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Abstract

Analyzing reachability in large discrete transition systems is an important sub-problem in sev-
eral areas of Al, and of CS in general. State space search is a basic method for conducting such
an analysis. A wealth of techniques have been proposed to reduce the search space without affect-
ing the existence of (optimal) solution paths. In particular, strong stubborn set (SSS) pruning is a
prominent such method, analyzing action dependencies to prune commutative parts of the search
space. We herein show how to apply this idea to star-topology decoupled state space search, a
recent search reformulation method invented in the context of classical Al planning.

Star-topology decoupled state space search, short decoupled search, addresses planning tasks
where a single center component interacts with several leaf components. The search exploits a form
of conditional independence arising in this setting: given a fixed path 7€ of transitions by the center,
the possible leaf moves compliant with 7€ are independent across the leaves. Decoupled search
thus searches over center paths only, maintaining the compliant paths for each leaf separately. This
avoids the enumeration of combined states across leaves.

Just like standard search, decoupled search is adversely affected by commutative parts of its
search space. The adaptation of strong stubborn set pruning is challenging due to the more complex
structure of the search space, and the resulting ways in which action dependencies may affect the
search. We spell out how to address this challenge, designing optimality-preserving decoupled
strong stubborn set (DSSS) pruning methods. We introduce a design for star topologies in full
generality, as well as simpler design variants for the practically relevant fork and inverted fork
special cases. We show that there are cases where DSSS pruning is exponentially more effective
than both, decoupled search and SSS pruning, exhibiting true synergy where the whole is more
than the sum of its parts. Empirically, DSSS pruning reliably inherits the best of its components,
and sometimes outperforms both.

1. Introduction

Analyzing reachability in large discrete transition systems is an important sub-problem in several
areas of Al, and of CS in general. In particular, this pertains to classical Al Planning, which we
focus on here. Given an initial state, a goal condition, and a set of deterministic actions, all described
relative to a set of finite-domain state variables, the planning task is to find a sequence of actions
leading from the initial state to a state that satisfies the goal condition. In other words, we aim to
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analyze the reachability of the goal condition starting from the initial state, in the large deterministic
transition system given by the task’s state space.

Forward state space search, starting at the initial state and exploring the state space until a goal
state is reached, is a basic method for conducting reachability analysis. For satisficing planning,
where the objective is to find any (not necessarily optimal) solution path, today the most successful
means to make forward search effective is heuristic search, guiding the search greedily towards the
goal (e.g., McDermott, 1999; Bonet & Geffner, 2001; Hoffmann & Nebel, 2001; Gerevini, Saetti, &
Serina, 2003; Helmert, 2006; Richter & Westphal, 2010; Domshlak, Hoffmann, & Katz, 2015). For
optimal planning, where optimality must be guaranteed, heuristic search — using the well-known
A* algorithm (Pearl, 1984) — also is one of the most successful methods (e.g., Edelkamp, 2001;
Helmert & Domshlak, 2009; Helmert, Haslum, Hoffmann, & Nissim, 2014). However, it is known
that even “almost perfect” heuristic functions (Gaschnig, 1977) — underestimating goal distance by
at most an additive constant — do not prevent A* from exponential search, even on simple standard
toy planning benchmarks (Helmert & Roger, 2008). This observation motivates the need for other,
complementary, ways of enhancing forward search.

A wealth of such techniques have been developed, including symbolic representations (e.g.,
Bryant, 1986; Edelkamp & Helmert, 1999; Torralba, Alcdzar, Kissmann, & Edelkamp, 2017),
symmetry breaking (e.g., Starke, 1991; Pochter, Zohar, & Rosenschein, 2011; Domshlak, Katz,
& Shleyfman, 2012), dominance pruning (e.g., Hall, Cohen, Burkett, & Klein, 2013; Torralba &
Hoffmann, 2015), and partial-order reduction (e.g., Valmari, 1989; Godefroid & Wolper, 1991;
Edelkamp, Leue, & Lluch-Lafuente, 2004; Alkhazraji, Wehrle, Mattmiiller, & Helmert, 2012;
Wehrle, Helmert, Alkhazraji, & Mattmiiller, 2013; Wehrle & Helmert, 2014). We herein consider
the latter, specifically strong stubborn set (SSS) pruning, which was first devised in Verification
(Valmari, 1989), and was later adapted to Al Planning (Alkhazraji et al., 2012; Wehrle et al., 2013;
Wehrle & Helmert, 2014). An SSS for a state s is a subset A, of applicable actions guaranteed to
contain the starting action of at least one optimal solution for s. In a nutshell, such a set A is de-
rived by selecting an open part p of the goal condition, collecting all actions a that may recursively
be used to enable p, and collecting all actions a’ that these a interfere with. Actions not included
by this process can be safely ignored in s, as they are not relevant to p, and as they are commutative
with A, i.e., they can still be applied later on if needed for some other part of the goal.

Our contribution consists in showing how to apply this idea in star-topology decoupled state
space search, short decoupled search, a search decomposition method recently invented in Al Plan-
ning (Gnad & Hoffmann, 2015; Gnad, Hoffmann, & Domshlak, 2015; Gnad & Hoffmann, 2018).

Decoupled search is a form of factored planning (Sacerdoti, 1974; Knoblock, 1994; Lansky &
Getoor, 1995; Amir & Engelhardt, 2003; Brafman & Domshlak, 2006; Kelareva, Buffet, Huang,
& Thiébaux, 2007; Brafman & Domshlak, 2008; Fabre, Jezequel, Haslum, & Thiébaux, 2010;
Nissim, Brafman, & Domshlak, 2010; Crosby, Rovatsos, & Petrick, 2013; Brafman & Domshlak,
2013; Nissim & Brafman, 2014; Wang & Williams, 2015), whose basic idea is to view the planning
task as a set of interacting components — the factors, characterized by disjoint subsets of state
variables — and to organize the search in terms of these components. Individual approaches to
factored planning differ widely in how that is done. A rough classification of prior work is into
hierarchical factored planning, where factors are used in an abstraction/refinement hierarchy, and
localized factored planning, where local per-factor planning is combined with global constraint
resolution. Decoupled search can be viewed as a form of localized factored planning, unique in the
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assumption and exploitation of a particular structural profile of cross-factor interactions, namely a
star topology, which lends itself to a specialized form of global constraint resolution.

In a star topology, a single center factor interacts directly with several leaf factors, but the leaves
interact with each other only indirectly via the center. As prior work on decoupled search (Gnad &
Hoffmann, 2015; Gnad et al., 2015; Gnad & Hoffmann, 2018) has shown, such topologies can be
identified automatically in a pre-process to planning, based on the task’s causal graph (Knoblock,
1994; Jonsson & Bickstrom, 1995; Brafman & Domshlak, 2003; Helmert, 2006).

The key advantage of star topologies is a particular form of “conditional independence”: given
a fixed path 7€ of transitions by the center, the possible leaf moves compliant with 7€ are inde-
pendent across the leaves. Decoupled search exploits this property by searching over center paths
7 only, maintaining the compliant paths for each leaf separately. This avoids the enumeration of
combined states across leaves, and dramatically reduces the state space on planning benchmarks
where a pronounced star topology (many leaves) can be identified. In catchy (though imprecise)
analogy to conditional independence in graphical models, star-topology decoupling “instantiates”
the center to break the dependencies between the leaves.

Despite this prowess, decoupled search remains a state space search approach, and can suffer
from the same kinds of deficiencies. All of the abovementioned enhancements — heuristic search,
symbolic representations, symmetry breaking, dominance pruning, partial-order reduction — remain
relevant in principle. The question is whether these methods are applicable to decoupled search,
and if so, how. The initial work on decoupled search (Gnad & Hoffmann, 2015; Gnad et al., 2015;
Gnad & Hoffmann, 2018) already answered this question for heuristic search, and subsequent work
has provided an answer for dominance pruning (Torralba, Gnad, Dubbert, & Hoffmann, 2016),
and symmetry breaking (Gnad, Torralba, Shleyfman, & Hoffmann, 2017c). Herein we provide an
answer for partial-order reduction using strong stubborn set pruning.

The major challenge in doing so is the more complex structure of the search space. Each de-
coupled state s” in the search consists of a center path 7€ along with, for each leaf factor, the set
of leaf states s reached on w¢-compliant paths. The interpretation of s7 is that any one of the
reached s” can be committed to if needed. But this commitment is postponed to plan extraction
time, when every leaf has a reached goal leaf state s”, and a global plan is obtained by augmenting
7C, for every leaf factor, with a cheapest 7¢-compliant leaf path ending in that s”.

Given this search structure, for the leaf factors, the distinction between “past” (search path so
far) and “future” (remaining search path) becomes complicated, because even the path the leaf takes
up to s* will be committed to only in the future. In particular, even if a leaf state s is flagged as
being reached in s, SSS pruning needs to reason about the enablers of s”, i.e., about the actions
that might be committed to in order to support s” at plan extraction time.

We analyze these issues in detail, and spell out how to identify optimality-preserving decoupled
strong stubborn sets (DSSS). We begin with the general case, designing DSSS for arbitrary star
topologies. Having to handle all possible cases, the construction turns out to be rather inclusive,
selecting potential enablers of reached leaf states when starting from essentially any other reached
leaf state. Hence, we subsequently investigate easier but still practically relevant special cases,
allowing a more selective choice of enablers. We consider fork topologies, where the leaves depend
on the center but not vice versa; inverted-fork topologies, where the dependencies are inverse; as
well as fork and inverted-fork leaves occuring as part of general star topologies. '

1. The names “fork” and “inverted fork™ are due to work by Katz and Domshlak (2008, 2010) in a different context.
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We evaluate our DSSS techniques from both a theoretical and a practical perspective. For the
theoretical part, we analyze exponential separations: example task families scaling in a size pa-
rameter n, exponentially separating some method A from another one B in that A yields search
space size polynomial in n while B yields search space size exponential in n. We show that decou-
pled search and SSS pruning are exponentially separated from each other, and that DSSS pruning
is exponentially separated from each of them. Beyond the latter, we show that there are example
task families — not complex artificial examples, but simple variants of the Logistics benchmark —
exhibiting true synergy where the whole is strictly more than the sum of its parts: cases where the
exponential separation is relative to both decoupled search and SSS, i.e., search space size remains
exponential under each of these methods, yet becomes polynomial under DSSS pruning.

For the practical evaluation, we run our techniques on standard benchmarks from the Interna-
tional Planning Competition (IPC). We consider optimal planning as well as proving unsolvability.
DSSS pruning reliably inherits the best of decoupled search and SSS pruning. Sometimes — being
more than the sum of its parts — it outperforms both. Where both techniques are effective, DSSS
pruning is able to compete with state-of-the-art systems in both optimal planning, and proving un-
solvability, outperforming it in several domains.

Section 2 gives our planning framework and notations. Section 3 gives summary presentations
of the two base methods — decoupled search and SSS pruning — that we build upon. Section 4 intro-
duces our DSSS construction for general star topologies, Section 5 introduces the simpler construc-
tions specialized for forks and inverted forks. Sections 6 and 7 provide the theoretical and practical
evaluations respectively. We conclude in Section 8. Some technical details are only summarized in
the main text. The full details are available in Appendix A.2

2. Preliminaries

We employ a finite-domain state variable formalization of planning (compare, e.g., Backstrom &
Nebel, 1995; Edelkamp & Helmert, 1999; Helmert, 2006, 2009). A finite-domain representation
planning task, short FDR task, is a tuple IT = (V, A, 50, s«). V is a set of state variables, short
variables. Each v € V is associated with its finite domain D(v). We identify (partial) variable
assignments with sets of variable/value pairs. A complete assignment to V is a state. sq is the
initial state. The goal s, is a partial assignment to V. A is a finite set of actions. Each action
a € Ais atriple (pre(a), eff (a), cost(a)) where the precondition pre(a) and effect eff (a) are
partial assignments to V, and cost(a) € R%" is a’s non-negative cost. We assume that eff (a) # 0,
i.e., every action affects at least one state variable; otherwise, a can obviously be removed. (This
assumption avoids some awkward special cases from decoupled search terminology, namely actions
that affect neither the center nor a leaf of a star topology.)

Given a partial assignment p, by vars(p) C V we denote the subset of state variables on which
p is defined. For a variable subset V' C V), by p[V] we denote the restriction of p to vars(p) N V.
Given partial assignments p and ¢ where vars(p) 2 wars(q), we say that p satisfies ¢, written
p = g if plvars(q)] = q.

The outcome of applying an action a in state s, denoted s[a], is a state where the assignment to
vars(eff (a)) is overwritten with eff (a), leaving s unchanged elsewhere. The outcome state of an
action sequence ™ = (ai,...,ay) is s[7] := (((s[a1])[az2])...)[an]. An action a is applicable

2. The present paper extends work published at [JICAI’16 (Gnad, Wehrle, & Hoffmann, 2016). That work considered
fork topologies only.
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to a state s if s |= pre(a). An action sequence 7 = (ay,...,ay) is applicable to s if each q; is
applicable in s[(a1, ..., a;—1)].

A plan for state s is an applicable action sequence 7 s.t. s[7] = s.. The cost of an action
sequence T = (a1, ..., ay), denoted cost(7), is the summed-up cost Y., cost(a;) of its actions.

A plan for s is called a plan for I1. A plan 7 for s is optimal if cost() is minimal among all plans
for s. The plan is strongly optimal if it is optimal and contains the minimum number of 0-cost
actions among all optimal plans for s. We will need the notion of strong optimality to ensure that
the search makes progress and does not get trapped in 0-cost cycles.

We will often talk about compatible vs. incompatible partial assignments (action preconditions
or effects), so we introduce shorthands for this. Given partial assignments p and ¢, we say that p
and ¢ are compatible, written p || ¢, if there exists no v € V such that v € vars(p) N vars(q) and
plv] # q[v]; we say that p and ¢ are incompatible, written p }f g, if such v does exist.

A standard means to capture the structure of planning tasks is the causal graph (Knoblock,
1994; Jonsson & Bickstrom, 1995; Brafman & Domshlak, 2003; Helmert, 2006). This is a directed
graph whose vertices are the variables V, and with an arc (u, v) if either (i) there exists a € A so
that u € vars(pre(a)) and v € vars(eff(a)), or (ii) there exists a € A so that u € vars(eff (a))
and v € vars(eff(a)). Observe that such arcs capture a dependency of v on u, in the sense that
either (i) to move v, we may have to move wu first, or (ii) moving v may, as a side effect, move u as
well.

3. Base Methods

We give summary presentations of decoupled search, and of strong stubborn sets pruning, sufficient
to understand their workings and introducing the notations we will use in our analysis later on.
Assume an FDR task IT = (V, A, s¢, s4).

3.1 Decoupled Search

A factoring F is a partition of ) into non-empty subsets F, called factors. F is a star factoring if
| F| > 1 and there exists F© € F such that, for every action a where vars(eff (a)) N F© = (), there
exists F € F with vars(eff (a)) € F and vars(pre(a)) € F U FC. F is the center of F, and
all other factors L' € FF .= F\ {FY} are leaves. That is, in a star factoring, actions affecting
the center are unrestricted, yet actions not affecting the center must affect exactly one leaf and have
preconditions only on the center and that leaf. This is the most general kind of structure to which
decoupled search is applicable.

Relevant special cases are fork factorings and inverted-fork factorings. These are defined by
viewing F as an equivalence relation over the state variables, and restricting the structure of the
causal graph’s quotient graph given this relation, merging all variables of a factor into a single node.
A fork leaf is a leaf factor F" whose only arc in the quotient graph is (F¢, F'L), i.e., the leaf
has preconditions on the center but not vice versa, and there are no actions affecting both together.
An inverted-fork leaf is an F' where the dependency direction is inverse, i.e., whose only arc in
the quotient graph is (F*, F¢). A fork factoring is one all of whose leaves are fork leaves, an
inverted-fork factoring is one all of whose leaves are inverted-fork leaves.

Example 1. As running examples, we will consider simple transportation tasks similar to several
IPC benchmarks along these lines. Say we have two locations A and B, a single truck whose
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position is modeled by variable t with D(t) = { A, B}, and n packages whose position is modeled
by variables p; with D(p;) = {A, B,T}. The truck and all packages are initially at A, and the
goal is for the packages to be at B. The actions take the form drive(x,y), load(p;,t, ), and
unload(p;, t, ) where x,y € { A, B}. Actions costs are unit 1 for simplicity.

In what we will call the Vanilla variant of this example, the action preconditions and effects
are the commonly used ones, namely: drive(x,y) has precondition {t = x} and effect {t = y};
load(p;,t,z) has precondition {p; = xz,t = x} and effect {p; = T}; and unload(p;,t,x) has
precondition {p; = T,t = x} and effect {p; = z}.

In what we will call the NoEmpty variant of this example, the actions are the same except that
driving the truck now takes the form drive(x,y,p;), with precondition {t = x,p; = T} and effect
{t = y}. That is, here the truck cannot drive without having a package inside.

Unless stated otherwise, we will consider the default factoring F setting {t} as the center, and
setting each {p;} as a leaf. For the Vanilla example, this is a fork factoring. For the NoEmpty
example, where the dependencies between t and p; go in both directions, this is (not a fork but) a
star factoring.

We will sometimes consider the inverse factoring, setting {p1,...,pn} as the center and {t} as
the (single) leaf. Observe that, for the Vanilla example, this is an inverted-fork factoring.

Previous work on decoupled search has employed fork and inverted-fork factorings automat-
ically found through simple and practically highly efficient factoring strategies based on causal
graph analysis (Gnad & Hoffmann, 2015; Gnad et al., 2015). Later, more sophisticated factor-
ing methods were proposed, that are able to detect so-called strict-star factorings, star factorings
where any interaction between leaves is prohibited (Gnad, Poser, & Hoffmann, 2017a). We will be
using the fork and inverted-fork, as well as the incident-arcs-based factoring strategies from Gnad
et al. (2017a) in our experiments. The latter greedily moves variables densely connected in the
causal graph into the center factor, making each weakly connected component in the remainder a
leaf factor. We consider fully general star factorings in our definitions and stubborn set methods. In
what follows, assume a star factoring F.

Actions affecting the center are center actions, actions affecting a leaf are leaf actions. We
denote the set of all center actions by A®, and the set of all leaf actions affecting a leaf F'” by
AL[FE]. Where useful for readability, we will indicate center actions by the notation convention a®,
and leaf actions by the notation convention a”. Observe that, in fork and inverted-fork factorings,
the two kinds of actions are disjoint, i.e., A N A*[F*] = (). For general star factorings, this is not
so as a center action may also affect one or several leaf factors.

A center path is a sequence 7€ of center actions applicable to sg in the projection onto F'© (i.e.,
when removing all other variables from 1I); the outcome of this application, which is a center state,
i.e., a value assignment to F'C, is called the path’s end state. Similarly, a leaf path is a sequence
of leaf actions applicable to s in the projection onto F'*, and its end state, a leaf state, is defined
accordingly.

A leaf path w” for leaf F'* complies with 7€ — also: 7” is 7¢-compliant — if its A“[FL] N
AY subsequence is identical to that of 7, and its AX[FL] \ A® subsequence can be scheduled
alongside 7€ so that the combined action sequence is applicable to sq in the projection onto F'¢ U
FL_ Intuitively, the compliant leaf paths are the possible leaf moves given 7.

For illustration, in our Vanilla example the leaf path 7% = (load(py,t, A),unload(p:,t, B))
complies with the center path 7€ = (drive(A, B)), and the leaf path 7%" = () complies with that
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center path as well. In the NoEmpty variant, setting 7¢ = (drive(A, B, p1)), n” is 7¢-compliant

but 7L’ is not: the precondition p; = T of drive(A, B, p;) is provided on 7%, but is not provided

/
0n7rL.

Observe that, given 7€, the possible moves of each leaf are independent across leaves: for each
leaf factor we can choose an arbitary w€-compliant leaf path, regardless of the choice made for any
other leaf factor, and still obtain a combined action sequence applicable to sg. In our example, given
a truck-move sequence, each package can move independently of the other packages so long as it
complies with the truck moves. E.g., denote 7 := (load(p;, t, A),unload(p;,t, B)) and wiL/ = ().
Then, given 7¢ = (drive(A, B)) in the Vanilla example, each leaf factor {p;} can choose either of
these two compliant options regardless of the choice made for any other {p;}, and scheduling all
these choices alongside 7€ yields a combined action sequence applicable to sq.

Decoupled search exploits this by searching over center paths 7 only, keeping track of the 7¢-
compliant paths separately for each leaf. Concretely, the search is over decoupled states s”. Such a
state is uniquely identified by the center path ﬂ'C[S]: ] on which it is reached. It is associated with: its
center state center[s” |, the end state of 7¢[s”]; and its pricing function prices[s”]. The latter maps
each leaf state s” to its price prices[s” ]|(s”), defined as the cost of a cheapest 7¢[s”]-compliant

leaf path that ends in s”, or prices[s”](s”) = oo if no such path exists.
Cc _ <

For illustration, drive(A, B)) in our Vanilla example leads to s” where center[s”]
{t = B}, prices[s”]({p; = A}) = 0 due to the 7¢[s”]-compliant leaf path (); prices[s”|({p; =
T1) = 1 due to the 7°[s”]-compliant leaf path (load(p;,t, A)); and prices[s”|({p; = B}) = 2 due
to the 7€ [s” ]-compliant leaf path (load(p;, t, A),unload(p;, t, B)). In the NoEmpty example, 7€ =
(drive(A, B,p;)) leads to the same center state and pricing function, except that prices[s”]({p; =
A}) = oo as () is not 7¢[s” |-compliant here for p; (it does not provide the precondition p; = T of
drive(A, B, p1), cf. above).

One can think of a decoupled state s” as a set of states s, namely those s sharing the center state
center[s” ] and where each leaf has a leaf state s” such that prices[s”](s*) < oo. These are exactly
the states s that can be reached from sg on some action sequence with the center-action subsequence
7Cs%].

The pricing function for a leaf F' can be maintained in time low-order polynomial in the size
of FLs state space (the state space of the projection onto F'). We omit the details as they are not
relevant to our contribution.

The word “price” is chosen intentionally, as this is not a “cost” we have already spent. Rather,
the actual commitment to a 7¢-compliant path is made only at plan extraction time. The price of a

leaf state s’ is the cost we will have to spend if, at plan extraction time, we decide to use s”.

Decoupled search starts in the initial decoupled state s(]]: , whose center path is empty 7€ [s(])t | =

(), whose center state center[s] | is so[F'“], and whose pricing function prices[s{ ] results from those
leaf paths applicable given so[FC]. In our examples (both Vanilla and NoEmpty), the price is 0 for
each p; = A; is 1 for each p; = T; and is oo for each p; = B as, without a truck/center move, the

packages cannot get to B. In other words, the leaf states {p; = B} are not reached in sg: .

More generally, given a partial variable assignment p, we say that p is reached in a decoupled
state s7 if center[s”] |= p[F°], and for each leaf F'* there exists a leaf state s© such that s* =
p[F*] and prices[s”](s*) < co. (Note the special case where p is not defined on F'“, respectively
FL: then p[F¢], respectively p[F'"], is the empty assignment (), which is satisfied by any other
partial assignment.)
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We say that an action a is reached in s if pre(a) is reached in s”. Expanding s” in decou-
pled search means to apply all reached center actions a® (recall that we do not branch over leaf
actions). Such an application results in ¥ where 7€ [t7] := 7¢[s7] o (a®), and center[t”] as well
as prices[t”] arise from 7€ [t”] as defined above. In our Vanilla example, applying drive( A, B) to
sg, in the resulting t7 the center state is center[t”] = {t = B}, and the pricing function prices[t”]

has value 0 for each p; = A, 1 for each p; = T, and 2 for each p; = B.

The decoupled state space is the space of all decoupled states reachable from s{ , along with the
corresponding decoupled-state transitions. A goal decoupled state s/ is one where s, is reached,
like {p; = B,...,p, = B} in the decoupled state ¢ just described. From such an s/, a plan 7 for
the input task IT can be extracted by augmenting the center path 7€ [s/] with, for every leaf F'*, a
7[5/ ]-compliant leaf path ending in a goal leaf state sL, i.e., in a leaf state satisfying s,[FL]. In
other words, we now select goal leaf paths, and commit to them. In s/ = ¢/ as just described, for
each p; we select the compliant leaf path (load(p;, t, A),unload(p;,t, B)), leading to the plan 7 that
loads all packages, drives to B, and unloads all packages.

Selecting, for the plan 7, the cheapest compliant paths ending in the goal leaf states sZ, by

construction we have cost(m) = cost(m9[s]]) + 3 gLz prices[s7](sL). If we select, for each

FL, an s with minimal prices[s?](s”) among all goal leaf states for F'”, then 7 is guaranteed
to be optimal among the plans for IT whose center action subsequence is 7€ [s7]. We denote by
goalprice[s |(F'L) the (minimal) goal-price of a leaf factor F'* in a goal decoupled state s/, for-
mally goalprice[s/](FL) = MiN L gL, [FL] prices[s7](s").

Observe that extensions of the center action subsequence 7€ [s7 | may lead to cheaper plans
overall, because, with additional center actions, cheaper leaf paths may become available.? To guar-
antee optimality, decoupled search must hence continue the search on goal decoupled states. Prior
work has shown that standard search algorithms can be easily adapted, by encoding the cost of the
compliant leaf goal paths, in a given goal decoupled state s7 , as an additional outgoing state transi-
tion from s/, which must be taken to end the search. For our purposes here, the main implication is
that trying to reach the goal (non-goal decoupled state) is different from trying to decrease the prices
of compliant goal leaf paths (goal decoupled state). Our stubborn set constructions will distinguish

these two cases.

“l

Stubborn set construction requires to analyse goal achieval starting from a given state. To do
so for decoupled states s7, we will need the following concept of decoupled plans, not introduced
in this form previously. Given s”, a decoupled plan is a transition path 77 in the decoupled state
space, leading from s7 to a goal decoupled state s. The center-action sequence underlying 77
is denoted by TI'C[ﬂ']: ]. To link decoupled plans 77 to actual plans for the input task II, we will
consider the global plans, i.e. the plans 7 for II, corresponding to 77/ : a global plan given 77 is
any 7 extracted from s using cheapest compliant paths ending in minimum-price goal leaf states.
Observe that all global plans 7 given 7 have the same cost, namely the optimal cost of any plan
for IT using the center-action subsequence 7€ [s7] = 7€[s”] o 7¥[n”]. We say that 77 is optimal
if the cost of the global plans given 77 is minimal among all decoupled plans for s*. We further
say that 77 is strongly optimal if it is optimal and 7rc[7rJT | contains the minimal number of 0-cost

actions among all optimal decoupled plans for s7 .

3. For example, say that in s” the leaf goal have-car has price 20000 via the applicable leaf action buy-car. But if we
apply a center action get-manager-job, then the leaf action get-company-car becomes applicable, reducing the leaf
goal price to 0.
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3.2 Strong Stubborn Sets

Strong stubborn set (SSS) pruning is a form of partial-order reduction in state space search, exploit-
ing action commutativity to safely prune a subset of the applicable actions in a state. As previously
outlined, the method analyses, given a state s, how actions enable each other to achieve some open
part of the goal when starting from s, and how these actions may interfere with other actions. We
briefly spell this out in what follows, in a form connecting directly to our later extensions for de-
coupled search.

We use a syntactic characterization of stubborn sets, based directly on the syntactic specifica-
tions of actions in the input task, as opposed to a semantic characterization relying on properties of
action executions in particular states. The syntactic characterization is coarser, but is simpler and is
what we use in practice.

Let s be a solvable non-goal state, s [~ s,, and let As C A be a set of actions. We say that A, is
safe for s if there exists a strongly optimal plan ™ = (a1, ..., ay) for s such that a; € A,. We need
7 to be strongly optimal, because otherwise the search can become incomplete in the presence of
0-cost actions.* Note that we need to take care only of solvable states here as, on unsolvable states,
any pruning method (any subset of applicable actions) is optimality-preserving.

Strong stubborn sets are a means to derive safe sets A,. Towards this, two basic notions are
employed:

e Given a partial assignment p where s [~ p, an action set A C A is a necessary enabling set
for p in s if there exists v € vars(p) such that s[v] # p[v] and A = {a’ € A | eff (a)[v] =

plv]}.

e Given a,a’ € A, we say that a and o interfere if eff (a) }f pre(a’) or eff (a’) }f pre(a) or
eff (a) i eff (a’).

In other words, a necessary enabling set for p is the set of achievers of one part of p that is still open;
a and o’ interfere if one disables the other’s precondition, or they have conflicting effects.

These two notions can be combined in a simple recursive way to derive a safe action set for any
non-goal state s. Namely, an action set .4, is a strong stubborn set (SSS) for s if the following
conditions hold:

(i) A, contains a necessary enabling set for s, in s.

(ii) For all actions a € A not applicable to s, A5 contains a necessary enabling set for pre(a) in
S.

(iii) For all actions a € A, applicable to s, A, contains all actions a’ interfering with a and where
pre(a) || pre(a’).

The proof that such A, is safe was originally given in planning by Alkhazraji et al. (2012), and
was later enhanced by Wehrle and Helmert (2014) allowing (amongst other things) reachability
information, captured above in the requirement pre(a) || pre(a’) in (iii). We include the proof here
as our later proofs for decoupled strong stubborn sets will be extensions thereof.

Consider some plan m = (ay, ..., ay) for s. Then the following properties hold:

4. This happens in the following example: Let s, s’ be two solvable non-goal states such that s[a1] = s', and s'[a2] =
s, where cost(a1) = cost(az) = 0. Then a; starts an optimal plan in s and as in s’, but the action sets A5 = {a1}
and A, = {a2} prune all solutions for s and s’.
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(a) There exists an action shared between Ay and 7, i.e., As N {a1,...,a,} # 0.

This is because by (i) A contains a necessary enabling set for s, in s.

Given (a), let a; be the shared action with smallest index, i.e., say that ay € A and {aq,...,

ak,l} NAs = 0.

(b) ay, is applicable to s.

This is because, otherwise, by (ii) A5 contains a necessary enabling set A for pre(ay) in s, and
one a € A must precede ay on 7, in contradiction to ay, being the first shared action.

(c) ay, does not interfere with any of the preceding actions a;, 1 < i < k — 1, where pre(a) ||
pre(a;).
This is because, if it did, then by (iii) we would have a; € A, again in contradiction to ag, being
the first shared action.

(d) aj can be moved to the front of =, i.e., 7’ := (ag,a1,...,ak_1,ak4+1,---,ay) is a plan for s.

To see this, consider that, by (b), ay, is applicable in s. As a; is applicable in s as well, we must
have pre(ay) || pre(a1), so by (¢) a; does not interfere with ay, and hence ay, is still applicable
in sfa;]. But then, the same argument applies to ao and s[a1], so iterating the argument we
obtain that, for 1 < i < k — 1, pre(ay) || pre(a;) and a; does not interfere with a.

The claim follows directly from (d).

4. Strong Stubborn Sets for Star-Topology Decoupled Search

We now show how to apply the idea of strong stubborn set construction to decoupled search, for
arbitrary star topologies. Section 4.1 introduces basic concepts used in all our constructions, lifting,
amongst others, the notions of safety and necessary enabling sets to decoupled search. Section 4.2
then introduces decoupled strong stubborn sets for non-goal decoupled states s”, where s, has yet
to be reached; and Section 4.3 shows how to handle goal decoupled states s7, where s, is already
reached yet may be reached with cheaper compliant leaf paths below s7. In each of these two
sections, we prove the safety of our constructions.

Throughout, we assume an FDR task IT = (V, A, 59, 5,) and a star factoring F with center F'©
and leaves Il € FL.

4.1 Basic Concepts

In the standard setting, i.e., in forward state space search, safety of an action set A for a non-goal
state s means that there exists a strongly optimal plan for s starting with an action from A,. For
decoupled search, i.e., decoupled states s”, this definition changes in two ways. First, instead of
plans for s we need to talk about decoupled plans for s”. Second, as decoupled search has to
continue below s” even if s7 is a goal decoupled state, instead of “non-goal” we need to say that
the empty decoupled plan is not optimal for s7. We hence define:

Definition 1 (Safety). Let IT = (V, A, s, s) be an FDR task and F a star factoring. Let s* be a
solvable decoupled state for which () is not an optimal decoupled plan, and let AT C A be a set of
center actions.
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We say that AL is safe for s” if there exists a strongly optimal decoupled plan 7 for s* such
that 7€ "] = (af, ..., aS) where a§ € AL.

Clearly, a safe A7 for s” plays the same role in search as a safe A, for s: pruning outgoing
transitions from s” induced by actions outside A7 preserves optimality and completeness of the
search. Note that, if () is an optimal decoupled plan for s7, then any pruning method preserves op-
timality and completeness on s”, so such s7 can be disconsidered in the analysis of safety (though
not in the generation of stubborn sets, as we can’t recognize such states up front).

To identify safe A7, we will rely on commutativity, i.e., on plan permutations. Whereas previ-
ously this simply referred to plans for s, the notion of permutations now becomes significantly more
complicated, as we have to consider both, decoupled plans and their associated global plans.

Recall from Section 3.1 that, given a decoupled state s” , a decoupled plan 77 for s7 merely is
a path in a reformulated search space (the decoupled state space). The meaning of 77 for the actual
input task is defined in terms of the global plans 7 given 7. These consist of the center action
sequence 7°[s7] o m¢[r7], augmented with a cheapest compliant goal leaf path 7" for each leaf
factor F''. We define permutations over both, 77 and 7 simultaneously:

Definition 2 (Plan Permutation). Ler IT = (V, A, so, s+) be an FDR task and F a star factoring.
Let s be a solvable decoupled state, and let 77 and w7 " be decoupled plans for s” .

We say that 7 and ©”' are permutations if (i) 7% [n”] is a permutation of ©° " l], and (ii)
there exist global plans m and 7' for ©°, respectively w7 " such that T is a permutation of T'.

Here (ii) essentially says that, on top of the center paths being commutative, the corresponding
cheapest compliant goal leaf paths need to be commutative as well. For safety, (i) would be enough
in principle, i.e., it would be enough to identify a center action starting a permutation of a strongly
optimal decoupled plan. Our construction of strong stubborn sets however, i.e., our sufficient crite-
rion for permutability, relies on both (i) and (ii).

A second major implication of the interplay between decoupled plans and their global plans is
that we have to think carefully about what is the “future” for a decoupled state s”. Stubborn set
construction reasons about the future, which in the standard setting simply are the possible plans m
for the state s in question. But what is the future for s7? A priori, of course the possible decoupled
plans 77 for s7. Yet, 77 merely is a path in a reformulated search space. An associated global plan
7 is not an action sequence “starting in s”: 7 starts in the initial state of the input planning task.
In particular, the goal leaf paths ” in 7 schedule actions along both, the center action subsequence
7[s”] up to 57, and the center action subsequence 7 [7”] behind s7.

Our natural solution to this issue is to consider the “past” as everything scheduled along 7€ [s
and the “future” as everything scheduled along 7€ [n%]. Precisely, say that 7 is a global plan
given 77, and 7 = (ay,...,a,). Consider the center action subsequence 7°[s*] o 7¢[7*] in
7, and consider, within that subsequence, the starting action of 7¢[7%]. Denote by ¢ the index
of that action occurence in 7, i.e., a; is the start of 7€ 77| within 7. We capture the “past” as
7Pt .= (ay,...,a;1), and the “future” as 7/ := (a4, ..., a,). In other words, we consider
the first center action behind s” — the center action decoupled search applies in s” to find 7/ — and
we use that action as the pivot separating the past from the future. We will be using the notations
ag, Pt and 7/ throughout.

While this definition of the future is reasonably simple, it leaves us with another subtlety, namely
that “the same” 7 may be scheduled in different ways, leaving us with undesirable ambiguity regard-
ing the difference between past and future. To see this, consider any goal leaf path 77, Observe that

}‘]’
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the part of 7 contained within 77! — the leaf path’s prefix scheduled in the past — must comply
with 7¢[s”]. Yet nothing forces this prefix to be maximal: we are free to schedule parts of 7 in
the future, even if they comply with 7€ [s7] so could be scheduled in the past. For illustration, say
the center (e.g. a truck) has already done up to s” what it needs to do in order to support a leaf (e.g.
providing transport for a package). But now the leaf needs to do additional tasks independently from
the center (e.g. unpacking, assembling package content, ...). Then 7 can schedule these additional
tasks in 77%%*, but may just as well schedule them in 7/,

In other words, 7//“" may contain actions that have nothing to do with “the remaining task
starting from s7. It will be of service to our analyses to avoid this kind of behavior. We will
restrict focus to global plans 7 that are past-maximal, where, intuitively, the leaves do nothing in
mfuture that they could do in wP%t,

The precise form of past-maximality we will need differs depending on the context: we intro-
duce one notion for star topologies, and another different one for our analysis of fork topologies
below. In our notion for star topologies, past-maximality means that no leaf action scheduled in the
future can be moved in front of the pivot action a;:

Definition 3 (Past-Maximality). Let IT = (V, A, s, S«) be an FDR task and F a star factoring. Let
s” be a solvable decoupled state, let ©7 be a decoupled plan for s*, and let T be a global plan
given 7.

Define ay, 7P%t, and w7 g5 above. We say that T is past-maximal if, for every leaf factor
FL and every k > t where ay, € AF[F¥| \.AC, if we change m by moving ay, to any position in front

of a, then T is not a plan anymore.

It is easy to see that a focus on past-maximal global plans is not restricting, in the sense that
every global plan can be rescheduled to be past-maximal:
Lemma 1. Let IT = (V, A, s, 5) be an FDR task and F a star factoring. Let s” be a decoupled
state, let T be a decoupled plan for s”, and let 7 be a global plan given w7 .

Then there exists a permutation of T that is a global plan given 7, and that is past-maximal.

Proof. Obtain such a permutation 7" as follows. Start with 7’/ := 7. If 7’ is past-maximizing,
stop. Else, select a counter-example FL and k, move ay in front of a; in 7', and iterate. This
algorithm terminates as, after each step, there is one action less behind a;. The outcome 7’ satisfies
the claim as we have not changed the center-action subsequence, and the permuted leaf paths are
still compliant with that sequence. O

We are now ready to introduce the ingredients underlying our stubborn set constructions. As
before, we will need to reason about how actions interfere with each other, and how they enable
each other. The former remains exactly the same as before. The latter, however, needs to be adapted
substantially given the more complex structure of the search space. We need to distinguish between
enabling (a) conditions p not reached in a decoupled state, vs. (b) conditions p reached in a decou-
pled state. For (b), our constructions will depend on the specific context (stars vs. forks/inverted
forks, goal vs. non-goal decoupled states), so we will introduce these in the respective context.
For (a), the same construction works in all contexts. Namely, we employ the following extended
definition of necessary enabling sets:

Definition 4 (Decoupled Necessary Enabling Set). Let IT = (V, A, s, s.) be an FDR task and F a

star factoring. Let s* be a decoupled state, and let p be a partial variable assignment not reached

ins”.
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An action set A is a decoupled necessary enabling set for p in s’ if one of the following
conditions holds:

(i) There exists v € wvars(p) \ FC such that p[v] is not reached in s*, and A = {a € A |

eff (a)[v] = p[v]}.

(ii) Condition (i) does not apply, and there exists F* such that p[F'*] is not reached in s”, and
A= Uvaars(p)ﬂFL{a €A ‘ eﬁ(a) [’U] = p[U]}.

(iii) Neither (i) nor (ii) apply, and there exists v € vars(p) N FC such that center[s” |[v] # p[v],
and A = {a € A| eff (a)[v] = p[v]}.

In other words, a decoupled necessary enabling set first checks whether (i) some leaf-variable
value is not reached in s7, then checks whether (ii) some leaf-factor state is not reached in s”, then
checks whether (iii) some center-variable value is not reached in s”. In each case, the set of all
achieving actions is selected.

As p is not reached in s”, one of (i) — (iii) must necessarily be true. Observe that this is not so
for just (i) and (iii) alone, as every single leaf-variable value in p may already be reached in some
leaf state of F'X, yet that may not be so for their combination. In other words, necessary enabling
sets become more complicated, relative to standard search, due to the difference between leaf states
being true in a unique state s, vs. leaf states being true in one out of the set of states represented by
a decoupled state s .

We remark that the ordering of conditions (i) — (iii) in Definition 4 is arbitrary in the sense that
any ordering is possible in principle. The stated ordering encapsulates a preference to regress over
open leaf conditions first, the aim being to extract open center conditions (which the decoupled
strong stubborn set will be chosen to support) “as close as possible” to the current decoupled state
s7. The intuition is to first move the leaves towards their goals — by enabling the required center
preconditions — and to care for the center goals only once the leaf goals are achieved.

4.2 Non-Goal Decoupled States

Towards our constructions for non-goal decoupled states s7

dition p reached in s” .

To understand why this is needed, consider the role of reached leaf states s” in s7, where for
each F' one such s” will be used, and that commitment will be made at plan extraction time. This
implies that, just because some condition p on F'” is reached in s”, it does not have to be true
at the corresponding point in the global plan 7 we will finally commit to. Namely, defining “the
corresponding point” in 7 as the state so[7?%5!] before application of the pivot action a;, p will have
to be false at this point if a; has a precondition contradicting p. Nevertheless, p may have to be true
at some later point along 7, to enable some other action or part of the goal.

For illustration, consider the decoupled state s/ := s{)T in our NoEmpty example, consider
F% := {p1}, and consider p := {p; = A}. Condition p is reached in s*. Yet, say our decoupled
plan 77 decides to use a; := drive(A, B,p1) in s”. Then p must be false prior to the application
of a; in the corresponding global plan 7, due to the incompatible precondition {p; = T'}. If p
is required later on, e.g. if s,[p;] = A, then p will need to be enabled in the future, behind the

application of a; in . We need to reason about how to do that.

, we next specify how to enable a con-
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So, how do we find a set of actions that will necessarily be used to enable a reached F'* condition
p in the future? A simple possibility would be to follow Definition 4 (ii) and just select all actions
supporting any variable value in p. Done recursively though, this is likely to collect a very large
set of reached actions that affect F'“. We hence design a definition more tailored to the specific
situation: a reached F'* condition p, false in some reached F'” state s (namely sq[7P%s!]|[F'F]),
yet true in some F'” state 77 (namely one r* visited along 7/**%"¢), where r* is achieved on a path
nl . starting from s (namely the respective leaf path segment within mfuture) Tt suffices to ensure

that we collect at least one action along every such path 72, :

Definition 5 (Reached-Enabling Set). Let IT = (V, A, so, s«) be an FDR task and F a star factor-
ing. Let s” be a decoupled state, let F'* be a leaf factor, and let p be a partial assignment to F'*
reached in s” .

We say that an F state s is a reached-enabling state for p in s” if
(i) st is reached in s*, and s = p; and
(ii) there is an F* path &, from s* to an F* state r* where r* = p.

An action set A is a reached-enabling set for p in s” if every path L, as in (ii) contains at least
one action from A.

For illustration, in our above example where p = {p; = A}, the only reached s” where s [~ p
is s* = {p; = T}. That s” has two outgoing transitions, labeled by unload(p1,t, A) respectively
unload(py,t, B). Intuitively, only unload(py,t, A) makes sense as an enabler for p. And indeed,
that action is a reached-enabling set on its own, because every path 7%, = achieving p must use it
eventually.

It is easy to see that our construction is correct, in the sense that a reached p not true at the
end of wPest, yet true somewhere on rfuture  must be enabled on /4% with an action from a

reached-enabling set:

Lemma 2. Let IT = (V, A, so, s+) be an FDR task and F a star factoring. Let s’ be a solvable
decoupled state, let F* be a leaf factor, and let p be a partial assignment to F* reached in s” . Let

77 be a decoupled plan for s”, and let 1 = (ay, ..., ay,) be a global plan given ™7 . Let A be a
reached-enabling set for p in s” .
Define a;, wP%, and w/"¢ gs before. Denote the states traversed by © as sq, ..., Sp. If

St—1 [~ p but there exists k > t such that sx_1 |= p, then {as,...,ax_1} N A # .

Proof. Denote by 71 = (a¥,... aL) the FL leaf path in 7 preceding ay, i.e., the F'* leaf path

induced by (aq,...,ar_1). Say that 7l traverses the F'I states sé, ...,sL . Denote by [ the index

’ m
of the F'© state at the end of 77, Denote by 7/, := (af,,,...,ak) the segment of w* within
quture
By construction, SZL is reached in s . By prerequisite, le K~ p. Furthermore, sZ |= p because,
by construction, a’ is the last action preceding ay, that affects F'*, so s& agrees with s;_1 on F'Z,
and by prerequisite s;_1 = p. Finally, the segment 7TlL_)m of w is an F'* path from le to sL. So
sk is a reached-enabling state for p in s”. By Definition 5, A contains at least one action a” from

ﬂlL_m, which shows the claim. O

Observe that a reached-enabling set A is essentially a cut between the node sets {s”} and {r*}
in F'L’s state space. One could, hence, consider to compute reached-enabling sets via minimum
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cuts. Observe though that this would be optimizing the wrong objective — we want to minimize,
not the number of cut-set transitions, but the number of actions | A| these are labeled with. It is
easy to see that optimizing that objective is NP-complete.’> More importantly, reached-enabling sets
will need to be computed very frequently — potentially many times on every search state — so their
computation must be extremely cheap.

An alternative could be a greedy procedure considering only the actions a labeling an outgoing
transition s© % % of a reached-enabling state s, iteratively collecting and removing one such a
until the node sets {s”} and {r} are disconnected. But this also would be too expensive, requiring
repeated reachability checks on the leaf state space. We therefore settle for a trivial approxima-
tion, simply collecting all actions a from the transitions s“ < ¢“. This makes the construction
rather inclusive of course, that is, the constructed reached-enabling sets may be large (e.g. we fail
to discard unload(p1,t, B) in the example above). We will show below how more targeted (yet
sufficiently cheap) constructions can be designed for goal decoupled states and for fork structures,
where enabling p is only relevant if its price decreases strictly.

We are now ready to put the pieces together, and define strong stubborn sets for non-goal de-
coupled states:

Definition 6 (DSSS: Stars, Non-Goal). Let IT = (V, A, s, Sx) be an FDR task and F a star factor-
ing. Let s” be a non-goal decoupled state.

An action set A7 is a decoupled strong stubborn set (DSSS) for s if all of the following
conditions hold:

(i) .Asf contains a decoupled necessary enabling set for s, in s”.

(ii) For all actions a € Asf not reached in s”, Af contains a decoupled necessary enabling set

for pre(a) in s”.

(iii) For all actions a € AL reached in s”, AL contains all actions o' interfering with a and where
pre(a) || pre(a’).

(iv) For all actions a € AL reached in s”, and for all F* where pre(a)[F] # 0, AL contains a
F

reached-enabling set for pre(a)[F*] in s”.
Items (i) — (iii) of this definition are in obvious correspondence to that for strong stubborn sets
in standard search (cf. Section 3.2), replacing necessary enabling sets with decoupled necessary
enabling sets in (i) and (ii), and replacing applicability with being reached in (ii) and (iii). The
new item (iv) is needed to cover enablers for leaf preconditions already reached in s7, as discussed
above.
Clearly, the construction of DSSS as per Definition 6 is operational. Viewing the definition as
a recursive fixed-point algorithm, all the required constructs — decoupled necessary enabling sets,
interfering actions, reached-enabling sets — can be computed in time low-order polynomial in the
size of the input task and its leaf state spaces, i.e., in the same size parameters as the computation
of the decoupled states themselves.
It remains to prove that Definition 6 is actually correct, i.e., that a DSSS A7 for s” is safe for s7.
We do so via extending the proof for strong stubborn sets as given in Section 3.2. In particular, we

5. The proof uses a reduction from Hitting Set, where each label subset {l1,...,l,} is represented through a separate
path w2, carrying these labels.
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show that for every decoupled plan 77 in 57, A7 contains a center action starting a permutation of

77 (which by Definition 2 is also a decoupled plan). Note that we actually prove the stronger result
that the two decoupled plans induce globals plans leading to the same goal state, which implies the
claim. We include the full proof here, as the underlying analysis is key to understanding why our
techniques work.

The proof consists of six successive observations (a) — (e), and a final concluding argument.
Observations (a) — (c¢) correspond to those for the standard setting, namely that (a) there exists a
shared action, (b) the first shared action ay, is applicable, (c) aj does not interfere with the preceding
actions. The only major difference here is that, in (b), we can only conclude that a;, is reached in the
decoupled state s7, as opposed to being applicable in a state s. Observation (e), moving a;, up front,
mirrors observation (d) for the standard setting. Observations (c) and (f), as well as the concluding
argument, are new. They are required to: (c) deal with the difference between being reached vs.
being applicable; (f) prove that aj is a center action so we’re actually permuting the center path
and hence the decoupled plan; (concluding argument) deal with the more complex structure of
permutations, i.e., the interplay between decoupled plans and global plans.

Theorem 1. Let IT = (V, A, so, s«) be an FDR task and F a star factoring. Let s” be a solvable
non-goal decoupled state, and let 7 be a decoupled plan for s”. Let AT be a DSSS for s”.
Then Af contains a center action starting a permutation of 7 .

Proof. Let 7 be a global plan for 77, and assume, without loss of generality by Lemma 1, that 7 is
past-maximal. Denote ™ = (ay, ..., a,). As above, let a; be the starting action of 7€ [7*] in 7, and
denote 7P% := (ay,...,a;_1) and 7/ := (a;, ... a,). Then the following properties hold:

(a) There must be an action a shared between A7 and 7/ ie.,a € AT N{ay,...,a,}.

First, s, is not reached in s7, as s7 is a non-goal decoupled state. By Definition 6 (i), A7

contains a decoupled necessary enabling set A for s, in s7. At least one a € A must achieve
some sub-assignment p of s, that is not reached in s7. Observe that this action a cannot be
scheduled on 7% and hence must be on 7/%vre: if p pertains to the center, this is trivial; if p

pertains to a leaf, this is so because otherwise p would be reached in s” .

Given (a), let ay, be the first shared action, i.e., say that a; € A7 and {as,...,ax_1} NAT = 0.

(b) ay, is reached in s”.

This is because, otherwise, by Definition 6 (ii) .A7 contains a decoupled necessary enabling
set A for pre(ay) in s7. With the same argument as in (a), applied to pre(ay,) instead of s,,
this yields a shared action between A7 and 7/**“"*, That action must precede aj, on 7/, in
contradiction to ay being the first shared action.

(c) ay does not interfere with any of the actions a;, t < ¢ < k — 1, where pre(ay) || pre(a;).
This is because, if it did, then by Definition 6 (iii) we would have a; € .Asf , again in contradic-
tion to ay, being the first shared action.

(d) The leaf precondition of ay, is true at the end of 779, i.e., in so[7P?!].

Assume to the contrary that, for some F'¥, p := pre(ay)[F'*] is not true at the end of 7%, i.e.,
prior to the application of ay, in 7. As 7 is a plan, p is true prior to the application of a; however.
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In particular, k£ > ¢. Furthermore, by (b) and Definition 6 (iv), Asf contains a reached-enabling
set A for p in s7. We can apply Lemma 2, and get that there exists an action a; € A C A7
preceding aj, on /%% again in contradiction.

future

(e) ap can be moved to the start of . Precisely, 7/ := 7P%t o (A, Gty .oy A1, Qlg 1y - - -

an) is a plan for IT.

To see this, consider that, first, a;, is applicable after wP%', i.e., a;, is applicable to sg [[Trp‘”t]]:
by (b) ay, is reached in s7, in particular its center precondition is true at that point; by (d), its
leaf precondition is true as well. Second, as both a;, and a; are applicable in sg [[wp‘“t]], we must
have pre(ag) || pre(at), so by (c) a; does not interfere with ay, and hence ay is still applicable
in s[7?%! o (a;)]. But then, the same argument applies to a;1 and s[7P*¢ o (a;)], so iterating
the argument we obtain that, for ¢t < i < k — 1, pre(ax) || pre(a;) and a; does not interfere
with aj. The claim follows directly from this.

(f) ay is a center action.

Assume for contradiction that a;, does not affect the center, a;, € A*[FL]\ A for some FL. As
7 is past-maximal, a; cannot be moved in front of a; in 7 without violating the plan property.
However, the plan 7’ constructed as per (e) does exactly that, in contradiction.

We can now easily construct the desired permutation 77/ "of 7. We construct the underlying center-
. c! . Ci_F . . . . .
action sequence 7 to be like 7% [ ], but moving the action ax, which by (f) is a center action
so is part of 7¢[77], to the front. Consider the plan 7’ constructed as per (¢). The center-action
subsequence of 7’ is 7¢[s7] o 7C". So 7/ consists of that center path, augmented with cheapest goal
leaf paths compliant with that center path and ending in cheapest goal leaf states. Therefore, 7’
induces a decoupled plan 77 " for s7, and the permutation 7’ of 7 is a global plan for =7 ' This
concludes the argument. O

Corollary 1. Let I1 = (V, A, s, s,) be an FDR task and F a star factoring. Let s” be a solvable
non-goal decoupled state. Let Asf be a DSSS in s*. Then ALZ: is safe for s” .

4.3 Goal Decoupled States

Let us now consider goal decoupled states s7 . The only thing that needs to change, relative to the
definition of DSSS for non-goal decoupled states, is item (i): How to ensure that there is a shared
action, i.e., that at least one action from 7/%“" ig contained in Asf ?

For non-goal decoupled states, this question was easily answered in terms of a decoupled nec-
essary enabling set, supporting some part p of s, not reached in s7. In a goal decoupled state s,,
however, such p does not exist. We instead need to capture all ways in which the goal price of some
leaf may still be improved. We do so in terms of what we call goal-price frontier action sets:

Definition 7 (Goal-Price Frontier Set). Let I1 = (V, A, so, s«) be an FDR task and F a star factor-
ing. Let s be a goal decoupled state, and let F'* be a leaf factor where s,[F] # ().
We say that an F* transition s* % t is a goal-price frontier transition for F* in s if

(i) s is reached in s and prices[s] |(s") + cost(a) < prices[s]](t*); and
(i) s % t&is part of an F* path ©* from so[F] to an F state r™ where r* |= 5,[F"] and

cost(ml) < goalprice[s]](FF).
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An action set A is a goal-price frontier set for F'* in s if. for every path " as in (ii), the segment

wl . of wl starting with s* % 1 contains at least one action from A.

Example 2. Figure I shows the leaf state space of the slightly modified example with the car
and the manager, where ¥V = {job, have-car, location}, with D(job) = {worker, manager},
D(have-car) = {T, F}, and D(location) = {A, B}. The actions are A = {get-manager-job,
walk, drive, get-company-car, buy-car}, where get-manager-job changes the value of the vari-
able job from worker to manager for cost 1, walk and drive set position from A to B at a
cost of 100, respectively 1, where drive has the additional precondition {have-car=T'}. The ac-
tions buy-car and get-company-car set have-car from F to T at a cost of 20000, respectively
0, where get-company-car has the additional precondition {job=manager}. The initial state is
s = {job=worker, have-car=F,location=A}, the goal is s, = {location=B}.

0 20000

20001

Figure 1: Illustration of the leaf state space of the task in Example 2. The actions in the goal-price
frontier set are highlighted in blue.

We set the factoring F with a single leaf to F© = {job} and F* = {have-car, location}. The
pricing function of the initial decoupled state sof is shown in the red numbers next to the states in
Figure 1, where we abbreviate, e.g., state {have-car = F,location = A} by FA. Observe that
s(])r is a goal decoupled state, where the extracted global plan is (walk) with a cost of 100. The
goal-price frontier set for S‘S: is A = {get-company-car}, which captures the only way to reduce
the goal price. In terms of the definition, both F'A and F B qualify as s*, where the respective t"
are TAand TB.

We use the goal-price frontier sets for all leaf factors that have a goal to ensure progress towards
a cheaper goal decoupled state (replacing the decoupled necessary enabling set for the goal). In our
example, the action get-company-car in the goal-price frontier set is not applicable because of the
unsatisfied center precondition { have-car = T'}. This leads to the center action get-manager-job
being added to AL. Applying it to sof results in the state s7 := sof [get-manager-job] which has
a global plan (get-manager-job, get-company-car, drive) with cost 2.

Similarly as for reached-enabling sets above, we prove that this construction indeed captures
all potential enabling actions. From this property, the proof of safety will follow immediately. As
the construction of a frontier is more selective than that of reached-enabling sets — targeted at price-
improving transitions — its correctness proof is more complicated though.
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Lemma 3. Let 11 = (V, A, sq,5.) be an FDR task and F a star factoring. Let s} be a goal
decoupled state, and let F* be a leaf factor where s, [F L | # 0. Let 7% be a decoupled plan for s7,
and let 7 be a global plan given ©”. Let A be a goal-price frontier set for F'* in s .

Define a;, w7, and "¢ as before, and denote the F* path within 7 by 7. If cost(ml) <

goalprice[s] |(FL), then /*r contains an action from A.

L the leaf states traversed by 7. As 7! strictly decreases the goal
L

Proof. Denote by s¥, ..., sk

price for F¥, 7 cannot be fully contained in 7%, Denote by I the index of the first action on 7
where al is on 7/uture,
By construction, s% is a goal leaf state for F'*, and cost(7) < goalprice[s/](F¥). In particu-

lar, cost(nl) = cost((a1 ,...,ak)) < prices[s](sk), and hence there exists an index i > [ where

cost((a1 ,...,al)) < prices[s]](sF). Let i be the smallest such index. Consider the transition

sk, —Z> sk on k. Asi > I, this transition is part of 7/uure,
L

Because i is the smallest index where cost((a},... aF)) < prices[s{](s)), it follows that
prices[s]](sF ;) < cost({ak,...,al ;). Observe that, hence, s!  is reached in s7, as its price
is upper—bounded by a finite value. Further, observe that, adding the cost of a” on both sides of
the inequality prices[s7|(sF ;) < cost((aF,... aF ), we get prices[s]](sF |) + cost(aF) <

2
cost({al,... aF)). As, by construction, cost({al,... aF)) < prices[s](sF), we obtain that

» Yy Eias') (2
L
prices[s]](sF ;) + cost(ak) < prices[s]](sF). Furthermore, s , iy sl sk lies on the FL path -
from so[F'7] to sk where, as already observed, s~ = s,[F¥] and cost(n") < goalprice[s](F¥).

L
Putting these observations together, 3{4—1 SN SZL is a goal-price frontier transition for F'* in s7.
Therefore, as A is a goal-price frontier set for '~ in s{, we know that the segment (al, ... ak)
of L between s | and sk, must contain an action a]L € A. The claim follows as (al, ..., al) is
fully contained in 7/*tvre, O

How to compute a goal-price frontier set? Like for reached-enabling sets, this computation is
highly time-critical, so we settle for a similar very simple solution: We collect all actions a labeling
the goal-price frontier transitions s 2 t~. Note that this is more targeted still than our solution
for reached-enabling sets, as the definition of goal-price frontier transitions is more restrictive. For
effective implementation, we precompute, within every leaf state space and for every leaf state s”,
the minimum cost g *(s%) to reach s* from so[F'*], and the minimum cost h*( L) to reach s,[F¥|
from s”. Given s/, the goal-price frontier transitions then are exactly those s = ¢ that qualify for
Definition 7 (i) which is cheap to test, and where g*(s*) + cost(a) + h*(tL) < goalprice[s] ](F¥).

We can now state the definition of DSSS for goal decoupled states very easily:

Definition 8 (DSSS: Stars, Goal). Let IT = (V, A, s, sx) be an FDR task and F a star factoring.
Let s be a goal decoupled state.

An action set AT is a decoupled strong stubborn set (DSSS) for sI if all of the following
conditions hold:

(i) For every F'* where s,[F¥] # 0, AT contains a goal-price frontier set for F* in s .
(ii) — (iv) as for non-goal decoupled states, Definition 6, replacing s with s7 .

The proof of safety also is very similar to that for non-goal decoupled states, i.e., that of Theo-
rem 1:
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Theorem 2. Let 11 = (V, A, so, 5x) be an FDR task and F a star factoring. Let s be a goal
decoupled state for which () is not an optimal decoupled plan, and let 77 be a strongly optimal
decoupled plan for sl . Let AL be a DSSS for s] .

Then Af contains a center action starting a permutation of 7.

Proof. The only difference to the proof of Theorem 1 is in argument (a), showing that there is a
shared action a contained in both 7/“**"* and A7 .

Observe that, with () not being an optimal decoupled plan, 77 must strictly decrease the price
of the goal for at least one leaf factor FL. That is, there must exist F~ where s, [F L} # () and,
denoting the F' path within 7 by 7%, cost(n?) < goalprice[s]](FL). By Definition 8 (i) AF
contains a goal-price frontier set A for F in s7. We can apply Lemma 3, and get that m/vture

contains an action from A, proving the claim. O

f

Corollary 2. Let I1 = (V, A, 59, 5.) be an FDR task and F a star factoring. Let s be a goal
decoupled state for which () is not an optimal decoupled plan. Let AT be a DSSS for sI. Then AT
is safe for s .

Note that, if there is no goal-price frontier transition for F'* in s/, then () is a goal-price frontier
set for F' in s7. If this is so for all I~ on which a goal is defined, then, consequently, () is a
DSSS for s7. This is safe, i.e., we can prune all outgoing transitions of s7 , because in this situation
the goal price cannot be improved. In other words, goal-price frontier sets encompass a sufficient

criterion for safely stopping the search at s7 .

5. Special Cases Facilitating More Effective Handling

As we have seen, the construction of safe action sets in general star topologies requires to be rather
inclusive, collecting potentially many actions which is detrimental to pruning power. This is specif-
ically so for non-goal decoupled states (and hence most of the search). The main difficulty is the
handling of reached leaf conditions p, i.e., reached-enabling sets. As p is already fully reached, in
contrast to necessary enabling sets we cannot focus on some small part of p that is still open.

A major remedy is the consideration of more restricted topologies, namely fork and inverted-
fork topologies. These are practically relevant, since they can be easily identified and occur regularly
in planning domains. The key property of these topologies is monotonicity of the pricing function:

e Positive monotonicity: In a fork topology, the price of any one leaf state s* can only decrease
along a search path.

This is because the center has no precondition or effect on the leaves, so whenever a leaf path
becomes center-compliant (all its preconditions on F'C have been provided), it remains so
forever after.

e Negative monotonicity: In an inverted-fork topology, the price of any one leaf state s can
only increase along a search path.

This is because the only cross-factor interaction consists in preconditions of the center on
the leaves. So anything the center does can only pose more requirements on the leaves, and
whenever a leaf path becomes non-center-compliant, it remains so forever after.
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Positive monotonicity is useful because, for reached leaf conditions p, the only future event of
interest is one that strictly decreases the price of some leaf state that satisfies p. Hence necessary
enablers for such p can now be identified in a more targeted manner, similar to the goal-price frontier
sets above. Negative monotonicity is useful because, if a leaf condition p is not reached, then this
will remain so and anything requiring p can be pruned.

For the sake of conciseness, we give summary presentations only, deferring some details, in
particular the full proofs, to Appendix A. We consider fork topologies in Section 5.1 and inverted-
fork topologies in Section 5.2. In Section 5.3, we show how to combine the respective techniques,
as special-case treatments for individual fork/inverted-fork leaves as part of general star topologies.

5.1 Forks

As previously hinted, the major ingredient of our treatment for fork topologies is a concept capturing
how the price of a reached leaf condition p may be improved. This being the key construction here,
we introduce and discuss it in detail. The concept is similar, but not identical to, the definition of
goal-price frontier sets:

Definition 9 (Fork-Price Frontier Set). Let I1 = (V, A, s, $x) be an FDR task and F a fork factor-
ing. Let s” be a decoupled state, let F* be a leaf factor, and let p be a partial assignment to F'*
reached in s” .

We say that an F* transition s* = t© is a fork-price frontier transition for p in s” if

(i) s” isreachedin s, prices[s”](s")+cost(a) < prices[s”](t"), and center[s”] [ pre(a)[FC];
and

(ii) s¥ & L is part of a simple FL path " from so[F"] to an F* state v where v* |= p and
cost(ml) < prices[s”](rL).

An action set A is a fork-price frontier set for p in s” if. for every path ©" as in (ii), the segment
L

wl . of wl starting with s* % 1 contains at least one action from A.

There are three differences to goal-price frontier sets (Definition 7): (a) the additional require-
ment in (i) that center[s”] & pre(a)[FC]; (b) that 7' is required to be simple in (ii), i.e., visit each
FL state at most once; (c) the weaker condition cost(m’) < prices[s”](r") in (ii). Differences
(a) and (b) are sound in fork topologies but not in general, so are benefits of the focus on forks.
Difference (c) is due to the difference between non-goal vs. goal decoupled states: whereas on the
latter the goal price must be reduced globally, on non-goal decoupled states the price reduction
will pertain only to individual leaf states r”. On goal decoupled states s in fork topologies, we
can get rid of difference (c), i.e., instead of cost(w”) < prices[s”](r%) we can use cost(r) <
goalprice[s? | (FT) like in Definition 7. We refer to this variant as fork-goal-price frontier sets.

As before, we show the correctness of our construction, i.e., that it indeed captures all potential
enabling actions. The proof is similar to that for goal-price frontier sets in Lemma 3, with simple
additions tackling the differences (a) — (c):

Lemma 4. Let I1 = (V, A, 50, 5+) be an FDR task and F a fork factoring. Let s” be a solvable
decoupled state, let F* be a leaf factor, and let p be a partial assignment to F* reached in s” . Let
77 be a decoupled plan for s, and let T be a global plan given w7 . Let A be a fork-price frontier

set for p in s”.
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Define ag, wP%t, and "¢ as before. If there exists k > t such that, denoting by {af, ..., aiL
and s§, ..., sk the FL actions, respectively states, in 7 prior to ay, we have cost({a¥, ... al)) <

prices[s”|(sF) and s¥ |= p, then {ay, ..., a;_1} N A # 0.
Proof (sketch). Similarly to the proof of Lemma 3, we consider the smallest index j such that aJL is

L
on /¥ and cost({al, ..., ajL)) < prices[sf](sf), and we prove that 5]{1 Y, s]L is a fork-price
frontier transition for p in s7, from which the claim follows directly.

Difference (c) does not change anything as it is merely a different condition on the F'* path
end state, sz-L in our case here, provided by prerequisite. It remains to prove that (a) center[sf | ¥
pre(af)[FC] and (b) ¥ is simple.

Regarding (a), as CLJI-’ affects F'L', in a fork topology a]L cannot affect the center. Further more,
from prices[s” | (Sﬁl) + cost(af) < prices[s”] (sJL) which is proved exactly as in Lemma 3, we can
therefore conclude that af cannot be reached in s7. We do know, however, that SJL_I is reached in
s7. As the only non-F'* precondition of ajL must be on F, (a) follows.

Regarding (b), in a fork topology, any cheapest compliant leaf path is simple, because without

center preconditions nor effect on the leaf there is no reason to visit the same leaf state twice. [

A similar claim holds for fork-goal-price frontier sets A, i.e., if it holds that cost(7l) <
goalprice[s]](FL), then 7/ contains an action from A. The proof is a straightforward com-
bination of those for Lemmas 3 and 4, essentially applying arguments (a) and (b) from the latter as
an extension of the former to tackle the definition differences (a) and (b) explained above.

From a practical perspective, in difference to goal-price frontier sets, item (ii) in Definition 9
is moot. First, we cannot exploit (b) that 7* must be simple, as the question whether there exist
vertex-disjoint paths from sq[F*] to s* and from ¢ to r” is the 2-vertex-disjoint paths problem for
directed graphs, which is known to be NP-complete (Fortune, Hopcroft, & Wyllie, 1980). Second,
in the weaker condition (c) cost(n”) < prices[s”](r!), the value prices[s”](r") we’re comparing
the cost of w” to is not a constant, i.e., depends on 7~. One could check the condition through a
search below ¢, or through precomputing all-pairs shortest paths on the leaf state spaces, but given
the associated overhead neither is promising. So we settle for the naive approximation collecting all
actions a labeling the fork-price frontier transitions s* = t~. For fork-goal-price frontier sets, of
course, we can apply the same filter as before, i.e., collect a only where g*(s%) + cost(a)+h* (tL) <
goalprice[s](FF).

We are now ready to define decoupled strong stubborn sets for fork topologies. For conciseness,
we subsume both, the non-goal and goal cases, into a single definition:

Definition 10 (DSSS: Forks). Let IT = (V, A, s¢, s«) be an FDR task and F a fork factoring. Let
s” be a decoupled state.

An action set AL is a fork-decoupled strong stubborn set (FDSSS) for s” if all of the following
conditions hold:

(i) If s, is not reached in s”, then .Af contains a decoupled necessary enabling set for s, in s”.

If s, is reached in s”, then, for every FL where s,[F*] # 0, AT contains a fork-goal-price
frontier set for F'* in s .

(ii) For all actions a € A not reached in s”, AL contains a decoupled necessary enabling set

for pre(a) in 57
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(iii) For all center actions a® € AT N A€ reached in s”, AT contains all actions o' interfering
with a© and where pre(a©) || pre(a’).

(iv) For all leaf actions a € AT N AV[FL] reached in s”, Al contains a fork-price frontier set
for pre(a™)[F¥] in s7.

Recall here that, for fork and inverted-fork topologies, the center actions A and the leaf actions
AL[FE] are disjoint, A N A*[F¥] = (). Item (i) is an obvious combination handling non-goal s
like Definition 6, and handling goal s” like Definition 8 but with fork-goal-price frontier sets. Item
(ii) is as before, item (iii) as well except that, as it turns out, we need to select interfering actions only
for center actions a® € A7 N AC. Item (iv) replaces reached-enabling sets with fork-price frontier
sets as advertised, doing so only for leaf actions as center actions do not have leaf preconditions in
a fork.°

As we mentioned before, our safety proof makes use of a notion of past-maximality different
from that used for star topologies (Definition 3). We defer the details to Appendix A. Essentially,
7 is fork-past-maximal if, whenever on 7/%/“"¢ we apply a leaf action ay, to a leaf state SZ-L already
reached in s7, then we do so on a leaf path achieving siL at a price cheaper than that in s7. Intu-
itively, this makes sense as, otherwise, we could have just as well used a compliant path for siL in
Pt already. Formally, every global plan can be transformed into a fork-past-maximal global plan
of equal of cheaper cost.

Theorem 3. Let I1 = (V, A, 59, 5+) be an FDR task and F a fork factoring. Let s” be a solvable
decoupled state for which () is not an optimal decoupled plan, and let ™" be a strongly optimal
decoupled plan for s”. Let AL be an FDSSS for s”.

Then Asf contains a center action starting a permutation of at.

Proof (sketch). The proof is similar to that of Theorems 1 and 2. There is one major difference.

As before, we consider a global plan 7 for 77. We assume without loss of generality that 7 is
fork-past-maximal. We denote a;, w72, and mluture aq before.

The argument (a) that there must be an action a shared between Af and 7/%ve ig the same as
in the proof of Theorem 1 in the case of non-goal s7. For goal s7, it is the same as in the proof of
Theorem 2, replacing Lemma 3 with the variant of Lemma 4 for fork-goal-price frontier sets.

Denoting by ay, the first shared action, that (b) ay is reached in s” follows with the same argu-
ment as in the proof of Theorem 1.

The one major difference is that we have to prove next that (c) ay, is a center action, because
Definition 10 (iii) includes interfering actions for center actions a® € A7 N A only.

Once (c) is shown, the same argument as in Theorem 1 (c) shows that a does not interfere with
any of the actions a;, t < ¢ < k — 1. The same argument as in Theorem 1 (e) shows that aj, can be
moved to the start of /4“7 The same concluding argument as in Theorem 1 shows the claim.

So, how do we show (c)? If ay, is a leaf action, a, € AL[FT], then by Definition 10 (iv) A7
contains a fork-price frontier set A for p := pre(ay)[FL] in s7. As a; is a center action, given
the fork topology we know that a;, # a, and hence k > t. Hence fork-past-maximality applies,
showing that cost({(ak, ..., al)) < prices[s”](sF) where (al,... aF) and sf, ..., sF denote the

6. We remark that, in the latter, a fork-price frontier set needs to be collected even if pre(a™)[F*] = 0. This is because
a® may need to be on 7" to correct a detrimental effect of some other, not-yet-reached, leaf action on /%",
In the special case where F'Z consists of a single variable though, the latter cannot happen, so in that special case a
fork-price frontier set is not required for pre(a™)[F'X] = (). We exploit that special case in our implementation.
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F¥ actions, respectively states, in 7 prior to a;. Applying Lemma 4 yields that {a;,...,az_1} N
A # (), in contradiction to ay, being the first shared action, concluding the proof. 0

Corollary 3. Let I1 = (V, A, s, s.) be an FDR task and F a fork factoring. Let s” be a solvable
decoupled state for which () is not an optimal decoupled plan. Let AL be an FDSSS in s”. Then
A7 is safe for s”.

We remark that the definition of fork-topology DSSS in the authors’ previous IJCAI’' 16 paper
on this topic (Gnad et al., 2016) does not contain item (iv). This is incorrect, i.e., does not guarantee
safety. It may indeed forsake completeness, i.e., prune all decoupled plans for s”, because even if
a leaf action a’’s precondition is already reached at the best possible price in s7, the price of the
actual leaf state s we must apply a’ to may not yet be reached at all. Example 3 in Appendix A
shows a case where this happens. During our work on the IJCAI’ 16 paper, the intricacies of enabling
reached leaf conditions unfortunately escaped our attention. Empirically, our corrected version of
fork-topology DSSS does not lose a lot of pruning power as we shall see in Section 7.2.

5.2 Inverted Forks

Our modifications for inverted-fork topologies are much simpler than those for forks. This has two
main reasons:

e On goal decoupled state s/, we don’t need to do anything at all. This is because, with
negative monotonicity — pricing functions increasing monotonically along search paths — the
prices below s can never improve. So there is no need to search below s, and we don’t

need to define any pruning techniques for that case (in other words: just set A := ().

e On non-goal decoupled states, the intricacies of enabling reached leaf conditions p remain
essentially the same as in general star toplogies — all we know is that p is false after 77%! but
may need to be made true in the future. Hence we need to include reached-enabling sets just
like for general star topologies.

Given this, our modifications are confined to discarding any actions a from A7 whose leaf precon-
ditions aren’t reached in s” — which preserves safety simply because such a can never occur on
mfuture  For the sake of completeness, let us state the latter formally:

Proposition 1. Let I = (V, A, sq, 5,) be an FDR task and F an inverted-fork factoring. Let s
be a solvable decoupled state. Let 7 be a decoupled plan for s”, and let 7 be a global plan given
7% Let a be an action where pre(a)[V \ FC] is not reached in s”.

Define ay, w7, and w/""¢ qs before. Then a does not occur on w/"Hre,

Proof. Assume to the contrary that a does occur on 7/%*%"¢_ There must be at least one leaf factor
where the precondition of a on that factor is not reached in s”. Let F'© be such a leaf factor. Then
pre(a)[F*] must be supported, in 7, by a 7¢[s7] o 7¢[r7]-compliant F” path 7”, ending in s”
where s” |= pre(a)[F'*]. Given the inverted-fork structure, the actions in 7% have preconditions on
F* only. Therefore, 7” also is 7¢[s”]-compliant. But then, prices[s”](s”) < oo in contradiction.

O

o T

The simplified definitions are as follows. First, necessary enabling sets need to worry about the
center only, as an unreached leaf condition is unsolvable; and actions whose leaf preconditions are
not reached can be discarded:
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Definition 11 (Center-Necessary Enabling Set). Let IT = (V, A, s, s.) be an FDR task and F an
inverted-fork factoring. Let s” be a decoupled state, and let p be a partial variable assignment to
F not reached in s” .

An action set A is a center-necessary enabling set for p in s” if there exists v € vars(p) such

that center[s”|[v] # p[v], and A = {a € A | eff (a)[v] = p[v], pre(a)[V \ FC] is reached in s” }.

For reached-enabling sets, nothing changes. This is because, cf. Definition 5, these catch actions
from leaf paths 7% starting in reached-enabling states s“, one of whose properties is that s” is
reached in s7. But then, as an F' leaf path has preconditions only on F' itself, all actions on 7
are already reached, and there are no unreached leaf preconditions to prune.

The definition of DSSS now mirrors that of DSSS for general star topologies:

Definition 12 (DSSS: Inverted Forks). Let I1 = (V, A, so, $x) be an FDR task and F an inverted-
fork factoring. Let s” be a non-goal decoupled state where s,[V \ F C] is reached in s” .

An action set AL is an inverted-fork decoupled strong stubborn set (IFDSSS) for s” if all of
the following conditions hold:

(i) AT contains a center-necessary enabling set for s,[F] in s”.

(ii) For all center actions a € Al not reached in s*, Al contains a center-necessary enabling
set for pre(a)[FC] in s”.

(iii) For all actions a € Al reached in s*, AL contains all actions o' interfering with a where
pre(a) || pre(a’) and pre(a’)[V \ F€] is reached in s”.

(iv) For all actions a € Al reached in s, and for all F* where pre(a)[F¥] # 0, AL contains a
reached-enabling set for pre(a)[F*] in s”.

Compared to DSSS for general star topologies (Definition 6), we can restrict focus to decou-
pled states s where the leaf goal is reached, because otherwise s” is unsolvable. We use center-
necessary enabling sets instead of decoupled necessary enabling sets. We discard actions whose
leaf preconditions are not reached, and given this, unreached leaf actions are never included, so
only unreached center actions need to be supported.

Safety of this construction follows immediately from safety of DSSS for general star topologies,
together with Proposition 1:

Corollary 4. Let 1 = (V, A, s¢, 5,) be an FDR task and F an inverted-fork factoring. Let s* be a
solvable non-goal decoupled state. Let A7 be an IFDSSS in s”. Then Al is safe for s”.

Proof. The proof of Theorem 1 remains intact almost exactly as stated. The only addition we
need to make is in arguments (a) — (c), where we invoke Proposition 1 to show that the shared
action identified on /"¢ (a b), respectively the actions preceding aj on mfuture ¢y do not have
unreached leaf preconditions. O

We remark that, in the special case of inverted-fork topologies where all leaf factors consist of
a single state variable only, one can modify Definition 12, using only center actions in item (iii),
and replacing item (iv) with a rule that includes center actions a’ whose leaf preconditions compete
with those of a center action a already included into A7 . We use this more targeted definition as an
optimization in our implementation. Formal details are provided in Definition 15 in Appendix A.
Although this special case is interesting from a theoretical point of view, we did not observe a major
impact in most of the planning domains that we ran our analysis on, as we shall see in Section 7.

367



GNAD, HOFFMANN, & WEHRLE

5.3 Fork/Inverted-Fork Leaves in General Star Topologies

One can also combine the observations just made for fork and inverted-fork topologies, to obtain
an enhanced variant of DSSS for general star topologies, exploiting the properties of individual
fork/inverted-fork leaves. This is important as, in practice, it often happens that even in general star
topologies there are (inverted-)fork leaves that can be treated more efficiently by the special-case
algorithms.

Recall that fork/inverted-fork leaves behave like the leaves in the respective structure. That is,
a fork leaf is one on which the center has neither precondition nor effect; and an inverted-fork leaf
is one on which the center has no effect, and that has no precondition on the center. If such leaves
occur in a general star topology, then we don’t get positive/negative monotonicity at the global level,
but we do get it for each of these individual leaves. This can be exploited in the same manner as
specified above.

We define enhanced decoupled strong stubborn sets (EDSSS) towards this end. As the details
are simple yet cumbersome to spell out formally, we defer them to Appendix A. Here is a summary:

(i) Goal enablers: For non-goal s, use decoupled necessary enabling sets. For goal s, use
goal-price frontier sets for non-fork leaves, and use fork-goal-price frontier sets for fork leaves.
Discard actions with unreached inverted-fork preconditions.

(i) Unreached action enablers: Use decoupled necessary enabling sets. Discard actions with
unreached inverted-fork preconditions.

(iii)) Reached action interference: As before, but only for non-fork-leaf actions, and discarding
actions with unreached inverted-fork preconditions.

(iv) Reached action enablers: For non-fork-leaf actions, use reached-enabling sets. For fork-leaf
actions, use fork-price frontier sets.

The proof of safety mirrors that of Theorem 1, the only major addition being a new proof item
showing that a; must be a non-fork action. The argument used for that purpose is the same one
used in Theorem 3 to prove that a; must be a center action. The notions of past-maximality and
fork-past-maximality are combined in these arguments, in the sense of assuming these properties
for the individual leaves F'* as appropriate.

6. Exponential Separations

Before proceeding to the empirical part of our research, let us state some basic theoretical facts
evaluating the power of DSSS. We only give proof sketches in this section; full proofs are given in
Appendix A.2. We say that a search space reduction method X is exponentially separated from a
method Y if there exists a parameterized example family F' such that, on F', X yields an exponen-
tially stronger reduction than Y.

Decoupled search and SSS are complementary in that each is exponentially separated from the
other:

Theorem 4. Decoupled search is exponentially separated from SSS, and vice versa.
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Our running example with locations A and B is a suitable family F' for the first claim. There
are only 3 reachable decoupled states (s{ ; drive to B; drive back). But SSS do not yield any prun-
ing because, in any state s, to make progress to the goal, A must include an applicable (un)load
action; which interferes with the applicable drive action; which in turn interferes with all applicable
(un)load actions. The opposite claim follows from an example shown in the proof of Lemma 1 in
Gnad and Hoffmann (2019). Here, the state space under SSS pruning is linear; decoupled search,
however, cannot exploit the independence because of leaf-leaf interactions that forbid a star factor-
ing, but never trigger during search.

Trivially, DSSS is exponentially separated from each of decoupled search and SSS, simply
because DSSS naturally generalizes each of these components, so we can use the same families ¥’
as in Theorem 4. As a much stronger testimony to the power of DSSS, there are cases where it is
exponentially separated from both its components:

Theorem 5. There exists a parameterized example family F' such that, on F', DSSS yields an expo-
nentially stronger reduction than both, decoupled search and SSS.

Two suitable families F' arise from simple modifications of our running example. First, say we
have M trucks and NV x M packages, where each truck ¢; is associated with a group of IV packages
that only ¢; can transport. The number of reachable decoupled states is exponential in M because
all trucks must be in the center factor. The SSS-pruned reachable standard state space has size
exponential in IV because including an (un)load action into A necessitates, due to interference via
the truck move as above, to include all applicable (un)load actions for the respective package group.
However, in decoupled search with DSSS pruning, there are only M + 1 reachable states. This is
because the two sources of pruning power combine gracefully. Decoupling gets rid of the blow-up
in N (the packages within a group become independent leaves), while DSSS gets rid of the blow-up
in M (only a single truck is committed to at a time).

In our second example, DSSS even is exponentially more than the sum of its components:
stubborn sets have exponentially more impact on the decoupled search space than on the standard
one. Say we have N packages and M trucks (where every truck may transport every package). Then
decoupled search blows up in M, and SSS does not do anything because any package may require
any truck. Applying DSSS to decoupled search, no truck move is pruned in s . However, after
applying any one drive(t;, A, B) action, all package prices are the cheapest possible ones, the goal-
price frontier is empty, and DSSS stops the search. So, again, there are only M + 1 reachable states.
As we shall see next, similar phenomena seem to occur in the standard IPC Logistics benchmarks.

7. Experiments

We focus our experimental evaluation on optimal planning and proving unsolvability of planning
instances. These algorithmic problems are the ones where partial-order reduction techniques have
typically been applied to in the past, because of the need to explore large state spaces exhaustively.
Here, strong stubborn sets pruning can exponentially reduce the search effort, facilitating the prob-
lem significantly. We compare the performance of decoupled strong stubborn sets pruning (D.S) to
its base components, i.e., standard search with strong stubborn sets pruning (S3), decoupled search
(DYS), as well as standard search without pruning (B).

We start by describing the setup and our implementation in Section 7.1, and then discuss the
experimental evaluation in Sections 7.2 (optimal planning) and 7.3 (proving unsolvability).
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7.1 Experimental Setup & Implementation

All experiments are conducted on a cluster of Intel E5-2660 machines running at 2.20 GHz, with a
time cut-off of 30 minutes and a memory limit of 4 GB. Our implementation extends the decoupled
search planner of Gnad and Hoffmann (2018), which is based on the Fast Downward planning
system (FD) (Helmert, 2006). We use the Lab software package to execute the experiments (Seipp,
Pommerening, Sievers, & Helmert, 2017).

The decoupled search implementation supports several factoring strategies that can identify dif-
ferent topologies, among others fork and inverted-fork factorings (Gnad et al., 2015), and also more
general star topologies (Gnad et al., 2017a). We employ the fork and inverted-fork factoring strate-
gies to illustrate the advantages of the special case optimizations developed in Section 5, using the
improved factoring strategies from Gnad et al. (2017a). To evaluate our general framework, we
choose the incident-arcs strategy as introduced in Gnad et al. (2017a), which is able to generate
star factorings in the highest number of instances in the benchmark set that we use. The strategy
computes so-called strict-star factorings, which allow for arbitrary interaction between center and
leaves, but no interaction across leaves. This restricts the possible factorings F as defined in Sec-
tion 3.1 in that center actions affecting a leaf factor F'*, must have preconditions and effects only
on FL and F€. More formally, let a® be a center action, if there exists an FL € F such that
vars(eff (a©)) N FL # () then vars(pre(a®)) U vars(eff (a©)) € FE U FC. This prohibits center
actions that (1) affect multiple leaf factors, or (2) have an effect on one and are preconditioned by
another leaf.

The three factoring strategies that we use are typically very complementary, identifying valid
factorings on different planning instances. Therefore, we show results for each of the strategies
separately, on benchmarks in which the strategy is successful. Like previous work on decoupled
search, we abstain from tackling an instance whenever the resulting factoring has less than two leaf
factors. The rationale behind this is that the potential gain of decoupled search over standard search
is exponential in the number of leaves. We remark that the factoring process is very fast, terminating
within 1s in almost all instances. Therefore, when no proper factoring could be found, we can still
invoke standard search without loosing a lot of time. We do not do this to focus our evaluation on
benchmark instances where decoupled search is actually performed.

The definitions in Section 4 do not fully specify how to compute decoupled strong stubborn
sets, but rather state the properties such sets need to have. In particular, there are several ways to
compute (1) decoupled necessary enabling sets, (2) reached-enabling sets, and (3) goal-price frontier
sets. For (1), we stick to the ordering given in Definition 4, namely we first choose unreached leaf
variable assignments, then unreached center assignments. If this still does not result in a unique
choice, we stick to the FD variable-ordering, which has also been used in prior work on strong
stubborn sets (Wehrle & Helmert, 2014). In combination with our use of action interference, where
only interfering actions with agreeing preconditions are added to the DSSS, our selection strategy
corresponds to the “full/mutex + FD” strategy of Wehrle and Helmert (2014). For the standard
search variant of strong stubborn sets pruning that we compare to (S%), we use the strategy “full-
syntactic-SSS-EC”, which is the strongest variant of SSS pruning that is implemented in a recent
Fast Downward. Regarding (2) and (3), we use the approximations as described in Section 4.2 and
Section 4.3, respectively.

The special case definitions from Section 5 also leave some freedom, namely in how to com-
pute fork(-goal)-price frontier sets and center-necessary enabling sets. For the latter, we stick to
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the aforementioned static selection of yet unreached assignments. Regarding the former, we im-
plemented the algorithms outlined in Section 5.1, except that we do not check if a leaf path 7% is
simple.

We show results for two different configurations of decoupled strong stubborn sets, the plain
variant implementing the definitions from Section 4 (1DS?), and a variant that uses all optimizations
from Section 5 whenever they are applicable (DS%).

As a preview on the empirical results, it turns out that just like in standard search (Alkhazraji
et al., 2012; Wehrle et al., 2013; Wehrle & Helmert, 2014), there exist domains where stubborn
sets pruning does not result in any reduction of the search space size. Yet, computing a (decoupled)
strong stubborn set for every state expanded in the search incurs a significant runtime overhead.
Therefore, we implement a simple safety belt mechanism to disable the pruning in planning in-
stances where stubborn sets are not effective. To do so, we switch the stubborn sets off if after the
first 1000 expanded states less than 1% of the transitions have been pruned (a similar mechanism
has been used in Torralba and Hoffmann (2015)). We keep the safety belt rather permissive to only
disable the pruning in instances where effectively no transitions are being pruned. This allows for
a detailed analysis on how much pruning is needed to make up for the computational overhead of
computing a (decoupled) strong stubborn set in every search state. Expanding 1000 states usually
takes only little time, so we expect the total overhead to be small if the pruning does not pay off.
On the other hand, if only a small fraction of the transitions could be pruned during the first 1000
expansions, chances are high that it remains like this throughout the entire search. We shall see in
the next two sections that both conjectures are valid in almost all domains.

7.2 Optimal Planning

We evaluate our algorithms in optimal planning on all STRIPS benchmarks from the optimal tracks
of the International Planning Competition (IPC) ("98-"18). To analyze the pruning power of the
strong stubborn sets, we show results for blind search. Additionally, we run A* search with the
hIM-cut heuristic (Helmert & Domshlak, 2009), a well-performing configuration for optimal plan-
ning. When using h"™" we include Complementary 2 (C2) to the comparison, the best non-
portfolio planner in the optimal track of IPC’ 18 (Franco, Lelis, & Barley, 2018). Complementary is
based on symbolic pattern databases (Franco, Torralba, Lelis, & Barley, 2017).

As a general remark, observe that, since in decoupled search the pruning only happens over
center actions, the potential for pruning is significantly reduced compared to standard search. No
reduction within the leaves can be achieved, given the distributed nature of decoupled search. Fur-
thermore, the necessity to include reached-enabling sets (in the star case) and fork-price frontier sets
(for fork factorings) reduces the pruning power in the decoupled setting even more. On the other
hand, the node generation time is tremendously higher in decoupled search, due to the maintenance
of the pricing function. Therefore, a smaller search space reduction can already lead to a speed-up
over pure decoupled search, because the relative overhead of computing a strong stubborn set for
each expanded state is smaller.

We start with the more general star factorings obtained from the incident-arcs strategy — Table 1
shows the results for blind search. The left part shows coverage data — number of instances solved —
for the 7 competitors. Observe that, as expected, D.S and S® are very orthogonal. While D.S works
well on domains with a pronounced star topology, e.g. Logistics or NoMystery, S performs well
in domains that have many permutable action sequences, e.g. ParcPrinter or Woodworking. The

371



GNAD, HOFFMANN, & WEHRLE

Coverage Pruning Power
+safety b. || Transitions Search Space Runtime

Domain #| B 53 DS|DS® DS3| 83 DS || #|S® DS3| #| 83 DS3| #| S3 DS§
Depots 22| 4 4 4 4 4] 4 41 4| 3 0| 4 1.0 1.0] 3 0.1 0.3
Driverlog 2007 7 11 11 11| 7 11| 7|24 17 1.0 1.0] 6 0.3 0.4
Elevators08 300 14 129 9 9| 12 9| 9| 17 0] 9 1.1 1.0] 9 0.2 0.6
Elevators11 201 12 10 7 7 7| 10 7( 7|19 0| 7 1.1 1.0] 7 0.2 0.6
Floortile11 200 2 2 1 1 1] 2 1| 1| 1 0] 1 1.0 1.0] 1 0.2 0.8
Logistics00 28 10 10 22| 22 23| 10  23|[10| 32  55(10 1.0 20| 8 0.4 1.0
Logistics98 35 2 2 2 2 21 2 2 2|39 0| 2 1.2 1.0| 2 0.4 0.7
Maintenance 50 5 5 5 5 515 5| 518 76| 5|3513.7 1747.9| 2|4838.5 5893.4
Miconic 145| 50 40 36| 36 36| 50 36||36] O 2|36 1.0 1.0]21 0.0 1.1
Mprime 6] 6 6 4 4 4] 6 41 4| 0 13| 4 1.0 1.0] 3 0.0 0.2
Mystery 1 1 1 1 11 I 1] 0 12| 1 1.0 1.0] 0

NoMystery 200 8 8 17| 13 13| 8 17| 8|20 0| 8 1.2 1.0| 6 0.1 0.0
Openstacks08 300 22 20 19] 19 19| 21 19(/19] 8 0|19 1.3 1.0(17 0.1 0.4
Openstacks11 201 17 15 14] 14 14| 16 14\/14| 9 0|14 1.3 1.0]14 0.1 0.3
Openstacks14 200 3 3 2 1 1] 3 21 1} 3 of 1 1.1 1.0 1 0.0 0.3
Organic-Split 16| 6 5 3 3 21 6 2|} 2120 21| 2 1.8 1.8 2 0.1 0.0
ParcPrinter08 13) 1 13 3 6 6| 13 6l 6/63 25| 1| 60.0 121 0

ParcPrinter1 1 100 0 10 2 5 5| 10 5| 5| 64 251 0 0

Pathways 300 4 4 4 4 4] 4 41 4153 27| 4| 293 241 2| 252 1.7
PSR 48| 47 47 46| 46 46| 47  46(|46| 13 17]46 1.1 1.1]11 0.1 1.3
Rovers 40 6 7 17 8 8| 7 8| 7|22 23] 6 1.6 1.5 2 0.7 1.6
Satellite 36| 6 6 5 5 5 6 5| 5|41 26| 5| 190.3 5.11 3] 36.1 7.5
Scanalyzer08 9] 6 3 3 3 3] 6 31 3] O 2| 3 1.0 1.0] 0

Scanalyzerl 1 54 1 1 1 1 4 1| 1] O 211 1.0 1.0| 0

Tidybot11 20013 7 13 5 5[ 9 13]] 5|24 20| 5 1.2 1.0] 5 0.0 0.0
TPP 29 5 5 5 5 5| 5 5[ 51 0 6| 5 1.0 1.0 2 0.3 0.6
Transport08 129 9 9 9 9| 9 9|l 9| 1 0| 9 1.0 1.0] 6 0.1 0.3
Transport14 17/ 6 4 4 4 41 5 41 4| 1 0| 4 1.0 1.0| 4 0.0 0.3
Trucks 27 5 4 4 4 4] 5 4| 3| 14 5|3 1.0 1.0] 3 0.1 0.6
Woodworking08| 26| 7 13 7| 10 10| 13 10|| 9|77 57| 7/1046.4 180.3| 5| 358.5 1242
Woodworkingl1| 17 2 7 2 5 517 5| 4183 64| 2|1180.2 203.2| 2| 406.6 141.3
Zenotravel 200 8 7 7 7 70 7 7\ 7| 6 10| 7 1.1 1.0| 5 0.1 0.9
Others 187 43 30 36| 27 27|39 36([27| O 0]27 1.0 1.0{22 0.0 0.2
> 984|341 327 315| 306 306|359 328

Table 1: Coverage data (number of instances solved) and pruning power when using blind search
with the incident-arcs factoring strategy. “Transitions” shows the average percentage of
transitions pruned during search on instances commonly solved by S and DS?). “Search
space” and “runtime” columns show the average improvement factors compared to the
respective baseline, i.e., B as baseline for S3 and DS for DS%. We use the number of
expanded states until the last f-layer and FD’s “total time” on commonly solved instances
to measure the improvement (ignoring instances commonly solved in less than 0.1s for
the runtime factors). “Others” summarizes all domains in which the percentage of pruned
transitions was rounded to 0% for both 3 and DS%. Best coverage is highlighted in bold
face.

main purpose of this work is to inherit the strength of the stubborn sets where .S improves over B.
Where S? performs better than D.S, we want to narrow this gap, ideally making up for the advantage
completely, or even doing better than both baselines. As we see from the results, this is really the
case — where S3 improves coverage over B, we also get an improvement for the two decoupled
variants with pruning over DS (ParcPrinter, Rovers, and Woodworking). And, indeed, there are
two domains where the combination is more than the sum of its components, namely in Logistics00
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and Rovers. Yet, DSSS cannot always fully make up for the advantage of S3. In ParcPrinter, for
example, although the coverage increases, D.S® and DS% still solve only 11 instances compared to
23 of S3. On the other hand, if there is only little pruning and the overhead does not pay off for S3,
this is also often the case for D.S® over DS, e.g. in Tidybot.

Comparing the two decoupled strong stubborn sets variants with and without the optimizations
from Section 5, it turns out that there is almost no difference. In terms of coverage, there is one
Organic-Split instance solved in 1716s by D.S3, but not by DS%, which can be attributed to noise.
The additional instance solved in Logistics00, however, is indeed due to an increased pruning power
of the special case handling of the fork factoring in this domain. When taking a more detailed look
at the amount of pruning, we observe no significant difference when enabling the optimizations in
most domains. DS?) prunes more transitions in 13 domains, leading to a smaller search space in
one instance in each of Woodworking08 and Zenotravel, and in all instances of Logistics00. In
the latter, the average percentage of pruned transitions increases from 17% to 46% on instances
commonly solved by DS3 and DS}. The runtime in these instances decreases by up to one order
of magnitude, but they are all solved within 10s, anyway. In the other domains, the additional
pruning is mostly due to pruning on decoupled goal states, which has only a minor effect on the
overall search. Because of this almost identical behaviour (except for one domain), we only report
the pruning power data for DS3.

Enabling the safety belt leads to superior coverage for both S® and DS?). DS?) with safety belt
almost fully makes up for the instances that without safety belt are lost compared to D.S (there is
one exception in Organic-Split). Except in this instance, the safety belt, even in its permissive usage
where the pruning is only disabled if it basically does not remove any transition, results in coverage
that is always the maximum of DS and DS% without safety belt. The result is not as good for 53
with safety belt, which loses 16 instances compared to the best of B and S°.

In terms of total coverage, enabling strong stubborn set pruning in both standard and decoupled
search results in a worse performance. Although the coverage increases in domains where stubborn
sets reduce the size of the search space, the overhead in the other domains outweighs this advantage.
With the safety belt mechanism, one can reliably get the best of both worlds, i.e., use the pruning
where it is useful and disable it when it does not lead to any search space reduction.

Let us take a closer look at the pruning power. The “Transitions” columns show the percentage
of transitions pruned during the search, on instances commonly solved by S® and DS?,. The im-
provement factors for search space size and runtime are ratios over the respective per-domain sum
of B over S3 for S3, and DS over DS% for DS?). So we always compare to the baseline variant
without the pruning, not to the common baseline B. Observe that for stubborn sets to be beneficial,
a significant percentage of the transitions needs to be pruned. An extreme case is Tidybot, where
even with 20% of the transitions pruned the size of the search space does not change for decou-
pled search and only slightly for standard search, and the runtime overhead is prohibitive. More
expectedly, this effect also becomes visible in the “Others” domains, where the average transition
reduction is rounded to 0% for S® and DS?). Typically, when S achieves a substantial pruning,
this is also true for DS%, although the reduction is almost always less pronounced. On the positive
side, the slowdown is usually smaller, too, in domains with little pruning. In some domains, DS?)
even prunes more transitions than S3 (in percent), and this translates into a higher runtime benefit.
This happens, e.g., in Logistics00, PSR, Rovers, and Zenotravel.

Overall, decoupled strong stubborns sets pruning results in improved runtime (coverage) in 8
(4) of the 31 domains (counting domains that appeared in different competitions only once), in-
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Coverage Pruning Power
+safety b. Transitions Search Space Runtime

Domain #| B 53 DS|DS3 DS3| 53 DSE| C2|| #|S® DS | #| S DS3|# S® DSY
DataNetworks 200 12 12 12) 12 12] 12 12| 14| 12| 0 5| 12 1.0 1.0]11 09 09
Depots 2207 7 17 7 71 7 70 7| 7] 3 1 7 1.0 1.0 5 09 09
Driverlog 20| 13 14 13| 13 13| 14 13| 14| 13|16 3| 13 1.1 1.0] 8 1.0 09
Elevators08 300 22 22 22| 22 22| 22 22| 25| 22|23 1] 22 1.2 1.0]21 1.5 038
Elevators11 20| 18 18 18| 18 18] 18 18| 19|| 18|24 2| 18 1.1 1.0[18 1.2 08
Logistics00 28| 20 21 28| 28 28| 21 28| 22| 21|28 45| 20 34 16|10 42 1.8
Logistics98 35 6 6 7 6 71 6 7| 6| 6|38 2| 6 23 10| 3 28 09
Maintenance 515 5 5 5 5| 5 51 5| 5|77 72| 5 1.0 10| 0

Miconic 145|136 136 135 135 135{136 135| 99||135 3|135 1.0 1.0{91 08 09
Mprime 6] 6 6 4 4 41 6 4| 6| 4 28| 4 1.0 1.0 2 08 0.5
Mystery 1 1 1 1 11 11 1 25| 1 1.0 1.0/ 0

NoMystery 20| 14 14 20| 18 18| 14 20| 20|| 14 1.0 1.0 8 09 02

Openstacks08 300 21 19 19] 19 19| 19 19] 29| 18
Openstacks11 201 16 14 14| 14 14| 14 14| 20| 13
Openstacks14 200 3 3 2 1 1] 3 21 12 1

0] 18 12 1.0|16 03 05
0] 13 12 1.0(13 03 04
0] 1 1.1 1.0] 1 02 0.6

N OO OoOO
—_
—
>

Organic-Split 16/ 11 11 9 7 7] 11 71 5| 7| O 131 7 1.0 1.0] 7 09 06
ParcPrinter08 13) 4 13 7| 13 13| 13 13| 6| 13|73 58| 4(2183.4 24.4| 3]1700.6 16.7
ParcPrinter1 1 10/ 3 10 6| 10 10| 10 10| 4|| 10|74 62| 3|2183.4 24.4| 3|1717.1 16.7
Pathways 300 5 5 5 5 5| 5 51 5| 5|21 17 5| 13.0 29| 1| 157 28
PSR 48| 47 47 47| 47 47| 47 47| 48| 47| 9 16| 47 1.0 1.0]12 0.7 038
Rovers 400 8 9 8| 10 10 9 10| 13| 9|26 28| 8| 257.6 48.7| 4| 180.6 393
Satellite 36/ 7 12 9| 12 12| 12 11| 10|| 12} 52 34| 7| 419 77| 3| 678 123
Scanalyzer08 9] 5 5 5 4 41 5 5| 6| 4| 0 13| 4 1.0 10| 1 0.7 0.1
Scanalyzerl1 5/ 3 3 3 2 2 3 3| 4| 2/ 0 8| 2 1.0 10| 1 0.8 0.1
Tidybotl11 200 14 14 14| 13 13| 14 14| 14| 13|18 8| 13 1.5 1013 1.3 03
Tidybot14 200 9 9 10 7 71 9 10| 10|| 7|19 o] 7 1.5 1.0] 7 1.3 03
TPP 291 6 5 5 5 5| 6 5| 14)| 5| 0 91 5 1.0 1.0] 1 09 038
Transport08 12 9 9 9 9 91 9 91 9| 9| 2 51 9 1.0 10| 5 09 038
Transport14 17/ 5 5 5 5 5| 5 51 7| 5| 2 o] 5 1.0 10| 5 09 038
Woodworking08| 26| 14 23 16| 20 20| 23 20| 19| 20|60 45| 13| 31.8 252| 6| 4694 1.2
Woodworkingl1| 17| 9 16 10| 14 14| 16 14| 12| 14|63 471 8| 324 26.0| 6| 4546 1.1
Zenotravel 200 13 13 12| 12 12| 13 12 13| 12| 2 11} 12 1.1 10| 6 1.0 1.0
Others 194| 50 50 46| 43 43| 50 46| 85|| 42| O 0] 42 1.0 1.0|36 0.7 0.6
> 984(522 557 533| 541 542|558 553|583

Table 2: Detailed results for A* search with ~"M-"t when using the incident-arcs factoring strategy.
The setup is identical to Table 1. “C2” is Complementary 2 from IPC’18.

cluding ParcPrinter where due to the bad-performing baseline we have no improvement factors.
This is even more than in standard search, where S2 only improves runtime (coverage) in 5 (3) do-
mains. However, it does not suffice to perform best in total coverage, where due to a less significant
gain in ParcPrinter and Woodworking, and bad domains inherited from D.S (mostly Elevators and
Miconic), DS?) is 31 instances behind S® when using the safety belt.

Table 2 shows the results when instead of running blind search, we use A* search with the
REM-cU heuristic. One of the main differences is that here both S* and DS, can actually improve
over the respective baseline without using the safety belt, i.e., a smaller transition reduction already
leads to a runtime improvement. Again, where S improves coverage over B, we also see an
improvement of DS% over DS (ParcPrinter, Satellite, and Woodworking), with an exception in
Driverlog. On the negative side, enabling the pruning in decoupled search cannot fully make up
for the advantage in Woodworking (5 instances). This seems to be due to a rather bad problem
decomposition of the incident-arcs factoring. When using a fork or inverted-fork factoring (Tables
3 and 4), DS? can solve all instances that S solves.
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Coverage Pruning Power
+safety b. Transitions Search Space Runtime

Domain #| B 53 DS|DS® DS3 53| §3 DS | C2|| #|S3 DSE BSE| #| S® DS3 BSE| #| S DS} BSE
Driverlog 200 13 14 13| 13 13 13| 14 13| 14| 13|16 4 0| 13) 1.1 1.0 10| 8 1.0 0.8 09
LogisticsO0 | 28| 20 21 28| 28 28 28| 21 28| 22|| 21|28 45 44| 20| 34 1.6 17|10/ 42 17 2.1
Logistics98 | 35| 6 6 6 6 6 6| 6 6| 6| 6/38 46 46| 6|23 13 15/ 3]28 21 22
Maintenance| 1| 1 1 1 1 1 1] 1 1] 1 1|74 0 0 110 10 1.0] 1] 1.0 00 14
Miconic 145|136 136 135 135 135 135[136 135| 99|{135| 0 3 0[135 1.0 1.0 1.091/ 0.8 09 1.0
NoMystery | 20| 14 14 20| 18 18 19| 14 20| 20| 14| © 1 0/ 14/ 1.0 1.0 10/ 8 09 0.1 03
Pathways 29 4 4 4 4 4 4] 4 41 4| 4|25 23 26| 4130 7.1 75| 1|]157 89 10.0
PSR 3 3 3 3 3 3 31 3 31 3| 3| 2 9 11/ 3/ 1.0 10 1.0]0

Rovers 400 8 9 9 11 11 11} 9 11| 13]| 9|26 26 26| 8258 52.0 52.2| 4| 181 44.7 458
Satellite 36/ 7 12 7/ 12 12 11] 12 12| 10|| 11|51 47 34| 7|41.9 264 7.0] 3|67.8 405 11.2
TPP 271 6 5 18 18 18 18 6 18| 14| 5/ 0 23 21| 5/ 10 1.0 1.0{ 109 1.0 10
Woodwor08 | 13| 6 11 10/ 11 11 11| 11 11| 10|| 11|62 35 33| 6/81.5 3.9 39| 3/368 44 48
Woodworll | 5| 2 5 4 5 5 5| 5 5| 4| 5|65 50 47 2828 39 39| 2(370 4.8 48
Zenotravel | 20| 13 13 13| 13 13 13| 13 13| 13| 13| 2 5 o 13 1. 1.0 10/ 7/ 1.0 09 09
> 422|239 254 271| 278 278 278|255 280|233

Table 3: Detailed results for A* search with h"M-¢ut when using a fork factoring strategy. The setup
is identical to Table 1.

Regarding the differences between DS® and DS?, there are again almost none. The only
instance solved by DS% but not by DS? is solved in 1658s, so again can be attributed to noise, in
particular since (almost) no transitions are pruned. Comparing the two configurations in more detail
reveals that the size of the search space of DS% is only smaller than that of D.S? in Logistics00.
Here, the percentage of pruned transitions on commonly solved instances increases from 14% to
39%, the runtime improves by a factor of 2.

The pruning power is comparable to the blind search case. The percentage of transitions pruned
is usually in the same range, but leads to a less pronounced reduction in the search space size for
decoupled search. Nevertheless, this results in a speed-up of the search in many cases, because the
relative overhead spent for computing the stubborn sets is smaller than when running blind search
— it takes time to evaluate the A-M°U heuristic. Thus, the overhead pays off even if the search space
size reduction is only moderate.

With the safety belt, DS?) solves all instances solved by DS or DS, except two in Organic-
Split, and one in Satellite. In Organic-Split, the safety belt does not trigger, because there are at
most 1082 state expansions; the instance in Satellite is solved only barely within the time limit by
the succeeding configurations.

To conclude this section, we want to analyze the special case optimizations from Section 5 in
more detail. Table 3 sheds further light on the fork factorings. Here, we compare to the faulty
implementation of Gnad et al. (2016), which does not guarantee completeness (BS%). The main
difference to our fork-optimized variant are the missing price-frontier sets for an action’s leaf pre-
conditions. Observe that the difference between the two versions is rather small. Due to the larger
overhead, DS% looses one instance in NoMystery which it gains back in Satellite. Other than that,
the pruning power is similar. There are also a few cases where DS’% actually prunes slightly more
transitions than £:83. This is due to a stronger pruning in goal states, where in DS% transitions are
not included that cannot possibly contribute to a lower goal cost of a leaf (Definition 9 (i1)). This is
ignored in the special case definition of frontiers from Gnad et al. (2016), which corresponds to part
(1) of the Definition.
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Coverage Pruning Power

+safety b. Transitions | Search Space Runtime
Domain #| B 53 DS|DS® DS3| 83 DS3| C2|| #|53 DS3| #| 83 DS3| #| S® DS}
Depots 217 7 1 7 7 7 7 7| 7] 3 1y 7; 1.0 1.0/ 5 09 09
Elevators08 300 22 22 23] 22 22|22 23| 25(|22|23 1122 1.2 1.0/21| 15 0.7
Elevators11 20| 18 18 18| 18 18| 18 18| 19|18 24 2|18 1.1 1.0/18] 1.2 07
Logistics00 28 20 21 20| 20 20| 21 20| 22|20 27 2120 34 10|11 42 09
Logistics98 35 6 6 7 7 7] 6 7| 6| 6|38 2| 6/ 23 1.0/ 3] 28 09
Maintenance 1 1 1 1 1 1 I 1] 1|74 of 1 1.0 1.0 1 10 0.0
Rovers 38 6 7 5 7 71 7 7| 11| 7133 26| 5| 34 52| 3] 26 3.1
Satellite 34/ 5 10 10| 10 10| 10 10| 8{[10|61 17| 5| 419 14| 3| 678 14
Transport08 30 11 11 11| 11 11 11 11| 14|11 2 4111 1.0 1.0 7| 09 09
Transport14 200 6 6 6 6 6| 6 6 9|l 6] 2 o 6/ 1.0 1.0/ 6/ 09 08
Woodworking08| 24| 12 22 18| 22 22| 22 22| 17||21{ 62  40|12|302.7 20.7| 6(530.3 26.0
Woodworkingl1| 15| 8 15 12| 15 15| 15 15| 11|[15]63 43| 8|306.1 20.7| 6(517.2 259
Zenotravel 18 11 11 11| 11 11| 11 11| 11{/11] 3 5/111) 1.1 1.0 7| 1.0 0.6
Others 110| 22 21 21| 21 21| 22 21| 55{|21] O 0/21| 1.0 1.0{20] 09 0.8
> 425|155 178 170 178 178|179 179|216

Table 4: Detailed results for A* search with K™= when using an inverted-fork factoring strategy.
The setup is identical to Table 1.

When comparing DS® to DS, it turns out that, as before, there are mostly minor differences.
In Logistics, the average percentage of pruned transitions increases from 16% for D.S3 to 40% with
the optimizations on commonly solved instances. Other than that, the only difference is in Satellite,
where the pruning increases by a bit, slightly reducing the size of the search space.

For inverted-fork factorings — Table 4 — we see a nice improvement when enabling the pruning
in decoupled search, the coverage increases by 2 instances in Rovers, and by 8 in Woodworking.
Coverage decreases only by one instance in Elevators. There is also a high reduction in search space
size and runtime for Woodworking. Compared to S3, DS% cannot make up for one instance in Lo-
gistics00. Observe that the pruning power of decoupled strong stubborn sets is highly dependent on
the factoring type. While with fork factorings, around 40% of the transitions in Logistics are pruned,
there is almost no reduction when using an inverted-fork factoring. The same phenomenon is visi-
ble in Satellite. In both cases, the speed-up over DS either vanishes completely, or is significantly
reduced.

Comparing DS3 to DS, it turns out that there is absolutely no difference in terms of pruning
power. Even the absolute number of pruned transitions does not change. There is a measurable
speed-up in Satellite, though, where the average runtime improves by a factor of 1.9, due to a more
efficient computation of the stubborn sets. Here, the special-case optimization for single-variable
inverted-fork leaves, which is described in the Appendix, triggers. Other than that, the special case
optimizations apparently do not lead to an increased pruning power in the domains we are using.

In summary, we have seen similar results throughout this section. In many cases, though not in
all domains, we get the desired improvement of DS®/D S over DS in domains when S improves
over B. The safety belt mechanism is a nice and simple way to get the best of both worlds, i.e.,
when stubborn sets pruning is effective, it can be used, if not, we can easily disable the pruning
to prevent its computational overhead. Unfortunately, it looks like the special case handling for
fork and inverted-fork leaves can only add little over the base definitions from Section 4 on our
benchmark set.
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Coverage Pruning Power
+safety b.|| Transitions | Search Space Runtime

Domain #|B $3 DS|DS® DS3 |53 DS3 || #|S° DS3| #| S DSP| #| S® DS
[ Unsolvability IPC’16 domains ]
Cavediving 2113 3 4 4 4] 3 4] 2|11 41 2 L1 1.0 2| 01 038
Diagnosis 114 5 5 7 70 5 71| 5|52 47| 4| 7.7 116| 3| 26 64
DocumentTransfer| 20| 5 5 5 5 51 5 51 5| 7 141 5| 23 14| 5] 03 10
NoMystery 2412 2 12| 11 11 2 12| 2|48 0| 2| 43 1.0 2| 05 00
Rovers 2007 6 9 7 71 6 71 6139 25/ 6| 17 156/ 02 02
TPP 30(17 14 11 9 9117 11} 9| 16 31 9] 1.0 10|95 01 02
PegSol-RS 1212 2 2 2 21 2 21l 2124 2312 1.0 10/ 1 03 04
PegSol 24124 24 24| 24 24|24  24||24| 1 (24| 1.0 10|14, 03 0.7
Others 46|22 13 17 9 9122 17 9| © 0} 9/ 1.0 1.0/ 9/ 01 00
[ Unsolvable benchmarks from Hoffmann, Kissmann, and Torralba (2014) ]
3SAT 111 1 1 1 1] 1 1| 1{78 76| 1/106.0 69.1| 1/103.6 232.6
Others 751 6 1 23| 15 15| 3 23|| 0 0 0

> 284193 76 113| 94 94|90 113

Table 5: Detailed results for blind search when using the incident-arcs factoring strategy. The setup
is identical to Table 1. Here, “coverage” stands for the number of instances proved unsolv-
able.

Compared to Complementary 2, as a representative of the state-of-the-art in optimal planning,
there are a few cases where DS% performs better. This is the case in Logistics and ParcPrinter,
when using the incident-arcs factorings; additionally in Satellite, TPP, and Woodworking for fork
factorings, and in Satellite with inverted-fork factorings. We conclude that decoupled strong stub-
born sets can compete with state-of-the-art optimal planners when a good problem decomposition
is possible, and stubborn-sets pruning is effective.

7.3 Proving Unsolvability

We will next illustrate the potential of decoupled strong stubborn sets for proving unsolvability of
planning tasks. We use two different configurations. Table 5 shows results for blind search with
the incident-arcs factoring, where the entire state space is exhausted, proving the absence of goal
states reachable from the initial state. In Table 6, we additionally use the h™" heuristic as a dead-
end detector (Bonet & Geffner, 2001). For all planners based on decoupled search we switch to
a pricing function that only distinguishes between reachable (price 0) and unreachable leaf states
(price 0o). We show results on all domains from the Unsolvability IPC’ 16 and those from Hoffmann
et al. (2014) where not all instances have been reused for the competition. When using h™**, we
also compare against Sympa, the best non-portfolio planner in the Unsolvability IPC’16 (Torralba,
2016).

Table 5 illustrates that in the domains at hand, although we see some significant transition prun-
ing that translates into a reduction of the search space in a couple of domains, this only leads to a
runtime improvement in Diagnosis and 3SAT. Coverage increases in Diagnosis, and we get a quite
remarkable result in 3SAT, where runtime decreases from around 260s for DS to only 1.1s for
DS%. Unfortunately, only a single instance of this domain can be decomposed using the incident-
arcs strategy. Again, we do not see a difference between DS? and DS% in terms of coverage, nor in
the number of transitions pruned, or runtime. The safety belt is able to recover all but two instances
in Rovers, when using decoupled search. For standard search, it fails in 4 instances.
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Coverage Pruning Power

+safety b. Transitions | Search Space Runtime

B 53 DS|DS® DS2|S® DS |Sympa|| #|S® DS3| #| 53 DS} | #| S® DS3
[ Unsolvability IPC’ 16 domains [

H*

Domain

Cavediving| 21| 3 3 4 4 4] 3 4 3 2] 5 1 2 1.1 102 03 09
Diagnosis | 11| 5 8 8| 10 10| 8 10 9] 8|43 27 5| L1 10| 1| 07 0.6
Rovers 2007 7 10 9 9 7 10 18| 7| 2 41 7 1.3 13| 7 02 02
PegSol 24124 24 24| 24 24124 24 241124| 1 024 1.0 1010/ 05 08

Others 132140 33 54| 49 49| 40 53 62(32| O 0(132] 1.0 1.0{27] 03 03
[ Unsolvable benchmarks from Hoffmann et al. (2014) ]

3SAT If1r 1 1 1 1] 1 1 ol 1|77 74| 1]117.4 82.2| 1(167.6 188.0
Rovers 2502 1 2 2 20 2 2 19| 1] 1 1 1.1 121 02 06
Others 500 6 2 24| 20 201 6 24 40|l 0 0 0

> 284(88 79 127| 119 11991 128 175

Table 6: Detailed results for A* search with A™* when using an incident-arcs factoring strategy.
The setup is identical to Table 1. Here, “coverage” stands for the number of instances
proved unsolvable.

The additional usage of A™%* as a dead-end detector does not change the big picture. In Diagno-
sis and 3SAT, the stubborn sets pruning can improve the results of DS significantly. In Diagnosis,
this is a bit hidden, because of only little pruning happening in the single (non-trivially) commonly
solved instance. Comparing D.S and DS% directly we observe a runtime improvement factor of 16,
and two more instances solved. Activating the safety belt in this configuration results in the best of
DS and DS(?’) for decoupled search in all but one instance.

DS% can compete with Sympa in Cavediving, Diagnosis, and the resource-constrained variant
of NoMystery. The big advantage of Sympa in terms of total coverage stems from the resource-
constrained Rovers and TPP domains. NoMystery and TPP are not shown in the tables, since no
pruning happens in these domains. Both appear in the UIPC’ 16 benchmarks as well as the domains
from Hoffmann et al. (2014), though with different instances. Across both benchmark sets, DS?)
(with safety belt) proves 13 instances unsolvable, Sympa 38, in TPP. In NoMystery, it is 36 instances
for DS?, and 35 for Sympa.

In summary, strong stubborn sets pruning can be highly beneficial for proving the unsolvability
of planning tasks with decoupled search, if the tasks have the required structure. In the domains
that we use for evaluation, this does not happen frequently, though. Like in optimal planning, when
using a safety belt mechanism, we can nicely combine the two techniques and inherit the strengths
of both components — strong stubborn sets and decoupled search.

8. Conclusion

Partial-order reduction via strong stubborn sets is a well-established technique that has originally
been introduced in model checking and recently caught interest in the planning community. It is
designed to avoid the exploration of redundant parts of the state space that result from the application
of different permutations of action sequences. Star-topology decoupled search is a novel approach
to exploit conditionally independent parts of a planning problem by decomposition. Both techniques
have been proposed to tackle the state space explosion problem inherent to many variants of explicit
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state space search. In this work, we combine the two methods in the context of classical planning to
be able to get the best of both worlds.

We extend our previous work that has developed strong stubborn sets pruning in the restricted
setting when using fork factorings, fixing a special case handling that can lead to unsafe pruning.’
Moving from fork to general star topologies is a highly non-trivial extension that needs a careful
analysis of the possible interaction between center and leaf factors. As such, it also sacrifices some
pruning potential, not only from this more complex dependencies, but also given that the pruning is
restricted to center actions.

Nevertheless, our experimental evaluation illustrates that enabling strong stubborn sets pruning
in decoupled search can be highly beneficial, in both optimal planning and proving unsolvability.
By using a simple safety belt mechanism, we are able to switch off the pruning on instances where
it is not useful. This skips the expensive computation of decoupled strong stubborn sets, leading to
a superior overall performance.

With the complete integration of strong stubborn sets pruning into decoupled search, the ques-
tion arises if we can combine this with other techniques. Recently, symmetry breaking (Gnad et al.,
2017¢c) and symbolic representations (Gnad, Torralba, & Hoffmann, 2017b) have been adapted to
the decoupled setting. Can those be combined with decoupled strong stubborn sets?

And finally, having adopted partial-order reduction from model checking, why not apply de-
coupled strong stubborn sets to this problem? In directed model checking, search algorithms suffer
from the same exponential blow-up of the search space like planning. And since it has already been
shown that star-topology decoupled search can be applied successfully in directed model checking
(Gnad, Dubbert, Lluch-Lafuente, & Hoffmann, 2018), we can further enhance it by the combination
we propose in this work.

Acknowledgments. Daniel Gnad was supported by the German Research Foundation (DFG),
under grant HO 2169/6-1, “Star-Topology Decoupled State Space Search”. Jorg Hoffmann’s re-
search group has received support by DFG grant 389792660 as part of TRR 248 (see https:
//perspicuous—computing.science).

Appendix A. Proofs

A.1 DSSS Special Case Topologies

Lemma 4. Let I1 = (V, A, 50, 5+) be an FDR task and F a fork factoring. Let s” be a solvable
decoupled state, let F* be a leaf factor, and let p be a partial assignment to F* reached in s” . Let
77 be a decoupled plan for s, and let T be a global plan given 7. Let A be a fork-price frontier
set for p in s”.

Define az, wP%t, and w7 as before. If there exists k > t such that, denoting by (alL, ey aiL )
and sk, ..., sk the F* actions, respectively states, in m prior to ax, we have cost((a}, ... ak)) <
prices[s”|(sF) and s¥ |= p, then {ay, ... a1} N A # 0.

Proof. Denote by I the index of the first action on 77 where alL is on 7/ Since we have that

cost({al,... al)) < prices[s”](s}) by prerequisite, a* must be on /U je., we must have
i > 1. Letj > I be the smallest index where cost((al,... ,ajL)) < prices[sf](sf). Consider

7. We remark that, although possible in theory, this never lead to suboptimal solutions or instances falsely identified as
unsolvable in our experiments
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L

a’:
the transition stfl s sJL on 7¥. As j > I, this transition is part of 7/ We prove that (*)
L aJL L . . .. . F
$j_1 — sj is a fork-price frontier transition for p in s” .

Because j is the smallest index where cost({al’,... ak)) < prices[s” ](Sf), it follows that

]
prices[sf](sf_l) < cost({al,... at 7

j—1>)' Observe that, hence, st_l is reached in s’ as its price
is upper-bounded by a finite value. Further, observe that, adding the cost of a]L on both sides of

the inequality prices[sf](sf_l) < cost({aF,... ,ajL_1>), we get prices[sﬂ(sf_l) + cost(aJL) <
cost({al, ..., aJL

prices[sf](sf_l) + cost(af) < prices[sf](s]L).

)). As, by construction, cost({al’,... ,a]L)) < prices[sf](sf), we obtain that

L
a‘
]L_l 2 sf lies on the F'L path 7% from so[F'Z] to sF where s = p. To show

(*), it remains to prove that (a) center[s”] [~ pre(ajL )[F€] and (b) 7" is simple.

Furthermore, s

Regarding (a), because aJL affects F'“, in a fork topology a]L cannot affect the center. Hence,
prices[sf](sf_l) + cost(af) < prices[s]:](sf) implies that aJL cannot be reached in s7. We do
know, however, that stfl is reached in s”. As the only non-F'* precondition of aJL must be on F¢,
(a) follows.

Regarding (b), in a fork topology, any cheapest compliant leaf path is simple, because without
center preconditions nor effect on the leaf there is no reason to visit the same leaf state twice.

We have now proved (*). Given this, as A is a goal-price frontier set for '~ in s7, by definition

we know that the segment (aJL ,..,al) of mF between sf_l and s’ must contain an action from
A. The claim follows as, with j > [ and by definition of a’, <aJL, ...,al) is a subsequence of
(agy ... ak_1). O

Definition 13 (Fork-Past-Maximality). Let II = (V, A, so, s«) be an FDR task and F a fork fac-
toring. Let s be a decoupled state, let ™7 be a decoupled plan for s”, and let  be a global plan
given at.

Define a;, wP%t, and ©f*e as before. We say that 7 is fork-past-maximal if, for every leaf
factor F* and for every k > t where aj, € AL[FL] is reached in s, denoting by (ak, ... aF)
and sk, ..., sF the F* actions, respectively states, in m prior to ax, we have cost({a}, ... akF)) <
prices[s” ] (sF).

Lemma 5. Let I1 = (V, A, 50, 5+) be an FDR task and F a fork factoring. Let s” be a decoupled
state, let 7 be a decoupled plan for s”, and let T be a global plan given ©”. Then there exists a

fork-past-maximal global plan 7' given ™7 where cost(n') < cost(r).

Proof. We obtain such a 7’ as follows. Start with 7’ := 7. If 7’ is past-maximizing, stop. Else,
select a counter-example F'* and k, and denote <af, e aiL> and SOL, e siL as in Definition 13. As
cost({al, ..., al)) > prices[s”](sF), there exists a 7€ [s”]-compliant F'* path * that ends in s¥.
So 7’ remains a plan when removing (al, ..., aF) from 7/, and inserting 7" as a subsequence of
mPest Further, we can move ay, to the end of 7%, because its FL precondition is achieved by L,
and its F© precondition (if any) is true in so[7P%!] as pre(az,) is reached in s7. Now, iterate. This
algorithm terminates as, after each step, there is one action less in 7% The outcome 7’ satisfies
the claim as we have not changed the center-action subsequence, and the permuted leaf paths are

still compliant with that sequence. O

380



STRONG STUBBORN SET PRUNING FOR DECOUPLED SEARCH

Theorem 3. Let I1 = (V, A, 5o, 5+) be an FDR task and F a fork factoring. Let s” be a solvable
decoupled state for which () is not an optimal decoupled plan, and let 77 be a strongly optimal
decoupled plan for s”. Let AL be an FDSSS for s”.

Then ASF contains a center action starting a permutation of ©” .

Proof. Let 7 be a global plan for 77, and assume, without loss of generality by Lemma 5, that 7 is

fork-past-maximal. Denote 7 = (a1, ..., a,). As above, let a; be the starting action of 7¢[77] in
7, and denote 7%t := (ay,...,a;_1) and 7/ := (ay, ... a,). Then the following properties
hold:

(a) There must be an action a shared between A7 and 7/ ie., a € AT N {ay, ..., a,}.

If s, is not reached in s”, then this follows by the same argument as for (a) in the proof of
Theorem 1.

If s, is reached in s7, then this follows by the same argument as for (a) in the proof of Theo-
rem 2, replacing Lemma 3 with the variant of Lemma 4 for fork-goal-price frontier sets.

Given (a), let ay, be the first shared action, i.e., say that ax € A7 and {ay,...,ax_1} NAL = 0.

(b) ay, is reached in s”.

By the same argument as for (b) in the proof of Theorem 1.

(c) ay, is a center action, a;, € AC.

Assume for contradiction that ay, is a leaf action, a; € AL [F L]. First, with (b) and due to
Definition 10, we then know that A" contains a fork-price frontier set A for p := pre(ax)[F¥]
in s7. We show that 7/%/“"¢ contains an action from A in front of aj, in contradiction to ay
being the first shared action.

Denote by <af, ey af} and SOL, cey siL the F'L actions, respectively states, in 7 prior to a. We
know that k > t because ay, is on /%" In fact, as a is a center action, given the fork topology
we know that aj, # a4 and hence k > t. Given this, as 7 is fork-past-maximal and ay, is reached
in s* by (b), we have that cost({a}, ... aF)) < prices[s”](s}). Furthermore, of course sF =
p = pre(ay)[F]. We can therefore apply Lemma 4 and get that {ay,...,ar_1} N A # (), as
we needed to show.

(d) ay, does not interfere with any of the actions a;, t < i < k — 1, where pre(a) || pre(a;).
With (b) and (c), and as Definition 10 (iii) includes interfering actions for reached center actions
in A7, this follows by the same argument as for (c) in the proof of Theorem 1.

(e) aj can be moved to the start of 7/ Precisely, ©’ := 7P%! o (ay, at, ..., Ak—1, s, .-,
an) is a plan for IT.

By the same argument as for (e) in the proof of Theorem 1, except that we do not need to take
care of leaf preconditions as, in a fork structure, the center action aj cannot have any such
preconditions.

The claim now follows with the same concluding argument as in the proof of Theorem 1. O
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Example 3. We give an example 11 = (V, A, sq, s4), fork factoring F, and solvable non-goal s,
where an FDSSS Af as per Definition 10 but without item (iv) does not contain the starting action
of any decoupled plan for s .

We define 11 as follows:

o) = {ll, lg, C1, CQ}, with D(ll) = {0, 1, 2, 3} and D(lz) = D(Cl) = D(Cg) = {O, 1}.

e so(v) =0forallve.

o s, ={l1 =31y =0}.

e The action set A contains:

Ll
ap51

: precondition {c; = 0} effect {c; = 1}
: precondition {ca = 0} effect {co = 1}
: precondition {l; = 0,c1 = 1} effect {l; = 1}
: precondition {l; = 1, ¢y = 0} effect {11 = 2}
: precondition {l; = 2, cy = 1} effect {l; = 3}
: precondition {l; = 0} effect {l; = 1,1o = 1}

The factoring F has the center F¢ = {c1,co}, and the single leaf F* = {l1,ls}. Figure 2
illustrates the state spaces of these factors.

{11:3,l2:0} {l1:3712:1}
{Cl = 17C2 = 1}
al =1 akh =1
(h=21,=0} {h=21=1} ad?, a5
at =0 ab =0
{e1 =1, =0} {e1=0,00 =1}
{llzl,lgzo} {llzl,lzzl}
. ot a(?iu aocil
agy o =1 =1
{llz(),lg:()} {61:O,CQ=O}

Figure 2: The leaf (left) and center (right) state spaces in the planning task from Example 3. Un-
derlined variable values are goal values; all variables initially have value 0.

The only way to solve this task is the leaf path <aé‘ 1 at 9 ak 3). To execute that leaf path,
we must first apply the center action ao(’ll, achieving the precondition of aOL .1, then we need to

Ca

apply ag .1, as well as at "o Which has precondition co = 0; and only then can we apply ay?,,,
achieving the precondition of the final action aé: 5. Note that we can not apply the center actions
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in the opposite order: we must first move c1, because once we moved co to 1 we cannot move it back
to 0.

We set s” to the initial decoupled state here, s* := s{. Due to the leaf action akt,, Iy = 1is
reached in s* ; the only unreached leaf-variable values are |1 = 2 and lo = 3. Given the above, the
only decoupled plan for s is induced by the center-action sequence (aooiﬂ, &giﬁ-

So, what does the construction of an FDSSS Asf do here? Say first that we use Definition 10
without item (iv). By Definition 10 (i), we first collect all actions achieving 1, = 3 into Af . There
is only one such action, namely a% 3. For that action, the leaf precondition l; = 2 is not reached,
so the necessary enabling set as per Definition 10 (ii) adds the only achiever, alL o N0 AL, That
action is reached — its leaf precondition I, = 1 is reached in s” — so without Definition 10 (iv) it
spawns no further activity. The construction stops with AT = {al 5, al,}. As advertised, this
does not contain the starting action of any decoupled plan for s” — indeed it does not contain any
center action at all.

The issue here is that, with pre(a¥ ) = {l1 = 1} already being reached in s”, without item (iv)
we overlook that, yes, this condition is reached, but in the wrong leaf state, namely {l1 =1l = 1}
which is not part of any solution.

For the record, if we do use item (iv) of Definition 10, then this issue is fixed: withp := {l; = 1},
the leaf state v := {l; = 1,15 = 0}, i.e., the leaf state we actually need to use on a solution, forces
a fork-price frontier set for p in s” to contain CLOL 1. To see this, observe that r = p; that the path
7l = (ak ) from so[F*] to {l1 = 1,1 = 0} has cost(rl) = 1 < co = prices[s”|(rL); and that

L

L
Q,
by setting s* = SO[FL] and t* = v the transition s* =% t& is a fork-price frontier transition

forpins”.

Definition 14 (DSSS: Enhanced). Let I1 = (V, A, so, Sx) be an FDR task and F a star factoring.
Denote by FF'L the set of fork leaves in F, denote by F'F'L the set of inverted-fork leaves in F,
and denote F&L .= FL\ (FFL U FIFL). Let s be a decoupled state where s, [\ Jprcrirr FL] is
reached in s” .

An action set A is an enhanced decoupled strong stubborn set (EDSSS) for s” if all of the

following conditions hold:

(i) If sy is not reached in s”, then AT contains a decoupled necessary enabling set for s in s”,

discarding actions o’ where pre(a)[Jprerirr F¥] is not reached in s”.

If 5, is reached in 7, then for every F* € FG where s,[F*] # 0, AL contains a goal-price
frontier set for FL in sI, discarding actions o’ where pre(a')[Jprerirr F¥] is not reached
in 7 ; and for every F*' € FF'lL where s, [F'] # 0, AL contains a fork-goal-price frontier
set for P in s .

(ii) For all actions a € AL not reached in s”, AL contains a decoupled necessary enabling set

for pre(a) in s”, discarding actions ' where pre(a’)|\Jprezirr F] is not reached in s”.

(iii) For all actions a € Al \ Uprerrr AF[F¥] reached in s*, AL contains all actions o
interfering with a where pre(a) || pre(a’) and pre(a’)[UpreFrre F¥) is reached in s”.

iv) Forall actions a € LeFFL reached in s”, and for a where pre(a

(iv) Forall acti AN\Upreprr AX[FE] reached in s, and for all F* wh FL
0, AL contains a reached-enabling set for pre(a)[F*] in s”; and for all actions a* €
AT Uprerre AX[FF] reached in s*, AL contains a fork-price frontier set for pre(a®)[F'*]
ins
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Note that, in (i), actions in a fork-goal-price frontier set cannot have a precondition on an
inverted-fork leaf, so we do not need to exclude actions with unreached inverted-fork leaf pre-
conditions. In (iv), for non-fork-leaf actions a (first case in the item), a cannot have a precondition
on any such leaf. Reached-enabling sets are thus collected only for non-fork leaves.

Theorem 6. Let I1 = (V, A, sg, i) be an FDR task and F a star factoring. Denote FFL FIFL
and FEL as in Definition 14. Let s” be a solvable decoupled state (in particular, s,[Jprcrirr FL]
is reached in s ), and let ™ be a decoupled plan for s”. Let Asf be an EDSSS for s”.

Then .Af contains a center action starting a permutation of at.

Proof. Let 7 be a global plan for 7. Observe first that the notions of past-maximality and fork-
past-maximality affect individual leaves only, i.e., the actions a; in question affect exactly one leaf
factor. So we can transform 7 as per Lemma 1 to be past-maximal for non-fork leaves; and we can
transform it as per Lemma 5 to be fork-past-maximal for fork leaves. We can hence assume that 7
has these properties, without loss of generality.

Denote 7 = {ay,...,ay). As before, let a; be the starting action of 7¢[r”] in 7, and denote
7Pt = (ay, ..., a;_1) and 7/ .= (a4, ..., a,). Then the following properties hold:
(a) There must be an action a shared between A7 and 7/ ie.,a € AT N{ay,...,a,}.

If s, is not reached in s”, this holds by the same argument as for (a) in the proof of Theorem 1.

If s, is reached in s7, then for non-fork leaves this holds by the same argument as for (a) in the
proof of Theorem 2, and for fork leaves this holds by the same argument as for (a) in the proof
of Theorem 3.

In all but the last case, we invoke Proposition 1 to show that actions with unreached inverted-leaf
preconditions can be discarded.
Given (a), let ay, be the first shared action, i.e., say that ax € A7 and {ay,...,ax_1} NAL = 0.

(b) ay, is reached in s”.

By the same argument as for (b) in the proof of Theorem 1, invoking Proposition 1 to show that
actions with unreached inverted-leaf preconditions can be discarded.

(¢) fap € A\ Uprerre AL[FL], then ay, does not interfere with any of the actions a;, t < i <
k — 1, where pre(a) || pre(a;).

By the same argument as for (c) in the proof of Theorem 1, applied to az €A\ gz e zrr AX[FF]
with Definition 14 (iii), and invoking Proposition 1 to show that actions with unreached inverted-
leaf preconditions can be discarded.

@ a, € A\ Uprepre AX[FF].
Assume for contradiction that ay, is a fork-leaf action, a;, € AL[FL] for a fork leaf F'L. With
(b) and due to Definition 14, A/ contains a fork-price frontier set A for p := pre(a)[F'¥]
in s7. From here, the argument is the same as for (c) in the proof of Theorem 3, invoking
fork-past-maximality for F'.

(e) The leaf precondition of ay is true at the end of 7%, i.e., in so[wP*!].

By the same argument as for (d) in the proof of Theorem 1, applied to ar, €A\ pr e rre AX[FF]
with (d) and Definition 14 (iv).
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(f) ax can be moved to the start of /%%, Precisely, ' := 7wP%o(ay, at, . .., Qk_1, A1, - - - Gn)
is a plan for II.

By the same argument as for (e) in the proof of Theorem 1, applied to ay €A\ e zrr AX[FF]
with (d).

(g) ay is a center action.

By the same argument as for (e) in the proof of Theorem 1, applied to ay € A\Jpre rre ALFL
with (d), invoking past-maximality for the non-fork leaf F'~.

The claim now follows with the same concluding argument as in the proof of Theorem 1. O

Definition 15 (DSSS: Inverted Forks with Single Variables). Let II = (V, A, s¢, sx) be an FDR
task and F an inverted-fork factoring where every leaf consists of a single variable, VF* ¢ FL :
|FE| = 1. Let s be a non-goal decoupled state where s,[V \ FC] is reached in s”.

An action set AT is a single-variable-inverted-fork decoupled strong stubborn set (SVIFDSSS)
for s” if all of the following conditions hold:

(i) AL contains a center-necessary enabling set for s,[F “in s”.

(ii) For all center actions a € Al not reached in s*, AL contains a center-necessary enabling
set for pre(a)[F€] in s”.

(iii) For all center actions a € A7 reached in s”, Al contains all center actions o' interfering
with a where pre(a) || pre(a’) and pre(a’)[V \ F©] is reached in s”.

(iv) For all center actions a € AL reached in s*, AL contains all center actions a' that have a

leaf precondition competing with a, pre(a)[V \ FC| } pre(a’)[V \ F€], and pre(a’)[V \ F€]

is reached in s” .

Theorem 7. Let I1 = (V, A, s¢, s,) be an FDR task and F an inverted-fork factoring where every
leaf consists of a single variable, VF'* € F& : |F*| = 1. Let s* be a solvable non-goal decoupled
state, and let 77 be a decoupled plan for s” . Let Asf be a SVIFDSSS for s” .

Then Af contains a center action starting a permutation of .

Proof. Let 7 be a global plan for 77, and assume, without loss of generality, by Lemma 1, that 7 is
past-maximal. Denote 7 = (ay, ..., a,). As above, let a; be the starting action of 7€ [7*] in 7, and
denote 7% := (a1, ...,a;_1) and 7/ .= (ay, ... a,). Then the following properties hold:

(a) There must be a center action shared between A7 and 7/, ie., a € AT N {ay,...,an}.
Such an action must exist by the same argument as for (a) in the proof of Theorem 1. It must be
a center action due to Proposition 1.

Given (a), let ay, be the first shared action, i.e., say that a; € A7 and {ay,...,ax_1} NAL = 0.

(b) ay, is reached in s”.

By the same argument as for (b) in the proof of Theorem 6 .
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ar, does not interfere with any of the center actions a; in (ay,...,a—1), where pre(ay) ||
pre(a;).

For the center actions in (ay, . .., ax—1), this holds by the same argument as for (c) in the proof
of Theorem 6.

The leaf preconditions of ay, agree with those of all center actions a; on (ay, . . ., ag_1); formally
pre(ap) [V \ FO] || pre(a;)[V\ FC, t <i < k.

Assume for contradiction that there exists an action a; where pre(az,)[V\FC] ff pre(a;)[V\F€]
preceding ag on rfuture By (a) and (b) ay, is a reached center action. Thus, with Definition 15
(iv), A contains all center actions a’ where pre(ax)[V \ FC] } pre(a’)[V \ F¢], invoking
Proposition 1 to show that actions with unreached leaf preconditions can be discarded. But
then, a; is such an action and is therefore contained in A7, in contradiction to aj, being the first
shared action.

No action on {ay, ..., aj_1) affects a variable in vars(pre(ax)) N Uprerr FL.

Observe first that, due to the inverted-fork structure, every action that affects a variable in
vars(pre(ag)) N Uprerr F¥ must be a leaf action a € A"[F]. Moreover, all A*[F*] are

disjoint and vars(pre(a)) U vars(eff (a)) = F¥ for all a € AY[FL] (because |FX| = 1, for all
FL ¢ FL). Further, if vars(pre(ax)) N FX # () then FL C vars(pre(ay)).
To prove the claim, we next show that there exists no action a; on {(ay,...,ar_1), with t <

i < k, where a; € A*[F¥] and F* C wars(pre(as)). Assume for contradiction that such
an a; exists. From (b), we have that (1) a, is reached in s”. In particular, its leaf precondi-
tion on wars(pre(ax)) N F” is reached in s*. With (d), we have that (2) no center action on
(at,...,ar—1) has a competing leaf precondition, so in particular there exists no center action
aj, with t < j < k, s.t. pre(ay)[FX] } pre(a;)[FL].

Denote by 7T£> i the FL_affecting leaf-action subsequence in 7 prior to a, that includes a;. Be-
cause 7 is a plan, 7%, is compliant with 7[s”] o 7%[(ay, . . ., ag_1)]. From (1) and (2), it fol-
lows that wik is also compliant with 7¢[s”]. Given that by prerequisite a; is in (ay, ..., ar_1)
this is in contradiction to the assumption that 7 is past-maximal.

past

The leaf precondition of ay, is true at the end of 7%, i.e., in so[7P*¢].

This follows directly from (b) and (e), and the fact the 7 is a plan.

a; can be moved to the start of 7/4ture, Precisely, 7’ := TPast o (aky Aty ooy A1, ARy 1y - - -
an) is a plan for IT.

Given (b) and (f), ay, is applicable in sg [wp‘“t]]. With (c) ay, does not interfere with any center
action a; in (ay, ..., ap_1) by the same argument as in the proof of Theorem 1. The only leaf
actions it can interfere with are those affecting vars(pre(ax)) NUpzer X, but with (e) there
are no such action on 7/ prior to aj, concluding the argument.

The claim now follows with the same concluding argument as in the proof of Theorem 1. O
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A.2 Exponential Separations

Theorem 4. Decoupled search is exponentially separated from SSS, and vice versa.

Proof. Consider again our running example with a truck and N packages on a map with two
locations A and B. There are only 3 reachable decoupled states: in 507 , all packages can be at A or
loaded (i.e., these are the reachable leaf states); driving to B, all packages can also be at B; driving
back to A yields the same center state but a different pricing function. SSS, on the other hand, does
not yield any pruning. In any state s, to make progress to the goal, .45 must include one applicable
load or unload action; which interferes with the applicable drive action; which in turn interferes
with all applicable load/unload actions.

Vice versa, consider the task family /' from Gnad and Hoffmann (2019) with II" = (V" A", s,
s?) as follows. V" = {vy,...,v,}, where D(v;) = {0,1,2} for 1 < i < n. The initial state is
sg = {v1 = 0,...,v, = 0}, the goal state is s} = {v; = 2,...,v, = 2}. The actions are
A" = {ao,ailz,a}j2 | 1 <i,7 < n} where pre(ag) = {vi =0,...,v, =0} and eff (ag) = {v1 =
1L...,v, = 1}; pre(al?) = {v; = 1} and eff (a}?) = {v; = 2}; pre(agjz) = {v; =0,v; =1} and
eﬁ(a}jz) = {v; =2,v; = 2}.

First, ag is applied to sj. For the successor state s; := s{j[ao], SSS picks a variable v; with
unsatisfied goal, and adds the necessary enabling set actions azm, a}f, and a}f to the stubborn set
As. Since no a,lj action is ever applicable, their only enabler ag is added to A,. Except ai12, no
action in A; is applicable in sy, but all actions interfering with a}? are already in Aj, so it is the
only action applied to s;. The same happens in all successors of s;.

The decoupled state space is exponential in n as claimed. The ailj2 actions have an unreachable
precondition, yet their presence means that, in any star factoring, there can be at most one leaf: if

12

there were two leaves FZ-L and FjL containing v; and v; respectively, then the action a;+ would incur

a direct dependency across FZ-L and F jL . Thus, for any family 7" = {F¢, FL} of star factorings
(where FX may not be present for some values of n), max(|FC |, |FE|) € Q(n). So the number
of reachable decoupled states is exponential in n since it has to enumerate all applications of ai12
actions for a linear number of variables v;. ]

Theorem 5. There exists a parameterized example family F' such that, on F', DSSS yields an expo-
nentially stronger reduction than both, decoupled search and SSS.

Proof. Consider our example but with M trucks and N = M packages, where each truck ¢; is
associated with a group of NV packages that only ¢; can transport (all trucks and packages start at A,
all packages must be transported to B). The number of reachable decoupled states is exponential
in M, because all trucks must be in the center factor, and their move combinations are enumerated.
For SSS, as soon as A contains a load/unload action for one group of N packages, the load/unload
actions for all other packages in that group are present as well, due to interference as before. So the
SSS-pruned reachable state space has size exponential in V.

Consider now decoupled search with DSSS pruning. In 3{ , all packages can be at A or loaded
into their respective truck. The necessary enabling set for s, will select one package, associated
with some truck ¢;; hence Ay includes drive(t;, A, B). This does not interfere with the drive actions
for the other trucks, so it is the only applicable center action in A, and we get a single successor
state s7 . In s7, the packages associated with ¢; can all be at B. So the decoupled necessary enabling
set for s, for DSSS selects a package associated with another truck ¢; # t;. The only non-pruned
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action is drive(t;, A, B); and so forth. Once all trucks are at B, we have a goal decoupled state

s7. The goal-price frontier sets for all F© € FL in s are empty, because the package prices are
already the cheapest possible ones. So there are exactly M + 1 reachable decoupled states. O
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