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Abstract
Cross-lingual representations of words enable us to reason about word meaning in

multilingual contexts and are a key facilitator of cross-lingual transfer when developing
natural language processing models for low-resource languages. In this survey, we provide a
comprehensive typology of cross-lingual word embedding models. We compare their data
requirements and objective functions. The recurring theme of the survey is that many of
the models presented in the literature optimize for the same objectives, and that seemingly
different models are often equivalent, modulo optimization strategies, hyper-parameters,
and such. We also discuss the different ways cross-lingual word embeddings are evaluated,
as well as future challenges and research horizons.

1. Introduction

In recent years, (monolingual) vector representations of words, so-called word embeddings
(Mikolov, Chen, Corrado, & Dean, 2013a; Pennington, Socher, & Manning, 2014) have proven
extremely useful across a wide range of natural language processing (NLP) applications. In
parallel, the public awareness of the digital language divide1, as well as the availability of
multilingual benchmarks (Nivre et al., 2016a; Hovy, Marcus, Palmer, Ramshaw, & Weischedel,
2006; Sylak-Glassman, Kirov, Yarowsky, & Que, 2015), has made cross-lingual transfer a
popular NLP research topic. The need to transfer lexical knowledge across languages has
given rise to cross-lingual word embedding models, i.e., cross-lingual representations of words
in a joint embedding space, as illustrated in Figure 1.

Cross-lingual word embeddings are appealing for two reasons: First, they enable us to
compare the meaning of words across languages, which is key to bilingual lexicon induction,
machine translation, or cross-lingual information retrieval, for example. Second, cross-lingual
word embeddings enable model transfer between languages, e.g., between resource-rich and
low-resource languages, by providing a common representation space. This duality is also
reflected in how cross-lingual word embeddings are evaluated, as discussed in Section 10.

Many models for learning cross-lingual embeddings have been proposed in recent years. In
this survey, we will give a comprehensive overview of existing cross-lingual word embedding
models. One of the main goals of this survey is to show the similarities and differences between

1. E.g., http://labs.theguardian.com/digital-language-divide/
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Figure 1: Unaligned monolingual word embeddings (left) and word embeddings projected
into a joint cross-lingual embedding space (right). Embeddings are visualized with t-SNE.

these approaches. To facilitate this, we first introduce a common notation and terminology
in Section 2. Over the course of the survey, we then show that existing cross-lingual word
embedding models can be seen as optimizing very similar objectives, where the main source
of variation is due to the data used, the monolingual and regularization objectives employed,
and how these are optimized. As many cross-lingual word embedding models are inspired by
monolingual models, we introduce the most commonly used monolingual embedding models
in Section 3. We then motivate and introduce one of the main contributions of this survey,
a typology of cross-lingual embedding models in Section 4. The typology is based on the
main differentiating aspect of cross-lingual embedding models: the nature of the data they
require, in particular the type of alignment across languages (alignment of words, sentences,
or documents), and whether data is assumed to be parallel or just comparable (about the
same topic). The typology allows us to outline similarities and differences more concisely,
but also starkly contrasts focal points of research with fruitful directions that have so far
gone mostly unexplored.

Since the idea of cross-lingual representations of words pre-dates word embeddings, we
provide a brief history of cross-lingual word representations in Section 5. Subsequent sections
are dedicated to each type of alignment. We discuss cross-lingual word embedding algorithms
that rely on word-level alignments in Section 6. Such methods can be further divided into
mapping-based approaches, approaches based on pseudo-bilingual corpora, and joint methods.
We show that these approaches, modulo optimization strategies and hyper-parameters,
are nevertheless often equivalent. We then discuss approaches that rely on sentence-level
alignments in Section 7, and models that require document-level alignments in Section 8. In
Section 9, we describe how many bilingual approaches that deal with a pair of languages can
be extended to the multilingual setting. We subsequently provide an extensive discussion of
the tasks, benchmarks, and challenges of the evaluation of cross-lingual embedding models in
Section 10 and outline applications in Section 11. We present general challenges and future
research directions in learning cross-lingual word representations in Section 12. Finally, we
provide our conclusions in Section 13.

This survey makes the following contributions:

1. It proposes a general typology that characterizes the differentiating features of cross-
lingual word embedding models and provides a compact overview of these models.
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2. It standardizes terminology and notation and shows that many cross-lingual word
embedding models can be cast as optimizing nearly the same objective functions.

3. It provides a proof that connects the three types of word-level alignment models and
shows that these models are optimizing roughly the same objective.

4. It critically examines the standard ways of evaluating cross-lingual embedding models.

5. It describes multilingual extensions for the most common types of cross-lingual embed-
ding models.

6. It outlines outstanding challenges for learning cross-lingual word embeddings and
provides suggestions for fruitful and unexplored research directions.

2. Notation and Terminology

For clarity, we list all notation used throughout this survey in Table 1. We use bold lower case
letters (x) to denote vectors, bold upper case letters (X) to denote matrices, and standard
weight letters (x) for scalars. We use subscripts with bold letters (xi) to refer to entire rows
or columns and subscripts with standard weight letters for specific elements (xi).

Let X‘ 2 R|V ‘|×d be a word embedding matrix that is learned for the ‘-th of L languages
where V ‘ is the corresponding vocabulary and d is the dimensionality of the word embeddings.
We will furthermore refer to the word embedding of the i-th word in language ‘ with the
shorthand x‘i or xi if language ‘ is clear from context. We will refer to the word corresponding
to the i-th word embedding xi as wi where wi is a string. To make this correspondence
clearer, we will in some settings slightly abuse index notation and use xwi to indicate the
embedding corresponding to word wi. We will use i to index words based on their order in
the vocabulary V , while we will use k to index words based on their order in a corpus C.

Some monolingual word embedding models use a separate embedding for words that
occur in the context of other words. We will use ~xi as the embedding of the i-th context word
and detail its meaning in the next section. Most approaches only deal with two languages, a
source language s and a target language t.

Some approaches learn a matrix Ws→t that can be used to transform the word embedding
matrix Xs of the source language s to that of the target language t. We will designate such a
matrix by Ws→t 2 Rd×d and W if the language pairing is unambiguous. These approaches
often use n source words and their translations as seed words. In addition, we will use � as a
function that maps from source words wsi to their translation wti : � : V s ! V t. Approaches
that learn a transformation matrix are usually referred to as offline or mapping methods. As
one of the goals of this survey is to standardize nomenclature, we will use the term mapping
in the following to designate such approaches.

Some approaches require a monolingual word-word co-occurrence matrix Cs in language
s. In such a matrix, every row corresponds to a word wsi and every column corresponds to a
context word wsj . Cs

ij then captures the number of times word wi occurs with context word
wj usually within a window of size C to the left and right of word wi. In a cross-lingual
context, we obtain a matrix of alignment counts As→t 2 R|V t|×|V s|, where each element
As→t
ij captures the number of times the i�th word in language t was aligned with the j-th

word in language s, with each row normalized to sum to 1.
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Symbol Meaning

X word embedding matrix
V vocabulary
d word embedding dimensionality

x‘i / xi / xwi word embedding of the i-th word in language l
~xi word embedding of the i-th context word
wi word pertaining to embedding xi
C corpus of words / aligned sentences used for training
wk the k-th word in a corpus C
s source language
t target language

Ws→t / W learned transformation matrix between space of s and t
n number of words used as seed words for learning W
� function mapping from source words to their translations

Cs monolingual co-occurrence matrix in language s
C size of context window around a center word

As→t cross-lingual co-occurrence matrix / alignment matrix
sentsi i-th sentence in language s

ysi representation of i-th sentence in language s
docsi i-th document in language s

zsi representation of i-th document in language s
Xs Xs is kept fixed during optimization

L1|{z}
1

+ L2|{z}
2

L1 is optimized before L2

Table 1: Notation used throughout this survey.

Finally, as some approaches rely on pairs of aligned sentences, we use sents1; : : : ; sentsn to
designate sentences in source language s with representations ys1; : : : ;y

s
n where y 2 Rd. We

analogously refer to their aligned sentences in the target language t as sentt1; : : : ; senttn with
representations yt1; : : : ;y

t
n. We adopt an analogous notation for representations obtained by

approaches based on alignments of documents in s and t: docs1; : : : ; docsn and doct1; : : : ; doctn
with document representations zs1; : : : ; z

s
n and zt1; : : : ; z

t
n respectively where z 2 Rd.

Different notations make similar approaches appear different. Using the same notation
across our survey facilitates recognizing similarities between the various cross-lingual word
embedding models. Specifically, we intend to demonstrate that cross-lingual word embedding
models are trained by minimizing roughly the same objective functions, and that differences
in objective are unlikely to explain the observed performance differences (Levy, Søgaard, &
Goldberg, 2017).

The class of objective functions minimized by most cross-lingual word embedding methods
(if not all), can be formulated as follows:

J = L1 + : : :+ L‘ + 
 (1)
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where L‘ is the monolingual loss of the l-th language and 
 is a regularization term. A similar
loss was also defined by Upadhyay, Faruqui, Dyer, and Roth (2016). As recent work (Levy
& Goldberg, 2014; Levy, Goldberg, & Dagan, 2015) shows that many monolingual losses
are very similar, one of the main contributions of this survey is to condense the difference
between approaches into a regularization term and to detail the assumptions that underlie
different regularization terms.

Importantly, how this objective function is optimized is a key characteristic and differen-
tiating factor between different approaches. The joint optimization of multiple non-convex
losses is difficult. Most approaches thus take a step-wise approach and optimize one loss
at a time while keeping certain variables fixed. Such a step-wise approach is approximate
as it does not guarantee to reach even a local optimum.2 In most cases, we will use a
longer formulation such as the one below in order to decompose in what order the losses are
optimized and which variables they depend on:

J = L(Xs) + L(Xt)| {z }
1

+ 
(Xs;Xt;W)| {z }
2

(2)

The underbraces indicate that the two monolingual loss terms on the left, which depend
on Xs and Xt respectively, are optimized first. Note that this term decomposes into two
separate monolingual optimization problems. Subsequently, 
 is optimized, which depends
on Xs;Xt;W. Underlined variables are kept fixed during optimization of the corresponding
loss.

The monolingual losses are optimized by training one of several monolingual embedding
models on a monolingual corpus. These models are outlined in the next section.

3. Monolingual Embedding Models

The majority of cross-lingual embedding models take inspiration from and extend monolingual
word embedding models to bilingual settings, or explicitly leverage monolingually trained
models. As an important preliminary, we thus briefly review monolingual embedding models
that have been used in the cross-lingual embeddings literature.

Latent Semantic Analysis (LSA) Latent Semantic Analysis (Deerwester, Dumais, Fur-
nas, Landauer, & Harshman, 1990) has been one of the most widely used methods for
learning dense word representations. LSA is typically applied to factorize a sparse word-word
co-occurrence matrix C obtained from a corpus. A common preprocessing method is to
replace every entry in C with its pointwise mutual information (PMI) (Church & Hanks,
1990) score:

PMI(wi; wj) = log
p(wi; wj)

p(wi)p(wj)
= log

#(wi; wj) � jCj
#(wi) �#(wj)

(3)

where #(�) counts the number of (co-)occurrences in the corpus C. As for unobserved word
pairs, PMI(wi; wj) = log 0 = 1, such values are often set to PMI(wi; wj) = 0, which is
also known as positive PMI.

2. Other strategies such as alternating optimization methods, e.g. EM (Dempster, Laird, & Rubin, 1977)
could be used with the same objective.
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The PMI matrix P where Pi;j = PMI(wi; wj) is then factorized using singular value
decomposition (SVD), which decomposes P into the product of three matrices:

P = U	V> (4)

where U and V are in column orthonormal form and 	 is a diagonal matrix of singular values.
We subsequently obtain the word embedding matrix X by reducing the word representations
to dimensionality k the following way:

X = Uk	k (5)

where 	k is the diagonal matrix containing the top k singular values and Uk is obtained by
selecting the corresponding columns from U.

Max-margin loss (MML) Collobert and Weston (2008) learn word embeddings by
training a model on a corpus C to output a higher score for a correct word sequence than for
an incorrect one. For this purpose, they use a max-margin or hinge loss3:

LMML =

|C|−CX
k=C+1

X
w0∈V

max(0; 1� f([xwk�C
; : : : ;xwi ; : : : ;xwk+C

])

+ f([xwk�C
; : : : ;xw0 ; : : : ;xwk+C

]))

(6)

The outer sum iterates over all words in the corpus C, while the inner sum iterates over all
words in the vocabulary. Each word sequence consists of a center word wk and a window
of C words to its left and right. The neural network, which is given by the function f(�),
consumes the sequence of word embeddings corresponding to the window of words and
outputs a scalar. Using this max-margin loss, it is trained to produce a higher score for a
word window occurring in the corpus (the top term) than a word sequence where the center
word is replaced by an arbitrary word w′ from the vocabulary (the bottom term).

Skip-gram with negative sampling (SGNS) Skip-gram with negative sampling (Mikolov
et al., 2013a) is arguably the most popular method to learn monolingual word embeddings due
to its training efficiency and robustness (Levy et al., 2015). SGNS approximates a language
model but focuses on learning efficient word representations rather than accurately modeling
word probabilities. It induces representations that are good at predicting surrounding context
words given a target word wk. To this end, it minimizes the negative log-likelihood of the
training data under the following skip-gram objective:

LSGNS = � 1

jCj � C

|C|−CX
k=C+1

X
−C≤j≤C;j 6=0

log P (wk+j j wk) (7)

P (wk+j j wk) is computed using the softmax function:

P (wk+j j wk) =
exp(~xwk+j

>xwk
)P|V |

i=1 exp(~xwi
>xwk

)
(8)

3. Equations in the literature slightly differ in how they handle corpus boundaries. To make comparing
between different monolingual methods easier, we define the sum as starting with the (C + 1)-th word in
the corpus C (so that the first window includes the first word w1) and ending with the (|C| − C)-th word
(so that the final window includes the last word wjCj).
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where xi and ~xi are the word and context word embeddings of word wi respectively. The
skip-gram architecture can be seen as a simple neural network: The network takes as input
a one-hot representation of a word 2 R|V | and produces a probability distribution over the
vocabulary 2 R|V |. The embedding matrix X and the context embedding matrix ~X are
simply the input-hidden and (transposed) hidden-output weight matrices respectively. The
neural network has no nonlinearity, so is equivalent to a matrix product (similar to Equation
4) followed by softmax.

As the partition function in the denominator of the softmax is expensive to compute, SGNS
uses Negative Sampling, which approximates the softmax to make it computationally more
efficient. Negative sampling is a simplification of Noise Contrastive Estimation (Gutmann &
Hyvärinen, 2012), which was applied to language modeling by Mnih and Teh (2012). Similar
to noise contrastive estimation, negative sampling trains the model to distinguish a target
word wk from negative samples drawn from a ‘noise distribution’ Pn. In this regard, it is
similar to MML as defined above, which ranks true sentences above noisy sentences. Negative
sampling is defined as follows:

P (wk+j j wk) = log �(~xwk+j

>xwk
) +

NX
i=1

Ewi∼Pn log �(�~xwi
>xwk

) (9)

where � is the sigmoid function �(x) = 1=(1 + e−x) and N is the number of negative samples.
The distribution Pn is empirically set to the unigram distribution raised to the 3=4th power.
Levy and Goldberg (2014) observe that negative sampling does not in fact minimize the
negative log-likelihood of the training data as in Equation 7, but rather implicitly factorizes
a shifted PMI matrix similar to LSA.

Continuous bag-of-words (CBOW) While skip-gram predicts each context word sepa-
rately from the center word, continuous bag-of-words jointly predicts the center word based
on all context words. The model receives as input a window of C context words and seeks to
predict the target word wk by minimizing the CBOW objective:

LCBOW = � 1

jCj � C

|C|−CX
k=C+1

log P (wk j wk−C ; : : : ; wk−1; wk+1; : : : ; wk+C) (10)

P (wk j wk−C ; : : : ; wk+C) =
exp(~xwk

>�xwk
)P|V |

i=1 exp(~xwi
>�xwk

)
(11)

where �xwk
is the sum of the word embeddings of the words wk−C ; : : : ; wk+C , i.e. �xwk

=P
−C≤j≤C;j 6=0 xwk+j

. The CBOW architecture is typically also trained with negative sampling
for the same reason as the skip-gram model.

Global vectors (GloVe) Global vectors (Pennington et al., 2014) allows us to learn word
representations via matrix factorization. GloVe minimizes the difference between the dot
product of the embeddings of a word xwi and its context word ~xwj and the logarithm of
their number of co-occurrences within a certain window size4:

4. GloVe favors slightly larger window sizes (up to 10 words to the right and to the left of the target word)
compared to SGNS (Levy et al., 2015).
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Parallel Comparable

Word Dictionaries Images
Sentence Translations Captions
Document - Wikipedia

Table 2: Nature and alignment level of bilingual data sources required by cross-lingual
embedding models.

LGloVe =

|V |X
i;j=1

f(Cij)(xwi
>~xwj + bi + ~bj � log Cij)

2 (12)

where bi and ~bj are the biases corresponding to word wi and word wj , Cij captures the
number of times word wi occurs with word wj , and f(�) is a weighting function that assigns
relatively lower weight to rare and frequent co-occurrences. If we fix bi = log #(wi) and
~bj = log #(wj), then GloVe is equivalent to factorizing a PMI matrix, shifted by log jCj (Levy
et al., 2015).

4. Cross-Lingual Word Embedding Models: Typology

Recent work on cross-lingual embedding models suggests that the actual choice of bilingual
supervision signal—that is, the data a method requires to learn to align a cross-lingual
representation space—is more important for the final model performance than the actual
underlying architecture (Upadhyay et al., 2016; Levy et al., 2017). In other words, large
differences between models typically stem from their data requirements, while other fine-
grained differences are artifacts of the chosen architecture, hyper-parameters, and additional
tricks and fine-tuning employed. This directly mirrors the argument raised by Levy et al.
(2015) regarding monolingual embedding models: They observe that the architecture is less
important as long as the models are trained under identical conditions on the same type
(and amount) of data.

We therefore base our typology on the data requirements of the cross-lingual word
embedding methods, as this accounts for much of the variation in performance. In particular,
methods differ with regard to the data they employ along the following two dimensions:

1. Type of alignment: Methods use different types of bilingual supervision signals
(at the level of words, sentences, or documents), which introduce stronger or weaker
supervision.

2. Comparability: Methods require either parallel data sources, that is, exact transla-
tions in different languages or comparable data that is only similar in some way.

In particular, there are three different types of alignments that are possible, which are
required by different methods. We discuss the typical data sources for both parallel and
comparable data based on the following alignment signals:
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(a) Word, par. (b) Word, comp. (c) Sentence, par. (d) Sentence, comp. (e) Doc., comp.

Figure 2: Examples for the nature and type of alignment of data sources. Par.: parallel.
Comp.: comparable. Doc.: document. From left to right, word-level parallel alignment in
the form of a bilingual lexicon (2a), word-level comparable alignment using images obtained
with Google search queries (2b), sentence-level parallel alignment with translations (2c),
sentence-level comparable alignment using translations of several image captions (2d), and
document-level comparable alignment using similar documents (2e).

1. Word alignment: Most approaches use parallel word-aligned data in the form of
bilingual or cross-lingual dictionary with pairs of translations between words in different
languages (Mikolov, Le, & Sutskever, 2013b; Faruqui & Dyer, 2014b). Parallel word
alignment can also be obtained by automatically aligning words in a parallel corpus
(see below), which can be used to produce bilingual dictionaries. Throughout this
survey, we thus do not differentiate between the source of word alignment, whether it
comes from type-aligned (dictionaries) or token-aligned data (automatically aligned
parallel corpora). Comparable word-aligned data, even though more plentiful, has been
leveraged less often and typically involves other modalities such as images (Bergsma &
Van Durme, 2011; Kiela, Vulić, & Clark, 2015).

2. Sentence alignment: Sentence alignment requires a parallel corpus, as commonly
used in machine translation (MT). Methods typically use the Europarl corpus (Koehn,
2005), which consists of sentence-aligned text from the proceedings of the European
parliament, and is perhaps the most common source of training data for MT models
(Hermann & Blunsom, 2013; Lauly, Boulanger, & Larochelle, 2013). Other methods
use available word-level alignment information (Zou, Socher, Cer, & Manning, 2013;
Shi, Liu, Liu, & Sun, 2015). There has been some work on extracting parallel data
from comparable corpora (Munteanu & Marcu, 2006), but no-one has so far trained
cross-lingual word embeddings on such data. Comparable data with sentence alignment
may again leverage another modality, such as captions of the same image or similar
images in different languages, which are not translations of each other (Calixto, Liu, &
Campbell, 2017; Gella, Sennrich, Keller, & Lapata, 2017).

3. Document alignment: Parallel document-aligned data requires documents in differ-
ent languages that are translations of each other. This is rare, as parallel documents
typically consist of aligned sentences (Hermann & Blunsom, 2014). Comparable
document-aligned data is more common and can occur in the form of documents
that are topic-aligned (e.g. Wikipedia) or class-aligned (e.g. sentiment analysis and
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multi-class classification datasets) (Vulić & Moens, 2013b; Mogadala & Rettinger,
2016).

We summarize the different types of data required by cross-lingual embedding models
along these two dimensions in Table 2 and provide examples for each in Figure 2. Over
the course of this survey we will show that models that use a particular type of data are
mostly variations of the same or similar architectures. We present our complete typology
of cross-lingual embedding models in Table 3, aiming to provide an exhaustive overview by
classifying each model (we are aware of) into one of the corresponding model types. We also
provide a more detailed overview of the monolingual objectives and regularization terms
used by every approach towards the end of this survey in Table 5.

5. A Brief History of Cross-Lingual Word Representations

We provide a brief overview of the historical lineage of cross-lingual word embedding models.
In brief, while cross-lingual word embeddings is a novel phenomenon, many of the high-level
ideas that motivate current research in this area, can be found in work that pre-dates the
popular introduction of word embeddings. This includes work on learning cross-lingual word
representations from seed lexica, parallel data, or document-aligned data, as well as ideas on
learning from limited bilingual supervision.

Language-independent representations have been proposed for decades, many of which
rely on abstract linguistic labels instead of lexical features (Aone & McKee, 1993; Schultz &
Waibel, 2001). This is also the strategy used in early work on so-called delexicalized cross-
lingual and domain transfer (Zeman & Resnik, 2008; Søgaard, 2011; McDonald, Petrov,
& Hall, 2011; Cohen, Das, & Smith, 2011; Täckström, McDonald, & Uszkoreit, 2012;
Henderson, Thomson, & Young, 2014), as well as in work on inducing cross-lingual word
clusters (Täckström et al., 2012; Faruqui & Dyer, 2013), and cross-lingual word embeddings
relying on syntactic/POS contexts (Duong, Cohn, Bird, & Cook, 2015; Dehouck & Denis,
2017).5 The ability to represent lexical items from two different languages in a shared cross-
lingual space supplements seminal work in cross-lingual transfer by providing fine-grained
word-level links between languages; see work in cross-lingual dependency parsing (Ammar,
Mulcaire, Ballesteros, Dyer, & Smith, 2016a; Zeman et al., 2017) and natural language
understanding systems (Mrkšić et al., 2017b).

Similar to our typology of cross-lingual word embedding models outlined in Table 3
based on bilingual data requirements from Table 2, one can also arrange older cross-lingual
representation architectures into similar categories. A traditional approach to cross-lingual
vector space induction was based on high-dimensional context-counting vectors where each
dimension encodes the (weighted) co-occurrences with a specific context word in each of
the languages. The vectors are then mapped into a single cross-lingual space using a seed
bilingual dictionary containing paired context words from both sides (Rapp, 1999; Gaussier,
Renders, Matveeva, Goutte, & Déjean, 2004; Laroche & Langlais, 2010; Tamura, Watanabe,
& Sumita, 2012, inter alia). This approach is an important predecessor to the cross-lingual

5. Along the same line, the recent initiative on providing cross-linguistically consistent sets of such labels
(e.g., Universal Dependencies, Nivre et al., 2016) facilitates cross-lingual transfer and offers further support
to the induction of word embeddings across languages (Vulić, 2017; Vulić, Schwartz, Rappoport, Reichart,
& Korhonen, 2017).
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Parallel Comparable

Word
—Mapping

Mikolov et al. (2013b) Bergsma and Van Durme (2011)
Faruqui and Dyer (2014) Kiela et al. (2015)
Lazaridou et al. (2015) Vulić et al. (2016)
Dinu et al. (2015)
Xing et al. (2015)
Lu et al. (2015)
Vulić and Korhonen (2016)
Ammar et al. (2016b)
Zhang et al. (2016b, 2017ab)
Artexte et al. (2016, 2017, 2018ab)
Smith et al. (2017)
Hauer et al. (2017)
Mrkšić et al. (2017b)
Conneau et al. (2018a)
Joulin et al. (2018)
Alvarez-Melis and Jaakkola (2018)
Ruder et al. (2018)
Glavaš et al. (2019)

Word
—Pseudo-
bilingual

Xiao and Guo (2014) Duong et al. (2015)
Gouws and Søgaard (2015)

Duong et al. (2016)
Adams et al. (2017)

Word
—Joint

Klementiev et al. (2012)
Kočiský et al. (2014)

Sentence
—Matrix
factorization

Zou et al. (2013)
Shi et al. (2015)
Gardner et al. (2015)
Guo et al. (2015)
Vyas and Carpuat (2016)

Sentence
—Compositional

Hermann and Blunsom (2013, 2014)
Soyer et al. (2015)

Sentence
—Autoencoder

Lauly et al. (2013)
Chandar et al. (2014)

Sentence
—Skip-gram

Gouws et al. (2015)
Luong et al. (2015)
Coulmance et al. (2015)
Pham et al. (2015)

Sentence
—Other

Levy et al. (2017) Calixto et al. (2017)
Rajendran et al. (2016) Gella et al. (2017)

Document
Vulić and Moens (2013a, 2014, 2016)
Søgaard et al. (2015)
Mogadala and Rettinger (2016)

Table 3: Cross-lingual embedding models ordered by data requirements.
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word embedding models described in Section 6. Similarly, the bootstrapping technique
developed for traditional context-counting approaches (Peirsman & Padó, 2010; Vulić &
Moens, 2013b) is an important predecessor to recent iterative self-learning techniques used to
limit the bilingual dictionary seed supervision needed in mapping-based approaches (Hauer,
Nicolai, & Kondrak, 2017; Artetxe, Labaka, & Agirre, 2017). The idea of CCA-based word
embedding learning (see later in Section 6; Faruqui & Dyer, 2014b; Lu, Wang, Bansal, Gimpel,
& Livescu, 2015) was also introduced a decade earlier (Haghighi, Liang, Berg-Kirkpatrick, &
Klein, 2008); their word additionally discussed the idea of combining orthographic subword
features with distributional signatures for cross-lingual representation learning: This idea
re-entered the literature recently (Heyman, Vulić, & Moens, 2017), only now with much
better performance.

Cross-lingual word embeddings can also be directly linked to the work on word alignment
for statistical machine translation (Brown, Pietra, Pietra, & Mercer, 1993; Och & Ney, 2003).
Levy et al. (2017) stress that word translation probabilities extracted from sentence-aligned
parallel data by IBM alignment models can also act as the cross-lingual semantic similarity
function in lieu of the cosine similarity between word embeddings. Such word translation
tables are then used to induce bilingual lexicons. For instance, aligning each word in a
given source language sentence with the most similar target language word from the target
language sentence is exactly the same greedy decoding algorithm that is implemented in IBM
Model 1. Bilingual dictionaries and cross-lingual word clusters derived from word alignment
links can be used to boost cross-lingual transfer for applications such as syntactic parsing
(Täckström et al., 2012; Durrett, Pauls, & Klein, 2012), POS tagging (Agić, Hovy, & Søgaard,
2015), or semantic role labeling (Kozhevnikov & Titov, 2013) by relying on shared lexical
information stored in the bilingual lexicon entries. Exactly the same functionality can be
achieved by cross-lingual word embeddings. However, cross-lingual word embeddings have
another advantage in the era of neural networks: the continuous representations can be
plugged into current end-to-end neural architectures directly as sets of lexical features.

A large body of work on multilingual probabilistic topic modeling (Vulić, De Smet, Tang,
& Moens, 2015; Boyd-Graber, Hu, & Mimno, 2017) also extracts shared cross-lingual word
spaces, now by means of conditional latent topic probability distributions: two words with
similar distributions over the induced latent variables/topics are considered semantically
similar. The learning process is again steered by the data requirements. The early days
witnessed the use of pseudo-bilingual corpora constructed by merging aligned document
pairs, and then applying a monolingual representation model such as LSA (Landauer &
Dumais, 1997) or LDA (Blei, Ng, & Jordan, 2003) on top of the merged data (Littman,
Dumais, & Landauer, 1998; De Smet, Tang, & Moens, 2011). This approach is very similar
to the pseudo-cross-lingual approaches discussed in Section 6 and Section 8. More recent
topic models learn on the basis of parallel word-level information, enforcing word pairs from
seed bilingual lexicons (again!) to obtain similar topic distributions (Boyd-Graber & Blei,
2009; Zhang, Mei, & Zhai, 2010; Boyd-Graber & Resnik, 2010; Jagarlamudi & Daumé III,
2010). In consequence, this also influences topic distributions of related words not occurring
in the dictionary. Another group of models utilizes alignments at the document level (Mimno,
Wallach, Naradowsky, Smith, & McCallum, 2009; Platt, Toutanova, & Yih, 2010; Vulić,
De Smet, & Moens, 2011; Fukumasu, Eguchi, & Xing, 2012; Heyman, Vulić, & Moens,
2016) to induce shared topical spaces. The very same level of supervision (i.e., document
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alignments) is used by several cross-lingual word embedding models, surveyed in Section 8.
Another embedding model based on the document-aligned Wikipedia structure (Søgaard,
Agić, Alonso, Plank, Bohnet, & Johannsen, 2015) bears resemblance with the cross-lingual
Explicit Semantic Analysis model (Gabrilovich & Markovitch, 2006; Hassan & Mihalcea,
2009; Sorg & Cimiano, 2012).

All these “historical” architectures measure the strength of cross-lingual word similarities
through metrics defined in the cross-lingual space: e.g., Kullback-Leibler or Jensen-Shannon
divergence (in a topic space), or vector inner products (in sparse context-counting vector
space),and are therefore applicable to NLP tasks that rely cross-lingual similarity scores.
The pre-embedding architectures and more recent cross-lingual word embedding methods
have been applied to an overlapping set of evaluation tasks and applications, ranging
from bilingual lexicon induction to cross-lingual knowledge transfer, including cross-lingual
parser transfer (Täckström et al., 2012; Ammar et al., 2016a), cross-lingual document
classification (Gabrilovich & Markovitch, 2006; De Smet et al., 2011; Klementiev, Titov, &
Bhattarai, 2012; Hermann & Blunsom, 2014), cross-lingual relation extraction (Faruqui &
Kumar, 2015), etc. In summary, while sharing the goals and assumptions of older cross-
lingual architectures, cross-lingual word embedding methods have capitalized on the recent
methodological and algorithmic advances in the field of representation learning, owing their
wide use to their simplicity, efficiency and handling of large corpora, as well as their relatively
robust performance across domains.

6. Word-Level Alignment Models

In the following, we will now discuss different types of the current generation of cross-lingual
embedding models, starting with models based on word-level alignment. Among these,
models based on parallel data are more common.

6.1 Word-level Alignment Methods with Parallel Data

We distinguish three methods that use parallel word-aligned data:

a) Mapping-based approaches that first train monolingual word representations inde-
pendently on large monolingual corpora and then seek to learn a transformation matrix
that maps representations in one language to the representations of the other language.
They learn this transformation from word alignments or bilingual dictionaries (we do
not see a need to distinguish between the two).

b) Pseudo-multi-lingual corpora-based approaches that use monolingual word em-
bedding methods on automatically constructed (or corrupted) corpora that contain
words from both the source and the target language.

c) Joint methods that take parallel text as input and minimize the source and target
language monolingual losses jointly with the cross-lingual regularization term.

We will show that modulo optimization strategies, these approaches are equivalent. Before
discussing the first category of methods, we briefly introduce two concepts that are of relevance
in these and the subsequent sections.
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Bilingual lexicon induction Bilingual lexicon induction is the intrinsic task that is most
commonly used to evaluate current cross-lingual word embedding models. Briefly, given a
list of N language word forms ws1; : : : ; wsN , the goal is to determine the most appropriate
translation wti , for each query form wsi . This is commonly accomplished by finding a target
language word whose embedding xti is the nearest neighbour to the source word embedding
xsi in the shared semantic space, where similarity is usually computed as the cosine similarity
between their embeddings. See Section 10 for more details.

Hubness Hubness (Radovanović, Nanopoulos, & Ivanović, 2010) is a phenomenon observed
in high-dimensional spaces where some points (known as hubs) are the nearest neighbours of
many other points. As translations are assumed to be nearest neighbours in cross-lingual
embedding space, hubness has been reported to affect cross-lingual word embedding models.

6.1.1 Mapping-based Approaches

Mapping-based approaches are by far the most prominent category of cross-lingual word
embedding models and—due to their conceptual simplicity and ease of use—are currently
the most popular. Mapping-based approaches aim to learn a mapping from the monolingual
embedding spaces to a joint cross-lingual space. Approaches in this category differ along
multiple dimensions:

1. The mapping method that is used to transform the monolingual embedding spaces
into a cross-lingual embedding space.

2. The seed lexicon that is used to learn the mapping.

3. The refinement of the learned mapping.

4. The retrieval of the nearest neighbours.

Mapping Methods

There are four types of mapping methods that have been proposed:

1. Regression methods map the embeddings of the source language to the target
language space by maximizing their similarity.

2. Orthogonal methods map the embeddings in the source language to maximize their
similarity with the target language embeddings, but constrain the transformation to
be orthogonal.

3. Canonical methods map the embeddings of both languages to a new shared space,
which maximizes their similarity.

4. Margin methods map the embeddings of the source language to maximize the margin
between correct translations and other candidates.
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Regression methods One of the most influential methods for learning a mapping is
the linear transformation method by Mikolov et al. (2013b). The method is motivated
by the observation that words and their translations show similar geometric constellations
in monolingual embedding spaces after an appropriate linear transformation is applied,
as illustrated in Figure 3. This suggests that it is possible to transform the vector space
of a source language s to the vector space of the target language t by learning a linear
projection with a transformation matrix Ws→t. We use W in the following if the direction
is unambiguous.

Using the n most frequent words from the source language ws1; : : : ; wsn and their transla-
tions wt1; : : : ; wtn as seed words, they learn W using stochastic gradient descent by minimising
the squared Euclidean distance (mean squared error, MSE) between the previously learned
monolingual representations of the source seed word xsi that is transformed using W and its
translation xti in the bilingual dictionary:


MSE =
nX
i=1

kWxsi � xtik2 (13)

This can also be written in matrix form as minimizing the squared Frobenius norm of
the residual matrix:


MSE = kWXs �Xtk2F (14)

where Xs and Xt are the embedding matrices of the seed words in the source and target
language respectively. Analogously, the problem can be seen as finding a least squares
solution to a system of linear equations with multiple right-hand sides:

WXs = Xt (15)

A common solution to this problem enables calculating W analytically as W = X+Xt where
X+ = (Xs>Xs)−1Xs> is the Moore-Penrose pseudoinverse.

Figure 3: Similar geometric relations between numbers and animals in English and Spanish
(Mikolov et al., 2013b). Words embeddings are projected to two dimensions using PCA and
were manually rotated to emphasize similarities.
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In our notation, the MSE mapping approach can be seen as optimizing the following
objective:

J = LSGNS(Xs) + LSGNS(Xt)| {z }
1

+ 
MSE(Xs;Xt;W)| {z }
2

(16)

First, each of the monolingual losses is optimized independently. Second, the regularization
term 
MSE is optimized while keeping the induced monolingual embeddings fixed. The
basic approach of Mikolov et al. (2013b) has later been adopted by many others who for
instance incorporated ‘2 regularization (Dinu, Lazaridou, & Baroni, 2015). A common
preprocessing step that is applied to the monolingual embeddings is to normalize the
monolingual embeddings to be unit length. Xing, Liu, Wang, and Lin (2015) argue that this
normalization resolves an inconsistency between the metric used for training (dot product)
and the metric used for evaluation (cosine similarity).6 Artetxe, Labaka, and Agirre (2016)
motivate length normalization to ensure that all training instances contribute equally to the
objective.

Orthogonal methods The most common way in which the basic regression method
of the previous section has been improved is to constrain the transformation W to be
orthogonal, i.e. W>W = I. The exact solution under this constraint is W = VU> and
can be efficiently computed in linear time with respect to the vocabulary size using SVD
where Xt>Xs = U�V>. This constraint is motivated by Xing et al. (2015) to preserve
length normalization. Artetxe et al. (2016) motivate orthogonality as a means to ensure
monolingual invariance. An orthogonality constraint has also been used to regularize the
mapping (Zhang, Gaddy, Barzilay, & Jaakkola, 2016b; Zhang, Liu, Luan, & Sun, 2017a) and
has been motivated theoretically to be self-consistent (Smith, Turban, Hamblin, & Hammerla,
2017).

Canonical methods Canonical methods map the embeddings in both languages to a
shared space using Canonical Correlation Analysis (CCA). Haghighi et al. (2008) were the
first to use this method for learning translation lexicons for the words of different languages.
Faruqui and Dyer (2014) later applied CCA to project words from two languages into a
shared embedding space. Whereas linear projection only learns one transformation matrix
Ws→t to project the embedding space of a source language into the space of a target language,
CCA learns a transformation matrix for the source and target language Ws→ and Wt→

respectively to project them into a new joint space that is different from both the space of
s and of t. We can write the correlation between a projected source language embedding
vector Ws→xsi and its corresponding projected target language embedding vector Wt→xti as:

�(Ws→xsi ;W
t→xti) =

cov(Ws→xsi ;W
t→xti)p

var(Ws→xsi )var(Wt→xti)
(17)

where cov(�; �) is the covariance and var(�) is the variance. CCA then aims to maximize the
correlation (or analogously minimize the negative correlation) between the projected vectors
Ws→xsi and Wt→xti:


CCA = �
nX
i=1

�(Ws→xsi ;W
t→xti) (18)

6. For unit vectors, dot product and cosine similarity are equivalent.
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We can write their objective in our notation as the following:

J = LLSA(Xs) + LLSA(Xt)| {z }
1

+ 
CCA(Xs;Xt;Ws→;Wt→)| {z }
2

(19)

Faruqui and Dyer propose to use the 80% projection vectors with the highest correlation.
Lu et al. (2015) incorporate a non-linearity into the canonical method by training two deep
neural networks to maximize the correlation between the projections of both monolingual
embedding spaces. Ammar, Mulcaire, Tsvetkov, Lample, Dyer, and Smith (2016b) extend
the canonical approach to multiple languages.

Artetxe et al. (2016) show that the canonical method is similar to the orthogonal
method with dimension-wise mean centering. Artetxe, Labaka, and Agirre (2018b) show that
regression methods, canonical methods, and orthogonal methods can be seen as instances
of a framework that includes optional weightening and de-whitening steps, which further
demonstrates the similarity of existing approaches.

Margin methods Lazaridou, Dinu, and Baroni (2015) optimize a max-margin based
ranking loss instead of MSE to reduce hubness. This max-margin based ranking loss is
essentially the same as the MML (Collobert & Weston, 2008) used for learning monolingual
embeddings. Instead of assigning higher scores to correct sentence windows, we now try to
assign a higher cosine similarity to word pairs that are translations of each other (xsi ;x

t
i; first

term below) than random word pairs (xsi ;x
t
j ; second term):


MML =
nX
i=1

kX
j 6=i

maxf0;  � cos(Wxsi ;x
t
i) + cos(Wxsi ;x

t
j)g (20)

The choice of the k negative examples, which we compare against the translations is crucial.
Dinu et al. (2015) propose to select negative examples that are more informative by being
near the current projected vector Wxsi but far from the actual translation vector xti. Unlike
random intruders, such intelligently chosen intruders help the model identify training instances
where the model considerably fails to approximate the target function. In the formulation
adopted in this article, their objective becomes:

J = LCBOW(Xs) + LCBOW(Xt)| {z }
1

+ 
MML-I(X
s;Xt;W)| {z }
2

(21)

where 
MML-I designates 
MML with intruders as negative examples. More recently, Joulin,
Bojanowski, Mikolov, Jegou, and Grave (2018) proposed a margin-based method, which
replaces cosine similarity with CSLS, a distance function more suited to bilingual lexicon
induction that will be discussed in the retrieval section.

Among the presented mapping approaches, orthogonal methods are the most commonly
adopted as the orthogonality constraint improves over the basic regression method.

The Seed Lexicon

The seed lexicon is another core component of any mapping-based approach. In the past,
three types of seed lexicons have been used to learn a joint cross-lingual word embedding
space:
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1. An off-the-shelf bilingal lexicon.

2. A weakly supervised bilingual lexicon.

3. A learned bilingual lexicon.

Off-the-shelf Most early approaches (Mikolov et al., 2013b) employed off-the-shelf or
automatically generated bilingual lexicons of frequent words. While Mikolov et al. (2013b)
used as much as 5000 pairs, later approaches reduce the number of seed pairs, demonstrating
that it is feasible to learn a cross-lingual word embedding space with as little as 25 seed pairs
(Artetxe et al., 2017).

Weak supervision Other approaches employ weak supervision to create seed lexicons
based on cognates (Smith et al., 2017), shared numerals (Artetxe et al., 2017), or identically
spelled strings (Søgaard, Ruder, & Vulić, 2018). Such weak supervision is easy to obtain and
has been shown to produce results that are competitive with off-the-shelf lexicons.

Learned Recently, approaches have been proposed that learn an initial seed lexicon in
a completely unsupervised way. Interestingly, so far, all unsupervised cross-lingual word
embedding methods are based on the mapping approach. Conneau, Lample, Ranzato,
Denoyer, and Jégou (2018a) learn an initial mapping in an adversarial way by additionally
training a discriminator to differentiate between projected and actual target language
embeddings. Artetxe, Labaka, and Agirre (2018a) propose to use an initialisation method
based on the heuristic that translations have similar similarity distributions across languages.
Hoshen and Wolf (2018) first project vectors of the N most frequent words to a lower-
dimensional space with PCA. They then aim to find an optimal transformation that minimizes
the sum of Euclidean distances by learning Ws→t and Wt→s and enforce cyclical consistency
constraints that force vectors round-projected to the other language space and back to remain
unchanged. Alvarez-Melis and Jaakkola (2018) solve an optimal transport in order to learn
an alignment between the monolingual word embedding spaces.

The Refinement

Many mapping-based approaches propose to refine the mapping to improve the quality of
the initial seed lexicon. Vulić and Korhonen (2016) propose to learn a first shared bilingual
embedding space based on an existing cross-lingual embedding model. They retrieve the
translations of frequent source words in this cross-lingual embedding space, which they use
as seed words to learn a second mapping. To ensure that the retrieved translations are
reliable, they propose a symmetry constraint: Translation pairs are only retained if their
projected embeddings are mutual nearest neighbours in the cross-lingual embedding space.
This constraint is meant to reduce hubness and has been adopted later in many subsequent
methods that rely heavily on refinement (Conneau et al., 2018a; Artetxe et al., 2018a).

Rather than just performing one step of refinement, Artetxe et al. (2017) propose a
method that iteratively learns a new mapping by using translation pairs from the previous
mapping. Training is terminated when the improvement on the average dot product for
the induced dictionary falls below a given threshold from one iteration to the next. Ruder,
Cotterell, Kementchedjhieva, and Søgaard (2018) solve a sparse linear assignment problem
in order to refine the mapping. As discussed in Section 5, the refinement idea is conceptually
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similar to the work of Peirsman and Padó (2010, 2011) and Vulić and Moens (2013b), with
the difference that earlier approaches were developed within the traditional cross-lingual
distributional framework (mapping vectors into the count-based space using a seed lexicon).
Glavas, Litschko, Ruder, and Vulic (2019) propose to learn a matrix Ws→t and a matrix
Wt→s. They then use the intersection of the translation pairs obtained from both mappings
in the subsequent iteration. In practice, one step of refinement is often sufficient as in the
second iteration, a large number of noisier word translations are automatically generated
(Glavas et al., 2019).

While refinement is less crucial when a large seed lexicon is available, approaches that
learn a mapping from a small seed lexicon or in a completely unsupervised way rely on
refinement (Conneau et al., 2018a; Artetxe et al., 2018a).

The Retrieval

Most existing methods retrieve translations as the nearest neighbours of the source word
embeddings in the cross-lingual embedding space based on cosine similarity. Dinu et al.
(2015) propose to use a globally corrected neighbour retrieval method instead to reduce
hubness. Smith et al. (2017) propose a similar solution to the hubness issue: they invert the
softmax used for finding the translation of a word at test time and normalize the probability
over source words rather than target words. Conneau et al. (2018a) propose an alternative
similarity measure called cross-domain similarity local scaling (CSLS), which is defined as:

CSLS(Wxs;xt) = 2cos(Wxs;xt)� rt(Wxs)� rs(xt) (22)

where rt is the mean similarity of a target word to its neighbourhood, defined as rt(Wxs) =
1
K

P
xt∈N t(Wxs)cos(Wxs;xt) where N t(Wxs) is the neighbourhood of the projected source

word. Intuitively, CSLS increases the similarity of isolated word vectors and decreases
the similarity of hubs. CSLS has been shown to significantly increase the accuracy of
bilingual lexicon induction and is nowadays mostly used in lieu of cosine similarity for nearest
neighbour retrieval. Joulin et al. (2018) propose to optimize this metric directly when
learning the mapping, as noted above. Recently, Artetxe, Labaka, and Agirre (2019) propose
an alternative retrieval method that relies on building a phrase-based MT system from the
cross-lingual word embeddings. The MT system is used to generate a synthetic parallel
corpus, from which the bilingual lexicon is extracted. The approach has been shown to
outperform CSLS retrieval significantly.

Cross-lingual embeddings via retro-fitting While not strictly a mapping-based ap-
proach as it fine-tunes specific monolingual word embeddings, another way to leverage
word-level supervision is through the framework of retro-fitting (Faruqui, Dodge, Jauhar,
Dyer, Hovy, & Smith, 2015). The main idea behind retro-fitting is to inject knowledge
from semantic lexicons into pre-trained word embeddings. Retro-fitting creates a new word
embedding matrix X̂ whose embeddings x̂i are both close to the corresponding learned
monolingual word embeddings xi as well as close to their neighbors x̂j in a knowledge graph:


retro =

|V |X
i=1

h
�ikx̂i � xik2 +

X
(i;j)∈E

�ijkx̂i � x̂jk2
i

(23)
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E is the set of edges in the knowledge graph and � and � control the strength of the
contribution of each term.

While the initial retrofitting work focused solely on monolingual word embeddings
(Faruqui et al., 2015; Wieting, Bansal, Gimpel, & Livescu, 2015), Mrkšić et al. (2017b) derive
both monolingual and cross-lingual synonymy and antonymy constraints from cross-lingual
BabelNet synsets. They then use these constraints to bring the monolingual vector spaces of
two different languages together into a shared embedding space. Such retrofitting approaches
employ 
MMHL with a careful selection of intruders, similar to the work of Lazaridou et al.
(2015). While through these external constraints retro-fitting methods can capture relations
that are more complex than a linear transformation (as with mapping-based approaches),
the original post-processing retrofitting approaches are limited to words that are contained
in the semantic lexicons, and do not generalise to words unobserved in the external semantic
databases. In other words, the goal of retrofitting methods is to refine vectors of words for
which additional high-quality lexical information exists in the external resource, while the
methods still back off to distributional vector estimates for all other words.

To remedy the issue with words unobserved in the external resources and learn a global
transformation of the entire distributional space in both languages, several methods have
been proposed. Post-specialisation approaches first fine-tune vectors of words observed
in the external resources, and then aim to learn a global transformation function using
the original distributional vectors and their retrofitted counterparts as training pairs. The
transformation function can be implemented as a deep feed-forward neural network with
non-linear transformations (Vulić, Glavaš, Mrkšić, & Korhonen, 2018), or it can be enriched
by an adversarial component that tries to distinguish between distributional and retrofitted
vectors (Ponti, Vulić, Glavaš, Mrkšić, & Korhonen, 2018). While this is a two-step process
(1. retrofitting, 2. global transformation learning), an alternative approach proposed by
(Glavaš & Vulić, 2018) learns a global transformation function directly in one step using
external lexical knowledge. Furthermore, Pandey, Pudi, and Shrivastava (2017) explored the
orthogonal idea of using cross-lingual word embeddings to transfer the regularization effect
of knowledge bases using retrofitting techniques.

6.1.2 Word-level Approaches based on Pseudo-bilingual Corpora

Rather than learning a mapping between the source and the target language, some approaches
use the word-level alignment of a seed bilingual dictionary to construct a pseudo-bilingual
corpus by randomly replacing words in a source language corpus with their translations. Xiao
and Guo (2014) propose the first such method. Using an initial seed lexicon, they create
a joint cross-lingual vocabulary, in which each translation pair occupies the same vector
representation. They train this model using MML (Collobert & Weston, 2008) by feeding it
context windows of both the source and target language corpus.

Other approaches explicitly create a pseudo-bilingual corpus: Gouws and Søgaard (2015)
concatenate the source and target language corpus and replace each word that is part of
a translation pair with its translation equivalent with a probability of 1

2kt
, where kt is

the total number of possible translation equivalents for a word, and train CBOW on this
corpus. Ammar et al. (2016b) extend this approach to multiple languages: Using bilingual
dictionaries, they determine clusters of synonymous words in different languages. They then
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concatenate the monolingual corpora of different languages and replace tokens in the same
cluster with the cluster ID. Finally, they train SGNS on the concatenated corpus.

Duong, Kanayama, Ma, Bird, and Cohn (2016) propose a similar approach. Instead of
randomly replacing every word in the corpus with its translation, they replace each center
word with a translation on-the-fly during CBOW training. In addition, they handle polysemy
explicitly by proposing an EM-inspired method that chooses as replacement the translation
wti whose representation is most similar to the sum of the source word representation xsi and
the sum of the context embeddings xss as in Equation 11:

wti = argmaxw0∈�(wi) cos(xi + xss;x
′) (24)

They jointly learn to predict both the words and their appropriate translations using PanLex
as the seed bilingual dictionary. PanLex covers around 1,300 language with about 12 million
expressions. Consequently, translations are high coverage but often noisy. Adams, Makarucha,
Neubig, Bird, and Cohn (2017) use the same approach for pre-training cross-lingual word
embeddings for low-resource language modeling.

As we will show shortly, methods based on pseudo-bilingual corpora optimize a similar
objective to the mapping-based methods we have previously discussed. In practice, however,
pseudo-bilingual methods are more expensive as they require training cross-lingual word
embeddings from scratch based on the concatenation of large monolingual corpora. In
contrast, mapping-based approaches are much more computationally efficient as they leverage
pretrained monolingual word embeddings, while the mapping can be learned very efficiently.

6.1.3 Joint Models

While the previous approaches either optimize a set of monolingual losses and then the
cross-lingual regularization term (mapping-based approaches) or optimize a monolingual loss
and implicitly—via data manipulation—a cross-lingual regularization term, joint models
optimize monolingual and cross-lingual objectives at the same time jointly. In what follows,
we discuss a few illustrative example models which sparked this sub-line of research.

Bilingual language model Klementiev et al. (2012) cast learning cross-lingual represen-
tations as a multi-task learning problem. They jointly optimize a source language and target
language model together with a cross-lingual regularization term that encourages words
that are often aligned with each other in a parallel corpus to be similar. The monolingual
objective is the classic LM objective of minimizing the negative log likelihood of the current
word wi given its C previous context words:

L = � logP (wi j wi−C+1:i−1) (25)

For the cross-lingual regularization term, they first obtain an alignment matrix As→t that
indicates how often each source language word was aligned with each target language word
from parallel data such as the Europarl corpus (Koehn, 2009). The cross-lingual regularization
term then encourages the representations of source and target language words that are often
aligned in As→t to be similar:


s = �
|V |sX
i=1

1

2
xsi
>(As→t 
 Id)x

s
i (26)
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where Id 2 Rd×d is the identity matrix and 
 is the Kronecker product, which intuitively
“blows up” each element of As→t 2 R|V s|×|V t| to the size of xsi 2 Rd. The final regularization
term will be the sum of 
s and the analogous term for the other direction (
t). Note that
Equation (24) is a weighted (by word alignment scores) average of inner products, and hence,
for unit length normalized embeddings, equivalent to approaches that maximize the sum of
the cosine similarities of aligned word pairs. Using As→t
I to encode interaction is borrowed
from linear multi-task learning models (Cavallanti, Cesa-Bianchi, & Gentile, 2010). There,
an interaction matrix A encodes the relatedness between tasks. The complete objective is
the following:

J = L(Xs) + L(Xt) + 
(As→t;Xs) + 
(At→s;Xt) (27)

Joint learning of word embeddings and word alignments Kočiský, Hermann, and
Blunsom (2014) simultaneously learn word embeddings and word-level alignments using a
distributed version of FastAlign (Dyer, Chahuneau, & Smith, 2013) together with a language
model.7 Similar to other bilingual approaches, they use the word in the source language
sentence of an aligned sentence pair to predict the word in the target language sentence.

They replace the standard multinomial translation probability of FastAlign with an
energy function that tries to bring the representation of a target word wti close to the sum of
the context words around the word wsi in the source sentence:

E(wsi ; w
t
i ; ) = �(

CX
j=−C

xsi+j
>T)xti � b>xti � bwt

i
(28)

where xsi+j and xti are the representations of source word w
s
i+j and target word wti respectively,

T 2 Rd×d is a projection matrix, and b 2 Rd and bwt
i
2 R are representation and word biases

respectively. The method is trained via Expectation Maximization. Note that this model is
conceptually very similar to bilingual models that discard word-level alignment information
and learn solely on the basis of sentence-aligned information, which we discuss in Section 7.1.

6.1.4 Sometimes Mapping, Joint and Pseudo-bilingual Approaches are
Equivalent

Below we show that while mapping, joint and pseudo-bilingual approaches seem very different,
intuitively, they can sometimes be very similar, and in fact, equivalent. We demonstrate
this by first defining a pseudo-bilingual approach that is equivalent to an established joint
learning technique; and by then showing that same joint learning technique is equivalent to
a popular mapping-based approach (for a particular hyper-parameter setting).

We define Constrained Bilingual SGNS. First, recall that in the negative sampling
objective of SGNS in Equation 9, the probability of observing a word w with a context word
c with representations x and ~x respectively is given as P (c j w) = �(~x>x), where � denotes
the sigmoid function. We now sample a set of k negative examples, that is, contexts ci with
which w does not occur, as well as actual contexts C consisting of (wj ; cj) pairs, and try
to maximize the above for actual contexts and minimize it for negative samples. Second,
recall that Mikolov et al. (2013b) obtain cross-lingual embeddings by running SGNS over

7. FastAlign is a fast and effective variant of IBM Model 2.
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two monolingual corpora of two different languages at the same time with the constraint that
words known to be translation equivalents, according to some dictionary D, have the same
representation. We will refer to this as Constrained Bilingual SGNS. This is also the
approach taken in Xiao and Guo (2014). D is a function from words w into their translation
equivalents w′ with the representation x′. With some abuse of notation, we can write the
Constrained Bilingual SGNS objective for the source language (idem for the target
language):

X
(wj ;cj)∈C

log �(~xj
>xj) +

kX
i=1

log �(�~xi
>xj) + 
∞

X
w0∈�(wj)

jxj � x′j j (29)

In pseudo-bilingual approaches, we instead sample sentences from the corpora in the two
languages. When we encounter a word w for which we have a translation, that is, �(w) 6= ;
we flip a coin and if heads, we replace w with a randomly selected member of D(w). In the
case, where D is bijective as in the work of Xiao and Guo (2014), it is easy to see that the
two approaches are equivalent, in the limit: Sampling mixed hw; ci-pairs, w and D(w) will
converge to the same representations. We can loosen the requirement that D is bijective.
To see this, assume, for example, the following word-context pairs: ha; bi; ha; ci; ha; di. The
vocabulary of our source language is fa; b; dg, and the vocabulary of our target language
is fa; c; dg. Let as denote the source language word in the word pair a; etc. To obtain
a mixed corpus, such that running SGNS directly on it, will induce the same representa-
tions, in the limit, simply enumerate all combinations: has; bi; hat; bi; has; ci; hat; ci; has; dsi;
has; dti; hat; dsi; hat; dti. Note that this is exactly the mixed corpus you would obtain in the
limit with the approach by Gouws and Søgaard (2015). Since this reduction generalizes to all
examples where D is bijective, this translation provides a constructive demonstration that for
any Constrained Bilingual SGNS model, there exists a corpus such that pseudo-bilingual
sampling learns the same embeddings as this model. In order to complete the demonstration,
we need to establish equivalence in the other direction: Since the mixed corpus constructed
using the method in Gouws and Søgaard (2015) samples from all replacements licensed by
the dictionary, in the limit all words in the dictionary are distributionally similar and will, in
the limit, be represented by the same vector representation. This is exactly Constrained
Bilingual SGNS. It thus follows that:

Lemma 1. Pseudo-bilingual sampling is, in the limit, equivalent to Constrained Bilin-
gual SGNS.

While mapping-based and joint approaches seem very different at first sight, they can
also be very similar—and, in fact, sometimes equivalent. We give an example of this by
demonstrating that two methods in the literature are equivalent under some hyper-parameter
settings:

Consider the mapping approach in Faruqui et al. (2015) (retro-fitting) and Constrained
Bilingual SGNS (Xiao & Guo, 2014). Retro-fitting requires two pretrained monolingual
embeddings. Let us assume these embeddings were induced using SGNS with a set of hyper-
parameters Y . Retro-fitting minimizes the weighted sum of the Euclidean distances between
the seed words and their translation equivalents and their neighbors in the monolingual em-
beddings, with a parameter � that controls the strength of the regularizer. As this parameter
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goes to infinity, translation equivalents will be forced to have the same representation. As is
the case in Constrained Bilingual SGNS, all word pairs in the seed dictionary will be
associated with the same vector representation.

Since retro-fitting only affects words in the seed dictionary, the representation of the
words not seen in the seed dictionary is determined entirely by the monolingual objectives.
Again, this is the same as in Constrained Bilingual SGNS. In other words, if we fix Y
for retro-fitting and Constrained Bilingual SGNS, and set the regularization strength
� = 
∞ in retro-fitting, retro-fitting is equivalent to Constrained Bilingual SGNS.

Lemma 2. Retro-fitting of SGNS vector spaces with � = 
∞ is equivalent to Constrained
Bilingual SGNS.8

Proof. We provide a simple bidirectional constructive proof, defining a translation function
� from each retro-fitting model ri = hS; T; (S; T )= �; � = 
∞i, with S and T source
and target SGNS embeddings, and (S; T )= � an equivalence relation between source and
target embeddings (w;w), with w 2 Rd, to a Constrained Bilingual SGNS model
ci = hS; T;Di, and back.

Retro-fitting minimizes the weighted sum of the Euclidean distances between the seed
words and their translation equivalents and their neighbors in the monolingual embeddings,
with a parameter � that controls the strength of the regularizer. As this parameter goes to
infinity (� 7�! 
∞), translation equivalents will be forced to have the same representation.
In both retro-fitting and Constrained Bilingual SGNS, only words in (S; T )= � and D
are directly affected by regularization; the other words only indirectly by being penalized for
not being close to distributionally similar words in (S; T )= � and D.

We therefore define �(hS; T; (S; T )= �; � = 
∞i) = hS; T;Di, s.t., (s; t) 2 D iff
(s; t) 2 (S; T )= �. Since this function is bijective, �−1 provides the backward function
from Constrained Bilingual SGNS models to retro-fitting models. This completes the
proof that retro-fitting of SGNS vector spaces and Constrained Bilingual SGNS are
equivalent when � = 
∞.

6.2 Word-Level Alignment Methods with Comparable Data

All previous methods required word-level parallel data. We categorize methods that employ
word-level alignment with comparable data into two types:

a) Language grounding models anchor language in images and use image features to
obtain information with regard to the similarity of words in different languages.

b) Comparable feature models that rely on the comparability of some other features.
The main feature that has been explored in this context is part-of-speech (POS) tag
equivalence.

Grounding language in images Most methods employing word-aligned comparable data
ground words from different languages in image data. The idea in all of these approaches is
to use the image space as the shared cross-lingual signals. For instance, bicycles always look

8. All other hyper-parameters are shared and equal, including the dimensionality d of the vector spaces.
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like bicycles even if they are referred to as “fiets”, “Fahrrad”, “bicikl”, “bicicletta”, or “velo”.
A set of images for each word is typically retrieved using Google Image Search. Bergsma
and Van Durme (2011) calculate a similarity score for a pair of words based on the visual
similarity of their associated image sets. They propose two strategies to calculate the cosine
similarity between the color and SIFT features of two image sets: They either take the
average of the maximum similarity scores (AvgMax) or the maximum of the maximum
similarity scores (MaxMax). Kiela et al. (2015) propose to do the same but use CNN-based
image features. Vulić, Kiela, Clark, and Moens (2016) in addition propose to combine image
and word representations either by interpolating and concatenating them or by interpolating
the linguistic and visual similarity scores.

A similar idea of grounding language for learning multimodal multilingual representations
can be applied for sensory signals beyond vision, e.g. auditive or olfactory signals (Kiela &
Clark, 2015). This line of work, however, is currently under-explored. Moreover, it seems that
signals from other modalities are typically more useful as an additional source of information
to complement the uni-modal signals from text, rather than using other modalities as the
single source of information.

POS tag equivalence Other approaches rely on comparability between certain features
of a word, such as its part-of-speech tag. Gouws and Søgaard (2015) create a pseudo-cross-
lingual corpus by replacing words based on part-of-speech equivalence, that is, words with
the same part-of-speech in different languages are replaced with one another. Instead of
using the POS tags of the source and target words as a bridge between two languages, we
can also use the POS tags of their contexts. This makes strong assumptions about the
word orders in the two languages, and their similarity, but Duong et al. (2015) use this
to obtain cross-lingual word embeddings for several language pairs. They use POS tags as
context features and run SGNS on the concatenation of two monolingual corpora. Note
that under the (too simplistic) assumptions that all instances of a part-of-speech have the
same distribution, and each word belongs to a single part-of-speech class, this approach is
equivalent to the pseudo-cross-lingual corpus approach described before.

Summary Overall, parallel data on the word level is generally preferred over comparable
data, as it is relatively easy to obtain for most language pairs and methods relying on
parallel data have been shown to outperform methods leveraging comparable data. For
methods relying on word-aligned parallel data, even though they optimize similar objectives,
mapping-based approaches are the current tool of choice for learning cross-lingual word
embeddings due to their conceptual similarity, ease of use, and by virtue of being relatively
computationally inexpensive. As monolingual word embeddings have already been learned
from large amounts of unlabelled data, the mapping can typically be produced in tens of
minutes on a CPU. While unsupervised mapping-based approaches are particularly promising,
they still fail for distant language pairs (Søgaard et al., 2018) and generally—despite some
claims to the contrary—underperform their supervised counterparts (Glavas et al., 2019). At
this point, the most robust unsupervised method is the heuristics-based initialisation method
by Artetxe et al. (2018a), while the most robust supervised method is the extension of the
Procrustes method with mutual nearest neighbours by Glavas et al. (2019). We discuss
challenges in Section 12.
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7. Sentence-Level Alignment Methods

Thanks to research in MT, large amounts of sentence-aligned parallel data are available
for European languages, which has led to much work focusing on learning cross-lingual
representations from sentence-aligned parallel data. For low-resource languages or new
domains, sentence-aligned parallel data is more expensive to obtain than word-aligned
data as it requires fine-grained supervision. Only recently have methods started leveraging
sentence-aligned comparable data.

7.1 Sentence-Level Methods with Parallel data

Methods leveraging sentence-aligned data are generally extensions of successful monolingual
models. We have detected four main types:

a) Word-alignment based matrix factorization approaches apply matrix factoriza-
tion techniques to the bilingual setting and typically require additional word alignment
information.

b) Compositional sentence models use word representations to construct sentence
representations of aligned sentences, which are trained to be close to each other.

c) Bilingual autoencoder models reconstruct source and target sentences using an
autoencoder.

d) Bilingual skip-gram models use the skip-gram objective to predict words in both
source and target sentences.

Word-alignment based matrix factorization Several methods directly leverage the
information contained in an alignment matrix As→t between source language s and target
language t respectively. As→t is generally automatically derived from sentence-aligned
parallel text using an unsupervised word alignment model such as FastAlign (Dyer et al.,
2013). As→t

ij captures the number of times the i-th word in language t was aligned with the
j-th word in language s, with each row normalized to 1. The intuition is that if a word in
the source language is only aligned with one word in the target language, then those words
should have the same representation. If the target word is aligned with more than one source
word, then its representation should be a combination of the representations of its aligned
words. Zou et al. (2013) represent the embeddings Xs in the target language as the product
of the source embeddings Xs with the corresponding alignment matrix As→t. They then
minimize the squared difference between these two terms in both directions:


s→t = jjXt �As→tXsjj2 (30)

Note that 
s→t can be seen as a variant of 
MSE, which incorporates soft weights from
alignments. In contrast to mapping-based approaches, the alignment matrix, which transforms
source to target embeddings, is fixed in this case, while the corresponding source embeddings
Xs are learned:

J = LMML(Xt)| {z }
1

+ 
s→t(X
t;As→t;Xs)| {z }
2

(31)
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Shi et al. (2015) also take into account monolingual data by placing cross-lingual
constraints on the monolingual representations and propose two alignment-based cross-
lingual regularization objectives. The first one treats the alignment matrix As→t as a
cross-lingual co-occurrence matrix and factorizes it using the GloVe objective. The second
one is similar to the objective by Zou et al. (2013) and minimizes the squared distance of
the representations of words in two languages weighted by their alignment probabilities.

Gardner, Huang, Paplexakis, Fu, Talukdar, Faloutsos, Sidiropoulos, Mitchell, and
Sidiropoulos (2015) extend LSA as translation-invariant LSA to learn cross-lingual word
embeddings. They factorize a multilingual co-occurrence matrix with the restriction that
it should be invariant to translation, i.e., it should stay the same if multiplied with the
respective word or context dictionary.

Vyas and Carpuat (2016) propose another method based on matrix factorization that
enables learning sparse cross-lingual embeddings. As the sparse cross-lingual embeddings are
different from the monolingual embeddings X, we diverge slightly from our notation and
designate them as S. They propose two constraints: The first constraint induces monolingual
sparse representations from pre-trained monolingual embedding matrices Xs and Xt by
factorizing each embedding matrix X into two matrices S and E with an additional ‘1

constraint on S for sparsity:

L =

|V |X
i=1

kSiE> �Xik22 + �kSik1 (32)

To learn bilingual embeddings, they add another constraint based on the alignment matrix
As→t that minimizes the ‘2 reconstruction error between words that were strongly aligned
to each other in a parallel corpus:


 =

|V s|X
i=1

|V t|X
j=1

1

2
�xA

s→t
ij kSsi � Stjk22 (33)

The complete optimization then consists of first pre-training monolingual embeddings Xs

and Xt with GloVe and in a second step factorizing the monolingual embeddings with the
cross-lingual constraint to induce cross-lingual sparse representations Ss and St:

J = LGloVe(X
s) + LGloVe(X

t)| {z }
1

+L(Xs;Ss;Es) + L(Xt;St;Et) + 
(As→t;Ss;St)| {z }
2

(34)

Guo, Che, Yarowsky, Wang, and Liu (2015) similarly create a target language word
embedding xti of a source word wsi by taking the average of the embeddings of its translations
�(wsi ) weighted by their alignment probability with the source word:

xti =
X

wt
j∈�(ws

i )

Ai;j

Ai;·
� xtj (35)

They propagate alignments to out-of-vocabulary (OOV) words using edit distance as an
approximation for morphological similarity and set the target word embedding xtk of an OOV
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source word wsk as the average of the projected vectors of source words that are similar to it
based on the edit distance measure:

xtk =
1

jEkj
X
ws∈Ek

xt (36)

where xt is the target language word embedding of a source word ws as created above,
Ek = fws j EditDist(wsk; ws) � �g, and � is set empirically to 1.

Compositional sentence model Hermann and Blunsom (2013) train a model to bring
the sentence representations of aligned sentences sents and sentt in source and target language
s and t respectively close to each other. The representation ys of sentence sents in language
s is the sum of the embeddings of its words:

ys =

|sents|X
i=1

xsi (37)

They seek to minimize the distance between aligned sentences sents and sentt:

Edist(sent
s; sentt) = kys � ytk2 (38)

They optimize this distance using MML by learning to bring aligned sentences closer together
than randomly sampled negative examples:

L =
X

(sents;sentt)∈C

kX
i=1

max(0; 1 + Edist(sent
s; sentt)� Edist(sents; sti)) (39)

where k is the number of negative examples. In addition, they use an ‘2 regularization term

for each language 
 =
�

2
kXk2 so that the final loss they optimize is the following:

J = L(Xs;Xt) + 
(Xs) + 
(Xt) (40)

Note that compared to most previous approaches, there is no dedicated monolingual objective
and all loss terms are optimized jointly. Note that in this case, the ‘2 norm is applied to
representations X, which are computed as the difference of sentence representations.

This regularization term approximates minimizing the mean squared error between the
pair-wise interacting source and target words in a way similar to Gouws, Bengio, and
Corrado (2015). To see this, note that we minimize the squared error between source and
target representations, i.e. 
MSE—this time only not with regard to word embeddings but
with regard to sentence representations. As we saw, these sentence representations are just
the sum of their constituent word embeddings. In the limit of infinite data, we therefore
implicitly optimize 
MSE over word representations.

Hermann and Blunsom (2014) extend this approach to documents, by applying the
composition and objective function recursively to compose sentences into documents. They
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additionally propose a non-linear composition function based on bigram pairs, which outper-
forms simple addition on large training datasets, but underperforms it on smaller data:

y =
nX
i=1

tanh(xi−1 + xi) (41)

Soyer, Stenetorp, and Aizawa (2015) augment this model with a monolingual objective that
operates on the phrase level. The objective uses MML and is based on the assumption that
phrases are typically more similar to their sub-phrases than to randomly sampled phrases:

L = [max(0;m+ kao � aik2 � kao � bnk2) + kao � aik2]
ni
no

(42)

where m is a margin, ao is a phrase of length no sampled from a sentence, ai is a sub-phrase
of ao of length ni, and bn is a phrase sampled from a random sentence. The additional
loss terms are meant to reduce the influence of the margin as a hyperparameter and to
compensate for the differences in phrase and sub-phrase length.

Bilingual autoencoder Instead of minimizing the distance between two sentence repre-
sentations in different languages, Lauly et al. (2013) aim to reconstruct the target sentence
from the original source sentence. Analogously to Hermann and Blunsom (2013), they also
encode a sentence as the sum of its word embeddings. They then train an auto-encoder with
language-specific encoder and decoder layers and hierarchical softmax to reconstruct from
each sentence the sentence itself and its translation. In this case, the encoder parameters are
the word embedding matrices Xs and Xt, while the decoder parameters are transformation
matrices that project the encoded representation to the output language space. The loss
they optimize can be written as follows:

J = Ls→sAUTO + Lt→tAUTO + Ls→tAUTO + Lt→sAUTO (43)

where Ls→tAUTO denotes the loss for reconstructing from a sentence in language s to a sentence
in language t. Aligned sentences are sampled from parallel text and all losses are optimized
jointly.

Chandar, Lauly, Larochelle, Khapra, Ravindran, Raykar, and Saha (2014) use a binary
BOW instead of the hierarchical softmax. To address the increase in complexity due to the
higher dimensionality of the BOW, they propose to merge the bags-of-words in a mini-batch
into a single BOW and to perform updates based on this merged bag-of-words. They also
add a term to the objective function that encourages correlation between the source and
target sentence representations by summing the scalar correlations between all dimensions of
the two vectors.

Bilingual skip-gram Several authors propose extensions of the monolingual skip-gram
with negative sampling (SGNS) model to learn cross-lingual embeddings. We show their
similarities and differences in Table 4. All of these models jointly optimize monolingual
SGNS losses for each language together with one more cross-lingual regularization terms:

J = LsSGNS + LtSGNS + 
 (44)
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Model Alignment model Monolingual losses Cross-lingual regularizer
BilBOWA (Gouws et al., 2015) Uniform LsSGNS + LtSGNS 
BILBOWA
Trans-gram (Coulmance, Marty, Wenzek, & Benhalloum, 2015) Uniform LsSGNS + LtSGNS 
s→t

SGNS + 
t→s
SGNS

BiSkip (Luong, Pham, & Manning, 2015) Monotonic LsSGNS + LtSGNS 
s→t
SGNS + 
t→s

SGNS

Table 4: A comparison of similarities and differences of the three bilingual skip-gram variants.

Another commonality is that these models do not require word alignments of aligned sentences.
Instead, they make different assumptions about the alignment of the data. Bilingual Bag-
of-Words without Word Alignments (BilBOWA; Gouws et al., 2015) assumes each word in
a source sentence is aligned with every word in the target sentence. If we knew the word
alignments, we would try to bring the embeddings of aligned words in source and target
sentences close together. Instead, under a uniform alignment model which perfectly matches
the intuition behind the simplest (lexical) word alignment IBM Model 1 (Brown et al., 1993),
we try to bring the average alignment close together. In other words, we use the means of
the word embeddings in a sentence as the sentence representations y and seek to minimize
the distance between aligned sentence representations:

ys =
1

jsentsj

|sents|X
i=1

xsi (45)


BILBOWA =
X

(sents;sentt)∈C

kys � ytk2 (46)

Note that this regularization term is very similar to the objective used in the compositional
sentence model (Hermann & Blunsom, 2013, Equations 37 and 38); the only difference is
that we use the mean rather than the sum of word embeddings as sentence representations.

Trans-gram (Coulmance et al., 2015) also assumes uniform alignment but uses the SGNS
objective as cross-lingual regularization term. Recall that skip-gram with negative sampling
seeks to train a model to distinguish context words from negative samples drawn from a noise
distribution based on a center word. In the cross-lingual case, we aim to predict words in
the aligned target language sentence based on words in the source sentence. Under uniform
alignment, we aim to predict all words in the target sentence based on each word in the
source sentence:


s→t
SGNS = �

X
(sents;sentt)∈C

1

jsentsj

|sents|X
t=1

|sentt|X
j=1

log P (wt+j j wt) (47)

where P (wt+j j wt) is computed via negative sampling as in Equation 9.
BiSkip (Luong et al., 2015) uses the same cross-lingual regularization terms as Trans-gram,

but only aims to predict monotonically aligned target language words: Each source word at
position i in the source sentence sents is aligned to the target word at position i � |sents||sentt| in
the target sentence sentt. In practice, all these bilingual skip-gram models are trained by
sampling a pair of aligned sentences from a parallel corpus and minimizing for the source
and target language sentence the respective loss terms.
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In a similar vein, Pham, Luong, and Manning (2015) propose an extension of paragraph
vectors (Le & Mikolov, 2014) to the multilingual setting by forcing aligned sentences of
different languages to share the same vector representation.

Other sentence-level approaches Levy et al. (2017) use another sentence-level bilingual
signal: IDs of the aligned sentence pairs in a parallel corpus. Their model provides a strong
baseline for cross-lingual embeddings that is inspired by the Dice aligner commonly used
for producing word alignments for MT. Observing that sentence IDs are already a powerful
bilingual signal, they propose to apply SGNS to the word-sentence ID matrix. They show
that this method can be seen as a generalization of the Dice Coefficient.

Rajendran, Khapra, Chandar, and Ravindran (2016) propose a method that exploits the
idea of using pivot languages, also tackled in previous work, e.g., Shezaf and Rappoport
(2010). The model requires parallel data between each language and a pivot language and
is able to learn a shared embedding space for two languages without any direct alignment
signals as the alignment is implicitly learned via their alignment with the pivot language.
The model optimizes a correlation term with neural network encoders and decoders that is
similar to the objective of the CCA-based approaches (Faruqui & Dyer, 2014b; Lu et al.,
2015). We discuss the importance of pivoting for learning multilingual word embeddings
later in Section 9.

In practice, sentence-level supervision is a lot more expensive to obtain than word-
level supervision, which is available in the form of bilingual lexicons even for many low-
resource languages. For this reason, recent work has largely focused on word-level supervised
approaches for learning cross-lingual embeddings. Nevertheless, word-level supervision only
enables learning cross-lingual word representations, while for more complex tasks we are
often interested in cross-lingual sentence representations.

Recently, fueled by work on pretrained language models (Howard & Ruder, 2018; Devlin,
Chang, Lee, & Toutanova, 2019), there have been several extensions of language models to
the massively cross-lingual setting, learning cross-lingual representations for many languages
at once. Artetxe and Schwenk (2018) train a BiLSTM encoder with a shared vocabulary on
parallel data of many languages. Lample and Conneau (2019) extend the bilingual skip-gram
approach to the masked language modelling (Devlin et al., 2019): instead of predicting words
in the source and target language sentences via skip-gram, they predict randomly masked
words in both sentences with a deep language model. Alternatively, their approach can also
be trained without parallel data only on concatenated monolingual datasets. Similar to
results for word-level alignment-based methods (Søgaard et al., 2018), the weak supervision
induced by sharing the vocabulary between languages is strong enough as an inductive bias
to learn useful cross-lingual representations.

7.2 Sentence Alignment with Comparable Data

Grounding language in images Similarly to approaches based on word-level aligned
comparable data, methods that learn cross-lingual representations using sentence alignment
with comparable data do so by associating sentences with images (Elliott & Kádár, 2017). The
associated image captions/annotations can be direct translations of each other, but are not
expected to be in general. The images are then used as pivots to induce a shared multimodal
embedding space. These approaches typically use Multi30k (Elliott, Frank, Sima’an, &
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Specia, 2016), a multilingual extension of the Flickr30k dataset (Young, Lai, Hodosh, &
Hockenmaier, 2014), which contains 30k images and 5 English sentence descriptions and their
German translations for each image. Calixto et al. (2017) represent images using features
from a pre-trained CNN and model sentences using a GRU. They then use MML to assign
a higher score to image-description pairs compared to images with a random description.
Gella et al. (2017) augment this objective with another MML term that also brings the
representations of translated descriptions closer together, thus effectively combining learning
signals from both visual and textual modality.

Summary While recent work has almost exclusively focused on word-level mapping-based
approaches, recent language model-based approaches (Artetxe & Schwenk, 2018; Lample &
Conneau, 2019) have started to incorporate parallel resources. Mapping-based approaches
that have been shown to rely on the assumption that the embedding spaces in two languages
are approximately isomorphic struggle when mapping between a high-resource and a more
distant low-resource language (Søgaard et al., 2018). As research increasingly considers
this more realistic setting, the additional supervision and context provided by sentence-
level alignment may prove to be a valuable resource—and complementary to word-level
alignment. Early results in this direction indicate that joint training on parallel corpora
yields embeddings that are more isomorphic and less sensitive to hubness than mapping-based
approaches (Ormazabal, Artetxe, Labaka, Soroa, & Agirre, 2019). Consequently, we expect
a resurgence of interest in sentence-level alignment methods.

8. Document-Level Alignment Models

Models that require parallel document alignment presuppose that sentence-level parallel
alignment is also present. Such models thus reduce to parallel sentence-level alignment
methods, which have been discussed in the previous section. Comparable document-level
alignment, on the other hand, is more appealing as it is often cheaper to obtain. Existing
approaches generally use Wikipedia documents, which they either automatically align, or
they employ already theme-aligned Wikipedia documents discussing similar topics.

8.1 Document Alignment with Comparable Data

We divide models using document alignment with comparable data into three types, some of
which employ similar general ideas to previously discussed word and sentence-level parallel
alignment models:

a) Approaches based on pseudo-bilingual document-aligned corpora automati-
cally construct a pseudo-bilingual corpus containing words from the source and target
language by mixing words from document-aligned documents.

b) Concept-based methods leverage information about the distribution of latent topics
or concepts in document-aligned data to represent words.

c) Extensions of sentence-aligned models extend methods using sentence-aligned
parallel data to also work without parallel data.
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Pseudo-bilingual document-aligned corpora The approach of Vulić and Moens (2016)
is similar to the pseudo-bilingual corpora approaches discussed in Section 6. In contrast to
previous methods, they propose a Merge and Shuffle strategy to merge two aligned documents
of different languages into a pseudo-bilingual document. This is done by concatenating the
documents and then randomly shuffling them by permuting words. The intuition is that
as most methods rely on learning word embeddings based on their context, shuffling the
documents will lead to robust bilingual contexts for each word. As the shuffling step is
completely random, it might lead to sub-optimal configurations.

For this reason, they propose another strategy for merging the two aligned documents,
called Length-Ratio Shuffle. It assumes that the structures of the two documents are similar:
words are inserted into the pseudo-bilingual document by alternating between the source
and the target document relying on the order in which they appear in their monolingual
document and based on the monolingual documents’ length ratio.

Concept-based models Some methods for learning cross-lingual word embeddings lever-
age the insight that words in different languages are similar if they are used to talk about or
evoke the same multilingual concepts or topics. Vulić and Moens (2013a) base their method
on the cognitive theory of semantic word responses. Their method centers on the intuition
that words in source and target language are similar if they are likely to generate similar
words as their top semantic word responses. They utilise a probabilistic multilingual topic
model again trained on aligned Wikipedia documents to learn and quantify semantic word
responses. The embedding xsi 2 R|V s|+|V t| of source word wi is the following vector:

xsi = [P (ws1jwi); : : : ; P (ws|V s|jwi); P (wt1jwi) : : : ; P (wt|V t|jwi)] (48)

where [�; �] represents concatenation and P (wj jwi) is the probability of wj given wi under the
induced bilingual topic model. The sparse representations may be turned into dense vectors
by factorizing the constructed word-response matrix.

Søgaard et al. (2015) propose an approach that relies on the structure of Wikipedia itself.
Their method is based on the intuition that similar words are used to describe the same
concepts across different languages. Instead of representing every Wikipedia concept with
the terms that are used to describe it, they use an inverted index and represent a word by
the concepts it is used to describe. As a post-processing step, dimensionality reduction on
the produced word representations in the word-concept matrix is performed. A very similar
model by (Vulić et al., 2011) uses a bilingual topic model to perform the dimensionality
reduction step and learns a shared cross-lingual topical space.

Extensions of sentence-alignment models Mogadala and Rettinger (2016) extend
the approach of Pham et al. (2015) to also work without parallel data and adjust the
regularization term 
 based on the nature of the training corpus. Similar to previous work
(Hermann & Blunsom, 2013; Gouws et al., 2015), they use the mean of the word embeddings
of a sentence as the sentence representation y and constrain these to be close together. In
addition, they propose to constrain the sentence paragraph vectors ps and pt of aligned
sentences sents and sentt to be close to each other. These vectors are learned via paragraph
vectors (Le & Mikolov, 2014) for each sentence and stored in embedding matrices Ps and Pt.
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The complete regularizer then uses elastic net regularization to combine both terms:


 =
X

(sents;sentt)∈C

�jjps � ptjj2 + (1� �)kys � ytk2 (49)

The monolingual paragraph vector objectives LSGNS-P are then optimized jointly with the
cross-lingual regularization term:

J = LsSGNS-P(Ps;Xs) + LtSGNS-P(Pt;Xt) + 
(Ps;Pt;Xs;Xt) (50)

To leverage data that is not sentence-aligned, but where an alignment is still present
on the document level, they propose a two-step approach: They use Procrustes analysis
(Schönemann, 1966), a method for statistical shape analysis, to find the most similar document
in language t for each document in language s. This is done by first learning monolingual
representations of the documents in each language using paragraph vectors on each corpus.
Subsequently, Procrustes analysis aims to learn a transformation between the two vector
spaces by translating, rotating, and scaling the embeddings in the first space until they most
closely align to the document representations in the second space. In the second step, they
then simply use the previously described method to learn cross-lingual word representations
from the alignment documents, this time treating the entire documents as paragraphs.

Summary So far, document-level alignment has only been shown to provide little additional
information compared to sentence-level alignment-based methods and interest in such methods
has subsided, together with work on sentence-level alignment methods. Most document-level
alignment methods are derived from their sentence-level counterparts. As research turns
again to leveraging such methods for jointly learning cross-lingual embeddings, we expect
that document-level information will also be considered as a signal. In addition, as tasks
such as question answering where models learn representations of documents become more
popular, learning cross-lingual document representation will likely become an active area of
research once suitable cross-lingual benchmarks are available.

As a final overview, we list all approaches with their monolingual objectives and regular-
ization terms in Table 5. The table is meant to reveal the high-level objectives and losses
each model is optimizing. It also indicates for each method whether all objectives are jointly
optimized; if they are, both monolingual losses and regularization terms are optimized jointly;
otherwise the monolingual losses are optimized first and the monolingual variables are frozen,
while the cross-lingual regularization constraint is optimized. The table obscures smaller
differences and implementation details, which can be found in the corresponding sections
of this survey or by consulting the original papers. We use 
∞ to represent an infinitely
stronger regularizer that enforces equality between representations. Regularizers with a ∗

imply that the regularization is achieved in the limit, e.g. in the pseudo-bilingual case, where
examples are randomly sampled with some equivalence, we obtain the same representation
in the limit, without strictly enforcing it to be the same representation.

As we have demonstrated, most approaches can be seen as optimizing a combination
of monolingual losses with a regularization term. As we can see, some approaches do not
employ a regularization term; notably, a small number of approaches, i.e., those that ground
language in images, do not optimize a loss but rather use pre-trained image features and a
set of similarity heuristics to retrieve translations.
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Approach Monolingual Regularizer Joint? Description

Klementiev et al. (2012) LMLE 
MSE X Joint
Mikolov et al. (2013b) LSGNS 
MSE Projection-based
Zou et al. (2013) LMMHL 
MSE Matrix factorization
Hermann and Blunsom (2013) LMMHL 
∗MSE X Sentence-level, joint
Hermann and Blunsom (2014) LMMHL 
∗MSE X Sentence-level + bigram composition
Soyer et al. (2015) LMMHL 
∗MSE X Phrase-level
Shi et al. (2015) LMMHL 
MSE Matrix factorization
Dinu et al. (2015) LSGNS 
MSE Better neighbour retrieval
Gouws et al. (2015) LSGNS 
MSE X Sentence-level
Vyas and Carpuat (2016) LGloVe 
MSE Sparse matrix factorization
Hauer et al. (2017) LSGNS 
MSE Cognates
Mogadala and Rettinger (2016) LSGNS-P 
MSE X Elastic net, Procrustes analysis

Xing et al. (2015) LSGNS 
MSE s.t. W>W = I Normalization, orthogonality
Zhang et al. (2016b) LSGNS 
MSE s.t. W>W = I Orthogonality constraint

Artexte et al. (2016) LSGNS 
MSE s.t. W>W = I
Normalization, orthogonality,
mean centering

Smith et al. (2017) LSGNS 
MSE s.t. W>W = I
Orthogonality, inverted softmax
identical character strings

Artexte et al. (2017) LSGNS 
MSE s.t. W>W = I
Normalization, orthogonality,
mean centering, bootstrapping

Lazaridou et al. (2015) LCBOW 
MMHL Max-margin with intruders
Mrkšić et al. (2017b) LSGNS 
MMHL Semantic specialization
Calixto et al. (2017) LRNN 
MMHL X Image-caption pairs
Gella et al. (2017) LRNN 
MMHL X Image-caption pairs

Faruqui and Dyer (2014) LLSA 
CCA -
Lu et al. (2015) LLSA 
CCA Neural CCA
Rajendran et al. (2016) LAUTO 
CCA Pivots
Ammar et al. (2016b) LLSA 
CCA Multilingual CCA

Søgaard et al. (2015) - 
SVD X Inverted indexing
Levy et al. (2017) LPMI 
SVD X
Levy et al. (2017) - 
SGNS X Inverted indexing

Lauly et al. (2013) LAUTO 
AUTO X Autoencoder
Chandar et al. (2014) LAUTO 
AUTO X Autoencoder

Vulić and Moens (2013a) LLDA 
∗∞ X Document-level
Vulić and Moens (2014) LLDA 
∗∞ X Document-level
Xiao and Guo (2014) LMMHL 
∞ X Pseudo-multilingual
Gouws and Søgaard (2015) LCBOW 
∗∞ X Pseudo-multilingual
Luong et al. (2015) LSGNS 
∗∞ Monotonic alignment
Gardner et al. (2015) LLSA 
∗∞ Matrix factorization
Pham et al. (2015) LSGNS-P 
∞ X Paragraph vectors
Guo et al. (2015) LCBOW 
∞ Weighted by word alignments
Coulmance et al. (2015) LSGNS 
∗∞ X Sentence-level
Ammar et al. (2016a) LSGNS 
∞ X Pseudo-multilingual
Vulić and Korhonen (2016) LSGNS 
∞ Highly reliable seed entries
Duong et al. (2016) LCBOW 
∞ X Pseudo-multilingual, polysemy
Vulić and Moens (2016) LSGNS 
∞ X Pseudo-multilingual documents
Adams et al. (2017) LCBOW 
∞ X Pseudo-multilingual, polysemy

Bergsma and Van Durme (2011) - - X SIFT image features, similarity
Kiela et al. (2015) - - X CNN image features, similarity
Vulić et al. (2016) - - X CNN features, similarity, interpolation

Gouws and Søgaard (2015) LCBOW POS-level 
∗∞ X Pseudo-multilingual
Duong et al. (2015) LCBOW POS-level 
∗∞ X Pseudo-multilingual

Table 5: Overview of approaches with monolingual objectives and regularization terms,
with an indication whether the order of optimization matters and short descriptions. 
∞
represents an infinitely strong regularizer that enforces equality between representations. ∗

implies that the regularization is achieved in the limit.
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9. From Bilingual to Multilingual Training

So far, for the sake of simplicity and brevity of presentation, we have put focus on models
which induce cross-lingual word embeddings in a shared space comprising only two languages.
This standard bilingual setup is also in the focus of almost all research in the field of cross-
lingual embedding learning. However, notable exceptions such as the recent work of Levy
et al. (2017) and Duong, Kanayama, Ma, Bird, and Cohn (2017) demonstrate that there are
clear benefits to extending the learning process from bilingual to multilingual settings, with
improved results reported on standard tasks such as word similarity prediction, bilingual
dictionary induction, document classification and dependency parsing.

The usefulness of multilingual training for NLP is already discussed by, e.g., Naseem,
Snyder, Eisenstein, and Barzilay (2009) and Snyder and Barzilay (2010). They corroborate
a hypothesis that “variations in ambiguity” may be used as a form of naturally occurring
supervision. In simple words, what one language leaves implicit, another defines explicitly
and the target language is thus useful for resolving disambiguation in the source language
(Faruqui & Dyer, 2014b). While this hypothesis is already true for bilingual settings, using
additional languages introduces additional supervision signals which in turn leads to better
word embedding estimates (Mrkšić et al., 2017b).

In most of the literature focused on bilingual settings, English is typically on one side,
owing its wide use to the wealth of both monolingual resources available for English as well
as bilingual resources, where English is paired with many other languages. However, one
would ideally want to also exploit cross-lingual links between other language pairs, reaching
beyond English. For instance, typologically/structurally more similar languages such as
Finnish and Estonian are excellent candidates for transfer learning. Yet, only few readily
available parallel resources exist between Finnish and Estonian that could facilitate a direct
induction of a shared bilingual embedding space in these two languages.

A multilingual embedding model which maps Finnish and Estonian to the same embedding
space shared with English (i.e., English is used as a resource-rich pivot language) would also
enable exploring and utilizing links between Finnish and Estonian lexical items in the space
(Duong et al., 2017). Further, multilingual shared embedding spaces enable multi-source
learning and multi-source transfers: this results in a more general model and is less prone
to data sparseness (McDonald et al., 2011; Agić, Johannsen, Plank, Alonso, Schluter, &
Søgaard, 2016; Guo, Che, Yarowsky, Wang, & Liu, 2016; Zoph & Knight, 2016; Firat, Cho,
& Bengio, 2016).

The purpose of this section is not to demonstrate the multilingual extension of every
single bilingual model discussed in previous sections, as these extensions are not always
straightforward and include additional modeling work. However, we will briefly present and
discuss several best practices and multilingual embedding models already available in the
literature, again following the typology of models established in Table 3.

9.1 Multilingual Word Embeddings from Word-Level Information

Mapping-based approaches Mapping L different monolingual spaces into a single mul-
tilingual shared space is achieved by: (1) selecting one space as the pivot space, and then (2)
mapping the remaining L� 1 spaces into the same pivot space. This approach, illustrated by
Figure 4a, requires L monolingual spaces and L�1 seed translation dictionaries to achieve the
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(a) Starting spaces: monolingual (b) Starting spaces: bilingual

Figure 4: Learning shared multilingual embedding spaces via linear mapping. (a) Starting
from monolingual spaces inL languages, one linearly mapsL � 1 into one chosen pivot
monolingual space (typically English); (b) Starting from bilingual spaces sharing a language
(typically English), one learns mappings from all other English subspaces into one chosen
pivot English subspace and then applies the mapping to all other subspaces.

mapping. Labeling the pivot language aslp, we can formulate the induction of a multilingual
embedding space as follows:

L 1 + L 2 + : : : + L L � 1 + L p + 
 l1 ! lp + 
 l2 ! lp + : : : + 
 lL � 1 ! lp (51)

This means that through pivoting one is able to induce a shared bilingual space for a
language pair without having any directly usable bilingual resources for the pair. Exactly
this multilingual mapping procedure (based on minimizing mean squared errors) has been
constructed by Smith et al. (2017): English is naturally selected as the pivot, and 89
other languages are then mapped into the pivot English space. Seed translation pairs are
obtained through Google Translate API by translating the 5,000 most frequent words in
each language to English. The recent work of, e.g., Artetxe et al. (2017) holds promise that
seed lexicons of similar sizes may also be bootstrapped for resource-lean languages from
very small seed lexicons (see again Section 6). Smith et al. use original fastText vectors
available in 90 languages (Bojanowski, Grave, Joulin, & Mikolov, 2017)9 and e�ectively
construct a multilingual embedding space spanning 90 languages (i.e., 4005 language pairs
using 89 seed translation dictionaries) in their software and experiments.10 The distances in
all monolingual spaces remain preserved by constraining the transformation to be orthogonal.

Along the same line, Ammar et al. (2016b) introduce a multilingual extension of the
CCA-based mapping approach. They perform a multilingual extension of bilingual CCA
projection again using the English embedding space as the pivot for multipleEnglish-l t

bilingual CCA projections with the remaining L � 1 languages.

9. The latest release of fastText vectors contains vectors for 204 languages. The vectors are available here:
https://github.com/facebookresearch/fastText

10. https://github.com/Babylonpartners/fastText_multilingual
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Figure 5: Illustration of the joint multilingual model of Duong et al. (2017) based on the
modi�ed CBOW objective; instead of predicting only the English word given the English
context, the model also tries to predict its translations in all the remaining languages (i.e.,
in languages for which the translations exist in any of the input bilingual lexicons).

As demonstrated by Smith et al. (2017), the multilingual space now enables reasoning
for language pairs not represented in the seed lexicon data. They verify this hypothesis by
examining the bilingual lexicon induction task for all

� L
2

�
language pairs: e.g., BLI Precision-

at-one (P@1) scores11 for Spanish-Catalan without any seed Spanish-Catalan lexicon are
0.82, while the averageP@1score for Spanish-English and Catalan-English bilingual spaces
is 0.70. Other striking �ndings include P@1scores for Russian-Ukrainian (0.84 vs. 0.59),
Czech-Slovak (0.82 vs. 0.59), Serbian-Croatian (0.78 vs. 0.56), or Danish-Norwegian (0.73 vs.
0.67).

A similar approach to constructing a multilingual embedding space is discussed by Duong
et al. (2017). However, their mapping approach is tailored for another scenario frequently
encountered in practice: one has to align bilingual embedding spaces where English is one of
the two languages in each bilingual space. In other words, our starting embedding spaces
are now not monolingual as in the previous mapping approach, but bilingual. The overview
of the approach is given in Figure 4b. This approach �rst selects a pivot bilingual space
(e.g., this is the EN-IT space in Figure 4b), and then learns a linear mapping/transformation
from the English subspace of all other bilingual spaces into the pivot English subspace. The
learned linear mapping is then applied to other subspaces (i.e., �foreign� subspaces such as
FI, FR, NL, or RU in Figure 4b) to transform them into the shared multilingual space.

Pseudo-bilingual and joint approaches The two other sub-groups of word-level models
also assume the existence of monolingual data plus multiple bilingual dictionaries covering
translations of the same term in multiple languages. The main idea behindpseudo-multilingual
approaches is to �corrupt� monolingual data available for each of theL languages so that
words from all languages are present as context words for every center word in all monolingual
corpora. A standard monolingual word embedding model (e.g., CBOW or SGNS) is then

11. P@1is a standard evaluation measure for bilingual lexicon induction that refers to the proportion of
source test words for which the best translation is ranked as the most similar word in the target language.
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Figure 6: A multilingual extension of the sentence-level TransGram model of Coulmance et
al. (2015). Since the model bypasses the word alignment step in its SGNS-style objective,
for each center word (e.g., the EN wordcat in this example) the model predictsall words in
each sentence (from all other languages) which is aligned to the current sentence (e.g., the
EN sentencethe cat sat on the mat).

used to induce a shared multilingual space. First, for each word in each vocabulary one
collects all translations of that word in all other languages. The sets of translations may be
incomplete as they are dependent on their presence in input dictionaries. Following that,
we use all monolingual corpora in allL languages and proceed as the original model of
Gouws and Søgaard (2015): (i) for each wordw for which there is a set of translations of
sizekmt , we �ip a coin and decide whether to retain the original word w or to substitute it
with one of its kmt translations; (ii) in case we have to perform a substitution, we choose
one translation as a substitute with a probability of 1

2kmt
. In the limit, this method yields

�hybrid� pseudo-multilingual sentences with each word surrounded by words from di�erent
languages. Despite its obvious simplicity, the only work that generalizes pseudo-bilingual
approaches to the multilingual setting that we are aware of is by Ammar et al. (2016b) who
replace all tokens in monolingual corpora with their corresponding translation cluster ID,
thereby restricting them to have the same representation. Note again that we do not need
lexicons for all language pairs in case one resource-rich language (e.g., English) is selected as
the pivot language.

Joint multilingual models rely on exactly the same input data (i.e., monolingual data
plus multiple bilingual dictionaries) and the core idea is again to exploit multilingual word
contexts. An extension of thejoint modeling paradigm to multilingual settings, illustrated in
Figure 5, is discussed by Duong et al (2017). The core model is an extension of their bilingual
model (Duong et al., 2016) based on the CBOW-style objective: in the multilingual scenario
with L languages, for each languagel i the training procedure consists of predicting the
center word in languagel i given the monolingual context in l i plus predicting all translations
of the center word in all other languages, subject to their presence in the input bilingual
dictionaries. Note that e�ectively this MultiCBOW model may be seen as a combination of
multiple monolingual and cross-lingual CBOW-style sub-objectives as follows:
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