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Abstract

Given the rapid rise of electric vehicles (EVs) worldwide, and the ambitious targets
set for the near future, the management of large EV fleets must be seen as a priority.
Specifically, we study a scenario where EV charging is managed through self-interested
EV aggregators who compete in the day-ahead market in order to purchase the electricity
needed to meet their clients’ requirements. With the aim of reducing electricity costs and
lowering the impact on electricity markets, a centralised bidding coordination framework
has been proposed in the literature employing a coordinator. In order to improve privacy
and limit the need for the coordinator, we propose a reformulation of the coordination
framework as a decentralised algorithm, employing the Alternating Direction Method of
Multipliers (ADMM). However, given the self-interested nature of the aggregators, they
can deviate from the algorithm in order to reduce their energy costs. Hence, we study
the strategic manipulation of the ADMM algorithm and, in doing so, describe and analyse
different possible attack vectors and propose a mathematical framework to quantify and
detect manipulation. Importantly, this detection framework is not limited to the consid-
ered EV scenario and can be applied to general ADMM algorithms. Finally, we test the
proposed decentralised coordination and manipulation detection algorithms in realistic sce-
narios using real market and driver data from Spain. Our empirical results show that the
decentralised algorithm’s convergence to the optimal solution can be effectively disrupted
by manipulative attacks achieving convergence to a different non-optimal solution which
benefits the attacker. With respect to the detection algorithm, results indicate that it
achieves very high accuracies and significantly outperforms a naive benchmark.

1. Introduction

To date, there exists a world-wide fleet of more than two million electric vehicles (EVs),
combining purely electrical and hybrid (International Energy Agency, 2017). Furthermore,
EV sales are growing exponentially in most countries and there are targets to achieve 50
to 200 million of EVs at a global scale in the next decade (International Energy Agency,
2016). These high penetration targets aim to reduce the use of fossil fuels and improve
environmental conditions. However, the transition from conventional to electric vehicles is
not without challenges (Rigas, Ramchurn, & Bassiliades, 2015). Specifically, compared to
traditional fuel powered vehicles, EVs present a novel and heavy strain to existing electricity
networks, which will need to accommodate a new type of consumer with high demand.
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In order to deal with this challenge, the last decade has seen the introduction of the
concept of the EV aggregator (Kempton, Tomic, Letendre, Brooks, & Lipman, 2001): an
intermediary between a fleet of EVs and the electricity grid and markets. The aggregator
is able to control the charging of its fleet, and this way informed collective decisions can be
made. In contrast with individual EV operation, the much higher degree of coordination
possible when a fleet is centrally managed by an aggregator offers great benefits. For
example, electricity consumption to charge the fleet’s batteries can be spread over time,
avoiding expensive and polluting demand peaks. In particular, in this paper we focus on
EV aggregators participating in the day-ahead market in order to purchase the electricity
needed to meet their clients’ energy requirements. In more detail, day-ahead markets match
electricity supply and demand on an hourly basis (see Section 3), and are the main source of
wholesale electricity. Here, increased electricity demand means increased prices, resulting
in the so-called price impact, and hence it is in every market participant’s interest to avoid
unnecessary demand peaks.

In this work, we focus on a scenario where different EV aggregators co-exist in the same
day-ahead market. These aggregators may vary in nature and size, but it is reasonable to
assume that they are self-interested. Indeed, reduced electricity costs translate into more
profit for the aggregator and/or more benefits for their EV fleet. In this scenario, reduced
overall costs can be achieved by inter-aggregator coordination, producing more informed
and optimised bidding. This coordination problem lies naturally under the umbrella of
the multi-agent systems field (Wooldridge, 2009), and has been studied in the literature
under a centralised approach by employing a centralised coordinator (Perez-Diaz, Gerding,
& McGroarty, 2018a, 2018b). More specifically, the focus in these works is to study payment
mechanisms that incentivise truthful cooperation, using mechanism design and cooperative
game theory, respectively. However, the proposed centralised approach requires a trusted
environment where the participating aggregators report their private information to the
central coordinator. In a realistic scenario, self-interested aggregators would be reluctant
to share their private business information, thus presenting an important drawback to the
proposed centralised approach.

In order to address this shortcoming, we propose a novel decentralised mechanism which
allows the coordination of the EV aggregators without the need of a trusted coordinator,
and without revealing their private requirement information. Specifically, we reformulate
the centralised optimisation algorithm proposed by Perez-Diaz et al. (2018a) using the
Alternating Direction Method of Multipliers (ADMM), which decomposes the optimisation
problem into smaller problems coordinated through an aggregation step (Boyd, Parikh, Chu,
Peleato, & Eckstein, 2010). Moreover, in order to provide transparency and remove the need
for a trusted environment, the proposed algorithm can be implemented in a blockchain using
smart contracts in a very similar vein as the work by Munsing, Mather, and Moura (2017).

Although our proposed decentralised algorithm tackles the shortcomings described above,
it introduces a new challenge. Specifically, in the decentralised case, the agents directly im-
pact the computation of the optimal energy allocation. This introduces the possibility of
strategic manipulation, where an aggregator deviates from the vanilla ADMM algorithm
with the aim of decreasing its energy costs, in detriment of the other aggregators. We
explore this issue by defining several attack vectors which seek to improve an aggregator’s
own energy allocation. Furthermore, in order to address this problem, we propose a ma-
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nipulation detection algorithm that monitors the behaviour of the aggregators to identify
deviations. Note that this issue exists in any ADMM decentralised optimisation scenario
with rational and self-interested agents, and is not limited to EV or smart grid studies. Also,
we note that the manipulative issues described above are related to the area of distributed
mechanism design (Feigenbaum & Shenker, 2002) where the aim is to design strategy-proof
mechanisms (i.e. where agents cannot benefit by strategic manipulation) but where the
computation is distributed. In such a setting, not only truthful preference elicitation but
also faithful computation are required in order to obtain strategy-proof cooperation, and
we focus on the latter in this work. More specifically, the proposed manipulation detection
algorithm is naturally aligned with catch and punish techniques in decentralised mechanism
design, as described by Shneidman and Parkes (2003), which to date have not been applied
to decentralised ADMM algorithms.

In more detail, this paper makes the following contributions to the state of the art:

• We propose the first decentralised optimisation algorithm for the coordination of self-
interested EV aggregator participation in day-ahead markets.1

• We present the first study of strategic manipulation of the ADMM algorithm, where
a self-interested agent tries to modify the algorithm’s outcome in order to increase its
personal utility.

• We propose a detection algorithm to monitor the participating agents and find devi-
ations form the vanilla ADMM algorithm.

• We present a realistic case study to empirically evaluate both the decentralised co-
ordination algorithm, the attack vectors and the detection algorithm. Results show
that some of the considered attacks are able to reduce the attacker’s energy costs by
making the algorithm converge to sub-optimal allocations. Moreover, the proposed
detection algorithm presents very good detection accuracy, up to and very close to
1, for scenarios with aggregators of the same size. However, considering mixtures of
aggregators of different sizes is more challenging but the proposed algorithm is able
to significantly outperform a naive benchmark in the vast majority of cases.

The rest of the paper is structured as follows. Section 2 presents a literature review.
Section 3 introduces the considered day-ahead market and the mathematical formalism to
quantify price impact. Section 4 details the considered EV aggregators and presents the
proposed decentralised optimisation algorithm using ADMM. Next, a strategic manipulation
study of the proposed ADMM algorithm is detailed in Section 5. Section 6 presents the
proposed mathematical formalism to detect strategic manipulation of the ADMM algorithm.
Next, an empirical evaluation of the proposed algorithms using real market and driver data
is detailed in Section 7. Finally, we conclude in Section 8.

2. Literature Review

This paper builds upon existing literature in different fields, as detailed in this section.
First, we consider works considering scenarios with several interacting EV aggregators.

1. Note that a preliminary study of this contribution was presented in the OptMAS workshop (Perez-Diaz,
Gerding, & McGroarty, 2018c).
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Secondly, we focus on the application of decentralised management techniques in smart
grid scenarios. Thirdly, we consider the use of artificial intelligence techniques for smart
EV charging. Fourth and lastly, we consider recent research on the manipulation of ADMM
algorithms.

2.1 Multi-Aggregator Scenarios

A small body of literature addresses related multi-EV aggregator scenarios, as described
below. Qi, Xu, Shen, Hu, and Song (2014) and Shao, Wang, Wang, Du, and Wang (2016)
study the hierarchical control of EV fleets where different aggregators are coordinated by
a high-level coordinator. However, in their models the aggregators are not self-interested,
and instead the authors focus on accommodating grid constraints and ensuring driver sat-
isfaction. More related to our considered scenario, Yu, Lin, Lam, and Li (2016) study a
setup where a number of EV aggregators can trade energy among them in order to fix
forecasting deviations, instead of purchasing the energy from the grid. Although this is
shown to improve the aggregators’ energy costs, the authors do not consider price impact
in their model and each aggregator performs independently. Another related study can be
found in the work by Mukherjee and Gupta (2017). Their work considers a scenario where
several private aggregators are present in a given city, and negotiate with each other in
order to balance charging in the different limitedly available charging stations. The aim is
to maximise the total number of EVs charged and the profit of the EV aggregators and
their results indicate that coordinated operation improves the profit of the EV aggrega-
tors and the services offered to the drivers. Moreover, in a similar vein to our work, Wu,
Shahidehpour, Alabdulwahab, and Abusorrah (2016) study a multi-aggregator day-ahead
bidding scenario and apply game theory to find Nash equilibria. In more detail, each ag-
gregator tries to categorise the other aggregators and thus forecast their day-ahead bids,
and adjust their bidding accordingly. However, after introducing several approximations
in order to simplify the model’s structure, the proposed model depends on a complicated
optimisation algorithm and does not guarantee existence of Nash equilibria. Finally, the
same scenario considered in this paper is studied from a centralised perspective in the work
by Perez-Diaz et al. (2018a, 2018b). In these works, a number of self-interested aggregators
perform coordinated bidding under the control of a centralised coordinator, and different
payment mechanisms which incentivise cooperation rather than strategic manipulation are
studied, using mechanism design and cooperative game theory, respectively. However, as
discussed in Section 1, these centralised approaches require the aggregators to report all
their private information to the coordinator, data that private entities would be reluctant
to provide. In order to tackle this issue, the decentralised approach proposed in this paper
removes the need for full information sharing, allowing coordination by revealing much less
private information.

2.2 Decentralised Management in the Smart Grid

Decentralised optimisation techniques have been widely applied in smart grid and power
systems scenarios. In more detail, there is a body of literature studying decentralised
charging scheduling of EVs (Ardakanian, Keshav, & Rosenberg, 2014; Wen, Chen, & Teng,
2012; Gan, Topcu, & Low, 2013; Ma, Callaway, & Hiskens, 2013; Le Floch, Belletti, Saxena,
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Bayen, & Moura, 2015; Le Floch, Belletti, & Moura, 2016). Overall, these works consider
the problem of scheduling the charging of EVs in different decentralised fashions, considering
each EV as an individual node in their respectively proposed algorithms. In more detail,
Ardakanian et al. (2014) focuses on physical grid constraints, considering an electricity
network managed by different access points, and its interaction with a fleet of EVs. Similarly,
Gan et al. (2013) and Ma et al. (2013) consider decentralised valley-filling algorithms, where
the aim is to flatten demand over time, and each EV sequentially updates its own charging
schedule by iterative interaction with a central utility company. In a related vein, Wen et al.
(2012) consider a decentralised algorithm which employs discrete time intervals and selects
subsets of EVs to be charged at each time interval, by iterative communication between
each EV and their aggregator. Finally, Le Floch et al. (2015, 2016) consider vehicle-
to-grid (V2G) scenarios, where the EVs are able to inject energy back to the grid when
needed. Although all these works study different aspects of EV charging scheduling under
decentralised algorithms, they do not consider the interaction among different self-interested
aggregators, which is one of the aims of this paper.

Furthermore, decentralised algorithms have been employed in many non-EV related
smart grid publications. As discussed in Section 1, an algorithm that has acquired great
popularity in recent years due to its versatility and good convergence properties is ADMM
(Boyd et al., 2010). It has been employed in multitude of smart grid studies, such as power
flow (Wang, Wu, & Wang, 2017; Sulc, Backhaus, & Chertkov, 2014; Peng & Low, 2014;
Scott & Thiébaux, 2014), demand response (Nguyen, Narikiyo, & Kawanishi, 2018; Zhou,
Liu, & Li, 2016) and micro-grid (Munsing et al., 2017) scenarios. However, this algorithm
(or variants) has not been employed to study the decentralised coordination of self-interested
aggregators.

2.3 Artificial Intelligence and EV Charging

The field of artificial intelligence has also devoted a substantial amount of effort to solve EV-
related issues. Examples include smart charging scheduling algorithms (De Weerdt, Albert,
Conitzer, & Van Der Linden, 2018; Gerding, Perez-Diaz, Aziz, Gaspers, Marcu, Mattei,
& Walsh, 2019), preference elicitation from drivers (Gerding, Robu, Stein, & Parkes, 2011;
Stein, Gerding, Robu, & Jennings, 2012; Robu, Gerding, Stein, Parkes, Rogers, & Jennings,
2013; Hayakawa, Gerding, Stein, & Shiga, 2015; Gerding, Stein, Ceppi, & Robu, 2016) and
centralised coordination of EV aggregators (Perez-Diaz et al., 2018a, 2018b). In more
detail, the first area is concerned with the problem of allocating or scheduling the available
electricity to a fleet of EVs. This is a complex problem that takes into account each EV’s
energy requirements and time constraints, and has been studied from both offline and online
perspectives. Furthermore, the second area of research considers the EV charging problem as
multi-agent system where the drivers are self-interested and the EV aggregators elicit their
driving needs. These include the amount of electricity needed and time constraints. These
works use techniques from mechanism design in order to truthfully elicit these preferences,
both in offline and online settings, and in a variety of scenarios. In contrast to these two fields
of research, this work deals with a previous step in the charging problem, the purchasing of
electricity by the EV aggregators, who can afterwards use scheduling algorithms to allocate
their obtained energy and use preference elicitation models to encourage drivers to truthfully
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reveal their needs. Finally, the third body of literature considers the same scenario as this
current work but from a centralised perspective, and has been already detailed in Section
2.1.

2.4 Manipulation of ADMM Algorithms

As described in Section 2.2, decentralised optimisation algorithms are widely used, not
only in smart grid related studies, but also in most technical fields. The reasons range
from better scaling to large problem sizes to preserving privacy. There is, however, a gap
between the introduction of such algorithms and the study of their robustness to potential
manipulative/malicious attacks (Munsing & Moura, 2018). Specifically, in contrast with
centralised algorithms, in the decentralised case, each node or agent participating in the
algorithm will perform part of the calculations, or will transmit messages to a coordinator,
hence the possibilities of cyber-attack or manipulation increase. In order to address these
important issues, a few works have been published in recent years studying related topics,
which will be described next. Note that we focus on ADMM algorithms, but the findings
of all these studies should be generalizable to other iterative decentralised optimisation
methods.

Following the work by Munsing and Moura (2018), we can classify the existing literature
based on the technique employed:

• Round-robin techniques (Liao & Chakrabortty, 2016, 2017): these techniques seek to
identify compromised nodes by replacing the coordination step of the ADMM algo-
rithm by a round-robin detection algorithm which compares the proposals of different
subsets of nodes in order to identify discrepancies. Once corrupted nodes have been
identified, the coordinator switches back to the ADMM algorithm.

• Filtering techniques (Liao & Chakrabortty, 2018): these techniques do not try to
identify compromised nodes, but to employ robust statistics and outlier detection
techniques in order to accurately compute the desired global quantities even in the
presence of malignant data.

• Non-linear weighting techniques (Chen, Kar, & Moura, 2018): similarly to filtering
techniques, these techniques also do not try to identify compromised nodes. Instead,
they employ data from all nodes, but introduce weights to scale down the impact of
suspicious nodes.

• Convexity techniques (Munsing & Moura, 2018): these techniques detects compro-
mised nodes and false-data injection in convex algorithms by checking for convexity
violations.

Overall, these works focus on cyber-security, i.e. the effects of external attacks which
compromise an internal node (a participant in the ADMM algorithm). Moreover, the papers
discussed above focus on random noise injection by a malignant agent, which prevents the
algorithm from converging. In contrast, in this work, we study strategic manipulation of the
ADMM algorithm by internal self-interested agents. In more detail, rather than considering
external malignant attackers, we consider algorithm participants that want to achieve more
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beneficial outcomes for themselves, even if this is in detriment of the other participants,
and deviate from the vanilla ADMM algorithm in order to do so. This differs from these
existing works in two aspects: (i) the algorithm can still converge to a stable outcome, (ii)
the manipulating agents will use clever cheating techniques, as injecting random noise will
not be beneficial for them.

3. The Day-Ahead Market

This section details the day-ahead market structure considered in this paper and present
in most countries. Moreover, we discuss how to quantify the price impact of buy orders
(electricity demand), which is an important aspect of our work. The exposition in this
section follows the work by Perez-Diaz et al. (2018a, 2018b).

Day-ahead markets divide each day into 24 hourly slots, each running a separate uniform-
priced double-sided auction. Before closure time (usually noon) on a given day, bids and
offers for each hourly slot of the next day must be submitted to the market. Then, a
matching algorithm determines the accepted bids and offers, and establishes an hourly
uniform price using marginal pricing, this is, the price of the intersection between supply
and demand.

Bids (buy orders) and offers (sell orders) for each hourly slot are quantity-price pairs.
For bids (offers), the price represents the highest (lowest) price the participant is willing to
pay (sell for). As is common in most markets, we define a minimum price pmin = 0 and
some maximum price, pmax. After closure time, the auctioneer aggregates all buy and sell
orders, by high-price and low-price priorities, respectively. This generates the aggregated
demand and supply curves, and their intersection determines the accepted orders and the
resulting uniform price, as depicted in Fig. 1 (a).

Clearly, the arrival of a new buy order pushes the clearing price up if it gets accepted
(i.e. if it lies towards the left-hand side of the intersection). Fig. 1 (b) illustrates the effect
of a new buy order with quantity E placed at price pmax. The price increase (price impact)
depends on the new order’s price and quantity, and on the supply and demand curves. Price
impact is an essential market characteristic associated with large market participants, and
careful managing is required to avoid pushing prices up unnecessarily. Price impact has
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been studied in the electricity markets literature by employing residual curves (Herranz,
Muñoz San Roque, Villar, & Campos, 2012; Perez-Diaz et al., 2018a, 2018b, 2018c), which
are detailed below.

Employing standard notation, for any given hour t, let Dt(p) and St(p) be the aggregated
demand and supply curves respectively, as a function of price, p. The residual supply curve
is defined as Rt(p) = St(p)−Dt(p) = E, and represents the amount of energy, E, an agent
could bid for while maintaining a clearing price p. Conversely, the clearing price when
bidding a quantity E is given by p = R−1

t (E). Introducing the notation Pt(E) = R−1
t (E),

the clearing price when the new agent bids an amount E is p = Pt(E), and the price impact
∆p of this order is given by ∆p = Pt(E)− Pt(0), where Pt(0) represents the base price at
hour t, i.e. the price without the agent’s new bid. This formalism is depicted in Figs. 1 (b)
and (c).

We are now ready to introduce the EV aggregator model considered in this paper and
the optimal day-ahead bidding algorithm.

4. Optimal Multi-EV Aggregator Participation in the Day-Ahead Market

As discussed in Section 1, an EV aggregator is responsible for the charging of a fleet of EVs
and, to this end, purchases the required electricity from the day-ahead market (see Section
3). We will start by describing the considered aggregator structure and operation. Then,
we will describe the optimal bidding algorithm proposed by Perez-Diaz et al. (2018a, 2018b,
2018c) and how it can be used to optimise the bidding of a group of EV aggregators with
a central coordinator. Finally, we will decompose this centralised algorithm into a decen-
tralised optimisation algorithm by using the Alternating Direction Method of Multipliers
(ADMM), as discussed in Section 1.

4.1 EV Aggregator Model

In our model, following the work by Bessa, Matos, Soares, and Lopes (2012) and Perez-Diaz
et al. (2018a, 2018b, 2018c), EVs arrive and depart dynamically over time. When an EV i
arrives to the charging point, it communicates the desired departure time, tid, and desired
state of charge at departure, SoCi

d, to the aggregator. We assume that arrival time and
state of charge, ti0 and SoCi

0 can be automatically inferred by the aggregator. Each EV has a
maximum charging speed, P imax in kW, which depends on two factors: the available physical
infrastructure, and the EV’s battery. The charging schedule of the EV is then left at the
aggregator’s discretion, which can choose when to perform the charging while guaranteeing
the desired state of charge by departure time. This flexibility allows charging the battery
in an informed way, rather than randomly, or at arrival, providing cheaper electricity costs.

Due to the nature of the day-ahead market, electricity bids need to be placed between
12 and 36 hours before delivery time (assuming market closure at noon, see Section 3). This
requires the market participants to forecast their electricity needs, as described next, and
bid accordingly.

Again, following the work by Bessa et al. (2012) and Perez-Diaz et al. (2018a, 2018b,
2018c), we model the requirements of an EV i by employing two vectors with 24 entries
each, rmin,i and rmax,i. Specifically, rmin,i

t is the amount of energy needed at hour t assuming
charging has been left for the last possible moment and that the charging requirements
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need to be fulfilled. Conversely, rmax,i
t is the amount of energy needed at hour t assuming

charging starts as soon as possible. For example, consider an EV arriving at 3pm, stating
9pm departure time and 8kWh charging needs with Pmax = 3kW. Then, rmin,i would be as
specified in Table 1. Specifically, if 6pm is reached with no charging done, at least 2kW of
energy needs to be charged between 6-7pm in order to fulfil the EV driver requirements.
The same applies with 3kW between 7-8pm and 8-9pm. Similarly, for the same scenario,
the requirement vector rmax,i would be as specified in Table 1.

Then, in order to provide mathematical tractability, two global energy requirement
vectors, Rmin and Rmax, can be obtained by summing the hourly requirements of all the EVs
associated to the particular aggregator, i.e. Rmin

t =
∑N

i=1 r
min,i
t and Rmax

t =
∑N

i=1 r
max,i
t .

Note that these aggregated constraints do not exactly capture the individual requirements
of each EV, but have been widely employed in the literature (Bessa et al., 2012; Bessa &
Matos, 2013a, 2013b; Gonzalez Vaya & Andersson, 2015; Perez-Diaz et al., 2018a, 2018b,
2018c). The reasons are the fact that considering constraints for each individual EV renders
the problem unfeasible with moderate problem sizes, and the fact that bidding uses day-
ahead price and energy requirements forecasts, which will not be exact anyway.

We will denote the quantities that need to be forecasted with a hat: hourly energy
requirements, R̂min

t and R̂max
t , hourly number of available EVs, N̂t, and hourly price impact

functions, P̂t.

rmin,i
3 rmin,i

4 rmin,i
5 rmin,i

6 rmin,i
7 rmin,i

8 rmin,i
9

0 0 0 2 3 3 0

rmax,i
3 rmax,i

4 rmax,i
5 rmax,i

6 rmax,i
7 rmax,i

8 rmax,i
9

3 3 2 0 0 0 0

Table 1: Example of requirement vectors rmin,i and rmax,i

4.2 Optimal Day-Ahead Bidding Algorithm

Now that the day-ahead and EV aggregator models have been detailed, we are ready to
present the optimal day-ahead bidding algorithm. The algorithm is from the work by Perez-
Diaz et al. (2018a, 2018b, 2018c) and reproduced here for convenience. The mathematical
problem is defined as follows: given an EV aggregator’s forecasted requirements and price
impact functions, find the optimal distribution of energy quantities to bid across the 24
hourly slots of the next day, E = (E0, . . . , E23), in order to satisfy its clients’ charging
needs while minimising the total cost of the purchased energy. We assume that the agent’s
bids are set at maximum price, pmax, in order to guarantee execution. Hence only bidding
hours and quantities need to be decided.

As discussed in (Perez-Diaz et al., 2018a), and in order to avoid a complex minimi-
sation landscape with multiple minima, the forecasted hourly price impact functions P̂t
(see Sections 3 and 4.1) are approximated by quadratic convex functions. This makes
the optimisation problem convex while barely affecting the accuracy of the algorithm
(Perez-Diaz et al., 2018a). Specifically, the convex price impact functions are given by
P̂convex
t = atE

2
t + btEt + P̂t(0), where all the coefficients at are restricted to be positive.

Formally, the optimisation algorithm is given by Eqs. (1a), (1b), (1c), (1d). In more detail,
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the objective function (1a) minimizes the total cost of the purchased energy. The con-
straints guarantee that the amount of purchased energy is enough to satisfy the forecasted
demand (1b), that it is not purchased before the forecasted arrival of the EVs (1c) and that
the energy purchased at each hour is not greater than the amount that the aggregator is
able to charge at the given hour, based on the forecasted number of available vehicles (the
aggregator cannot store energy). It is worth noting that the number of constraints is always
72, independent on the fleet size. Also, given the convexity of the problem, there exists a
unique global minimum, which we are guaranteed to find.

min
{Et}

∑
t

P̂convex
t (Et) · Et (1a)

t∑
j=0

Ej ≥
t∑

j=0

R̂min
j , ∀t = 0, . . . , 23 (1b)

t∑
j=0

Ej ≤
t∑

j=0

R̂max
j , ∀t = 0, . . . , 23 (1c)

Et/1 hour ≤ N̂tPmax , ∀t = 0, . . . , 23 (1d)

Et ≥ 0 , ∀t = 0, . . . , 23 (1e)

4.3 Centralised Joint Bidding

The bidding algorithm detailed in the previous section for a single aggregator can be ex-
tended to perform joint bidding, where a coordinator collects the requirements of a number
of independent aggregators and applies the optimisation algorithm globally. In more detail,
consider a set of n EV aggregators. Then, following (Perez-Diaz et al., 2018a, 2018b, 2018c)
and overloading the variable i, let R̂min,i

t and R̂max,i
t be aggregator i’s forecasted energy re-

quirements for hour t, and N̂ i
t the number of available EVs from aggregator i, as specified

in Section 4.2. The combined requirements of all the aggregators are then:

R̂min
t =

n∑
i=1

R̂min,i
t (2) R̂max

t =
n∑
i=1

R̂max,i
t (3) N̂t =

n∑
i=1

N̂ i
t (4)

To find the optimal global energy bids, the bidding optimisation algorithm given by
Eqs. (1a), (1b), (1c), (1d), (1e) can be applied with constraints given by the combined
requirements (2), (3) and (4). This will result in obtaining a global day-ahead energy
volume Et for each hour t, which can be then distributed among the n aggregators.

The redistribution mechanism is defined in (Perez-Diaz et al., 2018a), and allocates
an hourly energy schedule to each participating aggregator after obtaining a global energy
schedule as detailed above. The redistribution problem is as follows. Letting Eit be the
amount of energy allocated to EV aggregator i at time t, we need to find Eit for t = 0, . . . , 23
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and i = 1, . . . , n satisfying the following constraints:

t∑
j=0

Eij ≥
t∑

j=0

R̂min,i
j , ∀t = 0, . . . , 23; ∀i = 1, . . . , n (5a)

t∑
j=0

Eij ≤
t∑

j=0

R̂max,i
j , ∀t = 0, . . . , 23; ∀i = 1, . . . , n (5b)

Eit/1 hour ≤ N̂ i
tPmax, ∀t = 0, . . . , 23; ∀i = 1, . . . , n (5c)

Eit ≥ 0, ∀t = 0, . . . , 23; ∀i = 1, . . . , n (5d)
n∑
i=1

Eit = Et, ∀t = 0, . . . , 23 (5e)

In this constraint satisfaction problem, Eqs. (5a), (5b), (5c), (5d) ensure that each EV
aggregator has enough energy to satisfy its requirements, no more, no less, for each hour.
Eq. (5e) makes sure the sums of the allocated hourly energies add up to the available global
energy.

4.4 Decentralised Optimisation Algorithm

We are now ready to introduce the novel decentralised optimisation algorithm based on
ADMM (Boyd et al., 2010). Specifically, our goal is to reformulate the optimisation prob-
lems given by Eqs. (1a), (1b), (1c), (5a), (5b), (5c), (5d), (5e) as an iterative decentralised
algorithm, where each EV aggregator solves a local optimisation problem using only their
own private information. The solutions to each local problem are coordinated by a global
consensus step, and this procedure is iterated. Consensus refers to the fact that, asymp-
totically, all the local variables will coincide. This type of algorithm is appropriate in our
setting for several reasons: (i) given that our problem is convex, it is guaranteed to con-
verge to the global optimum (Boyd et al., 2010); (ii) it enables coordination without the
aggregators revealing their energy requirements, i.e. Rmin,i and Rmax,i; (iii) it is particu-
larly well suited for blockchain implementation, providing transparency and anti-tampering
guarantees (Perez-Diaz et al., 2018c; Munsing et al., 2017).

Following the notation introduced in Section 4.3, recall that Ei =
(
Ei0, . . . , E

i
23

)
denotes

the energy schedule for aggregator i. Moreover, let E =
(
E1, . . . ,En

)
be the joint vector

encapsulating each individual energy schedule. We can now rewrite Eq. (1a) as:

min
E

23∑
t=0

[
P̂convex
t

(
n∑
i=1

Eit

)
·
n∑
i=1

Eit

]
= min

E

n∑
i=1

 23∑
t=0

Eit · P̂convex
t

 n∑
j=1

Ejt

 (6)

This way the objective function is expressed as a sum of n terms, as required by the ADMM
formulation (Boyd et al., 2010). Note that, given that the price impact of each aggregator
affects everybody else, we cannot separate Eq. (6) in the variable i, i.e. the equation is
coupled and the sum’s terms cannot be independently distributed among the aggregators.
This type of problem is suited to be formulated as a global variable consensus problem (Boyd

447



Perez-Diaz, Gerding & McGroarty

et al., 2010), which works as follows. Consider a minimisation problem in the following form:

min
x

n∑
i=1

fi(x)

where the goal is that each term in the sum can be handled independently. In the cases
where the variable x is not separable in i, local variables xi and a global variable z can be
introduced, rewriting the problem as:

min
{xi}

n∑
i=1

fi(x
i)

subject to: xi − z = 0, ∀ = 1, . . . , n

As mentioned above, the problem constraints require all local variables to agree with each
other and with the global variable. This way, global consensus on the solution is achieved.
Also, note that fi uses only aggregator i’s individual constraints, which can be embedded
into the function fi itself.

In a similar vein and focusing on our scenario, let E and E(i) be the global and local
variables respectively, each of which comprises a vector with dimension 24n i.e. E(i) =(
E(i),1, . . . ,E(i),n

)
and E(i),j =

(
E

(i),j
0 , . . . , E

(i),j
23

)
. Following Eq. (6), the functions fi are

given by:

fi

(
E(i)

)
=


∑23

t=0

[
E

(i),i
t · P̂convex

t

(∑n
j=1E

(i),j
t

)]
,

if constraints (1b), (1c),
(1d), (1e) are met by
E(i),i

∞ , otherwise

The resulting ADMM algorithm is then given by the following iterative equations:

E
(i)
[k+1] = arg min

E′

(
fi(E

′) + ξ
(i) T
[k] ·

(
E′ −E[k]

)
+
ρ

2
‖E′ −E[k]‖22

)
(7a)

E[k+1] =
1

n

n∑
i=1

(
E

(i)
[k+1] +

1

ρ
ξ

(i)
[k]

)
(7b)

ξ
(i)
[k+1] = ξ

(i)
[k] + ρ

(
E

(i)
[k+1] −E[k+1]

)
(7c)

where the subscript [k] denotes iteration number, and ξ and ρ are the dual variable and the
augmented Lagrangian parameter, respectively (Boyd et al., 2010). Intuitively, ρ controls
the trade-off between each aggregator solving its own local problem, and achieving global
consensus (not necessarily to a minimum point). In more detail, if ρ is set too high, the
algorithm forces consensus too much, resulting in very slow convergence. Conversely, if
ρ is set too small, each aggregator solves its local problem and consensus is not reached.
Examples of this are presented in Section 7.2.

Given this, the iterative algorithm works as follows: first, each EV aggregator solves their
local problem, Eq. (7a), and update their local copy of the energy schedule, E(i). Then, an
aggregation step, Eq. (7b), collects all the local solutions proposed by each aggregator and
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updates the global energy schedule, E, reporting this vector back to all the aggregators.
Lastly, each aggregator updates their local copy of the dual variable, ξ(i), as per Eq. (7c)
and proceeds to the new iteration.

This iterative process is stopped when the primal and dual residuals reach some user-
specified tolerances, εpri and εdual (Boyd et al., 2010; Munsing et al., 2017). Specifically, the

primal residual is denoted by r[k] =
(
r1

[k], . . . , r
n
[k]

)
, where ri[k] = E

(i)
[k] − E[k]. Similarly, the

dual residual is given by s[k] = E[k]−E[k−1]. The stopping criterion then takes the following
form:

‖r[k]‖22 ≤ εpri (8a)

‖s[k]‖22 ≤ εdual (8b)

and the algorithm stops when both conditions have been met.
This concludes the exposition of the novel decentralised algorithm, which will be em-

pirically tested in Section 7.2. We are now ready to study how the algorithm could be
manipulated by a self-interested agent, and how this can be detected.

5. Strategic Manipulation of the ADMM Algorithm

The ADMM-based algorithm described in the previous section has nice convergence prop-
erties and (asymptotically) reaches the global optimum for suitable values of ρ (Boyd et al.,
2010). However, this requires every participating agent to run the algorithm faithfully. In
our case, where agents are assumed to be self-interested, an aggregator could deviate from
their assigned local algorithm and/or misreport their local solutions with the aim of im-
proving their allocation. More specifically, in our scenario we assume a potential attacker
aims to reduce its energy costs (i.e. increase its utility). Therefore, in this section we focus
on the strategic manipulation of our proposed ADMM algorithm, Eqs. (7a), (7b), (7c), and
we will show how a misbehaving aggregator can significantly affect the algorithm’s outcome.
Note that we do not look at all possible manipulation vectors, as this is not feasible, but
instead focus on several intuitive and specific types of manipulation that are beneficial for
the attacker in our setting.

Formally, following the notation from Section 4.4, the electricity costs incurred by ag-
gregator i when a global allocation E =

(
E1, . . . ,En

)
is reached are given by:

costi =
23∑
t=0

Eit · P̂t
 n∑
j=1

Ejt

 (9)

In order to reduce these costs, the attacker aims to minimise the price impact on their
desired hours, which in turn can be achieved by moving other aggregators’ overlapping
allocations to different hours. To this end, we consider different attack vectors, namely Shift,
Proportional, Freeze, FreezeShift, FreezeProp and Adversarial attacks, which are described
next. These capture different ways that an attacker can try to increase its own utility and
present very different outcomes and efficacy, as detailed in Section 7.3. More specifically as
described before, each attack will try to push the attacked aggregator’s bids outside of the
hours preferred by the attacker, in order to reduce price impact and hence the attacker’s
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Attack name Short description

Shift(All)
Shift the proposed allocation for one attacked aggregator
(or all aggregators) to more expensive hours

Proportional(All)
Scale down the proposed allocation for the attacked
aggregator (or all aggregators)

Freeze
Propose its individually optimal allocation for itself
(without considering the competitor aggregators)

FreezeShift(All) Freeze + Shift(All)

FreezeProp(All) Freeze + Proportional(All)

Adversarial
Attempt to incriminate a benign aggregator as deviator
by artifically favouring their allocations

Table 2: Summary of the proposed attack vectors.

energy costs given by Eq. (9). Note that, throughout the rest of the paper, we assume that
an attacker performs a given attack vector with a given intensity in every round. The study
of more sophisticated attacks is outlined as future work (Section 8). For quick reference, a
summary of the considered attack vectors can be found in Table 2. Finally, note that an
empirical evaluation of all the proposed attack vectors can be found in Section 7.3.

5.1 Shift Attack

In this type of attack, the deviating aggregator i runs its local optimisation problem (i.e.
Eq. 7b), but artificially modifies its local schedule allocation for another aggregator j, E(i),j ,
by shifting it outside of aggregator i’s preferred hours. In this work and without loss of
generality, we will focus on a particular case where the deviating aggregator splits the energy
schedule of the attacked aggregator j by its mid-hour, and then shifts the first half outwards
by a number of hours (the strength of the attack) µ = 1, 2, . . ., as depicted in Fig. 2. This is
motivated by the fact that, normally, the cheapest prices lie somewhat in the middle hours
of the day. Note that the analogous attack where both halves are shifted outwards was also
considered and its empirical results were found to be very similar.

In more detail, let t∗ be the median hour with non-negative energy allocation for agent

j, E
(i),j
[k+1]. Then, given E

(i)
[k+1] from Eq. 7b, the allocation of aggregator j is modified as

follows:

Ê
(i),j
[k+1], t =


E

(i),j
[k+1], t+µ , if t ≤ bt∗c − µ

0 , if t ∈ (bt∗c − µ, bt∗c]
E

(i),j
[k+1], t , if t > t∗

(10)

Note that, in the mathematical formulation presented in Eq. (10), the allocation can be
pushed beyond the 24h day interval for large values of µ, but this does not happen for the
range of values employed in the empirical evaluation described in Section 7.

Finally, this attack vector can be extended to target all the competing aggregators,
rather than aggregator j only, and will then be referred to as ShiftAll attack.

For illustrative purposes, the effects of ShiftAll in a scenario with three aggregators are
shown in Fig. 3. The third aggregator deviates from the vanilla algorithm and manages to
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Figure 2: (a) Truthful allocation from aggregator i to aggregator j following Eq. 7b, E
(i),j
[k+1].

(b) Attacked Ê
(i),j
[k+1] employing a shift attack with µ = 2 as given by Eq. 10.
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Figure 3: Real example of the effects of ShiftAll on the resulting energy allocations. The
scenario consists of three aggregators of the same size with the third aggregator
being the attacker and employing µ = 1. Results for both vanilla and attacked
scenarios are presented.

shift the allocation of the first two aggregators out of one of its preferred hours (3 am). As
a result, the attacker is able to obtain more energy at 3 am and reduce its allocation during
the more expensive hours 5 and 6 am.

5.2 Proportional Attack

In this type of manipulation, the deviating aggregator i runs its local optimisation problem
(i.e. Eq. 7b), but scales down its allocation for another aggregator j, E(i),j , by a factor

λ ∈ [0, 1], which indicates the strength of the attack. Formally, E
(i)
[k+1] is obtained from

Eq. 7b, and then modified as:

Ê
(i),j
[k+1] = E

(i),j
[k+1] · (1− λ) (11)

The effect of this attack is to flatten the the allocation of aggregator j, resulting in less
overlap with aggregator i’s desired schedule, in a similar way to the Shift attack. Note
that the attacked aggregator still enforces its own constraints, Eqs. (1b)-(1e), so that the
amount of energy it receives is enough to satisfy its requirements.

Analogously to the previous attack vector, Proportional can be targetted to all the
competing aggregators. In such a case it will be denoted by ProportionalAll. As an example,
the effects of ProportionalAll in a scenario with three aggregators are shown in Fig. 4. The
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Figure 4: Real example of the effects of ProportionalAll on the resulting energy allocations.
The scenario consists of three aggregators of the same size with the third aggre-
gator being the attacker and employing λ = 0.66. Results for both vanilla and
attacked scenarios are presented.

third aggregator deviates from the vanilla algorithm and manages to flatten the allocation
of the first two aggregators out of one of its preferred hours (3, 4, 5 am). As a result,
the attacker is able to obtain more energy at the cheap hours and reduce its consumption
during more expensive ones.

5.3 Freeze Attack

In this case, attacker i freezes its own allocation to the individually optimal one, i.e. the
allocation that can be obtained by solving Eqs. (1a), (1b), (1c) and (1d) without taking
into account the other aggregators. Formally, being E∗i the optimal individual allocation
for aggregator i:

Ê
(i),i
[k+1] = E∗i (12)

This way, the attacker hopes to get its individually optimal allocation and get the other
competing aggregators to arrange their allocations around. Importantly, this attack vector
can be combined with the others presented so far. Specifically, we call the attack vectors
combining Eqs. (10) and (12) FreezeShift and FreezeShiftAll. Similarly, the attacks com-
bining Eqs. (11) and (12) will be called FreezeProp and FreezePropAll. Intuitively, these
combinations should yield more benefit to the attacker since its own allocation will be less
affected by the smoothing effect of the competing aggregators.

5.4 Adversarial Attack

This last type of attack we consider is different from the previously described ones, as the
deviating aggregator i does not seek to directly manipulate another aggregator’s allocation.
Instead, it will try to incriminate a benign aggregator j to make it appear as a deviator,
hoping it will be a false positive of the manipulation detection algorithm (discussed in Sec-
tion 6) and penalised accordingly. Depending on the imposed penalty, this could consist on
banning aggregator j’s participation on the current trading day, thus benefiting aggregator
i as competition is reduced. Otherwise, this can be seen as a purely malignant adversarial
attack. Note that this sort of attacks have attracted a lot of recent interest in the field
of machine learning (Huang, Josehp, Neslson, Rubinstein, & Tygar, 2011; Kurakin, Good-
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fellow, & Bengio, 2016) and could present a serious drawback for incentivising agents to
participate in cooperative schemes such as the one proposed in this work.

Formally, this attack can be performed by proposing a schedule for aggregator j, E
(i),j
[k+1], t,

artificially close to the allocation of aggregator j to itself in the previous round, E
(j),j
[k] . Hence

aggregator j appears to deviate from the algorithm as it breaks the balance in aggregators
i-j interaction. This will become clear in Section 6.1 where we describe how to quantify
manipulation. This attack can be parametrised by a parameter λ ∈ [0, 1] which determines a
linear combination between the schedule proposed by aggregator j to itself, and the schedule

allocated by aggregator i to j as a result of Eq. (7a). Formally, given E
(i),j
[k+1] from Eq. 7b,

modify the allocation to aggregator j as follows:

Ê
(i),j
[k+1] = E

(i),j
[k+1] · (1− λ) + E

(j),j
[k] · λ

In more detail, an attack with parameter λ = 1 proposes an allocation to aggregator j
equal to what j proposed for itself in the previous round. This is likely to be beneficial
for aggregator j’s schedule, as it will contribute towards maintaining the more favourable
schedules characteristic of early rounds before convergence. However, as will be detailed
in Section 6.1, this will make benign aggregator j seem a deviator, with the subsequent
penalty. Conversely, as λ tends to zero, we recover the vanilla ADMM algorithm.

6. Detecting Manipulation

In this section, we detail a mathematical framework for quantifying the influence of a given
ADMM participant, i.e. an EV aggregator, onto the rest of participants. The aim is to be
able to detect outliers that are symptom of strategic manipulation in the system. Although
this framework is general, and can be applied to any ADMM (or variant) scenario, we focus
on our particular case for ease of exposition.

6.1 Quantifying Manipulation

The basic idea is that any group of aggregators with overlapping energy requirements should
influence each other’s schedules with similar intensity. If a particular aggregator i is self-
interested and wants to improve its allocation by deviating from the ADMM algorithm,
it will exert a heavier influence onto its competitors’ allocations. Conversely, as happens
in the adversarial attack detailed in Section 5.4, an aggregator that tries to wrongly flag
another benign aggregator as deviator would exert too little influence.

A key point is that each aggregator i produces a (local) proposed schedule for all the n
participating aggregators. Formally, following the notation from Section 4.4:

E
(i)
[k+1] =

(
E

(i),1
[k+1], . . . ,E

(i),n
[k+1]

)
Hence, this local solution proposed by aggregator i at iteration k contains its own schedule,

E
(i),i
[k+1], and all the schedules for all the other participants, E

(i),j
[k+1] for j 6= i. We assume

that each aggregator, benign or deviator, is truthful about their own allocations in their
proposed local solutions. The reason for this is that every aggregator wants the best energy
schedule given their requirements and hence would report the optimal schedule arising from
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Figure 5: Difference matrix (top) and normalised difference matrix (bottom), d and d̄ re-
spectively, for a scenario with two aggregators of size 50 000 EVs (1 and 4) and
two aggregators of size 150 000 EVs (2 and 3). One of the small aggregators (Ag-
gregator 4) performs a Shift attack with µ = 1 against the other small aggregator
(Aggregator 1), displayed as light grey.

their minimisation problem. Moreover, note that, given that an aggregator is unlikely to
frequently change size and needs electricity everyday, past behaviour can also be used to
roughly infer some of the aggregator’s characteristics. The study of more general manip-
ulation settings is out of the scope of this paper and is outlined as future work in Section
8. Also, without loss of generality, we assume that the deviating behaviour starts from the
second ADMM round, when every aggregator has seen the proposals from each aggregator.
This allows us to focus on the first two iterations (k = 0, 1) for ease of exposition.

Formally, let d be a square matrix of dimension n, the difference matrix, storing how
much each aggregator affects its competitors’ self-proposed allocations. In more detail, every
i, j entry quantifies how much aggregator i modifies the self-assigned schedule of agent j,
and is given by:

di,j = ‖E(i),j
[1] − E

(j),j
[0] ‖

As mentioned above, we expect benign aggregators to affect each other’s schedules in a
similar way, but aggregator size significantly affects this. More precisely, there are natural
magnitude deviations in di,j and dj,i when the sizes of the benign aggregators i and j differ.
An example of this effect is shown in the top row of Fig. 5 in dark grey.

These natural differences are an obstacle for detection algorithms. In order to overcome
this issue, we normalise the matrix d employing the total amount of energy allocated by
each aggregator to itself, as a proxy to potentially unknown aggregator size. Note that other
proxies can be used instead, such as actual size and total amount of electricity purchased
in previous trading days. Formally, we can write:

sizei =

23∑
t=0

E
(i),i
[0]
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and the proportion of the size of aggregator i among the whole group of aggregators is given
by:

pi =
sizei∑
j sizej

Then, the normalised difference matrix, d̄, is given by:

d̄i,j = ‖E(i),j
[1] − E

(j),j
[0] ‖ ·

√
pi

sizei + sizej
(13)

This scaling function was chosen as it empirically flattens the entries of the matrix d̄ cor-
responding to benign aggregators, eliminating most of the dependence on aggregator size.
In more detail, extensive simulations were performed, studying a variety of scenarios with
different number of aggregators of different sizes, and different attack vectors and attack
strengths. The selected normalisation approach provides the best results. An example of
the normalisation effect is pictured in the bottom row of Fig. 5. In this plot, the effect of
the manipulating aggregator is shown in light grey, whereas the rest of the dark grey bars
correspond to benign behaviour. In the top plots, corresponding to the difference matrix d,
we can see large differences between different entries, arising from the large size differences
between the aggregators. Importantly, these natural differences are larger that the effect of
the manipulating aggregator. In contrast, the normalised bottom plots manage to nearly
flatten all the natural differences, and the effect of the deviating aggregator clearly stands
out.

Lastly, for the rest of the paper, we assume that n − 1 aggregators are benign and
only one of them can potentially be a deviator. This is motivated by the fact that, with
a perfect detection algorithm, there exists a Nash equilibrium in which no-one wants to
deviate. Note that the proposed detection algorithm, which we are now ready to introduce,
could be extended to deal with the more general case of having any number of deviators.

6.2 Detecting Manipulation

The overall idea is to be able to detect deviating aggregators in order to penalise them and
discourage manipulation. As it is usually the case in complex stochastic environments, the
aim here is to reduce false positives and false negatives, while keeping true positives and
true negatives as high as possible. Specifically, in this work we consider a positive to be an
aggregator detected as deviator, and a negative an aggregator classified as benign.

As explained in previous sections, the idea is that manipulating behaviour will stand
out, as it exerts a larger or smaller influence in other aggregators allocations, compared to
the scenario’s average. Formally, one can use the normalised difference matrix d̄ defined in
the previous section in order to quantify this mathematically: manipulating behaviour from
aggregator i towards aggregator j is translated into a too large or too small entry d̄i,j . As a
first step towards manipulation detection, we propose applying a threshold-based algorithm,
as described in Algorithm 1. In more detail, the algorithm looks at the difference matrix d̄,
computes the medians of the matrix entries, and then finds the entry that deviates the most
from the median. This is done separately for off- and on-diagonal elements (as there are
intrinsic magnitude differences between d̄i,i and d̄i,j even when all aggregators are benign)
and only the highest deviation of the two is taken as final candidate. Lastly, this candidate
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Input : d̄, α
Output: list with the detected manipulating aggregator, if any

/* off-diagonal */

consider the off-diagonal elements: offDiag;
compute the median: µ1/2 = median(offDiag);

compute distances from each element in offDiag to µ1/2;

find max distance −→ maxOffDiag;

/* on-diagonal */

consider the on-diagonal elements: onDiag;
compute the median: µ1/2 = median(onDiag);

compute distances from each element in onDiag to µ1/2;

find max distance −→ maxOnDiag;

/* threshold-based detection */

max(maxOffDiag, maxOnDiag) −→ max;
aggregator index: index(max) −→ i;
if max > α then

deviator −→ [i];
else

deviator−→ [];
end

return deviator
Algorithm 1: Threshold-based strategic manipulation detection algorithm for a
scenario with at most one deviator.

is classified as deviator if its deviation from the median is greater than the user-defined
threshold α.

The choice of threshold α is critical and we empirically study the performance of different
thresholds in Section 7.4. Also, although the presented algorithm is designed to work in
scenarios with at most one manipulating agent, by selecting the aggregator that deviates
the most, it can be easily adapted to a general scenario. The most straightforward way
would be to simply classify as deviator any aggregator i with |µ1/2 − d̄i,j | > α for some j.
This extended algorithm is conceptually the same as Algorithm 1 and will be studied in
future work.

Finally, we would like to note that the proposed algorithm could be used in conjunc-
tion with other detection methods in order to provide better results. We are now ready
to present an empirical evaluation in order to test the performance of the decentralised
algorithm proposed in Section 4.4, the different attack vectors proposed in Section 5 and
the manipulation detection algorithm presented in this section.
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t0
Time 19h 20h 21h 22h 23h
Probability 0.16 0.25 0.32 0.12 0.15

td
Time 6h 7h 8h 9h 10h
Probability 0.04 0.02 0.34 0.5 0.1

Table 3: Possible arrival (t0) and departure (td) times rounded to the nearest hour, with
their respective probabilities.

7. Empirical Evaluation

In this section we present an analysis of the performance of the decentralised coordination
algorithm (Section 4.4), the different attack vectors (Section 5) and the manipulation de-
tection framework (Section 6). This empirical evaluation uses real market and vehicle usage
data from Spain. We will start by detailing the scenario used in the simulations, and then
describe the empirical results.

7.1 Experimental Setup

The experiment setup described in this section closely follows the case studies presented in
(Perez-Diaz et al., 2018a, 2018b, 2018c). We consider a night-time residential scenario in
which EVs arrive in the evening and need to be charged by the next morning. The EVs are
assumed to be medium-sized with 24kWh battery capacity and maximum charging speed
Pmax = 3.7kW. Moreover, charging efficiency is set to 90%.

Real market data from the Spanish day-ahead market OMIE2 is used in the simulations,
as described in (Perez-Diaz et al., 2018a). Specifically, for this paper we focus on trading
data from November 2016. Similarly, real driver data from a Spanish survey is used to
determine probabilistic EV driving patterns, as detailed in (Perez-Diaz et al., 2018a). In
more detail, we employ the distribution of times for the first and last trip from and to home,
as shown in Table 3.

Regarding energy requirements, the desired state of charge of an EV at arrival and depar-
ture times are drawn from uniform distributions as follows: SoC0 ∈ [SoCtotal/4,SoCtotal/2]
and SoCf ∈ [2 · SoCtotal/3,SoCtotal]. Consequently, the EV charging requirements range
between a large percentage of the battery (up to 75%), to a small percentage (down to
16%), accounting for long and short trips home.

7.2 Algorithm Convergence Results

We start our experimental analysis by considering the convergence to the optimal solution
of the proposed decentralised algorithm without any manipulation. A key determinant of
convergence is the augmented Lagrangian parameter ρ (see Eqs. (7a), (7b), (7c)). Intu-
itively, it controls the weight that the similarity of local and global solutions has in the local
minimisation algorithms (see Eq. 7a). If it is set too large or too small, the algorithm will
not converge. For every problem there exists a range of values providing convergence but,
as already mentioned, it can be very slow in some cases. Also, the number of participating

2. http://www.omie.es/en/inicio
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aggregators affects the convergence of the algorithm: the higher the number of participants,
the more fragmented the optimisation problem is, so more iterations may be required. Thus,
a suitable value for ρ needs to be found in order to make the algorithm converge fast, a key
point for its practical applicability.
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Figure 6: Convergence of the ADMM decentralised algorithm to the optimal centralised
solution, for different values of ρ. (Top) Simulations with two aggregators, each
with 150 000 EVs. (Bottom) Simulations with ten aggregators, each with 150 000
EVs. Market data from 1/11/2016.

Fig. 6 shows the convergence for different values of ρ, and for two scenarios, with two
and ten EV aggregators respectively. Each plot shows how far the decentralised solution is
from the optimal solution. We can see similar convergence behaviour for the two scenarios,
although the case with two EV aggregators is faster and more uniform. These results show
evidence of good computational scaling with the number of EV aggregators, something
key for tackling larger problem sizes. Moreover, for both scenarios, convergence starts
slow for a value of ρ . 10−4, becoming fastest for a value ρ ∼ 10−5, and diverging for
larger values. This suggests that a value about ρ = 10−5 presents the best convergence
for these scenarios, although this may vary for larger problem sizes. Also, we would like
to note that these results are consistent across different trading days. Lastly, there exist
recent extensions of the ADMM algorithm which include an adaptive parameter ρ and can
provide faster convergence and rule out the need for parameter tweaking (Xu, Figueiredo,
& Goldstein, 2017).

7.3 Attack Vectors: Utility and Convergence

Similarly to the analysis presented in the previous section, where we studied the convergence
of the proposed ADMM algorithm, we will now turn our attention to analysing the behaviour
of the algorithm under the effect of the manipulative attacks presented in Section 5. As
described in Section 2, existing works in the literature focus on attacks to the ADMM
algorithm that seek to destabilise it and prevent its convergence. While this can beneficial
for a malignant external attacker whose objective is to prevent the algorithm’s operation,
it is not necessarily so in our case with self-interested participants. In more detail, a
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Figure 7: Cost and convergence analysis for each of the attack vectors described in Section 5.
Scenarios with three aggregators (LHS) and four aggregators (RHS) and averaged
over the ten first days of November 2016. All aggregators have capacity for
150 000 EVs.
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given EV aggregator may want to completely prevent coordinated bidding by interrupting
convergence of the proposed coordination algorithm, but most likely it will try to improve
its own allocation by manipulating the algorithm in a subtle way that goes unnoticed.
Consequently, we identify two key quantities to analyse in order to assess the efficacy of a
given attack vector: the effectiveness of the considered attack, in terms of utility increase
(i.e. energy cost reduction) for the attacker, and the convergence of the algorithm under
attack. In more detail, by convergence we refer to whether the primal and dual residuals
decrease in successive iterations and the stopping criteria given by Eqs. 8a and 8b are
eventually met. Moreover, the cost reductions are computed after 50 iterations irrespective
of whether the attack converges or not. Note that this number of iterations is sufficient for
convergence if the attack is successful.

In order to evaluate these two quantities, we run simulations for each of the proposed
attack vectors over the ten first days of November 2016 using ρ = 10−5, and present the
results in Fig. 7. Here, we can see that both Proportional and ProportionalAll manage to
achieve reduced costs for the attacker with good convergence rates in the scenarios with three
aggregators. However, for settings with four aggregators, both these attacks destabilise the
algorithm which outputs non-optimal allocations with increased costs for all the aggregators.
Interestingly, both FreezeProp and FreezePropAll present very good results, consistently
providing reduced costs for the attacker and close to 100% convergence rates for all attack
strengths. On the other hand, Shift, ShiftAll, FreezeShift and FreezeShiftAll present very
large cost reductions but fail to converge in the vast majority of cases. We would like to note
that even a 1% cost reduction in the scenarios considered in this work represents savings in
the order of hundreds of thousands of Euros per year. Finally, in a slightly different vein,
Adversarial presents 100% convergence rates for all attack strengths and very small cost
alterations. Recall that the aim of this attack is not to directly increase the attacker’s utility,
but to incriminate a benign aggregator as deviator (see Section 5.4). As a consequence, the
efficacy of Adversarial is more appropriately measured by looking at the number of false
positives (benign aggregators incorrectly classified as deviators) that the attack is able to
generate. Results from this analysis are detailed in Section 7.5, as they require parts of the
explanation about the performance of the proposed detection algorithm, which is detailed
in the next section.

Summarising, we have studied the effects of each of the attack vectors on the conver-
gence and outcome of the proposed ADMM algorithm. While some attacks (Shift and
variants) prevent the algorithm from converging thus limiting their practical applicability,
others, particularly FreezeProp and FreezePropAll are successful in decreasing the attacker’s
electricity costs while barely affecting the algorithms convergence. We would like to note
that these interesting results all arise from myopic attack vectors that are simply repeated
iteration after iteration. Given that an attacker is potentially able to monitor convergence
and other metrics during successive iterations of the algorithm, it is likely that greater cost
savings and convergence rates could be obtained by more sophisticated algorithms.

7.4 Threshold-Based Detection Results

So far, we have shown the efficacy of the different proposed attack vectors. Next, we present
the empirical performance of the proposed detection algorithm. As mentioned in Section
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Figure 8: Accuracy analyses for each of the proposed attack vectors, attack strengths and
number of aggregators. Results averaged over every day of November 2016. All
aggregators have capacity for 150 000 EVs. Dashed lines represent the naive
benchmark for each scenario, which considers every aggregator to be benign.

6.2, the choice of the threshold parameter α is critical for good performance. Recall that the
ultimate aim is to maximise correct classifications, i.e. true positives and true negatives.
If α is set too high, it will fail to detect deviating behaviour. Conversely, if α is set too
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Figure 9: Accuracy analyses for each of the proposed attack vectors, attack strengths and
aggregator size. Results averaged over every day of November 2016. Dashed lines
represent the naive benchmark for each scenario, which considers every aggregator
to be benign.

low, the detection algorithm would be too sensitive and misclassify benign aggregators as
deviators.
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In order to quantify the performance of the detector we employ the accuracy metric
(Metz, 1978), given by:

Accuracy =
True Positives + True Negatives

Total population

Specifically, accuracies 0 and 1 correspond to detectors which are always wrong and always
right, respectively. Moreover, we will compare the accuracy of our proposed algorithm with
that of a naive detector that classifies all the aggregators as benign. This is motivated by
the fact that our dataset is unbalanced given that we consider at most one deviator per
simulation (see Section 6). A well performing algorithm should present increased accuracy
from this naive benchmark.

In more detail, we present the results from two different experiments. First, we consider
scenarios with varying numbers of aggregators of the same size. This smoothens the natural
discrepancies in the difference matrix, d, and allows us to focus on each of the different
attacks and attack strengths. Second, we present an experiment considering aggregators of
different sizes. In this case, the natural discrepancies arising from the size difference play
an important role (see Section 6.1), and it is more difficult for a detection algorithm to
distinguish between size effects and manipulation. For each scenario, we simulate every day
of November 2016 and use ρ = 10−5. Recall that we assume that the deviating aggregator
performs uses the same attack vector and attack strength in all rounds, and focus our
detection algorithm in the first and second rounds. Also, note that we are not interested in
the issue of convergence (which is studied in Section 7.3) and we just explore the performance
of the detection algorithm, independent of whether the attacker is being successful or not.
The results for each of the two experiments are shown in Figs. 8 and 9, respectively. Note
that the results for each algorithm and its all counterpart are very similar and the latter
have been omitted.

The results from the first experiment indicate that our proposed algorithm is able to
detect the majority of attacks with an accuracy of, or very close to, 1. This shows that
our algorithm significantly outperforms the naive benchmark. Moreover, these results are
consistent across different numbers of aggregators ranging from 3 to 7. Focusing on each
different attack, detection is easier as the strength increases. This is intuitive as stronger
attacks have a more pronounced effect on the algorithm and stand out. Interestingly, the
attack vector which is most difficult to detect is Shift, which is the only one where the
algorithm is not able to reach perfect accuracy for any number of aggregators. Finally, the
presence of greater number of aggregators makes detection slightly more difficult in most
cases. Note that, as explained above, these simulations consider aggregators with the same
size. As we will see next, size effects make detection more challenging. Finally, note that
for large values of α, the detection algorithm classifies everyone as benign thus converging
to the naive benchmarks.

In the second experiment, we consider two different settings with three aggregators.
Firstly, the attacker has capacity for 450 000 EVs, whereas the other two aggregators are
smaller and have capacity for 150 000 EVs. Secondly, the attacker and one of the benign
aggregators have capacity for 150 000 EVs, while the attacked aggregator has capacity for
450 000 EVs. These two scenarios are called Larger and Smaller in Fig. 9, respectively.
We can see that size effects make detection considerably more challenging. Our proposed
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Figure 10: Analysis of the efficacy of Adversarial for two attack strengths in the Smaller
scenario, as described in Section 7.4. Dashed lines correspond to the percentage
of times the attacked aggregator is incorrectly classified as deviator, in the case
with no manipulation. Solid lines represent the same quantity when the aggre-
gator is the target of Adversarial. Results averaged over every day of November
2016.

algorithm still outperforms the naive detector in the vast majority of cases, and perfect
accuracy is still achieved for high attack strength in some cases, such as Adversarial, Pro-
portional and FreezeProp. However, smaller attacks are difficult to detect and in some
cases the performance of our algorithm is comparable to the naive detector (see for example
Adversarial with λ = 0.16 in the Smaller scenario. This suggests that the discrepancies
in the difference matrix arising naturally due to size differences are not smoothed enough
by the proposed normalisation scheme. However, despite this extra challenge, the proposed
detection algorithm significantly outperforms the naive benchmark and presents very good
detection results across a variety of settings.

7.5 Performance of Adversarial

As mentioned in Section 7.3, the efficacy of the Adversarial attack vector is appropriately
measured in terms of its success rate in incriminating a benign aggregator as deviator.
We perform this analysis using the same datasets as in the previous section: namely the
scenarios with varying number of aggregators of the same size and the ones including varying
size aggregators. Results indicate that this attack vector is unsuccessful in most cases, not
being able to incriminate the attacked aggregator.

The most interesting behaviour is obtained in scenarios containing aggregators of differ-
ent sizes and where the attacked aggregator has a larger size than the rest, i.e. the scenarios
labelled as Smaller in the previous section (the attacker is smaller than the attacked ag-
gregator). In these, the natural discrepancies in the difference matrix cause the detection
algorithm to incorrectly classify the attacked aggregator as deviator for small α values. This
happens as, for small α’s, the algorithm will pick up the aggregator that stands out the most
in the difference matrix, even if only by a very small margin. Interestingly, if the attacker
performs an Adversarial attack on the large benign aggregator, the detection algorithm is
able to detect it in some cases, hence eliminating the false positive that would be obtained
without manipulation. This situation is depicted in Fig. 10. In more detail, we can see
that weak Adversarial attacks (λ = 0.16) achieve up to 80% success rates. However, the
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same scenario without manipulation presents higher false positive rates due to the reasons
explained above. Moreover, increasing the values of α reduces the false positives to zero.
Similar results can be observed for stronger attacks (λ = 0.33. For the rest of scenarios, the
attacker is not able to incriminate the attacked aggregator at all, and is in turn detected as
deviator.

Importantly, we would like to remark the fact that this paper focuses on scenarios where
there is, at most, one deviating aggregator (see 6.1). In more general settings, which will be
subject of study in future work, it is likely that this attack vector will present much higher
success rates. In more detail, the proposed detection algorithm will choose at most one
aggregator as deviator, so the natural deviations arising from size differences compete with
the manipulation effects. If size difference stands out more, the detection algorithm will
incur a false positive without any manipulation. Conversely, if the effects of an Adversarial
attack overcome these natural discrepancies, the algorithm will correctly detect the attacker.
In the more general case where there are any number of deviating aggregators, and with
an algorithm (extending the one proposed in this paper or otherwise) that can detect any
number of aggregators as deviators, both size effects and malignant incrimination from an
Adversarial attack could lead to multiple detections.

8. Conclusion

In this paper, we present a decentralised coordination mechanism for multi-EV aggrega-
tor bidding in the day-ahead market which employs the Alternating Direction Method of
Multipliers (ADMM) algorithm. This proposed algorithm extends previous work in the lit-
erature, which addresses the same scenario, but with a centralised framework. Specifically,
the proposed decentralised framework removes the need for the aggregators to communicate
private requirement information to the coordinator, as each aggregator solves its own local
private optimisation problem with their own requirements. This is a key feature for the
practical applicability of the proposed coordination mechanism, as real businesses or public
service providers would be reluctant to disclose this private information.

Also, we present the first study about strategic manipulation of ADMM algorithms by
self-interested internal agents. Even though ADMM and related decentralised optimisation
algorithms are widely applied in many disciplines, little work has focused on studying how
these algorithms can be disrupted by internal attackers. In order to address this issue, we
study how a deviating agent can alter their local algorithm in order to increase their own
utility at the expense of their competitors. Focusing on our setting and on our proposed
algorithm, we introduce several attack vectors that a self-interested aggregator can employ
in order to alter the outcome of the ADMM algorithm. Moreover, in order to prevent
strategic manipulation, and working towards resilient decentralised optimisation, we study
how deviating behaviour can be detected. In more detail, we propose a mathematical
framework which measures the effects that different agents exert onto each other when
employing the ADMM algorithm. Furthermore, we propose a threshold-based algorithm
which employs this formalism in order to classify the participating aggregators as benign
or deviators. Although we focus on an energy setting, the proposed detection framework is
general and can be applied in general.
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In order to study the proposed decentralised algorithm and detection mechanism, we
present an empirical evaluation using real market and vehicle usage data from Spain. We
first show the convergence of the decentralised method to the optimal solution for two
scenarios, with two and ten cooperating EV aggregators respectively. Convergence can
be achieved in around 50 iterations in the first case and around 80 in the second case.
Therefore, although problem complexity increases with the number of participants, these
numbers suggest the applicability of the algorithm in large settings. With respect to the
proposed attack vectors, we analyse their impact on attacker utility (reduced energy costs)
and on algorithm convergence. Specifically, we show that an attacker is able to effectively
alter the outcome of the algorithm for their own benefit. Finally, we turn our attention to
the proposed detection framework, and present an accuracy study to assess its performance.
Results show that our algorithm achieves very high accuracy, close and up to 1 in all cases
when the considered aggregators have the same size, significantly outperforming the naive
benchmark. However, considering aggregators with different sizes makes detection more
difficult. Although our proposed algorithm outperforms the naive benchmark in most cases,
some small attacks are very challenging to detect.

Several aspects are left for future work. Firstly, the proposed attack vectors in this
work are somewhat myopic and do not exploit all the information available to the attacker.
More specifically, the attacker could monitor convergence in successive rounds and adjust
their strategies accordingly, or devise more complex algorithms that are not simply repeated
every round. More sophisticated attack vectors should translate into increased utility gains,
better convergence and more difficult detection. Secondly, the proposed detection algorithm
can be extended and improved. Right now, it considers each round separately and directly
classifies each aggregator as benign or deviator, without taking into account any information
about successive rounds. As an example, a more sophisticated model can monitor successive
rounds and build a confidence score about an aggregator being a deviator. Thirdly, the same
scenario could be studied from a distributed mechanism design perspective (see Section 1).
In more detail, in order to guarantee strategyproofness, the coordination mechanism needs
to truthfully elicit the aggregators requirements and ensure faithful computation. This could
be achieved by combining a detection algorithm with appropriate penalties (computation)
with the application of an appropriate payment mechanism (elicitation). Finally, it would
be interesting to expand the tools proposed in this work to generic multi-agent system
ADMM scenarios.
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