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Abstract

Inverse kinematics solves the problem of how to control robot arm joints to achieve
desired end effector positions, which is critical to any robot arm design and implemen-
tations of control algorithms. It is a common misunderstanding that closed-form inverse
kinematics analysis is solved. Popular software and algorithms, such as gradient descent
or any multi-variant equations solving algorithm, claims solving inverse kinematics but
only on the numerical level. While the numerical inverse kinematics solutions are rela-
tively straightforward to obtain, these methods often fail, due to dependency on specific
numerical values, even when the inverse kinematics solutions exist. Therefore, closed-form
inverse kinematics analysis is superior, but there is no generalized automated algorithm.
Up till now, the high-level logical reasoning involved in solving closed-form inverse kine-
matics made it hard to automate, so it’s handled by human experts. We developed IKBT,
a knowledge-based intelligent system that can mimic human experts’ behaviors in solving
closed-from inverse kinematics using Behavior Tree. Knowledge and rules used by engineers
when solving closed-from inverse kinematics are encoded as actions in Behavior Tree. The
order of applying these rules is governed by higher level composite nodes, which resembles
the logical reasoning process of engineers. It is also the first time that the dependency of
joint variables, an important issue in inverse kinematics analysis, is automatically tracked
in graph form. Besides generating closed-form solutions, IKBT also explains its solving
strategies in human (engineers) interpretable form. This is a proof-of-concept of using
Behavior Trees to solve high-cognitive problems.

1. Introduction

Symbolic inverse kinematics analysis is a non-trivial task critical for operation and design
of robot manipulators as well as animated characters. For example, in a simple serial robot
(wrist robot) of three degrees of freedom (joint variables A, B, and C), the inverse kinemat-
ics computation takes the desired end-effector pose as input (typically as a homogeneous
transform, left hand side of the equation), and solves for joint angles or joint displacements
from the forward kinematic equations (right hand side of the equation).
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(1)

The numerical solutions are often substituted for closed form symbolic solutions, where
all elements in the desired end effector matrix (left hand side ) are real numbers and solu-
tions for joint variables are numerical values, using two major methods: A) gradient descent
searches for a set of joint angles/length that minimize the cost function. Convergence of
gradient descent can depend on the starting value and only generates one solution. Most
existing software packages (Corke, 1996; Kelmar & Khosla, 1990) use a version of gradient
descent as their core algorithm. The shared limitations include finding only one of the mul-
tiple solutions, convergence depending on the starting value, and problems with convergence
near singular configurations. B) Solving multi-variant polynomial equations (Manocha &
Canny, 1994; Murray, Sastry, & Zexiang, 1994). Though this method generates multiple
possible solutions, it fails when the augmented transformation matrix is ill-conditioned,
which is unavoidable in practice. And this method is often DOF-specific.

Comparatively, closed-form inverse kinematics analysis overcomes all these shortcom-
ings of the numerical methods, but it’s difficult to automate conceptually, because of the
high-level mathematical reasoning needed. For example, in (1), above, closed-form inverse
kinematics analysis for joint θ1 begins by looking through all the equations and choosing
two:

r21 = sin θ1 cos θ2

r11 = cos θ1 cos θ2

Though θ2 is unsolved at this step, cos(θ2) can be canceled out by dividing these two
equations while calculating atan2. Depending on the value of cos(θ2), θ2 can have two
solutions:

θ1s1 = atan2 (r21, r11), cos(θ2) > 0

θ1s2 = atan2 (−r21,−r11), cos(θ2) < 0

θ1 undefined, cos(θ2) == 0

Several groups have attempted to automate symbolic inverse kinematics analysis start-
ing in the 1990’s (Herrera-Bendezu, Mu, & Cain, 1988; Halperin, 1991), which laid the
foundation for our work. Their work is reviewed and compared with ours in detail in the
next section.
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Though the sufficient conditions for the existence of closed-formed IK solutions is well-
established (Pieper & Roth, 1969), the necessary condition remains unknown. For instance,
a robot with three-intersecting axes has analytical IK solution; but it’s not necessary for a
robot to have three-intersecting axes to have closed-form IK solutions. In terms of degrees
of freedom (DOF), any mechanism having greater than 6-DOF has unlimited number of
analytical solutions, due to kinematic redundancy. IKBT solves cases up to 6-DOF.

In this work we develop an AI agent that solves closed-form inverse kinematics with the
following goals: The agent

• Should solve closed-form inverse kinematics with a generalized algorithm applicable
to most serial chain robot arms, without assumptions of configuration or degree-of-
freedom

• Should explicitly use common knowledge that engineers use when solving the inverse
kinematics problems, such as trig identities or the method of determinants, rather
than relying on tricks for specific kinematic configurations

• Should have search and apply suitable knowledge or rules to equations containing
unsolved joint variables as human experts do.

• Should be able to explain its solving strategy in an easy to interpret format

• Should be extensible and modifiable

To address these goals, we adapt Behavior Trees to construct an expert system, “IKBT”,
having the logical reasoning power to solve inverse kinematics symbolically without human
supervision. A Behavior Tree - initially popular in video game AI, models intelligent agent
behavior by incorporating specific tasks into action leaves (Lim, Baumgarten, & Colton,
2010; Marzinotto, Colledanchise, Smith, & Ogren, 2014; Colledanchise, Murray, & Ogren,
2017; Colledanchise, Marzinotto, Dimarogonas, & Ogren, 2016). Behavior Trees have the
advantages of composability and scalability compared to finite state machines.

The main contributions of this work are:

• We compactly encode the inverse kinematics logic and solution strategy in a Behavior
Tree (see Work Flow and Architecture section).

• We code each knowledge-based solver into a modular leaf, forming a “tool box” which
is organized and applied to equations and intermediate results by the Behavior Tree
(see Transformations and Solvers section). The structure is readily extensible.

• IKBT generates a dependency graph of joint variables in the solutions, which specifies
all possible poses. Tracking these dependencies facilitates grouping variables into
distinct solutions, essential to downstream control softwares for robots (see Solution
Graph section).

• IKBT successfully solves complicated robots, such as the 6-DOF commercial robot
manipulator PUMA 560 and successfully solved 18 out of 19 test robots (95% success
rate) (see Results section).
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• On average, IKBT generates symbolic solutions and source code in a few minutes on
a normal PC. The same work often takes a human expert hours to complete.

• IKBT generates a report of its results and solution method in LATEX, and generates
code in Python and C++, creating functions which implement the derived solutions
including domain (reachability) checking of numerical inputs (see Pose Validation
section).

• Inverse kinematics solutions from IKBT are verifiable with numerical computations
(facilitated by the IKBT code generator) (see Result Verification subsection under
Results).

• Implementation in a modern open-source, cross-platform, programming language
(Python). IKBT requires few dependencies outside of the standard Python distribu-
tion (mainly the symbolic manipulation package sympy and the unit testing framework
unittest).

1.1 Related Work and Comparison

It is a common misconception that automated closed-form inverse kinematics is a solved
problem. A few research groups introduced a generalized method to perform inverse kine-
matics analysis by solving multipolynomial multivariate equations (Manocha & Canny,
1994; Murray et al., 1994). However, the original research (Manocha & Canny, 1994),
as well as authors of various textbooks, pointed out that this method involves a combi-
nation of numerical and symbolic manipulation (symbolic reduction at early steps, only
auxiliary), and is thus not a closed-form solution. The multipolynomial method depends
on numerical values in critical steps, such as eigenvalue computation. The resulting values
for joint variables are only numerical. Other drawbacks of this method, as pointed out by
Manocha and Canny (1994), include frequent poor conditioning of the matrices requiring
inversion. Another explicit limitation of this method is that all joint variables need to be
rotary - robots with one or more prismatic joints can’t be solved by this method.

Previous research on closed-form inverse kinematics lays a good foundation for IKBT.
One such example is a rule-based pattern matching approach (implemented as an expert
system in LISP) (Herrera-Bendezu et al., 1988) from which IKBT adapted the sin or cos
solver, tangent solver, and simultaneous equation solver. Similar to IKBT, that system
scanned a list of equations, found the ones matching patterns, and then fetched the re-
spective solutions. Their method solved several commercial robots, including the more
complicated PUMA 560. Limitations of this work include a hard coded framework for solu-
tion sequencing, and dependence on obsolescent software. In comparison, IKBT uses only
6 rule-based solvers, indicative of more efficient combinatorial logical reasoning.

A similar approach implemented rule-based solvers in LISP (Wenz & Worn, 2007),
although neither the detailed rules or the source code were made public. In this implemen-
tation, the system solved equations sequentially and stopped working on a variable as soon
as it is solved. In contrast, IKBT’s assigner node picks a variable first, and tries the entire
toolbox for the chosen variable. We designed IKBT this way to get the optimal solution, in
the situation where more than one solver applies to the same variable (choosing from multi-
ple equations). IKBT ranks the solutions obtained and chooses the best solution according

460



IKBT: Solving Symbolic Inverse Kinematics with Behavior Tree

to specified criteria (described below). Unlike IKBT, previous research (Herrera-Bendezu
et al., 1988; Wenz & Worn, 2007) did not show the ability to find all possible solutions or
tracking dependencies among variables .

A different method used elimination techniques to convert the set of kinematic equations
into a univariate polynomial (Halperin, 1991). It is effective in solving specific robots.
However, whether their methods could be applied to other robots was not systematically
tested. Also, because it uses an approach unlike what human experts do, it is harder to
check the correctness of the solution or strategy: IKBT’s toolbox contains only well known
rules frequently used by human experts. Each rule is provided with a straightforward unit
test.

An additional solver used a product-of-exponentials formula, which doesn’t require D-H
parameters, and is robust in dealing with kinematics singularities (Chen & Gao, 2001).
However, this solver only showed the capability of handling numerical inputs and rendering
numerical solutions, and very limited solving capability for complex robots (6-DOF robots
≈ 50%) . Compared to this D-H parameters-free solver (Chen & Gao, 2001), IKBT han-
dles symbolic input, generates closed-form solutions, and achieved better success rate with
complex 5-DOF (100 %) and 6-DOF (80%) robots. Another solver used evolutionary al-
gorithms to get an approximate inverse solution (Chapelle & Bidaud, 2001). By contrast,
IKBT computes exact symbolic closed-form solutions.

IKFast performs inverse kinematics analysis as part of the OpenRAVE package (Di-
ankov, 2010). Instead of general solving techniques, IKFast adapts a case-specific hybrid
approach.

We performed an in-depth source code analysis of IKFast which revealed the following
major differences between IKFast and IKBT:

• Numerous lines of the IKFast source code specify the desired end effector position (the
inverse kinematic input) as numerical values. Therefore, by definition, these results
are not symbolic.

• Many numbers are presented in output equations and intermediate results of IKFast,
where there should be only symbols in a closed form solution. The use of “iterations”
in the IKFast solving code signals the underlying gradient descent/ascent method,
which is prevalent in numerical IK process.

• Unlike IKBT, IKFast’s results are complicated C++ code and not human understand-
able. Human interpretability is a major feature of IKBT.

• The output of IKFast is a .cpp file, which is not a symbolic solution. Even if C++
source code is claimed to be a symbolic solution, IKFast’s code is too complex to
manually verify. In addition to generating python and .cpp files, IKBT also generates
LATEXequations, obeying all standard conventions of a symbolic solution, that are
compiled into human readable form with standard LATEXtools.

Additional insights from IKFast code inspection reveal that IKFast categorizes robots
by their number of DOFs, and uses hard-coded algorithms for arms with different DOFs.
IKFast does generates a “dependency tree” like IKBT. However, a tree cannot represent
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Figure 1: Work Flow. A Forward kinematics module computes symbolic kinematic equa-
tions to be solved (Td = Ts) given the input DH parameters. Then the equations
are evaluated for closed-form inverse kinematics solutions to each joint variable.
Upon solving a robot, along with the solutions, a dependency graph, Latex report,
and Python/C++ code are generated as convenience features.

the multiple independent dependencies we found for some variables in some robots. The
graph-based representation generated by IKBT solves this problem.

As described in detail in Section 4.4, a dependency graph is essential to keep track of
the joint poses, and make sure the solutions sets are complete and necessary. Complete
means IKBT can find all possible joint poses if the solution exists. Necessary means that
all solutions are unique, not duplicates of each other. Dependency tracking has previously
been done manually. To the best of our knowledge, IKBT is the first to automate this
process.

2. Work Flow and Architecture

2.1 Work Flow

As shown in Fig. 1, the system input takes symbolic Denavit–Hartenberg (DH) parameters
and calculates symbolic forward kinematic equations in the form of a 4x4 homogeneous
transformation, T 6

0 , is computed symbolically as

Ts = T 0
6 = T 0

1 T
1
2 T

2
3 T

3
4 T

4
5 T

5
6 (2)

By convention, each transformation matrix takes a coordinate from the subscript frame
and transforms it to the superscript frame (T 0

6 transforms from frame 6 to frame 0).

We denote the desired robot end effector pose as Td (see left hand side of (1)). Then
the inverse kinematics problem can be stated as solving

Td = T 0
6 (q1, . . . , q6) (3)

(where qi are the unknown joint variables) for all sets of joint variables (qi = θi or di) which
satisfy 3. Related equations which can be used to find soluble equations include:

[T 0
1 ]−1Td = [T 0

1 ]−1Ts (4)
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[T 1
2 ]−1[T 0

1 ]−1Td = [T 1
2 ]−1[T 0

1 ]−1Ts (5)

[Tn−2
n−1 ]−1...[T 0

1 ]−1Td = [Tn−2
n−1 ]−1...[T 0

1 ]−1Ts (6)

IKBT first symbolically calculates and simplifies these intermediate results (4 - 6) to
augment (2). These intermediate results are stored in a buffer which is used as a lookup
(joint variable - equations) table for solvers. Each of these matrix equations creates 12
scalar equations (one for each element in the first three rows) which can be searched for
solvable equations. The individual equations are sorted into three lists according to the
number of unsolved variables in each equation (1, 2, and 3-or-more unknowns). As each
variable is solved, this scan is repeated.

The Behavior Tree’s leaf nodes transform, or identify and solve, a particular kind of
equation (see the Section 3). For example, one pair of nodes identifies and solves scalar
equations of one-unknown of the form A = sin(Bθj +C) or A = cos(Bθj +C) where A,B,C
are known expressions, and θj is unknown.

After all joint variables are solved, the solution graph and the solution vectors (2n

joint vectors in symbolic form correctly associating the multiplicity of each variable) are
constructed. A LATEXreport, C++ and Python code, containing symbolic solutions for all
possible poses, is also generated.

2.2 Architecture

Behavior Trees have been explored in the context of humanoid robot control (Marzinotto
et al., 2014; Colledanchise, Marzinotto, & Ogren, 2014; Bagnell et al., 2012), collaborative
robotics (Guerin, Lea, Paxton, & Hager, 2015; Colledanchise et al., 2016), and as a modeling
language for intelligent robotic surgical procedures (Hu, Gong, Hannaford, & Seibel, 2015;
Hannaford, Hu, Zhang, & Li, 2016).

The work reported here is the first to our knowledge to use Behavior Trees to encode
algorithms for reasoning about and solving mathematical equations symbolically. When
implementing intelligent behavior with Behavior Trees, the designer of a robotic control
system breaks the task down into modules (Behavior Tree leaves) which return either “suc-
cess” or “failure” when called by parent nodes. Higher level nodes define composition rules
to combine the leaves including: Sequence, Selector, and Parallel node types which also
return “success” or “failure”. A Sequence node defines the order of execution of leaves and
returns success if all leaves succeed in order. A Selector node (called “Priority” by some
authors) tries leaf behaviors in a fixed order, returns success when a node succeeds, and
returns failure if all leaves fail. We also implemented a “Parallel” node (represented as
“OR” in Fig. 2), which executes all leaves regardless of their return status, and returns
success if any one of the leaves succeeds. The IKBT structure used for our current results
is shown in Fig.2.

Before solving, IKBT looks through 1- and 2- unknown equation lists, and applies sum-
of-angle and substitution transformations which may reduce number of unknown variables.
The “Assigner” node assigns the current variable to all solvers. For each joint variable,
it tries out all solvers in the toolbox until it is solved (or we reach the maximum trial
number). When a joint variable is solved, the solver marks it as solved, and reduces the
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number of unsolved variables by one, for all equations involved this variable. When multiple
solvers can solve a joint variable, the solutions are compared using a “Ranker” node which
selects preferred solution forms over others. For example, θ4 =atan2(y, x) is preferred over
θ4 = arcsin(y/r) because it has only one solution. IKBT repeats this until all variables are
solved. Finally the solutions, report, code generation, and dependency graph are generated.

Figure 2: IKBT Structure. Node type explanation: Action nodes (leaves) carry out
specific tasks, and returns SUCCESS or FAILURE. Succeeder is a special type
of action nodes that only returns SUCCESS. Selector node ticks its children in
turn, returns SUCCESS and stops if one of the children succeeds, otherwise re-
turns FAILURE. Sequence node only returns SUCCESS if all its children succeed.
Parallel node tries out all its children regardless of their return status, returns
SUCCESS if any child succeeds.
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3. Transformations and Solvers

In the following subsections, θi and di represent rotary and prismatic joint variables (qi).
a, b, c, etc., stand for known constant DH parameters.

3.1 Transformations

Transformation nodes make equations easier to solve by reducing the number of unknown
variables.

1. Sum of angle transform

sin(θx ± θy)→ sin(θxy)

cos(θx ± θy)→ cos(θxy)

Although the sum-of-angle simplification is done by sympy’s simplify operation,
creation of a new variable (θxy) is done by this node. This transformation also works
for the sum of 3 angles (which allows solution of robot arms having 3 parallel sequential
axes).

2. Substitution transform: looks for two equations such that one contains the other, and
replaces the partial expression with an unknown value. For example, in the following
pair of equations:

sin(θx) + a · cos(θy) = b

a · cos(θy) = c

The first equation can be transformed to:

sin(θx) + c = b

Eliminating one unknowns so that θx can be solved.

3.2 Rule-based Solvers

The IKBT contains a set of solvers that identifies an expression that fits a rule set and
returns the respective solutions. These rules are used by human experts when solving inverse
kinematics problems, and not are specific to any DOF or robot configuration. Solvers 1 - 4
are derived from straightforward algebra and trigonometry. 5-6 are adapted from respective
literature (Herrera-Bendezu et al., 1988; Craig, 1989).

1. algebraic solver
Identifies pattern

a+ bθ = c

where b 6= 0. Solves for

θ =
c− a
b
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as well as

a+ bdx = c

giving

dx =
c− a
b

2. sine or cosine solver
Identifies pattern

sin(θ) = a, cos(θ) = b

Solves for two solutions in each case:

θ = arcsin(a), θ = arccos(b)

and

θ = π − arcsin(a), θ = − arccos(b)

3. tangent solver
identifies a pattern in two equations containing

sin(θ) = aC1 and cos(θ) = bC2

If neither C1 or C2 contain unsolved variables:

θ = atan2(aC1, bC2)

Sometimes C1 and C2 contain common unsolved variables, which can be canceled out
by division. In this case we use a new coefficient C:

C =
C1

C2

θ = atan2(aC, b) C > 0

θ = atan2(−aC,−b) C < 0

Terms which are solvable by tangent solver are often also solvable by sine or cosine
solver. As shown in Fig 2, IKBT takes this into consideration by comparing the
solutions from the above-mentioned solvers, and determines the optimal solution.
This selection is done by the Ranking node.
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4. Sine and cosine solver

Identifies

a · sin(θ) + b · cos(θ) = 0

giving two solutions:

θ = atan2(−b, a), and θ = atan2(−b, a) + π

as well as

a · sin(θ) + b · cos(θ) = c

giving

θ = atan2(a, b) + atan2(±
√
a2 + b2 − c2, c)

5. Simultaneous equation solver (Herrera-Bendezu et al., 1988) Identifies two equations:

a sin(θ) + b cos(θ) = c a cos(θ)− b sin(θ) = d

Giving the solution:

θ = atan2(ac− bd, ad+ bc)

6. x2y2 solver

Identifies two equations that contain Px, Py, and/or Pz, that can be squared and
added together to cancel out unsolved variables (other than the intended variable),
and get a new equation with pattern (Craig, 1989) :

− sin(θ)Px + cos(θ)Py = d

Giving solutions:

θ = atan2(Py, Px)− atan2(d,±
√
Px

2 + Py
2 − d2)

4. Solution Graph

IKBT provides solution graph to track the dependency among joint variables. IKBT traces
these dependencies in a mathematical sense, based on their symbolic solution equations.
Intuitively, in the physical world, it can be interpreted as when one joint is set to a new
value, the dependent joints values changes with it, in order to achieve certain end effector
position and orientation.
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4.1 Origins of Dependency

The solutions produced by inverse kinematics are typically interdependent in that results
obtained early in the process are used to solve later results. For example, one may have

θ4 = asin

(
1

l4
(Pz − l3 + l5 cos (θ45))

)
in which θ4 depends on cos(θ45) = cos(θ4 + θ5) as well as some constants. In principle,
it is possible to substitute these dependencies until there are no joint variables on the
right hand side, but this makes the solutions difficult to compare with previously published
hand solutions. In the above example, there are two solutions to the asin() operator, and
additional multiplicity could come from the solution method for θ45.

Thus the two sources of multiple solutions are: A) each joint variable may have multiple
solutions due to its solver’s characteristic; and B) dependence of the solution on other solved
joint variables.

To further illustrate the sources of multiplicity and dependency, we use the following
example. The goal is to solve variables θ1 and θ2 from these equations:

cos(θ1) = a

sin(θ2) + sin(θ1) = b

From the first equation, θ1 is solved as:

θ1 =

{
θ1s1 = arccos(a)
θ1s2 = − arccos(a)

where we have used the subscript s to separate joint numbers from solution numbers.
Here, θ1s2 means the second solution of θ1. θ1 has 2 solutions due to the nature of solver
arccos(). Now that θ1 is solved, we can solve θ2 as:

θ2 =


θ2s1 = arcsin(b− sin(θ1s1))
θ2s2 = π − arcsin(b− sin(θ1s1))
θ2s3 = arcsin(b− sin(θ1s2))
θ2s4 = π − arcsin(b− sin(θ1s2))

θ2 has 4 solutions, because its solver () generates 2 solutions, and on top of that, it θ2

depends on the two solutions of θ1. Example solution dependency is illustrated in 3.

In the resulting graph (shown in Fig. 3 a), each joint solution (e.g. θ2s1, θ2s2, etc.) is
a node. A parent node is the node that appears in another node’s solution expressions, in
this example, θ1s1 is the parent of θ2s2 . A node and its parent/child node are connected
with an edge.

4.2 Redundancy Detection and Dependency Tracking

When building a dependency graph, we implemented redundancy elimination to ensure
the correct relations between joint variables. Redundancy is defined as a dependency that
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traced back to a higher level parent can be mediated by a lower level and direct parent. If
a joint variable θ5 has the following solutions:

θ5s1 = arccos(l + cos(θ4s1))

θ5s2 = − arccos(l + cos(θ4s1))

And θ6 has solutions:

θ6s1 = atan2(a+ cos(θ4s1), b+ sin(θ5s1))

θ6s2 = atan2(a+ cos(θ4s2), b+ sin(θ5s2))

Though the solution of θ6 involves both θ4 and θ5, its dependency to θ4 is redundant.
Given that θ5 is also dependent on θ4, the effects of choosing different θ4 values (if applicable)
on θ6 are conveyed through θ5. Therefore, when building a graph, only the edges between
direct child-parents are added, in this case, Edge (θ6, θ5) and Edge(θ5, θ4). Shown in Fig.
3 b).

Classic search algorithms (breadth-first search and depth-first search) are used to tra-
verse the graph and find correct ancestor nodes, where the current variable is the start point
and the ancestors are the goals.

4.3 Grouping Variables

As required by many planning and control algorithms, IKBT is capable of grouping vari-
ables into solution sets that have all possible joint configurations for the given end-effector
configuration. To generate correct sets of solutions, the following steps are carried out to
match the variables: First, all parents nodes are extracted from each solution expression,
forming subsets of variables. Secondly, the subsets are sorted by size of their content. Search
starts from the largest subsets, and looks for the variables that are a part of the joint space,
but not in the set, till all variables are found. A scoring system is applied on all subsets
(other than the starting set) to focus the search on the more likely candidate first.

Using the Fig. 3 a) as an example, the solutions can be grouped into: [θ1s1, θ2s1], [θ1s1,
θ2s2], [θ1s2, θ2s3], and [θ1s2, θ2s4].

4.4 Graph Representation

The multiple dependencies can be linked by a common dependency further up, or they can
be independent. Although traditionally this structure is represented as a tree, we discovered
cases in which variables have multiple independent “parents” and thus a graph is required
instead.

For example, θ1 and θ2 are independent to each other:

θ1s1 = arcsin(a)

θ1s2 =− arcsin(a) + π

θ2s1 = arccos(b)

θ2s2 =− arccos(b)
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And θ3 depends on both θ1 and θ2:

θ3s1 = arccos(a+ cos(θ1s1) + atan2(b, sin(θ2s1)c)

θ3s2 = arccos(a+ cos(θ1s1) + atan2(b, sin(θ2s2)c)

θ3s3 = arccos(a+ cos(θ1s2) + atan2(b, sin(θ2s1)c)

θ3s4 = arccos(a+ cos(θ1s2) + atan2(b, sin(θ2s2)c)

The dependency graph is shown in Fig. 3 c).

One of the example robot solutions in the Results section shows the necessity of using
graph representation.

5. Verification & Validation

This section answers two important questions: 1) How do we know if the IK solutions from
IKBT are correct?, and 2) How to make sure that a requested end effector pose is valid,
that IK solutions exist?

5.1 Solution Verification

To prove that the inverse kinematics solution equations from IKBT are correct, we con-
ducted the following verification process, as shown in Fig. 4 . First, we constructed a valid
numerical transformation matrix from a reachable joint-space pose (note that joint limits
are completed only after an IK solution is evaluated). Then we used numbers from the
transformation matrix and the inverse kinematics solutions equations to get the numerical
values for each pose. If the inverse kinematics solutions are correct, one of the poses should
match the starting pose value. Next, we computed the forward kinematics using each nu-
merical pose. If the resulted transformation matrix is the same (within a stringent range) as
the starting matrix, then we can safely draw the conclusion that this pose has correct inverse
kinematics solution. The completeness of solutions is verified by comparing IKBT results
to existing literature, and analyzed theoretically by tracing through joint dependency.

5.2 Pose Validation

If a pose is not reachable by the robot (for example due to distance of a point extend-
ing beyond the length of the arm, but not considering joint limits), at least in generated
code output, the solution must have a means to detect this case. In inverse kinematic
solution equations, unreachable poses generate intermediate values outside the domain of
transcendental functions, for example:

θ2 = arcsin(x) x = 1.2

or would require complex joint angles:

d3 =
√
x x = −5
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Figure 3: Sample Solution Graph. a) Simple example solution graph explains the origins
of multiplicity. b) Redundancy pruning, ’x’ marks the dependent relations that
are not included in the graph. c) Example of a case of variables with multiple
independent parents.
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Figure 4: Result Verification. A numerical 4x4 homogeneous transformation matrix, Td,
is constructed from a reachable pose. Numerical joint space poses are computed
from Td using the closed-form solutions. For each solution pose, forward kine-
matics is calculated. The resulting transform matrices are compared against the
original matrix, matching value is indicative of correct IKBT inverse kinematics
analysis. 2N indicates the number of solutions is always even.

Both the C++ and Python output modules of IKBT automatically generate code which
checks numerical arguments of inverse trig functions and square roots for such cases and
returns a flag to indicate an unreachable pose. In practice, users can choose among all IK
solutions that satisfies joint limits.

6. Experimental Results

6.1 General Performance

We tested IKBT on many sets of DH parameters, representing serial arm robot designs
(including commercial robots, and solved design examples from student homework), the
successful solving rate is listed in Table 1. As the DOF number increases, the problem
becomes more complex and the success rate decreases. In general it solves most of the
robots, up to 6 DOF. Note that IKBT can solve robots regardless of their configurations,
e.g. IKBT does not require robots having three intersecting axes.

Source code can be found at: https://github.com/uw-biorobotics/IKBT. The DH
parameters of all these robots are stored as part of the source code (in ik robots.py), for
purpose of testing and reproducing the results. Instructions are on the GitHub page.
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6.2 Example Solutions PUMA 560

Here PUMA560 is used as an example to illustrate how IKBT solves inverse kinematics
problems. PUMA 560 was a commercial robot with six rotary joints and four joint offsets,
well-known for its challenging inverse kinematics properties. The PUMA 560 has three axes
intersecting at its wrist. The known variables are: a2, a3, d3, and d4. In all the solution
results below, the equations are produced directly from the IKBT LATEXoutput. A few edits
have been made only to improve formatting at this column width.

Based on input of the Puma DH parameters, first, forward kinematics was calculated:

Td = Ts

T 6
0 = T 1

0 T
2
1 T

3
2 T

4
3 T

5
4 T

6
5

(where Td is the “desired position”, Ts symbolic expressions, T 6
0 transformation matrix from

frame 0 to 6)

T 6
0 =


r11 r12 r13 Px

r21 r22 r23 Py

r31 r32 r33 Pz

0 0 0 1

 =
[
v1 v2 v3 v4

]
v1 = 

c6(−c1s23s5 + c5(c1c23c4 + s1s4))− s6(c1c23s4 − c4s1)
c6(c5(−c1s4 + c23c4s1)− s1s23s5)− s6(c1c4 + c23s1s4)

−c6(c23s5 + c4c5s23) + s23s4s6

0


v2 = 

−c6(c1c23s4 − c4s1)− s6(−c1s23s5 + c5(c1c23c4 + s1s4))
−c6(c1c4 + c23s1s4)− s6(c5(−c1s4 + c23c4s1)− s1s23s5)

c6s23s4 + s6(c23s5 + c4c5s23)
0



v3 =


−c1c5s23 − s5(c1c23c4 + s1s4)
−c5s1s23 − s5(−c1s4 + c23c4s1)

−c23c5 + c4s23s5

0



v4 =


a2c1c2 + a3c1c23 − c1d4s23 − l3s1

a2c2s1 + a3c23s1 + c1l3 − d4s1s23

−a2s2 − a3s23 − c23d4

1


number of DOF Test examples Solved

4 4 4

5 10 10

6 5 4

Table 1: IKBT test results
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Table 2: PUMA560 DH parameters
Link αN−1 aN−1 dN θN

1 0 0 0 θ1

2 −π/2 0 0 θ2

3 0 a2 d3 θ3

4 −π/2 a3 d4 θ4

5 π/2 0 0 θ5

6 −π/2 0 0 θ6

where c1 = cos(θ1), s23 = sin(θ2 + θ3) etc.

IKBT solved the six joint variables, θ1 . . . θ6 in the following order:

1. θ1, chosen solver: sinANDcos

θ1s1 = atan2 (Px,−Py) + atan2 (
√
Px2 + Py2 − d2

3,−d3)

θ1s2 = atan2 (Px,−Py) + atan2 (−
√
Px2 + Py2 − d2

3,−d3)

2. θ3, chosen solver: x2y2

θ3s1 = atan2 (−2a2d4, 2a2a3) + atan2(
√
s− (t+ (Px cos (θ1s1) + Py sin (θ1s1))2)2,

t+ (Px cos (θ1s1) + Py sin (θ1s1))2)

θ3s2 = atan2 (−2a2d4, 2a2a3) + atan2(−
√
s− (t+ (Px cos (θ1s1) + Py sin (θ1s1))2)2,

t+ (Px cos (θ1s1) + Py sin (θ1s1))2)

θ3s3 = atan2 (−2a2d4, 2a2a3) + atan2(
√
s− (t+ (Px cos (θ1s2) + Py sin (θ1s2))2)2,

t+ (Px cos (θ1s2) + Py sin (θ1s2))2)

θ3s4 = atan2 (−2a2d4, 2a2a3) + atan2(−
√
s− (t+ (Px cos (θ1s2) + Py sin (θ1s2))2)2,

t+ (Px cos (θ1s2) + Py sin (θ1s2))2)

where,

s =4a2
2a

2
3 + 4a2

2d
2
4

t =Pz2 − a2
2 − a2

3 − d2
4
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3. θ23, chosen solver: simultaneous equation

θ23s1 = atan2(Pz(−a2 cos (θ3s3)− a3)− (−Px cos (θ1s2)− Py sin (θ1s2))(a2 sin (θ3s3)− d4),

P z(a2 sin (θ3s3)− d4) + (−Px cos (θ1s2)− Py sin (θ1s2))(−a2 cos (θ3s3)− a3))

θ23s2 = atan2(Pz(−a2 cos (θ3s2)− a3)− (−Px cos (θ1s1)− Py sin (θ1s1))(a2 sin (θ3s2)− d4),

P z(a2 sin (θ3s2)− d4) + (−Px cos (θ1s1)− Py sin (θ1s1))(−a2 cos (θ3s2)− a3))

θ23s3 = atan2(Pz(−a2 cos (θ3s1)− a3)− (−Px cos (θ1s1)− Py sin (θ1s1))(a2 sin (θ3s1)− d4),

P z(a2 sin (θ3s1)− d4) + (−Px cos (θ1s1)− Py sin (θ1s1))(−a2 cos (θ3s1)− a3))

θ23s4 = atan2(Pz(−a2 cos (θ3s4)− a3)− (−Px cos (θ1s2)− Py sin (θ1s2))(a2 sin (θ3s4)− d4),

P z(a2 sin (θ3s4)− d4) + (−Px cos (θ1s2)− Py sin (θ1s2))(−a2 cos (θ3s4)− a3))

4. θ2, chosen solver: algebraic solver

θ2s1 = θ23s2 − θ3s2

θ2s2 = θ23s4 − θ3s4

θ2s3 = θ23s1 − θ3s3

θ2s4 = θ23s3 − θ3s1

5. θ4, chosen solver: tangent

θ4s1 = atan2(r13 sin (θ1s1)− r23 cos (θ1s1),

r13 cos (θ1s1) cos (θ23s2) + r23 sin (θ1s1) cos (θ23s2)− r33 sin (θ23s2))

θ4s2 = atan2(−r13 sin (θ1s1) + r23 cos (θ1s1),

− r13 cos (θ1s1) cos (θ23s2)− r23 sin (θ1s1) cos (θ23s2) + r33 sin (θ23s2))

θ4s3 = atan2(r13 sin (θ1s2)− r23 cos (θ1s2),

r13 cos (θ1s2) cos (θ23s4) + r23 sin (θ1s2) cos (θ23s4)− r33 sin (θ23s4))

θ4s4 = atan2(−r13 sin (θ1s2) + r23 cos (θ1s2),

− r13 cos (θ1s2) cos (θ23s4)− r23 sin (θ1s2) cos (θ23s4) + r33 sin (θ23s4))

θ4s5 = atan2(r13 sin (θ1s2)− r23 cos (θ1s2),

r13 cos (θ1s2) cos (θ23s1) + r23 sin (θ1s2) cos (θ23s1)− r33 sin (θ23s1))

θ4s6 = atan2(−r13 sin (θ1s2) + r23 cos (θ1s2),

− r13 cos (θ1s2) cos (θ23s1)− r23 sin (θ1s2) cos (θ23s1) + r33 sin (θ23s1))

θ4s7 = atan2(r13 sin (θ1s1)− r23 cos (θ1s1),

r13 cos (θ1s1) cos (θ23s3) + r23 sin (θ1s1) cos (θ23s3)− r33 sin (θ23s3))

θ4s8 = atan2(−r13 sin (θ1s1) + r23 cos (θ1s1),

− r13 cos (θ1s1) cos (θ23s3)− r23 sin (θ1s1) cos (θ23s3) + r33 sin (θ23s3))
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6. θ5, chosen solver: tangent

θ5s1 = atan2(
1

sin (θ4s3)
(−r13 sin (θ1s2) + r23 cos (θ1s2)),

− r13 sin (θ23s4) cos (θ1s2)− r23 sin (θ1s2) sin (θ23s4)− r33 cos (θ23s4)

θ5s2 = atan2(
1

sin (θ4s7)
(−r13 sin (θ1s1) + r23 cos (θ1s1)),

− r13 sin (θ23s3) cos (θ1s1)− r23 sin (θ1s1) sin (θ23s3)− r33 cos (θ23s3))

θ5s3 = atan2(
1

sin (θ4s2)
(−r13 sin (θ1s1) + r23 cos (θ1s1)),

− r13 sin (θ23s2) cos (θ1s1)− r23 sin (θ1s1) sin (θ23s2)− r33 cos (θ23s2))

θ5s4 = atan2(
1

sin (θ4s6)
(−r13 sin (θ1s2) + r23 cos (θ1s2)),

− r13 sin (θ23s1) cos (θ1s2)− r23 sin (θ1s2) sin (θ23s1)− r33 cos (θ23s1))

θ5s5 = atan2(
1

sin (θ4s4)
(−r13 sin (θ1s2) + r23 cos (θ1s2)),

− r13 sin (θ23s4) cos (θ1s2)− r23 sin (θ1s2) sin (θ23s4)− r33 cos (θ23s4))

θ5s6 = atan2(
1

sin (θ4s1)
(−r13 sin (θ1s1) + r23 cos (θ1s1)),

− r13 sin (θ23s2) cos (θ1s1)− r23 sin (θ1s1) sin (θ23s2)− r33 cos (θ23s2))

θ5s7 = atan2(
1

sin (θ4s8)
(−r13 sin (θ1s1) + r23 cos (θ1s1)),

− r13 sin (θ23s3) cos (θ1s1)− r23 sin (θ1s1) sin (θ23s3)− r33 cos (θ23s3))

θ5s8 = atan2(
1

sin (θ4s5)
(−r13 sin (θ1s2) + r23 cos (θ1s2)),

− r13 sin (θ23s1) cos (θ1s2)− r23 sin (θ1s2) sin (θ23s1)− r33 cos (θ23s1))
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7. θ6, chosen solver: tangent

θ6s1 = atan2(− −r12 sin(θ23s1) cos(θ1s2)− r22 sin(θ1s2) sin(θ23s1)− r32 cos(θ23s1)

sin(θ5s4)
,

−r11 sin(θ23s1) cos(θ1s2)− r21 sin(θ1s2) sin(θ23s1)− r31 cos(θ23s1)

sin(θ5s4)
)

θ6s2 = atan2(− −r12 sin(θ23s1) cos(θ1s2)− r22 sin(θ1s2) sin(θ23s1)− r32 cos(θ23s1)

sin(θ5s8)
,

−r11 sin(θ23s1) cos(θ1s2)− r21 sin(θ1s2) sin(θ23s1)− r31 cos(θ23s1)

sin(θ5s8)
)

θ6s3 = atan2(− −r12 sin(θ23s4) cos(θ1s2)− r22 sin(θ1s2) sin(θ23s4)− r32 cos(θ23s4)

sin(θ5s1)
,

−r11 sin(θ23s4) cos(θ1s2)− r21 sin(θ1s2) sin(θ23s4)− r31 cos(θ23s4)

sin(θ5s1)
)

θ6s4 = atan2(− −r12 sin(θ23s3) cos(θ1s1)− r22 sin(θ1s1) sin(θ23s3)− r32 cos(θ23s3)

sin(θ5s2)
,

−r11 sin(θ23s3) cos(θ1s1)− r21 sin(θ1s1) sin(θ23s3)− r31 cos(θ23s3)

sin(θ5s2)
)

θ6s5 = atan2(− −r12 sin(θ23s2) cos(θ1s1)− r22 sin(θ1s1) sin(θ23s2)− r32 cos(θ23s2)

sin(θ5s6)
,

−r11 sin(θ23s2) cos(θ1s1)− r21 sin(θ1s1) sin(θ23s2)− r31 cos(θ23s2)

sin(θ5s6)
)

θ6s6 = atan2(− −r12 sin(θ23s2) cos(θ1s1)− r22 sin(θ1s1) sin(θ23s2)− r32 cos(θ23s2)

sin(θ5s3)
,

−r11 sin(θ23s2) cos(θ1s1)− r21 sin(θ1s1) sin(θ23s2)− r31 cos(θ23s2)

sin(θ5s3)
)

θ6s7 = atan2(− −r12 sin(θ23s3) cos(θ1s1)− r22 sin(θ1s1) sin(θ23s3)− r32 cos(θ23s3)

sin(θ5s7)
,

−r11 sin(θ23s3) cos(θ1s1)− r21 sin(θ1s1) sin(θ23s3)− r31 cos(θ23s3)

sin(θ5s7)
)

θ6s8 = atan2(− −r12 sin(θ23s4) cos(θ1s2)− r22 sin(θ1s2) sin(θ23s4)− r32 cos(θ23s4)

sin(θ5s5)
,

−r11 sin(θ23s4) cos(θ1s2)− r21 sin(θ1s2) sin(θ23s4)− r31 cos(θ23s4)

sin(θ5s5)
)

IKBT can find all 8 positions of PUMA 560, and the solution graph shows the dependency
among variables in Fig. 5. These joint solutions are then grouped into sets corresponding
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to correct poses:

Pose 1 :[θ1s1, θ2s4, θ3s1, θ4s8, θ5s7, θ6s7]

Pose 2 :[θ1s2, θ2s2, θ3s4, θ4s4, θ5s5, θ6s8]

Pose 3 :[θ1s1, θ2s1, θ3s2, θ4s2, θ5s3, θ6s6]

Pose 4 :[θ1s2, θ2s3, θ3s3, θ4s6, θ5s4, θ6s1]

Pose 5 :[θ1s2, θ2s3, θ3s3, θ4s5, θ5s8, θ6s2]

Pose 6 :[θ1s1, θ2s1, θ3s2, θ4s1, θ5s6, θ6s5]

Pose 7 :[θ1s1, θ2s4, θ3s1, θ4s7, θ5s2, θ6s4]

Pose 8 :[θ1s2, θ2s2, θ3s4, θ4s3, θ5s1, θ6s3]

Figure 5: PUMA 560 Solution Graph.

6.2.1 Result Verification

To verify the solution, we followed the process stated in section 5.1. The starting pose used
is:

θ1 = 30◦, θ2 = 50◦, θ3 = 40◦,

θ4 = 45◦, θ5 = 120◦, θ6 = 60◦

as well as the parameters:

a2 = 5, a3 = 1, d3 = 2, d4 = 4
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Solution Poses

Pose θ1 θ2 θ3 θ4 θ5 θ6

1 -287.08771 130.00008 -191.92745 -6.78054 -66.24462 4.13687
2 29.99995 49.99992 39.99994 -135.00007 -119.99981 -120.00010
3 29.99995 148.48625 -191.92745 142.01103 95.78709 -151.06756
4 -287.08771 31.51375 39.99994 18.00641 159.53838 18.33206
5 -287.08771 130.00008 -191.92745 173.21946 66.24462 -175.86313
6 29.99995 148.48625 -191.92745 -37.98897 -95.78709 28.93244
7 29.99995 49.99992 39.99994 44.99993 119.99981 59.99990
8 -287.08771 31.51375 39.99994 -161.99359 -159.53838 -161.66794

Table 3: Puma 560 Numerical Solutions

From the DH parameters, the Forward kinematics code generated by IKBT generated
the numerical T matrix:

Td =


−0.15720 0.97938 0.12682 −1.68074
−0.59374 −0.19635 0.78032 1.33902
0.78914 0.04737 0.61237 −4.83022

0 0 0 1


We then plugged Td into symbolic solutions obtained from the last section, and got the

joint poses listed in Table 3. Note that Pose 7 (Table 3) is the same as initial input pose,
within 10−4.

With all the numerical poses, we computed forward kinematics. The T matrix computed
from Pose 1 (Tp1 is selected as an example, since it showed the largest variation compared
to the original T matrix:

Tp1 =


−0.15720 0.97939 0.12682 −1.68075
−0.59374 −0.19634 0.78033 1.33902
0.78915 0.04737 0.61237 −4.83025

0 0 0 1


We got the same values compared to the original T matrix for all solution poses, with dif-

ferences ≈ 10−5. This result unequivocally proves that IKBT’s symbolic inverse kinematics
analysis is correct.

Note: these tests shown here is only a proof-of-principle. Extensive tests were carried
out with numerous test values. Validity of end effector poses can be screened by pose
validation method built-in IKBT, details see section Verification and Validation.

6.3 Example Solutions - Robot without 3 Intersecting Axes

Previous software packages which perform inverse kinematics analysis usually require the
robot to have three intersecting axes (such as the popular ROS package). To demonstrate
IKBT’s flexibility in handling robots with different configurations. We select the example
of “Chair Helper”, a 5 DOF robot without three intersecting axes (Table 4)1.

1. Thanks to Prof. Melanie Shoemaker Plett.
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Table 4: Chair Helper DH parameters
Link αN−1 aN−1 dN θN

1 0 0 d1 0

2 0 l1 0 θ2

3 π/2 0 l2 θ3

4 π/2 0 0 θ4

5 - π/2 0 l4 θ5

Forward kinematics: 
r11 r12 r13 Px
r21 r22 r23 Py
r31 r32 r33 Pz
0 0 0 1

 =
[
v1 v2 v3 v4

]

v1 =


−c2s3s5 + c5(c2c3c4 + s2s4)
c5(−c2s4 + c3c4s2)− s2s3s5

c3s5 + c4c5s3

0

 v2 =


−c2c5s3 − s5(c2c3c4 + s2s4)
−c5s2s3 − s5(−c2s4 + c3c4s2)

c3c5 − c4s3s5

0



v3 =


−c2c3s4 + c4s2

−c2c4 − c3s2s4

−s3s4

0

 v4 =


l1 + l2s2 + l4(−c2c3s4 + c4s2)
−c2c4l4 − c2l2 − c3l4s2s4

d1 − l4s3s4

1


IKBT gave the inverse kinematics solutions:

1. d1, chosen solver: algebra

d1 = Pz − l4r33

2. θ2, chosen solver: sine or cosine

θ2 = atan2 (
1

l2
(Px− l1 − l4r13),− 1

l2
(Py − l4r23))

3. θ3, chosen solver: tangent

θ3s1 = atan2 (r33, r13 cos (θ2) + r23 sin (θ2))

θ3s2 = atan2 (−r33,−r13 cos (θ2)− r23 sin (θ2))

4. θ4, chosen solver: tangent

θ4s1 = atan2 (− r33

sin (θ3s2)
, r13 sin (θ2)− r23 cos (θ2))

θ4s2 = atan2 (− r33

sin (θ3s1)
, r13 sin (θ2)− r23 cos (θ2))
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5. θ5, chosen solver: tangent

θ5s1 = atan2 (
1

sin (θ4s1)
(−r12 sin (θ2) + r22 cos (θ2)),

1

sin (θ4s1)
(r11 sin (θ2)− r21 cos (θ2)))

θ5s2 = atan2 (
1

sin (θ4s2)
(−r12 sin (θ2) + r22 cos (θ2)),

1

sin (θ4s2)
(r11 sin (θ2)− r21 cos (θ2)))

Solutions sets:

[d1, θ2, θ3s1, θ4s2, θ5s2]

[d1, θ2, θ3s2, θ4s1, θ5s1]

Numerical verification confirmed that the inverse kinematics solutions are correct.

6.4 Example Solutions - Robot with Strictly Solution Graph

The following example (Olson13) illustrates the necessity of a graph when tracking de-
pendency, where variables have two independent parent variables, as shown in 6. DH
parameters are listed in Table 5. Olson13 is a 6-DOF robot. The unknown variables are:
[d1 d2 θ3 θ4 θ5 θ6]. The known parameters are: [l3 l4 l5]

Table 5: Olson13 DH parameters
Link αN−1 aN−1 dN θN

1 −π/2 0 d1 π/2

2 π/2 0 d2 −π/2
3 π/2 0 l3 θ3

4 π/2 0 0 θ4

5 0 l4 0 θ5

6 π/2 0 l5 θ6

Forward kinematics: 
r11 r12 r13 Px
r21 r22 r23 Py
r31 r32 r33 Pz
0 0 0 1

 =
[
v1 v2 v3 v4

]

[
v1 v2

]
=


−c3s6 + c45c6s3 −c3c6 − c45s3s6

−c3c45c6 − s3s6 c3c45s6 − c6s3

c6s45 −s45s6

0 0


[
v3 v4

]
=


s3s45 c4l4s3 + d2 + l5s3s45

−c3s45 −c3c4l4 − c3l5s45 + d1

−c45 −c45l5 + l3 + l4s4

0 1


The variables are solved in the following order:
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1. θ3, chosen solver: tangent

θ3s1 = atan2 (−r13, r23)

θ3s2 = atan2 (r13,−r23)

2. θ4, chosen solver: sine or cosine

θ4s1 = asin

(
1

l4
(Pz − l3 − l5r33)

)
θ4s2 = − asin

(
1

l4
(Pz − l3 − l5r33)

)
+ π

3. θ5, chosen solver: tangent

θ5s1 = atan2(r13 sin (θ3s2) cos (θ4s1)− r23 cos (θ3s2) cos (θ4s1) + r33 sin (θ4s1),

r13 sin (θ3s2) sin (θ4s1)− r23 sin (θ4s1) cos (θ3s2)− r33 cos (θ4s1))

θ5s2 = atan2(r13 sin (θ3s1) cos (θ4s1)− r23 cos (θ3s1) cos (θ4s1) + r33 sin (θ4s1),

r13 sin (θ3s1) sin (θ4s1)− r23 sin (θ4s1) cos (θ3s1)− r33 cos (θ4s1))

θ5s3 = atan2(r13 sin (θ3s2) cos (θ4s2)− r23 cos (θ3s2) cos (θ4s2) + r33 sin (θ4s2),

r13 sin (θ3s2) sin (θ4s2)− r23 sin (θ4s2) cos (θ3s2)− r33 cos (θ4s2))

θ5s4 = atan2(r13 sin (θ3s1) cos (θ4s2)− r23 cos (θ3s1) cos (θ4s2) + r33 sin (θ4s2),

r13 sin (θ3s1) sin (θ4s2)− r23 sin (θ4s2) cos (θ3s1)− r33 cos (θ4s2))

4. θ6, chosen solver: tangent

θ6s1 = atan2(−r11 cos (θ3s2)− r21 sin (θ3s2),−r12 cos (θ3s2)− r22 sin (θ3s2))

θ6s2 = atan2(−r11 cos (θ3s1)− r21 sin (θ3s1),−r12 cos (θ3s1)− r22 sin (θ3s1))

5. d1, chosen solver: algebra

d1s1 = Py + l4 cos (θ3s2) cos (θ4s1)− l5r23

d1s2 = Py + l4 cos (θ3s1) cos (θ4s1)− l5r23

d1s3 = Py + l4 cos (θ3s2) cos (θ4s2)− l5r23

d1s4 = Py + l4 cos (θ3s1) cos (θ4s2)− l5r23

6. d2, chosen solver: algebra

d2s1 = Px− l4 sin (θ3s2) cos (θ4s1)− l5r13

d2s2 = Px− l4 sin (θ3s1) cos (θ4s1)− l5r13

d2s3 = Px− l4 sin (θ3s2) cos (θ4s2)− l5r13

d2s4 = Px− l4 sin (θ3s1) cos (θ4s2)− l5r13
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The following are the sets of joint solutions (poses) for this manipulator:

[d1s3, d2s3, θ3s2, θ4s2, θ5s3, θ6s1]

[d1s4, d2s4, θ3s1, θ4s2, θ5s4, θ6s2]

[d1s1, d2s1, θ3s2, θ4s1, θ5s1, θ6s1]

[d1s2, d2s2, θ3s1, θ4s1, θ5s2, θ6s2]

The solution graph is shown in Fig. 6. d1, d2, and θ5 all share two independently solved
parent variables: θ3 and θ4. Thus, it results in a dependency graph.

Figure 6: Olson13 Solution Graph.

7. Discussion

Building on previous research, IKBT has several advantages including applicability to any
robot (up to 6-DOF), generalized solving scheme, extensible toolbox and solving logic,
modern and easy to implement language (Python), and dependencies limited to only a few
libraries. We expect these characteristics will spur wide adoption of IKBT into the robotics
research and education communities.

We reiterate the point of analytical inverse kinematics solutions is superior than nu-
merical ones from introduction : numerical solvers often fails (unable to converge) due to
dependency on specific numerical values, even when the inverse kinematics solutions exist -
analytical solutions circumvent such dependency. To clarify, there are no numerical meth-
ods (with their attending difficulties) in our system, and purely symbolic reasoning is used.
Historically, such reasoning has been proven difficult even when handled by human experts
- to an extent that many commercial robots were designed with special configurations (such
as three intersecting axes) to facilitate the solving process of closed-form inverse kinemat-
ics. IKBT, the automatic closed-form inverse kinematic solver, brings the possibility of
broadening robot designs.

The rule-based solvers included in IKBT’s toolbox are commonly employed by human
experts when solving inverse kinematics problems. This is advantageous because IKBT
solution methods are relateable to manual methods, and its approach is not limited by
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robot configuration. Specifically, it doesn’t require three orthogonal axes in order to solve
a robot. One noteworthy characteristic about IKBT is that there is no upper limit for the
number of solutions. As long as the solutions are valid and non-repetitive, IKBT can find
all possible symbolic solutions for a robot. This is also due to the nature of IKBT - it is
rule-based and not dependent on specific robot configuration.

IKBT’s Behavior Tree represents an interpretable strategy - vital for judging many
AI applications. This makes it easier to examine the correctness of the solution and the
strategy formulating process. Although IKBT’s approach costs more computing time than
DOF-specific algorithms (4 ms, according to (Diankov, 2010)), symbolic derivation only has
to be done once per robot arm design. The Behavior Tree is easily modified and the solver
toolbox is readily extensible. Although all the results presented here were generated by the
BT of Fig. 2, it may be the case that a custom Behavior Tree could solve additional robots
or solve robots more efficiently.

The Behavior Tree representation has gained success in game AI (Nicolau, Perez-Liebana,
ONeill, & Brabazon, 2017; Johansson & Dell’Acqua, 2012), and showed substantial possi-
bilities in robotics research (Ogren, 2012; Marzinotto et al., 2014; Colledanchise et al., 2016;
Hu et al., 2015). IKBT serves as a proof-of-concept of solving high-cognitive problems with
Behavior Trees. IKBT mimics human experts’ logical reasoning process, and constructs a
generalized solving scheme applicable to an entire class of problems, using a small number of
knowledge leaves. While most of current AI work focuses on recognizing and understanding
scenarios, Behavior Trees emerge as a path to an equally vital component - combinatorial
reasoning. Such logical reasoning enables AI agents to use limited knowledge base to solve
problems of much larger magnitude. Intuitively, combinatorial reasoning is how human
interact with the world: we decompose a unseen problem into solvable parts, then piece
together modular knowledge to solve the larger problem. We don’t get re-trained from
scratch whenever we face new problems.

All knowledge-based solvers in IKBT are coded by us, in other words, we “teach” the
system pre-existing rules and tricks people have used when solving inverse kinematics prob-
lems. Moving forward, the system can learn the knowledge by itself, by observing patterns
and understanding their meaning. Learning in Behavior Trees has been explored in prelim-
inary efforts(Lim et al., 2010; Dey & Child, 2013; Colledanchise, Nattanmai Parasuraman,
& Ogren, 2018; Hannaford et al., 2016). Combining forces of learning (especially unsuper-
vised) and combinatorial reasoning, we might be on our way to unlock the next level of
autonomy.
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Appendix A. Source Code and Reproducibility

Full source code and test case examples are available at Github: https://github.com/

uw-biorobotics/IKBT.
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