
Journal of Artificial Intelligence Research 68 (2020) 503–540 Submitted 09/2019; published 07/2020

Ontology Reasoning with Deep Neural Networks

Patrick Hohenecker patrick.hohenecker@cs.ox.ac.uk
Department of Computer Science
University of Oxford, UK

Thomas Lukasiewicz thomas.lukasiewicz@cs.ox.ac.uk
Department of Computer Science
University of Oxford, UK

Abstract
The ability to conduct logical reasoning is a fundamental aspect of intelligent human be-

havior, and thus an important problem along the way to human-level artificial intelligence.
Traditionally, logic-based symbolic methods from the field of knowledge representation and
reasoning have been used to equip agents with capabilities that resemble human logical
reasoning qualities. More recently, however, there has been an increasing interest in using
machine learning rather than logic-based symbolic formalisms to tackle these tasks. In this
paper, we employ state-of-the-art methods for training deep neural networks to devise a
novel model that is able to learn how to effectively perform logical reasoning in the form of
basic ontology reasoning. This is an important and at the same time very natural logical
reasoning task, which is why the presented approach is applicable to a plethora of important
real-world problems. We present the outcomes of several experiments, which show that our
model is able to learn to perform highly accurate ontology reasoning on very large, diverse,
and challenging benchmarks. Furthermore, it turned out that the suggested approach suf-
fers much less from different obstacles that prohibit logic-based symbolic reasoning, and,
at the same time, is surprisingly plausible from a biological point of view.

1. Introduction

Implementing human-like logical reasoning has been among the major goals of artificial
intelligence research ever since, and has recently also enjoyed increasing attention in the
field of machine learning. However, a noticeable commonality of previous approaches in
this area is that they, with a few very recent exceptions (Serafini & d’Avila Garcez, 2016;
Cai et al., 2017; Rocktäschel & Riedel, 2017; Cingillioglu & Russo, 2018; Dai et al., 2018;
Evans et al., 2018; Manhaeve et al., 2018), entertain a quite informal notion of reasoning,
which is often simply identified with a particular kind of prediction task. This contrasts
the (traditional) understanding of reasoning as an application of mathematical proof theory,
like it is used in the context of logic-based knowledge representation and reasoning (KRR).
Interestingly, however, it can be observed that, under certain provisions, even the best
reasoning models based on machine learning are still not in a position to compete with their
symbolic counterparts. To close this gap between learning-based and KRR methods, we
develop a novel model architecture, called recursive reasoning network (RRN), which makes
use of recent advances in the area of deep neural networks (Bengio, 2009). By design, this
model is much closer to logic-based symbolic methods than most of the other learning-based
approaches, but the fact that it employs machine learning allows for overcoming many of the

c©2020 AI Access Foundation. All rights reserved.

Hohenecker and Lukasiewicz

obstacles that we encounter with KRR methods in practice. Furthermore, while it might
seem paradoxical to elect logic-based symbolic methods as a starting point for implementing
human-like logical reasoning, blending those concepts with deep learning leads to compelling
results, just as it opens up interesting new perspectives on the considered problem.

Articles on reasoning based on machine learning commonly assume a particular applica-
tion, such as reasoning about natural language (Henaff et al., 2017; Santoro et al., 2017) or
visual inputs (Santoro et al., 2017). Here, we take a different approach, and consider a logic-
based formal reasoning problem as a starting point instead. The choice of the particular
problem turns out to be a critical one, though. While logic-based formal reasoning defines
a certain conceptual frame, the specific nature of and extent to which inferences may be
drawn are highly dependent on the concrete formalism employed. Therefore, it is generally
sensible to choose an approach that presents the right balance between expressiveness on the
one hand and complexity on the other hand. This criterion as well as its vast importance
in practice made us look into the problem of ontology reasoning with OWL 2 RL. Ontology
reasoning refers to a common scenario where the inference rules to be used for reasoning,
called the ontology in this context, are specified along with the factual information that we
seek to reason about. Figure 1 provides an example of this setting. The rationale behind
this separation of ontology and facts is that it allows for adopting the same set of rules for
reasoning about different, independent data. What makes this task particularly interesting,
though, is that the application of generic rules to concrete problem settings happens to de-
scribe a reoccurring pattern in all of our lives, which is why human beings are in general very
good at handling problems of this kind. Furthermore, ontology reasoning is an incredibly
pliant tool, which allows for modeling a plethora of different scenarios, and as such meets
our desire for a system that is applicable to a wide range of applications.

One may ask why we would like to set about this problem by means of machine learn-
ing in the first place. For one thing, such combinations of deep learning technologies with
symbolic methods for logical reasoning are commonly regarded as a prerequisite for further
substantial progress in AI. In particular, they are expected to allow for leveraging symbolic
background knowledge in learning deep neural networks (and so for knowledge transfer and
for learning from smaller amounts of data) as well as explainable symbolic inference in com-
puting predictions for improved explainability of the learned neural systems. Furthermore,
most of the KRR formalisms that are used for reasoning today are rooted in symbolic logic,
and thus, as mentioned above, employ mathematical proof theory to answer queries about a
given problem. However, while this, in theory, allows for answering any kind of (decidable)
question accurately, most of these approaches suffer from a number of issues in practice, like
difficulties with handling incomplete, conflicting, or uncertain data, to name just a few. In
contrast to this, machine learning models are often highly scalable, more resistant to distur-
bances in the data, and capable of providing predictions even if the formal effort fails. There
is one salient aspect, though, that KRR methods benefit from compared to learning-based
approaches: every conclusion derived via formal inference is correct with certainty, and,
under optimal circumstances, formal reasoning identifies all inferences that can be drawn
altogether. These characteristics do, in general, not apply to methods of machine learning.
However, »optimal« is the operative word right here, as these advantages can often not come
into play due to the obstacles mentioned above. By employing state-of-the-art techniques
of deep learning, we aim to manage the balancing act between approximating the highly

504

Ontology Reasoning with Deep Neural Networks

Ontology: human(X) ← holds(X,_) Only human beings can hold things.
object(Y) ← holds(_,Y) Only objects can be held.
⊥ ← human(X)∧ object(X) Objects are not human beings and vice versa.
isAt(Y,Z) ← holds(X,Y)∧ isAt(X,Z) Objects are at the same location as the one

holding them.
⊥ ← isAt(X,Y)∧ isAt(X,Z)∧ Y 6=Z Nobody/nothing can be at two locations at

the same time.

Facts: holds(mary,apple) Mary holds the apple.
isAt(mary,kitchen) Mary is in the kitchen.

Queries: ?human(apple) Is the apple a human being?
(Evaluates to false.)

?isAt(apple,kitchen) Is the apple in the kitchen?
(Evaluates to true.)

?isAt(mary,bedroom) Is Mary in the bedroom?
(Evaluates to false.)

Figure 1: This figure provides a simple example of an ontology, which was inspired by the
well-known bAbI tasks (Weston, Bordes, et al., 2015). An ontology is a collection
of generic rules, which are combined with a set of facts. Here, the ontology
describes a few rules for reasoning over human beings, objects, and their locations.
Combined with the stated facts, it allows for answering queries like »Is the apple
a human being?« or »Is Mary in the bedroom?«.

desirable (theoretical) properties of the formal approach, on the one hand, and utilizing the
robustness of machine learning, on the other.

The main contributions of this paper are summarized as follows:

• We present a novel deep neural architecture for a model that is able to effectively
perform logical reasoning in the form of basic ontology reasoning.

• We present, and make freely available, several very large, diverse, and challenging
datasets for learning and benchmarking machine learning approaches to basic ontology
reasoning.

• We present extensive experimental evaluations on the above benchmarks, which show
that our model is able to learn to perform highly accurate ontology reasoning.

The rest of this article begins with a description of the reasoning problem that served
as the starting point of our research. After this, we introduce the RRN model, explain how
it has been evaluated in several experiments, and present the outcomes of our experimental
evaluation. Finally, we review relevant related work, and conclude with a discussion.

2. Problem Description

The major part of the knowledge bases that are used for ontology reasoning today formalizes
information in terms of individuals, classes, and binary relations, any of which may thus be

505

Hohenecker and Lukasiewicz

considered as a directed knowledge graph, where individuals correspond to vertices, relations
to labeled directed edges, and classes to binary vertex labels.1 In KRR terminology, a
setting like this may be described as a basic ontological knowledge base with a function-
free signature that contains unary and binary predicates only. The facts that define such a
knowledge graph are usually stated in terms of triples of the form 〈subject , predicate, object〉,
and specify either a relation between two individuals, subject and object , or an individual’s
membership of a class, in which case subject refers to an individual, predicate to a special
membership relation, and object to a class. Notice that we assume a fixed vocabulary, which
means that all of the considered classes and relations are known beforehand, and are thus
regarded as part of the ontology. The rules of the ontology are usually specified in terms of
a knowledge representation language, such as a logic program or OWL.

We now provide a formal description of the reasoning problem that we consider in this
article, and thus put our work in a formal context. Throughout this paper, we consider
ontology reasoning that corresponds to an (extension of a) subset of Datalog where relations
have an arity of at most two, but are not partitioned into database and derived relations,
and where rules with falsity ⊥ in the head, called negative constraints, are allowed. To
that end, we assume an infinite set of constants ∆, an infinite set of variables V, and a
relational schema R, which is a finite set of names for unary and binary relations. A term t
is a constant or a variable, and an atomic formula (or atom) has the form of either p(t) or
p(t1, t2), where p is a relation name, and t, t1, and t2 are terms. A rule r has the form

β1 ∧ · · · ∧ βn → α, (1)

where α, β1, . . . , βn are atoms and n≥ 0. Such a rule is safe, if each of the variables in α
also occurs in at least one βi (for 1 ≤ i ≤ n). A negative constraint γ has the form

β1 ∧ · · · ∧ βn → ⊥, (2)

where β1, . . . , βn are atoms and n≥ 0. A program Σ is a finite set of safe rules of the form (1)
and negative constraints of the form (2) with n ≥ 1. A safe rule with n = 0 is a fact, and a
database is a finite set of facts. A literal ` is either a fact α or a negated fact ¬α.

A (Herbrand) interpretation I is a (possibly infinite) set of facts. An interpretation I
satisfies a variable-free rule r of the form (1), if {β1, . . . , βn} ⊆ I implies α ∈ I. An interpre-
tation I satisfies a variable-free negative constraint γ of the form (2), if {β1, . . . , βn} 6⊆ I.
Furthermore, I satisfies a set R of rules and negative constraints, if it satisfies all their
variable-free instances. We say that R is satisfiable, if it has a satisfying interpretation.
Finally, a fact ζ (resp., negated fact ¬ζ) is logically entailed by R, denoted R |= ζ (resp.,
R |= ¬ζ), if it is part (resp., not part) of every interpretation that satisfies R. For satisfiable
sets R of rules and negative constraints, since each such R has a unique least satisfying inter-
pretation, denotedMR, and this is equivalent to ζ ∈MR (resp., {ζ} = {β1, . . . , βn}\MR for
some variable-free instance of the form (2) of a negative constraint in R). In the sequel, we
implicitly assume that all considered sets R of rules and negative constraints are satisfiable.

Further negated facts can be derived, if we additionally make the closed-world assump-
tion (CWA) or the local CWA (LCWA). Formally, a negated fact ¬α is logically entailed by

1. In the context of relational learning, knowledge graphs are typically simplified by viewing classes as
individuals as well and memberships as ordinary relations. For our purposes, however, a clear distinction
between classes and relations is important, which is why we adopt this slightly different view here.

506

Ontology Reasoning with Deep Neural Networks

R under the CWA, if and only if α is not entailed by the same, that is, R |= ¬α if and only if
R 6|= α. Logical entailment under the LCWA is a restricted subset of logical entailment under
the CWA and superset of logical entailment that additionally allows for deriving negated
atoms about binary predicates that are similar (»local«) to entailed positive facts in the fol-
lowing sense: if R 6|= p(u1, u2) and R 6|= ¬p(u1, u2), then, under the LCWA, R |= ¬p(u1, u2)
if and only if either t1 = u1 or t2 = u2 for some p(t1, t2) with R |= p(t1, t2). We denote
by »|∼« one of these three logical entailment relations.

We are now ready to define the problem that this article aims to solve, the logical entail-
ment problem (of facts from databases and programs): given a database D, a program Σ,
and a literal `, decide whether Σ ∪D |∼ `. In this work, we consider the most common case
where D is variable and of size k, Σ is fixed, and ` is variable as well. The goal is to generate
a neural network N [Σ, k] with binary output that, given an arbitrary database D of size
at most k as well as an arbitrary literal `, decides the logical entailment problem, that is,
N [Σ, k](D, `) = 1 if and only if Σ ∪D |∼ `.

3. The Recursive Reasoning Network (RRN)

To tackle the problem specified in the previous section, we introduce a novel model archi-
tecture, the recursive reasoning network (RRN). To that end, this section starts with a
high-level outline of the RRN model, and then provides a detailed description of the same.

3.1 Intuition

With the introduction of RRNs, we replace formal ontology reasoning with computing a
learned deep neural network to remedy the issues outlined above. Thereby, following the
spirit of the considered problem, every RRN is trained relative to a particular ontology, and
is thus, like the formal counterpart, independent of the specific facts that it is provided with.
To that end, as described in detail below, the vocabulary of classes and relations used by
the ontology determines the recursive layers that are available in an RRN, and hence the
structure of the same. In contrast to this, however, the rules that are used for reasoning are
not provided to the model directly, but have to be learned from the training data. When a
trained model is applied to a particular set of facts, then, on the face of it, it operates in two
stages (each of which is explained subsequently): first, it generates vector representations,
so-called embeddings, for all individuals that appear in the considered data, and second, it
computes predictions for queries solely based on these generated vectors.

RRNs are based on the idea that we can encode all the information that we have about
an individual, both specified and inferable, in its embedding. A similar idea is employed,
for example, in the context of natural language processing, where real vectors are used to
represent the meaning of text (Mikolov et al., 2013). Given a set of facts, specified as triples,
we start by randomly generating initial embeddings for all the individuals that appear in any
of them. After this, the model iterates over all the triples, and, for each of them, updates the
embeddings of the individuals involved. Any such update is supposed to store the considered
triple in the individuals’ embeddings for one thing, but also to encode possible inferences
based on the same. So, intuitively, a single update step conducts local reasoning based on
what is encoded in the embeddings already as well as on the new information that was gained
through the provided fact. An obvious necessity implied by this local reasoning scheme is

507

Hohenecker and Lukasiewicz

Data Model Embeddings

a b c

#k−1 〈s, p, o〉

#k 〈s, p, o〉

#k+1 〈s, p, o〉 subject

predicate

object

look
up

look
up

Figure 2: (a) To generate embeddings for the individuals in a knowledge base, the model
iterates over all its facts. To that end, it considers one triple at a time in arbitrary
order, and, depending on the respective dataset, might repeat this process several
times. (b) Whenever a fact is read, the model fetches the embeddings of the
individuals that appear in the according triple, and feeds them into an update layer
for the respective predicate. This layer yields updated versions of the embeddings
that have been provided, which are then stored in place of the previous ones. The
figure illustrates such an update for the case that a triple describes a relation
between two individuals. In contrast to this, updates based on facts specifying
class memberships involve a single individual embedding only. (c) Starting from
randomly generated vectors, embeddings are updated step by step in order to
encode both facts and inferences about the individuals that they represent.

that the model, in general, has to sift through all the data multiple times. This is essential
in order to allow for multi-step, also called multi-hop, reasoning, which is based on several
triples at the same time, since information might need to transpire from one individual’s
embedding to another’s. The actual number of iterations required depends on the respective
dataset, though. Figure 2 summarizes this process.

From a technical perspective, the outlined procedure for generating embeddings corre-
sponds to computing a recursive neural network (Pollack, 1990) that receives the randomly
generated initial embeddings as input and provides the final embeddings as output. The
structure of the network depends on the set of facts being processed, and its recursive layers
compute the update operations described above, which is why we refer to them as update
layers.

508

Ontology Reasoning with Deep Neural Networks

Once the desired embeddings are generated, they can be used to answer atomic queries
about the data that they are computed from. To that end, the model provides various multi-
layer perceptrons (MLPs) for computing predictions about relations between two individuals
and class memberships of a single individual. Notice that the only inputs provided to these
MLPs are the embeddings of the individuals that are involved in a particular query, which
is why the model has to ensure that all the information that is needed for answering such
is effectively encoded during the first step. Thus, the second step is just needed to uncover
the knowledge that is encoded in individual embeddings, while the actual reasoning happens
before.

A notable characteristic of the RRN is that it performs deductive inference over entire
knowledge bases, and, like its symbolic stencil, aims to encode all possible inferences in
the created individual embeddings, rather than answering just a single query. Because of
this, the model is able to unravel complex relationships that are hard to detect if we try
to evaluate the inferability of an isolated triple of interest only. Furthermore, the fact that
the RRN conducts logical inference over all classes and relations simultaneously allows for
leveraging interactions between any of them, and thus further adds to improving the model’s
predictive performance.

Another noteworthy aspect is that, as we will see below, an RRN does not treat triples
as text. Instead, the individuals that appear in a triple are mapped to their embeddings
before the same is provided to any layers of the used model. However, this means that RRNs
are agnostic to the individual names that are used in a database, which makes perfect sense,
as it is only the structure of a knowledge base that determines possible inferences.

3.2 Terminology

In the sequel, we always assume that we are facing a dataset that is given as an ontological
knowledge base KB = 〈Σ, D〉, consisting of a program Σ (also called the ontology) and a
database D, as defined above. We do not impose any restrictions on the formalism that
has been used to specify KB , but we do require that it makes use of a fixed vocabulary
that contains unary and binary predicates only, which we refer to as classes and relations,
respectively, and that the individuals considered have been fixed as well. The sets of all
classes and individuals of KB are denoted as classes(KB) and individuals(KB), respectively.
Notice that these assumptions allow for viewing D as a set of triples, since we may represent
any relation R(i, j) as 〈i, R, j〉 and any class membership C(i) as 〈i, MemberOf, C〉, where
MemberOf is a special symbol that does not appear in the vocabulary. Furthermore, we can
represent negated facts as triples with a different relation symbol, e.g., ¬R(i, j) and ¬C(i)
as 〈i,¬R, j〉 and 〈i,¬MemberOf, C〉, respectively.

For every knowledge base KB , we define an indicator function

1KB : individuals(KB)→ {−1, 0, 1}|classes(KB)|

that maps the individuals that appear in KB to 3-valued incidence vectors. Any such vector
summarizes all the information about the respective individual’s class memberships that are
given explicitly as part of the facts D. So, if the considered classes are specified via the
predicates C1, C2, . . . , Cm and i ∈ individuals(KB), then 1KB (i) yields an m-dimensional

509

Hohenecker and Lukasiewicz

vector, and for ` ∈ {1, . . . ,m},

[
1KB (i)

]
`

=


1 if 〈i, MemberOf, C`〉 ∈ D,
−1 if 〈i,¬MemberOf, C`〉 ∈ D, and

0 otherwise.

3.3 Formal Definition of the Model

The purpose of the RRN model is to solve the logical entailment problem defined above,
and to that end, we train an RRN to reason relative to a fixed ontology. More formally,
suppose that RRNΣ is a model that has been trained to reason with the ontology Σ, and D,
like before, denotes a finite set of facts. Furthermore, let the triple T = 〈s, P, o〉 be an
arbitrary query whose entailment is to be checked. Then, the network RRNΣ defines a
function such that

RRNΣ(D,T) = P {T is true | 〈Σ, D〉} . (3)

There are a few important aspects to notice about Equation 3. First and foremost, D may
be any set of facts that use the same vocabulary as Σ, and does not have to be the one
that has been used to train RRNΣ. Similarly, T may be an arbitrary triple, once again,
sharing the same vocabulary, and does not have to appear in the training data—neither as
fact nor as inference. This means that RRNΣ actually performs ontology reasoning, and
does not just »memorize« the ontological knowledge base(s) that it has been trained on.
The probability on the right-hand side of Equation 3 is used to express the model’s belief
in whether the queried triple is true based on the ontological knowledge base that is formed
implicitly by the ontology that the model was trained on together with the provided set of
facts, that is, 〈Σ, D〉. Interpreting the model’s output as a probability allows for training it
via a cross-entropy error term, but during evaluation, we predict queries to be true as soon
as the model provides a probability of at least 50%. Note that we deliberately chose the
wording »T is true«, rather than Σ ∪D |∼T , as an RRN provides a prediction even if T is
neither provably entailed nor refutable based on 〈Σ, D〉.

We illustrate these ideas with a simple example. Suppose that we require a model for
reasoning with respect to some ontology Σ. Then, as a first step, we train an RRN for
reasoning with this particular ontology, denoted RRNΣ. To train this model, we can either
use an existing database at hand or simply generate (consistent) sets of facts that make
use of the same vocabulary, that is, the same set of predicate symbols, as training samples.
After this, RRNΣ can be used to perform ontology reasoning (relative to Σ) over arbitrary
databases that use the same vocabulary as Σ. For instance, suppose that we need to check
whether Σ ∪D1 |∼T for some database D1 and triple T . In this case, we employ RRNΣ to
first generate an embedding matrix ED1 for the individuals in D1, and second compute a
probability for whether the considered entailment holds from ED1 . Taken together, these two
steps constitute the function specified in Equation 3. We emphasize again that the actual
reasoning step happens as part of the embedding generation, and entailment probabilities
are computed solely based on generated embedding matrices. Notice further that RRNΣ is
not tied to D1 in any way, which means that we can use the same model to perform ontology
reasoning over another (different) database D2. Finally, note that, in practice, we do not
generate new embeddings whenever we check an entailment based on one and the same set
of facts, but instead, create and reuse just a single embedding matrix for each database.

510

Ontology Reasoning with Deep Neural Networks

3.4 Individual Embeddings

We represent individuals as unit vectors, with respect to the Euclidean norm, of the space Rd,
which means that all embeddings live in the d-dimensional unit hypersphere. To that end,
d is a hyperparameter that, in general, has to be chosen based on the expressiveness of the
ontology, the size of the used vocabulary, and the total number of individuals considered.
In this work, we denote the embedding of an individual i as ei.

Initially, individual embeddings are generated randomly following some probability dis-
tribution, which was chosen to be a uniform distribution in our experiments, and normalized
subsequently, that is,

êi1 , êi2 , . . .
iid∼ U(−1d,1d) and

ei` =
êi`
‖êi`‖2

(1 ≤ ` ≤ |individuals(KB)|),

for individuals(KB) = {i1, i2, . . . }.

3.5 Update Layers

At the heart of the RRN model, there are two kinds of update operations, one based on
relations and one based on class memberships. Both of these are very similar in nature, and
serve the same essential purpose: given a fact together with the embeddings of the individuals
involved, update these embeddings to incorporate the knowledge that was gained through
the provided fact (under the used ontology Σ as well as the information that is encoded in
the embeddings already).

We start with the update operation for relations, which means that we aim to update
the embeddings es and eo based on some triple 〈s, P, o〉 with P being a relation type, that is,
neither MemberOf nor ¬MemberOf. Notice, however, that P might as well be a negated rela-
tion type ¬R. To define a proper update operation, one has to mind the fact that relations
are, in general, not symmetric, and hence it makes a difference whether we update a triple’s
subject or object. Therefore, we define two (equal) recursive update layers for every (possi-
bly negated) relation type P that appears in KB , one for updating the subject’s embedding,
which we denote as Update/P , and one for updating the object’s, denoted UpdateP.. The
following equations describe Update/P—UpdateP. is defined analogously:

g/P (s, o) = σ
(
V/P

1 es + V/P
2 eo

)
, (4)

ê(1)
s = ReLU

(
W/P

1 es + W/P
2 eo + eseo

Tw/P
)
, (5)

ê(2)
s = es + ê(1)

s ◦ g/P (s, o),

es = Update/P (s, o) =
ê

(2)
s

‖ê(2)
s ‖2

.

As usual, σ(x) denotes the logistic function 1/(1+exp(−x)) and ReLU(x) the ramp function
max{0, x}, both of which are applied elementwise. ◦ denotes the elementwise vector product,
and V/P

1 ,V/P
2 ,W/P

1 ,W/P
2 ∈ Rd×d as well as w/P ∈ Rd are parameters of the model. As can

be seen from these equations, the recursive layers of the RRN model define a gated network

511

Hohenecker and Lukasiewicz

Input: an ontological knowledge base KB = 〈Σ, D〉 with individuals(KB) = {i1, i2, . . . , iM},
a number of update iterations N , and (optionally) a matrix of initial embeddings E.

Output: the generated embeddings E.

1 if no embedding matrix E was provided then
2 Randomly initialize E = [ei1 , ei2 , . . . , eiM]T ;
3 end
4 for iter = 1, . . . , N do
5 foreach i ∈ individuals(KB) do
6 ei = Update(i);
7 end
8 foreach 〈s, P, o〉 ∈ F with P being a (possibly negated) relation type do
9 es, eo = Update(〈s, P, o〉);

10 end
11 end
12 return E.

Algorithm 1: Generating individual embeddings.

architecture. To that end, Equation 5 describes the calculation of a »candidate« update
step, and Equation 4 specifies a gate that controls how much of this is actually applied.
Based on these one-sided updates, we can now define the following simultaneous update
operation:

〈es, eo〉 = Update(〈s, P, o〉) =
〈
Update/P (s, o),UpdateP.(s, o)

〉
.

Next, we consider updates based on class memberships. In this case, there are no inter-
actions between individuals, which is why updates of this kind may be batched. Also, we
do not have to pay special attention to the »direction« of an update, neither to whether a
membership assertion is positive or negative. Instead, we simply define a single recursive
update layer, which expects an individual i as input, as follows:

g(i) = σ
(
V · [ei : 1KB (i)]

)
,

ê
(1)
i = ReLU

(
W · [ei : 1KB (i)]

)
,

ê
(2)
i = ei + ê

(1)
i ◦ g(i),

ei = Update(i) =
ê

(2)
i

‖ê(2)
i ‖2

.

This layer updates an individual’s embedding based on all the information that has been
provided about its class memberships. Notice that, in these equations, the colon denotes
the concatenation of two vectors. Like before, the layer makes use of a gated architecture,
and V,W ∈ Rd×(d+|classes(KB)|) are parameters of the model.

Algorithm 1 summarizes how these layers are used to generate embeddings for all indi-
viduals in the considered knowledge base.

512

Ontology Reasoning with Deep Neural Networks

3.6 Prediction

For computing predictions based on previously generated individual embeddings, we make
use of several MLPs, a single one for all classes and one for each relation R in the vocabulary,
denoted MLP (classes) and MLP (R), respectively. Notice that, in this case, R is indeed a
relation type, rather than its negation. MLP (classes) expects a single individual embedding
as input, and computes probabilities for the individual’s memberships with respect to all
classes. If we assume that KB contains the classes C1, . . . , Cm, this means that MLP (classes)

computes a function
MLP (classes) : Rd → [0, 1]m

and [
MLP (classes)(ei)

]
`

= P {〈i, MemberOf, C`〉 | KB} .

Similarly, MLP (R) requires two individual embeddings as input, and provides a probability
for the according relation to exist between the respective individuals. Assuming that KB
consists of the relations R1, . . . , Rn, this means that

MLP (R`) : R2d → [0, 1]

and
MLP (R`)(ei, ej) = P {〈i, R`, j〉 | KB} .

Notice that, at the same time,

P {〈i,¬R`, j〉 | KB} = 1− P {〈i, R`, j〉 | KB} = 1−MLP (R`)(ei, ej).

3.7 Training

The training of an RRN is straightforward, and a high-level description is provided in Algo-
rithm 2. An important detail to notice is that all training samples are knowledge bases that
share the same ontology, namely, the one that the RRN is being trained for, but usually
differ with respect to the facts that they contain. In contrast to this, many approaches to
learning-based reasoning and knowledge-base completion make use of one large knowledge
graph for training a model only, which is usually also the one that has to be completed. As
stressed above already, this is a major advantage of the RRN, since it allows for training
a model with respect to an ontology, but independently of the knowledge base(s) that it is
supposed to be applied to later on. To that end, one may simply generate sample knowledge
bases relative to the ontology of interest, and train the RRN on this synthetic dataset. Once
a model has been trained, it can be applied directly to any previously unseen knowledge
base without the need for being retrained. Another important advantage of the possibility
to train on generated data is that it allows for the model to encounter predicates during
training that appear as inferences, but not as facts in the knowledge base that it is eventually
applied to. As opposed to this, models that are trained on the same knowledge base that
has to be completed have no means to learn about such predicates, and thus cannot identify
according inferences.

Intuitively, this approach might not seem sound, as it strongly disagrees with the usual
way of training a model, and one may challenge whether an RRN is trained on the right

513

Hohenecker and Lukasiewicz

Input: a sequence of training samples T = 〈KB1,KB2, . . . ,KBM 〉, where KB` = 〈Σ, D`〉, and
a number of update iterations N .

1 while evaluation error has not converged do
2 Randomly shuffle T ;
3 for KB` ∈ T do
4 Generate embedding matrix E for KB`;
5 Compute cross-entropy loss for predicting triples in KB` from E (both facts and

inferences);
6 Update model parameters to minimize the loss;
7 end
8 end

Algorithm 2: RRN training.

data distribution this way. We argue that this is indeed the case, though. Training a model
to perform ontology reasoning requires the same to learn how to make use of the rules
comprised by the considered ontology. Furthermore, an RRN is not provided these rules
directly, but has to learn them from the training data as well. Notice, however, that the
application of any such rule is exactly the same for a synthetically generated knowledge base
and another one encountered as part of a real-world problem, assuming that both rely on
the same ontology, and thus there is no reason to favor real-world data in this context. In
fact, synthetic datasets offer the possibility for us to control that all rules in an ontology are
used to, more or less, the same extent, while real-world knowledge bases tend to be skewed
towards a part of the rules only. Therefore, we have to make sure that all of the ontology
is faithfully represented by a real-world dataset, while a sufficiently large synthetic one is
clearly capable of accomplishing this.

Besides that, the training procedure for an RRN closely resembles the common pattern
for training supervised models. This means that we sample a knowledge base from the
training data, generate individual embeddings for the same, and compute predictions for all
facts and inferences that can be drawn from the considered knowledge base. Notice that
every fact in a knowledge base is trivially entailed by the same, and hence, strictly speaking,
part of the inferences that the model learns to predict. For evaluating our approach, a
clear distinction of facts and inferences is useful, though, which is why we use the terms
»inference« and »inferable« in the sense of inferable but not specified as fact. Finally,
we compute a cross-entropy loss for the computed predictions, and adjust the model via
stochastic gradient descent (SGD). After every training epoch, the model is evaluated on a
hold-out set, and the training procedure is stopped as soon as the error that was computed
on the same has converged.

A salient detail of the outlined training procedure is that we consider just a single training
sample at a time, and thus seem to use an online version of SGD. However, as samples are
knowledge bases, they usually induce a multitude of triples that have to be predicted in each
training iteration, and hence effectively correspond with minibatches of varying sizes.

514

Ontology Reasoning with Deep Neural Networks

3.8 Computational Aspects

Now that we have defined all parts of the RRN model, we need to ask the question of whether
the presented approach is sensible from a practical point of view. For most problems that
we encounter in practice, we can consider the ontology Σ to be fixed, while the database of
known facts D may be subject to frequent change. Therefore, while we can safely disregard
the cost for training a model RRNΣ, the complexity of computing the same in order to
reason over D (relative to Σ) turns out to be critical.

We start with investigating the cost of generating individual embeddings. As stated in
Algorithm 1, each triple in D triggers (at most) one update operation per update iteration.2

Since every update can be computed in constant time and the number of update iterations
is fixed, this means that the (time) cost for generating an embedding matrix ED is (at most)
linear in the size of D, that is, O(|D|). This can be further improved by batching update
operations for triples that describe facts about relations, and parallelizing the computation
of any such batch of updates. One way to find appropriate batches is to compute maximal
matchings in the considered knowledge graph restricted to a single relation type, which
can be realized by means of fast greedy algorithms. Notice further that, as pointed out
above already, we usually do not compute new embeddings every time we need to check an
entailment, but only if the database D changed.

The second operation involved in using RRNΣ is computing predictions from ED. How-
ever, this requires constant time for each query, and once again, multiple queries may be
batched in order to further reduce the time of computation.

4. Evaluation

To assess the suggested approach, we trained and evaluated an RRN on five different
datasets, two out of which were artificially generated toy datasets, two were extracted from
real-world databases, and one was a generated dataset based on a real-world ontology. Toy
problems, generally, have the great advantage that it is immediately evident how difficult
certain kinds of inferences are, and thus provide us with a fairly good impression of the
model’s abilities. Nevertheless, evaluating an approach in a real-world setting is, of course,
an indispensable measure of performance, which is why we considered both kinds of data
for our experiments. Table 1 provides a few summary statistics of the used datasets. In this
table as well as in the sequel, we use the terms specified or inferable classes and relations
as a short form of triples that describe class memberships and relations, respectively. This
means that »inferable classes«, for example, refers to triples that are inferable from (but not
given as facts in) a knowledge base, and that specify a class membership of an individual.
Notice that we always assume ontologies to be fixed, which is why there is no indication for
talking about specified or inferable class or relation types. Notice that the stated counts of
individuals, classes, and relations in Table 1 are average values per sample knowledge base.
Furthermore, triples that describe classes and relations, respectively, appear both in positive
and negative from. For example, 〈i, MemberOf, C`〉 specifies the positive literal C`(i), while

2. In Algorithm 1, updates based on triples that specify information with respect to class memberships
(lines 5 to 7) are grouped by individual and batched. In practice, we would perform such a batch update
only if there is at least one fact concerning the respective individual. This means that, in the worst case,
we have to perform one update for each fact about a class membership per update iteration.

515

Hohenecker and Lukasiewicz

dataset # sample KBs avg. ind. vocabulary size
train test per sample # class types # relation types

family trees 5,000 500 23 2 29
countries (S1) 5,000 20 240 3 2
countries (S2) 5,000 20 240 3 2
countries (S3) 5,000 20 240 3 2
DBpedia 5,000 500 200 101 518
Claros 5,000 500 200 33 77
UMLS-reasoning 5,000 500 60 127 53

avg. classes per sample avg. relations per sample
dataset specified inferable specified inferable

(pos./neg.) (pos./neg.) (pos./neg.) (pos./neg.)
family trees 23 / — — / 23 28 / — 240 / 16,160
countries (S1) — / — 238 / 478 820 / — 20 / 49,261
countries (S2) — / — 238 / 478 782 / — 39 / 49,279
countries (S3) — / — 238 / 478 757 / — 68 / 49,275
DBpedia — / — 183 / — 642 / — 156 / —
Claros — / — 1,499 / — 518 / — 17,072 / —
UMLS-reasoning 43 / 39 1,194 / — 28 / 44 59 / 345

Table 1: This table breaks down the datasets that we used in our experiments according
to the total numbers of samples, individuals, and triples that they contain. For
triples, it lists both class memberships and relations specified as facts as well as
such that are just inferable. The numbers of positive and negated triples are quoted
separately. Notice that we trained and evaluated an RRN on 20 independent
datasets for each countries task in order to obtain a larger amount of evaluation
data. To that end, the number of training samples are average values over all these
datasets, while the number of test samples was summed up over all of them.

〈i,¬MemberOf, C`〉 describes a negative one ¬C`(i). Accordingly, Table 1 provides separate
counts for triples specifying positive and negative literals, respectively, and in the sequel,
we commonly refer to positive or negatives facts and inferences, respectively, which shall be
interpreted this way.

Each of the considered datasets is a collection of sample knowledge bases that share
a common ontology. During training and evaluation, the model was provided with all the
facts in the considered samples, and had to compute predictions for both facts and inferences
that were derivable from the same, based on the used ontologies. Since neural networks are
notoriously data-hungry, there has been a recent interest in training models on limited
amounts of data. Taking the same line, we confined all our training sets to a total of 5000
training samples.

4.1 Datasets

We generated two toy datasets that pose reasoning tasks of varying difficulty with respect
to family trees, on the one hand, and countries, on the other. In the family-trees dataset
(Figure 3a), samples describe pedigrees of different sizes such that the only facts that are
available in any of them are the genders of the people involved as well as the immediate

516

Ontology Reasoning with Deep Neural Networks

(a) Family Trees (b) Countries

Humperdink Elvira Fergus Downy

Goostave Daphne Quackmore Hortense Scrooge

Gladstone Donald Della

Huey Dewey Louie

great aunt

Ontology:
GrandparentOf(G, C) ← ParentOf(G, P), ParentOf(P, C).
GrandfatherOf(G, C) ← GrandparentOf(G, C), Male(G).
SiblingOf(C, C’) ← ParentOf(P, C), ParentOf(P,C’), C 6= C’.
GreatAuntOf(G, C)← SiblingOf(I, I’), GrandparentOf(I’, C), Female(G).
MotherOf(M, C) ← ParentOf(M, C), Female(M).
. . .
Facts:
Female(Daphne)
Male(Quackmore)
ParentOf(Elvira, Daphne)
ParentOf(Elvira, Quackmore)
ParentOf(Quackmore, Della)
ParentOf(Della, Huey)
. . .

Ontology:
LocatedIn(C,R) ← LocatedIn(C, S), LocatedIn(S, R).
LocatedIn(C,R) ← NeighborOf(C, C’), LocatedIn(C’, R).
Region(R) ← Subregion(S), LocatedIn(S, R).
Country(C) ← NeighborOf(C, N).
. . .

Facts:
LocatedIn(WesternEurope, Europe)
LocatedIn(France, WesternEurope)
LocatedIn(Belgium, WesternEurope)
LocatedIn(Luxemburg, WesternEurope)
NeighborOf(France, Belgium)
NeighborOf(Belgium, Luxemburg)
. . .

Inference Examples:

GrandparentOf(Quackmore, Huey) ←
ParentOf(Quackmore, Della),
ParentOf(Della, Huey).

SiblingOf(Daphne, Quackmore) ←
ParentOf(Elvira, Daphne),
ParentOf(Elvira, Quackmore).

GreatAuntOf(Daphne, Huey) ←
SiblingOf(Daphne, Quackmore),
GrandparentOf(Quackmore, Huey),
Female(Daphne).

Inference Examples:

LocatedIn(Belgium, Europe) ←
LocatedIn(Belgium, WesternEurope),
LocatedIn(WesternEurope, Europe).

LocatedIn(Belgium, WesternEurope) ←
NeighborOf(Belgium, Luxemburg),
LocatedIn(Luxemburg, WesternEurope).

Figure 3: (a) An example of a family tree, like it is found in the first toy dataset that the
RRN model was tested on. While the genders of all people involved as well as
the immediate relations between parents and their children are provided as facts,
all other family relations have to be inferred. The figure depicts an example of
a four-hop inference, namely, Daphne being a great aunt of Huey. (b) A sample
like the ones in the countries dataset. It illustrates how the location of Belgium
(orange) is inferred from the known location of its neighbor Luxemburg (yellow).
Given that Luxemburg is known to be part of Western Europe (blue), it follows
that Belgium is situated in Western Europe as well. Furthermore, since Western
Europe is a subregion of Europe, Belgium has to be in Europe too. The outlined
course of reasoning does not work in every case, however. It fails, for example, if
we try to infer Spain’s region based on facts abouts its neighbor France.

517

Hohenecker and Lukasiewicz

ancestors, that is, parent-of relations, among them. Besides this, the used ontology spec-
ifies rules for reasoning about 28 different kinds of family relations, ranging from »easy«
inferences, such as fatherhood, to more elaborate ones, like being a girl first cousin once
removed.3 What is particularly challenging about this dataset, however, is that seemingly
small samples allow for great numbers of inferences. For instance, an actual sample that
consists of 12 individuals with 12 parent-of relations specified among them admits no less
than 4032 inferences, both positive and negative. Furthermore, the training data is highly
skewed, as, for most of the relation types, only less than three percent of all inferences are
positive ones. Appendix B contains additional details of how we created this dataset.

The second toy dataset is based on the countries knowledge base (Bouchard et al., 2015),
which describes the adjacency of countries together with their locations in terms of regions
and subregions. In every sample, some of the countries’ regions and subregions, respectively,
are not stated as facts, but supposed to be inferred from the information that is provided
about their neighborhoods (Figure 3b). Following Nickel et al. (2016), we constructed three
different versions of the dataset, S1 (easy), S2, and S3 (hard). In contrast to the original
work, however, we created an ontology that allows for reasoning not just over countries’
locations, but also about their neighborhood relations. Furthermore, we introduced classes
for countries, regions, and subregions, all of which have to be inferred from the provided set
of facts. An interesting characteristic of the latter two versions of the dataset is that the
sample knowledge bases are constructed such that parts of the missing relations cannot be
inferred by means of the ontology at all. The same is true for some of the class memberships
in all three versions of the problem. This challenges the model’s ability to generalize beyond
pure ontology reasoning. Additional details about how we generated the countries datasets
can be found in Appendix C.

To evaluate the RRN model on real-world data, we extracted datasets from two well-
known knowledge bases, DBpedia (Bizer et al., 2009) and Claros. The former of these repre-
sents part of the knowledge that is available in terms of natural language on Wikipedia, and
the latter is a formalization of a catalog of archaeologic artifacts, which was created as part
of the RDFox project (Nenov et al., 2015). Since these datasets do not naturally separate
into samples, we extracted sample knowledge bases that are subgraphs of the original knowl-
edge graphs, each of which contains a total of 200 individuals. This way, it is possible to
evaluate the model on sample knowledge graphs that it has not seen as part of the training.
Appendix D provides additional details about how we extracted those samples.

While Claros makes use of a total of 33 classes and 77 relations, DBpedia employs
a massive vocabulary consisting of thousands of classes and relations, respectively. To
make the according experiments more computationally feasible, we restricted this to the
101 most frequent classes and those 518 relation types that allow for the greatest numbers
of inferences. What is interesting about both of the considered knowledge bases is that
neither of them contains any specified, but only inferable class memberships, which is a very
common characteristic of real-world datasets. Furthermore, the distribution of relations
with respect to individuals differs quite heavily in both of them. While the branching factor
in the knowledge graph specified by DBpedia varies rather smoothly, Claros contains certain
clusters of individuals that share very large numbers of relations, whereas their vicinities are

3. The term »girl first cousin once removed« refers to the daughter of someone’s cousin.

518

Ontology Reasoning with Deep Neural Networks

accuracy on F1 score on
dataset spec. inf. spec. inf. spec. inf. spec. inf.

classes classes relations relations classes classes relations relations
family trees 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.976
countries (S1) — 1.000 1.000 0.999 — 1.000 1.000 0.999
countries (S2) — 1.000 0.999 0.999 — 1.000 0.997 0.929
countries (S3) — 1.000 0.999 0.999 — 1.000 0.996 0.916
DBpedia — 0.998 0.998 0.989 — 0.997 0.998 0.962
Claros — 0.999 0.999 0.996 — 0.999 0.999 0.997
UMLS-reasoning 0.989 0.990 0.997 0.997 0.969 0.994 0.996 0.989

Table 2: This table summarizes our experimental results. Accuracy and F1 score are re-
ported separately for class memberships and relations, and within each group, for
those triples that describe specified knowledge, that is, facts, and those that rep-
resent inferable information.

comparably sparse. This is reflected by the fact that some sample knowledge bases consist
of a few hundred specified relations only, while others contain more than 100,000.

In addition to this, we created a dataset based on the Unified Medical Language System
(UMLS; McCray 2003), an ontology that has been introduced for describing concepts from
the biomedical domain in a uniform way. The UMLS ontology makes use of 127 classes
and 53 relations, and thus, in contrast to DBpedia and Claros, contains more classes than
relations. The UMLS is just an ontology, however, and does not specify any facts at all,
which is why we generated a dataset of 5000 sample knowledge bases, all of which make
use of the UMLS ontology as a training set. Additional details about the used generation
process are provided in Appendix D.

Interestingly, the UMLS is commonly used as a benchmark dataset for methods of knowl-
edge base completion (Kok & Domingos, 2007). In this context, however, the UMLS
is not interpreted as an ontology, but simply viewed as an ordinary knowledge graph.
This is possible, as the structure of the ontology is defined in terms of triples, such as
〈Bacterium, isa,Organism〉, which may be interpreted as the facts that specify a knowl-
edge graph, and in the benchmark dataset, some of these triples are missing and thus have
to be predicted based on the remaining information. In the sequel, we use the term »UMLS-
reasoning« to refer to our own dataset, and set it apart from the benchmark by (Kok &
Domingos, 2007), which is commonly just referred to as »UMLS«.

Finally, notice that we partitioned each of our datasets into pairwise disjoint sets for
training and testing, which ensures that the model actually learns to perform ontology
reasoning as opposed to just memorizing the data. Also, we would like to point out that,
unfortunately, Ebrahimi et al. (2018), who cited our work, mistakenly claimed that we
trained and evaluated our models on one and the same data, which is not the case.

4.2 Results

Table 2 summarizes the results that have been achieved in our experiments. For reports
in much greater detail, we refer the reader to Appendix F and G, which provide additional
information about results on the toy datasets. The detailed results of our experiments with

519

Hohenecker and Lukasiewicz

DBpedia, Claros, and UMLS-reasoning are too comprehensive to be included in this paper,
and are thus provided online at http://paho.at/rrn. In addition to this, Appendix A provides
a description of our experimental setup.

There are a number of interesting aspects to notice across all the considered reasoning
tasks. First, we see that the RRN is able to effectively encode provided facts, about both
classes and relations, as these are predicted correctly from the created embeddings with
an accuracy greater than 98.9%, and except for UMLS-reasoning, even with more than
99.8%. Furthermore, we observe that the model also learns to reason over classes with an
equally high accuracy of 99.8% on all datasets except UMLS-reasoning, for which we find an
accuracy of 99.0%. This difference is not surprising, though, as the UMLS ontology specifies
by far the largest taxonomy of classes. Therefore, separate class prediction layers might
be required to achieve an even higher accuracy on predicting inferable class memberships
in this dataset. For reasoning over relations, we find a slightly lower accuracy of 98.9% on
DBpedia, while derivable relations in other datasets are predicted correctly in at least 99.6%
of all cases. Again, however, this difference is not surprising, as DBpedia’s is by far the most
complex among the ontologies that were used in our experiments, and might thus require
a larger training dataset in order to achieve an even higher accuracy. Also, it was to be
expected that the model would generally perform better in predicting inferable classes than
relations, since most of these are inferences depending on single triples only.

As stated in the detailed result tables, comparing specified with inferable triples reveals
that, throughout all datasets, there are imbalances with respect to positive and negative
relations, that is, the majority of specified triples is positive, while most inferable ones are
negative. Therefore, we would like to stress at this point that the RRN employs the same
MLPs for predicting both kinds of triples, and thus cannot »cheat« by leveraging those
imbalances in the data. Also, the great surplus of negative triples among all inferable ones
explains why the reported F1 values are slightly lower than the accuracies quoted.

Earlier, we pointed out a few problems that symbolic methods of KRR commonly struggle
with. To evaluate whether the RRN suffers from these issues as well, we corrupted the test
data of our real-world datasets, DBpedia and Claros, and examined whether the models
that have been trained as part of our experiments are able to resolve the introduced flaws.
For the problem of missing information, we randomly removed one fact that could not be
inferred by means of symbolic reasoning from each sample, and checked whether the model
was able to reconstruct it correctly. For DBpedia, this was the case for 33.8% of all missing
triples, and for Claros, 38.4% were predicted correctly. Just like this, we tested the model’s
ability to resolve conflicts by randomly choosing one fact in each test sample, and adding
a negated version of the same as yet another fact. For DBpedia, the RRN resolved 88.4%
of the introduced conflicts correctly, and for Claros, it were even 96.2%. Most importantly,
however, none of the total accuracies reported earlier dropped by more than 0.9 for either
of the corrupted datasets. This is remarkable, as both kinds of deficiencies pose serious
problems for symbolic methods, and conflicting information, in particular, prohibits the
same entirely for most of the formalisms that are used today.

All the query predictions of the RRN are solely based on the embeddings that it gener-
ated for the individuals in the respective datasets, which is why it is instructive to have a
closer look at such a set of embedding vectors. Figure 4 provides a two-dimensional t-SNE
projection of those embeddings for the individuals in one sample of the countries dataset

520

Ontology Reasoning with Deep Neural Networks

model accuracy on inferable relation
family trees countries (S1) countries (S2) countries (S3)

RRN 0.999 0.999 0.999 0.998
NTP 0.971 0.999 0.890 0.875

Table 3: The results of our experimental comparison of the RRN and the NTP. In this table,
accuracies are stated with respect to predicting relations that are inferable relative
to the used ontologies, and for the countries datasets, we considered the located-in
relation only.

(S1). In this visualization, dots represent individuals, and their colors indicate whether they
represent countries, regions, or subregions. Furthermore, each country and each subregion
is endowed with a colored shadow that reveals the region that the respective individual is
located in. Without even looking at the labels provided, one can easily detect groups of
countries that belong to one and the same subregion. Furthermore, most of the clusters
representing subregions that are located in the same region are neighbors in this visualiza-
tion as well. Finally, observe that the individuals that represent regions and subregions,
respectively, are mostly encoded as embeddings in confined regions of the embedding space.

Despite a considerable body of related work (cf. Section 5), hardly any of the introduced
models can be used to address the same exact problem setting that is considered in this
work, such that a direct comparison would not be fair in most cases. There is one excep-
tion, however, and this is the Neural Theorem Prover (NTP; Rocktäschel & Riedel 2017).
Although it has been introduced in the context of knowledge graph completion, the NTP
is based on the backward chaining algorithm that is used in Prolog, and can thus be used
for logical reasoning. Since the NTP model is rather involved, we refrain from providing
a description here, and refer the interested reader to the original paper by Rocktäschel &
Riedel (2017) instead. There are, however, two important aspects to mention. First, it is
possible for the NTP to make use of symbolic rules that are provided as part of the input,
which is why the model is suitable for ontology reasoning. These rules are restricted to
positive Horn rules, though, and thus cover just a fraction of the full reasoning problem that
we aim to solve in this paper. Second, like most models for knowledge graph completion,
the NTP is trained on the same knowledge graph that is supposed to be completed, and
thus cannot make use of the RRN’s training scheme described above.

As pointed out by Rocktäschel & Riedel (2017), the NTP suffers from severe performance
problems, which is why we compared it to the RRN on our toy datasets only. Furthermore,
due to the restricted set of rules that can be provided to an NTP, we removed all those
rules from the used ontologies that are not supported by the model, and instead employed
it for reasoning under the CWA. This way, it is possible to employ the NTP model for the
considered reasoning problems on our toy datasets. Notice, however, that this is not the
case in general. Furthermore, we made use of the (empirically) best version of the NTP
model, which is referred to as NTPλ in the original paper.

Table 3 summarizes our comparison of the RRN and the NTP on the family trees and
the different versions of the countries dataset. For evaluating the models against each other,
we considered inferable relations for computing accuracies only, that is, we excluded facts as
well as any triples about class memberships, as these provide a better picture of a model’s

521

Hohenecker and Lukasiewicz

country region subregion

africa americas europe antarctic asia oceania

departmentOfMayotte
republicOfKenya

republicOfRwanda
republicOfMozambique

republicOfDjibouti
republicOfMadagascar

reunionIsland
stateOfEritrea

unionOfTheComoros
federalRepublicOfSomalia
unitedRepublicOfTanzania

republicOfMalawi
republicOfSeychelles

republicOfBurundi
republicOfZimbabwe

republicOfZambia
republicOfMauritius

britishIndianOceanTerritory
republicOfCaboVerde

burkinaFaso
republicOfMali

togoleseRepublic
republicOfTheGambia

saintHelenaAscensionAndTristanDaCunha
republicOfNiger

republicOfGhana
republicOfLiberia

republicOfSenegal
islamicRepublicOfMauritania

republicOfSierraLeone
republicOfBenin

republicOfCoteDivoire
republicOfGuineaBissau

republicOfGuinea
southernAfrica

middleAfrica
republicOfArmenia

northernAfrica
republicOfAzerbaijan

georgia
republicOfYemen

kingdomOfBahrain
stateOfQatar

stateOfKuwait
easternAfrica

syrianArabRepublic
republicOfTurkey

southAmerica
westernAfrica

unitedArabEmirates
stateOfPalestine

hashemiteKingdomOfJordan
republicOfIraq

stateOfIsrael
kingdomOfSaudiArabia

sultanateOfOman
lebaneseRepublic

caribbean
southEasternAsia

southernAsia
easternAsia

centralEurope
easternEurope

northernEurope
australiaAndNewZealand

northAmerica
polynesia

republicOfCuba
commonwealthOfTheBahamas
saintVincentAndTheGrenadines

westernEurope
guadeloupe

federationOfSaintChristopherAndNevisa
virginIslands

micronesia
bonaireSintEustatiusAndSaba

aruba
commonwealthOfDominica

commonwealthOfPuertoRico
caymanIslands

turksAndCaicosIslands
virginIslandsOfTheUnitedStates

grenada
anguilla

republicOfHaiti
republicOfTrinidadAndTobago

countryOfCuracao
collectivityOfSaintBarthelemy

saintLucia
sintMaarten

barbados
martinique

jamaica
saintMartin

republicOfTajikistan
turkmenistan

kyrgyzRepublic
republicOfElSalvador

dominicanRepublic
montserrat

principalityOfAndorra
republicOfSlovenia

antiguaAndBarbuda
republicOfVanuatu

newCaledonia
republicOfFiji

solomonIslands
independentStateOfPapuaNewGuinea

republicOfGuatemala
republicOfCostaRica
republicOfNicaragua
republicOfHonduras

republicOfUzbekistan
mostSereneRepublicOfSanMarino

republicOfAlbania
republicOfMacedonia

montenegro
republicOfMalta
vaticanCityState
hellenicRepublic
centralAmerica

centralAsia
republicOfSerbia

italianRepublic
bosniaAndHerzegovina

gibraltar
kingdomOfSpain

portugueseRepublic
republicOfCroatia

bolivarianRepublicOfVenezuela
falklandIslands
guiana
federativeRepublicOfBrazil
republicOfChile
republicOfEcuador
republicOfColombia
territoryOfTheFrenchSouthernAndAntarcticLands
antarctica
southGeorgiaAndTheSouthSandwichIslands
bouvetIsland
heardIslandAndMcdonaldIslands
orientalRepublicOfUruguay
republicOfSuriname
republicOfPeru
slovakRepublic
sahrawiArabDemocraticRepublic
stateOfLibya
antarctic
oceania
europe
asia
americas
africa
greenland
unitedStatesOfAmerica
unitedMexicanStates
canada
saintPierreAndMiquelon
bermuda
unitedStatesMinorOutlyingIslands
republicOfAngola
peoplesDemocraticRepublicOfAlgeria
republicOfChad
republicOfTheCongo
republicOfCameroon
tunisianRepublic
republicOfTheSudan
republicOfSouthAfrica
republicOfBotswana
kingdomOfLesotho
republicOfNamibia
kingdomOfSwaziland
federalDemocraticRepublicOfNepal
islamicRepublicOfAfghanistan
islamicRepublicOfIran
democraticRepublicOfSaoTomeAndPrincipe
arabRepublicOfEgypt
democraticSocialistRepublicOfSriLanka
kingdomOfMorocco
republicOfSouthSudan
republicOfTheMaldives
democraticRepublicOfTheCongo
peoplesRepublicOfBangladesh
republicOfIndia
republicOfEquatorialGuinea
macaoSpecialAdministrativeRegion
republicOfChinaTaiwan
republicOfTheMarshallIslands
gaboneseRepublic
guam
republicOfPalau
independentAndSovereignRepublicOfKiribati
commonwealthOfTheNorthernMarianaIslands
federatedStatesOfMicronesia
republicOfNauru
peoplesRepublicOfChina
hongKongSpecialAdministrativeRegion
japan
republicOfKorea
mongolia
principalityOfMonaco
principalityOfLiechtenstein
republicOfAustria
kingdomOfBelgium
frenchRepublic
federalRepublicOfGermany
kingdomOfTheNetherlands
territoryOfNorfolkIsland
territoryOfChristmasIsland
newZealand
commonwealthOfAustralia
territoryOfTheCocosKeelingIslands
democraticRepublicOfTimorLeste
malaysia
republicOfThePhilippines
kingdomOfThailand
republicOfIndonesia
republicOfTheUnionOfMyanmar
republicOfSingapore
laoPeoplesDemocraticRepublic
americanSamoa
tuvalu
cookIslands
frenchPolynesia
niue
tokelau
pitcairnGroupOfIslands
kingdomOfTonga
territoryOfTheWallisAndFutunaIslands
independentStateOfSamoa
faroeIslands
bailiwickOfJersey
alandIslands
iceland
kingdomOfSweden
unitedKingdomOfGreatBritainAndNorthernIreland
republicOfLatvia
isleOfMan
kingdomOfNorway
svalbardOgJanMayen
bailiwickOfGuernsey
republicOfLithuania
republicOfMoldova
republicOfKosovo
ukraine
romania
republicOfBulgaria
westernAsia
czechRepublic
republicOfCyprus
republicOfBelarus
hungary
kingdomOfCambodia
socialistRepublicOfVietnam
russianFederation
republicOfIreland
kingdomOfDenmark
southernEurope
melanesia

Figure 4: This is a t-SNE projection of embeddings that were generated for a single training
sample from version S1 of the countries dataset. Dots represent individuals, which
means for this data countries, regions, or subregions. Since each country and each
subregion is located in exactly one region, their respective dots are endowed with
a colored shadow such that different colors indicate different regions of belonging.

522

Ontology Reasoning with Deep Neural Networks

abilities. On the family trees dataset, we evaluated both models with respect to all inferable
relations, but on the countries dataset, we confined ourselves to located-in relations only, as
inferable relations of other relation types are more or less trivial. As stated in the table, the
RRN, which achieves an accuracy of at least 99.8% on all datasets, outperforms the NTP
in all the considered cases except version S1 of the countries data, for which both models
perform equally well. On version S2 and S3 of the countries dataset, however, we observe a
signification margin of more than 10% accuracy.

There is another interesting detail about the application of the NTP on the family trees
dataset. All facts about relations in the dataset are parent-of relations, which means that
none of the other predicates that appear in any inferable triples can be observed as facts. As
the NTP is always trained on the same knowledge base that it is evaluated on, however, it is
not able to learn anything about these relation types, and cannot even provide predictions
for the same. In contrast to this, the RRN can be trained on synthetically generated training
data, and thus learns to predict inferable relations almost perfectly. To allow for comparing
the RRN and the NTP on the family trees dataset anyway, we thus added half of the inferable
relations of each relation type as facts to the according sample knowledge bases. Notice,
however, that the RRN achieved the same accuracy of 99.9% on the original version of the
family trees data, as stated in Table 2.

4.3 Qualitative Evaluation

Despite the convincing results, the RRN, like most models that are based on deep learn-
ing, remains basically a black box for which it is not obvious how exactly predictions are
computed. Our experimental evaluation shows, however, that the model’s computations are
effectively guided by the rules of the considered ontology, and we are planning to make this
aspect fully transparent in future extensions of the RRN architecture. In this section, we
analyze further characteristics of the RRN model, and try to understand how it depends on
different design choices.

Update iterations. As described above, the number of update iterations is used to specify
how often each fact in a knowledge base is considered for updating the embeddings of the
individuals involved in the same (cf. Algorithm 1). Intuitively, the reason why we have to
perform multiple update iterations is that update steps are local in the sense that they are
based on a single fact together with the information that is encoded in the embeddings of
the individuals involved. Often, however, ontologies contain rules that are based on multiple
triples at the same time, for example, if inferences depend on two individuals in a knowledge
graph being connected by a path of length greater than one, which is commonly referred to
as multi-hop reasoning. In a case like this, multiple update iterations are necessary, since
more than two embeddings have to be adjusted in order to transfer information between all
individuals involved.

To verify this, consider Table 4, which provides prediction accuracies for inferable rela-
tions of different relation types in the family trees dataset. The relations described in this
table range from easy 1-hop inferences up to much more elaborate 5-hop reasoning, and the
according accuracies were evaluated after each of 5 update iterations in total. Now, there are
two interesting aspects to observe in this table. First and foremost, we see that the number
of update iterations that are necessary in order to achieve the peak accuracies with respect

523

Hohenecker and Lukasiewicz

update iters accuracy on inferable relations
fatherOf sisterOf greatGrandsonOf girlCousinOf boyFirstCousinOnceRemoved
(1 hop) (2 hops) (3 hops) (4 hops) (5 hops)

1 0.992 0.991 0.921 0.919 0.940
2 1.000 0.996 0.995 0.994 0.992
3 1.000 0.997 0.999 0.998 0.999
4 1.000 0.997 1.000 0.999 0.999
5 1.000 0.997 1.000 0.999 1.000

Table 4: The prediction accuracies for inferable relations with different predicates in the
family trees dataset after different numbers of update iterations. Bold-faced values
mark the lowest number of update iterations that allow for achieving the best
possible accuracy for a relation type.

dataset family trees countries (S3) DBpedia Claros UMLS-reasoning
1 pred. layer per relation 0.999 0.999 0.997 0.989 0.996
1 pred. layer for all relations 0.778 0.942 0.563 0.616 0.644

Table 5: The accuracies for inferable relations that were achieved with one prediction layer
per relation type on the one hand and a single prediction layer for all relations on
the other.

to the different relation types is indeed correlated with the according number of hops. Even
more interestingly, however, all accuracies are greater than 0.91 after the very first update
iteration already, and greater than 0.99 after the second one. This suggests that the model
learns to make effective use of multiple rules in the ontology at the same time, and is not
confined to drawing simple one-step inferences per update iteration.

Number of layers. A noticeable property of the RRN’s model architecture is that it, for
both updates and predictions, comprises one layer for each relation type that exists in the
considered ontology, but just a single one for class types altogether. The intuition behind
this is that inferences about class memberships tend to be »easier« in the sense that they
frequently depend on single triples only or can be drawn based solely on the knowledge
about the individual concerned. Empirically, this is confirmed by the results presented in
the previous section, as the predictive accuracy on inferable classes is greater than or equal
to the accuracy on inferable relations on all considered datasets. This raises the question of
whether it is possible to reduce the number of layers that are used for operations related to
relations in a similar manner in order to reduce the total number of trainable parameters.

It turns out, though, that this is not the case. Table 5 summarizes, for all datasets,
how the accuracy of predicting inferable relations changes if we use just a single compound
prediction layer, like for predicting class memberships. To that end, we observe a significant
drop for each of the datasets, which becomes more severe as the number of relation type
in the considered ontology grows. On DBpedia, for example, the accuracy achieved with a
single prediction layer is just slightly better than random guessing.

524

Ontology Reasoning with Deep Neural Networks

5. Related Work

In this section, we provide a comparison to existing learning-based approaches to logical
reasoning as well as to symbolic methods to logical reasoning. In this context, we also
discuss some general limitations of the presented RRN model.

5.1 Learning-Based Logical Reasoning

While there has been an increasing interest in the application of learning-based methods to
various kinds of logical reasoning in the last few years, ontology reasoning in particular has
received just modest attention. The only published paper that we are aware of is by Makni
& Hendler (2018), who developed an approach to RDFS reasoning contemporaneously with
the work presented in this article. To that end, Makni & Hendler suggested an algorithm
for mapping entire knowledge graphs to embedding vectors, which they refer to as graph
words. Building on this, they use a BiGRU encoder-decoder architecture for translating
the embedding of the knowledge graph specified by a database to the embedding of the
according inference graph. Finally, the inference graph is reconstructed from the translated
embedding, and predictions are extracted from the same. Makni & Hendler evaluated their
approach on two different datasets, a toy dataset that makes use of the LUBM ontology (Guo
et al., 2005), a very simple toy ontology, and real-world data that have been extracted from
DBpedia. On the unimpaired versions of both datasets, they reported prediction accuracies
of 0.98 and 0.87 for LUBM and DBpedia, respectively, which are well below the results that
the RRN achieved on the comparable datasets that we used in our own experiments. Despite
the fact that the RRN learns to perform ontology reasoning with a very high accuracy, it does
not yet allow for providing justifications for the predicted inferences, such as via inference
graphs like the model by Makni & Hendler (2018). The reason for this is that the RRN
iteratively performs local updates of individual embeddings, which does not easily allow for
tracking global inference paths. However, we are planning to extend the RRN architecture
as part of future work in order to account for this task.

Another very recent work by Ebrahimi et al. (2018) addresses reasoning over RDF knowl-
edge bases via an adapted version of end-to-end memory networks (MemN2N; Sukhbaatar
et al., 2015). To that end, Ebrahimi et al. treat triples like text, and map the elements of
any such (that is, subject, predicate, and object) to what they call normalized embeddings,
which are created by first applying standard data preprocessing for logical reasoning, and
then randomly mapping the names of primitives of the considered logical language (that
is, variables, constants, functions, and predicates) to a predefined set of entity names. The
rationale behind this is that the model should learn that names of primitives do not matter,
and inferences depend on structural information about a knowledge base only. After this,
the embedded triples are placed in the memory of an adapted MemN2N, which computes
a prediction for a query that is also provided as an embedded triple. To evaluate their
approach, Ebrahimi et al. extracted three different datasets, consisting of sample knowledge
bases with 1000 triples each, from various public sources. They tested their model on a
few different versions of each dataset, and reported 0.96 as the highest accuracy that has
been achieved on any of them. In contrast to this, the RRN achieved an accuracy of more
than 0.99 (taken over both classes and relations) in our own experiments with real-world
data. Furthermore, the model introduced by Ebrahimi et al. (2018) does not compute all

525

Hohenecker and Lukasiewicz

inferences that may be derived from a knowledge base, but provides predictions for single
queries only. Differently from the approaches by Ebrahimi et al. (2018) and also Makni &
Hendler (2018), the RRN is trained relative to a fixed ontology, instead of reading the same
as part of the input. This is a design choice that involves a bit of trade off, since it results in
reasoning models of unprecedented accuracy, as shown in our experiments, but requires us to
train a new model from scratch whenever a different ontology is considered. We do believe,
however, that this meets the requirements in practice, as ontologies are usually considered
as fixed in most use cases.

Apart from this, a lot of previous work addresses the combination of logic-based symbolic
reasoning and deep learning in some way, but is not related to ontology reasoning per
se—notice that the following is not an exhaustive account. There exists a large body of
previous work on neural-symbolic systems for learning and reasoning (see especially Sun
& Alexandre, 2013; Hammer & Hitzler, 2007; d’Avila Garcez et al., 2012, 2015), which are
classified into hybrid translational and hybrid functional systems. While the former translate
and extract symbolic representations into and from neural networks, respectively, in which
each symbolic sentence may be encoded in clearly localized neurons and in a distributed
way over all neurons, the latter couple a symbolic and a neural representation and reasoning
system (Sun & Alexandre, 2013). However, a coupling of two systems in hybrid functional
systems comes with a mismatch of data learning capabilities, easy adaptability, and error
tolerance between the two systems, while a localized hybrid translational system essentially
just moves this mismatch into a single neural network.

Another line of research in neural-symbolic logical inference takes inspiration from the
backward chaining algorithm used in logic programming technologies such as Prolog. More
specifically, Rocktäschel & Riedel (2017) as well as Minervini et al. (2018) replace symbolic
unification with a differentiable computation on vector representations of symbols, using
radial basis function kernels. The approach learns to place representations of similar symbols
in close proximity in a vector space, makes use of such similarities to prove queries, induces
logical rules, and uses provided and induced logical rules for multi-step reasoning. It thus also
combines logic-based reasoning with learning vector representations, but is intuitively best
described as a vector simulation of backward chaining. Differently from these approaches,
the RRN is in particular not able to induce additional ontological rules. Closely related are
logic tensor networks (Serafini & d’Avila Garcez, 2016; Donadello et al., 2017), which are
different from the approaches by Rocktäschel & Riedel (2017) and Minervini et al. (2018) in
that they fully ground first-order logic rules and also support function terms. Other neural-
symbolic approaches focus on first-order inference, but do not learn subsymbolic vector
representations from training facts in a knowledge base, for example, CLIP++ (França
et al., 2014), lifted relational neural networks (Sourek et al., 2015), Neural Prolog (Ding,
1995), SHRUTI (Shastri, 1992), and TensorLog (Cohen, 2016; Cohen et al., 2017). Further
related earlier proposals for neural-symbolic networks for logical inference are limited to
propositional rules, for example, C-IL 2 P (d’Avila Garcez & Zaverucha, 1999), EBL-ANN
(Shavlik & Towell, 1991), and KBANN (Towell & Shavlik, 1994), including the recent ones
by Bowman et al. (2014, 2015), which present successful approaches to simple propositional
forms of logical reasoning. These approaches are based on recursive neural tensor networks,
and consider the binary logical relationships entailment, equivalence, disjointness, partition,
cover, and independence on elementary propositional events.

526

Ontology Reasoning with Deep Neural Networks

Another line of work (Rocktäschel et al., 2015; Demeester et al., 2016; Hu et al., 2016;
Vendrov et al., 2016; Minervini, Costabello, et al., 2017; Minervini, Demeester, et al., 2017)
regularizes distributed representations via domain-specific rules, but these approaches of-
ten support a restricted subset of first-order logic only. In particular, Rocktäschel et al.
(2015) and Demeester et al. (2016) incorporate implication rules relative to ground terms
into distributed representations for natural language processing, while Hu et al. (2016) in-
corporate ground instances of first-order rules into deep learning, projected to the ground
terms of the learned data in each minibatch. Even with such restrictions, in experimental
results in sentiment analysis and in named-entity recognition, the approach achieves (with
a few intuitive rules) substantial improvements and state-of-the-art results to previous best-
performing systems. Closely related are some extensions of knowledge-base completion that
additionally consider non-factual symbolic knowledge to act as constraints to the learning
process (Diligenti et al., 2012; Nickel et al., 2012). In particular, Diligenti et al. (2012) inves-
tigate a bridge between logic and kernel machines, and use non-factual symbolic knowledge
as constraints in the second step of a two-stage process, where learning is done in the first
one. Minervini, Costabello, et al. (2017) account for very simple relationships between dif-
ferent relation types, such as equivalence or inverse predicates, by making use of appropriate
regularization terms. Closely related to this, Xu et al. (2018) introduced the semantic loss,
which is another type of regularization term that allows for enforcing constraints that can
be expressed by means of propositional logic. Another interesting approach by Minervini,
Demeester, et al. (2017) incorporates background knowledge specified as Horn clauses into
knowledge base completion by means of adversarial training (Goodfellow et al., 2014). Note
that, in general, knowledge base completion (Socher et al., 2013; Trouillon et al., 2017), or
link prediction in knowledge bases, which is the problem of predicting non-existing facts in
a knowledge base consisting of a finite set of facts, differs from logical inference relative to
a knowledge base, as it is generally missing logical knowledge beyond simple facts.

Finally, notice that within the deep-learning literature, the term »reasoning« is often
used informally, that is, without reference to any kind of symbolic logic at all (e.g., Socher
et al., 2013; Weston, Chopra, & Bordes, 2015; Henaff et al., 2017; Santoro et al., 2017).

5.2 Symbolic Methods of Logical Reasoning

One important question, which has been addressed briefly in the introduction already, is
how to motivate the neural approach to ontology reasoning in the first place, and how the
RRN relates to purely symbolic methods of logical reasoning.

First, the presented neural approach to ontology reasoning is a step towards answering
the wide open problem of how to combine deep learning technologies with symbolic methods
for logical reasoning, which is commonly regarded as a prerequisite for further substantial
progress in AI. Implementing symbolic ontology reasoning with neural networks of very high
accuracy in some sense bridges the gap between neural and symbolic methods, and offers new
ways of providing machine learning models with reasoning capabilities that have previously
been reserved for symbolic methods only, which opens up interesting new opportunities.
From a machine-learning perspective, the RRN can be considered as a method of knowledge-
graph embedding (Wang et al., 2017) that produces semantically meaningful embeddings of
the individuals in a knowledge graph. These, in turn, may serve as input to models that

527

Hohenecker and Lukasiewicz

are used for learning downstream tasks, and thus allows for leveraging symbolic background
knowledge in learning deep neural networks (and thus for knowledge transfer and for learning
from smaller amounts of data) and explainable symbolic inference in computing according
predictions towards a better explainability of the learned neural systems.

Second, the neural approach to ontology reasoning is useful in its own right as an al-
ternative to symbolic methods to logical reasoning. Even though it does not allow for fully
accurate logical reasoning, it paves the way for highly scalable implementations of nearly
accurate approximate logical reasoning via parallel computations on GPUs. Such implemen-
tations may not be used for safety-critical applications (such as for verifying the control of
nuclear power plants), but it may be sufficiently accurate for many other applications where
full accuracy is not required (such as question answering over the web).

In the same vein, one major issue that many symbolic approaches, including all reasoning
formalisms rooted in classical logic, suffer from is conflicting information. In practice, how-
ever, information is frequently imperfect, which is why conflicts inevitably have to be dealt
with in many use cases that symbolic reasoning is applied to. While many reasoning methods
simply do not work in any such case, our experiments with the RRN suggest that the model
is able to effectively resolve conflicts and thus better suited for applying logical reasoning
in a real-world scenario. Even though there exist formalisms for reasoning over inconsistent
knowledge bases that are also able to resolve conflicts, such as inconsistency-tolerant rea-
soning (Lembo et al., 2010) and paraconsistent logics (Middelburg, 2011), these approaches
are generally quite limited in practice, since there is a price to be paid in terms of com-
putational complexity. Apart from confined special cases, theoretically powerful methods
are usually computationally harder than their counterparts for the consistent case (see, e.g.,
Lukasiewicz et al., 2015), whereas the RRN allows for reasoning in linear time, irrespective
of any conflicts that may or may not exist in the considered knowledge base.

Finally, another challenge that is commonly encountered in practice is missing informa-
tion, that is, details that are neither specified as facts in the considered knowledge base
nor inferable from them via symbolic reasoning. Strictly speaking, recovering such missing
pieces is a prediction rather than a reasoning task, and hence usually not considered in
the context of symbolic reasoning. This is not in line with the requirements that are typi-
cally faced in practice, though, as we frequently seek to do both, compute predictions and
perform reasoning. Again, however, our experiments indicate that this is exactly what the
RRN does. To that end, we observed that the model is able to provide sensible predictions
for any missing details that are compatible with the considered set of facts relative to the
used ontology in many cases, and that these, in turn, also affect inferences computed by the
model.

6. Conclusion

The results of this work show that the RRN model is able to learn to effectively reason
over diverse ontological knowledge bases, and, in doing so, is the first one to achieve an
accuracy that is very close to the yet unattainable accuracy of symbolic methods, while being
distinctly more robust. Notice further that this was possible without the necessity of any
kind of external memory, as it is used by many state-of-the-art models of deep learning, such
as the differential neural computer (DNC; Graves et al., 2016) or memory networks (Weston,

528

Ontology Reasoning with Deep Neural Networks

Chopra, & Bordes, 2015). This paves the way for applying comprehensive logical reasoning
to a range of important problems that logic-based symbolic methods are, in general, hard
to apply to. In addition to standard ontology reasoning tasks with missing or conflicting
information, these include tasks such as understanding natural language, interpreting visual
inputs, or even autonomous driving, which is highly demanding in terms of reasoning about
an agent’s surrounding. Furthermore, training an RRN relative to a suitable ontology is a
simple and at the same time very powerful way to provide a model with domain knowledge,
which is difficult to achieve with most of the state-of-the-art methods.

The RRN is among the very first deep-learning-based approaches to comprehensive ontol-
ogy reasoning, which is why it is hard to compare to the state-of-the-art of machine learning
models for reasoning, whose architectures do not allow for performing the same kind of in-
ferences per se. Still, it is interesting to observe the performance of related approaches on
learning tasks that are included as part of the reasoning problems presented in this work.
For instance, the DNC was previously evaluated on the problem of determining relationships
based on family trees (Graves et al., 2016), very much like the reasoning problem presented
earlier. In doing so, it achieved an average accuracy of 81.8% on predicting four-step family
relations, while the RRN predicted more than 99.9% of those relations correctly. Another
interesting comparison is with the recently introduced Neural Theorem Prover (NTP; Rock-
täschel & Riedel, 2017), which can indeed be used for simple ontology reasoning. As shown
above, however, the RRN outperforms the NTP throughout all datasets, sometimes by more
than 10% accuracy. The substantial margins observed do suggest that the RRN is able to
grasp reasoning concepts that other state-of-the-art methods struggle with. The reason for
this, we believe, is that our holistic approach to ontology reasoning adds a lot more structure
to the considered data than other narrower prediction tasks, and hence makes it much easier
for a model to »understand« the same. Furthermore, ontology reasoning, in many cases,
naturally allows for breaking down complex inferences into several easier reasoning tasks,
which, in some sense, provide guidance for learning to draw more elaborate conclusions.

Besides this, as discussed in Section 5, the RRN is superior to machine learning models for
ontology reasoning in particular as well. This is most likely due to the fact that each RRN is
trained relative to a fixed ontology, which allows for adjusting its architecture appropriately,
while other existing approaches consider the specification of the same as part of the input.
Hence, there seems to be a certain tradeoff between generality, and thus independence of
the considered ontology, on the one hand, and reasoning accuracy, on the other. In practice,
however, ontologies are usually considered to be fixed, which is why a higher accuracy is, in
general, more desirable than a reasoning model that is not tied to a single ontology.

Finally, there is one subject that we raised just incidentally at the very beginning of this
article. Despite the fact that the human brain served as a major source of inspiration for the
development of artificial neural networks (Hassabis et al., 2017), most network architectures
that are used for machine learning today lack biological plausibility. However, while many
mechanics of the human neurology remain uncharted, there exist a number of aspects that
are considered to be confirmed by now, and some of them allow for drawing interesting
parallels to the RRN model. For instance, there is a broad consensus that reasoning in the
human brain is not realized like logic-based symbolic reasoning, neither conceptually nor
computationally. Instead, it is believed that our brain maintains a probabilistic cognitive
model of the world (Oaksford & Chater, 2007), which provides a base for any kind of thought

529

Hohenecker and Lukasiewicz

or action. To that end, the storage of semantic memory is organized in a distributed way, and
information is encoded by strengthening synaptic connections among some neurons, while
others are left to be strangers to one another (Martin & Chao, 2001). This is similar to how
the RRN adjusts individual embeddings, which could be considered as groups of neurons,
whenever a new piece of information arrives. Both absolute as well as relative positions of
such vectors in the embedding space determine what is believed to be true about the world,
which is why the adjustment of those may be interpreted as strengthening certain connections
between neurons that store different pieces of information in a distributed way. Another
interesting point is that the RRN, unlike other recent models, conducts logical reasoning
without any kind of external memory, which is not believed to happen in the human brain
either. Instead, reasoning is entangled with the generation of individual embeddings in the
presented model, and thus part of encoding information in a distributed manner.

At the bottom line, the RRN embodies a surprising pairing of results, as it (i) learns to
conduct highly accurate reasoning in a logic-based sense, (ii) is able to work with complex
real-world knowledge bases, and (iii) is biologically plausible in a number of ways.

Despite the fact that an RRN is effectively guided by the ontology that it has been trained
on, it cannot provide justifications for predictions yet. As an important future work, we are
thus currently extending the presented architecture such that it allows for inducing rules
and explanations, such as inference graphs, alongside computed predictions, hence making
the RRN a fully interpretable neural reasoner. Other interesting topics for future research
include the generalization of the presented approach to more expressive ontology languages,
such as those involving existential rules like the Datalog± family (Calì et al., 2012), and
to other forms of logical reasoning, such as default reasoning (Eiter & Lukasiewicz, 2000)
and argumentation (Bench-Capon & Dunne, 2007).

Acknowledgments

This work was supported by the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC) under the grants EP/J008346/1, EP/R013667/1, EP/L012138/1, and EP/M0-
25268/1, as well as the Alan Turing Institute under the EPSRC grant EP/N510129/1. Fur-
thermore, Patrick is supported by the EPSRC under the grant OUCL/2016/PH and the Ox-
ford-DeepMind Graduate Scholarship under the grant GAF1617_OGSMF-DMCS_1036172.
We also acknowledge the use of the EPSRC-funded Tier 2 facility JADE (EP/P020275/1).

Appendix A. Experimental Setup

As part of the conducted experiments, we performed a grid search in order to determine an
appropriate set of hyperparameters, all of which are reported in Table 6. Interestingly, the
RRN seems to be broadly task-agnostic, as similar values worked well for all the considered
datasets. Merely the size of the individual embeddings as well as the number of update
iterations had to be adjusted based on the respective reasoning task. Furthermore, there
was no need to manually create mini-batches of training data, as the single training samples
contained numerous triples for each class and relation type already. All our models were
trained by means of Adam (Kingma & Ba, 2015) with an initial learning rate of 0.001, β1

530

Ontology Reasoning with Deep Neural Networks

dataset embedding update initial batch weight MLP hidden
size iterations learning rate size decay λ layers

family trees 100 7 0.001 1 10−6 1
countries (S1) 100 2 0.001 1 10−6 1
countries (S2) 200 5 0.001 1 10−6 1
countries (S3) 200 5 0.001 1 10−6 1
DBpedia 300 5 0.001 1 10−6 1
Claros 200 5 0.001 1 10−6 1
UMLS-reasoning 300 5 0.001 1 10−6 1

Table 6: A summary of the hyperparameters that were used to achieve the results presented
in this work.

set to 0.9, and β2 set to 0.999. Furthermore, all MLPs had a single hidden layer of ReLU
units and sigmoid units on the output layers. The sizes of the hidden layers were set to
the average of input and output sizes for all of them. To prevent overfitting, we employed
weight decay, which means that we added the term λ‖θ‖2 to the computed loss, where θ
represents a vector of all model parameters, and λ ∈ R≥0 is a hyperparameter. The actual
training loss was chosen to be a standard cross-entropy loss.

We trained our models for about two days on the toy datasets, and about seven days
on the real-world datasets. However, for our experiments, we used a straightforward CPU-
only implementation of the RRN model, which did not make use of any optimization or
parallelization strategies. Therefore, it should be possible to reduce the duration of the
model training by several orders of magnitude by making use of different ways to optimize the
implementation of the model, as outlined in Section 3.8, as well as parallelizing computations
over (multiple) GPUs. Generating embeddings for a single sample knowledge base took, on
average, about 10 seconds for the toy datasets as well as Claros, and about 20 seconds for
samples from DBpedia. Computing predictions for single queries took less than a tenth of a
second for all datasets. Once again, however, it should be possible to reduce these durations
significantly by optimizing the code.

Appendix B. Generation of Family-Tree Data

For the family-tree dataset, we generated training samples incrementally. For each of these
samples, starting from a tree that consisted of a single person only, we randomly selected
an existing person, and, again randomly, added either a child or, if possible, a parent to the
current family tree. This process was repeated until either the maximum tree size, which
we set to 26 people, was reached or the sample generation was stopped randomly, which
happened with a probability of 0.02 whenever another person was added to a tree. As part
of the data generation, we constrained sample family trees to a maximum depth of 5 as well
as a maximum branching factor of 5. Furthermore, we ensured that the created dataset
does not contain isomorphic family trees, such that it is not possible for a model to just
overfit the training data. Finally, we computed all possible inferences for each of the created
samples via symbolic reasoning.

531

Hohenecker and Lukasiewicz

Appendix C. Generation of Countries Data

Following the instructions in Nickel et al. (2016), we generated three datasets of varying
difficulty, and endowed them with the formal ontology:

S1) This is the easiest version of the considered reasoning problem. Here, some of the
countries’ regions are missing, and thus have to be inferred from the knowledge about
the subregions that those countries belong to, on the one hand, and the regions that
the subregions are part of, on the other.

S2) In this variation of the problem, there are countries that have neither a region nor
a subregion specified, and both of them have to be inferred from what is known
about their neighborhoods. Notice that missing details in the test and evaluation
set cannot be completed via ontology reasoning only, since countries that are situated
at the border of a territory possess neighbors with differing regions and subregions,
respectively.

S3) This is the hardest of the tasks considered. To that end, in addition to the problem
described by version S2, the neighbors of those countries whose regions and subregions
are missing do not have a region specified either. Again, problems of this kind cannot
be solved solely by ontology reasoning.

While the original task considered reasoning about countries’ locations only, we aug-
mented the problem scenario with three classes that represent the types of individuals that
occur, that is, countries, regions, and subregions. Irrespective of the considered version of
the problem, none of these are ever provided as facts, and thus always have to be predicted
as part of the reasoning problem. To that end, just like it is the case for some of the relations,
classes cannot always be inferred via the ontology. This is the case, for example, if a region
does not have any subregions at all, which means that we cannot leverage the transitivity
of the located-in relation.

Every time we created a sample, we randomly selected 20 countries, and removed infor-
mation about them, as required by the considered problem setting. In doing so, we ensured
that every test country has at least one neighbor that is not part of the test set itself. For
evaluating a trained model, we created two samples with such hold-out sets of countries for
evaluation and testing, respectively, with two distinct sets of countries used as test individ-
uals. To ensure that the model does not just overfit the data, we removed those 40 test
countries from the knowledge base before we generated 5000 samples as training data. In
addition to this, we included only those inferences in the evaluation and test sample that
concerned at least one of the test individuals, again to make sure that the model cannot
just overfit the training data, the only exception being regions and subregions, for which we
included class predictions as well. Unlike this, training samples contain all inferences what-
soever.

Finally, in order to obtain a larger amount of test data, we generated 20 independent
datasets for each of the three versions outlined above. For every one of those, we trained
an RRN on the training data, and evaluated the model on the according test sample. The
results reported in this work summarize the outcomes of all these evaluation runs.

532

Ontology Reasoning with Deep Neural Networks

Appendix D. Preparation of Real-world Data

For both considered real-world databases, DBpedia and Claros, we extracted training sam-
ples that are subgraphs of the knowledge graphs that are defined implicitly by the original
data. To that end, the single training samples were created by running breadth-first search,
starting from a randomly selected individual, on the knowledge graph that was specified by
the facts in the respective database until a total of 200 individuals was discovered. Subse-
quently, all specified triples that concerned only those extracted individuals were considered
as the facts of the created sample knowledge base, and their inferences were computed via
symbolic reasoning. Like most of the knowledge bases that are encountered in practice,
both DBpedia and Claros consist of positive facts and inferences only. Therefore, we made
use of the so-called local closed-world assumption (Dong et al., 2014), and augmented the
data with generated negative inferences that were created by randomly corrupting either
the subject or the object of existing positive triples. This step is crucial, since the model
would learn to blindly predict any queried inference to be true, otherwise. More precisely,
we generated exactly one negative inference for each positive inference that exists in the data
by corrupting each of these positive inferences exactly once. In doing so, we ensured, by
means of symbolic reasoning, that the created triples do not introduce inconsistencies, that
is, conflicts, in the created sample knowledge bases. Furthermore, whenever we generated
a corrupted triple, we ensured that the same has not been added to the dataset before.
For the evaluation and test data, we generated fixed sets of such negative inferences. For
the training data, however, new negative triples were generated on-the-fly in each training
iteration.

For the UMLS-reasoning dataset, we first created a Datalog program that implements
that UMLS ontology. After this, we generated sample knowledge bases by means of an
iterative procedure. For each sample, we started from an empty knowledge base that con-
tained 75 individuals, but no facts about them. Then, we randomly sampled a candidate
fact, evaluated whether it was consistent with the current state of knowledge relative to
the ontology, and added it to the knowledge base, if possible. In the sampling step, we
first decided randomly whether to add a class membership or a relation, both attributed
a probability of 50%, and then sampled the remaining parts of the according triple. If an
inconsistent fact was generated, then we created a new fact up to a total of 10 times, and if
sampling a consistent fact failed 10 times in a row, then we stopped the procedure for the
current sample knowledge base. Otherwise, this step was repeated until a maximum of 200
triples had been added to a sample knowledge base, and the remaining individuals that were
not included in any fact got pruned again from the same. In addition to this, the generation
of a sample knowledge base was stopped earlier with a probability of 0.5% every time after
a fact was added. Finally, we computed all possible inferences for each sample knowledge
base by means of symbolic reasoning with the created Datalog program.

Like for the family trees data, we ensured that the created datasets do not contain
isomorphic sample knowledge graphs, such that it is not possible for a model to just overfit
the training data.

533

Hohenecker and Lukasiewicz

Appendix E. Data Availability

All the datasets that have been used in our experiments are available from https://paho.at/rrn.
Furthermore, the code that we used to generate our toy datasets, including the employed
formal ontologies, is available as open source from https://github.com/phohenecker/family-
tree-data-gen and https://github.com/phohenecker/country-data-gen, respectively.

Appendix F. Detailed Results for the Family Trees Dataset

In this section, we present detailed results of our experiments with the family-trees dataset.

Results for Specified Classes
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 female 1.000 1.000 1.000 1.000 — 5732 / 0
1 male 1.000 1.000 1.000 1.000 — 5702 / 0

TOTAL F1 score AUC-PR accuracy
1.000 1.000 1.000

Results for Inferable Classes
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 female — — 1.000 — 1.000 0 / 5702
1 male — — 1.000 — 1.000 0 / 5732

TOTAL F1 score AUC-PR accuracy
— — 1.000

Results for Specified Relations
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
23 parentOf 1.000 1.000 1.000 1.000 — 28232 / 0

TOTAL F1 score AUC-PR accuracy
1.000 1.000 1.000

Results for Inferable Relations
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 auntOf 0.983 0.998 0.999 0.998 0.999 8268 / 556484
1 boyCousinOf 0.982 0.999 1.000 0.993 1.000 5806 / 558946
2 boyFirstCousinOnceRemovedOf 0.967 0.999 1.000 0.999 1.000 2554 / 562198
3 boySecondCousinOf 0.769 0.989 0.999 1.000 0.999 958 / 563794
4 brotherOf 0.908 0.995 0.996 0.999 0.996 10388 / 554364
5 daughterOf 0.991 0.999 1.000 1.000 1.000 14116 / 550636
6 fatherOf 0.992 0.999 1.000 1.000 1.000 14116 / 550636
7 girlCousinOf 0.966 0.998 0.999 0.994 0.999 5586 / 559166
8 girlFirstCousinOnceRemovedOf 0.944 0.999 0.999 0.998 0.999 2522 / 562230
9 girlSecondCousinOf 0.879 0.995 0.999 0.998 0.999 1050 / 563702
10 granddaughterOf 0.990 1.000 1.000 1.000 1.000 13374 / 551378
11 grandfatherOf 0.989 0.999 0.999 1.000 0.999 13374 / 551378
12 grandmotherOf 0.989 0.999 0.999 1.000 0.999 13374 / 551378
13 grandsonOf 0.993 0.999 1.000 0.999 1.000 13374 / 551378
14 greatAuntOf 0.979 0.999 1.000 0.998 1.000 4840 / 559912
15 greatGranddaughterOf 0.990 1.000 1.000 1.000 1.000 9692 / 555060
16 greatGrandfatherOf 0.989 0.999 1.000 1.000 1.000 9692 / 555060
17 greatGrandmotherOf 0.989 1.000 1.000 1.000 1.000 9692 / 555060
18 greatGrandsonOf 0.988 1.000 1.000 1.000 1.000 9692 / 555060
19 greatUncleOf 0.972 0.999 0.999 1.000 0.999 4922 / 559830
20 motherOf 0.989 0.999 0.999 1.000 0.999 14116 / 550636
21 nephewOf 0.972 0.999 0.999 0.999 0.999 8450 / 556302
22 nieceOf 0.976 0.998 0.999 0.997 0.999 8376 / 556376
23 parentOf — — 0.999 — 0.999 0 / 536520
24 secondAuntOf 0.958 0.998 1.000 0.995 1.000 2518 / 562234
25 secondUncleOf 0.946 0.999 0.999 0.997 0.999 2558 / 562194
26 sisterOf 0.922 0.996 0.997 0.999 0.997 10072 / 554680
27 sonOf 0.992 0.999 1.000 1.000 1.000 14116 / 550636
28 uncleOf 0.980 0.999 0.999 0.998 0.999 8558 / 556194

TOTAL F1 score AUC-PR accuracy
0.976 0.998 0.999

534

Ontology Reasoning with Deep Neural Networks

Appendix G. Detailed Results for the Countries Dataset

In this section, we present detailed results of our experiments with the different versions of
the countries dataset.

G.1 Countries S1

Results for Inferable Classes
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 country 1.000 1.000 1.000 1.000 1.000 400 / 580
1 region 1.000 1.000 1.000 1.000 1.000 120 / 860
2 subregion 1.000 1.000 1.000 1.000 1.000 460 / 520

TOTAL F1 score AUC-PR accuracy
1.000 1.000 1.000

Results for Specified Relations
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 locatedIn 1.000 1.000 1.000 1.000 — 9160 / 0
1 neighborOf 1.000 1.000 1.000 1.000 — 10114 / 0

TOTAL F1 score AUC-PR accuracy
1.000 1.000 1.000

Results for Inferable Relations
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 locatedIn 1.000 1.000 1.000 1.000 1.000 400 / 10800
1 neighborOf — — 0.999 — 0.999 0 / 172904

TOTAL F1 score AUC-PR accuracy
0.999 1.000 0.999

G.2 Countries S2

Results for Inferable Classes
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 country 1.000 1.000 1.000 1.000 1.000 400 / 580
1 region 1.000 1.000 1.000 1.000 1.000 120 / 860
2 subregion 1.000 1.000 1.000 1.000 1.000 460 / 520

TOTAL F1 score AUC-PR accuracy
1.000 1.000 1.000

Results for Specified Relations
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 locatedIn 0.996 0.999 0.995 0.995 — 8760 / 0
1 neighborOf 0.999 0.999 0.999 0.999 — 9888 / 0

TOTAL F1 score AUC-PR accuracy
0.997 0.999 0.999

Results for Inferable Relations
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 locatedIn 0.987 0.991 0.999 0.986 0.999 800 / 10800
1 neighborOf — — 0.999 — 0.999 0 / 173072

TOTAL F1 score AUC-PR accuracy
0.929 0.991 0.999

G.3 Countries S3

Results for Inferable Classes
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 country 1.000 1.000 1.000 1.000 1.000 400 / 580
1 region 1.000 1.000 1.000 1.000 1.000 120 / 860
2 subregion 1.000 1.000 1.000 1.000 1.000 460 / 520

TOTAL F1 score AUC-PR accuracy
1.000 1.000 1.000

535

Hohenecker and Lukasiewicz

Results for Specified Relations
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 locatedIn 0.993 0.999 0.994 0.994 — 7820 / 0
1 neighborOf 1.000 1.000 1.000 1.000 — 10216 / 0

TOTAL F1 score AUC-PR accuracy
0.996 0.999 0.999

Results for Inferable Relations
name F1 score AUC-PR total accuracy on accuracy on # of triples

accuracy positives negatives (pos./neg.)
0 locatedIn 0.930 0.988 0.998 0.981 0.998 800 / 10800
1 neighborOf — — 0.999 — 0.999 0 / 172966

TOTAL F1 score AUC-PR accuracy
0.916 0.988 0.999

References

Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artificial intelligence.
Artificial Intelligence, 171 (10-15), 619–641.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine
Learning , 2 (1), 1–127.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., & Hellmann, S.
(2009). DBpedia – A crystallization point for the Web of Data. Journal of Web Semantics,
7 (3), 154–165.

Bouchard, G., Singh, S., & Trouillon, T. (2015). On approximate reasoning capabilities of
low-rank vector spaces. In Proceedings of the 2015 AAAI Spring Symposium on Knowledge
Representation and Reasoning: Integrating Symbolic and Neural Approaches (pp. 6–9).

Bowman, S. R., Potts, C., & Manning, C. D. (2014). Recursive neural networks can learn
logical semantics. arXiv preprint arXiv:1406.1827 .

Bowman, S. R., Potts, C., & Manning, C. D. (2015). Learning distributed word representa-
tions for natural logic reasoning. In Proceedings of the 2015 AAAI Spring Symposium on
Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches
(pp. 10–13).

Cai, C.-H., Ke, D., Xu, Y., & Su, K. (2017). Symbolic manipulation based on deep neural
networks and its application to axiom discovery. In Proceedings of the 2017 International
Joint Conference on Neural Networks (pp. 2136–2143).

Calì, A., Gottlob, G., & Lukasiewicz, T. (2012). A general Datalog-based framework for
tractable query answering over ontologies. Journal of Web Semantics, 14 , 57–83.

Cingillioglu, N., & Russo, A. (2018). DeepLogic: End-to-end logical reasoning. arXiv
preprint arXiv:1805.07433 .

Cohen, W. W. (2016). TensorLog: A differentiable deductive database. arXiv preprint
arXiv:1605.06523 .

Cohen, W. W., Yang, F., & Rivard Mazaitis, K. (2017). TensorLog: Deep learning meets
probabilistic DBs. arXiv preprint arXiv:1707.05390 .

536

Ontology Reasoning with Deep Neural Networks

Dai, W.-Z., Xu, Q.-L., Yu, Y., & Zhou, Z.-H. (2018). Tunneling neural perception and logic
reasoning through abductive learning. arXiv preprint arXiv:1802.01173 .

d’Avila Garcez, A. S., Besold, T. R., De Raedt, L., Földiak, P., Hitzler, P., Icard, T., . . . Sil-
ver, D. L. (2015). Neural-symbolic learning and reasoning: Contributions and challenges.
In Proceedings of the 2015 AAAI Spring Symposium on Knowledge Representation and
Reasoning: Integrating Symbolic and Neural Approaches (pp. 18–21).

d’Avila Garcez, A. S., Broda, K. B., & Gabbay, D. M. (2012). Neural-Symbolic Learning
Systems: Foundations and Applications. Springer Science & Business Media.

d’Avila Garcez, A. S., & Zaverucha, G. (1999). The connectionist inductive learning and
logic programming system. Applied Intelligence, 11 , 59–77.

Demeester, T., Rocktäschel, T., & Riedel, S. (2016). Lifted rule injection for relation
embeddings. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing (pp. 1389–1399).

Diligenti, M., Gori, M., Maggini, M., & Rigutini, L. (2012). Bridging logic and kernel
machines. Machine Learning , 86 , 57–88.

Ding, L. (1995). Neural Prolog—The concepts, construction and mechanism. In Proceedings
of the 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent
Systems for the 21st Century (Vol. 4, pp. 3603–3608).

Donadello, I., Serafini, L., & d’Avila Garcez, A. (2017). Logic tensor networks for seman-
tic image interpretation. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence (pp. 1596–1602).

Dong, X. L., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., . . . Zhang, W.
(2014). Knowledge Vault: A Web-scale approach to probabilistic knowledge fusion. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 601–610).

Ebrahimi, M., Sarker, M. K., Bianchi, F., Xie, N., Doran, D., & Hitzler, P. (2018). Reasoning
over RDF knowledge bases using deep learning. arXiv preprint arXiv:1811.04132 .

Eiter, T., & Lukasiewicz, T. (2000). Default reasoning from conditional knowledge bases:
Complexity and tractable cases. Artificial Intelligence, 124 (2), 169–241.

Evans, R., Saxton, D., Amos, D., Kohli, P., & Grefenstette, E. (2018). Can neural networks
understand logical entailment? In Proceedings of the 6th International Conference on
Learning Representations.

França, M. V. M., Zaverucha, G., & d’Avila Garcez, A. S. (2014). Fast relational learning us-
ing bottom clause propositionalization with artificial neural networks. Machine Learning ,
94 (1), 81–104.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . .
Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information
Processing Systems 27.

537

Hohenecker and Lukasiewicz

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., . . .
Hassabis, D. (2016). Hybrid computing using a neural network with dynamic external
memory. Nature, 538 , 471–476.

Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics, 3 (2/3), 158–182.

Hammer, B., & Hitzler, P. (2007). Perspectives of Neural-Symbolic Integration. Springer.

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired
artificial intelligence. Neuron, 95 (2), 245–258.

Henaff, M., Weston, J., Szlam, A., Bordes, A., & LeCun, Y. (2017). Tracking the world
state with recurrent entity networks. arXiv preprint arXiv:1612.03969 .

Hu, Z., Ma, X., Liu, Z., Hovy, E., & Xing, E. (2016). Harnessing deep neural networks with
logic rules. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (pp. 2410–2420).

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In
Proceedings of the 3rd International Conference on Learning Representations.

Kok, S., & Domingos, P. (2007). Statistical predicate invention. In Proceedings of the 24th
International Conference on Machine Learning (pp. 433–440).

Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., & Savo, D. F. (2010). Inconsistency-tolerant
semantics for description logics. In Proceedings of the 4th International Conference on Web
Reasoning and Rule Systems (pp. 103–117).

Lukasiewicz, T., Martinez, M. V., Pieris, A., & Simari, G. I. (2015). From classical to
consistent query answering under existential rules. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence (pp. 1546–1552).

Makni, B., & Hendler, J. (2018). Deep learning for noise-tolerant RDFS reasoning. Semantic
Web, 10 (5), 823–862.

Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., & De Raedt, L. (2018). Deep-
ProbLog: Neural probabilistic logic programming. arXiv preprint arXiv:1805.10872 .

Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: Structure and processes.
Current Opinion in Neurobiology , 11 (2), 194–201.

McCray, A. T. (2003). An upper-level ontology for the biomedical domain. Comparative
and Functional Genomics, 4 , 80–84.

Middelburg, C. A. (2011). A survey of paraconsistent logics. arXiv preprint
arXiv:1103.4324 .

Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). Efficient estimation of word
representations in vector space. In Proceedings of the 1st International Conference on
Learning Representations.

538

Ontology Reasoning with Deep Neural Networks

Minervini, P., Bosnjak, M., Rocktäschel, T., & Riedel, S. (2018). Towards neural theorem
proving at scale. arXiv preprint arXiv:1807.08204 .

Minervini, P., Costabello, L., Muñoz, E., Nováček, V., & Vandebussche, P.-Y. (2017). Reg-
ularizing knowledge graph embeddings via equivalence and inversion axioms. In Machine
Learning and Knowledge Discovery in Databases (pp. 668–683).

Minervini, P., Demeester, T., Rocktäschel, T., & Riedel, S. (2017). Adversarial sets for
regularising neural link predictors. arXiv preprint arXiv:1707.07596 .

Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., & Banerjee, J. (2015). RDFox:
A highly-scalable RDF store. In Proceedings of the 14th International Semantic Web
Conference (pp. 3–20).

Nickel, M., Rosasco, L., & Poggio, T. (2016). Holographic embeddings of knowledge graphs.
In Proceedings of the 30th AAAI Conference on Artificial Intelligence (pp. 1955–1961).

Nickel, M., Tresp, V., & Kriegel, H.-P. (2012). Factorizing YAGO: Scalable machine learning
for Linked Data. In Proceedings of the 21st World Wide Web Conference (pp. 271–280).

Oaksford, M., & Chater, N. (2007). Bayesian Rationality: The Probabilistic Approach to
Human Reasoning. Oxford University Press.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46 (1/2),
77–105.

Rocktäschel, T., & Riedel, S. (2017). End-to-end differentiable proving. In Advances in
Neural Information Processing Systems 30 (pp. 3788–3800).

Rocktäschel, T., Singh, S., & Riedel, S. (2015). Injecting logical background knowledge into
embeddings for relation extraction. In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies (pp. 1119–1129).

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia, P., &
Lillicrap, T. (2017). A simple neural network module for relational reasoning. In Advances
in neural information processing systems 30.

Serafini, L., & d’Avila Garcez, A. (2016). Logic tensor networks: Deep learning and logical
reasoning from data and knowledge. arXiv preprint arXiv:1606.04422 .

Shastri, L. (1992). Neurally motivated constraints on the working memory capacity of a
production system for parallel processing: Implications of a connectionist model based
on temporal synchrony. In Proceedings of the 14th Annual Conference of the Cognitive
Science Society (Vol. 29, pp. 159–164).

Shavlik, J. W., & Towell, G. G. (1991). An approach to combining explanation-based
and neural learning algorithms. In Applications of Learning and Planning Methods (pp.
231–253). World Scientific.

539

Hohenecker and Lukasiewicz

Socher, R., Chen, D., Manning, C. D., & Ng, A. Y. (2013). Reasoning with neural tensor
networks for knowledge base completion. In Advances in Neural Information Processing
Systems 26 (pp. 926–934).

Sourek, G., Aschenbrenner, V., Zelezny, F., & Kuzelka, O. (2015). Lifted relational neural
networks. arXiv preprint arXiv:1508.05128 .

Sukhbaatar, S., Szlam, A., Weston, J., & Fergus, R. (2015). End-to-end memory networks.
In Advances in Neural Information Processing Systems 28 (pp. 2440–2448).

Sun, R., & Alexandre, F. (2013). Connectionist-Symbolic Integration: From Unified to
Hybrid Approaches. Psychology Press.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks. Artificial
Intelligence, 70 (1/2), 119–165.

Trouillon, T., Dance, C. R., Gaussier, É., Welbl, J., Riedel, S., & Bouchard, G. (2017).
Knowledge graph completion via complex tensor factorization. Journal of Machine Learn-
ing Research, 18 (130), 1–38.

Vendrov, I., Kiros, R., Fidler, S., & Urtasun, R. (2016). Order-embeddings of images and
language. In Proceedings of the 4th International Conference on Learning Representations.

Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017). Knowledge graph embedding: A survey
of approaches and applications. IEEE Transactions on Knowledge and Data Engineering ,
29 (12), 2724–2743.

Weston, J., Bordes, A., Chopra, S., & Mikolov, T. (2015). Towards AI-complete question
answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698 .

Weston, J., Chopra, S., & Bordes, A. (2015). Memory networks. In Proceedings of the 3rd
International Conference on Learning Representations.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., & Van den Broeck, G. (2018). A seman-
tic loss function for deep learning with symbolic knowledge. In Proceedings of the 35th
International Conference on Machine Learning (pp. 5498–5507).

540

