
Journal of Artificial Intelligence Research 67 (2020) 607-651 Submitted 08/2019; published 03/2020

Solving Delete Free Planning with Relaxed Decision
Diagram Based Heuristics

Margarita P. Castro mpcastro@mie.utoronto.ca

Chiara Piacentini chiarap@mie.utoronto.ca
Department of Mechanical and Industrial Engineering
University of Toronto
Toronto, Ontario M5S 3G8, Canada

Andre A. Cire andre.cire@utoronto.ca
Department of Management, University of Toronto Scarborough
Rotman School of Management
Toronto, Ontario M1E 1A4, Canada

J. Christopher Beck jcb@mie.utoronto.ca

Department of Mechanical and Industrial Engineering

University of Toronto

Toronto, Ontario M5S 3G8, Canada

Abstract

We investigate the use of relaxed decision diagrams (DDs) for computing admissible
heuristics for the cost-optimal delete-free planning (DFP) problem. Our main contributions
are the introduction of two novel DD encodings for a DFP task: a multivalued decision
diagram that includes the sequencing aspect of the problem and a binary decision diagram
representation of its sequential relaxation. We present construction algorithms for each DD
that leverage these different perspectives of the DFP task and provide theoretical and em-
pirical analyses of the associated heuristics. We further show that relaxed DDs can be used
beyond heuristic computation to extract delete-free plans, find action landmarks, and iden-
tify redundant actions. Our empirical analysis shows that while DD-based heuristics trail
the state of the art, even small relaxed DDs are competitive with the linear programming
heuristic for the DFP task, thus, revealing novel ways of designing admissible heuristics.

1. Introduction

Cost-optimal delete-free planning (DFP) is a variant of classical planning that ignores the
delete effects of actions. It is an NP-hard problem (Bylander, 1994) that has been exten-
sively investigated by the planning community as the basis for efficient methodologies to
address classical planning problems (Betz & Helmert, 2009; Helmert & Domshlak, 2009).
Moreover, some challenging planning problems can be formulated as delete free tasks, such
as the minimal seed set problem (Gefen & Brafman, 2011).

In this work, we explore the effectiveness of relaxed decision diagrams (DDs) for com-
puting admissible heuristics for a DFP task.1 Relaxed DDs are graphical structures that
encode a superset of the solutions of a discrete optimization problem. They have recently
formed the core of state-of-the-art methodologies in a variety of combinatorial optimiza-

1. A preliminary version of this work appeared in Castro et al. (2019a) which introduces the relaxed binary
decision diagram heuristic.

c©2020 AI Access Foundation. All rights reserved.

Castro, Piacentini, Cire, & Beck

tion problems (Bergman, Cire, van Hoeve, & Hooker, 2016) as a replacement of the linear
programming (LP) relaxation. In particular, recent work has shown that relaxed DDs are
effective for solving sequencing problems (Cire & van Hoeve, 2013; Castro et al., 2019b).

The paper introduces a new family of heuristics based on relaxed DDs and, thus, pro-
poses a new path for heuristic development in the field. As a first step, this work shows
the potential of relaxed DD heuristics over DFP tasks. Nonetheless, these heuristics can
be used in more challenging planning variants with minor modifications to the proposed
implementation, e.g., inside cost-optimal classical planners. We also relate the DD heuris-
tics to well-known heuristics in the planning community (i.e., critical path and disjunctive
landmarks), opening new research avenues using relaxed DDs to combine and create new
admissible heuristics. Moreover, we introduce a flexible construction procedure based on
node information that can be extended to consider, e.g., numerical variables.

Contributions. We present a multivalued decision diagram (MDD) encoding of a DFP
task and a binary decision diagram (BDD) representation of the DFP sequential relaxation.
We investigate the structural properties of each graphical model and present a numerical
comparison with the DFP LP relaxation (Imai & Fukunaga, 2014, 2015). Specifically, we
propose construction procedures for each graphical structure that guarantee the admissi-
bility and consistency of their resulting heuristics. We explore the theoretical properties of
our relaxed DDs and relate their heuristics to existing techniques in the literature. Further-
more, we show how to leverage these graphical structures to identify landmarks, redundant
actions, and extract delete-free plans.

The paper presents an extensive empirical analysis that highlights the advantages and
disadvantages of using relaxed DD-based heuristics in place of the LP relaxation. We show
that, even with small relaxed DDs, our heuristics have competitive performance on DFP
tasks. While still the state of the art in the majority of the domains, our relaxed MDD and
BDD approaches outperform the mixed-integer linear programming (MILP) model (Imai &
Fukunaga, 2015) in four delete-free IPC domains.

The rest of the paper is as follows. Section 2 describes DFP and its sequential relaxation.
Section 3 presents a brief literature review on DFP tasks and relaxed DDs. Section 4
introduces our relaxed MDD encoding and construction procedure, while Section 5 presents
the relaxed MDD heuristic, its theoretical properties and relationship to existing techniques.
Similarly, Section 6 describes the relaxed BDD encoding for the sequential relaxation and
Section 7 discusses the theoretical properties of the heuristic. Section 8 highlights the main
differences between the graphical structures and provides guidance on when each approach
is more appropriate. Section 9 presents alternative uses of relaxed DDs beyond heuristic
computation. Section 10 explains our planner implementation and Section 11 presents an
empirical analysis of our proposed methods. The paper ends with concluding remarks and
potential research directions.

2. Problem Definition

This work considers cost-optimal DFP using the STRIPS formalism (Fikes & Nilsson, 1971)
restricted to tasks with no negative preconditions and no conditional effects. A DFP task
is given by a tuple Π+ = 〈P, sI ,G,A〉 where P corresponds to the set of propositions,

608

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

sI is the initial state, G ⊆ P is the set of goal propositions, and A is the set of actions.
Each proposition p ∈ P can be either true or false. We define a state s by its set of true
propositions, i.e., we say that p is true in s if p ∈ s and false otherwise.

An action a ∈ A is a tuple 〈pre(a), add(a), cost(a)〉, where pre(a) ⊆ P is the set of
preconditions, add(a) ⊆ P is the set of additive effects, and cost(a) ≥ 0 corresponds to the
action cost. We assume, without loss of generality, that add(a) ∩ pre(a) = ∅ for all a ∈ A.
We say that an action a is applicable to a state s if its preconditions are true in s, i.e.,
pre(a) ⊆ s. Given a state s and an applicable action a, the successor state s′ is given by
s′ = succ(s, a) := s ∪ add(a). In general, we say that a sequence of actions (a1, . . . , an) is
applicable to a state s if a1 is applicable in s, a2 is applicable in s1 = succ(s, a1), and ai is
applicable in si−1 = succ(si−2, ai−1) for all i ∈ {3, . . . , n}. Extending the notation, given
a state s and a sequence of applicable actions (a1, . . . , an), succ(s, (a1, . . . , an)) represents
the resulting state after applying the action sequence.

Given a DFP task Π+, we define a plan π := (a1, ..., an) as a sequence of applicable
actions from the initial state sI such that sG := succ(sI , π) satisfies all goal propositions,
i.e., G ⊆ sG. We use notation π ∈ Π+ to indicate that the sequence of actions π is a plan for
the DFP task Π+. Similarly, we say that π is an invalid plan if it is not a plan, i.e., π 6∈ Π+.
The cost of a plan is given by the total cost of its actions, i.e., cost(π) :=

∑
a∈π cost(a)

where a ∈ π represents that action a is part of plan π. In particular, a cost-optimal plan
π∗ for task Π+ is a plan with minimal cost, i.e, cost(π∗) ≤ cost(π) for all plans π ∈ Π+.

Throughout this paper we assume that the DFP task Π+ is solvable, i.e., there exists
a plan π ∈ Π+. Since it is possible to check if Π+ is solvable in polynomial time (Blum &
Furst, 1997), this assumption does not limit the applicability of our approach.

We say that p ∈ P is a propositional landmark if p is true at some point in all valid
plans (Porteous, Sebastia, & Hoffmann, 2001). In the DFP case, p ∈ P is a propositional
landmark if p ∈ succ(sI , π) for all plans π ∈ Π+.We use the symbol LP to represent the
set of all propositional landmarks. Notice that, by definition, all goal propositions are
propositional landmarks, i.e., G ⊆ LP . Similarly, we say that an action a ∈ A is an action
landmark if a ∈ π for all π ∈ Π+, i.e., action a is present in all plans of task Π+.

Recall that it is possible to extract all propositional landmarks in polynomial time for
any DFP task, e.g., using the relaxed planning graph (Porteous et al., 2001). However, in
classical planning, the problem of finding all propositional landmarks is as hard as solving
the planning task itself (i.e., PSPACE-hard).

2.1 Sequential Relaxation

This work considers a relaxation of the DFP task to compute admissible heuristics based
on BDDs. The sequential relaxation of a DFP task, also known as a temporal relaxation,
ignores the order in which the actions are applied (Imai & Fukunaga, 2015).

Definition 2.1. Given a DFP task Π+, a valid sequence-relaxed plan for Π+, sr-plan, is a
set of actions πsr = {a1, . . . , an} such that:

(i) For every action a ∈ πsr, each proposition p ∈ pre(a) is true in sI or is added by some
action a′ ∈ πsr, a 6= a′.

(ii) Each goal p ∈ G is true in sI or is added by some action a ∈ πsr.

609

Castro, Piacentini, Cire, & Beck

Similar to the cost of a plan, the cost of an sr-plan is given by the sum of the cost
of its actions, i.e., cost(πsr) :=

∑
a∈πsr cost(a). The sequential relaxation task asks for

a minimum cost sr-plan. Since every plan for Π+ is an sr-plan, it follows that any cost-
optimal plan π∗ has a cost greater or equal to any cost-optimal sr-plan π∗sr, i.e., cost(π∗sr) ≤
cost(π∗). Similar to DFP, finding an optimal sr-plan can be shown to be NP-hard by a
reduction from set covering (Bylander, 1994).

Example 2.1. Consider the following DFP task Π+
4 of the visit-all domain (Garćıa-Olaya,

Jiménez, & Linares López, 2011). The set of propositions is given by P = {i1, v1, i2, v2, i3, v3,
i4, v4}, where propositions ik and vk represent that the agent is currently at and has visited
room k ∈ {1, 2, 3, 4}, respectively. The set of actions A = {a1,2, a2,1, a2,3, a3,2, a3,4, a4,3, a1,4,
a4,1} is such that ak,r ∈ A represents the movement from room k to r with pre(ak,r) = {ik},
add(ak,r) = {ir, vr} and cost(ak,r) = 1. Figure 1 depicts the initial state (left image) and
goal conditions (right image), where the human symbol (y) represents the position of the
agent and the square (�) a visited room.

Room 1 Room 2

Room 3Room 4

y
�

sI = {v1, i1}

Room 1 Room 2

Room 3Room 4

� �

� �

G = {v1, v2, v3, v4}

Figure 1: Visit-all domain with 4 rooms.

A cost-optimal plan for task Π+
4 is π = (a1,2, a2,3, a3,4) with cost(π) = 3. A cost-

optimal sr-plan is πsr = {a2,3, a3,2, a3,4} with cost(πsr) = 3. Notice that while π is also a
cost-optimal sr-plan, πsr is an invalid plan since no action a ∈ πsr is applicable in sI .

3. Related Works

Cost-optimal DFP is a well-studied problem in the planning community and has inspired
several state-of-the-art heuristics (Betz & Helmert, 2009). In particular, Bonet and Helmert
(2010) show that a DFP task can be reformulated as a hitting set problem with exponentially
many subsets, each encoding a separate disjunctive landmark. This result has been extended
to derive the necessary set of disjunctive landmarks (Bonet & Castillo, 2011) and the set-
inclusion minimal disjunctive landmarks (Haslum, Slaney, & Thiébaux, 2012) required to
solve a DFP task. Moreover, Pommerening and Helmert (2012) build on the hitting set
representation to design an incremental disjunctive landmark heuristic for DFP.

Imai and Fukunaga (2014) presented a MILP formulation for a DFP task with polyno-
mially many constraints. This formulation is currently regarded as the state-of-the-art so-
lution approach for DFP tasks. Moreover, its LP relaxation coupled with operator counting
constraints (Pommerening, Röger, Helmert, & Bonet, 2014) defines an admissible heuristic
that achieved competitive performance with respect to state-of-the-art classical planning
heuristics (Imai & Fukunaga, 2015).

610

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

LP-based heuristics have become a popular technique to compute informative heuristics
in delete-free, classical, and numerical planning tasks (Piacentini et al., 2018; Scala et al.,
2017). While the LP relaxation is commonly used in the Operations Research (OR) com-
munity for bound computation, Andersen, Hadzic, Hooker, and Tiedemann (2007) present
an alternative discrete relaxation approach based on decision diagrams (Bryant, 1986). The
technique has had a growing interest in the OR community with successful applications to
sequencing (Cire & van Hoeve, 2013; Kinable et al., 2017; Castro et al., 2019b) and binary
decision problems (Bergman et al., 2016).

Recent work has also shown an interest on relaxed DDs to compute admissible heuristics
for planning tasks. Castro, Piacentini, Cire, and Beck (2018) use MDDs to create a relaxed
representation of the state-transition graph for classical planning. The approach relates
to several well-known techniques, such as critical path heuristics and abstractions. The
authors report preliminary results that indicate the potential of the technique when it is
used to extract valid plans.

The techniques proposed in this paper are related to the work by Corrêa, Pommerening,
and Francès (2018), who apply relaxed DDs to approximate the state-space of a DFP task.
Our methodology, however, differs in three main ways. First, the authors use a BDD
encoding with a dynamic action branching per node, while we propose an MDD encoding
that focuses on the sequencing aspect of the problem. Second, our BDD representation
models the sequential relaxation of a DFP task instead of the full DFP task. Lastly,
Corrêa et al. (2018) implement a top-down DD construction, while we propose an iterative
splitting procedure for our two DD approaches. While the top-down construction is faster,
the iterative splitting leverages the encoded information to create a stronger relaxation.

There are other applications of decision diagrams in planning that are not closely related
to our approach but that we note here for completeness. BDDs have been used in planning to
succinctly represent sets of states (symbolic states). Using this representation, a symbolic
version of the A∗ search algorithm achieved state-of-the-art performance in cost-optimal
classical planning (Torralba, Linares López, & Borrajo, 2016). Several admissible heuristics
have been proposed to guide the search over the symbolic state-space, e.g., abstraction-based
heuristics (Edelkamp et al., 2012; Torralba et al., 2013). Lastly, the planning literature has
utilized edge-value multivalued decision diagrams to represent cost functions of planning
problems with state-dependent actions costs (Keller et al., 2016; Geißer et al., 2016).

4. Relaxed MDD Encoding and Construction Procedure

This section presents an MDD encoding of a DFP task Π+ and introduces the relaxed MDD
construction procedure that will be used to compute an admissible heuristic. The main idea
is to represent the sequential aspect of the problem to compactly encode all optimal plans
using an MDD. In particular, we construct an MDD where the i-th decision layer represents
the i-th action in a cost-optimal plan. Since the number of actions in any cost-optimal plan
is unknown, our encoding considers a dummy action anoop that represents the execution of
no further actions: pre(anoop) = G, add(anoop) = ∅, and cost(anoop) = 0. We use notation
A0 = A∪ {anoop} to refer to the set of actions including anoop. In the following, we assume
that we have an upper bound on the maximum number of actions needed by any cost-

611

Castro, Piacentini, Cire, & Beck

optimal plan m ≤ |A| (see Section 4.5 on how to compute m). Note that |A| is a trivial
upper bound on the maximum number of actions needed for any solvable DFP task Π+.

An MDD M = (NM, EM) is a directed acyclic graph, where NM and EM correspond
to the set of nodes and edges, respectively. The set of nodes NM = (NM1 , ...,NMm+1) is
partitioned into m+ 1 disjoint node layers, i.e., NMi ∩NMj = ∅ for all i 6= j ∈ {1, ..., m+ 1}.
The first and last layer have a single node, NM1 = {r} and NMm+1 = {t}, denoted by the root
node r and terminal node t, respectively. Similarly, the set of edges EM = (EM1 , ..., EMm) is
partitioned into m disjoint edge layers. In particular, each edge e = (u, v) ∈ EMi emanates
from a node u ∈ NMi and points to a node v ∈ NMi+1.

In this representation, each edge in layer EMi maps to the i-th action in a plan. Every
edge e ∈ EMi is associated with an action a(e) ∈ A0, and has a cost c(e) that depends on
the cost of its associated action (see Section 4.2). Each node u ∈ NM has at most |A0|
emanating edges, each one associated with a different action.

An r−t path ρ := (e1,, em) ∈M is a sequence of edges, where each edge is in a unique
layer, and the target node of ei ∈ EMi is the source node of ei+1 ∈ EMi+1 for i ∈ {1, ..., m− 1}.
Our MDD encoding interprets nodes as reachable states from sI . Given a node u ∈ NM,
α↓(u) corresponds to the set of achieved propositions in node u. Starting from the root
node with α↓(r) := sI , for each node v ∈ NMi (i > 1) we define α↓(v) as:

α↓(v) :=
⋃

e=(u,v)∈EMi−1

α↓(u) ∪ add(a(e)).

We can identify all r − t paths that correspond to valid plans if every node u ∈ NM
represents a single state in the search-space, i.e., all r − u paths achieve the same set
of propositions. Then, it is sufficient to check that every edge e emanating from a node
u ∈ NM is associated with an applicable action (i.e., pre(a(e)) ⊆ α↓(u)) and the terminal
node achieves all the goals (i.e., G ⊆ α↓(u) ∪ add(a(e)) for each edge e = (u, t) ∈ EMm) to
ensure that all r− t paths in M are valid plans. We say that an MDD M is exact if every
r− t path ρ ∈M corresponds to a cost-optimal plan for Π+ and there exists an r− t path
in M for each cost-optimal plan π ∈ Π+.

Building an exact MDD is intractable since, in the worst case, its size is equivalent to
the state-space of the DFP task Π+. We tackle this problem by considering a relaxed MDD
instead. A relaxed MDD is a limited size MDD where each node aggregates one or more
states, i.e., it over-approximates the set of cost-optimal plans. Formally, M is a relaxed
MDD for a DFP task Π+ if there exists an r− t path ρ ∈M for each cost-optimal plan of
size at most m, but some r− t paths may correspond to invalid or sub-optimal plans. The
following example shows an exact and a relaxed MDD for our running example.

Example 4.1. Consider the DFP task Π+
4 described in Example 2.1. Figure 2a and 2b,

respectively, illustrate an exact and a relaxed MDD for this domain with m = 3. The action
associated with each edge is shown next to the edge. When edges are too close to each
other, we use a set notation to represent the actions associated with a set of edges.

Notice that every r−t path in the exact MDD (Figure 2a) corresponds to a cost-optimal
plan for Π+

4 and every cost-optimal plan for Π+
4 has a corresponding r−t path. In contrast,

the relaxed MDD shown in Figure 2b has a path for each cost-optimal plan of Π+
4 but there

612

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

exist some paths that are invalid plans. For example, path ρ = (a1,4, a1,2, anoop) is an invalid
plan because action anoop is not applicable in state s = succ(sI , (a1,4, a1,2)).

r

u1 u2

u3 u4 u5

t

a1,2 a1,4

a2,3 a1,4 a1,2 a4,3

{a1,4, a3,4}
a4,3 a2,3

{a1,2, a3,2}

(a) Exact MDD.

r

u1 u2

u3 u4

t

a1,2 a1,4

a2,3 a1,4 a1,2a4,3

a1,4a3,4

{anoop, a4,3,

a2,3, a1,2, a3,2}

(b) Relaxed MDD.

Figure 2: Exact and relaxed MDDs for the 4-room visit-all DFP task.

4.1 Relaxed MDD Construction Procedure

In the following, we show how to construct a relaxed MDD M = (NM, EM) for a DFP
task Π+. We define the width of a relaxed MDD M as the maximum number of nodes in
a layer, i.e., w(M) := max{|NMi | : i ∈ {1, ..., m + 1}}. We limit the size of M by bounding
its width, w(M) ≤ W, with W ∈ Z+.

Algorithm 1 presents our relaxed MDD construction scheme. The algorithm starts
by constructing a width-one MDD (W = 1). The WidthOneMDD procedure receives the
maximum number of layers m and creates m + 1 node layers and m edge layers. Each node
layer has a single node where r corresponds to the initial state sI and each node u ∈ NMi
(i > 1) represents the union of all states that can be reached after applying i actions. Each
edge layer has at most |A0| edges, where each edge is associated with a different action in
A0 that is applicable to its source node.

The construction procedure increases the width of the MDD and removes invalid r− t
paths (i.e., paths corresponding to invalid plans) until the MDD cannot be further updated
(i.e., it reaches the maximum width or no more invalid plans are found). The UpdateMD-
DTop procedure iterates over the node layers starting from NM1 . For each i ∈ {1, ..., m}, the
procedure (i) updates the information stored in every node u ∈ NMi considering all partial
r − u paths (UpdateMDDNodesTop), (ii) splits every node u ∈ NMi until the maximum
width is reached (SplitMDDNodes), and lastly (iii) eliminates all edges that can be proved
to only participate in invalid plans (FilterMDDEdges). In contrast, the UpdateMDDBot-
tom procedure iterates over each layer starting with NMm+1, updates the information stored
in every node u ∈ NMi considering all partial u− t paths (UpdateMDDNodesBottom), and
removes edges that are associated only with invalid plans.

The construction procedure ends when the MDD cannot be further updated and returns
the resulting MDD. Hence, it applies the UpdateMDDTop and UpdateMDDBottom proce-
dures at least twice before ending. The following subsections provide a detailed explanation
of each procedure.

613

Castro, Piacentini, Cire, & Beck

Algorithm 1 Relaxed MDD (BDD) Construction Procedure

1: procedure ConstructMDD(Π+, W, m)
2: M := WidthOneMDD(m)
3: while M has been modified do
4: UpdateMDDTop(M, W, Π+)
5: UpdateMDDBottom(M, W, Π+)

6: return M

7: procedure UpdateMDDTop(M, W, Π+)
8: for i ∈ {1, ..., m} do
9: UpdateMDDNodesTop(NMi)

10: if i ≥ 2 then SplitMDDNodes(NMi , W)

11: FilterMDDEdges(EMi)

12: UpdateMDDNodesTop(NMm+1)

13: procedure UpdateMDDBottom(M, Π+, W)
14: i := m + 1
15: while i ≥ 0 do
16: UpdateMDDNodesBottom(NMi)
17: FilterMDDEdges(EMi−1)
18: i := i− 1

Example 4.2. Consider the DFP task Π+
4 described in Example 2.1. Figure 3 illustrates

some of the steps of Algorithm 1 for a relaxed MDD with m = 3 and W = 2. Figure
3a corresponds to the initial width-one MDD where gray edges will be removed by the
FilterMDDEdges procedure (Rule M3, Section 4.3). Figure 3b illustrates the resulting MDD
after applying the SplitMDDNodes procedure in the second layer. Lastly, Figure 3c depicts
the MDD returned by the construction procedure.

r

u1

u2

t

a1,2a1,4

{a1,2, a1,4, a2,3

a4,3, a2,1, a4,1}

{anoop, a1,2, a1,4

a2,3, a3,2, a3,4

a4,3, a2,1, a4,1}

(a) Width-one MDD.

r

u1 u2

u3

t

a1,2 a1,4

{a1,4, a2,3

a1,2, a4,3}
{a1,2, a4,3

a1,4, a2,3}

{anoop, a1,2, a1,4

a2,3, a3,2, a3,4

a4,3}

(b) MDD after one node split.

r

u1 u2

u3 u4

t

a1,2 a1,4

a2,3 a1,4 a1,2a4,3

a1,4a3,4

{anoop, a4,3,

a2,3, a1,2, a3,2}

(c) Resulting MDD.

Figure 3: MDD construction example with W = 2.

614

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

4.2 MDD Node Representation

Each node u ∈ NM stores information regarding the set of achieved and needed propositions
by all paths traversing u. This information is then used in the SplitMDDNodes procedure to
decide which nodes to split, and in the FilterMDDEdges procedure to identify invalid plans.
The node information is aggregated for the r − u paths (i.e., top-down node information)
and the u− t paths (i.e., bottom-up node information).

In the following, consider s(e) := u and t(e) := v to represent the source and target
node of an edge e = (u, v) ∈ EM, respectively. We use sets δin(u) and δout(u) to represent
the set of incoming and outgoing edges of a node u ∈ NM, respectively.

Given a node u ∈ NM, the top-down information is the set of propositions that are
achieved by the r− u paths. In particular, α↓A(u) represents the set of propositions that all

r−u paths achieve and α↓S(u) the set of propositions that some r−u paths achieve. Starting

with the root node r, the UpdateMDDNodesTop procedure assigns α↓A(r) := α↓S(r) := sI and
updates each node u ∈ NM \ {r} as

α↓A(u) :=
⋂

e∈δin(u)

(
α↓A(s(e)) ∪ add(a(e))

)
,

α↓S(u) :=
⋃

e∈δin(u)

(
α↓S(s(e)) ∪ add(a(e))

)
.

The UpdateMDDNodesBottom procedure updates the bottom-up information of a node.
For each node u ∈ NM, set α↑S(u) keeps track of all the propositions achieved by some u−t

path. Starting with the terminal node t, the procedure assigns α↑S(t) := ∅ and updates each
u ∈ NM \ {t} as

α↑S(u) :=
⋃

e∈δout(u)

(
α↑S(t(e)) ∪ add(a(e))

)
.

The procedure also saves the set of propositions needed by some u−t path, η↑S(u). Starting

with the terminal node t, it assigns η↑S(t) := LP and updates each node u ∈ NM as

η↑S(u) :=
⋃

e∈δout(u)

(
η↑S(t(e)) ∪ pre(a(e))

)
.

It is sufficient to initialize η↑S(t) with the set of propositional goals G to ensure that the
algorithm is correct. However, initializing the set of needed propositions with LP ⊇ G helps
our algorithm to identify a larger number of invalid r− t paths (see Section 4.3).

Lastly, our UpdateMDDNodesTop and UpdateMDDNodesBottom procedures save infor-
mation about the cost of the paths traversing a node u ∈ NM that will be used to com-
pute our MDD heuristic (Section 5) and filter sub-optimal plans (Section 4.3). The Up-
dateMDDNodesTop procedure underestimates the minimum-cost of all r−u paths using the
critical path computation for MDDs introduced by Castro et al. (2018). The idea is to
estimate the minimum cost to achieve a proposition p ∈ P for each node u ∈ NM, ω↓(u, p).
To do so, the cost of an edge e ∈ EM corresponds to the cost of its associated action plus
the cost of its most expensive precondition in its source node, i.e.,

c(e) := cost(a(e)) + max
{
ω↓(s(e), p) : p ∈ pre(a(e))

}
.

615

Castro, Piacentini, Cire, & Beck

To have a better estimate of the minimum cost of an edge, we distinguish whether its
associated action adds a proposition or not. Let cp(e) be the cost of an edge e ∈ EM with
respect to a proposition p ∈ P:

cp(e) :=

c(e), p ∈ add(a(e)),

max{c(e), cost(a(e)) + ω↓(s(e), p)}, p /∈ add(a(e)), p ∈ α↓S(s(e)),
∞, otherwise.

In the first case, cp(e) corresponds to the critical path cost c(e). For the second case,
we can under-approximate cp(e) either using the critical path formula c(e) or summing up
the action and source node costs. Since there is no dominance between these two values,
we choose the maximum.

We now define the top-down cost of a node u ∈ NM and proposition p ∈ P as the
minimum cost of each of its incoming edges, i.e., ω↓(r, p) := 0 for all p ∈ P and

ω↓(u, p) :=

{
mine∈δin(u){cp(e)}, p ∈ α↓S(u),

0, otherwise.

Thus, the cost of proposition p at node u is the minimum cost over all incoming edges if
p is achieved by at least one r − u path. Otherwise, we set the cost to zero to guarantee
the admissibility of our heuristic. Proposition 4.1 shows that this cost computation under-
approximates the cost of each plan represented as a path in the MDD.

Proposition 4.1. Consider any path ρ = (e1, ..., em) ∈ M that corresponds to a plan
π = (a1, ..., am) ∈ Π+, with ai = a(ei). The cost of any partial plan πi = (a1, ..., ai) is an
upper bound to the cost of each of proposition p ∈ si+1 = succ(sI , πi) in the corresponding
MDD node ui+1 = t(ei) ∈ NMi+1, i.e.,

ω↓(ui+1, p) ≤ cost(πi), ∀ p ∈ si+1, i ∈ {1, ..., m}. (1)

Proof. We will prove (1) by induction. In the initial case i = 1 we have that ω↓(u2, p) ≤
0+cost(a1) = cost(π1) for all p ∈ sI∪add(a1). Next, consider that (1) holds for some i ≥ 1
and we want to prove that it holds for i+1. From (1) we have that maxq∈si+1{ω↓(ui+1, q)} ≤
cost(πi). Finally, for any p ∈ si+2 we have that:

ω↓(ui+2, p) ≤ cp(ei+1) ≤ max
q∈si+1

{ω↓(ui+1, q)}+ cost(ai+1)

≤ cost(πi) + cost(ai+1)

= cost(πi+1).

For the bottom-up cost estimation we use a shortest path computation where the cost
of an edge is simply the cost of its associated action. Let ω↑(u) be the bottom-up cost of a
node u ∈ NM. Then, we define ω↑(t) := 0 and, for each node u ∈ NM \ {t},

ω↑(u) := min
e∈δout(u)

{
ω↑(t(e)) + cost(a(e))

}
.

616

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

4.3 MDD Filtering Rules

Our FilterMDDEdges procedure identifies and removes invalid r − t paths in M. The pro-
cedure relies on a set of rules that identify if all paths traversing an edge correspond to
invalid (or sub-optimal) plans. If an edge e ∈ EM violates a rule, then the edge can be
safely removed from M. We first present two rules that, as shown in Proposition 4.2, are
necessary conditions for any path to be a plan.

Rule M1. Consider an edge e = (u, v) ∈ EM with a = a(e) ∈ A0. Then, action a has to
be applicable in its source node, i.e.,

pre(a) ⊆ α↓S(u).

Rule M2. Consider an edge e = (u, v) ∈ EM with a = a(e) ∈ A0. Then, all propositional
landmarks LP need to be achieved by at least one path traversing e, i.e.,

LP ⊆ α↓S(u) ∪ add(a) ∪ α↑S(v),

where the right-hand side corresponds to the set of propositions that are achieved by paths
traversing edge e.

Proposition 4.2. Consider a relaxed MDD M = (NM, EM) for a DFP task Π+. Rules
M1 and M2 are necessary conditions for any r− t path ρ ∈M to be a plan.

Proof. Consider any r − t path ρ = (e1, ..., em) ∈ M that corresponds to a plan π ∈ Π+.
We will show that all edges e ∈ ρ satisfy rules M1 and M2. Take any edge ei = (u, v) ∈ ρ
with associated action a = a(ei) and let si−1 = succ(sI , (a(e1), ..., a(ei−1))). By definition

of set α↓S (Section 4.2), we have that si−1 ⊆ α↓S(u). Then, since ρ is a plan, pre(a) ⊆
si−1 ⊆ α↓S(u) so Rule M1 is satisfied. Similarly, by definition of α↓S and α↑S, we have that

LP ⊆ succ(sI , π) ⊆ α↓S(u) ∪ add(a) ∪ α↑S(v), so rule M2 is satisfied.

Since we want to create a relaxed MDD that only considers cost-optimal plans, we
develop two rules, M3 and M4, that identify sub-optimal plans and, hence, strengthen the
relaxation. Rule M3 removes edges that correspond to redundant actions (i.e., do not add
any useful proposition). Rule M4 keeps paths that have a cost smaller or equal to any
known plan π′ ∈ Π+. Notice that π′ can be obtained, for instance, using a greedy heuristic
over the relaxed MDD (see Section 9).

Rule M3. Consider an edge e = (u, v) ∈ EM with a = a(e) ∈ A (i.e., a 6= anoop). Then,
action a must add at least one needed proposition that has not been achieved yet.(

add(a) \ α↓A(u)
)
∩ η↑(v) 6= ∅.

Rule M4. Consider an edge e = (u, v) ∈ EM with a(e) ∈ A0 and any known plan π′ ∈ Π+.
Then, the minimum cost path traversing edge e has to have a cost smaller or equal to π′.

c(e) + ω↑(v) ≤ cost(π′).

Notice that rule M3 might remove some cost-optimal plans for domains with zero-cost
actions, since applicable zero-cost actions can be added to a plan even though they are

617

Castro, Piacentini, Cire, & Beck

redundant. Nonetheless, this rule will always maintain all minimal cost-optimal plans (i.e.,
plans without redundant actions). Proposition 4.3 shows that these rules do not remove
minimal cost-optimal plans.

Proposition 4.3. Consider a relaxed MDD M = (NM, EM) for a DFP task Π+. Any
r− t path ρ ∈M that corresponds to a minimal cost-optimal plan satisfies M3 and M4.

Proof. Consider any r − t path ρ = (e1, ..., em) ∈ M that corresponds to a minimal cost-
optimal plan π = (a1, ..., am) ∈ Π+ with ai = a(ei) and si = succ(sI , (a1, ..., ai)). Consider
any edge ei = (u, v) ∈ ρ. Since π is a minimal plan, for all ai ∈ π there exists a proposition
p ∈ add(ai) \ si−1 such that p is a precondition for some action aj (j > i) or p ∈ G. Then,

since α↓A(u) ⊆ si−1, Rule M3 holds for any minimal plan.

The validity of Rule M4 comes from the fact that, for any ei = (u, v) ∈ EMi we have that
c(ei) ≤

∑i
j=1 cost(aj) and ω↑(v) ≤

∑n
j=i+1 cost(aj) (see Section 4.2). Then c(e)+ω↑(v) ≤

cost(π) ≤ cost(π′).

Algorithm 2 Relaxed MDD Filtering Edges Procedure

1: procedure FilterMDDEdges(EMi)
2: for e ∈ EMi do
3: if e violates any of rule M1 to rule M4 then
4: Eliminate edge e for EMi . M has been modified

The FilterMDDEdges procedure (Algorithm 2) iterates over all edges in a layer (line 2)
and remove the edges that violate any of our four filtering rules (lines 3-4). The procedure
also checks if the MDD has been modified.

4.4 MDD Splitting Algorithm

The SplitMDDNodes procedure increases the size of M to strengthen the relaxation. Our
procedure attempts to split nodes so each node represents exactly one state in the search-
space. Given a node u ∈ NM, we say that u is exact if α↓A(u) = α↓S(u). As shown in
Proposition 4.4, we can eliminate all invalid plans from an MDD if all its nodes are exact.

Proposition 4.4. Consider a relaxed MDDM = (NM, EM) where each node u ∈ NM\{t}
is exact, i.e., α↓A(u) = α↓S(u). Then, filtering rules M1 and M2 are sufficient to identify and
remove all invalid paths in M.

Proof. Consider any r − t path ρ = (e1, ..., em) ∈ M with associated actions ai = a(ei)
that form an invalid plan. Assume that (a1, ..., ai−1) is applicable to the initial state, i.e.,
si−1 = succ(sI , (a1, ..., ai−1)), but ai is not applicable to si−1. Let u = s(ei). We have that

α↓A(u) = si−1 = α↓S(u) by definition of α↓A and α↓S, and the fact that node u is exact. Then,

rule M1 eliminates edge ei since pre(ai) 6⊆ si−1 = α↓S(u).

Now assume that (a1, ..., am) is applicable to the initial state but the resulting state omits
at least one propositional goal, i.e., G 6⊆ sm = succ(sI , (a1, ..., am)). Then, rule M2 eliminates

edge em = (u, t) since G ⊆ LP and G 6⊆ sm = sm−1∪add(am)∪∅ = α↓S(u)∪add(am)∪α↑S(t).

618

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

Our SplitMDDNodes procedure (Algorithm 3) iterates over the set of nodes in a layer and
splits inexact nodes into two such that the resulting nodes represent fewer aggregated states.
To do so, the procedure sorts the propositions that are not in the initial state, P¬sI := P\sI ,
in a priority queue Q and iterates over them (lines 2-3). For each proposition p ∈ Q, the
algorithm looks for nodes u ∈ NMi where proposition p is achieved by some r−u paths but
not all (lines 4-6). We then identify the set of incoming edges where p is always achieved
(line 7) and split the node into two: node u′ where p is achieved by all r − u′ paths, and
node u where p is never achieved (lines 9-10). Lastly, the algorithm duplicates the outgoing
edges from the original node u to the resulting node u′. Notice that it might be impossible
to split u with respect to p: δall can be empty if the nodes in the previous layer correspond
to the aggregation of distinct states (line 8).

Algorithm 3 Relaxed MDD Split Nodes Procedure

1: procedure SplitMDDNodes(NMi , W)
2: Initialize Q with all the propositions in P¬sI
3: while |Q| > 0 and |NMi | <W do
4: Remove first proposition p in Q
5: for u ∈ NMi do

6: if p ∈ α↓S(u) and p /∈ α↓A(u) then

7: δall := {e ∈ δin(u) : p ∈ add(a(e)) or p ∈ α↓A(s(e))}
8: if δall 6= ∅ then
9: Create new node u′. NMi := NMi ∪ {u′}

10: Redirect edges: δin(u
′) := δall and δin(u) := δin(u) \ δall

11: if δin(u
′) 6= ∅ then Duplicate outgoing edges from u to u′

Our algorithm uses a priority queue Q over the propositions in P¬sI to split the nodes
using the same propositional order. The queue is divided into three priority levels where
goal propositions p ∈ G have the highest priority, followed by propositional landmarks
(p ∈ LP \ G) and lastly the remaining propositions (p ∈ P¬sI \ LP).

Notice that this splitting procedure needs at most 2|P¬sI | nodes in each layer to create
an exact MDD. Moreover, if W = 2|P¬sI |, nodes in layer NMi represent all the states that
can be reach after applying i actions.

4.5 Number of Layers Estimation

We propose two simple procedures to estimate m using the cost of any plan π′ ∈ Π+.
Notice that we can generate a plan for a DFP task Π+ using, for instance, the FF heuristic
(Hoffmann & Nebel, 2001).

Algorithm 4 shows our two estimation procedures, MaxLayerActions and MaxLayerPropo-
sitions. Procedure MaxLayerActions uses the fact that each action is applied at most once.
The procedure sorts the actions in increasing order of cost (line 2) and sums up the cost of
each action in the queue until the total cost C is greater than the cost of our known plan
π′ (lines 3-6). Then, the total number of actions used to compute C is an upper bound on
the maximum number of actions in any cost-optimal plan.

The second procedure, MaxLayerPropositions, is valid only for minimal cost-optimal plans
(i.e., plans without redundant actions). The procedure estimates the maximum number of

619

Castro, Piacentini, Cire, & Beck

Algorithm 4 Maximum number of layers estimation

1: procedure MaxLayerActions(A, π′)
2: QA = (a1,, a|A|), list of actions ordered in increasing value of cost(a)
3: C := 0, m := 0
4: while |QA| > 0 and C ≤ cost(π′) do
5: Remove first action a in QA
6: C := C + cost(a), m := m + 1

7: return m

8: procedure MaxLayerPropositions(A, P¬sI ,π′)
9: C := 0, m := 0

10: for p ∈ P¬sI do
11: cost(p) := min{cost(a) : p ∈ add(a)}
12: QP = (p1,, p|P¬sI |), list of propositions ordered in increasing value of cost(p)

13: while |QP | > 0 and C ≤ cost(π′) do
14: Remove first proposition p in QP
15: C := C + cost(p), m := m + 1

16: return m

actions in any minimal cost-optimal plan by assuming that each action in the plan adds
at least one proposition that is not present in the previous state. The procedure first
calculates the minimum cost of adding each proposition p ∈ P¬sI by taking the minimum
cost action that adds p (lines 10-11). Then, we order the propositions in increasing order of
cost (line 12) and sum up the cost of each proposition until the total cost C is greater than
cost(π′) (lines 13-15). Lastly, the total number of propositions in the sum corresponds to
the maximum number of actions in any minimal cost-optimal plan.

Our implementation considers the minimum between the two estimations. We notice
that MaxLayerPropositions tends to give a tighter bound when Π+ has zero-cost actions,
while MaxLayerActions is more accurate for tasks with action costs greater or equal to one.
Both procedures compute the same value of m when all actions costs are the same.

5. Relaxed MDD-based Heuristic

We now present our relaxed MDD heuristic and prove its admissibility and consistency.
Given any state s, we can create a relaxed MDD M for s using Algorithm 1 by updating
the initial state sI := s and using a proper bound on the maximum number of layers m.
Then, the relaxed MDD heuristic value for state s, hM(s), is given by

hM(s) := max{ω↓(t, p) : p ∈ LP}. (2)

Theorem 5.1. Consider a DFP task, a reachable state s, and a relaxed MDD M =
(NM, EM) for s with W ≥ 1 constructed using Algorithm 1. Then, hM(s) given by
hM(s) := max{ω↓(t, p) : p ∈ LP} is an admissible heuristic.

Proof. Propositions 4.2 and 4.3 guarantee that all minimal cost-optimal plans are repre-
sented by the MDD. Then, by Proposition 4.1, hM(s) ≤ cost(π) for any minimal cost-
optimal plan represented by a path in the MDD.

620

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

To avoid constructing a new MDD for each state in the search-space, we instead con-
struct a relaxed MDD for the initial state sI and update it during search. Given a state
s and a sequence of actions that reach s from sI , πs = (a1, ..., ak), we update the relaxed
MDD M by removing any edge e ∈ EMi (i ∈ {1, ..., k}) with a(e) 6= ai, i.e., the first k
layers correspond to single path representing πs. We then iteratively apply the top-down
and bottom-up procedure (Algorithm 1) to update M. In this case, the heuristic is

hM(s) :=

{
max{ω↓(t, p) : p ∈ LP} − cost(πs), πs ∈M,
∞, otherwise,

(3)

where πs ∈ M implies that there exists a path in the MDD where the k initial actions
are given by πs. Notice that since all minimal cost-optimal plans are encoded by M, the
condition hM(s) =∞ holds only when there is no minimal cost-optimal plan from sI that
starts with the sequence of actions πs. Thus, while the heuristic is inadmissible in these
cases, it only gives value ∞ to sub-optimal states. In other words, hM(s) given by (3) is a
global admissible heuristic, as defined by Karpas and Domshlak (2012).

We choose this implementation because it speeds up the heuristic computation and
it is compatible with our search procedure (see Section 10). In addition, the heuristic is
consistent if the order of the propositions in Q remains the same when updating M for
state s (Theorem 5.2).

Theorem 5.2. Consider a DFP task Π+, a state s, and a relaxed MDD M with W ≥ 1
constructed using Algorithm 1. Then, hM(s) given by (3) is consistent.

Proof. Consider a state s, an applicable action a, and its successor state s′ = succ(s, a).
Given the relaxed MDDMsI for sI , letMs andMs′ be the updated MDDs for state s and
s′, respectively. Since each MDD is updated from MsI without changing the proposition
order, every path ρ ∈Ms′ is also inMs. Then, we have ω↓(ts, p) ≤ ω↓(ts′ , p) for all p ∈ LP .

We know that

hM(s) = max
p∈LP

{ω↓(ts, p)}−cost(πs) and hM(s′) = max
p∈LP

{ω↓(ts′ , p)}−cost(πs)−cost(a).

Then,

hM(s)− cost(a)− hM(s′) = max
p∈LP

{ω↓(ts, p)} − max
p∈LP

{ω↓(ts′ , p)} ≤ 0,

and therefore hM(s) ≤ cost(a) + hM(s′).

In this case hM is consistent because the set of paths encoded in the successor state
MDD, Ms′ , is a subset of the paths encoded by the current state MDD, Ms. Thus, any
other implementation that guarantees this condition will result in a consistent heuristic.

5.1 Relationship to Critical Path Heuristics

We now compare our heuristic with the critical path heuristic hmax (Bonet & Geffner, 1999),
and relate the MDD graphical structure to the planning graph (Blum & Furst, 1997). The
hmax heuristic computes the minimum cost to reach each proposition from the initial state.
Specifically, consider h(p) as the minimum cost to reach proposition p ∈ P and h(a) as

621

Castro, Piacentini, Cire, & Beck

the minimum cost to use action a ∈ A. These values can be computed recursively using
the formula below and by setting h(p) := 0 for all p ∈ sI , h(p) := ∞ for any p 6∈ sI , and
h(a) :=∞.

h(p) := min {h(p),min{h(a) : p ∈ add(a), a ∈ A}} ∀p ∈ P,
h(a) := cost(a) + max{h(q) : q ∈ pre(a)} ∀a ∈ A.

The heuristic is defined as hmax := max{h(p) : p ∈ G}. Notice that our MDD top-
down node and edge cost computations (Section 6.2) resemble the h(p) and h(a) recursions,
respectively. Lemma 5.1 and Theorem 5.3 show that in fact our MDD heuristic dominates
the hmax heuristic for any width W ≥ 1.

Lemma 5.1. Consider a DFP task Π+, a reachable state s, and a relaxed MDD M =
(NM, EM) for s with W ≥ 1. Then,

h(p) ≤ ω↓(u, p) ∀u ∈ NM, p ∈ α↓S(u). (4)

Proof. We prove (4) by induction over the layers of M. By construction, (4) holds for

NM1 = {r}. Now consider that (4) is true for all nodes u ∈ NMi and p ∈ α↓S(u) (i ≥ 1).

Consider any node v ∈ NMi+1 and a proposition p ∈ α↓S(v). By construction, there exists an
edge e ∈ δin(v) such that cp(e) = ω↓(v, p). Consider action a = a(e) and node u = s(e) ∈
NMi . There are two cases, either p ∈ add(a) or not. If p ∈ add(a), then

ω↓(v, p) = cp(e) = cost(a) + max{ω↓(u, q) : q ∈ pre(a)}
≥ cost(a) + max{h(q) : q ∈ pre(a)} ≥ h(p).

If p 6∈ add(a), we necessarily have that p ∈ α↓S(u). Since u ∈ NMi , we have h(p) ≤ ω↓(u, p).
Then it follows that h(p) + cost(a) ≤ ω↓(u, p) + cost(a) ≤ cp(e) = ω↓(v, p).

Theorem 5.3. Consider a classical planning task Π+, a reachable state s, and a relaxed
MDD M = (NM, EM) for s with W ≥ 1. Then, hM(s) ≥ hmax(s).

Proof. From Lemma 5.1 we have that h(p) ≤ ω↓(t, p). Then, hmax(s) = max{h(p) : p ∈
G} ≤ max{ω↓(t, p) : p ∈ LP} = hM(s).

We can interpreted our relaxed MDD heuristic as a type of critical path heuristic over
the relaxed MDD graph instead of the planning graph (Blum & Furst, 1997). In fact, the
planning graph can be seen as a relaxed MDD with W = 1 where each node corresponds
to a propositional layer in the planning graph and each edge layer to an action layer. As
such, a relaxed MDD is a generalization of the planning graph since a relaxed MDD with
W > 1 considers more than one node per layer.

6. Relaxed BDD Encoding and Construction Procedure

We now investigate an alternative approach to compute admissible heuristics based on
DDs: we use a binary decision diagram (BDD) to encode the sequential relaxation of the
DFP. Previous work has empirically shown that the sequential relaxation is an accurate

622

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

approximation to the DFP task in most IPC domains (Imai & Fukunaga, 2015). Thus, a
BDD encoding of the sequential relaxation can potentially compute informative heuristics
using a smaller graphical structure than our relaxed MDD (see Section 8).

Our BDD representation exploits the fact that an action needs to be applied at most
once in any DFP task and, thus, in its sequential relaxation. We can therefore view the
sequential relaxation task as a binary optimization problem that asks for a cost-optimal
action set satisfying Definition 2.1, where each variable indicates whether or not an action
is included in a sr-plan. The BDD representation, in turn, is an encoding of the set of
solutions of such problem, i.e., it is a graphical structure such that a path in the graph
represents an sr-plan.

Formally, a BDD B = (NB, EB) is a layered acyclic graph, where NB is the set of nodes
and EB the set of directed edges. The set of nodes is partitioned into m+ 1 layers (m = |A|),
NB = (NB1 , . . . ,NBm+1). The first and last node layers have a single node, known as the
root, NB1 = {r}, and terminal node, NBm+1 = {t}, respectively. Similarly, the set of edges
EB is partitioned into m layers, EB = (EB1 , . . . , EBm), such that each edge e = (u, v) ∈ EBi
(i ∈ {1, . . . , m}) originates from a node u ∈ NBi and points to a node v ∈ NBi+1.

We associate an action a ∈ A with each layer EBi , a(EBi) = a, such that no two layers
are associated with the same action. Every edge e ∈ EBi has (i) a label l(e) ∈ {0, 1} that
represents if its associated action a(e) = a(EBi) is selected to be in an sr-plan or not, and
(ii) a cost c(e) derived from including (if l(e) = 1) or excluding (if l(e) = 0) the action to
the sr-plan, i.e., c(e) := l(e) ·cost(a(e)). A node u ∈ NB has at most two edges emanating
from it, each with a distinct label. Thus, an r − t path ρ := (e1, ..., em) ∈ B has exactly
one edge from each layer, and the labels associated with its edges correspond to the actions
that will be included in and excluded from the sr-plan.

We force B to encode only sr-plans by keeping track of the set of propositions that
are achieved and needed in each path. Given an r − t path ρ ∈ B, the set of propositions
achieved and needed by ρ are given, respectively, by:

α↓(ρ) := sI ∪
⋃

e∈ρ:l(e)=1

add(a(e)),

η↓(ρ) := G ∪
⋃

e∈ρ:l(e)=1

pre(a(e)).

A BDD B encodes sr-plans if each r− t path ρ ∈ B satisfies the conditions in Definition
2.1, i.e., G ⊆ α↓(ρ) and η↓(ρ) ⊆ α↓(ρ). We say that a BDD is exact if every path in B is an
sr-plan and there is one path for each possible sr-plan in a DFP task Π+. A shortest path
in an exact BDD corresponds to a cost-optimal sr-plan.

Example 6.1. From now on we will consider a smaller task of the visit-all domain with three
rooms, Π+

3 , since it results in a shorter BDD. The set of actions is A = {a1,2, a2,1, a2,3, a3,2}
and the set of propositions is P = {i1, v1, i2, v2, i3, v3}. The meaning of each proposition and
action is the same as in Example 2.1. Figure 4a depicts the initial state and goal conditions.

Figure 4b illustrates an exact BDD B for Π+
3 . The dashed edges represent zero-edges

(i.e., l(e) = 0) and the solid edges one-edges (i.e., l(e) = 1). On the left-hand-side are the
actions associated with each layer. Notice that there is a one-to-one association between
sr-plans and paths.

623

Castro, Piacentini, Cire, & Beck

Room 1 Room 2 Room 3
y

�

sI = {v1, i1}

Room 1 Room 2 Room 3

� � �

G = {v1, v2, v3}

(a) Visit-all with 3 rooms.

r

u1 u2

u3 u4 u5

u6 u7 u8

t

l(e) = 0

l(e) = 1a1,2:

a3,2:

a2,3:

a2,1:

(b) Exact BDD.

Figure 4: Three room running example and corresponding exact BDD.

As with our MDD presented above, the size of an exact BDD (i.e., the number of nodes)
grows exponentially with the size of the planning task Π+ (i.e., the number of actions and
propositions). We overcome this problem by constructing a relaxed BDD: a limited size
BDD that over-approximates the set of sr-plans. In particular, we show in Theorem 7.1
that the shortest path of a relaxed BDD is an admissible heuristic for Π+.

6.1 Relaxed BDD Construction Algorithm

Given a DFP task Π+, a relaxed BDD B = (NB, EB) is a limited-size BDD that over-
approximates the set of sr-plans for Π+, i.e., there exists an r − t path ρ ∈ B for each
sr-plan, but some paths may be invalid sr-plans. As in the MDD case, the width of B is
the maximum number of nodes in each layer, i.e., w(B) := max{|NBi | : i ∈ {1, ..., m + 1}}.
We limit the size of B by bounding its width, w(B) ≤ W, with W ∈ Z+.

We use the same iterative construction procedure introduces in Algorithm 1 to create
relaxed BDDs. The BDD construction procedure only differs on the low-level method im-
plementations, specifically the initial BDD (WidthOneBDD), the update nodes procedures
(UpdateBDDNodesTop and UpdateBDDNodesBottom), the filtering rules (FilterBDDEdges),
and the splitting nodes algorithm (SplitBDDNodes). In particular, the WidthOneBDD pro-
cedure receives a sequence of pair-wise distinct action labels Λ = (λ1, ..., λm) and assigns
each action to a layer such that aλi = a(EBi), for all i ∈ {1, ..., m}. It then constructs a
width-one BDD by creating one node u ∈ NBi in each node layer i ∈ {1, ..., m + 1} and two
edges e, e′ ∈ EBi with different labels (i.e., l(e) 6= l(e′)) in each edge layer i ∈ {1, ..., m}.

Example 6.2. Consider our running example task Π+
3 with three rooms. Figure 5 illustrates

some of the steps of the BDD construction procedure. Figure 5a depicts the width-one BDD
created by the WidthOneBDD procedure. Figure 5b illustrates the SplitBDDNodes procedure
over NB2 and the FilterBDDEdges procedure for EB2 by a gray edge (eliminated by Rule B2,
Section 6.3). Lastly, Figure 5c shows the resulting relaxed BDD.

624

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

r

u1

u2

u3

t

a1,2:

a3,2:

a2,3:

a2,1:

(a) Width-one BDD.

r

u1 u2

u3

u4

t

(b) BDD after one split.

r

u1 u2

u3 u4

u5

t

l(e) = 0

l(e) = 1

(c) Relaxed BDD.

Figure 5: BDD construction with W = 2.

6.2 BDD Node Representation

With the purpose of identifying invalid sr-plans and deciding how to split a node, each node
u ∈ NB stores information about the achieved and needed propositions by all paths passing
through u. As in the MDD encoding, the information is aggregated both for the r− u and
the u− t partial paths. Once again, consider δin(u) and δout(u) as the set of incoming and
outgoing edges of a node u ∈ NB, respectively, and let s(e) = u and t(e) = v represent the
source and target node of an edge e = (u, v) ∈ EM, respectively. To simplify the exposition,
we will consider that all zero-edges (l(e) = 0) have add(a(e)) = pre(a(e)) = ∅.

Procedure UpdateBDDNodesTop updates the top-down information of all nodes. For
each node u ∈ NB, we store the propositions that are achieved by all r − u paths, α↓A(u),

and the propositions achieved by some r−u path, α↓S(u). These sets have the same meaning
as in the MDD case and are computed in the same fashion (see Section 4.2). In addition,
each node u ∈ NB stores the set of propositions that are needed by all and at least one
r− u paths, η↓A(u) and η↓S(u), respectively. At the root node η↓A(r) := η↓S(r) := LP , and for
any other node u ∈ NB we have that

η↓A(u) :=
⋂

e∈δin(u)

(
η↓A(s(e)) ∪ pre(a(e))

)
,

η↓S(u) :=
⋃

e∈δin(u)

(
η↓S(s(e)) ∪ pre(a(e))

)
.

For the bottom-up information of u ∈ NB, sets α↑A(u) and η↑A(u) correspond to the propo-

sitions achieved and needed by all u− t paths, respectively. Similarly, sets α↑S(u) and η↑S(u)
represent the propositions achieved and needed by some u− t path, respectively. Starting
at t with α↑A(t) := α↑S(t) := η↑A(t) := η↑S(t) := ∅, UpdateBDDNodesBottom instantiates α↑S(u)

and η↑S(u) for each node u ∈ NB as described in Section 4.2, and sets α↑A(u) and η↑A(u) as

625

Castro, Piacentini, Cire, & Beck

α↑A(u) :=
⋂

e∈δout(u)

(
α↑A(t(e)) ∪ add(a(e))

)
,

η↑A(u) :=
⋂

e∈δout(u)

(
η↑A(t(e)) ∪ pre(a(e))

)
.

Notice that the BDD keeps track of more propositional sets than the MDD. The latter
can avoid storing top-down information of the needed propositions because it represents
the sequencing aspect of the problem. In contrast, as the BDD only encodes sr-plans, we
require the propositions in both directions to identify invalid paths.

In addition, each node u ∈ NB maintains the cost of the shortest r− u and u− t path,
ω↓(u) and ω↑(u), respectively. Starting with ω↓(r) := ω↑(t) := 0, the cost of u ∈ NB is

ω↓(u) := min
e∈δin(u)

{
ω↓(s(e)) + c(e)

}
,

ω↑(u) := min
e∈δout(u)

{
ω↑(t(e)) + c(e)

}
.

The shortest path information is used both for the BDD heuristic computation (Section
7) and to identify and eliminate sub-optimal sr-plans (Section 6.3).

Example 6.3. Consider node u3 in Figure 5c for our running example. For the top-
down information we have α↓A(u3) = α↓S(u3) = {i1, i2, v1, v2}, η↓A(u3) = {v1, v2, v3, i3} and

η↓S(u3) = η↓A(u3) ∪ {i1}. For the bottom up we have α↑A(u3) = α↑S(u3) = {i3, v3} and

η↑A(u3) = η↑S(u3) = {i2}.

6.3 BDD Filtering Rules

The FilterEdges procedure removes paths in B that form invalid sr-plans. To do so, we
develop a set of rules to identify if at least one path passing through an edge corresponds
to a sr-plan. If an edge e ∈ EB violates a rule, then all paths passing through e are invalid
sr-plans, and edge e can be removed.

Rule B1. Consider an edge e = (u, v) ∈ EB with action a(e) = a and label l(e) = 1.
Every precondition of a has to be achieved by at least one r− t path that includes edge e.

pre(a) ⊆ α↓S(u) ∪ α↑S(v).

Rule B2. Consider an edge e = (u, v) ∈ EB with a(e) = a. Then, each proposition needed
by all r− t paths traversing e needs to be achieved.

η↓A(u) ∪ η↑A(v) ⊆ α↓S(u) ∪ α↑S(v), if l(e) = 0,

η↓A(u) ∪ η↑A(v) ⊆ α↓S(u) ∪ add(a) ∪ α↑S(v), if l(e) = 1.

Notice that rules B1 and B2 are similar to rules M1 and M2 (see Section 4.3). Both
sets of rules make sure that the actions are applicable and that the needed propositions are
covered. However, rules B1 and B2 are slightly more complicated since the BDD considers
the sequential relaxation of the problem. Proposition 6.1 shows that rules B1 and B2 are
necessary conditions for any sr-plan path.

626

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

Proposition 6.1. Consider a relaxed BDD B = (NB, EB) for a DFP task Π+. Rules B1
and B2 are necessary conditions for any r− t path ρ ∈ B to be an sr-plan.

Proof. Consider a path ρ = (e1, . . . , em) ∈ B that corresponds to an sr-plan and any edge

e = (u, v) ∈ ρ. From Section 6.2, we know that
⋃
e′∈ρ\{e} add(a(e′)) ⊆ α↓S(u) ∪ α↑S(v), and

η↓A(u) ∪ η↑A(v) ⊆
⋃
e′∈ρ\{e} pre(a(e′)) ∪ LP . Since pre(a) ∩ add(a) = ∅ for all actions a ∈ A,

rules B1 and B2 are satisfied by any edge e ∈ ρ.

In addition, we develop two additional filtering rules to identify sub-optimal plans. These
rules are analogous to M3 and M4 (see Section 4.3).

Rule B3. Consider an edge e = (u, v) ∈ EB with a(e) = a and l(e) = 1. Action a adds
at least one proposition p /∈ sI that is needed by some path traversing e.

(add(a) \ sI) ∩
(
η↓S(u) ∪ η↑S(v)

)
6= ∅.

Rule B4. Consider an edge e = (u, v) ∈ EB with a(e) = a and a plan π′ ∈ Π+. The
minimum-cost path traversing e has a cost less than or equal to cost(π′).

ω↓(u) + c(e) + ω↑(v) ≤ cost(π′).

All minimal cost-optimal plans satisfy rules B3 and B4, and, as a consequence, the rules
are valid for any minimal cost-optimal sr-plan. Rule B3 avoids unnecessary actions and
rule B4 removes sr-plans with higher cost than the best plan found so far. Notice that
Rule B3 can be strengthened to remove all sr-plans with redundant actions as shown in
rule B3-A. However, this rule can potentially remove some minimal cost-optimal plans. We
decided to use rule B3 to guarantee that all minimal cost-optimal plans are represented in
the BDD.

Rule B3-A. Consider an edge e = (u, v) ∈ EB with a(e) = a and l(e) = 1. Action a adds
at least one proposition p /∈ sI that is needed by some path traversing e.(

add(a) \ (α↓A(u) ∪ α↑A(v))
)
∩
(
η↓S(u) ∪ η↑S(v)

)
6= ∅.

The FilterBDDEdges procedure (Algorithm 5) iterates over all edges in a layer (line 2).
It removes all edges that violate any of our four filtering rules (lines 3-4). The procedure
also keeps track of changes in the BDD.

Algorithm 5 Relaxed BDD Filtering Edges Procedure

1: procedure FilterBDDEdges(EBi)
2: for e ∈ EBi do
3: if e violates any of rule B1 to rule B4 then
4: Eliminate edge e from EBi . B has been modified

627

Castro, Piacentini, Cire, & Beck

6.4 BDD Splitting Algorithm

The SplitBDDNodes procedure aims to split nodes such that, if W =∞, it guarantees that
the resulting BDD is exact (i.e., all paths are sr-plans). Our approach takes advantage of
the DFP characteristics to create relaxed BDDs with tight worst cases on the maximum
width needed per layer. We start by defining the exact information of a node.

Definition 6.1. Consider a node u ∈ NB and a proposition p ∈ P.

(i) Proposition p ∈ P is α-exact in node u if all r − u paths add p or none do, i.e.,

p ∈ α↓A(u) or p /∈ α↓S(u), respectively.

(ii) Proposition p ∈ P is η-exact in node u if either all r− u paths require p or none do,

i.e., p ∈ η↓A(u) or p /∈ η↓S(u), respectively.

Algorithm 6 Relaxed BDD Split Nodes Procedures

1: procedure SplitBDDNodes(NBi , W)
2: Initialize Q with all the propositions in P¬sI
3: while |Q| > 0 and |NBi | <W do
4: Remove first proposition p in Q
5: if i ≤ γ(p) + 1 then
6: for u ∈ NBi do

7: if p ∈ α↓S(u) and p /∈ α↓A(u) then
8: SplitBDDNodeAchieved(u, p)

9: if |NBi | =W then return

10: for u ∈ NBi do

11: if p ∈ η↓S (u) and p /∈ η↓A (u) and p /∈ α↓A(u) then
12: SplitBDDNodeNeeded(u, p)

13: if |NBi | =W then return

Algorithm 6 illustrates the SplitBDDNodes procedure. The algorithm receives a node
layer and the width limit, W. The procedure iterates over a priority queue of propositions
Q and splits nodes such that for each p ∈ Q, all nodes are α-exact and η-exact or the width
limit is reached. As in the MDD case (Section 4.4), goal propositions have higher priority,
followed by propositional landmarks, and then the remaining propositions. Algorithm 6
avoids splitting nodes with respect to proposition p after layer index γ(p) + 1 (line 5), a
valid condition explained in Proposition 6.3.

Algorithm 7 shows how to split any node u ∈ NB with respect to a proposition p ∈ P.
The procedure iterates over the incoming edges of u and redirects the edges to a new node
u′ accordingly. If p is α-exact (respectively, η-exact) in all nodes in the previous layer, our
splitting procedure guarantees that p will be α-exact in u (respectively, η-exact).

Proposition 6.2. Consider a BDD B = (NB, EB) such that for each p ∈ P and node

u ∈ NB, p is α-exact in u and p is η-exact in u when p /∈ α↓A(u). Then, rules B1 and B2 are
sufficient to remove all invalid sr-plan paths in B.

628

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

Algorithm 7 Relaxed BDD Split Single Node Procedures

1: procedure SplitBDDNodeAchieved(u, p)
2: Create a new node u′ and update NBi = NBi ∪ {u′}
3: δachieved := {e ∈ δin(u) : p ∈ α↓A(s(e)) or p ∈ add(a(e))}
4: Redirect edges: δin(u

′) := δachieved and δin(u) := δin(u) \ δachieved
5: if δin(u

′) 6= ∅ then Duplicate outgoing edges from u to u′

6: procedure SplitBDDNodeNeeded(u, p)
7: Create a new node u′ and update NBi = NBi ∪ {u′}
8: δneeded := {e ∈ δin(u) : p ∈ η↓A (s(e)) or p ∈ pre(a(e))}
9: Redirect edges: δin(u

′) := δneeded and δin(u) := δin(u) \ δneeded
10: if δin(u

′) 6= ∅ then Duplicate outgoing edges from u to u′

Proof. Consider a path ρ ∈ B and a proposition p ∈ P¬sI such that either (i) there exists
an action a ∈ ρ with p ∈ pre(a) or (ii) p ∈ LP but for all a′ ∈ ρ, p /∈ add(a′). Take the last

edge e ∈ ρ, i.e., s(e) = u ∈ NBm and t(e) = t. Since ρ is an invalid sr-plan, p /∈ α↓A(u) and

p ∈ η↓A(u)∪pre(a(e)). Moreover, p /∈ α↓S(u) since p is α-exact in u. Since α↑S(t) = ∅ (Section
6.2), either rule B1 or B2 will eliminate edge e and, therefore, remove ρ from B.

Proposition 6.2 implies that for each proposition p ∈ P we need at most three nodes in
each layer NBi , i.e., a node u ∈ NBi where p ∈ α↓A(u), a node u′ ∈ NBi where p /∈ α↓A(u′) and

p ∈ η↓A(u′), and a node u′′ ∈ NBi where p /∈ α↓A(u′′) and p /∈ η↓A(u′′). Since for all p ∈ sI and

u ∈ NB, p ∈ α↓A(u) (Section 6.2), there is no need to split nodes with respect to propositions

in the initial state. Similarly, for all propositions p ∈ LP and nodes u ∈ NB, p ∈ η↓A(u)
(see Section 6.2), so each propositional landmark needs at most two nodes in each layer.
Then, a conservative estimate on the maximum width needed to construct an exact BDD

is O(3
|P¬sI ,¬LP | · 2|LP¬sI |), where LP¬sI = LP \ sI (i.e., all propositional landmarks omitted

in the initial state) and P¬sI ,¬LP = (P \LP) \ sI (i.e., all propositions omitted in the initial
state that are not landmarks).

Even though the proposed splitting approach is valid, we prove that it is possible to
create an exact BDD where not all nodes are α-exact or η-exact. Given a BDD B and a
proposition p ∈ P, we define the last layer of p, γ(p), as the maximum edge layer index at
which an action either adds or requires p, i.e., for i = γ(p), p ∈ add(a(EBi)) ∪ pre(a(EBi))
and for all j > γ(p), p /∈ add(a(EBj)) ∪ pre(a(EBj)).

Proposition 6.3. Consider a BDD B = (NB, EB) such that for each p ∈ P and node

u ∈ NBi , with i ≤ γ(p) + 1 , p is α-exact in u and p is η-exact in u when p /∈ α↓A(u). Then,
rules B1 and B2 are sufficient to remove all invalid sr-plan paths in B.

Proof. Consider a path ρ ∈ B with a proposition p ∈ P¬sI such that p ∈ LP or for some
action a ∈ ρ, p ∈ pre(a) but p is not added by any action in ρ. Now take edge e = (u, v) ∈ ρ
in the last layer of p, i.e., u ∈ NBγ(p) and v ∈ NBγ(p)+1. By definition of last layer, p /∈ α↑S(v)

and p /∈ η↑S(v). By hypothesis over ρ, p /∈ α↓A(u) (and, p /∈ α↓S(u)) and p ∈ η↓A(u)∪ pre(a(e)).
Then, either rule B1 or B2 will remove edge e and, hence, the invalid sr-plan path ρ.

629

Castro, Piacentini, Cire, & Beck

Notice that Algorithm 6 uses Proposition 6.3 to avoid splitting nodes with respect to a
proposition p ∈ Q when the current layer is greater than γ(p) (line 5), and avoids splitting

nodes u ∈ NB if p ∈ α↓A(u) (line 11).

6.5 Maximum BDD Width and Action Ordering

Given the BDD construction procedure in Section 6.1, we present an upper bound for the
maximum width needed in each layer of an exact BDD. We show how these bounds depend
on the action-layer assignment and develop a simple heuristic procedure to create good
action-layer orderings.

For a given p ∈ P¬sI , consider the first edge layer where p is either added or needed,
i.e., φ(p) := min{i : p ∈ add(a(EBi)) ∪ pre(a(EBi)), i ∈ {1, ..., m}}. We define ψ(i) as the
set of propositions that need to be considered for splitting in node layer NBi , i.e., ψ(i) :=
{p ∈ P¬sI : φ(p) + 1 ≤ i ≤ γ(p) + 1}. In particular, let ψLP (i) := ψ(i) ∩ LP be the set of
propositional landmarks that need splitting in layer NBi , and ψP(i) := ψ(i) \ LP be the set
of non-propositional landmarks that need splitting in layer NBi .

Corollary 6.1. Consider a DFP task Π+ and an exact BDD B constructed as described
in Section 6.1. The maximum width of layer NBi is O(2|ψLP (i)| · 3|ψP (i)|). Then, an upper
bound on the maximum width for B is given by O(maxi∈{1,...,m}{2|ψLP (i)| · 3|ψP (i)|}).
Proof. Follows directly from Proposition 6.3.

Notice that ψ(i) depends on the action ordering Λ used to assign actions to layers
(WidthOneBDD). In particular, we would like to minimize the number of propositions that
need to be split in every layer, i.e., find a Λ such that maxi∈{1,...,m}{2|ψLP (i)| · 3|ψP (i)|} is
minimized. This NP-hard problem has been studied for knapsack constraints (Behle, 2008)
and for the set covering and independent set problems (Bergman, van Hoeve, & Hooker,
2011; Bergman, Cire, van Hoeve, & Hooker, 2012). We develop a simple action ordering
heuristic that takes advantage of the following proposition.

Proposition 6.4. Consider a DFP task Π+ and a relaxed BDD B constructed as described
in Section 6.1 with action ordering Λ. Assume that for a given p ∈ P¬sI ,¬LP all actions
that add p are ordered before all actions that require p in Λ. Then, it is sufficient to have
W = 2 to guarantee that all paths ρ ∈ B that require p have an action that adds p.

Proof. Since all actions that add p are ordered first, we need two nodes in a layer to ensure
that p is α-exact in each node. Consider the first edge layer EBi such that a = a(EBi) requires

p. Take a node u ∈ NBj (j > i). If p ∈ α↓A(u), u does not need to be η-exact (Proposition

6.3). If p /∈ α↓S(u), rules B1 and B2 eliminate edges that require p, so no split is needed.

Our BDDActionOrdering procedure (Algorithm 8) receives the set of actions and a prior-
ity queue of propositions Q. In our implementation, we use the same propositional priority
queue used in the SplitBDDNodes procedure (Algorithm 6). Then, the action ordering is
as follows: for each proposition p ∈ Q we insert actions a ∈ A \ Λ that add p into Λ (lines
4-6) and then actions a ∈ A \ Λ that require p (lines 8-10). Notice that when iterating
over a propositional landmark p, we omit including actions that require p since p is needed
in any sr-plan. However, these actions will be added later on when iterating over other
propositions.

630

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

Algorithm 8 BDD Action Ordering

1: procedure BDDActionOrdering(A, Q)
2: while |Q| > 0 and |A| > 0 do
3: Remove first proposition p in Q
4: for a ∈ A do
5: if p ∈ add(a) then
6: Add a to Λ and remove a from A
7: if p /∈ LP then
8: for a ∈ A do
9: if p ∈ pre(a) then

10: Add a to Λ and remove a from A
11: return Λ

7. Relaxed BDD-based Heuristic

We now present our relaxed BDD heuristic for a DFP task Π+ and show its admissibility
and consistency. Given any reachable state s, we can construct a relaxed BDD B for s using
Algorithm 1 and updating the initial state sI := s. Then, the relaxed BDD heuristic hB(s)
corresponds to the shortest path in B, i.e., hB(s) := ω↓(t).

Theorem 7.1. Consider a DFP task Π+, a state s, and a relaxed BDD B for s withW ≥ 1
constructed using Algorithm 1. Then, hB(s) given by the shortest path in B is admissible.

Proof. Propositions 6.1 guarantees that no sr-plan is eliminated, while rules B3 and B4
guarantee the presence of at least one cost-optimal plan. Then, hB(s) ≤ cost(π∗sr) ≤ h+(s),
where π∗sr is the cost-optimal sr-plan from s and h+ the perfect heuristic for Π+.

As in the MDD case, our implementation constructs a relaxed BDD B for sI and updates
B during search. Given a state s and the sequence of actions to reach s from sI , πs =
(a1, .., ak), we update B by removing all edges e ∈ EB with a(e) ∈ πs and l(e) = 0. We then
iteratively apply the top-down and bottom-up procedures over B (lines 3 to 6, Algorithm
1) and compute the heuristic as:

hB(s) :=

{
ω↓(t)− cost(πs), πs ∈ B,
∞, otherwise,

(5)

where πs ∈ B represents that there exists a path ρ ∈ B with an edge e ∈ ρ with l(e) = 1
and a(e) = a for all a ∈ πs. As in the MDD case (Section 5), hB computed via (5) is a
globally admissible heuristic (Karpas & Domshlak, 2012), which is sufficient to guarantee
that a best-first type of search will find the optimal solution. In addition, (5) computes a
consistent heuristic if neither the action nor proposition order changes when updating B for
any state s (Theorem 7.2). As previously noted, the main reason for the consistency of hB
is that the successor state BDD is a subset of the current state BDD.

Theorem 7.2. Consider a delete-free task Π+, a state s, and a relaxed BDD B withW ≥ 1
constructed using Algorithm 1. Then, hB(s) given by (5) is consistent.

Proof. Consider a state s, an applicable action a, and its successor state s′ = succ(s, a).
Given the relaxed BDD BsI for sI , let Bs and Bs′ be the updated BDDs for state s and

631

Castro, Piacentini, Cire, & Beck

s′, respectively. Since each BDD is updated from BsI without changing the action and
proposition order, every path ρ ∈ Bs′ is also in Bs. Then, we have ω↓(ts) ≤ ω↓(ts′).

We know that hB(s) = ω↓(ts) − cost(πs) and hB(s′) = ω↓(ts′) − cost(πs) − cost(a).
Then, hB(s)−cost(a)−hB(s′) = ω↓(ts)−ω↓(ts′) ≤ 0, and so hB(s) ≤ cost(a)+hB(s′).

7.1 Relationship with Disjunctive Landmarks

The set of propositional landmarks LP plays a key role on the relaxed BDD construction,
specifically on the splitting and action ordering algorithms. We show that the accuracy of
our heuristic is linked to both LP and the heuristics based on disjunctive action landmarks.

Given a state s, a disjunctive action landmark (Zhu & Givan, 2003; Helmert & Domsh-
lak, 2009) is a set of actions D ⊆ A such that at least one action in D must be present
in any plan from state s. Notice that each propositional landmark p ∈ LP \ s defines a
disjunctive action landmark A(p) = {a ∈ A : p ∈ add(a)}, i.e., any plan from s needs an
action that adds proposition p. In fact, any subset of propositional landmarks L ⊆ LP \ s
defines a set of disjunctive landmarks D = {A(p) : p ∈ L}

The disjunctive action landmark problem is defined as follows: given a set of disjunctive
landmarks D, we look for a minimum-cost set of actions such that there is one action for
each disjunctive action landmark D ∈ D. The MILP model DMILP represents this hitting
set problem (Bonet & Helmert, 2010) for any disjunctive landmark set D, where xa ∈ {0, 1}
is binary variable representing if action a ∈ A is chosen or not. We will consider the optimal
value of this problem to be the perfect disjunctive landmark heuristic hD. Notice that the
hitting set problem is an NP-hard problem (Karp, 1972), so relaxations of the problem (e.g.,
LP relaxation) are often used as heuristics.

hD := min
∑
a∈A

cost(a)xa (DMILP)

s.t.
∑
a∈D

xa ≥ 1 ∀D ∈ D

xa ∈ {0, 1} ∀a ∈ A

Proposition 7.1 shows that the relaxed BDD heuristic is highly related to hD when set
D is defined over a subset of propositional landmarks L ⊆ LP . In fact, hB dominates hD if
all the propositions p ∈ L are α-exact in all the BDD nodes.

Proposition 7.1. Consider a planning task Π+, a reachable state s, a relaxed BDD B =
(NB, EB) for s and a set of propositional landmarks LP for s. Let L ⊆ (LP \s) be a subset of
propositional landmarks such that each proposition p ∈ L is α-exact in every node u ∈ NB.
Then, hD(s) ≤ hB(s) where D is defined over L.

Proof. For any r − t path ρ ∈ B, consider πsr(ρ) as the set of actions associated with ρ,
i.e., a ∈ πsr(ρ) if and only if there exist an edge e ∈ ρ with l(e) = 1 and a(e) = a. We
know that in every node u ∈ NB each proposition p ∈ L is α-exact and also η-exact by
definition (η↓A(r) := LP , Section 6.2). Then, for each path ρ ∈ B and p ∈ L, there exists
at least one action a ∈ πsr(ρ) that is also in A(p). Hence, the set of actions πsr(ρ) for
any ρ ∈ B is a feasible solution for DMILP , where D = {A(p) : p ∈ L}. It follows that
hD(s) ≤ cost(πsr(ρ)) for all ρ ∈ B, therefore hD(s) ≤ hB(s).

632

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

8. Relaxed MDD and BDD Comparison

We now summarize the main differences in our relaxed MDD and BDD approaches and
present guidelines on when to use each technique. Table 1 compares the graphical structures
in terms of encoding, size, and heuristic. As presented in Section 4, our relaxed MDD M
encodes the DFP task, where paths in M correspond to sequences of actions. In contrast,
our relaxed BDD B represents the sequential relaxation of a DFP task and, hence, paths
in B correspond to sets of actions (see Section 6). These differences affect the meaning of
edges and nodes. While an MDD edge in layer i represents the i-th action in the sequence,
a BDD edge in the same layer encodes the decision of selecting the associated action. Also,
nodes in M represent the aggregation of planning states, while nodes in B are aggregated
sets of achieved and needed propositions.

Table 1: Relaxed DDs comparison

Relaxed MDD M Relaxed BDD B

Encoding

Problem DFP task Sequential relaxation
Path Sequence of actions (plan) Set of actions (sr-plan)
Edges Applicable actions Selected actions
Nodes Aggregated states Aggregated achieved & needed prop.

Size

|N | O(m · W) O(W · |A|)
|E| O(m · W · (|A|+ 1)) O(2 · W · |A|)
|N |+ |E| O(m · W · (|A|+ 2)) O(3 · W · |A|)

Heuristic
Method Critical path Shortest path
Relates to hmax and planning graph Disjunctive landmarks

The encoding difference translates into a size difference. The number of layers in M
is an upper bound on the number of actions in a cost-optimal plan, m < |A|, while B has
exactly |A| layers. Hence, given a maximum width W, M has at most m · W nodes and B
has at most |A| ·W. Since the maximum number of edges emanating from an MDD node is
|A0| = |A|+1, the maximum number of edges inM is m ·W · (|A|+1). In contrast, B has at
most 2 ·W ·|A| edges because each node has at most two emanating edges. Notice that, even
thoughM usually has a smaller number of nodes than B, the number of edges inM is higher
than in B. Overall, as long as m ≥ 3, B is smaller thanM (i.e., |NB|+ |EB| < |NM|+ |EM|).

We also use different methods to calculate the relaxed DD heuristics and, thus, each
one relates to different techniques. Since hM is computed by a critical path procedure over
M, it has a strong relationship with critical path heuristics and the planning graph (see
Section 5). On the other hand, hB corresponds to the value of shortest path inside B and
it relates to disjunctive landmark heuristics (see Section 7).

Lastly, these differences give us guidelines on when to use each graphical structure. Re-
laxed MDDs should be preferred when the sequential aspect of the problem is predominant
and the number of actions is small. In contrast, relaxed BDDs are suited for domains where
the sequential relaxation is a good approximation to the original DFP task and there is a
high number of propositional landmarks. Our empirical results support the validity of these
guidelines (see Section 11).

633

Castro, Piacentini, Cire, & Beck

9. Exploiting the Relaxed DD Structure

Besides their use to compute admissible heuristics, we can exploit the graphical structure of
relaxed MDDs and BDDs to reduce the search-space and dynamically improve their filtering
rules. In the following, we explain how to extract plans from both graphical structures. We
also show how we can leverage the BDD structure to find action landmarks and identify
redundant actions.

9.1 Plan Extraction Procedures

One of the main advantages of representing all the cost-optimal plans in a graphical struc-
ture, either a relaxed MDD or BDD, is that we can extract plans by traversing the graph.
The cost of such plans can be used both to improve the cost-based filtering rules (Rules M4
and B4) and also to avoid sub-optimal states during search (see Section 10).

Algorithm 9 MDD Plan Extraction Procedure

1: procedure MDDPlanExtraction(Ms, s)
2: π := ∅, u := r
3: for i ∈ {1, ..., m} do
4: e := SelectEdgeMDD(s, Ms, u)
5: a := a(e), u := t(e), s := s ∪ add(a)
6: Add action a to π
7: if G ⊆ s then return π

8: return ∅

Given a reachable state s and its relaxed MDD Ms, Algorithm 9 shows our plan ex-
traction procedure. The algorithm starts from an empty plan and greedily chooses a path
in the MDD that has the potential to be a plan. Specifically, the algorithm starts in the
root node r ∈ NM and iterates over each layer choosing an outgoing edge from the current
node (lines 3-4). The SelectEdgeMDD procedure iterates over all the outgoing edges of a
node u and selects an edge e such that the corresponding action a = a(e) is applicable in s
and adds a new useful proposition. We give priority to actions that add a higher number of
new propositions, in particular, if they add propositional landmarks. The algorithm then
updates the current node, state, and plan using the selected edge (lines 5-6). The procedure
ends when the current state s is a goal state or it has iterated over all the layers.

Algorithm 10 BDD Plan Extraction Procedure

1: procedure BDDPlanExtraction(Bs, s)
2: π := ∅
3: while G 6⊆ s do
4: UpdatePathsBDD(π, Bs)
5: L := FindApplicableActions(s)
6: a := SelectActionBDD(L, Bs)
7: if a = ∅ then return ∅
8: Add action a to π and update state s := s ∪ add(a)

9: return π

634

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

Since the relaxed BDD ignores the sequential aspect of the problem, we use a different
approach to exact plans shown in Algorithm 10. Given a state s and its relaxed BDD Bs,
the procedure starts with an empty plan π (line 2) and adds actions to π until all goals
are satisfied. In each iteration, the procedure updates Bs by keeping only the paths that
have all the actions in π (line 4). Then, the procedure looks for all applicable actions in
s that add at least one new proposition, stores them in a list L, and uses Bs to select the
most promising action (lines 5-6). Specifically, given a list of actions L, we greedily look for
the action that has a path in Bs with the minimum cost, i.e., a′ = argmina∈L{min{ω↓(u) +
c(e) + ω↑(v) : e = (u, v) ∈ EB, a(e) = a, l(e) = 1}}. Notice that the extraction procedure
ends if SelectActionBDD does not select any action, i.e., it returns an empty set (line 7).
Lastly, if a is an action, we insert a to π and update state s (line 8).

9.2 Relaxed BDDs for Action Pre-Processing

We also develop a simple procedure to identify cost-optimal action landmarks and redundant
actions using a relaxed BDD B. Given a planning task Π+ and a reachable state s, we say
that an action a ∈ A is a cost-optimal action landmark if every cost-optimal plan from s
has action a. Notice that the cost-optimal action landmark definition is more restrictive
than the action landmark definition since it only considers cost-optimal plans. Any action
landmark is a cost-optimal action landmark but the inverse is not necessarily true.

Given a relaxed BDD B for a DFP task Π+ we identify cost-optimal action landmarks
as follows. Consider an edge layer EBi (i ∈ {1, ..., m}) such that all edges e ∈ EBi have label
l(e) = 1. Then, all cost-optimal plans have action a = a(EBi), i.e., a is an action landmark
for any cost-optimal plan. Similarly, we identify redundant actions by considering an edge
layer EBi such that all edges e ∈ EBi have label l(e) = 0. Then, no cost-optimal plan uses
action a = a(EBi), so a is a redundant action that can be removed from A.

10. Implementation

In the following, we give a detailed explanation of our tree search algorithm and how it
leverages the information from extracted plans. We also explain how the relaxed MDD and
BDD are updated during search and the pre-processing procedures.2

10.1 Binary Tree Search

We implement a branch-and-bound binary tree search procedure (Land & Doig, 1960),
where our relaxed DD structures can be easily integrated. This type of search has had
successful results when used with other admissible heuristics (Pommerening & Helmert,
2012) and optimization techniques (Imai & Fukunaga, 2015) that tackle cost-optimal DFP.

Our binary tree search implementation is a variant of the one used by Pommerening
and Helmert (2012) where we use a best-first strategy instead of a depth-first. We define
a state of our search as S = 〈s, πin, πout, c, h〉 where s is a planning task state (i.e., set of
propositions), πin and πout correspond to the tree search decisions, c is the cost to reach S,
and h the heuristic value. In particular, πin is the set of actions that are currently in the
plan and πout the set of actions that are not allowed to be part of the plan.

2. Our code is available at: https://github.com/MargaritaCastro/dd-planning.

635

Castro, Piacentini, Cire, & Beck

Algorithm 11 illustrates the full binary tree search procedure. For notation purposes,
we represent the components of a search state S as S.s, S.πin, S.πout, S.c and S.h. The
algorithm starts with a single search state S0 = 〈sI , ∅, ∅, 0, 0〉 associated with the initial
state when no decisions have been made (i.e., S0.πin = S0.πout = ∅). The cost of S0 is 0,
and the heuristic value is given by any admissible heuristic (e.g., hM or hB). The algorithm
keeps a priority queue of search states QS ordered in increasing value of S.c+S.h with ties
broken preferring higher values of S.c. In addition, the algorithm keeps track of the best
plan found so far, π, and the best upper and lower bound (UB and LB, respectively) of the
cost-optimal plan. Lines 2 to 6 initialize all of these values. Our specific implementation
uses the FF procedure (Hoffmann & Nebel, 2001) to extract an initial plan (line 5).

Algorithm 11 Binary Tree Search

1: procedure Binary Search(Π+)
2: S0 := 〈sI , ∅, ∅, 0, 0〉
3: S0.h :=ComputeHeuristic(S0)
4: QS := (S0)
5: π:=GetInitialPlan(Π+)
6: UB := cost(π), LB := S0.h
7: while |QS | > 0 do
8: Retrieve first state S from QS

9: if LB < S.c+ S.h then LB := S.c+ S.h

10: if LB ≥ UB then return π

11: a :=ChooseAction(S)
12: if a = ∅ then continue

13: % Create first child: action is never selected %
14: if cost(a) > 0 then
15: S′ := 〈S.s, S.πin, S.πout ∪ {a}, S.c, S.h〉
16: Insert state S′ to QS

17: % Create second child: action is selected %
18: S′′ := 〈S.s ∪ add(a), S.πin ∪ {a}, S.πout, S.c+ cost(a), 0〉
19: S′′.h := ComputeHeuristic(S′′)
20: if S′′.c+ S′′.h ≤ UB then
21: Insert state S′′ to QS

22: π′ := ExtractPlan(S′′)
23: if π′ 6= ∅ and cost(π′) < cost(π) then
24: π := π′, UB := cost(π)

25: return π

26: procedure ChooseAction(S)
27: for a ∈ A do
28: if a /∈ S.πout and pre(a) ⊆ S.s and add(a) 6⊆ S.s then
29: return a
30: return ∅

The binary tree search procedure iterates over the states in QS until it is empty (line
7) or we can prove that our current plan (i.e., incumbent solution) is optimal (line 10). For
each search state, we update the lower bound (line 9) and choose an action to branch on
(line 11). The ChooseAction procedure looks for any non-forbidden action that is applicable

636

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

in the current state S.s and that adds at least one proposition that is not in the current
state (lines 26-29). If there is no action that satisfies these conditions the algorithm returns
an empty set (line 30). When ChooseAction finds an action, our search procedure creates
two child states: one where the action is forbidden and one where the action is applied
to the current state. If action a has strictly positive cost, the first child is identical to its
parent state with the exception that now a is in the forbidden set of actions (lines 14-16).
In this case, we use the heuristic value of the parent state instead of computing the heuristic
value again. Since zero-cost actions do not affect the cost of a plan, we avoid creating the
first child if a is a zero-cost action.

The second child state corresponds to the decision of including action a to the current
plan. As such, the state S′′.s considers the add effects of a, S′′.πin includes a, and the
cost and heuristic value are updated accordingly (line 18-19). If the cost estimation to a
goal state is smaller or equal to our upper bound, we add the state into the queue (lines
20-21) and extract a plan. When the heuristic is given by either hM or hB, we use their
corresponding extraction plan procedures (Section 9). When using other heuristics this step
can be simply checking that S′′.πin is a valid plan. If the extracted plan has a smaller cost
than our incumbent, we update π and our upper bound (lines 23-24).

10.2 Updating the BDD and MDD During Search

The computational effort to create a relaxed DD (MDD or BDD, accordingly) can be quite
expensive depending on the number of actions and the chosen maximum width W. To
overcome the computational cost, our implementation creates a relaxed DD at the initial
state and uses it to compute the heuristic for the other states in the search. For each search
state S, we duplicate the initial state relaxed DD and update it considering the tree search
decisions, πin and πout. Hence, we keep two relaxed DD at all times during search: one for
the initial state and one for the current search state S that it is been evaluated.

Given the initial state MDD MsI and any state of the search S, MS is a copy of MsI

where we omit all the edges associated with actions in πout. In addition, the first k = |πin|
layers of MS have a single edge where edge e ∈ EMi (i ≤ k) is associated with the i-th
action in πin. Similarly, the relaxed BDD for state S, BS , is a copy of BsI where each edge
e with a(e) ∈ πin has label l(e) = 1 and each edge e with a(e) ∈ πout has a label l(e) = 0.

Besides the computational gain, updating the relaxed DDs during search results in a
consistent heuristic (see Sections 5 and 7). Moreover, our search algorithm remains complete
since the relaxed DD heuristics only prune sub-optimal states.

10.3 Pre-processing Steps

Our planner includes a set of pre-processing tools to extract landmarks and identify re-
dundant actions. We implement the same pre-processing algorithms used by Imai and
Fukunaga (2014, 2015) since we mostly compare to their LP heuristic and MILP model.
The landmark extraction algorithm is the same as the one described by Imai and Fukunaga
(2015), which is a variant of existing procedures (Zhu & Givan, 2003; Keyder, Richter, &
Helmert, 2010). The algorithm iterates over the actions and their add effects to identify
propositional landmark candidates and finally extract propositional and action landmarks.

637

Castro, Piacentini, Cire, & Beck

We also include the Iterative Variable Elimination procedure by Imai and Fukunaga
(2015) to identify redundant actions. The algorithm includes a Relevance Analysis that
starts from the set of goals and iterates over the set of actions to identify relevant actions,
i.e., actions that add goal propositions or preconditions of other relevant actions. We also
consider their Dominated Action Elimination procedure that checks if an action dominates
another in terms of cost and add effects. Lastly, the authors present an Immediate Action
Application procedure for zero-cost actions, that, in our case, is implemented inside our
binary tree search algorithm (Algorithm 11, line 14).

11. Empirical Evaluation

We now present an empirical study of our relaxed MDD and BDD heuristics. We analyze
our heuristics’ performance using different maximum widths W ∈ {2, 4, 8, 16, 32, 64} and
compare their performance against a MILP model for DFP (Imai & Fukunaga, 2014, 2015)
and its LP relaxation. The MDD, BDD, and LP are used as heuristics within our binary
search algorithm (see Section 10.1), while the MILP is solved once using an external solver.

Table 2: Selected IPC domain names and abbreviations.

Name Abbre. Name Abbre. Name Abbre.

barman-opt11 bar11 nomystery-opt11 nom11 transport-opt11 tra11
barman-opt14 bar14 openstacks-opt11 ope11 transport-opt14 tra14
childsnack-opt14 chi14 parking-opt11 par11 visitall-opt11 vis11
elevators-opt11 ele11 parking-opt14 par14 visitall-opt14 vis14
floortile-opt11 flo11 pegsol-opt11 peg11 woodworking-opt11 woo11
floortile-opt14 flo14 scanalyzer-opt11 sca11
ged-opt14 ged14 sokoban-opt11 sok11

We test all approaches over delete-free version of domains from the IPC2011 and IPC2014
competitions. We restrict ourselves to domains with no negative preconditions and no con-
ditional effects.3 Table 2 shows the selected domains and their abbreviated names. Our
experiments consider a 30 minute time limit and a 2GB memory limit. We use Gurobi 8.0
to solve the LP and MILP models. Everything is coded in C++.

To make the comparison as fair as possible, we calculate an initial upper bound using
the FF heuristic (Hoffmann & Nebel, 2001) and implement a plan extraction procedure for
the LP heuristic. Whenever the LP returns an integer solution, we check if it is a plan. If
so, we update the global upper bound accordingly.

11.1 Relaxed DD Heuristics Analysis

We first analyze the heuristic quality of our relaxed DDs in the initial state sI . To do so, we
compute the optimality gap (i.e., relative distance to the perfect heuristic) for a heuristic
h at the initial state as gap(h) = (h+(sI) − h(sI))/h

+(sI). Notice that an optimality gap
closer to zero means a more informative heuristic.

3. No domains from IPC2018 satisfy these requirements.

638

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

Figure 6a compares the median optimality gap for each relaxed DD heuristic using
different maximum widths. The error bars correspond to the first and third quartile of the
gap. These values are calculated over all the instances where the cost-optimal plan (i.e.,
h+(sI)) was available, 314 out of 374 instances. The figure shows that as the maximum
width W increases the gap decreases. However, there is a trade-off between informative
heuristics and computational time. Figure 6b shows the median time to construct and
compute a relaxed DD heuristic in the initial state, where the error bars correspond to the
first and third quartile. Since the relaxed DD width grows exponentially, the time of its
construction does too.

2 4 8 16 32 64

0

0.2

0.4

0.6

0.8

1

Maximum width W

G
ap

MW BW

(a) Median optimality gap.

2 4 8 16 32 64
10−2

10−1

100

101

Maximum width W
T

im
e

(s
ec

)

MW BW

(b) Median heuristic time computation.

Figure 6: Initial heuristic comparison for different maximum widths.

From Figure 6b we also observe that the time to construct a relaxed MDD is much
higher than the time for a relaxed BDD. This is mostly explained by the size discrepancy
between the two graphical structures (see Section 8).

ba
r1

1

ba
r1

4

ch
i1
4

el
e1

1
flo

11
flo

14

ge
d1

4

no
m

11

op
e1

1

pa
r1

1

pa
r1

4

pe
g1

1

sc
a1

1

so
k1

1

tr
a1

1

tr
a1

4

vi
s1

1

vi
s1

4

w
oo

11

0

0.5

1

IPC domains

A
ve

ra
ge

G
ap

M64 B64 LP

Figure 7: Initial heuristic comparison (best).

While Figure 6a shows that in median the relaxed BDD heuristic is more informative,
this tendency depends on the DFP domain. Figure 7 compares the average optimality gap
for our best relaxed MDD and BDD heuristics (i.e., withW = 64) and the LP heuristic (see
Appendix A for a complete list of optimality gaps for all widths). The figure shows that in
most domains the LP heuristic has the smallest gap andM64 the largest ones. Nonetheless,

639

Castro, Piacentini, Cire, & Beck

the relaxed MDD heuristic has an exceptional performance in the two transport domains
(tra11 and tra14). Additionally, the B64 heuristic is perfect in nom11, a domain with a
large number of propositional landmarks and where the optimal sr-plan cost is equal to the
cost of the optimal DFP plan in all instances.

Figure 7 also shows that the M64 heuristic is perfect for all instances in domains ged14
and ope11 (i.e., gap = 0). These two domains have several zero-cost actions and in all
instances the optimal plan needs exactly one action with positive cost. Since our search
procedure skips branching on applicable zero-cost actions (see Section 10.1), our MDD can
easily identify the needed positive cost action. In contrast, B64 evaluates to zero in all
instances of these domains since the optimal cost of the sequential relaxation is zero. This
explains the larger gap of B64, which is always equal to 1.

11.2 Effectiveness of MDD and BDD Heuristics

As discussed in the previous section, the quality of our relaxed DD heuristics depends on
the specific domain at hand. We believe that relaxed MDDs generate informative heuristics
when the sequential aspect of the problem is predominant (e.g., in the transport domain),
while relaxed BDDs have better performance when the sequential relaxation is a good
approximation to the original DFP task and there are a high number of propositional
landmarks. These hypotheses arise from our construction procedures, their theoretical
relationship with existing techniques, and the results presented in Figure 7.

�

�

�

�

y

(a) Full grid: goals in any cell.

�

�

�

�

y

(b) Half grid: goals in the right half of the grid.

Figure 8: Examples of random instances for 10× 4 visit-all domain with |G| = 4.

We test our hypotheses in modified instances from the visit-all domain using M and B
with W = 4. We consider a 10 × 4 grid with different number of randomly placed goals,
|G| ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. In all instances, the agent starts in the bottom left
corner cell. We consider two different grid settings depicted in Figure 8. The first one,
Figure 8a, considers one goal in the initial cell and the others placed randomly in the grid.
The second grid setting also allocates one goal in the initial cell but all the other goals are
allocated randomly in the right half of the grid, i.e., the blue region in Figure 8b. We create
10 random instances for each grid configuration (i.e., full and half) and number of goals.

Notice that the half grid setting is adversarial for the sequential relaxation. Since sr-
plans are not forced to consider actions applicable to the initial state, cost-optimal sr-plans
can avoid using actions in the left half of the grid. In addition, changing the number of goals
allows us to analyze the effectiveness of our heuristic with different numbers of propositional
landmarks.

Figures 9a and 9b present the average optimality gap at the initial state for each heuristic
and configuration. The figures show thatM4 is more informative when the number of goals

640

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Number of Goals

G
ap

M4 B4

(a) Full grid.

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Number of Goals

G
a
p

M4 B4

(b) Half grid.

Figure 9: Initial heuristic comparison for different maximum widths.

is small (i.e., |G| ≤ 10). In these cases, our critical path heuristic to the most expensive
goals is a good estimate for the cost-optimal plan. However, when the number of goals
increases, the cost to reach the most expensive goals is a weak estimate.

When all the goals are in the right half of the grid the sequential relaxation is a bad
approximation for the DFP task since there is no need to use any actions in the left side of
the room. As a consequence, the optimality gap for B4 is worse in the half grid setting than
in the full grid. Also, notice that in this domain the number of propositional landmarks is
equivalent to the number of goals. Hence, fewer goals mean a less informative disjunctive
landmark heuristic. This statement correlates with the behavior of B4, where we see an
improvement in the optimality gap when the number of goals increases.

These experiments illustrate our claim for these domains: M is more informative when
we have a small number of goals and the action sequencing is important. In contrast, B
is informative in the presence of a large number of propositional landmarks and when the
sequential relaxation is a good estimate of the DFP task.

11.3 Overall Performance Evaluation

We now present the performance of our approaches and compare them with state-of-the-art
techniques. Table 3 shows the coverage (i.e., number of instances solved) using our relaxed
DD heuristics, where column “#” corresponds to the number of instances in each domain.
Overall, the relaxed BDD heuristics solve approximately 100 more instances than when
using the relaxed MDD heuristics. This correlates with the results presented in Figures 6
and 7 which show that the relaxed BDD heuristics are less computationally expensive and
more informative in most domains. The only exception is the two transport domains where
the relaxed MDD heuristics are more informative and solve more instances. Table 3 also
highlights the trade-off of using different maximum widths. In some domains, it is preferable
to use a smaller relaxed DDs while in others bigger diagrams solve more instances.

Figure 10 compares the number of states evaluated when using relaxed DDs of extreme
widths (i.e.,W = 2 andW = 64) for instances where both techniques find optimal solutions.
The x and y coordinates of points in the plots correspond to the number of states evaluated
by a relaxed DD with W = 2 and W = 64, respectively. We can see that for both relaxed
DDs, most of the points are below the diagonal, which shows that bigger widths result in

641

Castro, Piacentini, Cire, & Beck

Table 3: Coverage for different relaxed MDDs and BDDs maximum widths.

Number of Instances Solved

domain # M2 M4 M8 M16 M32 M64 B2 B4 B8 B16 B32 B64

bar11 20 0 1 4 4 4 4 0 0 0 0 0 0
bar14 14 0 0 3 3 6 6 14 14 14 14 14 14
chi14 20 4 4 4 4 4 4 18 18 20 20 20 20
ele11 20 16 14 12 11 8 7 20 20 19 18 16 15
flo11 20 2 2 2 2 1 0 4 4 4 5 4 4
flo14 20 0 0 0 0 0 0 1 1 1 1 1 1
ged14 20 20 20 20 20 20 20 20 20 20 20 20 20
nom11 20 5 6 6 6 8 8 16 18 18 18 18 20
ope11 20 20 20 20 20 20 20 20 20 20 20 20 20
par11 20 0 0 0 0 1 1 6 4 3 3 3 3
par14 20 0 0 0 0 0 1 9 9 9 9 7 6
peg11 20 19 19 19 19 19 17 19 19 18 18 18 17
sca11 20 1 1 1 1 1 1 7 7 6 6 5 5
sok11 20 20 18 18 18 17 16 18 18 19 19 19 20
tra11 20 2 2 2 2 1 1 1 1 1 1 0 0
tra14 20 1 1 3 3 3 2 1 1 1 1 1 0
vis11 20 9 9 9 9 9 9 16 16 16 16 16 16
vis14 20 3 3 3 3 3 3 17 17 16 16 16 16
woo11 20 2 3 3 3 4 6 14 18 17 17 17 17

Total 374 124 123 129 128 129 126 221 225 222 222 215 214

fewer evaluated states.4 However, points on the diagonal indicate that bigger widths do
not always affect the number of states evaluated. This behavior is particularly true for
relaxed BDDs that have a marginal increase in heuristic quality when the width increases
(see Figure 6a).

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

M2

M
6
4

(a) Relaxed MDD heurisitcs.

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

B2

B 6
4

(b) Relaxed BDD heuristics.

Figure 10: Number of states evaluated.

4. The only point above the diagonal corresponds to an instance where, by chance, W = 64 extracted the
cost-optimal plan later during search.

642

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

While using a larger width can lead to a significant reduction of states evaluated, Figure
11 shows that this reduction might not translate to faster solving time. Both plots have
most points above the diagonal, illustrating that small-width relaxed DDs solve the problem
faster. Nevertheless, there are some exceptional cases where larger and more informative
relaxed DDs reduce the computational time by orders of magnitude.

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

M2

M
6
4

(a) Relaxed MDD heuristics.

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

B2

B 6
4

(b) Relaxed BDD heuristics.

Figure 11: Time (sec) to solve an instance.

Lastly, we compare the best performing relaxed MDDs and BDDs with the LP heuristic
and the MILP model. The first set of columns in Table 4 shows the number of instances
solved by each approach. MILP has the best coverage, followed by our best performing
relaxed BDD and the LP heuristic. Nonetheless there are some domains where our relaxed
MDD heuristic outperforms the MILP model (i.e., the first transport domain and pegsol).
Also, our BDD heuristic outperforms the MILP model in elevators, pegsol and scanalyzer.

We notice that the DD heuristics achieve higher coverage than MILP in domains where
the LP relaxation is weak. In particular, the MILP model has a large number of Big-M
constraints when the sequencing aspect of the problem is predominant and, therefore, a
weak relaxation (i.e., transport domains). We also notice that our tree-search procedure
handles domains with zero-cost actions better (see Section 10.1), which explain the superior
coverage of our approach in ele11 and peg11. It is also interesting to see the large coverage
difference between the MILP model and LP heuristic, which is due to the highly optimized
MILP solvers and sophisticated techniques implemented on them (e.g., cut generation).

There are a number of domains where the BDD heuristic has a higher coverage than the
LP heuristic even though the later has a smaller average gap (i.e., domains bar14, par11,
par14, and woo11). There are two factors that played a key role in reducing the number
of states evaluated and, thus, explaining these results. First, in these domains, the BDD
heuristic is usually more informative than the LP heuristic when evaluating states closer
to a goal state. Second, in general the BDD plan extraction procedure finds cost-optimal
plans earlier during search than the LP methodology.

The second and third set of columns of Table 4 present the average run time and states
evaluated by each approach over the instances that all of them solved. Since the MILP
model is not implemented inside our search procedure, we only present the average states

643

Castro, Piacentini, Cire, & Beck

Table 4: Comparison with state-of-the-art approaches.

Coverage Average Time (sec) Average # States Evaluated

domain # MILP LP B4 M8 M32 MILP LP B4 M8 M32 LP B4 M8 M32

bar11 20 8 0 0 4 4 - - - - - - - - -
bar14 14 14 9 14 3 6 0.7 454.8 7.1 257.2 2.7 23,602.7 15,765.7 143,597.7 506.0
chi14 20 20 6 18 4 4 0.4 89.7 1.4 313.2 339.8 6,440.5 5,996.5 675,891.8 671,269.3
ele11 20 18 17 20 12 8 366.3 114.7 46.0 531.4 887.3 64,572.0 64,818.9 14,515.1 5,771.4
flo11 20 20 14 4 2 1 0.3 3.8 12.0 607.8 1417.3 1,681.0 23,998.0 222,565.0 146,945.0
flo14 20 20 16 1 0 0 - - - - - - - - -
ged14 20 20 20 20 20 20 391.1 39.5 2.1 8.6 40.8 25,773.8 2,110.9 9.1 9.1
nom11 20 20 18 18 6 8 0.9 0.8 0.1 11.4 0.5 8.5 1.0 2,100.5 11.0
ope11 20 20 20 20 20 20 0.9 0.8 0.1 1.1 6.1 1.0 2.0 1.0 1.0
par11 20 18 5 4 0 1 - - - - - - - - -
par14 20 20 7 9 0 0 - - - - - - - - -
peg11 20 16 20 19 19 19 180.5 9.7 158.0 116.2 251.3 9,907.7 228,516.2 9,130.1 3,411.3
sca11 20 6 5 7 1 1 0.3 0.3 0.0 0.2 0.1 20.0 19.0 348.0 348.0
sok11 20 20 20 18 18 17 151.2 7.0 9.7 94.5 203.3 1,104.4 6,895.9 5,885.6 3,197.6
tra11 20 0 0 1 2 1 - - - - - - - - -
tra14 20 3 0 1 3 3 - - - - - - - - -
vis11 20 20 16 16 9 9 0.3 1.0 1.1 84.4 101.6 408.4 3,574.8 50,985.2 14,804.4
vis14 20 20 17 17 3 3 0.3 0.5 1.4 234.2 265.5 158.7 3,802.0 145,634.3 45,795.7
woo11 20 20 14 18 3 4 0.6 6.1 0.2 473.9 282.8 372.7 450.0 54,806.0 8,154.0

Total\Ave. 374 303 224 225 129 129 143.6 33.9 28.5 121.6 187.9 11,828.5 40,311.1 43,175.9 29,588.8

evaluated for the other techniques. The results illustrate that there is a wide performance
variability and different heuristics should be preferred in specific domains.

In some domains (e.g., nom11 and ope11) the heuristic methods find optimal plans in
the initial state, which is unusual in A∗ search. Since our search algorithm has a bounding
procedure (see Section 10.1), it stops as soon as the best lower bound is equal to the
incumbent. Hence, if the heuristic at the initial state is perfect and the extracted plan has
optimal cost, there is no need to evaluate any other state.

11.4 Using BDDs as a Pre-Processing Tool

Our last set of experiments evaluates the use of relaxed BDDs as a pre-processing tool.
Table 5 shows the average percentage of redundant actions identified by a relaxed BDD in
the initial state after applying traditional techniques (see Section 10.3). We can see that
the average percentage is high in some domains, especially in ged, nomystery and sokoban
with 6% to 22%. Notice that the identified redundant actions correspond to actions that,
when used, will lead to sub-optimal or non-minimal plans. Hence, our approach identifies
more redundant actions in instances with an accurate initial incumbent solution and where
the sequential relaxation is a good approximation to the DFP task.

Lastly, Table 6 shows the average number of cost-optimal action landmarks found by
our relaxed BDDs in the initial state after applying the standard pre-processing techniques
(see Section 10.3). Our approach was able to identify a significant number of cost-optimal
landmarks in some domains, in particular ged and sokoban. Both domains have a large
number of zero-cost actions, which might explain why our relaxed BDDs identify more
cost-optimal landmarks.

644

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

Table 5: Using Relaxed BDDs to find redundant actions.

Average % of Redundant Actions

domain B2 B4 B8 B16 B32 B64

barman-opt11 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%
barman-opt14 1.0% 1.0% 1.0% 1.0% 1.0% 1.0%
childsnack-opt14 0% 0% 0% 0% 0% 0%
elevators-opt11 0.3% 0.3% 0.4% 0.4% 0.4% 0.4%
floortile-opt11 0% 0% 0% 0% 0% 0%
floortile-opt14 0% 0% 0% 0% 0% 0%
ged-opt14 6.2% 6.2% 6.2% 6.2% 6.2% 6.2%
nomystery-opt11 21.6% 22.4% 22.9% 23.8% 24.7% 25.8%
openstacks-opt11 0% 0% 0% 0% 0% 0%
parking-opt11 0.8% 0.8% 0.8% 0.8% 0.8% 0.8%
parking-opt14 0.8% 0.8% 0.8% 0.8% 0.8% 0.8%
pegsol-opt11 0% 0% 0% 0% 0% 0%
scanalyzer-opt11 0% 0% 0% 0% 0% 0%
sokoban-opt11 8.7% 8.7% 8.7% 8.9% 8.9% 9.1%
transport-opt11 0% 0% 0% 0% 0% 0%
transport-opt14 0% 0% 0% 0% 0% 0%
visitall-opt11 5.3% 5.3% 5.3% 5.3% 5.3% 5.3%
visitall-opt14 0.4% 0.4% 0.4% 0.4% 0.4% 0.4%
woodworking-opt11 0% 0% 0% 0% 0% 0%

Table 6: Using Relaxed BDDs to find cost-optimal action landmarks.

Average Number of Cost-Optimal Landmarks

domain B2 B4 B8 B16 B32 B64

barman-opt11 0 0 0 0 0 0
barman-opt14 0 0 0 0 0 0
childsnack-opt14 0 0 0 0 0 0
elevators-opt11 4.7 4.7 4.7 4.7 4.7 4.7
floortile-opt11 0 0 0 0 0 0
floortile-opt14 0 0 0 0 0 0
ged-opt14 148.4 148.4 148.4 148.4 148.4 148.4
nomystery-opt11 7.5 7.5 7.5 7.5 7.5 7.5
openstacks-opt11 0 0 0 0 0 0
parking-opt11 0 0 0 0 0 0
parking-opt14 0 0 0 0 0 0
pegsol-opt11 0.1 0.1 0.1 0.1 0.1 0.1
scanalyzer-opt11 0 0 0 0 0 0
sokoban-opt11 63.8 63.8 63.8 63.8 63.8 63.8
transport-opt11 0 0 0 0 0 0
transport-opt14 0 0 0 0 0 0
visitall-opt11 2.8 2.8 2.8 2.8 2.8 2.8
visitall-opt14 3.4 3.4 3.4 3.4 3.4 3.4
woodworking-opt11 0.5 0.5 0.5 0.5 0.5 0.5

645

Castro, Piacentini, Cire, & Beck

12. Conclusions

This work presents new admissible heuristics for delete-free planning tasks based on relaxed
decision diagrams. We introduce a novel relaxed MDD encoding for a planning task and a
relaxed BDD representation for its sequential relaxation. The paper presents a theoretical
analysis of both heuristics and relates them to existing techniques in the literature. We show
that relaxed DDs can be used beyond heuristic computation. In particular, they enable the
extraction of high-quality delete-free plans and relaxed BDDs can identify cost-optimal
landmarks and redundant actions.

Our experimental results show that relaxed MDDs are suited for domains with a high
number of sequential decisions, while relaxed BDDs perform better in domains with a large
number of propositional landmarks. Overall, relaxed BDDs have competitive performance
compared to an LP-based heuristic, but are still far from state-of-the-art MILP techniques.
Nonetheless, our two relaxed DD heuristics achieve better coverage than a MILP model in
four IPC domains.

While the paper focuses on delete-free planning tasks, our propose DD heuristics are
novel to the planning community and can be used in a wider variety of planning problems.
In particular, the DD heuristics are admissible for classical planning tasks and could be
implemented in any planner that uses the STRIP formalism. However, it is not clear to us
how to efficiently implement these heuristics, since it might require the planner to build a
new DD in each node of the search space.

Another future direction is to combine DDs with other heuristics to solve, e.g., cost-
optimal classical planning tasks. In particular, we can encode the DD graphs as a LP
network flow model and use them inside the operator counting framework (Pommerening
et al., 2014). Another alternative is to use the LP model of our DDs and combine it
with other LP-based heuristics using the recently introduced Lagrangian decomposition
framework in classical planning (Pommerening et al., 2019).

Lastly, our DD heuristics could be used to solve numerical planning tasks by extending
our node encoding to consider numerical variables. In particular, it would be interesting to
see how our MDD encoding could be extended to, e.g., represent the interval relaxation of
numerical planning tasks (Piacentini et al., 2018).

Acknowledgments

We thank the anonymous reviewers whose valuable feedback helped improve the final version
of the paper. We gratefully acknowledge funding from the Natural Sciences and Engineering
Research Council of Canada (Discovery Grant) and CONICYT (Becas Chile).

646

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

Appendix A. Average Optimality Gaps

Table 7 presents the average optimality gap for each tested heuristic in the initial states.
The average is computed over the 314 instances where the cost-optimal plans is known.

Table 7: Average optimality gap.

domain LP M2 M4 M8 M16 M32 M64 B2 B4 B8 B16 B32 B64

bar11 0.73 0.64 0.57 0.54 0.51 0.49 0.48 0.76 0.76 0.76 0.74 0.74 0.74
bar14 0.13 0.69 0.56 0.47 0.40 0.32 0.26 0.24 0.24 0.19 0.19 0.19 0.19
chi14 0.22 0.80 0.77 0.73 0.70 0.66 0.65 0.33 0.30 0.26 0.24 0.21 0.15
ele11 0.48 0.78 0.77 0.77 0.77 0.74 0.68 0.61 0.61 0.61 0.61 0.61 0.61
flo11 0.05 0.83 0.81 0.81 0.80 0.79 0.78 0.27 0.27 0.27 0.27 0.26 0.26
flo14 0.07 0.82 0.80 0.79 0.78 0.77 0.77 0.29 0.29 0.29 0.28 0.28 0.28
ged14 0.88 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
nom11 0.00 0.70 0.63 0.56 0.48 0.41 0.37 0.02 0.02 0.01 0.01 0.01 0.00
ope11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
par11 0.13 0.78 0.72 0.66 0.60 0.52 0.46 0.18 0.18 0.18 0.18 0.18 0.18
par14 0.11 0.77 0.71 0.65 0.59 0.51 0.44 0.15 0.15 0.15 0.15 0.15 0.15
peg11 0.43 0.61 0.58 0.56 0.56 0.53 0.46 0.99 0.99 0.95 0.93 0.92 0.92
sca11 0.04 0.79 0.77 0.76 0.75 0.74 0.74 0.04 0.04 0.04 0.04 0.04 0.04
sok11 0.05 0.47 0.44 0.40 0.37 0.35 0.32 0.21 0.19 0.18 0.17 0.17 0.17
tra11 0.94 0.19 0.19 0.19 0.18 0.18 0.18 0.99 0.99 0.99 0.99 0.99 0.99
tra14 0.86 0.40 0.39 0.38 0.38 0.37 0.37 0.97 0.97 0.97 0.97 0.97 0.97
vis11 0.03 0.70 0.64 0.61 0.58 0.55 0.51 0.06 0.05 0.05 0.04 0.04 0.04
vis14 0.02 0.85 0.83 0.82 0.80 0.79 0.77 0.04 0.04 0.04 0.04 0.04 0.03
woo11 0.12 0.73 0.70 0.67 0.63 0.58 0.54 0.24 0.20 0.17 0.16 0.15 0.14

Appendix B. Solving Time and States Evaluated

Table 8 shows the average solving time and states evaluated for all our relaxed MDD heuris-
tics. The average values are calculated over the instances where all relaxed MDD methods
solve the task. Column “#” shows the number of instances where all approaches found a
cost-optimal plan, i.e., the number of instances used to compute the average performance
metrics. Similarly, Table 9 shows the average performance metrics for the relaxed BDD
heuristics.

647

Castro, Piacentini, Cire, & Beck

Table 8: Overall MDD Performance.

Average Time (sec) Average # States Evaluated

domain # M2 M4 M8 M16 M32 M64 M2 M4 M8 M16 M32 M64

bar11 0 - - - - - - - - - - - -
bar14 0 - - - - - - - - - - - -
chi14 4 331.3 320.7 313.2 317.5 339.8 377.7 694,820.5 685,161.8 675,891.8 671,269.8 671,269.3 671,269.3
ele11 7 116.4 252.4 543.3 797.4 815.1 948.9 16,271.4 16,181.4 15,626.0 10,800.9 5,852.6 3,399.3
flo11 0 - - - - - - - - - - - -
flo14 0 - - - - - - - - - - - -
ged14 20 1.9 4.1 8.6 18.5 40.8 89.2 9.1 9.1 9.1 9.1 9.1 9.1
nom11 5 260.8 61.0 5.7 0.6 0.4 0.4 160,914.8 22,354.8 1,257.0 38.8 7.0 2.2
ope11 20 0.3 0.5 1.1 2.6 6.1 14.8 1.0 1.0 1.0 1.0 1. 1.0
par11 0 - - - - - - - - - - - -
par14 0 - - - - - - - - - - - -
peg11 17 15.1 29.6 51.4 78.3 119.0 170.2 6,629.7 5,542.1 4,255.1 2,770.9 1,909.2 1,140.4
sca11 1 0.1 0.1 0.2 0.1 0.1 0.1 357.0 348.0 348.0 348.0 348.0 348.0
sok11 16 62.0 66.3 81.0 103.6 146.5 236.4 9,481.3 6,731.4 5,391.7 3,877.4 2,783.6 1,952.5
tra11 1 16.6 14.3 15.8 22.3 27.7 43.6 1,525.0 656.0 449.0 321.0 266.0 197.0
tra14 1 352.4 362.0 419.5 485.0 477.6 345.5 49,690.0 24,330.0 13,600.0 8,718.0 4,105.0 1,258.0
vis11 9 118.9 89.1 84.4 96.9 101.6 140.6 130,189.4 84,190.7 50,985.2 29,250.3 14,804.4 9,031.7
vis14 3 370.2 277.3 234.2 235.8 265.5 305.2 442,995.3 268,824.7 145,634.3 84,368.3 45,795.7 23,254.0
woo11 2 508.9 296.4 163.6 97.2 47.8 24.4 371,424.5 125,073.5 30,653.5 8,376.5 2,305.0 594.0

Average 78.4 71.8 91.3 118.4 138.5 184.3 68,466.8 47,240.4 37,259.6 32,195.5 29,087.1 27,488.2

Table 9: Overall BDD Performance.

Average Time (sec) Average # States Evaluated

domain # B2 B4 B8 B16 B32 B64 B2 B4 B8 B16 B32 B64

bar11 0 - - - - - - - - - - - -
bar14 14 10.4 22.8 37.7 70.3 109.9 117.1 32,398.7 30,821.4 27,411.1 21,713.3 14,215.2 5,653.9
chi14 18 448.8 369.7 230.9 122.8 114.7 123.9 367,694.7 291,537.8 180,355.6 96,305.4 82,250.7 74,784.5
ele11 15 17.0 30.8 60.1 109.1 239.5 514.2 45,027.3 43,549.5 42,218.9 42,054.8 42,103.2 41,686.9
flo11 4 86.7 87.1 86.6 119.1 154.0 235.8 173,597.0 116,613.3 67,609.5 44,016.0 26,286.3 19,634.5
flo14 1 89.5 128.2 179.1 197.6 175.0 230.1 210,121.0 178,847.0 126,276.0 58,064.0 38,774.0 22,563.0
ged14 20 1.4 2.1 3.7 5.2 10.4 21.8 2,110.9 2,110.9 2,110.9 2,110.9 2,110.9 2,110.9
nom11 16 0.8 0.9 1.0 1.1 1.5 2.2 1.0 1.0 1.0 1.0 1.0 1.0
ope11 20 0.1 0.1 0.1 0.2 0.3 0.5 2.0 2.0 2.0 2.0 2.0 2.0
par11 3 19.3 31.9 51.0 83.9 146.9 273.3 566.0 566.0 566.7 567.7 569.3 570.3
par14 6 24.2 43.3 70.5 128.0 234.7 459.4 475.8 476.0 478.7 477.8 477.7 479.0
peg11 17 14.4 19.6 29.8 51.5 95.6 188.4 56,778.7 54,782.5 51,625.1 51,078.6 51,078.6 51,078.6
sca11 5 28.4 49.3 96.4 213.7 418.7 626.6 37,136.6 36,877.2 37,130.4 37,498.8 36,169.4 31,590.2
sok11 18 17.5 9.2 7.2 8.4 11.9 15.1 20,372.4 6,527.0 2,932.3 1,906.6 1,436.1 1,008.1
tra11 0 - - - - - - - - - - - -
tra14 0 - - - - - - - - - - - -
vis11 16 0.5 0.7 1.0 0.6 1.1 1.8 2,350.3 2,011.3 1,290.2 414.5 391.4 343.6
vis14 16 0.5 0.3 0.2 0.2 0.2 0.3 1,878.4 713.7 189.6 84.9 21.9 12.9
woo11 13 108.0 14.3 9.6 16.1 29.6 30.5 209,047.0 18,810.2 8,182.2 6,205.8 5,943.4 3,829.8

Average 55.8 45.9 39.8 44.4 71.3 118.1 64,365.0 42,306.2 29,470.8 20,436.1 18,122.5 16,329.0

References

Andersen, H. R., Hadzic, T., Hooker, J. N., & Tiedemann, P. (2007). A constraint store
based on multivalued decision diagrams. In Proceedings of the Principles and Practice
of Constraint Programming, pp. 118–132. Springer.

648

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

Behle, M. (2008). On threshold BDDs and the optimal variable ordering problem. Journal
of Combinatorial Optimization, 16 (2), 107–118.

Bergman, D., Cire, A. A., van Hoeve, W.-J., & Hooker, J. N. (2012). Variable ordering for
the application of BDDs to the maximum independent set problem. In Proceedings of
the Integration of AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems, pp. 34–49. Springer.

Bergman, D., Cire, A. A., van Hoeve, W.-J., & Hooker, J. N. (2016). Discrete optimization
with decision diagrams. INFORMS Journal on Computing, 28 (1), 47–66.

Bergman, D., van Hoeve, W.-J., & Hooker, J. N. (2011). Manipulating MDD relaxations
for combinatorial optimization. In Proceedings of the International Conference on
AI and OR Techniques in Constriant Programming for Combinatorial Optimization
Problems, pp. 20–35. Springer.

Betz, C., & Helmert, M. (2009). Planning with h+ in theory and practice. In Proceedings
of the Annual German Conference on Artificial Intelligence, pp. 9–16. Springer.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90 (1-2), 281–300.

Bonet, B., & Castillo, J. (2011). A complete algorithm for generating landmarks. In
Proceedings of the International Conference on Automated Planning and Scheduling,
pp. 315–318.

Bonet, B., & Geffner, H. (1999). Planning as heuristic search: New results. In Proceedings
of the European Conference on Planning, pp. 360–372. Springer.

Bonet, B., & Helmert, M. (2010). Strengthening landmark heuristics via hitting sets. In
Proceedings of the European Conference on Artificial Intelligence, pp. 329–334.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 100 (8), 677–691.

Bylander, T. (1994). The computational complexity of propositional strips planning. Arti-
ficial Intelligence, 69 (1-2), 165–204.

Castro, M. P., Piacentini, C., Cire, A. A., & Beck, J. C. (2018). Relaxed decision diagrams
for cost-optimal classical planning. In Proceedings of the Workshop on Heuristics and
Search for Domain-Independent Planning, pp. 50–58.

Castro, M. P., Piacentini, C., Cire, A. A., & Beck, J. C. (2019a). Relaxed BDDs: An admis-
sible heuristic for delete-free planning based on a discrete relaxation. In Proceedings
of the International Conference on Automated Planning and Scheduling, pp. 77–85.

Castro, M. P., Cire, A. A., & Beck, J. C. (2019b). An MDD-based Lagrangian approach to
the multi-commodity pickup-and-delivery TSP. INFORMS Journal on Computing,
Forthcoming.

Cire, A. A., & van Hoeve, W.-J. (2013). Multivalued decision diagrams for sequencing
problems. Operations Research, 61 (6), 1411–1428.

Corrêa, A. B., Pommerening, F., & Francès, G. (2018). Relaxed decision diagrams for delete-
free planning. In Proceedings of the Workshop on Constraints and AI Planning, pp.
1–2.

649

Castro, Piacentini, Cire, & Beck

Edelkamp, S., Kissmann, P., & Torralba, Á. (2012). Symbolic A* search with pattern
databases and the merge-and-shrink abstraction. In Proceedings of the European Con-
ference on Artificial Intelligence, pp. 306–311.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2 (3-4), 189–208.

Garćıa-Olaya, Á., Jiménez, S., & Linares López, C. (2011). The 2011 International planning
competition. Technical Report.

Gefen, A., & Brafman, R. I. (2011). The minimal seed set problem. In Proceedings of the
International Conference on Automated Planning and Scheduling, pp. 319–322.

Geißer, F., Keller, T., & Mattmüller, R. (2016). Abstractions for planning with state-
dependent action costs. In Proceedings of the International Conference on Automated
Planning and Scheduling, pp. 140–148.

Haslum, P., Slaney, J. K., & Thiébaux, S. (2012). Minimal landmarks for optimal delete-free
planning. In Proceedings of the International Conference on Automated Planning and
Scheduling, pp. 353–357.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: what’s
the difference anyway?. In Proceedings of the International Conference on Automated
Planning and Scheduling, pp. 162–169.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Imai, T., & Fukunaga, A. (2014). A practical, integer-linear programming model for the
delete-relaxation in cost-optimal planning. In Proceedings of the European Conference
on Artificial Intelligence, pp. 459–464.

Imai, T., & Fukunaga, A. (2015). On a practical, integer-linear programming model for
delete-free tasks and its use as a heuristic for cost-optimal planning. Journal of
Artificial Intelligence Research, 54, 631–677.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer
computations, pp. 85–103. Springer.

Karpas, E., & Domshlak, C. (2012). Optimal search with inadmissible heuristics. In Pro-
ceedings of the International Conference on Automated Planning and Scheduling.

Keller, T., Pommerening, F., Seipp, J., Geißer, F., & Mattmüller, R. (2016). State-
dependent cost partitionings for Cartesian abstractions in classical planning. In Pro-
ceedings of the International Joint Conferences on Artificial Intelligence, pp. 3161–
3169.

Keyder, E., Richter, S., & Helmert, M. (2010). Sound and complete landmarks for And/Or
graphs. In Proceedings of the European Conference on Artificial Intelligence, Vol. 215,
pp. 335–340.

Kinable, J., Cire, A. A., & van Hoeve, W.-J. (2017). Hybrid optimization methods for time-
dependent sequencing problems. European Journal of Operational Research, 259 (3),
887–897.

650

Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics

Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming
problems. Econometrica: Journal of the Econometric Society, 3 (10), 497–520.

Piacentini, C., Castro, M. P., Cire, A. A., & Beck, J. C. (2018). Linear and integer
programming-based heuristics for cost-optimal numeric planning. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 6254–6261.

Pommerening, F., & Helmert, M. (2012). Optimal planning for delete-free tasks with in-
cremental LM-cut. In Proceedings of the International Conference on Automated
Planning and Scheduling, pp. 363–367.

Pommerening, F., Röger, G., Helmert, M., & Bonet, B. (2014). LP-based heuristics for
cost-optimal planning. In Proceedings of the International Conference on Automated
Planning and Scheduling, pp. 226–234.

Pommerening, F., Röger, G., Helmert, M., Cambazard, H., Rousseau, L.-M., & Salvagnin,
D. (2019). Lagrangian decomposition for optimal cost partitioning. In Proceedings of
the International Conference on Automated Planning and Scheduling, pp. 338–347.

Porteous, J., Sebastia, L., & Hoffmann, J. (2001). On the extraction, ordering, and usage
of landmarks in planning. In Proceedings of the European Conference on Planning,
pp. 174–182.

Scala, E., Haslum, P., Magazzeni, D., & Thiebaux, S. (2017). Landmarks for numeric
planning problems. In Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 4384–4390.

Torralba, Á., Linares López, C., & Borrajo, D. (2013). Symbolic merge-and-shrink for cost-
optimal planning. In Proceedings of the International Joint Conferences on Artificial
Intelligence, pp. 2394–2400.

Torralba, Á., Linares López, C., & Borrajo, D. (2016). Abstraction heuristics for symbolic
bidirectional search. In Proceedings of the International Joint Conferences on Artificial
Intelligence, pp. 3272–3278.

Zhu, L., & Givan, R. (2003). Landmark extraction via planning graph propagation. In
Proceedings of the International Conference on Automated Planning and Scheduling,
Doctoral Consortium, pp. 156–160.

651

