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Abstract

This paper addresses a subset of problems of multi-agent inverse reinforcement learning
(MIRL) in a two-player general-sum stochastic game framework. Specifically, five variants
of MIRL are considered: uCS-MIRL, advE-MIRL, cooE-MIRL, uCE-MIRL, and uNE-
MIRL, each distinguished by its solution concept. Problem uCS-MIRL is a cooperative
game in which the agents employ cooperative strategies that aim to maximize the total game
value. In problem uCE-MIRL, agents are assumed to follow strategies that constitute a
correlated equilibrium while maximizing total game value. Problem uNE-MIRL is similar to
uCE-MIRL in total game value maximization, but it is assumed that the agents are playing
a Nash equilibrium. Problems advE-MIRL and cooE-MIRL assume agents are playing an
adversarial equilibrium and a coordination equilibrium, respectively. We propose novel
approaches to address these five problems under the assumption that the game observer
either knows or is able to accurately estimate the policies and solution concepts for players.
For uCS-MIRL, we first develop a characteristic set of solutions ensuring that the observed
bi-policy is a uCS and then apply a Bayesian inverse learning method. For uCE-MIRL,
we develop a linear programming problem subject to constraints that define necessary and
sufficient conditions for the observed policies to be correlated equilibria. The objective
is to choose a solution that not only minimizes the total game value difference between
the observed bi-policy and a local uCS, but also maximizes the scale of the solution. We
apply a similar treatment to the problem of uNE-MIRL. The remaining two problems can
be solved efficiently by taking advantage of solution uniqueness and setting up a convex
optimization problem. Results are validated on various benchmark grid-world games.

1. Introduction

This paper addresses the generalization of inverse reinforcement learning (IRL) to a multi-
agent setting. IRL has been widely studied in recent years as part of a broad and growing
interest in reinforcement learning (RL). The RL problem is commonly framed in terms of
a single agent that aims to learn an optimal control policy for a Markov decision process
(MDP) with reward function and state transition probabilities that are either known explic-
itly or that can be experienced though interaction with the environment. IRL, the inverse
problem, has the objective of estimating the reward function given observations of a control
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policy followed by an agent (Ng & Russell, 2000). IRL has been applied to a number of
problems, most related to the problems of learning from demonstrations and apprenticeship
learning (Abbeel & Ng, 2004; Baker, Saxe, & Tenenbaum, 2009; Ziebart, Maas, Bagnell, &
Dey, 2008).

A key assumption in IRL is that a behavioral model for the agent is known. The most
common behavior model is that the agent has acted optimally with respect to the MDP.
Other behavioral assumptions can be adopted, however, such as a probabilistic selection
of suboptimal behavior that attempts to model agents observed in the midst of their own
learning process. IRL is inherently ill-defined, as more than one reward function can be
consistent with an observed optimal policy (one way to see this is to note that any policy is
optimal with respect to a reward function that is everywhere zero). The ill-defined nature
of the problem typically is addressed by formulating an optimization objective that imposes
additional structure or properties on the learned rewards. Two prominent examples of such
problems are max-margin IRL (Abbeel & Ng, 2004), in which the rewards are chosen so
as to maximize the value function of the observed policy relative to all other policies, and
Bayesian IRL (Ramachandran & Amir, 2007), which aims to find maximum a posteriori
estimate of rewards given priors and a likelihood model.

RL and IRL can be extended to multi-agent settings. Multi-agent reinforcement learning
(MRL) is defined in terms of a stochastic game, rather than an MDP as in the single-agent
case (see, e.g., Owen, 1968; Shapley, 1953). In a stochastic game, the players are presented
with a sequence of games with the joint actions taken in each game determining the transi-
tion probabilities to the next game. Hence, games play the role of states in an MDP. The
rewards experienced by each player are determined by the payoff matrices of the games and
the joint actions (or bi-policy) of the players. To define MRL as a computational problem,
it is necessary to specify a solution concept, such as a Nash equilibrium or a correlated equi-
librium that the players attempt to achieve. MRL algorithms have been developed for a
number of equilibria with varying success in terms of theoretical and empirical performance
(Abdallah & Lesser, 2008; Cigler & Faltings, 2013; Conitzer & Sandholm, 2007; Greenwald
& Hall, 2003; Hu & Wellman, 1998; Littman, 1994, 2001; Sodomka, Hilliard, Littman, &
Greenwald, 2013).

The inverse learning problem for MRL, which we term multi-agent inverse reinforcement
learning (MIRL), is to estimate the payoffs of a stochastic game given only observations of
the actions taken by the players. Like its single-agent counterpart, the MIRL problem must
be stated in terms of an assumed behavior model for the agents. Typically, the assumption
is that the agents are playing equilibrium strategies. If one assumes that the agents reached
the equilibrium by following an MRL algorithm, then it makes sense in MIRL to focus on
developing solution methods for problems defined in terms of equilibria that have existing
algorithms for the forward problem.

MIRL can be viewed as a generalization of IRL in the sense that the later treats other
agents in the system as part of the environment, ignoring the difference between decision-
making agents and the passive environment. A financial trading example can be used to
illustrate the difference. Yang, Qiao, Beling, Scherer, and Kirilenko (2015) use the reward
functions inferred from IRL as a feature space for the purpose of classifying high-frequency
trading algorithms in the stock market. This model is reasonable for a typical stock trading
market. Usually there are many traders involved and their activities give rise to cancellation
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effects that make it reasonable for any one trader to model the collective actions of all the
other traders as a stochastic system. However, if the market is dominated by a small number
of traders–such as is the case currently with crypto-currency trading–the market should not
be modeled as a passive system. Rather, each dominant trader should take the other’s
possible strategies into account before making decisions. In such a case, a stochastic game
framework (used in MIRL) would be more appropriate than a MDP framework (used in
IRL).

MIRL has been studied far less than IRL, though there has been some relevant work
on the topic in recent years. Natarajan et al. address multi-agent problems using an IRL
model for multiple agents without dealing with interactions or interference among agents
(Natarajan, Kunapuli, Judah, Tadepalli, Kersting, & Shavlik, 2010). Waugh, Ziebart, and
Bagnell (2011) contribute to the inverse equilibrium problem in the context of simultane-
ous one-stage games, rather than the sequential stochastic games that are the subject of
MIRL. Reddy, Gopikrishna, Zaruba, and Huber (2012) use the concept of a subgame perfect
equilibrium (SPE) (Maskin & Tirole, 2001), a refinement of the Nash equilibrium used in
dynamic games, to address MIRL for general-sum stochastic games that have the property
that each player’s rewards do not depend on the actions of the others. Hadfield-Menell,
Dragan, Abbeel, and Russell (2016) introduce a cooperative IRL problem, motivated from
an autonomous system design problem, where the robot is required to align its value with
those of the humans in its environment in such a way that its actions contribute to the max-
imization of values for the humans. Their problem is not modeled as a MIRL problem in a
stochastic game context. Lin, Beling, and Cogill (2018) develop a Bayesian maximum a pos-
teriori (MAP) estimation method. Their work is limited to two-person zero-sum stochastic
games and is not applicable to arbitrary general-sum problems because the uniqueness prop-
erty of the minimax equilibrium in zero-sum games does not carry over to solution concepts,
such as the Nash equilibrium, that are important in general-sum games. In particular, the
non-uniqueness of equilibria makes it unclear how to specify the likelihood function for a
Bayesian inverse learning formulation. Wang and Klabjan (2018) propose an algorithm that
takes sub-optimal demonstrations into account, rather than the optimal strategies assumed
by Lin et al. (2018), and finds the reward function to minimize the margin between experts’
performance and Nash equilibria-directed results.

This paper studies five two-person general-sum MIRL problems, uCS-MIRL, advE-
MIRL, cooE-MIRL, uCE-MIRL, and uNE-MIRL, each distinguished by a solution concept
and corresponding class of equilibrium policies that the observed agents should be assumed
to be playing. The first problem, uCS-MIRL, is a cooperative game in which the agents
employ cooperative strategies (CSs) that aim to maximize the sum of their value functions,
or the total game value. The second and third problems consider circumstances in which
two special and unique Nash equilibria (NE) are employed: advE is in general a win-or-lose
equilibrium, but not necessarily for a zero-sum game; cooE is such an equilibrium that
players maximize their own payoffs by coordinating with others. In the fourth problem,
uCE-MIRL, the agents are assumed to follow strategies that constitute a utilitarian corre-
lated equilibrium (uCE), which achieves the maximum total game value among all CEs. In
the last problem, uNE-MIRL, players are assumed to follow strategies that constitute a NE
that maximizes total game value.
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The equilibria that we study from an inverse perspective arise in a variety of application
contexts. For example, uCS-MIRL, uCE-MIRL, and uNE-MIRL embed solution concepts
that correspond to agents trying to achieve a socially efficient outcome (with or without cer-
tain constraints) that maximizes the sum of their value functions and is a Pareto optimum,
meaning that it is not possible to make one player better off without making the other player
worse off (Barr, 2012). These equilibria are of particular interest in welfare economics. For
example, uCS applies to the situation where all players of a basketball team cooperate to
maximize the total points rather than boosting any single player’s performance. uCE is mo-
tivated from the social governance problem where policy makers are required to design rules
to achieve Pareto optimality in social welfare without harming individual interests. Note
that uCE has been studied from an MRL perspective (Greenwald & Hall, 2003). Despite
the fact the advE and cooE-MIRL equilibria are not guaranteed to exist in every game, they
have been studied in MRL (Littman, 2001) and have potential applications. Consider an
example in which two power suppliers compete with each other in a local market. Though
to each supplier, this is obviously a win-or-lose game, it is usually not likely to evolve to
a dominate-or-exit situation. Hence it might be more reasonable to assume the suppliers
are playing an advE equilibrium rather than a minimax solution to a zero-sum game. As
for cooE, the classic Stag Hunt game (see, e.g. Skyrms, 2004) is representative of a broad
range of social cooperation games. In Stag Hunt there are two hunters, each can chose to
hunt hare or stag, with symmetric payoffs. If they both hunt stag(hare), they both will get
a payoff of 2(1); and if their targets are different, the one who hunts stag will fail to get
anything and the other will get a payoff of 1. In this game, (stag, stag) is a cooE.

In addition to their importance in applications, the five solution concepts that we con-
sider each has been studied from the MRL (i.e., forward) perspective and computational
algorithms exist that players of these games could, if they chose, follow to reach an equi-
librium solution. Equilibrium uCS is actually an extension of RL to a multi-agent context
in which the RL optimality concept is still valid. Equilibria cooE, advE and uCE have
been well studied as a forward problem and corresponding Q-learning algorithms that guar-
antee convergence to these equilibria have been developed (Greenwald & Hall, 2003; Hu
& Wellman, 1998; Littman, 2001). Equilibrium uNE has similar properties as uCE and
is also computationally achievable. Hence, each of the five MIRL problems (uCS-MIRL,
advE-MIRL, cooE-MIRL, uCE-MIRL, uNE-MIRL) that we study is based on an equilib-
rium concept that might be followed by a pair of decision-makers playing a stochastic game.
Given that these problems cover cooperative, semi-cooperative and fully competitive games,
we argue that they represent a reasonable starting point for the study of MIRL in general-
sum, stochastic games.

The principal contributions of this paper lie in framing and deriving solution methods
for five MIRL problems. For uCS/advE/cooE-MIRL, the key step is the development of
a set of linear constraints on the reward function that are necessary and sufficient for the
observed bi-policy to be a unique equilibrium of the assumed type. We then show that, by
using these conditions in a Bayesian MAP-estimation formulation similar to that developed
by Lin et al. (2018) for zero-sum games, uCS/advE/cooE-MIRL can be solved as a convex
optimization problem. An alternate approach, for which we do not provide details, would be
to use the same necessary and sufficient conditions as the basis for a max-margin formulation
similar to those seen in IRL (Natarajan et al., 2010; Ng & Russell, 2000; Reddy et al., 2012).
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Linear conditions specifying a unique equilibrium are not known for uCE/uNE. This cir-
cumstance forces us to abandon the MAP estimation formulation used in uCS/advE/cooE-
MIRL and adopt an equilibrium selection approach. For uCE-MIRL, we derive linear con-
ditions on reward that are necessary and sufficient for the observed bi-policy to be a CE,
a class of equilibria that includes the unique uCE. These conditions are used in a linear
program with a novel objective function that incorporates both the scale of the solution
and a metric on the total game value difference between the observed bi-policy and a no-
tion of a local equilibrium. We apply a similar treatment to the uNE-MIRL problem.
From a high-level perspective, the idea behind our uCE/uNE-MIRL algorithm completely
departs from previous ones from which many IRL/MIRL algorithms stem, such as margin-
maximization, posterior maximization and entropy maximization. The ideas developed in
this paper–while limited to five problems and to two-player settings–could be extended to
other uniquely existing solution concepts and to n-player stochastic games.

The remainder of this paper is structured as follows. Section 2 introduces notation,
terminology and definitions that will be used throughout this paper, as well as some basic
game theory equilibrium concepts. Section 3 summarizes several conventional MIRL al-
gorithms. Section 4 provides the main technical work, developing different approaches for
different problems to learn rewards. Section 5 and Section 6 demonstrate our approaches
through several benchmark experiments that include comparison with existing MIRL algo-
rithms. Taking uNE-MIRL algorithm as an example, Section 7 explores the robustness of
our algorithms given incomplete observations. Section 8 offers concluding remarks and a
discussion of future work.

2. Preliminaries

This section serves to introduce concepts and notation for MRL that will be used throughout
the paper. It also introduces relevant concepts and formalism for two-player general-sum
games and the equilibria of interest in later sections.

2.1 Stochastic Game

A two-player general-sum discounted stochastic game is a tuple {S,Ai, Ri, P, γ}, where S is
the common state space for all players, Ai and Ri are the action space and reward for player
i, respectively. P is the probabilistic function controlling state transitions, conditioned on
the past state and joint actions. The reward discount factor is γ ∈ [0, 1). In this paper,
we assume that both players share the same action space. The state and action spaces are
both finite, i.e. |S| = N and |Ai| = M . A stochastic game is a sequence of single-stage
games, or subgames, induced in every state s ∈ S, such that both players need to determine
an individual strategy πi (s) (in a non-cooperative game) or coordinate a bi-strategy π (s)
(in a cooperative game) that guides their actions in every subgame. The collection of all
bi-strategies is a bi-policy π = (π1, π2) = (π1 (s) , π2 (s)) ,∀s ∈ S. Note that an individual
strategy can be a mixed strategy, which is a probability distribution over all available
actions. We define a pure bi-strategy a ∈ A = A1 ×A2 as a bi-strategy where both players
select deterministic actions. Each player’s reward values are assumed dependent on state
and possibly, bi-strategies, but are independent of each other.
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2.2 Multi-agent Problems in RL/IRL Context

We now introduce some basic terms, notations and fundamental equations that will be used
throughout this paper. The derivations, developed by Lin et al. (2018) are omitted here.
r̃πi (s) denotes the expected reward value received by agent i at state s under bi-policy π,
specifically,

r̃πi (s) =
∑
a

π1 (a1|s)π2 (a2|s)Ri (s, a)

= [π1 (s)]T Ri (s)π2 (s) ,∀s ∈ S,
(1)

where ai is one of player i’s available actions, and a is a pure bi-strategy. πi (s) is a M × 1
vector denoting the probability distribution over actions in state s, each entry of which is
the probability of taking action ai at state s, denoting πi (ai|s). Ri (s) is a M ×M matrix,
each entry of which denotes a pure bi-strategy dependent reward value. Structuring all
Ri (s, a) into a column vector as ri, we can simplify and represent (1) in matrix notation as

r̃πi = Bπri. (2)

The linear transformation operator Bπ is a N × NM2 matrix constructed from π, whose
kth row is: [

Φπ
1,1 (k) ,Φπ

1,2 (k) , · · · ,Φπ
M,M (k)

]
,

where

Φπ
i,j (k) =

0, · · · , 0︸ ︷︷ ︸
k−1

, φπi,j (k) , 0, · · · , 0︸ ︷︷ ︸
N−k

 ,
and

φπi,j (k) = π1 (i|k)π2 (j|k) .

Player i’s value function, starting at state s and under π, is defined as

V π
i (s) =

∞∑
t=0

γtE (r̃πi (st) |s0 = s) , (3)

and its Q-function, upon s and a, is

Qπi (s, a) = ri (s, a) + γPs,aV
π
i , (4)

where Ps,a is a row vector, each entry of which represents the transition probability from s
to all possible state given action a. Furthermore,

V π
i (s) ∈ solution concepti (Qπ1 (s) , Qπ2 (s)) ,∀s ∈ S. (5)

Presumably, players agree on a solution concept and choose individual strategies accordingly.
In order to pose an inverse learning problem, the solution concept must be known to the
game observers estimating the reward function because it cannot be inferred or observed
when provided the actions of the players.
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Let Gπ denote a N ×N transition matrix under bi-policy π, with elements

gπ
(
s′|s
)

=
∑
a

π1 (a1|s)π2 (a2|s) p
(
s′|s, a

)
. (6)

Then

V π
i = (I − γGπ)−1Bπri, (7)

~Qπi =
(
I + γP (I − γGπ)−1Bπ

)
ri. (8)

V π
i can be rewritten more compactly as

V π
i = Bπ ~Q

π
i . (9)

Lastly, we define the total game value of a two-player stochastic game starting at state
s, under a bi-policy π, V π (s), as the sum of the value functions of both players, i.e.,
V π (s) = V π

1 (s) + V π
2 (s).

2.3 Non-cooperative Equilibrium

In non-cooperative game theory, Nash equilibrium (NE) and correlated equilibrium (CE)
are two of the most important solution concepts. A NE is an equilibrium where no player
will benefit from unilaterally deviating from their current strategy given the other players’
strategies remain unchanged (Nash, 1950, 1951). In a two-player single-stage game (state
s), π (s) is a NE if and only if,

Ri (s, π (s)) ≥ Ri (s, ai, π−i (s)) , ai ∈ Ai, (10)

where π−i (s) denotes the other player’s strategy at state s. Unlike NE, in which all agents
act independently on a selfish and conservative basis, a CE is a probability distribution
over the joint space of actions, in which all agents optimize their payoff with respect to one
another’s probabilities, conditioned on their own probabilities (Greenwald & Hall, 2003).
Let ∆ (A) denote the set of probability distributions over A, and X be a random variable
taking values in A =

∏
i∈I Ai distributed according to π ∈ ∆ (A). Then π is a correlated

equilibrium if and only if (Ozdaglar, 2010)

Σa−i∈A−iP (X = a|Xi = ai) [Ri (s, ai, a−i)−Ri (s, ǎi, a−i)] ≥ 0,

for all ai ∈ Ai such that P (Xi = ai) > 0 and all ǎi ∈ Ai \ ai.
It has been proved that every finite game has at least one NE (Nash, 1951; Owen,

1968), as well as at least one CE (Hart & Schmeidler, 1989). In fact, CE is a superset of NE
(Aumann, 1974), and hence for any general sum game, the number of CEs is larger than or
equal to the number of NEs. In regard to equilibrium search, finding a NE or determining
the number of them is a NP-hard problem (Daskalakis, Goldberg, & Papadimitriou, 2009),
while finding CEs can be done in polynomial time via linear programming (Papadimitriou &
Roughgarden, 2008). Nevertheless, the non-uniqueness property causes the non-convergence
issue and is a bottleneck for MRL/MIRL research based on these two equilibria.
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2.4 Cooperative Strategy

Both NE and CE are equilibria of competitive games. In a cooperative game, by contrast,
an agreement on a joint strategy for all players can be called a cooperative strategy (CS). A
characteristic function v defines the type of cooperation between players (Ferguson, 2008),
and for a two-player single-stage game (state s), can be defined as

v (s, a) = Val (R1 (s, a) , R2 (s, a)) , a ∈ A = A1 ×A2. (11)

Val (·) is self-defined, based on the type of cooperation.

3. Conventional MIRL Approaches

Before introducing our approaches, we review several existing approaches to MIRL and
related problems. The first of these is a decentralized MIRL (d-MIRL) approach developed
by Reddy et al. (2012). This approach is decentralized in the sense that it infers agents’
rewards one by one, rather than all at once. All agents are assumed to follow a Nash
equilibrium at every single game. The key idea is to find a reward that maximize the
difference between the Q value of the observed policy and those of pure strategies, which is
analogous to the classical approach to single-agent IRL proposed by Ng and Russell (2000).
Though in the original version of their approach reward is assumed dependent only on the
state, we can extend it to treat action dependency as well. Using our notation and player
1 as an example, the d-MIRL approach to a two-person general-sum MIRL problem is to
solve the following linear program:

maximize:
N∑
s=1

min a1

(
Bπ −Bπ|a1

)
Dπr1 − λ ‖r1‖1

subject to:
(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0,

where Dπ is defined in (19) in the following section, λ is an adjustable penalty coefficient
for having too many non-zero values in the reward vector.

The key idea of the second approach is to model a two-person general-sum MIRL as
an IRL problem. This approach requires us to select one player (e.g. player 1) and treat
the other player as part of the passive environment. A Bayesian IRL (BIRL) algorithm
developed by Lin et al. (2018) extends Qiao and Beling’s (2011) work by considering action-
dependent reward cases in addition to state-dependent reward cases. Note that the reward
of player 1 to be recovered is R1 (s, a1) instead of R1 (s, a1, a2), as player 2 is not considered
adaptive. That is to say, R1 (s, a1, a2) = R1 (s, a1) for all a2 ∈ A2. Using our notation, the
approach to recover player 1’s reward is:

minimize:
1

2
(r1 − µr1)T Σ−1

r1 (r1 − µr1)

subject to:
(
F π1a1 − Ca1

)
r1 > 0,

(12)

for all a1 ∈ A1, where

F π1a1 =
[
γ
(
Gπ −Gπ1|a1

)
(I − γGπ)−1 + I

]
Cπ1 ,
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and Cπ1 is a N ×NM sparse matrix constructed from π1, whose ith row is,0, · · · , π1 (i, 1) , · · · , 0︸ ︷︷ ︸
N

, · · ·︸︷︷︸
(M−2)N

, 0, · · · , π1 (i,M) , · · · , 0︸ ︷︷ ︸
N

 ,
and Ca1 is conceptually similar to Cπ1 , except for being constructed from a pure strategy
a1 for all states.

Strictly speaking, the BIRL approach is not a dedicated algorithm for MIRL problems
but rather a way of shoehorning the multi-agent problem into a single-agent IRL setting.
BIRL will provide a useful point of comparison to quantify the benefits of explicitly modeling
the decisions of all players.

The third approach is not applicable to a general-sum MIRL problem but a restricted
family: zero-sum games. It is

minimize:
1

2
(r − µr)T Σ−1

r (r − µr)

subject to:
(
Bπ|a1 −Bπ

)
Dπr ≤ 0(

Bπ|a2 −Bπ
)
Dπr ≥ 0,

(13)

for all a1 ∈ A1 and a2 ∈ A2. Lin et al. (2018) provide more details.

These three approaches will be revisited as benchmarks in later sections.

4. MIRL Model Development

This section proposes five two-player general-sum MIRL problems and corresponding ap-
proaches to them. We first informally define an MIRL problem. Given a bipolicy π being
played in a two-player, general-sum game with states, actions, dynamics, and discount
{S,Ai, P, γ}, the MIRL problem is to find rewards r1, r2 that best explain the observed
policy. Though we will not do so in this paper, MIRL may defined in terms of an set of
observed state-action values O rather a bipolicy.

The MRL literature suggests that an agreement over a specific solution concept may
be needed to solve a MRL problem. Similarly, in our approaches to MIRL, one basic
assumption is required: both players agree on a specific strategy/equilibrium to play and
this information is available to the coordinator in posing the MIRL problem. We limit
attention to the following five solution concepts:

1. utilitarian Cooperative Strategy (uCS). In (11), consider Val (·) =
∑

(·). A
single-stage game in state s and taking action a is a utilitarian cooperative strategy
(uCS) if and only if∑

i

Ri (s, a) ≥
∑
i

Ri
(
s, a′

)
, a′ ∈ A = A1 ×A2 \ a. (14)

2. Adversarial Equilibrium (advE) An advE is a type of NE. It has another feature
that no player is hurt by any change of others (Hu & Wellman, 1998; Littman, 2001;
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Piotrowski, S ladkowski, & Szczypińska, 2010). That is to say, in a two-player single-
stage game (state s), π (s) is an advE if and only if, in addition to (10),

Ri (s, πi (s) , π−i (s)) ≤ Ri (s, πi (s) , a−i) , a−i ∈ A−i, (15)

3. Coordination Equilibrium (cooE). A cooE is also a type of NE. It has another
feature that all players’ maximum expected payoffs are achieved (Hu & Wellman, 1998;
Littman, 2001; Piotrowski et al., 2010). Mathematically, in a two-player single-stage
game (state s), π (s) is a cooE if and only if, in addition to (10),

Ri (s, π (s)) ≥ Ri (s, a) , a ∈ A = A1 ×A2. (16)

4. utilitarian Correlated Equilibrium (uCE). We borrow the concept of utilitarian
correlated equilibrium (uCE) defined by Greenwald and Hall (2003) and state that in
a two-player single-stage game (state s), π (s) is a uCE if and only if,

ΣiRi (s, π (s)) ≥ ΣiRi (s, π̌ (s)) , π̌ (s) ∈ πCE \ π (s) . (17)

5. utilitarian Nash Equilibrium (uNE). Similar to uCE, in a two-player single-stage
game (state s), a NE π (s) is a utilitarian Nash Equilibrium (uNE) if and only if

ΣiRi (s, π (s)) ≥ ΣiRi (s, π̌ (s)) , π̌ (s) ∈ πNE \ π (s) . (18)

Among the above five equilibria, it is easy to show that uCS, uCE and uNE always exist
and are unique in any games (uCS for cooperative while uCE and uNE for noncooperative).
Both advE and cooE have been shown to be unique in a noncooperative game, though
neither of them is guaranteed to exist (Hu & Wellman, 1998; Littman, 2001) in any games.

The distinctions between cooE and uCS are worth noting. Intuitively, cooE is a non-
cooperative game equilibrium, which means that agents are essentially selfish. They are
forced to cooperate in order to maximize their individual benefits. When following a uCS,
by contrast, agents cooperate with each other actively and may even sacrifice their own
benefits to achieve a better overall outcome. Section 5 will help illustrate the differences.

4.1 Extension to Stochastic Games

Filar and Vrieze (1996) show how the Q function links a stochastic game to a single stage
game. Q functions at one particular state with different bi-strategy are treated as payoffs
for that particular single stage game (note the terms “game” and “state” can be used
interchangeably), and the stochastic game is said to be in an equilibrium if and only if all
single games (over all states) are in equilibrium. We now extend our definitions of the five
strategies/equilibria from a single game to a two-player stochastic game, as follows,

Definition 4.1. A bi-policy π is a uCS/advE/cooE/uNE/uCE of a two-player stochastic
game G if only if π (s) is a uCS/advE/CooE/uNE/uCE of its sub-game G (s), for all s ∈ S.

Correspondingly, we define that a uCS/advE/cooE/uNE/uCE-MIRL problem is an
MIRL problem in which the players are assumed to employ a uCS/advE/CooE/uNE/uCE.
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4.2 uCS-MIRL

A main result characterizing the set of solutions to a two-player uCS-MIRL problem is the
following:

Theorem 4.1. Given a two-player stochastic game {S,Ai, ri, P, γ}, an observed bi-policy
π is a uCS if and only if

(Bπ −Ba)Dπ (r1 + r2) ≥ 0, a ∈ A = A1 ×A2 (19)

where Dπ = I + γP (I − γGπ)−1Bπ. Ba is obtained from such a bi-policy that players
employ the bi-strategy a in all states.

Proof. According to the definition of uCS, π is a uCS if and only if, for any state s and
pure bi-strategy a ∈ A = A1 ×A2, we have

π (s) ∈ arg max
a∈A

∑
i

Qπi (s, a)

⇔
∑
i

Qπi (s, π (s)) ≥
∑
i

Qπi (s, a)

⇔r1 (s, π (s)) + r2 (s, π (s)) + γPs,π(s) (V π
1 + V π

2 )

≥ r1 (s, a) + r2 (s, a) + γPs,a (V π
1 + V π

2 )

⇔Bπ (r1 + r2) + γBπP (I − γGπ)−1Bπ (r1 + r2)

≥ Ba (r1 + r2) + γBaP (I − γGπ)−1Bπ (r1 + r2)

⇔ (Bπ −Ba)
(
I + γP (I − γGπ)−1Bπ

)
(r1 + r2) ≥ 0

⇔ (Bπ −Ba)Dπ (r1 + r2) ≥ 0

(20)

Since any solution that is consistent with (19) ensures a unique uCS, we can borrow the
idea introduced by Lin et al. (2018) and propose a Bayesian approach. The general idea
is to maximize the posterior probability of the inferred rewards, p (r1, r2|π), which can be
expressed as

p (r1, r2|π) ∝ f (r1, r2) p (π|r1, r2) , (21)

where p (π|r1, r2) is the likelihood of observing π given r1 and r2 and f (r1, r2) is a joint
prior of r1 and r2 that we need to specify. Recall the assumption that

f (r1, r2) = f (r1) f (r2) , (22)

which allows specification of the prior over r1 and r2 independently. We adopt a Gaussian
prior on both rewards; that is, ri ∼ N (µri ,Σri), where µri is the mean of ri and Σri is the
covariance. Then the probability density function of ri is

f (ri) =
1

(2π)N/2 |Σri |
1/2

exp

(
−1

2
(ri − µri)

T Σ−1
ri (ri − µri)

)
, i = 1, 2. (23)

483



Lin, Adams & Beling

To model the likelihood function p(π|r1, r2), assume that the bi-policy which the two
agents follow is a unique uCS given r1, r2. The likelihood is then a probability mass function
given by

p (π|r1, r2) =

{
1, if π is uCS for r1, r2

0, otherwise.
(24)

Thus, the optimization problem for uCS-MIRL can be formulated as

maximize: f (r1, r2)

subject to: p (π|r1, r2) = 1.
(25)

Equivalently,

minimize:
1

2

∑
i

(ri − µri)
T Σ−1

ri (ri − µri)

subject to:
(
Bπ −Bπ|a

)
Dπ (r1 + r2) ≥ 0, a ∈ A = A1 ×A2.

(26)

4.3 advE-MIRL

The main result characterizing the set of solutions to a two-player advE-MIRL problem is
the following:

Theorem 4.2. Given a two-player stochastic game {S,Ai, ri, P, γ}, the observed bi-policy
π is an advE if and only if (

Bπ|a1 −Bπ
)
Dπr1 ≤ 0, ∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr2 ≤ 0, ∀a2 ∈ A2(

Bπ|a1 −Bπ
)
Dπr2 ≥ 0, ∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr1 ≥ 0, ∀a2 ∈ A2,

(27)

where Bπ|a1 is obtained from such a bi-policy that player 2 employs their original policy
while player 1 always chooses action a1 in any state (game).

Proof. Eqs (27) contain four inequalities. In this proof, we will first show that the first and
second inequalities constitute a necessary and sufficient condition for π being a NE. Recall
that a bi-policy π is a minimax equilibrium for a two-player zero-sum game if and only if
(Lin et al., 2018)

[Qπ (s)]T π1 (s) ≥ V π (s) 1M

Qπ (s)π2 (s) ≤ V π (s) 1M .
(28)

Similarly, π is a NE if and only if

[Qπ2 (s)]T π1 (s) ≤ V π
2 (s) 1M

Qπ1 (s)π2 (s) ≤ V π
1 (s) 1M .

(29)

Combining (9) and (29) leads to

Bπ|a2
~Qπ2 ≤ Bπ ~Qπ2 , ∀a2 ∈ A2

Bπ|a1
~Qπ1 ≤ Bπ ~Qπ1 , ∀a1 ∈ A1.

(30)
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Substituting (8) into (30) and rearranging the two sides of the inequalities yields(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0, ∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr2 ≤ 0, ∀a2 ∈ A2.

(31)

We now turn to the additional feature of advE. Recall (15), it is easy to derive that a
bi-policy π for a two-player general-sum game is an advE, if and only if, in addition to (29)

[Qπ1 (s)]T π1 (s) ≥ V π
1 (s) 1M

Qπ2 (s)π2 (s) ≥ V π
2 (s) 1M .

(32)

Following similar steps to those used to derive (30), the additional constraints (32) can be
reduced to (

Bπ|a1 −Bπ
)
Dπr2 ≥ 0, ∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr1 ≥ 0, ∀a2 ∈ A2.

(33)

Since it has been proved that, in a one-stage game, if an advE exists it must be unique
(Littman, 2001), an advE for a stochastic game, must also be unique, if it exists. Therefore,
we can still use a Bayesian approach to solve advE-MIRL problems. The prior (23) is also
valid here but the likelihood is modified as follows

p (π|r1, r2) =

{
1, if π is an AdvE for r1, r2

0, otherwise.
(34)

And the optimization problem for advE-MIRL is

minimize:
1

2

∑
i

(ri − µri)
T Σ−1

ri (ri − µri)

subject to:
(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0, ∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr2 ≤ 0,∀a2 ∈ A2(

Bπ|a1 −Bπ
)
Dπr2 ≥ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr1 ≥ 0,∀a2 ∈ A2.

(35)

In fact, there is a direct link between the minimax equilibrium of a competitive zero-sum
game and an advE for a special zero-sum case, as the following proposition,

Proposition 4.1. The minimax equilibrium of a single competitive zero-sum game is an
advE, and vice versa.

Proof. Let r1 = r = −r2. Then (27) reduces to(
Bπ|a1 −Bπ

)
Dπr ≤ 0, ∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr ≥ 0, ∀a2 ∈ A2,

(36)

which are exactly the constraints of (13), the necessary and sufficient conditions for π being
a minimax equilibrium for a zero-sum game (see Lin et al., 2018).

From Proposition 4.1 we can see that a advE is a more general concept for general-sum
games, whereas the minimax equilibrium is specific to zero-sum games.
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4.4 cooE-MIRL

The main result characterizing the set of solutions to a two-player cooE-MIRL problem is
the following:

Theorem 4.3. Given a two-player stochastic game {S,Ai, ri, P, γ}, the observed bi-policy
π is an CooE if and only if(

Bπ|a1 −Bπ
)
Dπr1 ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr2 ≤ 0,∀a2 ∈ A2

(Bπ −Ba)Dπr1 ≥ 0,∀a ∈ A = A1 ×A2

(Bπ −Ba)Dπr2 ≥ 0,∀a ∈ A = A1 ×A2.

(37)

In (37), the first two inequalities, which guarantee π is a NE, have been established in
Section 4.3. The latter two inequalities warrant the unique property of cooE, the proof of
which is outlined below.

Proof. According to the definition of cooE, π is a cooE if and only if, for any state s and
pure bi-strategy a ∈ A = A1 ×A2,

π (s) ∈ arg max
a∈A

Qπi (s, a)

⇔Qπi (s, π (s)) ≥ Qπi (s, a)

⇔ri (s, π (s)) + γPs,π(s)V
π
i ≥ ri (s, a) + γPs,aV

π
i

⇔Bπri + γBπP (I − γGπ)−1Bπri

≥ Bari + γBaP (I − γGπ)−1Bπri

⇔ (Bπ −Ba)
(
I + γP (I − γGπ)−1Bπ

)
ri ≥ 0

⇔ (Bπ −Ba)Dπri ≥ 0.

(38)

Using the same reasoning as in the case of advE, it is easy to show that a cooE for a
stochastic game is unique, if it exists. As a result, the Bayesian approach is also valid here,
with the same prior (23) but a different likelihood as follows

p (π|r1, r2) =

{
1, if π is an cooE for r1, r2

0, otherwise.
(39)

Hence the optimization problem for cooE-MIRL is

minimize:
1

2

∑
i

(ri − µri)
T Σ−1

ri (ri − µri)

subject to:
(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr2 ≤ 0,∀a2 ∈ A2

(Bπ −Ba)Dπr1 ≥ 0,∀a ∈ A = A1 ×A2

(Bπ −Ba)Dπr2 ≥ 0,∀a ∈ A = A1 ×A2.

(40)
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4.5 uCE-MIRL

The result that characterizes the set of solutions to a two-player CE-MIRL problem is as
follows:

Theorem 4.4. Given a two-player stochastic game {S,Ai, ri, P, γ}, the observed bi-policy
π is a CE if and only if

~πTH (s, ai)
T [H (s, ai)−H (s, ǎi)]Dπri ≥ 0, i = 1, 2, ∀ai ∈ Ai, ǎi ∈ Ai \ ai, (41)

where ~π is restructured from π to be a column vector of length NM2. H(s, ai) is a sparse
matrix of size M ×NM2. Like Bπ defined in (2), H(s, ai) is also a linear transformation
operator. Specifically, [R1 (s, a1, .)]

T = H (s, a1) r1 and R2 (s, ., a2) = H (s, a2) r2. Recall
that here R1 (s, a1, .) is a 1×M row vector and R2 (s, ., a2) is a M × 1 column vector. Both
r1 and r2 are NM2 × 1 column vectors.

Proof. By definition of CE, for a two-player general-sum stochastic game G, a bi-policy π
is a CE if and only if∑

a2

π (a1, a2|s)Qπ1 (s, a1, a2) ≥
∑
a2

π (a1, a2|s)Qπ1 (s, ǎ1, a2) ,∀a1 ∈ A1, ǎ1 ∈ A1 \ a1∑
a1

π (a1, a2|s)Qπ2 (s, a1, a2) ≥
∑
a1

π (a1, a2|s)Qπ2 (s, a1, ǎ2) ,∀a2 ∈ A2, ǎ2 ∈ A2 \ a2,
(42)

for all s ∈ S. Rearranging (42) yields

π (a1, .|s)
(

[Qπ1 (s, a1, .)]
T − [Qπ1 (s, ǎ1, .)]

T
)
≥ 0

[π (., a2|s)]T (Qπ2 (s, ., a2)−Qπ2 (s, ., ǎ2)) ≥ 0,
(43)

where π (a1, .|s) is a row vector of 1 ×M , spanning over all a2 ∈ A2, and π (., a2|s) is a
column vector of M × 1, spanning over all a1 ∈ A1. Recall

Qπi (s, a) = Ri (s, a) + γ
∑
s′

p
(
s′|s, a

)
V π
i

(
s′
)
. (44)

So
[Qπ1 (s, a1, .)]

T = [R1 (s, a1, .)]
T + γp (.|s, a1, .)V

π
1

Qπ2 (s, ., a2) = R2 (s, ., a2) + γp (.|s, ., a2)V π
2 .

(45)

Substituting (45) into (43) leads to

π (a1, .|s)
{

[R1 (s, a1, .)]
T − [r1 (s, ǎ1, .)]

T + γ [p (.|s, a1, .)− p (.|s, ǎ1, .)]V
π

1

}
≥ 0

[π (., a2|s)]T {R2 (s, ., a2)− r2 (s, ., ǎ2) + γ [p (.|s, ., a2)− p (.|s, ., ǎ2)]V π
2 } ≥ 0.

(46)

The above inequality can be further simplified. It is also easy to see p (.|s, a1, .) =
H (s, a1)P and p (.|s, ., a2) = H (s, a2)P . In addition, we can also have π (a1, .|s) =
[H (s, a1)~π]T = ~πTH (s, a1)T , and π (., a2|s) = H (s, a2)~π. Substituting (7) into (46) and
rearranging it, we can get

~πTH (s, ai)
T [H (s, ai)−H (s, ǎi)]

(
I + γP (I − γGπ)−1Bπ

)
ri ≥ 0, i = 1, 2, (47)
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Recall
Dπ = I + γP (I − γGπ)−1Bπ, (48)

we can express (47) compactly as

~πTH (s, ai)
T [H (s, ai)−H (s, ǎi)]Dπri ≥ 0, i = 1, 2, ∀ai ∈ Ai, ǎi ∈ Ai \ ai, (49)

Any sensible point that is consistent with (49) constitutes a CE for the stochastic game.
Many points in the convex hull of CE, however, are less meaningful because only the uCE is
of interest. Hence, we desire to find some way to choose between solutions satisfying (49).
A first idea is to maximize

∑
s V

π (s). Finding a uCS is a much easier problem, by contrast.
This fact gives rise to another idea. Before going into details, we introduce four concepts:
cooperation gap, local uCS, local improvement and local reduced gap.

Definition 4.2. The cooperation gap Iπcg (s), corresponding to a starting state s and a bi-
policy π in a two-player general-sum stochastic game, is the total game value difference
between π and π∗, where π∗ is any uCS; specifically,

Iπcg (s) = V π∗ (s)− V π (s) , s ∈ S.

Definition 4.3. The local uCS, corresponding to a starting state s and a bi-policy π in a
two-player general-sum stochastic game, is a bi-policy for which the two players employ a
uCS bi-policy π∗ at s and then employ π afterwards.

Definition 4.4. The local improvement Iπimp (s), corresponding to a starting state s and
a bi-policy π in a two-player general-sum stochastic game, is the total game value gain by
employing the local uCS.

Definition 4.5. The local reduced gap Iπrg (s), corresponding to a starting state s and a
bi-policy π in a two-player general-sum stochastic game, is the total game value difference
between a uCS and a local uCS; specifically,

Iπrg (s) = V π∗ (s)−Qπ (s, π∗ (s)) , s ∈ S,

and the total local improvement for π is

Iπrg =
∑
s

Iπrg (s) =
∑
s

V π∗ (s)−Qπ (s, π∗ (s)) , s ∈ S. (50)

An implication from the above definitions is that for a starting state s, Iπrg (s) = Iπcg (s)−
Iπimp (s), shown in Figure 1.

It is obvious that for a two-player general sum stochastic game, among all its CEs, the
uCE is closest to its uCS in terms of the total game value, as illustrated in Figure 1. In a
uCE-MIRL problem, however, all CEs except uCE are unobservable. Therefore, we need
to find a way to infer a set of rewards {r1, r2} such that the observed π is most likely the
uCE of the game.

By definition, a local uCS improves V π (s) by employing a uCS strategy only at current
state s, resulting in a local improvement with respect to π and a local reduced gap with
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Figure 1: The game value distance relationship between uCE, uCS and other CEs

respect to a uCS. Adding up all those local reduced gaps over all states gives a measure of
how close a bi-policy π is to a uCS, in terms of the total game value. We now propose an
important theorem that captures the relationship between the local reduced gap and uCE,
as follows:

Theorem 4.5. Consider a two-person general-sum stochastic game Γ with a collection of
CEs, ΠCE and a bi-policy π∗ that is a uCS. Then π∗CE ∈ ΠCE is a uCE if and only if its

total local reduced gap I
π∗CE
rg is no greater than that of any other CE, specifically,

I
π∗CE
rg ≤ IπCE

rg , ∀πCE ∈ ΠCE. (51)

Proof. We first show necessity. From (50) and the properties of value function, we have

I
π∗CE
rg − IπCE

rg

=

[∑
s

V π∗ (s)−Qπ∗CE (s, π∗ (s))

]
−

[∑
s

V π∗ (s)−QπCE (s, π∗ (s))

]
=
∑
s

QπCE (s, π∗ (s))−Qπ∗CE (s, π∗ (s))

=
∑
s

{[
r̃1 (s, π∗ (s)) + r̃2 (s, π∗ (s)) + γPs,π∗(s)V

πCE
]

−
[
r̃1 (s, π∗ (s)) + r̃2 (s, π∗ (s)) + γPs,π∗(s)V

π∗CE

]}
=γ
∑
s

Ps,π∗(s)

(
V πCE − V π∗CE

)
.

(52)

Since the definition of π∗CE implies that V πCE (s) ≤ V π∗CE (s) for all s, the column vector
V πCE − V π∗CE is non-positive. Also, Ps,π∗(s) is a non-negative row vector as all its entries

are probabilities. Therefore, Ps,π∗(s)
(
V πCE − V π∗CE

)
≤ 0 for all s ∈ S, and consequently,

I
π∗CE
rg ≤ IπCE

rg .

Next, we show sufficiency by assuming I
π∗CE
rg ≤ IπCE

rg , for all π∗CE ∈ πCE and that π∗CE is
not a uCE. Since π∗CE is not a uCE, there must exist a uCE, πuCE, such that V πuCE (s) >
V π∗CE (s), for all s ∈ S. Then from (52) we can conclude

I
π∗CE
rg − IπuCE

rg = γ
∑
s

Ps,π∗(s)

(
V πuCE − V π∗CE

)
> 0,
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which contradicts our assumption that Iπ
∗
CE ≤ IπCE , for all πCE ∈ ΠCE.

The intuition behind Theorem 4.5 is: comparing to any other CE, a uCE is closer to the
uCS. Its corresponding local uCS is even closer to uCS and as a result, there is less room to
further shrink the local reduced gap. Hence the smaller the local reduced gap is, the more
likely a CE π is a uCE. Thus, given a CE π, a desired pair of r1 and r2 satisfies

minimize:
∑
s

y (s)− V π (s)

subject to: Qπ1 (s, a) +Qπ2 (s, a) ≤ y (s)

V π (s) ≤ y (s) ,

(53)

for all a ∈ A = A1 ×A2.
However, r1 = r2 = 0 is the optimal solution to (53). The reason is that V π (s) needs

to be enlarged so that picking a uCE is achievable with higher probability. Putting all the
above together, we propose the following linear programming problem to find the desired
r1 and r2,

maximize:
∑
s

V π (s)− λ (y (s)− V π (s))

+ regularization terms

subject to: Qπ1 (s, a) +Qπ2 (s, a) ≤ y (s)

V π (s) ≤ y (s)

Constraint (49),

(54)

where λ is a regularization parameter. Expressing V π
i and Qπi (s, a) as functions of ri and

reformulating those inequalities more compactly in matrix notation leads to

maximize: 11×N ×
[
(1 + λ) (I − γGπ)−1Bπ (r1 + r2)− λy

]
+ regularization terms

subject to: πTH (s, ai)
T [H (s, ai)−H (s, ǎi)]Dπri ≥ 0,

i = 1, 2, ∀ai ∈ Ai, ǎi ∈ Ai \ ai
Dπ (r1 + r2) ≤ y · 1NM2

(I − γGπ)−1Bπ (r1 + r2) ≤ y · 1N .

(55)

We now discuss the regularization terms in (55). One challenging issue for MIRL is that
there often exists many solutions that are equally sensible so that it is more likely than IRL
to recover rewards which are far from actual ones. For example, Lin et al. (2018) emphasize
the importance of the structure of rewards. Therefore, some prior knowledge or assumption
of the game, as well as the structure of the unknown rewards, is very helpful. For example, it
is often assumed that, all other things being equal, an unknown reward vector is sparse (Ng
& Russell, 2000). One easy way to incorporate this assumption is to add a penalty term to
the objective function to regularize non-sparsity, which is −β (‖rA‖1 + ‖rB‖1), where β > 0
and ‖·‖1 denotes the L1 norm. There might be other problem-specific knowledge/assump-
tion regarding to reward available and taking advantage of it by incorporating it in the
regularization terms will help infer higher-quality rewards.
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4.6 uNE-MIRL

Recall that the necessary and sufficient condition for an observed bi-policy π being a NE
for a two-player general-sum stochastic game is given by(

Bπ|a1 −Bπ
)
Dπr1 ≤ 0, ∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr2 ≤ 0, ∀a2 ∈ A2.

(56)

Since NE is a subset of CE, we can borrow the idea proposed in Section 4.5 and solve a
uNE-MIRL problem by solving the following LP problem

maximize: 11×N ×
[
(1 + λ) (I − γGπ)−1Bπ (r1 + r2)− λy

]
+ other problem-specific regularized terms

subject to:
(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ
)
Dπr2 ≤ 0,∀a2 ∈ A2

Dπ (r1 + r2) ≤ y · 1M×M
(I − γGπ)−1Bπ (r1 + r2) ≤ y.

(57)

5. Numerical Examples I: GridWorld

This section describes the behaviour of our approaches (except advE-MIRL) using two grid
games (GGs), shown in Figure 2, namely GG1 for the left and GG2 for the right. These
games have been used extensively in many theory-oriented MRL works (Hu & Wellman,
1998; Littman, 2001; Greenwald & Hall, 2003). In both GGs, there are two agents, A and
B, and two goals (or homes). The two agents act simultaneously and can move only one
step in any of the four compass directions. When adjacent to a wall, choosing a direction
into a wall results in a no-op, where the agent remains in the current position. If both
agents attempt to move into the same cell, a collision occurs and they are pushed back
to their original positions immediately, except for cells in the bottom row. Each agent is
rewarded upon reaching its goal. However, since the reward is discounted with time, the
earlier to reach the goal, the better. GG1 and GG2 are similar in basic game rules but
different in board setup in two aspects. First, in GG1, the two players’ goals are separate
while their goals coincide in GG2. Second, in GG2, there are two barriers and if any agent
attempts to move downward through the barrier from the top, then with 1/2 probability
this move fails and results in a no-op. We let agents A and B play the go-back-home games
together according to uCS, uCE, uNE or cooE. Our task is to recover their rewards given
the equilibrium, the bi-policy, and the state transition dynamics. The basic rewarding rule
is: either player receives reward 1 (discounted with time) once reaching home and the game
stops immediately, and 0 otherwise. When employing cooE, however, neither player receives
reward unless they reach home simultaneously.

Our experiments are conducted as follows. First, we apply the cooE-MRL approach
proposed by Hu and Wellman (2003), and the uCE-MRL approach proposed by Greenwald
and Hall (2003) to obtain cooE and uCE bi-policies, respectively. Then we develop similar
Q-learning based iterative algorithms for uCS-MRL and uNE-MRL. The general procedure,
namely multi-Q-learning algorithm, is the same for all these four MRL approaches and

491



Lin, Adams & Beling

Figure 2: Grid games. The circle indicates A’s goal and the hexagon indicates B’s goal.

described in Algorithm 1. It is worth emphasizing that the multi-Q-learning algorithm can
be applied to many variants of Q-learning problems as long as the equilibria exists and is
unique (Hu & Wellman, 1998; Littman, 2001; Greenwald & Hall, 2003). It is easy to show
that uCS, uCE, uNE and cooE all meet this requirement.

The second step is to apply our uCS-MIRL, cooE-MIRL uCE-MIRL and uNE-MIRL
approaches accordingly, incorporating basic knowledge and some reasonable assumptions
into Gaussian priors for uCS and cooE. For example, one assumption is that both players’
reward vectors are sparse, only depending on reaching home or not. In addition, one agent’s
position might have a small effect on the other agent’s reward, or possibly no affect.

For each experiment, we compare recovered rewards of both players rrec
A and rrec

B ,
with the true values rA and rB numerically. We use a normalized root mean squared error
(NRMSE) metric, where we first normalize a recovered reward vector rrec on [0, 1], as
follows:

rnrec =
rrec −min(rrec)

max(rrec)−min(rrec)
,

and then compute

NRMSE =
1

2

√∥∥rnrec
A − rA

∥∥
2

dim(rA)
+

√∥∥rnrec
B − rB

∥∥
2

dim(rB)


We compare our MIRL approach with IRL and d-MIRL approaches. First, we use an

IRL approach to solve the uCS-, cooE-, uCE- and uNE-MIRL problems. Specifically, we
focus on B, and try to infer its reward. Obviously, the inferred IRL reward is a function
of the state and B’s own action. The IRL approach we use is BIRL, proposed by Qiao
and Beling (2011). Note that the reward vector recovered from IRL can be extended to a
MIRL reward vector by letting R (s, a1, a2) = R (s, a2) for all a1 ∈ A1. Second, we use the
d-MIRL approach to solve the above four problems. Recall that d-MIRL simply assumes
agents employing a Nash equilibrium.

To further evaluate the quality of uCS-MIRL reward, let agents B1, B2 and B3 learn
uCS-MIRL, IRL and d-MIRL rewards, respectively, and figure out their own policies πB1 ,
πB2 and πB3 . Then let these three agents play with A by using their policies while A still
employs πA as if it plays with B. We compute their total game value over all states and
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Algorithm 1 General Multi-Q-learning algorithm

Require: f : uCS, cooE, uCE or uNE; α: learning rate
1: procedure Multi-Q(f, T, r1, r2, α)
2: Initialize: s, a,Q1, Q2, t = 0
3: while t < T do
4: agents choose bi-strategy a in state s
5: observe rewards and next state s′

6:

7: for i = 1→ N do
8: Vi (s′) = fi (Q1 (s′) , Q2 (s′))
9: Qi (s, a) = (1− α)Qi (s, a) + α [(1− γ) ri (s, a) + γVi (s′)]

10:

11: agents choose bi-strategy ~a′

12: s = s′, a = a′

13: decay α
14: t = t+ 1

compare with the true total game values, which are the maximum. For any reward, a larger
the total game value indicates a better reward.

Numerical results are summarized in Table 1 and Table 2. Table 2 summarizes how
close the total game value is to the true total game value, using the recovered reward from
each method, by computing 1

N

∑N
s=1 (Vtrue (s)− Vrecovered (s))2, where N is the number of

states, Vtrue and Vrecovered are true total game value vector and the one using recovered
reward, respectively.

We can easily conclude that our MIRL approaches generate satisfactory results and
performs much better than IRL and d-MIRL approaches for all the four problems.

Grid Game #1 Grid Game #2

uCS-MIRL 1.50× 10−3 2.27× 10−4

IRL 0.061 0.060
dMIRL 0.104 0.106

cooE-MIRL 0.026 0.026
IRL 0.409 0.319

dMIRL 0.085 0.083

uCE-MIRL 1.30× 10−3 1.39× 10−10

IRL 0.287 0.311
dMIRL 0.089 0.083

uNE-MIRL 0 0
IRL 0.271 0.283

dMIRL 0.104 0.103

Table 1: NRMSE results for reward values comparison

493



Lin, Adams & Beling

Grid Game #1 Grid Game #2

uCS-MIRL 0.099 2.50× 10−4

IRL 0.223 0.179
dMIRL 0.197 0.202

Table 2: total game value comparison for uCS

6. Numerical Examples II: Abstract Soccer Game

This section presents a demonstration of the advE-MIRL approach on a stylized soccer
game. Two-player soccer games of many forms are popular among MRL researchers for
algorithm demonstration and comparison purposes (Greenwald & Hall, 2003; Lin et al.,
2018; Littman, 1994). Lin et al. (2018) propose a zero-sum MIRL approach is proposed
and demonstrate the performance on a game that is similar to the one used here. However,
their approach requires that the game be zero-sum. In this section, we relax the zero-sum
assumption and require only that the two players be foes, which enables us to rely on a
weaker assumption that they employ an advE.

The soccer game (see Figure 3) is depicted as follows. Players A and B compete with
each other, aiming to score by either bringing or kicking the ball (represented by a circle)
into their opponents’ goals (A’s goal are 6 and 11, and B’s goal are 10 and 15). Both
players can move simultaneously either in four compass directions ending in a neighbouring
cell or remain in their current cell. A ball exchange may occur with some probability in
case of a collision in the same cell. A kick action is also available to players. Each one
has a perception of how likely they are to score on a shot, or the probability of a successful
shot (PSS), if kicking the ball at a given position. For simplicity, PSS is assumed to be
independent of the opponent’s position. The position based PSS distribution is shown in
Table 3.

Figure 3: Soccer game: initial board

Note that a player’s PSS at a particular spot is their perceived likelihood of a scoring
shot, rather than the actual probability of a successful shot. So statistically calculating the
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PSS = 0.7 PSS = 0.5 PSS = 0.3 PSS = 0.1 PSS = 0
A 1, 7, 12, 16 2, 8, 13, 17 3, 9, 14, 18 4, 10, 15, 19 5, 20

PSS = 0.7 PSS = 0.5 PSS = 0.3 PSS = 0.1 PSS = 0
B 5, 9, 14, 20 4, 8, 13, 19 3, 7, 12, 18 2, 6, 11, 17 1, 16

Table 3: Original PSS distribution of each player

successful shot rate from observation data would not help reflect the player’s own beliefs
about their shooting skills, which is the reward.

The two players play against each other, employing a minimax equilibrium in a zero-
sum game. But this information is not available to us when solving the MIRL problem.
Instead, we are given: (1) the bi-policy of the two players over all states, and; (2) the state
transition dynamics (including the ball exchange rate β = 0.6). In fact, this information
can be statistically calculated or estimated with sufficient observations. We simply skip this
data pre-processing stage as it is not the emphasis of this paper. We then assume that the
two players follow an advE and try to infer their rewards on this basis.

6.1 Prior Specification

The numerical experiments are performed using six different prior distributions. Multivari-
ate Gaussian distributions are used as the prior on the reward. We test three settings for
the mean of the prior distribution and two settings for the covariance. The specifics for
each parameter setting are outlined below.

• Weak Mean (WM): The weak mean parameter setting assumes the least amount of
prior knowledge about the game. The mean parameter of the Gaussian prior is 0.5
in each state where A has possession of the ball and −0.5 in each state where A does
not have the ball. The prior distribution for B is the same, i.e. the mean parameter
is 0.5 in each state where B has possession of the ball and −0.5 in each state where B
does not have the ball.

• Medium Mean (MM): The medium mean parameter setting has more prior information
about the game than the weak mean parameter setting. Specifically, if A possesses
the ball and is in the row in front of the goal (1, 6, 11, and 16), the mean of the
Gaussian prior is 1 for A and −1 for B. Symmetrically, the mean parameter is 1 for
B and −1 for A if B possesses the ball and is in the row in front of the goal (5, 10,
15, and 20). In addition, whenever a player takes a shot, the mean of the prior is 0.5
in all board positions. Whenever the opposing player takes a shot, the mean of the
prior is −0.5 in all board positions. The mean of the prior is 0 for all other states and
actions.

• Strong Mean (SM): The strong mean parameter setting assumes the most prior infor-
mation about the game. The strong mean parameter setting is similar to the medium
mean but the parameter is 1 only when the player has has the ball and is directly in
front of the goal (6 and 11 for A and 10 and 15 for B).
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• Weak Covariance (WC): The weak covariance parameter setting assumes an identity
matrix for all states and actions.

• Strong Covariance (SC): The strong covariance paramater assumes the most prior
information about the game. This covariance is built based upon the following two
assumptions about action and player position:

1. when one player has the ball and takes a shot, its PSS depends only on their
current position in the field. For example, let s1 and s2 be states where Player
A is in the same position. The correlation for these states and Player A’s action
of shooting the ball is ρ (rA (s1, aA = shoot, aB) , rA (s2, a

′
A = shoot, a′B)) = 1.

2. when one player has the ball and takes any action other than a shot (a movement
or choosing to stay in the same position), their reward is state dependent, i.e.
ρ (rA (s1, aA 6= shoot, aB) , rA (s1, a

′
A 6= shoot, a′B)) = 1.

6.2 Monte Carlo Simulation using Recovered Rewards

This section evaluates the advE-MIRL approach. By solving an advE-MIRL problem (35),
we recover A and B’s reward vectors, over all states and all actions. There are 6 advE-MIRL
reward vectors recovered corresponding to the 6 pairs of means and covariance matrices
outlined in 6.1.

The zero-sum MIRL approach by Lin et al. (2018) is validated using the abstract soccer
game and measure the quality of the 6 types of zero-sum MIRL reward in two ways: numer-
ical (Section VI, Fig.2-7) and Monte Carlo simulation, both against the true reward. They
also conduct a thorough sensitivity analysis with respect to the prior (Section VII, Fig.10).
Their conclusion is that though there is a trend that the more the reward numerically
deviates from the true value the worse it performs in Monte Carlo simulation, measuring
the deviation from the true reward is not an accurate representation of the quality of the
estimated reward. Hence, simply measuring the numerical difference from the true value
may lead to misleading conclusions. In addition, given the same games settings and the
same prior, advE-MIRL reward is, in theory, supposed to perform no better than zero-sum
MIRL due to the stronger zero-sum MIRL restriction. Taking all the above into account,
we adopt a Monte Carlo simulation approach, as follows:

1. Create agents:

• C, which uses advE-MIRL reward;

• D, which uses true reward;

• E, which uses zero-sum MIRL reward;

• F, which uses dMIRL reward;

• G, which uses BIRL reward.

2. Simulate competitive games:

• C against D;

• C against E;
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• C against F;

• C against G:

Note that agents E, F and G use rewards recovered from three conventional MIRL ap-
proaches covered in Section 3. Here we let C plays the role of A and others take the place
of B (due to symmetry, two parties can switch roles as well). All those games are simulated
in three different environmental settings, where the the ball exchange rates β are 0, 0.4 and
1. 5000 round games are simulated per case.

The simulation results are presented in Tables 4–7, where WM, MM, SM, WC and
SC stand for weak mean, medium mean, strong mean, weak covariance matrix and strong
covariance matrix, respectively. To interpret the result, take the 2nd row of Table 5 as an
example: C uses WM and SC as the prior and recovers A’s advE-MIRL reward, while E
uses the same prior and learns a zero-sum MIRL reward vector of B. They come up with
their own minimax policies according to their learned rewards and environmental settings
and play against each other. 32.28/36.40 means C beats E with probability 32.28%, loses
with probability 36.40%, and end in a tie with probability 31.32%, when the ball exchange
rate is 1. Note that 0/0 shown in these tables indicates that both parties learned rewards
such that neither is able to score a single point even if its opponent is also poorly skilled.

advE-MIRL Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)

WM & WC 0/32.44 0/58.00 0/49.98
WM & SC 20.40/25.46 20.50/38.24 42.88/50.16
MM & WC 4.60/30.12 9.36/44.00 10.44/49.88
MM & SC 24.86/24.94 25.10/24.80 49.97/50.02
SM & WC 14.90/30.52 6.80/42.50 15.42/50.08
SM & SC 25.26/24.80 25.00/24.80 50.14/49.86

Table 4: C vs D

advE-MIRL Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)

WM & WC 0/2.40 0/0 0/0
WM & SC 22.76/28.94 32.28/36.40 43.14/50.14
MM & WC 0/0 9.20/5.60 4.12/16.86
MM & SC 24.86/25.12 25.04/24.96 49.54/50.44
SM & WC 11.24/10.60 8.80/9.18 16.10/24.46
SM & SC 25.28/25.06 24.94/25.12 50.13/49.86

Table 5: C vs E

The results in Tables 4–7 support the following conclusions:

1. The advE-MIRL approach performs, if not better, comparatively with zero-sum MIRL
approach given same priors. Considering that the zero-sum MIRL has a stronger
constraint, our advE-MIRL approach’s performance has reached its upper limit.

2. The advE-MIRL approach performs notably better than d-MIRL and BIRL ap-
proaches.
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advE-MIRL Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)

WM & WC 0/0 0/0 0/0
WM & SC 27.10/0 25.42/0 50.04/0
MM & WC 6.04/0 8.64/0 18.02/0
MM & SC 25.28/0 26.06/0 49.86/0
SM & WC 13.98/0 9.00/0 49.26/0
SM & SC 24.90/0 26.08/0 49.90/0

Table 6: C vs F

advE-MIRL Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)

WM & WC 0/0 0/0 0/0
WM & SC 25.10/0 24.84/0 50.12/0
MM & WC 5.52/0 8.76/0 16.20/0
MM & SC 28.50/10.12 25.12/12.00 49.26/20.46
SM & WC 14.20/0 8.64/0 44.25/0
SM & SC 25.80/0 25.28/0 50.12/0

Table 7: C vs G

3. As for the sensitivity with respect to prior, overall, the stronger the covariance matrix
or the mean is when selecting a prior, the better the solution is. In particular, the
covariance matrix has a greater influence than mean in recovering a reasonable reward.

7. Numerical Examples III: Incomplete Policy

All the approaches developed in this paper rely on a strong assumption that a complete
bi-policy over all states is available, which is hardly possible in practice. Therefore, it is
interesting to assess how much is lost in recovered reward when using our approaches if one
player’s (or more) policy is not observed on all states. One way is to conduct imputation to
the policy missing states. In this section, we will do a simple computational experiment in
GG1 on uNE-MIRL. It is worth emphasizing that this section does not attempt to address
incomplete observations issue.

Note that in GG1, there are 72 states in total. The experiment is conducted as follows.
First, we randomly pick k states as if the bi-strategies of those states are unavailable.
Second, in the complete bi-policy, replace the bi-strategies of those k states with some pre-
defined bi-strategies for imputation purpose. Finally, use the imputed bi-policy as an input
to (56) and recover the rewards. The imputation scheme we use for those “unavailable”
states is uniform mix-strategy - each player picks an action randomly with equal probabilities
over all actions. NRMSE is used as the evaluation metric as in Section 5.

The results are summarized in Table 8. We can see that the more missing states there
are, the less accurate the result is, which is in line with our expectation.

Addressing incomplete/partial/noisy observations is a vital topic in IRL/MIRL as it
helps bridge the gap between theory and practice. Some representative work on that subject
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# of missing states Result of imputed bi-policy

0 0

1 0.0521

5 0.0614

10 0.1155

15 0.1168

Table 8: NRMSE results for uNE-MIRL reward in GG1 with imputed bi-policy

has been conducted by Choi and Kim (2011) and Shahryari and Doshi (2017). Further
investigation into this topic with respect to MIRL is beyond the scope of this paper.

8. Conclusions and Future Work

This paper has introduced solution approaches for five general-sum MIRL problems, each
distinguished by its assumption about the equilibrium being played by the observed agents.
Each solution approach was demonstrated on benchmark grid-world examples.

The advE-MIRL problem formulation requires weaker assumptions but performs com-
parably with zero-sum MIRL. Additionally, advE-MIRL outperforms both d-MIRL and
BIRL. Both the uCS- and cooE-MIRL approaches generate good results if the estimated
reward can be scaled correctly. The uCE- and uNE-MIRL approaches perform remarkably
well in two benchmark grid-world examples, accurately estimating the value of the true
reward. We offer three possible explanations for the high quality of the empirical results.
First, these two small GGs are well-defined in the sense that there is no chance of moving
in another direction by accident once a certain direction is selected (no noise in action).
Second, the bi-policy π we use is exactly the equilibrium of interest because it is generated
from a corresponding MRL-Q-learning algorithm. Third, we have incorporated strong prior
information about the game, and a good solution can be achieved by tuning the regularized
coefficients.

Although this paper is restricted to the two-person case, an extension of the methods
to n-player cases would be straightforward because the equilibria we study are unique in n-
player games, if they exist. In this sense, advE-MIRL has advantages over zero-sum MIRL
as how to extend zero-sum MIRL from two-player to n-player is not yet clear.

Our work is limited in at least two aspects. First, we consider only the case where
both state and action spaces are discrete and limited. Second, though it is not explicitly
emphasized, we use a strong assumption that a full stationary bi-policy over all states is
available. In practice, it might not be possible to observe the play of the game long enough
to obtain an accurate estimate of the true bi-policy over all states. Two potential directions
for future work are worth pursuing. One is to derive continuous versions of the proposed
approaches. The other is to treat the condition when only a partial bi-policy is available.
Ideally, future methods would have the characteristic that the more complete the bi-policy
observations, the more robust the recovered rewards.

Our solution approaches center on the formulation of optimization problems that can be
solved in polynomial time in the size of the state and action spaces. Like MDPs, however,
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the sizes of stochastic games tend to scale very poorly as one moves away from toy examples,
and the development of a large-scale MIRL method remains an open problem.
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