.

Proof. By combining Lemma 3 and the fact that Q?max ≤ α1WM since any (possibly frac-
tional) allocation of points cannot exceed the case where all manipulators give the top score
α1 (we exclude α0 since it will be awarded to p) to the same competitor.

Recall that T ? is the (fractional) optimal objective value of the LP. In contrast, let TOPT

be the problem’s (integral) optimum, i.e., the minimum highest competitor score, and let
T̃ = maxi∈[m] σ(ci) + Q̃i be the objective value obtained by our algorithm (following the
randomized rounding). We are now ready to prove the main result of this section:

1069

Keller, Hassidim, & Hazon

Theorem 5. For SR-WCM under any score vector α, there exists a polynomial-time ran-
domized algorithm yielding an

Õ(min{α1

√
wMmax ·WM ,

√
α1wMmaxT

OPT})

-additive approximation to the minimum highest competitor score (and thus to the margin
minimization objective), with an exponentially-small failure probability.

Proof. For the approximation factor, Algorithm 1 adds at most R1(λ, α1w
M
max, Q

?
max) points

to each candidate (by Lemma 3), and thus T̃ ≤ T ? + R1(λ, α1w
M
max, Q

?
max) ≤ TOPT +

R1(λ, α1w
M
max, Q

?
max). The last inequality holds since the LP is a relaxation of the orig-

inal IP. From here, a rather straightforward analysis shows that R1(λ, α1w
M
max, Q

?
max) =

Õ(
√
α1wMmaxT

OPT) (since both Q?max ≤ T ? ≤ TOPT and α1w
M
max ≤ TOPT). On the other

hand, by employing Corollary 4, it holds that R1(λ, α1w
M
max, Q

?
max) = Õ(α1

√
wMmax ·WM).

The overall running time is polynomial, as it is comprised of solving an LP (Karmarkar,
1984), followed by the polynomial-time BvN decomposition. The above algorithm has a
polynomially-small failure probability N−λ+1. By choosing e.g. λ = 2, running it a linear
number of times, and choosing the run yielding a minimal T̃ , the failure probability becomes
exponentially-small, while the runtime stays polynomial.

3.3 Minimizing the Number of Manipulators

In this section, we shall provide results for one particularly interesting specific case, namely,
that of min-manipulator-SR-UCM under non-concentrated scoring rules. Let us ignore the
min-manipulator objective for a moment; Assume we are given exactly k manipulators, and
let us discuss the score margin directly (as opposed to the maximum competitor score) this
time. Let gOPT(k) be the optimal score margin with exactly k manipulators, and likewise,
let g(k) be the score margin provided by our algorithm. Since an additive approximation
to the maximum competitor score is also an additive approximation to the score margin,
then for the specific case of SR-UCM, it holds that g(k) ≤ gOPT(k) + R1(λ, α1, α1k) by
Corollary 4.

However, what if at this point we are willing to add more manipulators in order to close
the gap? How many more manipulators do we require?

Let us first start with a slightly humbler task: how many more manipulators—besides
the original k—do we need to add in order to reach a score margin of at most gOPT(k)?
That is, we are willing to use more than k manipulators in order to reach the score margin
that was optimal for exactly k manipulators.

Lemma 6 will answer this question and show that besides the k original manipulators,
adding extra ∆(k) =

√
k ln3N manipulators is sufficient, where—as before—N = n(m+1).

This will provide a valuable insight that we will use later. To show this, in Lemma 6 we
analyze the following suggested procedure. We call our min-margin-SR-UCM algorithm
with k manipulators. We then add ∆(k) new manipulators; let M ′ be the set of these
new manipulators. Each manipulator in M ′ will give p the top score and will rank all
others randomly. Let ḡ(k,∆(k)) be the score margin obtained by this procedure, i.e., with
k manipulators whose strategies were determined by our min-margin-SR-UCM algorithm,
and ∆(k) extra manipulators with the strategy detailed above. In the following, we shall

1070

Approximating Weighted and Priced Bribery in Scoring Rules

assume w.l.o.g. that for a non-concentrated scoring rule Rα, it holds that ᾱ ≤ (1 − 2ε)α0

for some constant 0 < ε < 1/2.

Lemma 6. Let Rα be a scoring rule. With a failure probability of at most 2N−λ+1, it holds
that ḡ(k,∆(k)) ≤ gOPT(k).

Proof. Since g(k) ≤ gOPT(k) + R1(λ, α1, α1k), it is enough to show that ḡ(k,∆(k)) ≤
g(k) − R1(λ, α1, α1k), or in words, that adding the ∆(k) extra manipulators reduces the
score margin by at least R1(λ, α1, α1k).

Recall that C′ is the set of candidates excluding p and let s′(c) be the score of a candidate
c before the addition of the ∆(k) extra manipulators. Fix a candidate c ∈ C′ and let gc =
s′(c)−s′(p) be the margin between p and c just before adding the ∆(k) extra manipulators.
Let D =

∑
`∈M ′(α0 − αv`(c)) = ∆(k)α0 −

∑
`∈M ′ αv`(c), be the decrease in gc as a result of

the new manipulators in M ′, where αv`(c) is the (random) score ` awards c. Notice that D
is the sum of independent random variables, that E[D] = ∆(k)(α0 − ᾱ) ≥ 2∆(k)εα0 and
that E[D] = ∆(k)(α0 − ᾱ) < ∆(k)α0. Applying Lemma 1, with a failure probability of at
most N−λ, we obtain:

D ≥ E[D]−R1(λ, α0,E[D])

≥ 2∆(k)εα0 −R1(λ, α0,∆(k)α0) (since 2∆(k)εα0 ≤ E[D] ≤ ∆(k)α0)

Observe ∆(k) and notice that it is defined so that R1(λ, α1, α1k) = O(α0∆(k)/ log2N)
and also R1(λ, α0, α0∆(k)) = O(α0∆(k)/ log1/2N). Therefore R1(λ, α1, α1k) = o(α0∆(k))
and also R1(λ, α0, α0∆(k)) = o(α0∆(k)). We can assume w.l.o.g. that our N is large enough
such that both R1(λ, α1, α1k) < εα0∆(k) and R1(λ, α0, α0∆(k)) < εα0∆(k), as otherwise
N is constant and the entire problem can be easily solved in constant time. Therefore
D ≥ 2∆(k)εα0 − R1(λ, α0,∆(k)α0) ≥ ∆(k)εα0 ≥ R1(λ, α1, α1k). In words, the margin
between any competitor c and p had decreased by at least R1(λ, α1, α1k). In particular, the
score margin had decreased by at least R1(λ, α1, α1k)

The failure probability is 2N−λ+1 by a union-bound over one use of Lemma 1 for each
of the competitors, in addition to the failure probability of Corollary 4.

We will now assume that we get an instance of min-manipulator-SR-UCM under a non-
concentrated Rα, and that the optimal number of manipulators needed for p to win is kOPT.
Assume for a moment that we have some oracle telling us what is the value of kOPT, but
not providing us with the optimal strategy. We can use the procedure defined above and
Lemma 6 to close the score margin and let p win. This is further elaborated by the following
theorem.

Theorem 7. Let Rα be a scoring rule. For SR-UCM under Rα, let kOPT be the min-
imum number of manipulators required to make p win. Then there exists a polynomial-
time randomized algorithm finding a manipulator strategy making p win using at most
kOPT + Õ(

√
kOPT) manipulators, with an exponentially-small failure probability.

Proof. Following the above discussion, we can try every k = 1, 2, . . . , as our initial guess
of kOPT, continue with the rest of the steps described below, and finally stick with the
minimum overall number of manipulators k̃ = k+∆(k) for which p wins. A concrete bound
on the number of iterations will be detailed below.

1071

Keller, Hassidim, & Hazon

Consider the specific iteration where k = kOPT; p can hypothetically win (given a
good enough strategy) and therefore gOPT(k) ≤ 0. According to Lemma 6, ḡ(k,∆(k)) ≤
gOPT(k) ≤ 0. Therefore, by using k̃ = k + ∆(k) = kOPT + ∆(kOPT) = kOPT + Õ(

√
kOPT)

manipulators as described above, we make p win.

For a single guess of k, the failure probability is 2N−λ+1 according to Lemma 6. Setting
λ = 2 is enough to make the failure probability 1/Ω(N). By repeating this a linear number
of times (each time checking if p wins), the failure probability becomes exponentially-small,
while the runtime stays polynomial.

Now consider the outer loop over k; with an exponentially-small failure probability it
will find a solution when k = kOPT (and possibly before; it is possible that when k < kOPT,
a solution will still be found because of the ∆(k) extra manipulators) and therefore at most
kOPT iterations are sufficient. Under this kOPT-multiplicative factor, the failure probability
remains exponentially-small, while the runtime remains polynomial.

4. Algorithm for SR-Weighted-$Bribery

In this section, we will present approximation algorithms for Bribery and its weighted and
variable-price generalizations. We will focus on two broad families of scoring rules: constant
scoring rules, and non-concentrated scoring rules.

Recall that an instance of Weighted-$Bribery is comprised of a weighted election E
(represented by the candidate set C, the preference profile V , and the weight vector w),
a scoring rule Rα (represented by the score vector α), a price ψ` for each voter `, and
a preferred candidate p. As mentioned before, a scoring rule Rα is called constant if all
the values in α are integers, and α0 = O(1). A scoring rule is called non-concentrated if
ᾱ ≤ (1 − ε)α0, for some constant ε > 0, where ᾱ = 1/m ·

∑m
j=1 αj is the average of the

values in α excluding α0.

As part of our (approximate) solutions to these problems, we will rely on our solution
for min-margin-SR-WCM from Section 3 (whose approximation guarantees will better suit
our needs than the one by Keller et al., 2019). Similar to our SR-WCM algorithm, the
algorithm for SR-Bribery will also rely on an LP. However, this LP will be slightly more
involved.

4.1 LP for SR-Weighted-$Bribery

Let y` be an indicator variable for each voter ` indicating whether he should be bribed,
and let W be a variable denoting the overall weight of the bribed voters. We also need
to describe how to allocate the points of the manipulator ballots. Therefore—similarly to
what we did for SR-WCM—we define the variables xi,j,` for (i, j, `) ∈ [m]× [m]×N , with
the intent that xi,j,` will equal 1 if candidate ci receives a score αj from voter ` after he is
bribed, and 0 otherwise. (Notice that we have not defined the variables xi,j,` for j = 0, since
when we bribe a voter, he will always award α0 to p.) In contrast to the SR-WCM LP, the
main issue is to guarantee that for a voter `, the xi,j,` variables have no meaning unless `
is one of the bribed voters. Our formulation of the LP for SR-Weighted-$Bribery will
show how to solve this. We first define an IP, and relax it later.

1072

Approximating Weighted and Priced Bribery in Scoring Rules

min
x,W,y,T,Ψ

Ψ

subject to:∑
`∈N

ψ`y` = Ψ (5)∑
`∈N

y`w` = W (6)

σ(ci)−
∑
`∈N

y`w`αv`(ci) +
∑

`∈N,j∈[m]

w`αjxi,j,` ≤ T ∀i ∈ [m] , (7)

σ(p)−
∑
`∈N

y`w`αv`(p) + α0W ≥ T (8)

m∑
i=1

xi,j,` = y` ∀j ∈ [m], ` ∈ N , (9)

m∑
j=1

xi,j,` = y` ∀i ∈ [m], ` ∈ N , (10)

y` ∈ {0, 1} ∀` ∈ N , (11)

xi,j,` ∈ {0, 1} ∀i ∈ [m], j ∈ [m], ` ∈ N . (12)

For each voter `, Constraints (9) and (10) make sure that this is a valid allocation if ` is
bribed (and therefore y` = 1), and otherwise make sure that xi,j,` = 0 for all i ∈ [m], j ∈ [m].
Constraint (5) ensures that the overall price of the bribed voters will be Ψ, the variable
we wish to minimize, while Constraint (6) defines their aggregate weight. Recall that by
v`(c) for some voter ` and some candidate c, we denote the 0-based position of c in `’s
preference order. Thus, αv`(c) is the score currently given by a voter ` to a candidate c.
Constraints (7) and (8) together make sure that p has a final score greater than or equal
to any other candidate. Notice that the use of α0W in eq. (8) stems from the fact that the
score awarded to p by the manipulators is known; each will give her the maximum score
available, α0. The two last constraints ensure that the y` and xi,j,` variables are indeed
indicator variables.

As usual, as solving an IP is NP-hard, we relax it into an LP by replacing the integrality
constraints y` ∈ {0, 1} and xi,j,` ∈ {0, 1} (for all (i, j, `)) with the corresponding y` ∈ [0, 1]
and xi,j,` ∈ [0, 1]. Let the above LP be denoted by LPB.

4.2 Algorithm Outline

Our algorithm is described as Algorithm 2, and is comprised of four stages. In the first
stage, we shall solve LPB. In the second, we will choose an initial set of voters to bribe
using a simple form of randomized rounding. This choice of voters will reduce the prob-
lem to an instance of the min-margin-SR-WCM problem, in which the manipulators—and
their weights—are known (as we have already determined them). This is the point—the
third stage—where we shall use our min-margin-SR-WCM algorithm to determine their
strategy. Our main claim here is that by bribing these voters without spending too much

1073

Keller, Hassidim, & Hazon

Algorithm 2: SR-Weighted-$Bribery approximation algorithm

1 Solve LPB as described, and let (x?,y?,W ?, T ?,Ψ?) be the resulting solution.
2 foreach ` ∈ N do

3 ỹ` ←

{
1 with probability y?` ;

0 otherwise.

4 Let M ′ = { ` | ỹ` = 1 } and w̃ = (w`)`∈M ′ .
5 Define σ̂(ci) = σ(ci)−

∑
`∈N αv`(ci)ỹ` for every i ∈ [m].

6 Apply our min-margin-SR-WCM algorithm on the input ((α1, . . . , αm), σ̂, w̃), and
update M ′’s preference orders accordingly.

7 if p is still losing to the highest-scoring competitor then
8 Bribe additional voters according to either Algorithm 3 (constant scoring rules),

or Algorithm 4 (non-concentrated scoring rules). Let M ′′ be the set of these
additional bribed voters.

9 Let M = M ′ ∪M ′′ be the set of all voters we have bribed.
10 return the identity of the bribed voters M and their new preference orders.

in the process, and assigning them ballots, we have reduced this SR-Weighted-$Bribery
instance to another SR-Weighted-$Bribery instance, in which the margin is relatively
small. Then, at the fourth stage, we will show that this margin is relatively easy to close,
by bribing more voters, spending a relatively small additional price in the process.

4.3 Stage 1: Solving the SR-Weighted-$Bribery LP

We solve LPB using a polynomial-time solver (Karmarkar, 1984) and obtain the solution
(x?,y?,W ?, T ?,Ψ?) where Ψ? is the optimal objective value. While (x?,y?,W ?, T ?,Ψ?) is
a solution to a fractional version of SR-Weighted-$Bribery (due to our use of a relaxed
LP), it will enable us to obtain an integral solution to SR-Weighted-$Bribery without
too much compromise on the increase in the overall price paid, or cost.

4.4 Stage 2: Rounding y?

Observe the vector y? which is part of the solution of LPB. As its values are fractional, y?`
does not describe whether ` should be bribed or not. To address this, we shall round y?

without touching x? for now. This is done by defining a new vector ỹ = (ỹ`)`∈N , such that:

ỹ` =

{
1 with probability y?` ;

0 otherwise.

By rounding y? into ỹ, we have determined a set of bribed voters M ′ = { ` | ỹ` = 1 }. Now
let ΨM ′ =

∑
`∈N ψ`ỹ` =

∑
`∈M ′ ψ` and WM ′ =

∑
`∈N w`ỹ` =

∑
`∈M ′ w`, and notice that

ΨM ′ and WM ′ are the counterparts of Ψ? and W ?, respectively, when substituting ỹ for y?

in their respective formulas in LPB. Recall that R1(λ, u,E[X]) = 6λmax{
√
uE[X], u} lnN ,

where N = n(m+ 1); that the value T ?—which is part of the solution of LPB—bounds the
score (according to LPB) of each competitor from above on one hand, and on the other hand,

1074

Approximating Weighted and Priced Bribery in Scoring Rules

bounds the score (again, according to LPB) of p from below; that wmax is the maximum
voter weight, and ψmax is the maximum voter price.

Lemma 8. The following statements are true:

1. With a probability of at least 1−N−λ,

ΨM ′ ∈ [Ψ? ±R1(λ, ψmax,Ψ
?)] ;

2. With a probability of at least 1−N−λ,

WM ′ ∈ [W ? ±R1(λ,wmax,W
?)] ;

3. For every c ∈ C′, with a probability of at least 1−N−λ,

σ(ci)−
∑
`∈N

ỹ`w`αv`(ci) +
∑

`∈N,j∈[m]

w`αjx
?
i,j,` ≤ T ? + α0R1(λ,wmax,W

?) ;

4. With a probability of at least 1−N−λ,

σ(p)−
∑
`∈N

ỹ`w`αv`(p) + α0W
? ≥ T ? − α0R1(λ,wmax,W

?) .

Proof. Notice the following observations:

• ΨM ′ =
∑

`∈N ψ`ỹ` is a sum of independent random variables with an expected value
Ψ?, where each summand is in [0, ψmax].

• WM ′ =
∑

`∈N w`ỹ` is a sum of independent random variables with an expected value
W ?, where each summand is in [0, wmax].

•
∑

`∈N ỹ`w`αv`(c) is a sum of independent random variables with an expected value∑
`∈N y

?
`w`αv`(c) ≤ α0W

?, where each summand is in [0, α0wmax].

Applying Lemma 1 to the first two observations yields the first two statements. Before
handling the other two statements, notice that R1(λ, α0wmax, α0W

?) ≤ α0R1(λ,wmax,W
?).

Using this when applying Lemma 1 to the latter two observations, and bringing into con-
sideration eq. (7) and eq. (8) respectively, yields the last two statements.

4.5 Stage 3: Running the SR-WCM Algorithm

Recall that in the Weighted-$Bribery LP which we denoted as LPB, the y` variables
describe the identity of the bribed voters, the xi,j,` variables describe their new ballots, W
is the bribed voters’ overall weight, Ψ is the bribed voters’ overall price, and finally T upper-
bounds each competitor score and lower-bounds p’s score. We have solved LPB, obtaining
the values (x?,y?,W ?, T ?,Ψ?) for these variables; however, these values are fractional and
thus do not describe a concrete decision of the identity of bribed voters and their new
ballots. In the previous section we have started addressing that; we rounded the values in

1075

Keller, Hassidim, & Hazon

y?—obtaining ỹ in the process—and accordingly adjusted Ψ? to become ΨM ′ and W ? to
become WM ′ . In this section, we will find a way to also round x?.

Recall that by v`(c) for some voter ` and some candidate c, we denote the 0-based
position of c in `’s original preference order. Let α′ = (α1, . . . , αm), and let σ̂(ci) =
σ(ci) −

∑
`∈N ỹ`w`αv`(ci) for i = 1, . . . ,m. In words, σ̂(ci) is σ(ci) when it is adjusted for

the loss of the voters who were ‘deleted’ as described by the vector ỹ (we use the term
“deleted” as bribing a voter can be seen as deleting him and then adding a manipulator
having the same weight). Notice that σ̂ is defined only for the competitors. We have
now reduced the problem to the min-margin-SR-WCM problem: σ̂ is the new score profile,
M ′ = { ` | ỹ` = 1 } are the manipulators (one for each of the deleted voters), w̃ = (w`)`∈M ′ is
their respective weight-vector (of dimension |M ′|, as opposed to w, which was of dimension
|N | = n), WM ′ =

∑
`∈M ′ w` and α′ is α without the score α0, which is always awarded to

p by the manipulators, and thus is irrelevant to the input.
We apply our min-margin-SR-WCM algorithm on (α′, σ̂, w̃). Here we do not rely on its

approximation guarantee as provided by Theorem 5, but on the stronger Corollary 4, show-
ing that the resulting R1(λ, α1w

M ′
max, α1WM ′)-factor is an additive term not just w.r.t. the

min-margin-SR-WCM optimum, but also w.r.t. the fractional solution of LPCM(α′, σ̂, w̃).
Recall that in both our LPs, for SR-WCM (LPCM) and for Weighted-$Bribery (LPB)

we have defined a variable T which upper-bounds the maximum competitor score. In this
spirit, let L be a shorthand to LPCM(α′, σ̂, w̃), and let T ?L be the optimal objective value
of L. Also let T̃ be the maximum candidate score as a result of our min-margin-SR-WCM
algorithm on the input (α′, σ̂, w̃). We are interested in comparing the three different values
for T that we have encountered hitherto:

• T ?, i.e., the value of T when solving LPB. Here, both y and x variables are fractional.

• T ?L, i.e., the value of T when solving LPCM(α′, σ̂, w̃) (which is done as part of our
SR-WCM algorithm). Here, we have already decided who to bribe, but after solving
LPCM(α′, σ̂, w̃) the manipulator strategies are still fractional.

• T̃ , maximum competitor score obtained by fully running our min-margin-SR-WCM
algorithm on (α′, σ̂, w̃). After running this algorithm, we have an integral manipula-
tion strategy for the voters in M ′.

We wish to show that the overall difference between T ? and T̃ is relatively small, and we will
do this by comparing them to T ?L. This will be shown by Lemma 11, but first, in Lemma 9
and corollary 10 we will compare T ?L and T ?.

Let R2 = α0R1(λ,wmax,W
?) + α1R1(λ,wmax,W

?). Then:

Lemma 9. With a failure probability of at most 2N−λ+1, there is a (not necessarily optimal)
solution x′ = [x′i,j,`](i,j,`)∈[m]×[m]×M ′ to L with an objective value T ′ such that T ′ ≤ T ?+R2.

Proof. Define x′i,j,` = zi,j where

zi,j =

∑
`′∈N w`′x

?
i,j,`′

W ?

for all i, j and ` ∈M ′. Notice that a division by 0 in the equation cannot occur since w.l.o.g.
W ? > 0 (the opposite case implies that in LPB, y?` = 0 for all ` ∈ N and this implies that

1076

Approximating Weighted and Priced Bribery in Scoring Rules

p was winning in the first place). Notice that in LPCM, eqs. (1) and (2) immediately hold
w.r.t. x′, as:

m∑
i=1

x′i,j,` =

∑m
i=1

∑
`′∈N w`′x

?
i,j,`′

W ?
=

∑
`′∈N w`′

∑m
i=1 x

?
i,j,`′

W ?
=

∑
`′∈N w`′y

?
`′

W ?
= 1 , (13)

for all j ∈ [m], ` ∈M ′ and

m∑
j=1

x′i,j,` =

∑m
j=1

∑
`′∈N w`′x

?
i,j,`′

W ?
=

∑
`′∈N w`′

∑m
j=1 x

?
i,j,`′

W ?
=

∑
`′∈N w`′y

?
`′

W ?
= 1 , (14)

for all i ∈ [m], ` ∈ M ′. In both eqs. (13) and (14), the third equality follows from the
satisfied LPB constraints, eqs. (9) and (10), respectively. As a direct corollary of eq. (14),
notice that

m∑
j=1

zi,j =

m∑
j=1

x′i,j,` = 1 . (15)

For all i, with a failure probability to be determined, it holds that the number of points
awarded to ci by the voters in M ′, that is,

∑
j∈[m],`∈M ′ w`αjx

′
i,j,`, satisfies:∑

j∈[m],`∈M ′
w`αjx

′
i,j,`

=
∑

j∈[m],`∈M ′
w`αjzi,j (by definition of x′)

≤

(∑
`∈M ′

w`

) m∑
j=1

αjzi,j

= WM ′

m∑
j=1

αjzi,j

= W ?
m∑
j=1

αjzi,j + (WM ′ −W ?)
m∑
j=1

αjzi,j

= W ?

 m∑
j=1

αj

∑
`′∈N w`′x

?
i,j,`′

W ?

+ (WM ′ −W ?)

m∑
j=1

αjzi,j

=
∑

j∈[m],`′∈N

w`′αjx
?
i,j,`′ + (WM ′ −W ?)

m∑
j=1

αjzi,j

≤
∑

j∈[m],`′∈N

w`′αjx
?
i,j,`′ +R1(λ,wmax,W

?)
m∑
j=1

αjzi,j (by Lemma 8.2)

≤
∑

j∈[m],`′∈N

w`′αjx
?
i,j,`′ +R1(λ,wmax,W

?) · α1

m∑
j=1

zi,j

≤
∑

j∈[m],`′∈N

w`′αjx
?
i,j,`′ + α1R1(λ,wmax,W

?) (by eq. (15)) .

1077

Keller, Hassidim, & Hazon

To summarize: ∑
j∈[m],`∈M ′

w`αjx
′
i,j,` ≤

∑
j∈[m],`′∈N

w`′αjx
?
i,j,`′ + α1R1(λ,wmax,W

?) . (16)

Recall that the score profile σ̂, where σ̂(ci) = σ(ci) −
∑

`∈N ỹ`w`αv`(ci) for each i =
1, . . . ,m, was the score profile with which we called our min-margin-SR-WCM algorithm.
Plugging eq. (16) into eq. (3), it then follows that:

σ̂(ci) +
∑

j∈[m],`∈M ′
w`αjx

′
i,j,`

= σ(ci)−
∑
`∈N

w`αv`(ci)ỹ` +
∑

j∈[m],`∈M ′
w`αjx

′
i,j,` (by definition of σ̂)

≤ σ(ci)−
∑
`∈N

w`αv`(ci)ỹ` +
∑

j∈[m],`′∈N

w`′αjx
?
i,j,`′

+ α1R1(λ,wmax,W
?) (by eq. (16))

≤ T ? + α0R1(λ,wmax,W
?)

+ α1R1(λ,wmax,W
?) (by Lemma 8.3)

= T ? +R2 ,

The above holds with a failure probability of 2N−λ stemming from the two uses of Lemma 8
(each contributing N−λ to the failure probability). Since we would like the above to hold
for all i simultaneously, the failure probability becomes at most 2N−λ+1 by the union
bound. Therefore, we have just shown that w.h.p. eq. (3) holds w.r.t. the objective value
T ′ = maxi∈[m](σ̂(ci) +

∑
j∈[m],`∈M ′ w`αjx

′
i,j,`) ≤ T ? +R2.

To recap, we have now defined a valid solution to L with an objective value of at most
T ? +R2 with a high probability.

Recall that R2 = α0R1(λ,wmax,W
?) + α1R1(λ,wmax,W

?). In the last lemma we have
shown the existence of a (not necessarily optimal) solution to the resulting SR-WCM LP
instance L = LPCM(α′, σ̂, w̃) having an objective value T ′ such that T ′ ≤ T ? +R2.

Corollary 10. With a failure probability of at most 2N−λ+1, it holds that T ?L ≤ T ? +R2.

Proof. This is because T ?L ≤ T ′, as the optimal solution cannot be worse than the solution
we defined in the previous lemma.

Recall that T̃ is the value of T after running our min-margin-SR-WCM algorithm, which
supplied us with an integral manipulation strategy for the voters in M ′. Define:

R3 = R2 +R1(λ, α1wmax, α1(W ? +R1(λ,wmax,W
?))) .

Lemma 11. With a probability of at least 1− 4N−λ+1, it holds that T̃ ≤ T ? +R3.

1078

Approximating Weighted and Priced Bribery in Scoring Rules

Proof. By combining Corollary 4 w.r.t. T̃ and T ?L, and Corollary 10, we obtain that, with a
failure probability of at most 4N−λ+1:

T̃ ≤ T ?L +R1(λ, α1w
M ′
max, α1WM ′) (by Corollary 4)

≤ T ?L +R1(λ, α1wmax, α1WM ′)

≤ T ?L +R1(λ, α1wmax, α1(W ? +R1(λ,wmax,W
?))) (by Lemma 8.2)

≤ T ? +R2

+R1(λ, α1wmax, α1(W ? +R1(λ,wmax,W
?))) (by Corollary 10)

= T ? +R3 ,

The aforementioned failure probability is obtained by a union-bound over the failure prob-
ability of each of the lemmas used.

4.6 Stage 4: Bribing More Voters

Recall that by now we have the identity of the bribed voters encoded as the binary vector ỹ,
and also represented as the set M ′ = { ` | ỹ` = 1 }. We also have an integral strategy (i.e.,
ballots) for them obtained by running our min-margin-SR-WCM algorithm. Let x̃ = [x̃i,j,`]
be the indicator variables describing the allocation of the scores to the candidates according
to our min-margin-SR-WCM algorithm (so for every ` ∈ M ′, x̃i,j,` equals 1 if candidate
ci receives a score of type αj from `, and 0 otherwise). x̃ is merely an alternative way
to describe the new preference orders of the voters in M ′. As mentioned, we denote the
maximum competitor score induced by x̃ and ỹ as T̃ . At this point, we supposedly have a
valid, integral strategy: ỹ describes who to bribe and x̃ describes the new preference order
of each of the bribed voters. Does the bribery-scheme and strategy as described by x̃, ỹ
constitute a valid solution to SR-Weighted-$Bribery? The answer is unfortunately no.
Let s′(c) be the current score of a candidate c. While T̃ bounds the score s′(c) of each
competitor c, p’s current score s′(p) = σ(p)−

∑
`∈N w`αv`(p)ỹ` +α0WM ′ might be less than

T̃ . In other words, Constraint (8) of LPB might not hold w.r.t. ỹ, WM ′ , and T̃ . However,
in the following lemma we show that the margin needed for Constraint (8) to hold is not
too large; let R4 = 2α0R1(λ,wmax,W

?) +R3.

Lemma 12. With a probability of at least 1− 6N−λ+1, it holds that s′(p) ≥ T̃ −R4.

Proof. Recall that T ? is the bound on the maximum competitor score in the (fractional)
solution of LPB. Then assuming none of the previous lemmas fail:

s′(p) = σ(p)−
∑
`∈N

w`αv`(p)ỹ` + α0WM ′

≥ σ(p)−
∑
`∈N

w`αv`(p)ỹ` + α0W
? − α0R1(λ,wmax,W

?) (by Lemma 8.2)

≥ T ? − 2α0R1(λ,wmax,W
?) (by Lemma 8.4)

≥ T̃ − (2α0R1(λ,wmax,W
?) +R3) (by Lemma 11)

= T̃ −R4 .

1079

Keller, Hassidim, & Hazon

The failure probability is bounded by 6N−λ+1, by a union-bound on the failure probabilities
of the lemmas used.

To summarize, Lemma 12 shows that currently p might be still losing, albeit by a margin
of at most R4.

4.6.1 Bounding the Current Margin

Hitherto we have defined a series of bounds R1, R2, R3, R4. In this section we very loosely
bound each of them. Let W̄ =

√
wmax max{wmax,W ?}. Then:

Lemma 13. It holds that R4 ≤ 56λ2α0W̄ ln2N .

Proof. As follows:

Bounding R1. By its definition, it holds that R1(λ,wmax,W
?) = 6λW̄ lnN and that

R1(λ, α0wmax, α0W
?) ≤ 6λα0W̄ lnN .

Bounding R2. R2 = α0R1(λ,wmax,W
?) + α1R1(λ,wmax,W

?) ≤ 2α0R1(λ,wmax,W
?) ≤

12λα0W̄ lnN .

Bounding R3. For R3:

R3 = R2 +R1(λ, α1wmax, α1(W ? +R1(λ,wmax,W
?)))

≤ R2 +R1(λ, α1wmax, α1W
?)

+R1(λ, α1wmax, α1R1(λ,wmax,W
?)) (By sub-additivity of sqrt)

≤ R2 +R1(λ, α1wmax, α1W
?)

+R1(λ, α1wmax, α16λW̄ lnN)

≤ R2 + 6λα1W̄ lnN + 36λ2α1W̄ ln2N
≤ (12 + 6 + 36)λ2α0W̄ ln2N
≤ 54λ2α0W̄ ln2N

Bounding R4. R4 = 2α0R1(λ,wmax,W
?) +R3 ≤ 56λ2α0W̄ ln2N .

In the next sections we will show how to close this R4 margin, and analyze the additional
price required in order to do so and make p win.

Let R5 = α0W̄ ln3N . In particular, notice that α0wmax = O(R5/ ln3N), and therefore

R1(λ, α0wmax, R5) =
√
α0wmaxR5 lnN = O(R5/ ln1/2N) , (17)

and in addition
R4 = O(R5/ lnN) (18)

Using these asymptotic upper bounds, we derive:

Claim 14. Let δ < 1/2 and d be positive constants. For a large enough N , it holds that
R1(λ, α0wmax, dR5) ≤ δR5, R1(λ,wmax, dR5/α0) ≤ δR5/α0 and R4 ≤ δR5.

Proof. This follows from eqs. (17) and (18), being asymptotic bounds.

1080

Approximating Weighted and Priced Bribery in Scoring Rules

4.6.2 Constant Scoring Rules

We first describe how to close the gap for constant scoring rules, as will be detailed
by Algorithm 3. Let us first recall some notation and define some new one. R4 =
O(α0W̄ ln2N) is the bound on the margin between the current maximum competitor
score and p’s score. R5 = α0W̄ ln3N is a quantity we shall immediately use, where
W̄ =

√
wmax max{wmax,W ?}. C′ = C \ {p} is the competitor set, s′(c) is the current

score of c (i.e., before running Algorithm 3), and s′′(c) will be the score of c following Algo-
rithm 3. For any subset U ⊆ N , recall that WU is the sum of the weights of the voters in
U , and that ΨU is the sum of the prices of the voters in U . Similarly to s′(c) and s′′(c), we
define s′U (c) to be the current score of c when taking into consideration only the votes from
U . s′′U (c) is defined analogously: the score of c following Algorithm 3, when taking into
consideration only the votes from U . Let rmax denote max`∈N ψ`/w`, i.e., the maximum
ratio between a voter’s price and his weight, and likewise r̄max = max`∈N w`/ψ` denote the
maximum ratio between a voter’s weight and his price. Notice that it always holds that
r̄maxrmax ≥ 1.

Let us overview Algorithm 3. We let U be the subset of voters who gave p a score of
at most α0 − 1 (so, for instance, if for our rule Rα it holds that α1 = α0, then U will not
include voters who awarded p an α1-score). Given U , we shall choose a subset M ′′ ⊆ U of
additional voters to bribe, as follows. If WU < 2R5/α0, we choose M ′′ = U . Otherwise,
we initialize M ′′ = ∅ and start adding voters from U to M ′′ by some arbitrary order until
WM ′′ ≥ R5/α0. Once we have finalized M ′′, it is sufficient to bribe each voter in M ′′, where
each newly bribed voter will move p to the top position, without changing the rest of his
preference order. In Lemmas 15 and 16 we will prove that p is winning at the end of this
procedure.

Algorithm 3: Closing the gap for constant scoring rules

1 Let U be the subset of voters who gave p a score of at most α0 − 1.
2 if WU ≤ 2R5/α0 then
3 M ′′ ← U
4 else
5 M ′′ ← ∅
6 foreach ` ∈ U do
7 M ′′ ←M ′′ ∪ {`}
8 if WM ′′ ≥ R5/α0 then break

9 For each voter ` in M ′′, bribe him and change his preference order such that p is
moved to the top position, without any further changes to his preference order.

Lemma 15. In Algorithm 3, it holds that WM ′′ ≤ 2R5/α0 and ΨM ′′ ≤ 2R5rmax/α0. In
addition, if M ′′ ⊂ U , then WM ′′ ≥ R5/α0 as well.

Proof. Observe the condition of the ‘if’ statement in Line 2 of Algorithm 3. If it is true
then WM ′′ ≤ 2R5/α0 and therefore ΨM ′′ ≤ 2R5rmax/α0 by the definition of rmax.

Otherwise M ′′ was built by iteratively adding voters. Let ` be the last voter added to
M ′′. Then WM ′′ = WM ′′\{`} + w` ≤ R5/α0 + wmax, where the last inequality holds since

1081

Keller, Hassidim, & Hazon

before adding `, WM ′′\{`} was at most R5/α0. In addition, since also wmax ≤ R5/α0 (by
the definition of R5), we obtain that WM ′′ ≤ 2R5/α0. As for the cost, ΨM ′′ ≤ 2R5rmax/α0

by the definition of rmax.
In the specific case where M ′′ ⊂ U , we are certain that the condition of the ‘if’ statement

in Line 2 of Algorithm 3 was false. Thus, WM ′′ ≥ R5/α0 by Line 8 of the algorithm.

In the next lemma we show that for constant voting rules, Algorithm 3 closes the margin
by which p is possibly losing.

Lemma 16. Let Rα be a constant scoring rule. Assuming all previous lemmas had suc-
ceeded, then for a large enough N , Algorithm 3 makes p win by paying an additional cost
of at most 2R5rmax/α0.

Proof. Recall that U is the set of voters who gave p a score of at most α0 − 1. Obviously,
all of them are un-bribed voters, since, when the algorithm bribes a voter, p is awarded the
top score α0 by this voter. Given U , we have built the subset M ′′ ⊆ U of additional voters
to be bribed. Recall that such a subset has a price of at most 2R5rmax/α0. Recall that we
bribed each voter in M ′′, such that each newly bribed voter moved p to the top position,
without changing the rest of his preference order. We now split our proof into cases:

• If M ′′ ⊂ U , let I be the additional points awarded to p as a result of this new bribery.
It holds that I =

∑
`∈M ′′(α0 − αv`(p))w`. In particular notice that I ≥ I ′ where

I ′ =
∑

`∈M ′′ w` = WM ′′ ≥ R5/α0, since every bribed voter in M ′′ now awards p at
least one extra point. Then:

I ≥ I ′

≥ R5/α0

≥ R4 (by Claim 14 with δ = 1/(2α0))

where the last inequality holds asymptotically (otherwise N is constant and we can
solve the problem in constant time).

• In the ‘degenerate’ case where M ′′ = U , we bribed all voters in U , and described a
scenario where every voter was either bribed or gave p a score equal to α0 in the first
place. According to the co-winner assumption, this is sufficient to make p a winner.

In conclusion, in both cases we covered the R4 gap, thus p now wins. The overall price paid
is ΨM ′′ ≤ 2R5rmax/α0 by Lemma 15.

4.6.3 Non-Concentrated Scoring Rules

The reasoning we have used for constant scoring rules does not necessarily apply to non-
concentrated scoring rules. To see why, notice that for constant scoring rules—as demon-
strated by the previous lemma—a fairly simple ‘constructive’ argument was sufficient: it
was enough for us to analyze how many points were contributed to p’s score by each newly
bribed voter `, obviating the need to also analyze the points lost by her competitors. The
main observation there was that p receives w` · Θ(α0) additional points from any newly
bribed voter ` – a relatively large number. This was guaranteed by the fact that we only

1082

Approximating Weighted and Priced Bribery in Scoring Rules

bribed voters who previously awarded p a score αj for which αj < α0, and thus, as the scores
are integral, the contribution in points to p’s score was (α0 − αj)w` ≥ w` = w` ·Θ(α0).

Non-concentrated rules Rα will have a much more involved proof in which it is often
insufficient to analyze only the direct contribution to p’s score by a newly bribed voter; we
also have to analyze the indirect contribution to p’s score incurred by p’s competitors losing
points.

In the following, we shall assume w.l.o.g. that for a non-concentrated scoring rule Rα,
it holds that ᾱ ≤ (1 − 5ε)α0 for some constant 0 < ε < 1/5. Our method is described
as Algorithm 4. Before going over its main ideas, we recall the notation involved: R4 =
O(α0W̄ ln2N) is the bound on the margin between the current maximum competitor score
and p’s score. R5 = α0W̄ ln3N , where W̄ =

√
wmax max{wmax,W ?}. C′ = C \ {p} is

the competitor set, N is the voter set, and M ′ ⊆ N is the set of voters we have bribed
thus far. For any subset U ⊆ N , WU =

∑
`∈U w` and ΨU =

∑
`∈U ψ` are the aggregate

weight and price, respectively, of the voters in U . s′U (c) is the score of c before running
Algorithm 4, when taking into consideration only the votes from U . s′′U (c) is the score of
c after running Algorithm 4, again when taking into consideration only the votes from U .
s′(c) is a shorthand for s′N (c), and s′′(c) for s′′N (c). As before, rmax = max`∈N ψ`/w` and
r̄max = max`∈N w`/ψ`. As mentioned, it always holds that r̄maxrmax ≥ 1.

Let us briefly go over Algorithm 4’s main ideas. In its first part, we need to choose
which voters to bribe (denoted as the set M ′′). To do this, we observe the set U = N \M ′
of currently un-bribed voters. If its overall weight is small (Line 2), we simply set M ′′ ← U .
Otherwise, we randomly choose voters for participation in M ′′. Once we have finalized M ′′,
we bribe these voters and need to decide on their new ballots. Here there are two scenarios:
if p’s current score is relatively small (Line 8), it is sufficient to change their ballots such that
p is promoted to the top position in their preference orders, without any further changes.
Otherwise, we replace each of their ballots with a new one in which p is in the top position
and all other candidates are ranked randomly. However, the way we describe this is slightly
peculiar: we first draw a potential ballot v′` (with p at the top position, and all others ranked
randomly, as described) for every voter in U (even the ones not chosen for M ′′) without
actually assigning this potential ballot to the voter. Only then we go over the voters in M ′′,
where each of them will be assigned his respective potential ballot. The potential ballots
we prepared for voters in U \M ′′ are effectively discarded and are never used.

Obviously, it is sufficient and more efficient to compute the new, potential ballots v′` only
for the voters in M ′′. However, presenting the algorithm in this way helps the argument in
Lemma 18. Specifically, the point is to emphasize that the two random decisions pertaining
to each voter ` ∈ U , of (a) whether ` is chosen to be bribed, and (b) the value of his potential
ballot v′`, are independent of one another.

We shall require the following lemmas, in which we analyze the algorithm by splitting
it into cases. In the first lemma we study the scenario where the condition in Line 2 of
Algorithm 4 is true.

Lemma 17. Assuming all previous lemmas had succeeded, if the condition in Line 2 of
Algorithm 4 is true, then Algorithm 4 makes p win by paying an additional cost of at most
2R5rmax/α0.

1083

Keller, Hassidim, & Hazon

Algorithm 4: Closing the gap for non-concentrated scoring rules

/* Choosing the set M ′′ of additional voters to bribe: */

1 Let U = N \M ′ be the set of un-bribed voters.
2 if WU < 2R5/α0 then
3 M ′′ ← U
4 else
5 M ′′ ← ∅
6 foreach ` ∈ U do
7 With probability R5/(α0WU): set M ′′ ←M ′′ ∪ {`}.
/* Calculate the strategy for the voters in M ′′: */

8 if M ′′ = U or s′U (p) ≤ (1− ε)α0WU then
9 For each voter ` in M ′′, bribe him and change his preference order such that p is

moved to the top position (unless p is already ranked at the top), without any
further changes to his preference order.

10 else
/* Prepare a potential ballot for each voter in U: */

11 For each voter ` in U , define a potential ballot v′` as follows: in v′`, p is moved to
the top position, and all other candidates are ranked randomly in the remaining
positions, that is, the ranking of all other candidates will be determined by a
random permutation.
/* Assign the potential ballots only to the voters in M ′′: */

12 For each voter ` in M ′′, bribe him and set v` ← v′` (such that ` now awards αv′`(c)
to candidate c).

Proof. Having the condition in Line 2 of Algorithm 4 being true leads to a ‘degenerate’
case where M ′′ = U . In this case we reach Line 9, and we bribe all voters in U . Since all
voters in N \U are already bribed as well, we reach a scenario where every voter is bribed.
Since every bribed voter ranks p at the top, then according to the co-winner assumption,
this suffices to make p a winner.

Since by the condition in Line 2 of Algorithm 4 being true it holds that WM ′′ ≤ 2R5/α0,
we get that ΨM ′′ ≤ 2R5rmax/α0 by the definition of rmax.

Define ratios ρc ∈ [0, 1] for each c ∈ C such that s′U (c) = ρcα0WU . In words, the ρc
value is the ratio between c’s score from the voters in U (i.e., s′U (c)) and the maximum
score obtainable by a candidate given only the voters in U (which is α0WU). We will now
study the case where the condition in Line 2 of Algorithm 4 is false.

Lemma 18. Assuming that all previous lemmas had succeeded, that the condition in Line 2
of Algorithm 4 is false, and that N is large enough, then with a failure probability of at most
3N−λ+1 all the following hold:

1. WM ′′ ∈ [R5/α0 ± ε/10 ·R5/α0] and R5/α0 ≤ (1 + 2ε/10)WM ′′.

2. ΨM ′′ ≤ 2R5rmax/α0.

3. s′′M ′′(p) ≥ R5 − ε/10 ·R5.

1084

Approximating Weighted and Priced Bribery in Scoring Rules

4. For each c ∈ C: s′M ′′(c) ∈ [ρcR5 ± ε/10 ·R5].

5. If Algorithm 4 reached Line 11 then for each c ∈ C′: s′′M ′′(c) ∈ [ᾱR5/α0 ± ε/10 ·R5].

Proof. By the condition in Line 2 of Algorithm 4 being false, M ′′ was built by randomly
adding voters.

1. E[WM ′′] =
∑

`∈U R5/(α0WU) ·w` = R5/α0. According to Lemma 1, WM ′′ ∈ [R5/α0±
R1(λ,wmax, R5/α0)]. Using Claim 14 and choosing δ = ε/10, we obtain that WM ′′ ∈
[R5/α0± ε/10 ·R5/α0]. Simple arithmetic shows that if WM ′′ ≥ R5/α0− ε/10 ·R5/α0,
then R5/α0 ≤ (1 + 2ε/10)WM ′′ .

2. It follows from the previous item that ΨM ′′ ≤ (1 + ε/10)R5rmax/α0 ≤ 2R5rmax/α0

(by the definition of rmax).

3. It follows from the first item that s′′M ′′(p) = α0WM ′′ ≥ R5 − ε/10 ·R5.

4. For any candidate c ∈ C, notice that E[s′M ′′(c)] =
∑

`∈U R5/(α0WU) ·w`αv`(c) = ρcR5.
According to Lemma 1, s′M ′′(c) ∈ [ρcR5 ± R1(λ, α0wmax, ρcR5)]. Following Claim 14
with δ = ε/10 we obtain that s′M ′′(c) ∈ [ρcR5 ± ε/10 ·R5].

5. In the case Algorithm 4 reached Line 11, we can show that s′′M ′′(c) ∈ [ᾱR5/α0± ε/10 ·
R5] as follows: by definition, s′′M ′′(c) =

∑
`∈U 1M ′′(`)w`αv′`(c), where 1M ′′(`) is an

indicator function for `’s membership in M ′′ and v′` for each ` are the new potential
ballots. Then

E[s′′M ′′(c)] =
∑
`∈U

w`E[1M ′′(`)αv′`(c)]

=
∑
`∈U

w`E[1M ′′(`)] · E[αv′`(c)] (1M ′′(`), αv′`(c) are mutually independent)

=
∑
`∈U

w`R5/(α0WU) · ᾱ

= WUR5/(α0WU) · ᾱ
= ᾱR5/α0 .

The second equality follows from 1M ′′(`) and αv′`(c) being independent of one another,
as discussed in our overview of Algorithm 4. From this point, we use Lemma 1 and
the same reasoning for s′′M ′′(c), as we have just done for s′M ′′(c).

The overall failure probability follows by a union-bound over the required applications of
Lemma 1, once for Item 1, and at most m+ 1 times (for each candidate) for each of Items 4
and 5.

The next lemma studies the case where M ′′ ⊂ U and s′U (p) ≤ (1 − ε)α0WU , and thus
the algorithm reaches Line 9.

Lemma 19. Assuming all previous lemmas had succeeded, if M ′′ was built by randomly
adding voters, and s′U (p) ≤ (1− ε)α0WU , then for a large enough N , Algorithm 4 makes p
win by paying an additional cost of at most 2R5rmax/α0.

1085

Keller, Hassidim, & Hazon

Proof. Since s′U (p) ≤ (1 − ε)α0WU , then according to Lemma 18, s′M ′′(p) ≤ (1 − ε)R5 +
ε/10 ·R5 and in addition s′′M ′′(p) = α0WM ′′ ≥ R5− ε/10 ·R5. In this case each newly bribed
voter moves p to the top position (unless p is already ranked at the top), without any other
changes. Notice that the score of any of p’s competitors can only decrease as a result of
such a change. Let I be the increase in p’s score. Then:

I = s′′N (p)− s′N (p)

= s′′M ′′(p)− s′M ′′(p) (since s′′N\M ′′(p) = s′N\M ′′(p))

≥ R5 − (1− ε)R5 − 2ε/10 ·R5

= 8ε/10 ·R5

> R4 (by Claim 14 with δ = 8ε/10)

where the last inequality holds for a large enough N .
In summary we covered the R4 gap, thus p now wins. The overall price paid is ΨM ′′ ≤

2R5rmax/α0 by Lemma 18.

The next lemma studies the case where Algorithm 4 reaches Lines 11 and 12.

Lemma 20. Assuming all previous lemmas had succeeded, if M ′′ was built by randomly
adding voters, and s′U (p) > (1− ε)α0WU , then for a large enough N , Algorithm 4 makes p
win by paying an additional cost of at most 2R5rmax/α0.

Proof. In this case, p was already awarded a high score from the voters in U . The algorithm,
for each newly bribed voter, moves p to the top position, and in addition ranks all other
candidates according to a random permutation. This time we shall focus on the competitors.
Fix some competitor c ∈ C′, and let Ic be the (possibly negative) increase in c’s score.

In Lemma 18, we showed that for each c ∈ C′, s′′M ′′(c) ≤ ᾱR5/α0 + ε/10 ·R5. Therefore:

Ic = s′′N (c)− s′N (c)

= s′′M ′′(c)− s′M ′′(c) (since s′′N\M ′′(p) = s′N\M ′′(c))

≤ ᾱR5/α0 − s′M ′′(c) + ε/10 ·R5 (by Lemma 18)

We now split our proof into cases according to s′U (c):

• c is a highly-ranked candidate, such that s′U (c) ≥ (1− 3ε)α0WU . By Lemma 18 with
ρc ≥ 1− 3ε, it holds that s′M ′′(c) ≥ (1− 3ε)R5 − ε/10 ·R5. Therefore:

Ic ≤ ᾱR5/α0 − s′M ′′(c) + ε/10 ·R5

≤ ᾱR5/α0 − (1− 3ε)R5 + 2ε/10 ·R5

≤ (1− 5ε)R5 − (1− 3ε)R5 + 2ε/10 ·R5

< −εR5

≤ −R4 (by Claim 14 with δ = ε)

where the last inequality holds for a large enough N . Candidate c has just lost more
than R4 points. Since the gap between any candidate c and p was at most R4, and p
can only gain points by the bribery, c now has fewer points compared to p.

1086

Approximating Weighted and Priced Bribery in Scoring Rules

• c is a slightly above average candidate, such that ᾱWU ≤ s′U (c) ≤ (1− 3ε)α0WU . By
Lemma 18 with ᾱ/α0 ≤ ρc ≤ 1 − 3ε, it holds that (ᾱ/α0)R5 − ε/10 · R5 ≤ s′M ′′(c) ≤
(1− 3ε)R5 + ε/10 ·R5. Therefore:

Ic ≤ ᾱR5/α0 − s′M ′′(c) + ε/10 ·R5

≤ ᾱR5/α0 − (ᾱ/α0)R5 + 2ε/10 ·R5

≤ 0 + 2ε/10 ·R5

≤ 2ε/10 · (1 + 2ε/10)α0WM ′′ (by Lemma 18)

≤ εα0WM ′′ (by simple arithmetic)

where the one before last inequality holds for a large enough N .

To summarize this case, c’s score might have increased, but only by at most εα0WM ′′

and thus s′′U (c) ≤ (1 − 3ε)α0WU + εα0WM ′′ ≤ (1 − 2ε)α0WU < s′U (p) ≤ s′′U (p), so
p has a higher score than c given the voters in U . The rest of the voters—those in
N \ U—are already bribed, thus s′′N\U (p) ≥ s′′N\U (c), and we get that s′′N (p) ≥ s′′N (c),
i.e., c now has fewer points compared to p.

• c is a below average candidate, such that s′U (c) ≤ ᾱWU and thus ρc ≤ ᾱ/α0. By
Lemma 18, s′U (c) = ρcα0WU implies that s′M ′′(c) ≥ ρcR5 − ε/10 ·R5. Therefore:

Ic ≤ ᾱR5/α0 − s′M ′′(c) + ε/10 ·R5

= (ᾱ/α0 − ρc + 2ε/10)R5

≤ (ᾱ/α0 − ρc + 2ε/10) · (1 + 2ε/10)α0WM ′′ (by Lemma 18)

≤ (ᾱ/α0 − ρc + 2ε/10) · (1 + 2ε/10)α0WU (since ᾱ/α0 − ρc + 2ε/10 > 0

and WM ′′ ≤WU)

≤ ᾱWU − ρcα0WU + εα0WU (by simple arithmetic and ᾱ/α0 < 1)

Moving to s′′U (c), then:

s′′U (c) = s′U (c) + Ic

≤ ρcα0WU + (ᾱWU − ρcα0WU + εα0WU)

≤ ᾱWU + εα0WU

≤ (1− 4ε)α0WU

< s′U (p)

≤ s′′U (p)

To summarize this case, c’s score might have increased, but p still has a higher score
than c given the voters in U . The rest of the voters—those in N \ U—are already
bribed, thus s′′N\U (p) ≥ s′′N\U (c), and we get that s′′N (p) ≥ s′′N (c), i.e., c now has fewer
points compared to p.

In conclusion, we covered any positive gap between any voter and p, thus p now wins.
The overall price paid is ΨM ′′ ≤ 2R5rmax/α0 by Lemma 18.

1087

Keller, Hassidim, & Hazon

In the following, we return to discussing constant and non-concentrated scoring rules
jointly. With Lemmas 15 to 20, we showed that for many types of α, we can close the margin
while paying an additional cost of at most 2R5rmax/α0, with a high probability. Recall the
value Ψ? in the solution of LPB; its counterpart ΨM ′ which is the sum of the prices of the
voters in M ′ (the initial set of voters which we bribed); and ψmax, the maximum voter price.
Let ψ̄ =

√
ψmax max{ψmax,Ψ?}. This leads to the following.

Lemma 21. In SR-Weighted-$Bribery under constant or non-concentrated Rα, as-
suming that Lemma 12 did not fail, then for a large enough N , besides the ΨM ′ cost we
already paid, with a failure probability of at most 3N−λ+1, an additional cost of at most
ΨM ′′ = Õ(ψ̄r̄maxrmax) is needed for p to win.

Proof. According to either Lemmas 15 and 16 (constant scoring rules), or Lemmas 17 to 20
(non-concentrated scoring rules), it holds that ΨM ′′ ≤ 2R5rmax/α0. Recall that W̄ =√
wmax max{wmax,W ?} and R5 = α0W̄ ln3N . Since W ? ≤ Ψ?r̄max and wmax ≤ ψmaxr̄max,

then R5 = α0ψ̄r̄max ln3N . Plugging this into ΨM ′′ = 2R5rmax/α0, we get that ΨM ′′ =
Õ(ψ̄r̄maxrmax). The failure probability follows from the failure probability of Lemma 18
(for non-concentrated scoring rules; for constant scoring rules notice that there are no
randomized actions executed by Algorithm 3).

We are now ready for the main theorem of this section:

Theorem 22. In SR-Weighted-$Bribery under constant or non-concentrated Rα, let
ΨOPT be the minimum cost of bribery in order to make p win. Then there exists a polynomial-
time randomized algorithm spending a cost of at most

ΨOPT + Õ

(√
ψmax(ΨOPT + ψmax)r̄maxrmax

)
,

with an exponentially-small failure probability.

Proof. ΨOPT is the cost of bribery according to an optimal strategy, and thus Ψ? ≤ ΨOPT

since the integral optimum cannot be smaller than the fractional one. Using Lemma 8.1,
overall we spent ΨM ′+ΨM ′′ ≤ Ψ?+R1(λ, ψmax,Ψ

?)+ΨM ′′ ≤ ΨOPT+R1(λ, ψmax,Ψ
?)+ΨM ′′ .

For the first additive term R1(λ, ψmax,Ψ
?), notice that

R1(λ, ψmax,Ψ
?) = O

(√
ψmax max{ψmax,ΨOPT} lnN

)
.

For the second additive term ΨM ′′ , consider Lemma 21; we can always assume w.l.o.g. that
N is large enough for the lemma (and the lemmas it depends upon) to hold—as required
by it—otherwise N = n(m + 1) is constant and the entire problem can be easily solved.
Thus, according to Lemma 21,

ΨM ′′ = Õ(ψ̄r̄maxrmax)

= Õ

(√
ψmax max{ψmax,ΨOPT}r̄maxrmax

)
.

1088

Approximating Weighted and Priced Bribery in Scoring Rules

Combining both terms, and recalling that r̄maxrmax ≥ 1, overall we get that

ΨM ′ + ΨM ′′ ≤ ΨOPT + Õ

(√
ψmax(ψmax + ΨOPT)r̄maxrmax

)
.

The failure probability is at most 10N−λ+1 by a union bound over the failure prob-
abilities of Lemma 8.1, Lemma 12, and Lemma 21. By choosing e.g., λ = 2, the failure
probability is bounded by 10N−1 = 1/Ω(N). By running the algorithm a linear number
of times, and choosing the run yielding the minimal overall cost, the failure probability
becomes exponentially-small, while the runtime stays polynomial.

This theorem immediately yields the two following interesting cases.

Corollary 23. In SR-Weighted-$Bribery under constant or non-concentrated Rα, let
ΨOPT be the minimum cost of bribery in order to make p win. If voter weights and voter
prices are constant in the input size, then there exists a polynomial-time randomized algo-
rithm spending a cost of at most

ΨOPT + Õ
(√

ΨOPT
)
,

with an exponentially-small failure probability.

Proof. By ψmax and r̄maxrmax being constant when both prices and weights are constant.

Remark. Recall that the Õ(
√

ΨOPT) notation hides terms which are poly-logarithmic in N .
Therefore, the approximation described by Corollary 23 does not qualify as an asymptotic
polynomial-time approximation scheme.4

Corollary 24. In SR-Weighted-Bribery under constant or non-concentrated Rα, let
kOPT be the minimum number of voters to be bribed in order to make p win. Then there
exists a polynomial-time randomized algorithm bribing at most kOPT+Õ(

√
kOPTwmax/wmin)

voters, with an exponentially-small failure probability, where wmax (resp. wmin) is the max-
imum (resp. minimum) voter weight.

Proof. For unit-priced voters, ΨOPT = kOPT and r̄maxrmax = wmax/wmin.

5. Related Work

In this section we detail some of the previous work to help present our new results in context.
We aim at maintaining the introductory style of this section; for formal definitions, see
Section 2.

Remark. When discussing results that pertain to any scoring rule Rα—and not only to a
specific one—notice that most previous work had made the simplifying assumption that
the number of candidates |C| has to be fixed, as a result of α being hard-coded into the
algorithm. See further details below.

4. An asymptotic polynomial-time approximation scheme (Asymptotic PTAS) is an approximation scheme
in which for any constant ε > 0, the scheme can yield an approximation algorithm where the additive
approximation factor is bounded by εΨOPT + f(ε), where f(ε) in a term that depends only on ε.

1089

Keller, Hassidim, & Hazon

5.1 Coalitional Manipulation

Tractability Results. The computational complexity of coalitional manipulation prob-
lems has been studied extensively. For any scoring rule Rα, much of the earlier work
considered the case where the number of candidates is bounded: Conitzer, Sandholm, and
Lang (2007, see Proposition 1) show that when |C| is bounded, Rα-UCM is solvable in
polynomial time.

Even when |C| is unbounded, Plurality-UCM and Veto-UCM are still easy, and can
be solved using Reverse, Zuckerman et al.’s (2009) greedy algorithm.5 More generally,
t-approval-UCM is easy as well (Xia et al., 2010).

Recently it was shown by Hemaspaandra and Schnoor (2016) that for every scoring rule
in which α consists of a constant number of unique coefficients, UCM is easy as well.

NP-Hardness Results. In the weighted case, the situation is different. For all positional
scoring rules Rα, except Plurality-like rules, Rα-WCM is NP-hard when |C| ≥ 3 (Conitzer
et al., 2007; Hemaspaandra & Hemaspaandra, 2007; Procaccia & Rosenschein, 2007). How-
ever, these results are based on a reduction from the well-known partition problem, which
has a pseudo-polynomial algorithm; therefore, they do not extend to the case where the
weights are relatively small, e.g., are integers bounded by a polynomial in the input size.
When this is indeed the case, or that the weights are encoded by a unary encoding, then
if |C| is constant, it holds that Rα-WCM is easy (Faliszewski et al., 2009, with the main
insight being that for a fixed |C|, the hardness of the problem depends on the weights being
large); if |C| is not fixed, then even Veto-WCM, and t-approval-WCM for t ≥ 2 are NP-
hard, by a reduction from unary-3-partition (Brelsford et al., 2008). The computational
hardness of Borda-UCM remained open for quite some time, until it was finally shown to
be NP-hard as well (Davies et al., 2014; Betzler, Niedermeier, & Woeginger, 2011), even for
the case of n = 3 and adding k = 2 manipulators.

Approximating the number of manipulators. Zuckerman et al. (2009) presented a
greedy algorithm later referred to as Reverse. For Borda-UCM, Reverse can be seen as an
additive +1-approximation for the objective of finding the minimum number of manipulators
needed.

For Borda-WCM, their approximation can be described as follows. Let w = (w`)`∈M
be the weights of the k given weighted manipulators M . If a p-winning strategy using these
k manipulators exists, a p-winning strategy using additional manipulators will be found if
the sum of the weights of the additional manipulators equals max`∈M w`.

As for more general results, Xia et al. (2010) provide an additive (|C|−2)-approximation
for SR-UCM. In the case of SR-WCM, each of the extra manipulators will have a weight
of at most max`∈M w`/2.

Approximating the Score Margin and the Maximum Competitor Score. An-
other line of work had focused on minimizing the margin between the highest-scoring com-
petitor and p (the score margin), or some additive function thereof which also attains its
minimum when the margin is minimized. Such approximations boil down to approximating
the maximum score of a competitor. For Rα-WCM, when |C| is bounded, Brelsford et al.

5. The name of the algorithm was given by Davies, Katsirelos, Narodytska, Walsh, and Xia (2014).

1090

Approximating Weighted and Priced Bribery in Scoring Rules

(2008, see Lemma 3) provide an FPTAS with respect to the maximum score of a competi-
tor. In their work, this FPTAS paves the way for an FPTAS for another objective, namely
the difference between the score margin when not including the manipulators’ votes and
the optimal score margin when including them. Notice that the maximum competitor score
is the only nontrivial value in this computation. Keller et al. (2019) provide an additive
approximation to the maximum competitor score for general values of |C|.

5.2 Bribery

As discussed, a string of results researched both the hardness and approximability of UCM
for various voting rules, and in particular scoring rules. However, it seems that the equiva-
lent landscape for Bribery is lacking; only little work was done on approximating Bribery.
We briefly cover the landscape w.r.t. Bribery, with a focus on scoring rules.

In addition to the basic, unit-price Bribery, where all voters have a unit-price for chang-
ing their ballot, other price functions exist; besides $Bribery—discussed in this paper—in
some other schemes the price changes on the basis of the operation requested by the brib-
ing entity; in Swap Bribery, each voter has a price for swapping two consecutively-ranked
candidates, and the price might depend in their identity. Shift Bribery is the same, where
only swaps promoting p are allowed.

Faliszewski et al. (2009) first studied the different bribery settings w.r.t. Plurality,
when |C| is not fixed. They show that Plurality-Weighted-$Bribery is NP-hard for
general (i.e., possibly large) weights and prices, but that both Plurality-$Bribery and
Plurality-Weighted-Bribery are easy. Trying to understand if the hardness of Plurality-
Weighted-$Bribery relies on the large values of the weights and prices, they showed that
this is indeed the case: Plurality-Weighted-$Bribery is in P if either weights or prices
are encoded in unary.

Moving away from Plurality, the situation quickly changes: t-approval-Bribery is NP-
hard (Lin, 2012) except for some small values of t for which t-approval-Bribery and t-Veto-
Bribery are still easy (Faliszewski et al., 2009; Lin, 2012). Borda-Bribery is NP-hard as
well (Brelsford et al., 2008).

Moving to general scoring rules, when |C| is constant, Faliszewski et al. (2009) show that
for any scoring rule Rα, Rα-Weighted-$Bribery is NP-hard. Rα-Weighted-Bribery
is still NP-hard for all Rα, with the exception of Plurality-like rules. When limiting the
weights to be unary, Rα-Weighted-$Bribery becomes easy, making this yet another
example where hardness depends on the weights being large. In particular, this implies
that Rα-$Bribery is easy.

We are left with the case of general scoring rules when |C| is not fixed, which lies at
the heart of this work. This general problem—assuming that Rα is given as part of the
input—is NP-hard even for its simplest variant, SR-Bribery. This follows directly from
the fact that the specific cases of t-approval-Bribery and Borda-Bribery are NP-hard.

Little work had been conducted on approximating Bribery. Of interest is Faliszewski’s
(2008) FPTAS for Plurality-Weighted-$Bribery. In addition, Elkind et al. (2009) stud-
ied different scoring rules in the context of Swap- and Shift-Bribery. They provided a
2-approximation for Borda-Shift-Bribery, and in Elkind and Faliszewski’s (2010) work it

1091

Keller, Hassidim, & Hazon

was generalized to hold for all scoring rules. Finally, Faliszewski, Manurangsi, and Sornat
(2019) provided a polynomial-time approximation scheme (PTAS) for all scoring rules.

6. Conclusions

At the center of this work there are two conceptual results. First, a new connection between
Bribery and WCM was found. Specifically, we showed that approximating the score
margin for SR-WCM translates to approximations on the overall cost for SR-Weighted-
$Bribery. While a connection between the two problems is hardly surprising, we argue
that the use of the min-score-margin objective for SR-WCM provides the missing ingredient
for approximating SR-Bribery and its variants.

Second, we introduced the application of the BvN decomposition and related theo-
rem to SR-WCM. Here the major combinatorial insight is that the theorem implies that
when choosing ballots for each of the manipulators, it is sufficient to consider at most m2

ballots—a polynomial number—of the m! possible ballots, while still obtaining a fairly good
approximation to the score margin.

Another takeaway is related to the power of LPs as a tool for bringing several constraints
into consideration simultaneously. Indeed, SR-Bribery and its generalizations can be seen
as a two stage process: voter elimination, followed by the addition of voters with new
ballots. The former can be seen as a set cover variant, while the latter is exactly a coalitional
manipulation instance. However, these problems should not be solved independently, and
deciding which voters to bribe must be tightly integrated with the decision on their new
strategy. We showed that this can be achieved by an LP: its fractional solution, determines
both stages at once. While we cannot retain this property when requiring an integral
solution, the LP still enables us (a) to take all information into account when deciding who
to bribe, and (b) to induce an SR-WCM instance which does not add much to the overall
cost.

We mention several open problems as further possible research directions:

• Some other voting rules are not positional scoring rules, but do have some intrinsic
notion of a score; for instance, the Simpson and Copeland rules. Can methods similar
to ours be used to provide approximations toR-WCM andR-Bribery variants where
R is such a rule?

• Our bribery results excluded scoring rules which are neither non-concentrated nor con-
stant. It would be interesting to better understand them. Can they be approximated?
Alternatively, can we prove some hardness-of-approximation results with respect to
such rules?

• Focusing on SR-UCM, can we find other approximation factor trade-offs w.r.t. α1, m,
and k? We note that a different approximation factor trade-off is provided in another
work by the authors (Keller et al., 2019).

• For the case of SR-UCM, our algorithm provides an additive Õ(α1

√
k)-approximation

to the score margin. On the other hand, for Borda-UCM, it can be rather easily proven
that Zuckerman et al.’s (2009) greedy heuristic provides an additive O(α1) = O(m)-
approximation to the score margin. While their method can be applied to scoring rules

1092

Approximating Weighted and Priced Bribery in Scoring Rules

other than Borda, it is not clear whether it provides any approximation guarantee in
these cases. An immediate direction would be to prove such guarantees for these cases
as well.

Acknowledgments

This work extends a previous conference paper (Keller et al., 2018). Research was done
while the first author was a PhD student, under the supervision of the second author. This
work was supported by the Israel Science Foundation, under Grant No. 1488/14 and Grant
No. 1394/16. We are deeply indebted to the anonymous reviewers for their meticulous
review and numerous helpful comments, which substantially improved the presentation.

Appendix A. Randomization, Probability, and Chernoff Bounds

In the paper we use various forms of concentration inequalities, which are inequalities that
bound the probability of a random variable X deviating too far away from its expected
value E[X], as a function of their distance |X − E[X]|.

Chernoff Variant in Mitzenmacher and Upfal’s (2005) Book. Let X1, . . . , Xn be
independent random variables in [0, 1]. Let X =

∑n
i=1Xi. Then for 0 < β ≤ 1

Pr[|X − E[X]| ≥ βE[X]] ≤ 2 exp

(
−β

2E[X]

3

)
. (19)

Also for general β > 0:

Pr[X ≥ (1 + β)E[X]] ≤ exp

(
−β

2E[X]

2 + β

)
. (20)

Remark. Equation (19) appears in Chapter 4 of Mitzenmacher and Upfal’s (2005) book for
the {0, 1} case, which is generalized to the [0, 1] case in Exercise 4.19 therein. Equation (20)
is folklore.

We use the following corollary of the above Chernoff bounds, focusing on their asymp-
totic behavior for arbitrarily-chosen polynomially-small error-probabilities.

Lemma 1. Let X1, . . . , Xn be independent random variables where Xi ∈ [0, u] for all i, λ
be some constant, and N be some large enough value. Let X =

∑n
i=1Xi. Then

Pr[X /∈ [E[X]±R1(λ, u,E[X])]] ≤ N−λ ,

where R1(λ, u,E[X]) = 6λmax{
√
uE[X], u} lnN is the deviation we allow w.r.t. the ex-

pected value E[X].

Proof. Scale all random variables down by a factor of u, yielding Yi = Xi/u for all i and let
Y = X/u. Notice that E[Y] = E[X]/u as well. We split to cases:

1093

Keller, Hassidim, & Hazon

• If 6λu lnN ≤ E[X], let β ≤ 1 be a value to be determined later. Then by eq. (19)
w.r.t. Y , we obtain that,

Pr [|X − E[X]| ≥ βE[X]] = Pr [|Y − E[Y]| ≥ βE[Y]] (21)

≤ 2 exp

(
−β

2E[Y]

3

)
(22)

= 2 exp

(
−β

2E[X]

3u

)
. (23)

Setting β =
√

6λu lnN/
√

E[X] ≤ 1, we get that

Pr[|X − E[X]| ≥ 6
√
λuE[X] lnN] ≤ 1

N λ
. (24)

• Else then 6λu lnN > E[X]. Let β > 1 be a value to be determined later. Then by
eq. (20):

Pr [X − E[X] ≥ βE[X]] = Pr [Y − E[Y] ≥ βE[Y]]

≤ exp

(
−β

2E[Y]

2 + β

)
≤ exp

(
−β

2E[Y]

3β

)
= exp

(
−β

2E[X]

3βu

)
= exp

(
−βE[X]

3u

)
.

Setting β = 6λu lnN/E[X] > 1, we obtain that

Pr[X − E[X] ≥ 6λu lnN] ≤ 1

N λ
. (25)

For the symmetric case, it also holds that

Pr [X − E[X] < −6λu lnN] = 0 ,

since X ≥ 0 > E[X]− 6λu lnN . Summing up:

Pr[|X − E[X]| ≥ 6λu lnN] ≤ 1

N λ
. (26)

The theorem follows from combining the two cases.

Appendix B. The Birkhoff-von-Neumann Theorem

We use the BvN decomposition in order to weed out invalid ballots in the randomized
rounding stage of our min-margin-SR-WCM algorithm, while at the same time reducing
the size of the valid ballot search space from exponential to polynomial.

1094

Approximating Weighted and Priced Bribery in Scoring Rules

The BvN decomposition can be applied to doubly-stochastic matrices, as defined in
Section 2. Compare their definition to a permutation matrix, in which there is a single 1
value in each row and in each column, all other values being 0.

As mentioned, every permutation matrix is also a doubly-stochastic matrix, and the
BvN theorem supplies the link in the other direction. Roughly speaking, the Birkhoff-
von Neumann theorem states that each doubly-stochastic matrix is a point in the Birkhoff
polytope, whose vertices are all the m! permutation matrices. In other words, every doubly-
stochastic matrix can be obtained by a convex combination of all permutation matrices.
Furthermore, a convex combination in which the number of nonzero coefficients is at most
m2 can be efficiently found. We repeat the theorem and supply its proof:

Theorem 2 (BvN Theorem). Let Y ∈ [0, 1]m×m be a doubly-stochastic matrix. We can
decompose Y to a convex combination of at most m2 permutation matrices, that is, we
decompose Y = λ1P

τ1 + · · · + λqP
τq where each τt is a permutation with Pτt being its

corresponding permutation matrix, each λt ∈ [0, 1] and
∑q

t=1 λt = 1, and q ≤ m2. This
decomposition can be found in polynomial time.

Proof. Given Y = [yi,j], repeat the following steps for every t = 1, 2, . . . until the first step
fails:

1. Find a permutation τt such that yτt(j),j > 0 for all j (implementation will be described
soon).

2. Let λt = minj yτt(j),j . Perform the update: Y ← Y − λtP
τt , where Pτt is the

permutation matrix corresponding to τt.

We then use the following lemma.

Lemma 25. The above algorithm performs at most m2 iterations.

Proof. By noticing that in each step t, at least one entry of Y becomes zero, that is the
entry (τt(j

′), j′) such that j′ = arg minj yτt(j),j . When all entries will be zeros, Step 1 will
inevitably fail.

Lemma 26. Until matrix Y becomes the all-zeros matrix, there always exists a permutation
τ such that yτ(j),j > 0 for all j. Furthermore, τ can be found by a polynomial-time algorithm.

Proof. First notice that as we perform step 2, each row or column in the matrix Y is
affected equally (loses λt · 1 = λt from its sum) and therefore Y always remains ‘almost’
doubly-stochastic: that is, the sums of each row and each column are equal, though they
are no longer 1. For such a matrix, a permutation abiding the aforementioned requirements
can always be found by using Hall’s (1935) marriage theorem, as we will immediately show.

For Y at some point in time t, let st be the sum of each row (or column). Now define
a bipartite graph G = (U ∪ V,E), where U = {u1, . . . , um} is a vertex set representing the
rows of Y, V = {v1, . . . , vm} is a vertex set representing the columns of Y, and there is an
edge (ui, vj) ∈ E if and only if yi,j > 0. According to Hall’s marriage theorem, there is a
perfect matching in G if and only if for every subset U ′ ⊆ U , it holds that |N(U ′)| ≥ |U ′|,
where N(U ′) is the set of neighbors of the vertices in U ′. To see that this condition indeed

1095

Keller, Hassidim, & Hazon

holds, consider any subset U ′ ⊆ U and notice that the sum
∑

i∈U ′
∑m−1

j=0 yi,j of all entries of
the rows in U ′ equals st|U ′|. This sum can be written equivalently as

∑
i∈U ′

∑
j∈N(U ′) yi,j =

st|U ′|. However, since the sum of each column is st, each column can contribute at most
st to this sum and thus in order to reach the st|U ′| value, the entries in the sum have to
originate in at least |U ′| columns, therefore |N(U ′)| ≥ |U ′|. Now, by using Hall’s marriage
theorem, we get that there exists a perfect matching M in G. Since a perfect matching in a
bipartite graph naturally defines a permutation τ : [m]→ [m] which maps a column index j
to a row index i if (ui, vj) ∈M , we have just found a permutation τ where τ(j) = i implies
that yi,j > 0. In addition, as a perfect matching in a bipartite graph (if one exists) can be
found in polynomial time (Hopcroft & Karp, 1973), the lemma follows.

Lemma 27. It holds that λt ∈ [0, 1] for all t and that
∑

t λt = 1.

Proof. λt ∈ [0, 1] since every chosen λt is always a positive value bounded by an entry in
Y, and the entries of Y are always less than or equal to 1. Fix an arbitrary row i in the
original matrix Y, and notice that:∑

t

λt =
∑
j

∑
t

τt(j)=i

λt

=
∑
j

yi,j

= 1 .

We conclude that the decomposition we described follows the requirements of the lemma,
and that finding it involves at most m2 invocations of a bipartite maximum matching
algorithm, and therefore can be done in polynomial time.

References

Bartholdi, III, J. J., Tovey, C. A., & Trick, M. A. (1989). The computational difficulty of
manipulating an election. Social Choice and Welfare, 6 (3), 227–241.

Betzler, N., Niedermeier, R., & Woeginger, G. J. (2011). Unweighted coalitional manipula-
tion under the Borda rule is NP-hard. In the 22nd International Joint Conference on
Artificial Intelligence (IJCAI 2011), pp. 55–60. IJCAI/AAAI.

Birkhoff, G. (1946). Tres observaciones sobre el algebra lineal. Universidad Nacional de
Tucumán Rev. Ser. A, 5, 147–151.

Brelsford, E., Faliszewski, P., Hemaspaandra, E., Schnoor, H., & Schnoor, I. (2008). Ap-
proximability of manipulating elections. In the 23rd AAAI Conference on Artificial
Intelligence (AAAI 2008), pp. 44–49. AAAI Press.

Conitzer, V., Sandholm, T., & Lang, J. (2007). When are elections with few candidates
hard to manipulate?. Journal of the ACM, 54 (3), 14.

1096

Approximating Weighted and Priced Bribery in Scoring Rules

Conitzer, V., & Walsh, T. (2016). Barriers to manipulation in voting. In Brandt, F.,
Conitzer, V., Endriss, U., Lang, J., & Procaccia, A. D. (Eds.), Handbook of Compu-
tational Social Choice, pp. 127–145. Cambridge University Press.

Davies, J., Katsirelos, G., Narodytska, N., Walsh, T., & Xia, L. (2014). Complexity of
and algorithms for the manipulation of Borda, Nanson’s and Baldwin’s voting rules.
Artificial Intelligence, 217, 20–42.

Elkind, E., & Faliszewski, P. (2010). Approximation algorithms for campaign management.
In the 6th International Workshop on Internet and Network Economics (WINE 2010),
Vol. 6484 of Lecture Notes in Computer Science, pp. 473–482. Springer.

Elkind, E., Faliszewski, P., & Slinko, A. M. (2009). Swap bribery. In the 2nd International
Symposium on Algorithmic Game Theory (SAGT 2009), Vol. 5814 of Lecture Notes
in Computer Science, pp. 299–310. Springer.

Faliszewski, P. (2008). Nonuniform bribery. In the 7th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008), pp. 1569–1572. IFAAMAS.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. A. (2009). How hard is bribery in
elections?. Journal of Artificial Intelligence Research, 35, 485–532.

Faliszewski, P., Manurangsi, P., & Sornat, K. (2019). Approximation and hardness of shift-
bribery. In the 33rd AAAI Conference on Artificial Intelligence (AAAI 2019), pp.
1901–1908. AAAI Press.

Faliszewski, P., & Procaccia, A. D. (2010). AI’s war on manipulation: Are we winning?. AI
Magazine, 31 (4), 53–64.

Faliszewski, P., & Rothe, J. (2016). Control and bribery in voting. In Brandt, F., Conitzer,
V., Endriss, U., Lang, J., & Procaccia, A. D. (Eds.), Handbook of Computational
Social Choice, pp. 146–168. Cambridge University Press.

Faliszewski, P., Skowron, P., & Talmon, N. (2017). Bribery as a measure of candidate
success: Complexity results for approval-based multiwinner rules. In the 16th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS 2017),
pp. 6–14. ACM.

Gibbard, A. (1973). Manipulation of voting schemes: a general result. Econometrica, 41 (4),
587–601.

Hall, P. (1935). On representatives of subsets. Journal of the London Mathematical Society,
10 (1), 26–30.

Hemaspaandra, E., & Hemaspaandra, L. A. (2007). Dichotomy for voting systems. Journal
of Computer and System Sciences, 73 (1), 73–83.

Hemaspaandra, E., & Schnoor, H. (2016). Dichotomy for pure scoring rules under manip-
ulative electoral actions. In the 22nd European Conference on Artificial Intelligence
(ECAI 2016), Vol. 285 of Frontiers in Artificial Intelligence and Applications, pp.
1071–1079. IOS Press.

Hopcroft, J. E., & Karp, R. M. (1973). An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2 (4), 225–231.

1097

Keller, Hassidim, & Hazon

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combi-
natorica, 4 (4), 373–396.

Keller, O., Hassidim, A., & Hazon, N. (2018). Approximating bribery in scoring rules. In the
32nd AAAI Conference on Artificial Intelligence (AAAI 18), pp. 1121–1129. AAAI
Press.

Keller, O., Hassidim, A., & Hazon, N. (2019). New approximations for coalitional manipu-
lation in scoring rules. Journal of Artificial Intelligence Research, 64, 109–145.

Kőnig, D. (2001). Theorie der endlichen und unendlichen Graphen. American Mathematical
Society.

Lin, A. P. (2012). Solving hard problems in election systems. Ph.D. thesis, Rochester
Institute of Technology.

Mitzenmacher, M., & Upfal, E. (2005). Probability and computing - randomized algorithms
and probabilistic analysis. Cambridge University Press.

Peters, J. W., & Alcindor, Y. (2016). Hillary Clinton struggles to win back young vot-
ers from third parties. https://www.nytimes.com/2016/09/29/us/politics/hillary-
clinton-millennials-third-party.html. Accessed: 2017-08-31.

Procaccia, A. D., & Rosenschein, J. S. (2007). Junta distributions and the average-case
complexity of manipulating elections. Journal of Artificial Intelligence Research, 28,
157–181.

Put, T., & Faliszewski, P. (2016). The complexity of voter control and shift bribery under
parliament choosing rules. Transactions on Computational Collective Intelligence, 23,
29–50.

Satterthwaite, M. A. (1975). Strategy-proofness and Arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions. Journal
of economic theory, 10 (2), 187–217.

von Neumann, J. (1953). A certain zero-sum two-person game equivalent to the optimal
assignment problem. Contributions to the Theory of Games, 2, 5–12.

Xia, L., Conitzer, V., & Procaccia, A. D. (2010). A scheduling approach to coalitional
manipulation. In the 11th ACM Conference on Electronic Commerce (EC 2010), pp.
275–284. ACM.

Zuckerman, M., Procaccia, A. D., & Rosenschein, J. S. (2009). Algorithms for the coalitional
manipulation problem. Artificial Intelligence, 173 (2), 392–412.

1098

