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Abstract

Time is deeply woven into how people perceive, and communicate about the world.
Almost unconsciously, we provide our language utterances with temporal cues, like verb
tenses, and we can hardly produce sentences without such cues. Extracting temporal cues
from text, and constructing a global temporal view about the order of described events is
a major challenge of automatic natural language understanding. Temporal reasoning, the
process of combining different temporal cues into a coherent temporal view, plays a central
role in temporal information extraction. This article presents a comprehensive survey of the
research from the past decades on temporal reasoning for automatic temporal information
extraction from text, providing a case study on how combining symbolic reasoning with
machine learning-based information extraction systems can improve performance. It gives a
clear overview of the used methodologies for temporal reasoning, and explains how temporal
reasoning can be, and has been successfully integrated into temporal information extraction
systems. Based on the distillation of existing work, this survey also suggests currently
unexplored research areas. We argue that the level of temporal reasoning that current
systems use is still incomplete for the full task of temporal information extraction, and
that a deeper understanding of how the various types of temporal information can be
integrated into temporal reasoning is required to drive future research in this area.

1. Introduction

The phenomenon of time has a major influence on how people perceive, and communicate
through language. Consequently, our language utterances are filled with cues about the
timing of the events that we communicate about. Temporal Information Extraction (TIE)
is the process of automatically extracting temporal cues from text, with the final goal to
construct a (possibly underspecified) timeline of events from them, as shown in Figure 1.

Temporal information extraction not only plays a major role in the general problem of
natural language understanding (NLU), but is also used in many applications, like informa-
tion retrieval (Campos, Dias, Jorge, & Jatowt, 2015), question answering (Llorens, Cham-
bers, UzZaman, Mostafazadeh, Allen, & Pustejovsky, 2015; Höffner, Walter, Marx, Usbeck,
Lehmann, & Ngonga Ngomo, 2017; Meng, Rumshisky, & Romanov, 2017; Sun, Cheng, &
Qu, 2018; Pampari, Raghavan, Liang, & Peng, 2018), and multi-document summarization
(Barzilay & McKeown, 2005; Ng, Chen, Kan, & Li, 2014), and has great potential in the
clinical domain, for applications like patient timeline visualization (Jung, Allen, Blaylock,
De Beaumont, Galescu, & Swift, 2011), forecasting treatment effects (Augusto, 2005; Zhou
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Figure 1: An example of temporal information extraction.

& Hripcsak, 2007; Choi, Bahadori, Sun, Kulas, Schuetz, & Stewart, 2016a), better early
detection of diagnoses (Choi, Schuetz, Stewart, & Sun, 2016b), or patient selection for
clinical trials (Raghavan, Chen, Fosler-Lussier, & Lai, 2014). Because of the strong linear
structure of time itself, and the great variation in the types of temporal cues we can express
in language, a central challenge in temporal information extraction is how to combine all
these separate cues into a single coherent temporal ordering of the described events. To
obtain this temporal ordering from many different cues temporal reasoning is of vital im-
portance. We define Temporal Reasoning (TR) in the context of TIE as the process of
combining different (annotated or extracted) temporal cues to derive additional temporal
information about the text. TR is crucial for TIE and has already been exploited widely in
the research community in every step in the process of TIE model construction: annotation,
pre-processing, model training, inference, and evaluation. Despite the importance of TIE
for NLU and the crucial role of TR in TIE, there has not yet been a survey covering the
research in this area.

1.1 Focus

For successful TR in practical settings two factors are very important: (1) The expres-
siveness of the TR mechanism: How complete is the temporal knowledge that the TR
mechanism can infer from the temporal cues? And (2), the efficiency of TR: What are the
computational costs of TR to infer that new temporal knowledge. These two points will
get extra attention in this survey.

Although most research has focused on extraction models for certain types of temporal
cues, this survey focuses on the big picture of complete TIE, where the aim is to extract
all temporal cues from the text and combine them into a single coherent temporal view,
for which a good TR mechanism is crucial. To cover the evolution of TR approaches
for TIE in parallel with the popularization of using machine learning (ML) methods for
natural language processing (NLP), the focus of this survey lies on the research on TR for
TIE systems from the past three decades. We abstract from what linguistic features are
successful for TIE systems, as these are discussed in depth by Derczynski (2017), and can
be considered complementary to the focus of this survey.
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1.2 Contributions

In the context of the interesting and important new developments in the past years this
survey provides the following contributions:

• A clear explanation introducing the theory and background on TR for TIE required
to comprehend the latest state-of-the-art TIE models.

• A structured overview of the various ways in which TR has been exploited in TIE
models over the past three decades: in annotation, pre-processing, training, prediction,
and evaluation.

• A distillation of the most important conclusions to successfully incorporate TR in a
TIE system.

• Directions for future work and on promising unexplored avenues in the research area
of TIE.

1.3 Structure

The survey is structured as follows: First, in section 2, we provide an exemplified overview
of what types of temporal information are present in natural language texts. These include
relative and absolute cues, definite and indefinite cues, implicitness of temporal information,
world knowledge, and the role of under-specification, as these aspects play an important
role in temporal reasoning. In section 3, we introduce the theory of temporal reasoning that
is required to comprehend and assess the current state-of-the-art models and methods, as
discussed in the following sections. Section 4 describes the most widely used annotation
schemes for temporal information, and discusses how they relate to temporal reasoning
frameworks. In section 5, we arrive at the core of this survey, and provide a complete
and comprehensive overview of the literature on TR for TIE. Then, in section 6, we give
suggestions on promising directions and less explored areas based on the earlier sections.
Lastly, in section 7, we summarize the most important findings and conclusions of the
survey.

2. Temporal Information in Language

In this section, we give a short (exemplified1) overview of different temporal cues that can
be expressed in language to show what types of temporal information the cues can provide,
i.e., in what way the cues may possibly constrain the position of event intervals on the
timeline. We focus less on the different ways temporal cues can be expressed, i.e., linguistic
variation, as this has no direct impact on TR.

It is important to study the types of temporal information that can be expressed by
temporal cues because the different cues need to be combined by a TR system in order to
build a complete temporal picture of the text, or construct a timeline.

1. Examples from the New York Times, and the clinical i2b2 corpus (Sun, Rumshisky, & Uzuner, 2013).
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2.1 Timeline Components Captured by Temporal Cues

Temporal cues can bound various components of the event timeline: full positions of inter-
vals, but also just the start, end, or duration of intervals.

For instance, in Example 1, the duration of the antibiotics administration is given (10
days), and so is its start time (somewhere on the 2nd of June). While, for the improvement
of the respiratory status only the end time is mentioned explicitly (last 2-3 days of the
antibiotics administration). This shows that for a fairly simple text fragment, a TR system
already needs to be able to combine temporal bounds on at least three different components
of the timeline.

Example 1. Antibiotics were started on 6/2 and continued for 10 days. Res-
piratory status improved up til the last 2-3 days.

2.2 Relative and Absolute Cues

As shown in the previous example, temporal cues can provide absolute references to the
timeline, by referring to absolute intervals, like dates or times, or absolute durations, like
a certain number of hours. In Example 2, the duration of the third set (28 minutes)
is an absolute cue. However, additionally quite often the temporal cues provide relative
information. In the example, there are three explicit relative cues: (1) the duration of the
first two sets are less than 1 hour, (2) the third set started after the first two, And (3) the
whole situation took place in the past, i.e., before the speech time (ST) of the sentence,
indicated by the past tense of the verbs. The ideal TR system should be able to resolve
combinations of absolute and relative cues.

Example 2. After the grueling duels of the first two sets, which each had taken
nearly an hour, Nadal won the third set in 28 minutes.

2.3 Definite and Indefinite Cues

Quantification of timeline components can be definite, referring to clear quantities, or in-
definite, using vague quantification.

In Example 3, the duration of the patient being HIV positive is definite (2 years).
Whereas the duration of the left upper quadrant pain is, although explicit, quantified
vaguely (long-standing), and hence indefinite.
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Example 3. The patient is a 27-year-old woman who is HIV positive for two
years. She presented with left upper quadrant pain which is a long-
standing complaint.

2.4 Implicitness and World Knowledge

A significant part of the temporal information conveyed in text is implicit. Event durations,
and event position are often implicit, or considered common world knowledge. In Example 4,
although not mentioned explicitly the charges have been made before the judge’s question.
Also, the man’s answer probably lasted only a few seconds, and happened clearly after the
judge’s question. Whereas, if we would have replaced answered with trembled, this would
probably have lasted longer, and was possibly already going on during the judge’s question.

Example 4. Wearing a black scarf, slim-fitting navy suit and tortoiseshell
glasses, he said little and answered, “I do, your honor”, when the
judge asked if he understood the charges.

2.5 Underspecification

A major aspect of temporal information extraction is underspecification. Almost in all
cases, temporal cues do not provide a fully specified timeline (full absolute positioning of
events on the calendar), leaving open multiple temporal interpretations. As can be seen in
all previous examples 1-4, it was never mentioned, for example, in what year the events took
place, allowing multiple valid timeline interpretations, something that temporal reasoning
systems should be able to deal with appropriately.

3. Frameworks for Temporal Reasoning

In the previous section we observed that language can contain many different types of
temporal information. To combine all these different types of temporal information into a
coherent temporal view, or timeline, we require temporal reasoning. To reason with different
types of temporal information about events, several frameworks have been developed. The
temporal interpretation of an event is generally considered as an interval on the timeline.
The span of the interval corresponds to the time that the event takes place. Consequently,
TR often addresses reasoning with intervals. As a reference, Fisher et al. (2005) provide an
overview of general TR, but do not discuss TIE systems in detail. Here, we review the TR
frameworks that have been used for TIE, as a back-bone for section 5, where the integration
of TR in TIE systems will be discussed.
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x precedes y y
x

y preceded by x

x meets y
x

y y met by x

x overlaps y
x

y y overlapped by x

x ends y
x
y y ended by x

x during y
x
y y contains x

x starts y
x
y y started by x

x equals y
x
y

Figure 2: Allen’s thirteen basic interval relations.

3.1 Allen Interval Relations

One of the most popular TR frameworks used in TIE was proposed by Allen (1983). He
proposed a set of thirteen mutually exclusive basic interval relations that could be assigned
to any pair of definite intervals. These relations and the corresponding operations are
known as Allen’s interval algebra. All thirteen basic relations and their visualizations are
shown in Figure 2. As can be seen, the thirteen basic relations are six pairs of converse
relation pairs, and the equals relation, which is symmetric. From these basic relations that
can only represent relations between definite intervals, where relative positions of start and
end-points are known, indefinite interval relations can be constructed, where the start or
end of the intervals might be incomplete. In Allen’s algebra each indefinite relation (called
a general Allen relation) is represented as a disjunctive set of basic relations. The set
representation of a general Allen relation between two events contains all basic relations
that are possible between the events, given the (incomplete) information about their starts
and endings.

Example 5. y started sometime during x
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x
y

?

Figure 3: Visualization of Example 5 with the general Allen relation: x {contains, overlaps,
ended by} y.

For example, the sentence of Example 5 could be represented by Figure 3. Only relative
information about the start of y is known, namely that it lies within the boundaries of x.
However, there is no information given about the end of y, making it impossible to assign
a basic Allen relation, as the intervals are indefinite. The correct general Allen relation is:
x {contains, overlaps, ended by} y, and indicates that any of these three basic relations in
the set, contains, overlap, or ended by, could apply to the situation. The full set of Allen
interval relations is the power set of the basic relations, resulting in 213 = 8192 relations.
Notice that when no information about the relation between two intervals (or events) x and
y is given, any basic relation is possible. So, in that case the general Allen relation between
x and y would be represented by the set containing all basic relations. In other words, the
less we know, the more is possible, so the bigger the representation.

3.1.1 Temporal Closure

To infer new relations from a set of general Allen relations relating different events, a
composition table is used. The table contains transitivity rules for all basic relations, i.e.,
it shows for any pair of connected relations r1(x, y) and r2(y, z), what relation r3(x, z)
could be inferred. An example for the transitivity for the precedes relation is given in
Figure 4. Using this principle, a temporal closure (called ‘Propagate’ in the original paper)
can be calculated, adding new relations to the existing set. Computing the full closure,
which includes all possible inferences that can be made, is NP-complete, making it highly
intractable (Vilain, Kautz, & Van Beek, 1990). Often, in practice, only a subset of the
transitivity rules is used.

y
precedes

x z
precedes

precedes

Figure 4: An example of an inferable precedes relation (dashed) through transitivity: x
precedes z is inferred from the fact that x precedes y and y precedes z.

3.1.2 Temporal Consistency

An important task in TR is checking temporal consistency for a set of relations, as a
timeline can only be constructed from a consistent set of relations. In Allen’s algebra,
temporal consistency can be calculated by checking if, when going through all possible
chains of inference, the intersection of all inferable relations for each pair is not empty. In
other words, an assignment of general Allen relations is consistent if at least one basic Allen
relation can be assigned to each pair of intervals, after closure.
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y
{precedes}

x z
{precedes}

{contains, overlap, ended by}

Figure 5: An example of an inconsistent assignment of Allen relations.

An example of an inconsistent assignment of relations is shown in Figure 5. The example
is inconsistent because from the fact that x precedes y and y precedes z it can be inferred
that x {precedes} z. And, when taking the intersection for pair (x,z) of the inferred relation
x {precedes} z and the already assigned relation x {contains, overlap, ended by} z we end up
with the empty set. This indicates there are no possible basic relations for pair (x,z). From
this we can conclude that the example is not consistent. Calculating temporal consistency
is, like the temporal closure, NP complete when using the full Allen algebra (Vilain et al.,
1990) as it requires temporal closure. This high computational complexity is not very
practical in real applications. For this reason, more efficient solutions have been proposed,
which we will cover in the next section.

3.2 Subfragments of the Full Allen Algebra and Point Temporal Algebra

Because of the high complexity of calculating temporal closure and consistency for the full
Allen algebra, many different more tractable sub-fragments of Allen’s interval algebra have
been proposed (Vilain et al., 1990; Freksa, 1992a; Nebel & Bürckert, 1995; Ligozat, 1996;
Krokhin, Jeavons, & Jonsson, 2003). Some also focus on integrating quantitative reason-
ing (Dechter, Meiri, & Pearl, 1991; Meiri, 1996; Dechter & Cohen, 2003) or uncertainty
(Schockaert & De Cock, 2008). Although most current research in TIE systems has focused
on using Allen relations, representing mostly relative interval cues, the ability to combine
quantitative temporal cues and being able to deal with uncertainty is very important, as
the variance of cues in language is vast, as seen in the previous section. And all cues need
to be taken into account to construct a fully coherent temporal view from the text. We will
not discuss all the sub-fragments and extensions in this survey as the vast majority of these
extensions have not been used in current TIE systems. Rather, we provide a theoretical
back-bone on which many of these sub-fragments are built. We also use this back-bone to
define a categorization of TR-expressiveness in which we will later classify the different TR
approaches used for current TIE systems.

A major insight on which many efficient TR algorithms are built is the fact that the
basic Allen interval relations can be expressed as sets of point-relations in the point temporal
algebra. From this perspective, each pair of intervals (x,y) can be seen as a set of four points:
the starts of both intervals x−, and y−, and their endings: x+, and y+. In the point temporal
algebra, there are three point-wise relations that can occur between each of these points:
<, =, and >. These point-relations can be used to express each basic Allen relation as a
conjunctive set of point relations on the start and endings of the intervals. For example, x
{equals} y can be expressed by the conjunctive set {x− = y−, x+ = y+}, i.e., iff the start
and endings of intervals x and y are equal, then x and y are also equal. As another example,
x{precedes}y can be expressed as {x+ < y−}, i.e., iff the end of x lies before the start of y
then interval x lies before interval y. In general, because the four points describe starts and
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endings of intervals, it is always the case that each interval’s start x− lies before its end x+.

Figure 6: The lattice showing the relation between point algebra and the basic Allen interval
relations, and the conceptual neighborhood between interval relations (Freksa, 1992a).

Based on their point algebraic representations, Allen’s basic interval relations can be
ordered in a very informative lattice (Freksa, 1992a), as shown in Figure 6. From this lattice
we can read several things:

1. How to convert a basic Allen interval relation to a set of point algebraic constraints:
start from a basic interval relation box in the lattice, and then take the union of all
point-algebraic constraints on the corresponding outsides of the rectangle.

2. How to construct a (general) Allen relation from a set of point-algebraic constraints:
start from the point-algebraic constraints on the outside of the rectangle, and take the
intersection of the interval relations that are covered by the area inside the rectangle
corresponding to the point-algebraic constraints.

3. How to determine the conceptual neighborhood between two basic Allen interval re-
lations: count how many boxes have to be crossed to get from one basic interval
relation to the other (i.e., how much do the end-points need to shift to change from
one interval relation to the other).

For example, if we have a cue saying that the start of event y happens somewhere during
event x, i.e., {x− < y−, x+ > y−} (as in Example 5), we can read from the lattice what
relations are covered by the overlapping area of these constraints: {contains, overlaps,
ended by}, from which we can conclude that the corresponding general Allen relation is x
{contains, overlaps, ended by} y.
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Using this link between interval and point relations TR about intervals can be done in
the point algebra, which is much more efficient, as it has only three basic relation types,
resulting in a much smaller composition table. Additionally, expressing interval relations
by conjunctive sets of point relations, instead of disjunctive sets of basic interval relations,
ensures that when we have little temporal knowledge, the set representation is smaller,
instead of bigger (as with general Allen relations). These two components contribute to the
fact that TR in temporal point algebra fragments has only polynomial complexity instead
of the NP-completeness of the full Allen algebra (Vilain et al., 1990). This gained efficiency
and flexibility in representation are very important when considering practical TIE systems.
Even more when combining temporal cues from different documents, or different sources
for which complex temporal resolution of the different cues is required to obtain a coherent
timeline.

As mentioned in the beginning, we cannot express each general Allen relation as sets of
point-algebraic constraints, but only a fragment of them. Point algebra can only express
interval relations that can be represented as a conjunction of point-algebraic constraints.
For example, the general Allen relation x {precedes, preceded by} y cannot be expressed as
conjunction of point-algebraic constraints. We can see this from the lattice, as we cannot
capture these two interval relations in a single rectangle, without including other basic
relations as well.

I
II

III
IV

× →Rb Rb R∗

 

× →Rb Rb Rb

 

× →Rc Rc R∗

 

× →R∗ R∗ R∗

Figure 7: Onion diagram showing four classes of temporal reasoning rules, indicating
expressiveness of the temporal reasoning. Rb stands for any basic Allen relation, Rc stands
for any Allen relation that can be expressed as conjunction of point-algebraic constraints,
and R∗ can be any Allen relation. Layer III is the most expressive class that still operates
in polynomial time, which is important for practical systems.

3.2.1 Expressiveness of Temporal Reasoning

Later on, in section 5, we review the currently existing TR-based TIE systems and categorize
them in various ways in order to compare them. To categorize the TIE models with regard
to the expressiveness of their TR component we construct four classes based on the part
of the transitivity table that is used for TR. This categorization is shown in Figure 7: The
most inner layer covers rules that only use basic Allen relations (Rb) in the condition and
conclusion of the rules. The second layer covers TR rules that have only basic relations in
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afterincludes
includes

beforebefore

identical

On	July	14,	a	violent	demonstration	erupted	in	Chicago	after	a	police	shooting.

document-creation-time

e1 e3e2t1:	14/07/18

Figure 8: An example of TimeML-style annotation: Events in blue, a (normalized) temporal
expression in green, the document-creation-time in red, and arrows indicating the temporal
links (TLinks) among them.

their condition, but can have general Allen relations (R∗) in the conclusion. The third layer
covers the sub-fragment that is translatable to point algebra, covering all rules that have
relations in the condition of the rule that can be expressed as conjunction of point-algebraic
constraints (Rc). Finally, the outer layer is the full Allen algebra, covering the full transi-
tivity table. Outer layers include inner layers in terms of rule sets, and are more expressive,
but TR can be more computationally complex (depending on the implementation).

Layer I type reasoning is used quite commonly, as most systems build on basic Allen
relations, layer II is more expressive but used less, as it involves reasoning with sets of basic
relations instead of only basic relations.

For practical TIE systems, layer III is very important for three reasons: (1) It is the most
expressive fragment that can be implemented in polynomial time; (2) The full fragment can
be mapped to point-algebraic constraints and back, introducing flexibility with regard to
combining different types of temporal cues; and (3) It covers all basic Allen relations, which
is beneficial as these are often available in the annotated data. Before discussing the TR
used in TIE systems (section 5), we will discuss the annotation of temporal information.

4. Annotation of Temporal Information

The annotation scheme for temporal annotation in text steers the types of temporal cues
that can be extracted by TIE systems, and therefore also how TR can be exploited. The
most widely used scheme is TimeML (Pustejovsky, Castano, Ingria, Sauri, Gaizauskas,
Setzer, Katz, & Radev, 2003a), which is an ISO-standard for annotating temporal infor-
mation in text (Pustejovsky, Lee, Bunt, & Romary, 2010). Most temporal corpora have
been annotated with TimeML, or a very similar (sub)scheme (Pustejovsky, Hanks, Sauri,
See, Gaizauskas, Setzer, Radev, Sundheim, Day, Ferro, et al., 2003b; Sun et al., 2013; Cas-
sidy, McDowell, Chambers, & Bethard, 2014; Styler IV, Bethard, Finan, Palmer, Pradhan,
de Groen, Erickson, Miller, Lin, Savova, et al., 2014). And TimeML has been used in
TempEval, a series of shared tasks on evaluating temporal information extraction that re-
sulted in many of the existing TIE systems (Verhagen, Gaizauskas, Schilder, Hepple, Katz,
& Pustejovsky, 2007; Verhagen, Sauri, Caselli, & Pustejovsky, 2010; UzZaman, Llorens,
Derczynski, Allen, Verhagen, & Pustejovsky, 2013; Minard, Speranza, Agirre, Aldabe, van
Erp, Magnini, Rigau, & Urizar, 2015; Llorens et al., 2015). We will discuss the shared
consequences for TR of the TimeML scheme. In TimeML the core concepts are event ex-
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Table 1: Temporal link (TLink) types from TimeML and their corresponding basic Allen
interval relations.

TimeML TLink Basic Allen Relation

before precedes
after preceded by
includes contains
is included during
immediately before meets
immediately after met by
begins starts
begun by started by
ends ends
ended by ended by
during during | equals
during inv contains | equals
- overlap
- overlapped by
simultaneous equals
identical equals

pressions and temporal expressions. Event expressions refer to events in the real world, and
can be of different types, like states (e.g., bankrupt), actions (e.g., sailing), occurrences (e.g.,
meeting), reporting events (e.g., said) among other types. Temporal expressions (timex)
refer to calendar dates (e.g., 21st of August, 2018 ), times (e.g., 1 o’clock), definite dura-
tions (e.g., two hours), or sets of times (e.g., 3 times a week). The function of these timex
expressions is to anchor events to the calendar timeline. In TimeML, events and timex
expressions are temporally connected through temporal links (TLinks). TLinks can have
thirteen types that almost (but not exactly) follow Allen’s basic interval relations. An ex-
ample of a TimeML-annotated sentence in shown in Figure 8. The TLink types are shown
in Table 1. TLinks can be annotated between three categories of candidate pairs:

1. Between events (EE-R).

2. Between temporal expressions and events (TE-R)

3. Between each event and the document-creation-time (DCT-R).

As can be seen in the Table most TLinks match with a basic Allen relation. However,
Allen’s overlap, and overlapped by relations are not represented (UzZaman & Allen, 2011),
and the temporal interpretation of during and during inv relations seem similar to is
included and includes, but are not clearly defined (Chambers, Wang, & Jurafsky, 2007;
Derczynski, Llorens, & UzZaman, 2013; Derczynski, 2016), and are also sometimes inter-
preted as simultaneous (UzZaman et al., 2013). The difference between simultaneous
and identical is that simultaneous can apply to two different events happening at the
same time, whereas identical means two event mentions refer to the exact same event
(event co-reference).
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In terms of expressiveness, TimeML models a small subset of the full Allen algebra
(213 relations), and sticks to modeling the basic Allen relations. This is because temporal
annotation is a complex task for annotators, and annotation complexity needs to be taken
into account to obtain high-quality annotations with reasonable inter-annotator agreement.

Nevertheless, the expressiveness of TimeML is expanded by also including timex anno-
tations as calendar anchors. Because timexes of types date and time can be temporally
interpreted as absolute intervals with clear positions on the calendar that carry a clear tem-
poral ordering with respect to each other (e.g., 1990 is always before 1991 ). And similarly,
timex with type duration can be interpreted as quantified interval durations that come
with an implicit order on durations (e.g., 1 hour is always shorter than 2 hours). Hence,
there is a fourth category of temporal links that can be automatically derived from timex
annotations:

4 TLinks between temporal expressions (TT-R).

While using timexes as calendar anchors to increase the amount of temporal information
captured, the expressivity of TimeML is limited by the expressivity of basic Allen relations.
As shown in sections 2 and 3, the temporal information that can be expressed in language
not always concerns definite intervals, for which basic Allen relations are ideal. Underspec-
ification of an event’s duration or ending in the text could potentially cause disagreement
between annotators, as no basic Allen relation would be suitable. However, including gen-
eral Allen relations into the annotation scheme, to model temporal uncertainty, could make
the annotation task very complex.

As in the construction of many TimeML corpora annotators are not forced to annotate
all candidate pairs, this regularly results in sparse TLink annotations. Sparse annotations
can (1) make extraction difficult because of class imbalance, and (2) cause problems in
evaluation because extraction systems can get penalized for predicting relations that the
annotator may have missed. An attempt to address sparse temporal graphs is the TimeBank
Dense corpus by Cassidy et al. (2014), who explicitly asked annotators to annotate relations
between all events, within a certain token window. Whenever no basic Allen relation could
be assigned, annotators are asked to assign the label vague. Although vague does not tell a
lot about the degree of temporal uncertainty, and could in fact be replaced with the general
Allen relation including all basic relations in terms of reasoning, it does make very clear
what pairs have clear orderings, and what pairs do not. An interesting unexplored avenue
might be to annotate the vague relations in the TimeBank Dense with their general Allen
relations to obtain an even more complete temporal graph.

Ning et al. (2018c) recently addressed the issue of temporal uncertainty as well, and also
pose the question whether all events can actually be related to each other temporally. They
propose a multi-axis annotation scheme where they first separate events that are anchorable
on the timeline, from other events (negated events, opinions, intentions). They assume that
if two events are on the same axis, they can be temporally related. In a second step, they
ask annotators to annotate temporal point-wise relations (before, after, equals, and vague)
between the starting points of the anchorable events, instead of the conventional interval
relations, obtaining high inter-annotator agreement even on crowd-sourced annotations.
They found when also asking annotators to annotate relations between end-points this was
found much more difficult by the annotators. This is possibly explained by the difference
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in interpretation of event durations between annotators, as these are often not explicitly
mentioned in the text, and assume background knowledge shared by the readers and writers.
This scheme is interesting as it annotates a different set of relations than the ones used by
TimeML. We can see the relation between the two clearly from the lattice in Figure 6, as the
relations between start points can be separated by the right y-axis of the lattice (x− < y−,
x− < y−, x− > y−). This shows that if a TR component would be able to deal with both
interval and point-relations, data from both schemes could be combined this way to learn
or evaluate TIE systems, which could be very useful.

Although Ning et al. (2018c) do not describe duration annotations, TimeML includes
duration annotations. In TimeML, cues on duration need to be explicitly mentioned by
a timex in the text in order to be annotated. The fact that a long meeting takes longer
than a short meeting is not annotated as long and short are not timex expressions. Also
background knowledge about typical event duration, in case the duration is not mentioned
explicitely by a timex, is not annotated by TimeML. Pan et al. (2006a, 2006b, 2011)
proposed an annotations scheme fully dedicated to annotating event durations. They asked
annotators to provide quantified bounds on the durations of the events mentioned in the
texts (like 1-10 minutes, or 1-2 days). This annotation is done on the event level and does
not explicitely annotate timex expressions. This way annotators are free to use any cues
they can find in the text, or their background knowledge2.

Another recent scheme including event durations was proposed by Reimers et al. (2016,
2018). They classify events into two coarse duration types: one-day and multi-day events.
Similarly to TimeML they annotate timex expressions and link events to these timex expres-
sions when possible. However, when this is not possible, annotators are asked to directly
provide calendar bounds on when each event happened (like after 1992, and before 2000 ).
This way, the events can also be temporally related to calendar anchors that do not oc-
cur directly in the text as timex expressions, in contrast to the schemes mentioned earlier.
Because this scheme annotates on the event level, and not on the event-pair level, its an-
notation time is linear. Also, when all events are linked to absolute calendar dates many
TLinks can be automatically inferred, by exploiting the order on calendar days. This way a
lot of temporal information can be captured by relatively little annotation. Although minor
limitations of this scheme are the coarse granularity of the durations, and the fact that now
relative ordering statements between events cannot be annotated directly, we believe the
direction of annotating on the event level, and allowing non-explicit timeline anchors to be
very promising.

We can see that in Allen algebra (and also in point-algebra) it is not possible to di-
rectly include quantitative statements about interval durations, even though people clearly
express duration information, and have access to it through background knowledge to make
temporal inferences. This makes it difficult to combine the duration datasets with the
currently interval-based reasoning methods. Combining relative position information, and
quantitative duration information during reasoning has - to our knowledge - not been done
in the TIE systems in the literature and could be very interesting for future research.

2. To obtain this background knowledge on event durations automatically, instead of having to annotate it
explicitly, there has been work on extracting typical event durations from the web using lexico-syntactic
patterns (Kozareva & Hovy, 2011; Williams & Katz, 2012).
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Figure 9: Steps for constructing temporal information extraction models. During each step
temporal reasoning can be exploited.

5. Temporal Reasoning for Temporal Information Extraction

In this section we will review the development of TIE systems, focusing on approaches that
use some form of TR. We do not discuss extraction of events as generally this does not
impact TR directly. Extensive research was done on event extraction and timex extraction
resulting in strong extraction systems for these tasks (Strötgen & Gertz, 2010; Chang &
Manning, 2012; Derczynski, Llorens, & Saquete, 2012; Lee, Artzi, Dodge, & Zettlemoyer,
2014; Strötgen & Gertz, 2015; Miller, Bethard, Dligach, Lin, & Savova, 2015; Bethard &
Parker, 2016; Strötgen & Gertz, 2016; Derczynski, Strötgen, Maynard, Greenwood, & Jung,
2016; Laparra, Xu, Elsayed, Bethard, & Palmer, 2018b; Laparra, Xu, & Bethard, 2018a;
Olex, Maffey, Morgan, & McInnes, 2018). The normalization of timex, determining the
calendar value of relative temporal expressions (e.g., last year → 2018), does involve TR.
Almost all state-of-the-art systems resolve timex normalization successfully using hand-
crafted rules based on lexical patterns (Mani & Wilson, 2000; Negri & Marseglia, 2004;
Verhagen & Pustejovsky, 2008; Strötgen & Gertz, 2010; Kolomiyets & Moens, 2010; Chang
& Manning, 2012; Llorens, Derczynski, Gaizauskas, & Saquete, 2012; Lin, Chen, & Brown,
2013; Filannino, Brown, & Nenadic, 2013; Sun, Rumshisky, & Uzuner, 2015; Mirza, 2015;
Strötgen & Gertz, 2016; Derczynski et al., 2016; Real, Rademaker, Chalub, & de Paiva,
2018; Olex et al., 2018). We would like to highlight the scheme by Bethard and Parker (2016)
for its explicit use of a more general TR method, called SCATE (Semantically Compositional
Annotation Scheme for Temporal Expressions), in which the temporal value (interval or
duration) of a timex is composed from the individual words of the timex through interval
operations. How the words are to be composed is annotated in the corpus through links,
which can also be predicted by a relation extraction model (Laparra et al., 2018b, 2018a;
Olex et al., 2018).

For the rest of this section we focus on the task of ordering events, which builds on
top of event and timex extraction and normalization, and often involves extensive TR, as
information on multiple events and temporal expressions has to be combined. For this task
the state-of-the-art event ordering systems still perform below application level (Bethard,
Derczynski, Savova, Pustejovsky, & Verhagen, 2015; Bethard, Savova, Chen, Derczynski,
Pustejovsky, & Verhagen, 2016; Bethard, Savova, Palmer, & Pustejovsky, 2017; Ning, Feng,
Wu, & Roth, 2018a; Meng & Rumshisky, 2018). We will discuss the different ways in which
TR can be exploited in the different steps of TIE model construction, shown in Figure 9,
starting with annotation.
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5.1 Temporal Reasoning for Dataset Annotation (TR-DA)

A widely recognized problem in temporal annotation, is the fact that because of the com-
plex nature of temporal information, annotators tend to miss temporal cues in the text,
especially when annotating TLinks between pairs of events (Mani, Verhagen, Wellner, Lee,
& Pustejovsky, 2006). Verhagen (2005), and Setzer et al. (2005) argue that when anno-
tating temporal relations, not all event-pairs are equally useful to annotate, as some can
be deduced from the already annotated TLinks. To save annotation effort they suggest
to incorporate TR in the annotation tool, and only ask annotators to label event pairs
for which it is not yet possible to infer a relation from the annotations already present.
Another motivation to exploit TR during annotation is that annotators sometimes provide
temporally inconsistent labelings, which makes it harder to train TIE systems (Gennari &
Vittorini, 2016, 2017). Verhagen et al. (2006) used TR with basic Allen relations in their
TANGO toolkit. Also, in the construction of the TimeBank-Dense (Cassidy et al., 2014),
where annotators are forced to annotate temporal links between all entity pairs within a
certain window, after each annotation a temporal closure is calculated. This way, the anno-
tated corpus obtained interesting properties: (1) its graphs are strongly connected, (2) the
resulting corpus is consistent, and (3) all required edges are labeled. As not all events can be
related through basic Allen relations, the authors introduced a vague relation type for when
two events are difficult to relate. These works show that TR can be very beneficial during
data annotation, making the use of TR for dataset annotation a very interesting direction
of research needed to construct better application-level TIE systems. Also the combination
of TR with active learning (Settles, 2012) as a way to collect informative training examples
might be very interesting, as temporal annotation is generally considered difficult and con-
sequently time consuming (Boguraev & Ando, 2007; Tissot, Roberts, Derczynski, Gorrell,
& Del Fabro, 2015; Derczynski, 2016; Gennari & Vittorini, 2017).

5.2 Temporal Reasoning for Data Preprocessing (TR-DP)

Once a dataset has been annotated, a commonly used method is to expand the training
data, as annotators frequently miss TLinks. This can be done by applying a transitive
closure to infer new TLink annotations based on the ones already present. The firstly used
algorithm to calculate a temporal closure for this purpose is called SputLink (Verhagen,
2004). SputLink is based on a subset of Allen’s interval algebra and uses a composition
table of 745 axioms (or transitivity rules) to infer new relations. It was used already
in one of the first machine learning approaches to temporal relation extraction by Mani
et al. (2006). In their experiments, using SputLink increases the number of TLinks by
a factor 11. The effect of temporal closure on performance for models that use no TR
during prediction is ambivalent. There have been cases where temporal closure increases
performance (Mani et al., 2006; Mani, Wellner, Verhagen, & Pustejovsky, 2007), but also
where it does not (Chambers & Jurafsky, 2008b), or even decreases performance (Tatu
& Srikanth, 2008). When using a model that exploits TR during prediction it has been
shown that data expansion through a temporal closure can be very beneficial (Chambers
& Jurafsky, 2008a). Models that use TR during prediction will be described in the next
section.
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5.3 Temporal Reasoning for Training or Prediction (TR-TP)

To enhance temporal relation extraction models, TR can be integrated during training, and
during prediction. Since training and prediction are so closely related, and often prediction
is a sub-procedure of training, we discuss the integration of TR in training and prediction
together in a single section.

There are various reasons why integration of TR during training and prediction can
improve TIE models: (1) ensure temporal consistency among the predicted relations, and
(2) to constrain the output space and improve prediction accuracy.

Predicting consistent temporal information is very important for real applications, as it
is not possible to construct a proper timeline from a set of inconsistent TLinks. To ensure
consistency of TLinks, the expressiveness of TR is crucial. Computational efficiency of TR
is also very important for real applications, especially when the TR needs to be performed
for each prediction. So, the ideal TR method for a TIE application has a good trade-off
between expressiveness and computational efficiency. Many methods have been explored
for incorporating TR during model training and prediction, which we discuss one by one.

5.3.1 Best-First (BF) or Natural Reading Order (NRO) Greedy Inference

One of the first approaches to incorporate TR during prediction was proposed by Bramsen
et al. (2006a). They addressed the task of temporally ordering text segments in clinical
narratives by first detecting segment boundaries, and afterwards classifying each pair of
segments into one of three temporal relations: before, after, or incomparable. To
ensure that the finally predicted temporal graph for each document is consistent, they em-
ploy a best-first (BF) greedy strategy: (1) All segment pairs are sorted by model confidence
(based on the score predicted by a pairwise relation classifier), (2) In order of high-to-low
confidence, relations are added one-by-one. After adding each relation a temporal closure
is applied to expand the graph, until all pairs are connected.

A slight alteration is to order the relations not by model confidence in step 1, but by
natural reading order (NRO). Afterwards, in step 2, the same strategy is applied as with
BF: adding relations one-by-one followed by a transitive closure. Regarding performance,
both NRO and BF outperform the baseline models that use no TR during prediction at all,
and BF obtains the best results (Bramsen, Deshpande, Lee, & Barzilay, 2006b).

5.3.2 Post-Hoc (P-HOC) Conflict Resolution

Many approaches first use greedy prediction to predict a temporal graph, and resolve con-
flicts post-hoc. These approaches involve the removal of conflict-causing edges, based on
model confidence (Verhagen & Pustejovsky, 2008; Tatu & Srikanth, 2008; Cheng, Anick,
Hong, & Xue, 2013; Sun, 2014; Meng et al., 2017). Verhagen and Pustejovsky (2008)
used different models to predict different parts of the temporal graph, and assign differ-
ent confidences per model to remove the least confident conflict-causing TLinks. Cheng
et al. (2013) resolve conflicts by removing the least confident conflict-causing edge for each
within-sentence triangle of relations. Meng et al. (2017) remove conflict-causing TLinks
such that the sum of their confidences is as low as possible. Although most works using
post-hoc conflict resolution report a positive impact of the resolution, they have not been
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compared to each other in a quantitative manner. This could be an interesting comparison
for future research.

5.3.3 Sieve-Level Inference (SLI) and Stacked Inference (SI)

A popular method for TIE is the sieve-based method (Chambers, Cassidy, McDowell, &
Bethard, 2014), as it is a flexible way to incorporate both rule-based and machine learning
components. The idea of the sieve-based approach is that TLinks are extracted in different
consecutive phases by different model components (or sieves). Each sieve extracts TLinks,
using the original input text, and the outputs from earlier sieves. TR is incorporated
into sieve-based TIE systems by taking a transitive closure on the extracted TLinks after
applying each sieve. This way later sieves are prevented from assigning TLinks that are
inconsistent with those extracted by earlier sieves. Another way to look at this is that
the closure in fact makes the output space smaller after each sieve. Typically the sieves
are ordered by precision, making the sieve-level inference (SLI) similar to the greedy BF
approach, except relations that are not added one-by-one, but in groups, i.e., sieve-by-sieve.
Very similar approaches have been adopted by Mirza and Tonelli (2016) and McDowell et al.
(2017). Mirza and Tonelli (2016) separately evaluated the effect of this reasoning approach,
and report an increase in recall contributing to an increase in performance when including
the sieve-closure.

Another approach that exploits TR in multiple prediction stages is the stacked inference
(SI) approach of Laokulrat et al. (2014, 2015). In the first stage their model predicts TLinks
using pairwise local logistic regression classifiers, as many approaches do. However, on top
of that they apply a transitive closure. Then, in a second stage, they learn a new TLink
classification model that additionally takes the predicted relations from stage 1, and their
corresponding probabilities as input features. An example of a stage 2 feature used to
predict a TLink for some given entity pair is the set of all phase-1 TLink-paths connecting
the two events. This way their model can learn to predict TLinks in context of other TLinks,
resulting in a learned inference procedure.

A recent similar SI approach was used by Meng and Rumshisky (2018), inspired by
neural Turing machines (Graves, Wayne, & Danihelka, 2014). Instead of using a pre-
trained pairwise logistic regression model as local pairwise model in stage 1, like Laokulrat
et al. (2015), Meng and Rumshisky (2018) employ a Long Short-Term Neural (LSTM)
network classifier (Hochreiter & Schmidhuber, 1997). In the second stage, to classify the
TLink relation for a candidate pair, they use the surrounding TLink predictions from the
pre-trained model as input features in their final model. Another difference with Laokulrat
et al. (2015) is that Meng and Rumshisky (2018) train their two stages jointly.

So for both Laokulrat et al. (2015) and Meng and Rumshisky (2018), the second phase
uses no explicit knowledge about temporal reasoning (like reasoning rules). The label-label
associations are learned from the data. An advantage of this is that the model can explicitly
learn to correct mistakes of the local pairwise model from stage 1, which improves model
performance. A disadvantage is that there are no guarantees on consistency.
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5.3.4 Random Restart Hill Climbing (RRHC)

A less conventional TR approach was used by McClosky and Manning (2012), who addressed
the task of temporal knowledge base population (KBP) slot filling (Ji, Grishman, Dang,
Griffitt, & Ellis, 2010). Here the focus lies on finding the temporal bounds of a certain subset
of events called fluents, which are semantic relations between entities that hold for a certain
period of time, like attends-school, or has-parent. Their aim was to find the bounds of such
events by detecting the following four types of TLinks (called meta-relations in the original
paper) between the events and time expressions: begun by, ended by, during (called
start, end, and start and end in the original paper), and a class unrelated. They
employ local pairwise classifiers to obtain scores for each relation type, that are combined in
a joint inference to obtain a globally consistent prediction using random restart hill climbing
(RRHC). They define a global scoring function to score each set of predictions, which takes
into account temporal consistency, and also the local scores from the pairwise classifiers.
They find good scoring solution by iterating through all TE pairs, and at each pair adding
the TLink that results in the setting with the highest score. Since this procedure depends
on the initial order through which they randomly restart this procedure ten times, and pick
the setting that gives the highest score from the ten final settings. This approach has not
yet been evaluated in a more elaborate TIE setting, using a wider range of event types and
temporal relation types.

5.3.5 Integer Linear Programming (ILP)

Another, more widely used, method to combine locally predicted TLink scores into a consis-
tent temporal graph is integer linear programming (ILP). This technique was first exploited
for TR by Bramsen et al. (2006b). They experiment with two greedy inference strategies:
(1) following reading order, and (2) by in order of confidence, as described in the previous
section. They also experimented with exact inference using integer linear programming
(ILP). To formulate the problem as an integer linear program, it should be represented
as a linear objective possibly extended with a set of linear constraints. Solving an ILP is
in principle NP-complete, however there exist many efficient (often approximate) solvers
(Berkelaar, Eikland, Notebaert, et al., 2004; Makhorin, 2008; Gu, Rothberg, & Bixby,
2012). Bramsen et al. (2006b) formulate the objective as the sum of all scores of the pair-
wise classifiers (for before, after, and incomparable). Additionally, they model three
constraints:

1. Each segment pair is assigned only one label. (mutual exclusivity)

2. The before and after relations follow transitivity. (transitivity)

3. Each segment is connected through at least one edge other than incomparable.
(connectivity)

Their experimental results show that using ILP performs better than greedy approaches
like BF and NRO. Similar results were obtained as well by Mirroshandel and Ghassem-Sani
(2012).

Chambers and Jurafsky (2008a) use a similar approach using TimeML-style data, pre-
dicting the same TLink types as Bramsen et al. (2006b), and also modeling transitivity
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through ILP inference, but considering TLinks between events (EE-R) instead of between
text segments.

They also show that using TR during prediction is more effective on densely connected
temporal graphs. To obtain a densely connected temporal graph from the initially sparsely
annotated annotations, they apply an extensive temporal closure to infer new EE-R. To
compute the closure, they also exploit other TLink types (e.g., includes, and simulta-
neous) and also the other relation categories: TE-R, DCT-R, and TT-R, later also used
by others Tatu and Srikanth, Denis and Muller, Laokulrat et al., Ning et al. (2008, 2011,
2015, 2018a). The importance of densely connected graphs for TR-MI was also recognized
by later research (Denis & Muller, 2011; Do, Lu, & Roth, 2012; Leeuwenberg & Moens,
2017).

Both Bramsen et al. (2006b), and Chambers and Jurafsky (2008a) only used two
TimeML relations in their joint inference, working on a restricted problem setting, com-
pared to using all twelve TLink types. When taking into account all twelve TLink types
TR becomes much more computationally complex. This complexity problem is addressed
by Denis and Muller (2011). In contrast to earlier approaches, they propose to formulate
TR-based prediction using point-algebra instead of Allen algebra, exploiting the mapping
proposed by Vilain et al. (1990), shown earlier in the lattice of Figure 6. This is done by
translating the TLinks between intervals into relations between start and end points (>,
<, and =). Their ILP objective maximizes the score from local pairwise classifiers, similar
to Bramsen et al. (2006b), except that the ILP decision variables correspond to decisions
about the translated point-wise relations, resulting in four times less variables. Because
there are also fewer point-wise relation types (three) compared to interval relation types
(twelve), they need a factor fifty fewer constraints to model the same reasoning fragment.
After solving the ILP, the resulting point-wise decisions are translated back to TimeML
interval relations. This shows that exploiting the connection between interval and point
space greatly increases the computational efficiency of TR-based prediction with ILP. We
argue that this method is very important for practical TIE systems. Compared to earlier
ILP formulations, computational efficiency is gained, while at the same time expressiveness
is increased. The full conjunctive sub-fragment discussed in section 3 is covered instead of
just covering a handful of basic transitivity rules as is often done. Interestingly, more re-
cently Kerr et al. (2014) used a quite large set of transitivity rules, using ILP to construct
an ensemble from many local pairwise TLink extraction models, showing clear improve-
ments. Although they used a large set of transitivity rules, they did not exploit the efficient
point-algebraic formulation by Denis and Muller (2011).

A second modification to save computation has to do with temporal reasoning on sub-
groups of events, instead of all events in the document. The intuition is that people describe
events in time frames, also called narrative containers (Pustejovsky & Stubbs, 2011), which
has been adopted in later annotation works, and their corresponding systems (Styler IV
et al., 2014; Bethard et al., 2015, 2016, 2017). This intuition of narrative containers is
similar to the segments of Bramsen et al. (2006b), that correspond to larger phrases instead
of individual events. Denis and Muller (2011) obtain these sub-graphs from ground-truth
structures of connected events, and through events that correspond to the same temporal
expression, and show how this can be used for more efficient TR.
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5.3.6 Markov Logic Networks (MLN)

Another important method that has been proposed for TR-based prediction are Markov
Logic Networks (MLN) (Richardson & Domingos, 2006). These were first explored for
TIE by Yoshikawa et al. (2009), and later also by Ling and Weld (2010), and Ha et al.
(2010). An major difference between MLN and the inference methods mentioned earlier,
is that instead of combining locally trained models in a global inference setting, MLN also
exploit the temporal constraints during training. Also, the weights for TR constraints can
be learned, allowing the model to also learn soft correlations between TLinks, instead of
hard rules.

To set up a MLN for a discriminative prediction problem, like predicting TLinks between
events, one has to: (1) define a set of hidden first-order predicates that are observable during
training that you want to predict (e.g., TLinks between different events), (2) define a set
of observed predicates, available at both training and test-time (e.g., event features), and
(3) define association rules among the predicates, which will get assigned a weight (e.g.,
feature-label associations, and label-label associations, like transitivity of certain TLinks).
And (4), once the MLN is defined, a training and inference regime has to be determined
to estimate probabilities for the hidden predicates and the association rules. This last step
is often provided by MLN interpreters (Niu, Ré, Doan, & Shavlik, 2011). Yoshikawa et al.
(2009) model different transitivity rules connecting the EE-R, TE-R, and DCT-R TLinks,
and show that using MLN to incorporate TR outperforms local models that use no TR
during prediction. MLN have been less popular in more recent works for scalability reasons
(Leeuwenberg & Moens, 2017; Mojica & Ng, 2016). MLN constraints are soft (predicate
assignments can become less likely, but not impossible), in contrast to approaches that
model hard constraints, like ILP, that allow cutting off large areas from the search space to
find solutions efficiently.

5.3.7 Structured Perceptron with Integer Linear Programming (SP+ILP)

Another approach to exploit TR in both training and prediction was proposed by Abend
et al. (2015), in the domain of cooking recipes. They learn a global model formulating
TIE as a structured learning problem. For this they combine an averaged structured per-
ceptron (Freund & Schapire, 1999) with ILP inference. Abend et al. (2015) focused only
on precedence relations between events, which was sufficient for cooking recipes. Similar
approaches but for more extensive TimeML-based relations were proposed by Leeuwenberg
and Moens (2017) in the clinical domain, and by Ning et al. (2017)3 in the news domain.
In these structured learning approaches, a scoring function is learned that scores groups of
TLink assignments rather than single TLink assignments, as local models do. Model infer-
ence then corresponds to finding the assignment of TLinks with the highest overall score
by the model. The naive inference method is to enumerate all possible TLinks assignments
for a document, and pick the assignment with the highest score, which is usually highly
computationally intractable. To formulate a more efficient inference procedure ILP is used

3. Which was later extended to deal with sparse annotations (Ning, Yu, Fan, & Roth, 2018d), jointly reason
with causal relations (Ning et al., 2018a), and to include statistical knowledge from other resources (Ning,
Wu, Peng, & Roth, 2018b).
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to constrain the search space, similar to the approaches mentioned in the previous section.
During training of the structured perceptron, the same ILP-style inference is used.

There are a few differences between the three SP+ILP approaches: Abend et al. (2015)
focused on precedence relations between the events only. For this reason, their objective was
to find a single chain of relations in which each event is visited only once, whereas the other
two works use a more extensive rule set, making inference more complex. Also, Leeuwenberg
and Moens (2017) besides hard-coded transitivity rules, also exploited soft learned label-
label constraints. And, Ning et al. (2017) used an even more extensive transitivity table for
TR, including more expressive rules that infer also some general Allen relations (disjunctions
of TLinks), resulting in more expressive TR (class II). Similar to most approaches all works
prune the total set of TLink candidate pairs to reduce computational complexity, and in
all cases it was reported that TR during both training and prediction generally performs
better compared to combining local classifiers with ILP.

5.3.8 Direct Timeline Models (DTLM)

Recently, a new type of approach to temporal event ordering was proposed by Leeuwenberg
and Moens (2018a). Instead of predicting TLinks among events and temporal expressions,
their model directly predicts the start and end points of events. An advantage of this
approach is that it is fast, as predicting start and end points for each event is linear in the
number of events, in contrast to predicting a set of TLinks, which is quadratic or requires
pruning. To train their model they exploit TR to convert TLinks to sets of point-algebraic
constraints. The loss function to train the model represents the distance that start and end
points of events still need to shift to make all annotated temporal order relations valid on the
predicted timeline. Another advantage of this approach is that its predicted timelines are
consistent by definition. The main limitation of the approach is that there is no probabilistic
interpretation of confidence for predictions, which is mentioned as future work.

5.4 Temporal Reasoning during Model Evaluation (TR-ME)

Initially, temporal information extraction systems were evaluated using either accuracy or
F1-measure of extracted TLinks. Setzer et al. (2003) proposed to exploit TR to address a
problem of straightforward calculation of accuracy or F1-measure:

• The same temporal situation can be represented using different TLinks (e.g., A be-
fore B represents the same situation as B after A with different labels).

To counter this problem they proposed to apply a temporal closure using all TLink types
before evaluating F1-measure. However, this way, all TLinks are weighted equally, predicted
and inferred TLinks. Tannier et al. (2008) addressed this problem by evaluating only with
regard to core relations. From a set of TLinks, the core relations can be obtained by
removing relations one-by-one, for as long as the inferable set of relations does not change
(i.e., no information is lost). A problem with this approach however is that when comparing
only core relations, not all inference information is captured, as already pointed out by
Tannier et al. (2008) and Tannier and Muller (2011).

UzZaman and Allen (2011) have proposed a metric that deals with this issue, called
temporal-awareness. They calculate a harmonic mean of precision and recall, i.e., an F-
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score. A crucial difference with Setzer et al. (2003), and Tannier et al. (2008) is that to
calculate their precision and recall they do not modify the original relations, but rather
change the criterion on whether a relation is correctly classified with regard to the reference
or not, using TR. Their precision metric is calculated as the percentage of system relations
that can be verified from the reference relations using TR. Recall is calculated as the per-
centage of reference relations that can be verified from the system relations, using TR. To
perform TR, they exploit TimeGraph (Miller & Schubert, 1990), an efficient TR algorithm
based on the mapping between intervals and point algebra mentioned in Figure 6. Time-
Graph conducts TR in the non-disjunctive sub-fragment of Allen’s algebra, i.e., expressivity
class III. The temporal-awareness is now used widely for evaluating TIE systems.

5.5 Overview of TR in TIE

There are some striking differences between the usage of TR in the different phases of model
construction. During annotation, TR has shown positive results, and can help to reduce
annotation work, and ensure consistency in the annotations. However, exploiting TR is not
yet common practice in corpus construction.

In Table 2, we construct an overview of - to our knowledge - all TIE systems described
in the literature that employ some form of interval or point-based reasoning for event or-
dering in the past three decades. We can see in the overview that in earlier approaches
fewer TLink categories have been used for TR, focusing mostly on precedence relations (P)
between event-event pairs (EE-R). In later approaches more relation types are predicted,
like temporal inclusion (I), temporal equivalence (E), and overlap relations (O). This shows
that the research focus in the community slowly grows in the direction of the challenge of
full TIE, where all temporal cues from the text are extracted and combined at the same
time, making TR an increasingly important aspect of TIE systems.

If we look at the use of TR to expand the training data (TR-DE) we observe mixed
effects. Approaches that report high improvements above 10% improvement (Mani et al.,
2006, 2007; Tatu & Srikanth, 2008) do so while splitting the training and test set on the
relation instance level after TR. When splitting on the document-level, which is more real-
istic setting, the improvements are much smaller or even negative (Mani et al., 2007; Tatu
& Srikanth, 2008; Nikfarjam et al., 2013; Mirza, 2014).

TR-based prediction approaches (TR-TP) are reported to outperform those that do not
exploit TR, where ILP based approaches generally outperform greedy approaches (Bramsen
et al., 2006b; Denis & Muller, 2011; Mirroshandel & Ghassem-Sani, 2012). A trend also
seen in the table, is that more systems exploit TR not only during prediction (NRO, BF,
ILP, SLI, RRHC), but also during training (SI, MLN, SP+ILP, DTLM), as this has shown
to improve performance even further (Leeuwenberg & Moens, 2017; Ning et al., 2017),
stressing the importance of integration of TR in TIE models.

The expressivity of the TR-based prediction approaches (in column TR-TP) mostly
concerns basic Allen relations (class I). Ning et al. (2017, 2018a) extend this to transitivity
rules with disjunctions of Allen relations in the conclusion (class II), but they still perform
reasoning with the interval-level transitivity table. The vast majority of TR approaches
that go beyond Allen’s composition table of basic relations (from class I or II to class III) in
TR expressiveness almost all perform reasoning in point algebra to remain tractable. This

363



Leeuwenberg & Moens

Table 2: Overview of event ordering TIE systems using interval or point-based TR. The first column
shows the reference, the second the types of the predicted temporal interval relations: precedence
relations (P: precedes, preceded by, meets, met by) inclusion relations (I: during, contains, starts,
started by, ends, ended by), overlap relations (O: overlap, overlapped by) or equivalence relations
(E: equals). The next three columns indicate whether TR was used for data expansion (TR-DE),
during training or prediction (TR-TP), or for model evaluation (TR-ME), where roman numerals
indicate the expressivity class from section 3. The last column shows among what types of entities
the relations are predicted (from section 4), where † indicates if ground truth relations were used
in TR. If a reference directly evaluated the effect of TR, we report baseline score(s) and the change
in score due to usage of TR (reported in %) for each experiment (separated by /). Scores and
improvements are incomparable across references, as datasets, tasks, and evaluation metrics vary.

Reference Rel. Types TR-DE TR-TP TR-ME Candidate Pairs

Mani et al. (2006) P, I, E 76+11 - - EE, TE-R

Mani et al. (2007) P, I, E 60+14/−11 - - EE, TE-R
Bramsen et al. (2006a) P BFI - SS-R
Bramsen et al. (2006b) P NROI

72+2, BFI
+6, ILPI

+12 - SS-R
Chambers and Jurafsky (2008a) P ILPI

72+2 - EE, TE†, TT†-R
Verhagen and Pustejovsky (2008) P, I, E P-HOCI - EE-R

Tatu and Srikanth (2008) P, I, E 57+1/+15 P-HOCI
50−3 - EE, TE†, TT†-R

Yoshikawa et al. (2009) P, I, E - MLNI
67+2 - EE, TE, DCT-R

Ling and Weld (2010) P, O - MLNI - TE-R
Ha et al. (2010) P, O - MLNI - EE, TE-R
Denis and Muller (2011) P, I, E NROI

11+14, ILPIII
+30 - EE, TE†, TT†-R

Mirroshandel and Ghassem-Sani (2012) P, I, E - BFI
48+3/49+1, ILPI

+4/+2 - EE-R
Do et al. (2012) P, O ILPI - EE, TE, DCT-R
McClosky and Manning (2012) I - RRHCI

71+1 - TE-R
Costa and Branco (2013) P, O NROI - EE, TE, DCT, TT-R
Nikfarjam et al. (2013) P, O 63+1 - - TE-R
Cheng et al. (2013) P, O P-HOCI III EE,TE-R
Sun (2014) P, O - P-HOCI III EE, TE-R
Chambers et al. (2014) P, I, E - SLII

32+8 - EE, TE, DCT, TT-R
Mirza (2014) P, I, E 48−2 - III EE, TE, DCT-R
Kerr et al. (2014) P, I, E, O - ILPIII III EE, TE, DCT-R
Laokulrat et al. (2015) P, I, E SII

69+1
III EE, TE, DCT, TT†-R

Abend et al. (2015) P, E - SP+ILPI
66+4/+5

I EE-R

Mirza and Tonelli (2016) P, I, E SLII
61+1/49+2

III EE, TE, DCT-R

Li et al. (2016) P, O - ILPI
62+2/+6 - EE-R

Cornegruta and Vlachos (2016) I - - III TE-R

Meng et al. (2017) P, I, E, O - P-HOCI
52+1/+4

III EE, TE, DCT, TT†-R
Leeuwenberg and Moens (2017) P, I, O ILPI

83+1, SP+ILPI
+2

III EE, TE, DCT-R
Ning et al. (2017) P, I, E ILPII

57+5, SP+ILPII
+10

III EE, TE, DCT-R
McDowell et al. (2017) P, I, E - SLII

49+2 - EE, TE, DCT-R

Ning et al. (2018a) P, I, E SP+ILPII
46+4/+5

III EE, TE, DCT, TT†-R
Meng and Rumshisky (2018) P, I, E - SII

53+1 - EE, TE, DCT, TT†-R
Leeuwenberg and Moens (2018a) P, I, E - DTLMIII III EE, TE, DCT-R
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is observed in all areas of TIE: data expansion (Verhagen, 2005), training and prediction
(Denis & Muller, 2011; Leeuwenberg & Moens, 2018a), and for evaluation (UzZaman &
Allen, 2011). This indicates the importance of exploiting the point-interval mapping when
considering practical systems, where expressivity and efficiency are both important.

It can be seen that during evaluation the expressivity of TR is frequently of class III.
This is because the temporal awareness metric by (UzZaman & Allen, 2011) was adopted in
the TempEval challenges (UzZaman et al., 2013; Minard et al., 2015; Bethard et al., 2016,
2017), and hence became a standard evaluation metric to use.

6. Future Directions and Discussion

In this section we discuss the results from the survey and aim to point out areas that have
been relatively unexplored or that we believe are promising for future work.

In the previous section, we observed that TR during prediction improves over using no
TR, global methods outperform local greedy methods, and integrating TR in both prediction
and training can improve model performance even further.

Efficiency of TR has not been compared explicitly across models in the existing TIE
literature. However, it is used as motivation for many works to choose for a certain method.
In general, greedy methods and sieve-based methods (BF, NRO, SI), which look for local
optimal solutions, are faster than global methods like ILP, MLN, and RRHC, possibly at
the cost of performance. There has been some work on comparing efficiency of ILP-style
inference and MLN, which suggests that ILP is more efficient for currently existing solvers
(Mojica & Ng, 2016). Also, SP+ILP methods are generally slower in training time than
ILP-based methods, as their more complex inference procedure is also performed during
training, however as seen in Table 2, it also often provides further improvements. To choose
the degree of TR may depend on your dataset as well, as predicting densely connected graphs
generally benefits more from TR. As mentioned in section 3, irrespective of the degree of
TR, point-based TR methods are generally faster than equally expressive interval-based TR
methods.

In this light, we observe that more recent works focus more on annotating and predicting
relations between start and end points of events, rather than relations between events or
intervals (Reimers et al., 2016, 2018; Ning et al., 2018c; Ning, Zhou, Feng, Peng, & Roth,
2018e; Leeuwenberg & Moens, 2018a). We believe this is a promising and important change
in perspective also with regard to TR. To increase expressivity of a TR component up
to class III while remaining tractable reasoning in point-algebra is crucial. Additionally,
representing the temporality of events by their start and end points provides flexibility when
combining different annotation schemes, as most schemes can be converted to point-algebra.

Also, this flexibility could be very beneficial when incorporating other types of reasoning.
Many questions that involve temporality cannot be solved using TR alone, but require other
types of semantic reasoning about events and entities (Höffner et al., 2017; Pampari et al.,
2018; Suster & Daelemans, 2018), including (but not limited to) co-reference (Do et al.,
2012), spatial reasoning, which has strong similarities with temporal reasoning (Guesgen,
1989; Mukerjee & Joe, 1990; Freksa, 1992b; Walsh, 2003), and causal reasoning and extrac-
tion (Bethard, Corvey, Klingenstein, & Martin, 2008; Mirza & Tonelli, 2014; Mirza, 2014;
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Mirza & Tonelli, 2016; Mostafazadeh, Grealish, Chambers, Allen, & Vanderwende, 2016;
Dunietz, Levin, & Carbonell, 2017; Ning et al., 2018a).

To incorporate these different types of information into single TIE models we believe
neural networks could be a suitable model class, as they are very flexible in combining mul-
tiple tasks, and incorporating background knowledge like typical event orders (Chklovski
& Pantel, 2004; Pichotta & Mooney, 2016), durations (Vempala, Blanco, & Palmer, 2018),
or times of the day (Noro, Inui, Takamura, & Okumura, 2006). Currently, many neural
TIE approaches follow the pairwise TLink classification paradigm, and are based on LSTM
(Tourille, Ferret, Neveol, & Tannier, 2017; Cheng & Miyao, 2017; Leeuwenberg & Moens,
2018b; Meng et al., 2017; Choubey & Huang, 2017; Lin, Miller, Dligach, Amiri, Bethard, &
Savova, 2018; Lin, Miller, Dligach, Bethard, & Savova, 2019), convolutional neural networks
(CNN) (Dligach, Miller, Lin, Bethard, & Savova, 2017; Lin, Miller, Dligach, Bethard, &
Savova, 2017), tree-based LSTM networks (Galvan, Okazaki, Matsuda, & Inui, 2018), and
attention networks (Liu, Wang, Chaudhary, & Liu, 2019). However, currently the exploita-
tion of TR for neural TIE has been very limited in neural TIE systems leaving room for
future research.

Another area we would like to address is the challenging area of cross-document TIE. For
TR in cross-document TIE temporal cues from multiple documents need to be combined,
stressing the importance of computational efficiency. Cross-document TIE has not been
discussed elaborately in this survey as the amount of TR in this research area has been very
limited, possibly for this very reason of computational efficiency. Barzilay and McKeown
(2005) were one of the first to dive into this area of research, and used iconicity, the heuristic
that in narrative texts events are often mentioned in chronological order, to temporally order
sentences in a multi-document summarization task. There has been work on generating
course grained entity-focused timelines from multiple news articles as a means to do multi-
document summarization (Yan, Kong, Huang, Wan, Li, & Zhang, 2011; Zhao, Guo, Yan,
He, & Li, 2013; Lin, Efron, Wang, & Sherman, 2014; Wang, Shou, Chen, Chen, & Mehrotra,
2015; Althoff, Dong, Murphy, Alai, Dang, & Zhang, 2015). However, the focus of most of
the research in this area lies mainly on the informativeness of sentences for the summary,
and less on the temporal aspect. In most cases, TIE is very limited, and it is simply
assumed that all events mentioned in each text occur at the document-creation time, leaving
many opportunities for TIE and TR. Besides computational efficiency, a challenge in a
cross-document TIE setting is that event mentions of the same event should be linked
across documents, called cross-document event co-reference. Event co-reference is strongly
connected to TIE as a single event can only occur at a single time. Do et al. (2012)
modeled this principle connecting TIE and event co-reference in their TR-based prediction
using ILP. However, this was in a within-document setting. This could be a good starting
point for cross-document ILP formulations. Minard et al. (2015) provided a setup for
evaluating this problem in a shared task. However, TR has not yet been explored by the
participants of this shared task. Also the ECB+ corpus (Cybulska & Vossen, 2014), which
contains event co-reference and temporal information annotations across documents could
be an interesting resource.

With regard to general TIE, considering both cross-document but also within-document
relations, we can observe from the overview in the previous section that the state-of-the-
art systems using TR focus mainly on ordering events, and anchoring events to temporal
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expressions, using TimeML-style data. Since TimeML only annotates duration cues that are
definite, quantified and explicit it does not contain implicit or background event duration
information, nor explicit indefinite quantification (long meeting). There have been TIE
systems that also use implicit duration information (Pan et al., 2006b; Reimers et al.,
2018). However, these systems do not exploit TR, nor TimeML-style annotations, leaving a
gap in the literature: systems that are able to combine different data sources, like TimeML
and event duration annotations (Pan et al., 2011; Reimers et al., 2016). Combining different
types of information and learning from different data sources presents new challenges for
TR. For the TR aspect it might be interesting to explore temporal constraint networks,
that are able to deal with quantification (Dechter & Cohen, 2003). Two systems for which
we believe further integration of event duration information would be straightforward are:
(1) the direct timeline models by Leeuwenberg and Moens (2018a), and (2) the work of
Reimers et al. (2018), as both approaches already predict and combine event position and
duration.

7. Conclusions

We presented a comprehensive survey on how temporal reasoning mechanisms can be ex-
ploited for temporal information extraction, covering the literature of the last three decades
in this research area.

To explain the complexity of the temporal information that is present in language we
provided an exemplified overview of the different types of temporal information present
in language: absolute v.s. relative cues, definite and indefinite cues, implicit cues, and
background knowledge. Many types of temporal cues, like explicit event position cues,
and event durations can already be extracted by different types of temporal information
extraction systems from the literature.

There appears to be a trend towards more complete TR, going from only reasoning
about EE-R, towards including also TE-R, DCT-R, and even TT-R. Although still no
systems seem to combine all temporal cues as of yet. For example, information about the
relative ordering of events and quantified duration information have not yet been combined
in TR, although data is available, accommodating room for future work on joint models.

To provide a back-bone for the state-of-the-art TIE systems using TR, a comprehensive
explanation of the most widely used temporal reasoning frameworks in temporal information
extraction systems was given. We reviewed Allen’s interval algebra and its relation to point
algebra in detail, giving insight into the considerations with regard to expressiveness of
temporal reasoning and computational efficiency. We argue that for obtaining practical
systems point-algebraic approaches for TR are preferred, as they strike a good balance
between expressiveness and efficiency instead of reasoning directly with Allen’s interval
relations.

In the core of the survey, we reviewed the different methods to exploit temporal reason-
ing for constructing temporal information extraction models and distilled the most widely
confirmed conclusions. TR during annotation has been proposed already early on, and is
effective for ensuring connectivity and consistency in annotations but has been used to a
limited degree in existing corpora. To expand the often only sparsely annotated TimeML
data, a transitive closure is used frequently to densify the annotated temporal graphs. This
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has been found mostly beneficial when TR is also used during model inference, as TR during
model inference appears to work better on densely connected temporal graphs. Generally,
usage of TR for model inference appears to increase model performance. Some approaches
use TR only during training, and some both during training and inference. Inference-only
approaches include: BF, ILP, RRHC, and SLI, and approaches that use TR also during
training include: MLN, SI, SP+ILP, and DTLM. The last category of approaches has been
researched most recently and has been reported to perform better than inference-only ap-
proaches. For evaluation the research community has converged on using the TR-based
temporal awareness measure.

In closing, it is clear that TR is crucial for TIE, and widely used in all aspects of
model construction. However, most current research on TIE still addresses sub-fragments
of the complete TIE problem, focusing on extraction of specific types of temporal cues,
instead of extracting all cues jointly which would allow them to complement each other.
Consequently, it remains an open research question how to perform efficient and expressive
TR involving all types of temporal cues. We believe to answer this question, a flexible,
expressive and efficient reasoning framework is required. For this, we believe important
directions of research are point-based reasoning approaches, striking a good balance between
efficiency and expressiveness, and deep learning methods, that facilitate flexibility in model
construction, multi-task learning, and sharing of representations.
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