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Abstract

Multi-agent path-finding (MAPF) is the problem of finding a plan for moving a set
of agents from their initial locations to their goals without collisions. Following this plan,
however, may not be possible due to unexpected events that delay some of the agents. In
this work, we propose a holistic solution for MAPF that is robust to such unexpected de-
lays. First, we introduce the notion of a k-robust MAPF plan, which is a plan that can be
executed even if a limited number (k) of delays occur. We propose sufficient and required
conditions for finding a k-robust plan, and show how to convert several MAPF solvers to
find such plans. Then, we propose several robust execution policies. An execution policy
is a policy for agents executing a MAPF plan. An execution policy is robust if following
it guarantees that the agents reach their goals even if they encounter unexpected delays.
Several classes of such robust execution policies are proposed and evaluated experimentally.
Finally, we present robust execution policies for cases where communication between the
agents may also be delayed. We performed an extensive experimental evaluation in which
we compared different algorithms for finding robust MAPF plans, compared different ro-
bust execution policies, and studied the interplay between having a robust plan and the
performance when using a robust execution policy.

1. Introduction and Overview

The Multi-Agent Path Finding (MAPF) problem is the problem of finding a plan for a set
of agents that moves the agents from their current vertices to their target vertices without
collisions. MAPF has practical applications in video games, traffic control, and robotics (see
Felner et al. (2017) for a survey). In many cases, there is also a requirement to minimize
some cumulative cost function, such as the time spent or costs incurred until all agents
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have reached their goals (Standley, 2010; Standley & Korf, 2011; Surynek, 2010). Solving
MAPF optimally is NP-Hard (Yu & LaValle, 2013b; Surynek, 2010). Nonetheless, efficient
optimal algorithms exist, some are even capable of finding optimal plans for more than a
hundred agents (Wagner & Choset, 2015; Boyarski, Felner, Stern, Sharon, Shimony, Bezalel,
& Tolpin, 2015; Surynek, 2012; Yu & LaValle, 2013a).

When executing a MAPF plan, however, unexpected events may delay some of the
agents. When such an event occurs, one may need to adjust the plan of one or more agents
to avoid collisions. However, such re-planning can be very costly or even impossible in some
applications, as it may require computing and communication capabilities as well as time
that the agents may not have. In such cases, one may wish to generate a plan that can
withstand unexpected delays, avoiding the need to replan if they occur. This is especially
desirable in safety-critical settings such as air traffic control. In this work we provide a
complete solution for solving MAPF problems in a way that is robust to such unexpected
delays.

In the first part of this work, we explore a novel form of robustness for MAPF plans that
we call k-robust. A k-robust plan is a plan that is robust to k delays per agent during plan
execution, i.e., each agent may be delayed up to k times during plan execution and the plan
would still be safe (no collisions). There are many applications in which finding a k-robust
plan is desirable. For example, consider agents with an imperfect localization mechanism,
where a control mechanism is employed to keep them on track. The k parameter in such
cases is dictated by how far from the plan the control mechanism allows the agent to be.

We establish necessary and sufficient conditions for a plan to be k-robust, and propose
several algorithms for finding optimal k-robust plans. Specifically, we show how to adapt
three existing MAPF algorithms to return k-robust plans: (1) an A∗ (Hart, Nilsson, &
Raphael, 1968) based pathfinding algorithm, (2) an algorithm based on the Conflict-Based
Search (CBS) (Sharon et al., 2015) algorithm, which is a commonly used MAPF solver, and
(3) an algorithm based on Picat (Zhou et al., 2015), a declarative constraint programming
language shown to be effective for solving MAPF problems (Zhou, Barták, Stern, Boyarski,
& Surynek, 2017). We evaluate experimentally these proposed algorithms on several stan-
dard benchmarks identifying when each solver works best.

In the second part of this work, we address the case where more than k delays occur
during plan execution. To this end, we follow the framework of Ma et al. (2017) in which
a plan is coupled with an execution policy to handle delays online, possibly modifying the
original plan. We propose and analyze several classes of execution policies and prove that
they are robust, which means that if they are used during plan execution then the agents
do not collide with each other even if unexpected delays occur. Then, we compare these
robust execution policies experimentally, and analyze the different tradeoffs they provide in
terms of CPU time, number of required plan modifications, and total cost of the executed
plan. We show also how using a k-robust plan integrates naturally in this framework,
resulting in a complete and robust solution that significantly reduces the number of times
that modifications to the plan are needed during execution.

Lastly, we consider cases where communication or synchronization between the agents
is imperfect, e.g., agents can not communicate or synchronize every time step or even at
all. We show how our execution policies can be slightly modified in order to be robust and
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avoid collisions, showing the relation between the communication delay and the required
degree of robustness.

This paper is organized as follows. Section 2 provides relevant background on MAPF.
Section 3 defines the notion of a k-robust plan and provides necessary and sufficient condi-
tions for finding such a plan. Section 2.1 presents two search-based algorithms for finding
optimal k-robust plan, one based on A∗ and the other based on CBS. Section 5 shows
another way to find optimal k-robust plans using a declarative constraint programming lan-
guage called Picat. Section 6 discusses how to handle unexpected delays during execution,
defining several robust execution policies. Section 7 discusses how to adapt these execution
policies to the case where communication between the agents may be delayed. Finally,
Sections 8 and 9 present relevant prior, conclusions, and future work.

Some of the material presented in this paper have been published earlier in a confer-
ence (Atzmon, Stern, Felner, Wagner, Barták, & Zhou, 2018). This paper provides a more
comprehensive and rigorous treatment of k-robust MAPF, including a new theorem that
specifies the relation between robust plans and conflicts (see Section 3), a more comprehen-
sive experimental evaluation, formal treatment of execution policies (see Section 6), and a
new extension of dealing with robust execution policies when facing unexpected events with
delayed communication (see Section 7).

2. Background

The Multi-Agent Path Finding (MAPF) problem is defined by a graph, G = (V,E) and a
set of n agents labeled a1 . . . an, where each agent ai has a start vertex si ∈ V and a goal
vertex gi ∈ V . Time is discretized into time steps, and in each time step an agent can
perform an action. It can either move (move action) to an adjacent vertex or wait (wait
action) in its current vertex. A solution to a MAPF problem is a plan π = {π1, . . . , πn}
such that ∀i ∈ {1, . . . , n}, a path πi is a sequence of adjacent vertices (from V ) leading
agent ai from si to gi. We denote by πi(t) the expected location (vertex) of agent ai at
time t. Thus, πi(0) = si and πi(|πi| − 1) = gi. Notice that each two consecutive vertices in
πi must have an edge between them, i.e., ∀t : (πi(t), πi(t+ 1)) ∈ E.

Definition 2.1 (Conflict). A vertex conflict 〈ai, aj , t〉 in a plan π occurs iff agents ai and
aj are planned to occupy the same vertex at time t, that is, if πi(t) = πj(t). A swapping
conflict 〈ai, aj , t〉 in a plan π occurs iff agents ai and aj are planned to traverse the same
edge at time t, that is, if (πi(t − 1) = πj(t)) ∧ (πi(t) = πj(t − 1)). A conflict 〈ai, aj , t〉 in
a plan π occurs iff 〈ai, aj , t〉 is either a vertex conflict or a swapping conflict (Stern et al.,
2019).1

A plan π is said to have a conflict if there exists a pair of agents (ai, aj) and a time
step t for which 〈ai, aj , t〉 is a conflict. We say that π is a valid plan if it does not have
any conflict. A MAPF solver is sound if it outputs a valid plan. The sum-of-costs (SOC)
of a plan π, is defined in this work as the sum of actions planned for the agents in π, i.e.,
SOC(π) =

∑n
i=1(|πi| − 1). The makespan of a plan π is the maximal number of actions in

its paths, i.e., the makespan of π is maxn
i=1(|πi| − 1). The optimization criteria for MAPF

1. In this work we allow following conflicts and cycle conflicts. See discussion on these types of conflicts in
Stern et al. (2019).

551



Atzmon, Stern, Felner, Wagner, Barták, & Zhou

plans that we consider in this work is SOC. Thus, the cost of a MAPF plan is defined here
as its SOC, and a plan is optimal for a MAPF problem if it has the minimal SOC among
all other valid plans for that problem.

2.1 Conflict-Based Search

Conflict-based search (CBS) (Sharon et al., 2015) is a state-of-the-art MAPF solver with
many extensions (Ma et al., 2017; Boyarski et al., 2015). CBS does not search the n-
agent state space explicitly. Instead, it finds a plan by searching for a path for each agent
separately. Conflicts are avoided by imposing a set of constraints of the form 〈ai, v, t〉, repre-
senting that agent ai is prohibited from occupying v at time step t. A plan π = {π1, . . . πn}
is called consistent with a set of constraints C if its paths satisfy all the constraints in C,
i.e., for every constraint 〈ai, v, t〉 ∈ C, it holds that πi(t) 6= v.2

CBS searches a constraint tree (CT) for a set of constraints such that a plan consistent
with this set of constraints is valid and optimal. The CT is a binary tree, in which each
node N represents:

1. A set of constraints imposed on the agents (N.constraints)

2. A plan (N.π) consistent with these constraints

We denote by N.cost the SOC of the plan N.π.

The root of the CT contains an empty set of constraints (thus, every plan is consistent
with the root). A successor of a node in the CT inherits the constraints of the parent node
and adds a single new constraint for one agent. Generating a successor node N means
finding a plan consistent with N.constraints and identifying the conflicts in this plan, if
they exist. With the exception of the root node, every node N in the CT was generated by
adding a single new constraint. Therefore, in every CT node except the root, only one agent
needs to replan, which can be done with any optimal single-agent path-finding algorithm,
e.g., A∗. The algorithm used for this purpose is referred to as the CBS low-level solver. A
CT node N is a goal node when N.π is valid. To search the CT for a goal node CBS runs
a best-first search where nodes are ordered by their costs (N.cost).

The two key components of CBS are how to identify conflicts in a CT node N , and how
to choose which constraint to add when expanding N and generating its successors. We
describe them below.

Identifying conflicts in a consistent plan. Once a consistent plan has been found by
the low-level solver, it is validated by simulating the movement of the agents along their
planned paths (N.π) and searching for conflicts between the agents. That is, for every time
step t = 0 up to the makespan of N.π, and for every pair of agents ai and aj , CBS checks
if 〈ai, aj , t〉 is a conflict (vertex or swapping). If all agents reach their goals without any
conflict, N is declared as a goal node, and N.π is returned. Otherwise, a conflict is found
and the node is declared a non-goal.

2. In CBS, it is also possible to impose a constraint of the form 〈ai, e, t〉, representing that agent ai is
prohibited from traversing the edge e at time step t. For a plan π to be consistent with a set of
constraints C, it must also satisfy all constraints in C, including these edge constraints. That is, for every
constraint 〈ai, e, t〉 where e is an edge from v to v′, it holds that (πi(t) 6= v) ∨ (πi(t+ 1) 6= v′).
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Resolving a conflict (expanding CT nodes). When a non-goal CT node N is chosen
in the best-first search of the CT, CBS generates its successor CT nodes as follows. First a
conflict 〈ai, aj , t〉 is chosen from one of the conflicts in N.π. Note that since N is not a goal, it
contains at least one conflict. Let v be the vertex of this conflict, i.e., v = N.πi(t) = N.πj(t).
CBS expands N and generates two new CT nodes, adding the constraint 〈ai, v, t〉 to one
child and the constraint 〈aj , v, t〉 to the other child. To obtain a consistent plan for each
child CT, the low-level search is activated to the agent for which the new constraint was
added. All other agents maintain their paths.

2.2 Robust Execution Policies

Ma et al. (2017) also considered the case where unexpected delays occur while the agents are
executing a MAPF plan. For such cases, they suggested a robust execution policy called
Minimal Communication Policy (MCP). During execution, MCP preserves the order by
which agents visit each vertex as in the original plan. That is, when an agent i is about to
perform a move action and enter a vertex v, MCP checks whether agent i this agent is the
next agent to enter that vertex by the original plan. If a different agent, j, is planned to
enter v next according to the original plan, then i waits in its current vertex until until j
leaves v. In Section 6 we suggest several additional execution policies and compare them to
MCP. Moreover, we extend these execution policies in such a way that would still prevent
the collision of agents even in settings where the agents cannot communicate after each time
step.

3. k-Robust MAPF

In this section, we define the notion of a k-robust plan, provide necessary and sufficient
conditions for finding a k-robust plan, and defining what is an optimal k-robust plan.

A delay in an execution of a plan π is defined by a tuple 〈ai, t〉, representing that agent
ai at time t stayed in the vertex in which it was at time t−1 instead of performing the action
planned for it and moving to πi(t). After experiencing a delay, an agent can try to continue
to follow the plan. As a result, the agents may end up executing a plan that is different
from the original plan. Formally, the planned execution of a plan π after experiencing delay
D = 〈ai, tD〉, denoted D[π] = {D[π1], . . . , D[πn]}, is the MAPF plan defined as follows:

D[πj ](t) =


πj(t) j 6= i

πi(t) j = i ∧ t < tD

πi(t− 1) otherwise

. (1)

The planned execution of π after experiencing a set of delays D = D1, . . . DT , denoted D[π],
is defined as DT [DT−1[· · ·D1[π]] · · · ]. A plan π is robust to a delay D if the delayed agent
can continue to follow its path after the delay without causing a collision, i.e., if D[π] is a
valid plan. π is robust to a set of delays D iff experiencing any subset of D yields a valid
plan. A plan is k-robust iff it is valid, and it is robust to any set of delays that contains at
most k delays for each agent.

As an example of how delays affects the execution of a MAPF plan. Figure 1(a) shows a
valid plan π with two agents a1 and a2 with paths π1 = (s1, C, g1) and π2 = (s2, A,B,C, g2),
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(a) (b) (c)

Agent 𝒂𝟏 𝑠1 𝑠1 𝐶 𝑔1

Agent 𝒂𝟐 𝑠2 𝐴 𝐵 𝐶 𝑔2

0 1 2 3 4

Agent 𝒂𝟏 𝑠1 𝑠1 𝑠1 𝐶 𝑔1

Agent 𝒂𝟐 𝑠2 𝐴 𝐵 𝐶 𝑔2

0 1 2 3 4

Figure 1: (a) A MAPF plan π (b) The planned execution of π at time 1, after agent a1

experienced a delay (c) The planned execution of π at time 2, after agent a1 experienced 2
delays.

respectively. Figure 1(b) presents the execution of π after agent a1 experienced a de-
lay at time 1. This delay is defined by D = 〈a1, 1〉 and the planned execution of π af-
ter experiencing this delay is D[π] = {D[π1], D[π2]} where D[π1](1) = (s1, s1, C, g1) and
D[π2](1) = (s2, A,B,C, g2). Note that D[π] is still a valid plan. Therefore, we can say
that π is a robust plan w.r.t. D. Figure 1(c) presents the execution of π after agent
a1 experienced two delays, at time 1 and at time 2. Formally, these delays are defined
by D1 = 〈a1, 1〉 and D2 = 〈a1, 2〉, and the planned execution after experiencing these
delays is D2[D1[π]] = {D2[D1[π1]], D2[D1[π2]]} where D2[D1[π1]] = (s1, s1, s1, C, g1) and
D2[D1[π2]] = (s2, A,B,C, g2). Note that D2[D1[π]] is not a valid plan because both agents
are located in C at the same time, hence, π is not a 2-robust plan.

Definition 3.1 (The kR-MAPF problem). A kR-MAPF problem is defined by a MAPF
problem and a non-negative integer value k. A solution to a kR-MAPF problem is a k-robust
plan to the given MAPF problem.

3.1 The Relation Between Robust Plans and Conflicts

A brute-force approach to check if a plan π is k-robust is to check every set of k′ ≤ k conflicts,
compute the planned execution of π after experiencing these conflicts, and checking if it is
valid. Next, we provide a simpler and more efficient way to check if π is k-robust.

Definition 3.2 (k-delay Conflict). A k-delay conflict 〈ai, aj , t〉 in a plan π occurs iff there
exists ∆ ∈ {0, . . . , k} such that agents ai and aj plan to occupy the same vertex in timesteps
t and t+ ∆, respectively, i.e, πi(t) = πj(t+ ∆).

Checking if a plan π has a k-delay conflict can be done in time that is polynomial in k,
n (the number of agents), and the makespan of π.

Observation 1. A plan is k-robust iff it does not contain any k-delay conflicts.

We provide a formal proof of Observation 1 in Appendix A. Observe that swapping
conflicts cannot exist in a k-robust plan for any k > 0. 3 Also, k-robust plans with k > 0
do not allow agents to move to a vertex occupied by another agent in the previous time

3. If a swapping conflict 〈ai, aj , t〉 exists in a plan π then by definition 〈ai, aj , t〉 is also a 1-delay conflict in
π (see Definitions 2.1 and 3.2).
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step. Such a train-like motion (lockstep motion) is not allowed in some MAPF formula-
tion (Kornhauser, Miller, & Spirakis, 1984). Following the terminology defined by Stern et
al. (2019), we do not allow vertex, edge, or swapping conflicts in the solution, but do allow
following and cycle conflicts.

3.2 Optimal kR-MAPF

More than one k-robust plan may exist for a given MAPF problem. Since plans with lower
costs are preferred, we say that a k-robust plan is optimal if there is no other k-robust
plan with a lower cost.

Lemma 3.1. For any k1 and k2 where k1 < k2 it holds that the cost of the optimal k1-robust
plan is smaller than or equal to the cost of the optimal k2-robust plan.

Proof. A plan π′ is k1-robust if there are no k1-delay conflicts (Observation 1). Since
k1 < k2, every plan π′′ that is k2-robust is also a k1-robust plan. Thus, the set of all
k2-robust plans is a subset of the set of all k1-robust plan. Hence, the cost of an optimal
k1-robust plan is smaller or equal to the cost of an optimal k2-robust plan.

As a consequence there is a tradeoff between the robustness of a plan and its cost. In
this work, we consider the robustness k as a hard constraint and optimize the plan cost.
That is, we explore several algorithms for finding an optimal k-robust plan, for a given value
of k.

4. Search-Based Solutions

In this section, we propose two algorithms for finding optimal k-robust plans, that are based
on graph search techniques.

4.1 A∗

Several known MAPF algorithms (Silver, 2005; Standley, 2010; Goldenberg, Felner, Stern,
& Schaeffer, 2012; Wagner & Choset, 2015) are based on the well-known A∗ algorithm (Hart
et al., 1968). These algorithms search in a state space called the n-agent state space. A
state in this state space represents a possible way to place n agents into |V | vertices, one
agent per vertex. An action in this state space represents n single-agent move/wait actions,
one per agent. An action is applicable if its constituent single-agent actions do not create
a conflict. Hence, a path in this n-agent state space from the state (s1, . . . sn) to the state
(g1, . . . gn) corresponds to a valid plan.

One way to modify A∗-based solvers to return k-robust plans is to modify the way an
action in this state space is defined, such that combinations of single-agent actions that
lead to k-delay conflicts are prohibited. This modification by itself, however, may lead to
non-optimal plans. For example, consider finding a 2-robust plan for the problem depicted
in Figure 2(a). The optimal 2-robust plan is π1 = (s1, A,B,C, g1) and π2 = (s2, D, g2),
with a cost of 6. Consider running A∗ on this problem. First, A∗ expands the state
(s1, s2), generating two children (A,C) and (A,D). Assume that (A,C) was expanded first,
generating state (B, g2) with cost 4 (2 per agent). Next, (B, g2) is expanded. Since a2 was
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𝑩,𝒈𝟐

𝑨,𝑫

𝑪, 𝒈𝟐

𝒔𝟏, 𝒔𝟐

𝒔𝟏, 𝒔𝟐
𝑨, 𝑪

𝒔𝟏, 𝒔𝟐
𝑨,𝑫

𝒔𝟏, 𝒔𝟐
(𝑨, 𝑪)
𝑩, 𝒈𝟐

𝒔𝟏, 𝒔𝟐
(𝑨,𝑫)
𝑩, 𝒈𝟐

𝑨, 𝑪
(𝑩, 𝒈𝟐)
𝑪, 𝒈𝟐

𝑨,𝑫
(𝑩, 𝒈𝟐)
𝑪, 𝒈𝟐

(a) (b) (c)

Figure 2: A MAPF problem (a) its search tree (b), and its k-robust search tree (c). The
red lines show k-delay conflicts.

𝒔𝟏

𝑨

𝑩 𝒈𝟐

𝒈𝟏

𝑪𝒐𝒏:
𝝅𝟏: 𝑠1, 𝐴, 𝑩, 𝑔1
𝝅𝟐: 𝑠2, 𝑩, 𝑔2
𝑪𝒐𝒔𝒕: 5

(a) (b) (c)

𝒔𝟐 𝑪𝒐𝒏: 𝑎2, 𝐵, 1
𝝅𝟏: 𝑠1, 𝐴, 𝑩, 𝑔1
𝝅𝟐: 𝑠2, 𝑠2, 𝑩, 𝑔2
𝑪𝒐𝒔𝒕: 6

𝑪𝒐𝒏: 𝑎1, 𝐵, 2
𝝅𝟏: 𝑠1, 𝐴, 𝐴, 𝑩, 𝑔1
𝝅𝟐: 𝑠2, 𝑩, 𝑔2
𝑪𝒐𝒔𝒕: 6

𝑪𝒐𝒏:
𝝅𝟏: 𝑠1, 𝐴, 𝑩, 𝑔1
𝝅𝟐: 𝑠2, 𝑩, 𝑔2
𝑪𝒐𝒔𝒕: 5

𝑪𝒐𝒏: 𝑎2, 𝐵, 1-3
𝝅𝟏: 𝑠1, 𝐴, 𝑩, 𝑔1
𝝅𝟐: 𝑠2, 𝑠2, 𝑠2, 𝑠2, 𝑩, 𝑔2
𝑪𝒐𝒔𝒕: 8

𝑪𝒐𝒏: 𝑎1, 𝐵, 1−3
𝝅𝟏: 𝑠1, 𝐴, 𝐴, 𝐴, 𝑩, 𝑔1
𝝅𝟐: 𝑠2, 𝑩, 𝑔2
𝑪𝒐𝒔𝒕: 7

GOAL!

Figure 3: (a) The graph (b) The CT using the original time/vertex constraints (c) CT using
the range constraints

in C at t = 1, state (C, g2) will not be generated due to the 2-robustness constraint. Next,
state (A,D) is expanded. It will not generate (B, g2), as this state was already reached via
state (A,C) with the same cost (see Figure 2(b)). Thus, while there is a plan in which state
(B, g2) generates state (C, g2), this specific run of A∗ will not find it. As a result, A∗ will
return a suboptimal plan of cost 7.

To remedy this, the n-agent state space needs to be modified to keep track of the last
k steps of each agent in each state. In this state space, a state represents a possible way to
place n agents into V vertices (out of the

(|V |
n

)
possibilities), one agent per vertex, over k

consecutive time steps. Figure 2(c) shows the search tree of this extended state space. An
A∗ search over this state space will return an optimal k-robust plan. However, the size of
this search space grows exponentially with k. Thus, its size is much larger than the size of
the n-agent state space, resulting in poor search performance.
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4.2 k-Robust CBS

Next, we introduce k-robust CBS (kR-CBS), an adaptation of CBS designed to return
optimal k-robust plans. 4 kR-CBS differs from CBS in how it identifies and resolves
conflicts.
Identifying conflicts. Based on Observation 1, in kR-CBS a CT node N is a goal iff it has
no k-delay conflicts. Therefore, once a consistent path is returned by the low-level solver,
kR-CBS checks if the plan contains k-delay conflicts. Here too, this is done by simulating
the movement of the agents along their planned paths and searching for k-delay conflicts.
This is easy to implement and runs in time that is polynomial in k, the plan’s makespan,
and the number of agents. However, since checking if there is a k-delay conflict at time
t requires checking the previous k steps, the runtime of identifying conflicts in kR-CBS is
larger by a factor of k than the equivalent plan validation step in CBS.
Resolving conflicts (expanding CT nodes).

Let N be a non-goal node in a CT selected to be expanded next by kR-CBS, and let
〈ai, aj , t〉 be a k-delay conflict in N . This means that there is a vertex v and a value
∆ ∈ {0, . . . , k} such that v = N.πi(t) = N.πj(t+ ∆). There is no k-robust plan in which ai
is at v at time t while aj is at v at time t + ∆. Therefore, at least one of the constraints,
〈ai, v, t〉 or 〈aj , v, t + ∆〉, must be added to the CT and must be satisfied by the low-level
solvers. Consequently, kR-CBS generates two children to N , each having one of these
constraints.

kR-CBS is sound, because it only halts when generating a CT node that has no k-delay
conflicts. A complete algorithm guarantees that if a solution exists then the algorithm
will find it. kR-CBS is complete because each time it splits a CT node, a valid plan that
satisfies the constraints of that CT node must also satisfy the constraints of at least one of
its children. This is because a plan that satisfies the constraints of a CT node and does not
satisfies the constraints of both its children cannot be a valid plan as it must contain the
conflict that CT node resolves. Similarly, kR-CBS returns optimal plans, as it searches the
CT in a best-first order according to the nodes’ costs, and the cost of a node N is a lower
bound on the cost of any valid plan consistent with N.constraints.

Example. Consider a 2-robust MAPF problem on the graph in Figure 3(a), with two
agents whose start-goal pairs are s1-g1 and s2-g2. Figure 3(b) shows the first two levels of
the CT generated by kR-CBS, where every node N shows N.constraints (labeled Con),
N.π1, N.π2, and N.cost.

The plan in the root is valid, but it is not 2-robust since it has a 2-delay conflict 〈a2, a1, 1〉
at vertex B for ∆ = 1 (since π2(1) = π1(2) = B). To try to resolve this conflict, kR-CBS
adds the constraint 〈a2, B, 1〉 to the left child and the constraint 〈a1, B, 2〉 to the right child.
Both children of the root node are also not goal nodes. In fact, in this example we will need
to generate a total of 7 CT nodes before finding an optimal plan. As we show next, it is
possible to improve kR-CBS such that it will find a goal sooner.

4.3 Improved k-Robust CBS

In Figure 3(b), the 2-delay conflict 〈a2, a1, 1〉 in the root CT node is resolved by adding the
constraint 〈a2, B, 1〉 to its left child and adding the constraint 〈a1, B, 2〉 to its right child.

4. Our implementation of kR-CBS is available at https://git.hub.com/doratzmon/k_robust.
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Imposing these constraints is correct because in every 2-robust plan either a1 is not at B
at time 1 or a2 is not in B at time 2. This argument can be extended: in every 2-robust
plan either a2 is not in B at times 1 and 2 or a1 is not in B at times 2 and 3. Thus,
we can impose a stricter constraint on the left child of the root CT node by adding the
constraint 〈a2, B, 2〉, and adding the constraint 〈a1, B, 3〉 to the right child of the root CT
node. Imposing more constraints per CT node may possibly reduce the size of the CT tree
(but will never increase it), and consequently the overall runtime might also be reduced.

To exploit this understanding, we introduce the Improved kR-CBS (IkR-CBS). IkR-
CBS works exactly like kR-CBS, except that it resolves conflicts in a CT node N by adding
range constraints to its successors. A range constraint is defined by the tuple 〈ai, v, [t1, t2]〉
and represents the constraint that agent ai is prohibited from occupying vertex v from time
step t1 to time step t2.

Ideally, we would like to construct range constraints as large as possible, to minimize the
size of the CT tree. However, over-constraining CT nodes may result in losing complete-
ness and optimality. The key question in implementing IkR-CBS is which pairs of range
constraints can be use to resolve conflicts without losing completeness and optimality.

Definition 4.1 (Sound Range Constraints). A pair of range constraints for a given k-delay
conflict is called sound iff every k-robust plan satisfies at least one of the constraints.

Proposition 4.1. If IkR-CBS resolves conflicts with sound pairs of range constraints then
it is guaranteed to return an optimal k-robust plan if such exists.

Proof. A goal CT node IkR-CBS is a CT node that does not have any k-delay conflicts.
Thus, every plan returned by IkR-CBS is a k-robust plan (Observation 1). Let π(N) denote
all the k-robust plans that satisfy N.constraints, and let N1 and N2 be the children of N ,
generated by a sound pair of range constraints R1 and R2, respectively. Observe that π(N1)
contains all the plans in π(N) that satisfy R1, and similarly π(N2) contains all the plans
in π(N) that satisfy R2. Since R1 and R2 are a sound pair of constraints, it holds that
π(N) = π(N1)∪π(N2). Thus, splitting CT nodes by resolving conflicts with a sound pair of
constraints does not lose any plans. Since IkR-CBS, just like kR-CBS, searches the CT in a
best-first manner according to the desired optimality criteria (SOC), we have that IkR-CBS
is guaranteed to find an optimal k-robust plan, if such exists.

To implement IkR-CBS, one needs a method for finding a sound pair of range constraints.
We propose a spectrum of such methods below where an important member of this spectrum
is the pair of symmetric range constraints also defined below.

4.3.1 Finding a Sound Pair of Range Constraints

We call a pair of range constraints symmetric if the vertex they constrain and the corre-
sponding time range is identical for both agents. For any time step t, vertex v, and agents
ai and aj , a symmetric range constriant is in the form 〈ai, v, [t, t+ k]〉, 〈aj , v, [t, t+ k]〉.

Corollary 4.2 (Symmetric range constraints). For any time step t, vertex v, and agents
ai and aj , the range constraints 〈ai, v, [t, t+ k]〉, 〈aj , v, [t, t+ k]〉 are sound for solving a
k-robust MAPF problem.
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Figure 4: (a) The graph (b) The CT using the symmetric range constraints (c) CT using
the asymmetric range constraints

Proving Corollary 4.2 is straightforward. Note that setting a symmetric range constraint
on a range larger than k is, in general, not sound. Thus, Corollary 4.2 gives an upper bound
on the size of the largest pair of symmetric range constraints that is sound. Nevertheless,
there are more than one k-sized symmetric pairs of range constraints for a given k-delay
conflict 〈ai, aj , t〉 over vertex v. In our implementation, we used the time range [t, t + k]
(where t is the time that the first agent arrived at v), but the pair of range constraints
[t+ ∆− k, t+ ∆] (where t+ ∆ is the time that the second agent arrived at v) is also sound.

A pair of sound range constraints can also be asymmetric, i.e., constrain one agent to
a longer time range than the other agent. This provides a spectrum of ways to set the
ranges for each agent. For example, consider a conflict 〈ai, aj , t〉 over vertex v and pair of
range constraints R1 = 〈ai, v, [t− k, t+ k]〉 and R2 = 〈aj , v, [t]〉. R1 and R2 are a sound
pair of constraints, because a solution must satisfy either R1 or R2, since violating both
results in a k-delay conflict. R1 and R2 are extremely asymmetric in the sense that one
agent is restricted from occupying v in a large time range of [t − k, t + k] and the other
agent is restricted from occupying v only in a one single time step t. However, one can
imagine a larger spectrum of asymmetric range constraints that are more balanced. An
open question for asymmetric range constraints is how to choose the agent which will get
the more restrictive constraint.

Figure 4 presents an example where there is an advantage of using asymmetric range
constraints over symmetric range constraints. Figure 4(a) shows a kR-MAPF problem with
k = 1 where three agents a1, a2, and a3 should move from their start vertices s1, s2, and
s3 to their goal vertices g1, g2, and g3, respectively. Figures 4(b) and 4(c) show the CT of
kR-CBS using symmetric range constraints and asymmetric range constraints, respectively.
In both figures, the root contains the shortest paths for all three agents. However, splitting
the conflict 〈a2, a1, 1〉 (in vertex B) results in different children. While the right child of
both calculates the same paths with a different constraint, the left child of the asymmetric
range constraint finds a conflict free solution and the left child of the symmetric constraints
finds a non-goal plan. Thus, in Figure 4(b) the left child needs to be further expanded
in order to find the solution. Overall, in this example, using symmetric range constraints
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Plan cost Plan time (ms)

k=0 k=1 k=2

n k=0 k=1 k=2 All KR KR(A) KR(S) KR KR(A) KR(S)

4 22 22 22 6 17 15 16 229 130 79
6 31 31 32 5 25 26 21 1,087 416 97
8 40 41 43 7 29 24 21 2,535 1,007 219
10 49 51 54 42 166 126 80 22,986 7,261 895

Table 1: Average plan cost (over all 50 instances) and planning runtime for different CBS-
based k-robust solvers, on an 8x8 open 4-neighborhood

grid.

Plan cost Plan time (ms)

k=0 k=1 k=2

n k=0 k=1 k=2 All KR IKR(A) IKR(S) KR IKR(A) IKR(S)

4 176 176 177 11 10 13 11 11 14 16
6 259 259 259 13 17 17 17 23 22 22
8 338 339 339 44 56 55 54 70 70 69
10 413 413 414 53 710 107 68 740 130 81

Table 2: Average plan cost and planning runtime for different CBS-based k-robust solvers,
on an 64x64 open 4-neighborhood

grid.

results in five high-level expansions and using asymmetric range constraints results in only
four expansions.

4.4 Experimental Results

Next, we compared the kR-MAPF solvers presented so far experimentally. Specifically,
we compared the performance of kR-CBS, IkR-CBS using asymmetric pairs of range con-
straints, and IkR-CBS using symmetric pairs of range constraints. All experiments through-
out this paper were executed on an Intel R© Xeon E5-2660 v4 @ 2.00GHz processor with 16
GB of RAM. In all experiments we used CBS with the bypass enhancement of ICBS (Bo-
yarski et al., 2015).

4.4.1 Open Grid

The first set of experiments are on an open 8x8 4-neighborhood grid. In each experiment,
we created a random k-robust MAPF instance by randomly choosing the start and goal
vertices of the agents. Then, we used the kR-MAPF solvers to obtain a k-robust plan, and
we measured the total CPU runtime spent by the solvers and the cost of the obtained plan.
We experimented with k=0, 1, and 2, and with 4, 6 8, and 10 agents. Note that k = 0 is
standard CBS.

Table 1 shows the resulting plan cost and CPU runtime, averaged over 50 problems that
were all solved (success rate of 100%). Each row corresponds to a different number of agents,
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and the column labels KR, IKR(A), and IKR(S) present results for kR-CBS, IkR-CBS with
asymmetric constraints, and IkR-CBS with symmetric constraints, respectively.

First, consider the plan costs. As can be seen, robust plans (i.e., k > 0) are often more
costly than a plan that are not robust (k = 0). However, the added cost is relatively small.
In fact, the largest relative increase in cost when moving from k = 0 to k = 1 was observed
for 10 agents, where for k = 0 the average cost was 49 and for k = 1 the average cost
increased to 51, which amounts to an increase of less than 5%.

Second, consider the runtime results. As expected, the runtime increases with k, as
the constraints the agents must satisfy are stricter. For example, finding an optimal valid
plan with kR-CBS for 10 agents required 42 milliseconds but finding an optimal 1-robust
plan required 166 milliseconds. Both IkR-CBS variants run much faster than kR-CBS and
this improvement increases when increasing k and when there are more agents, establishing
that using range constraints is indeed worthwhile. When comparing the symmetric and
asymmetric range constraints, we see a clear advantage for the symmetric range constraints.
For example, consider finding an optimal 2-robust solution for 10 agents: it required 22,986
milliseconds for kR-CBS, 7,261 for IkR-CBS with asymmetric constraints, and only 895
milliseconds for IkR-CBS with the symmetric constraints.

To evaluate the impact of increasing the grid size, we also performed a similar experi-
ment on open 32x32 and 64x64 4-neighborhood grids. Table 2 presents the results of this
experiment on the 64x64 grid. The same general trends are observed: creating a k-robust
plan takes longer runtime, the increase in cost is small, and the symmetric constraints per-
form better. A notable change is that there is almost no impact on solution cost of finding
k-robust plans for k = 1 and 2, compared to the smaller 8 × 8 grid. This is because the
64× 64 grid is less dense and thus there are more options for each agent to get to its goal.
Similar trends were observed also for the 32× 32 grid.

4.4.2 Dragon Age Origin Map

We also performed a similar experiment on a significantly larger map from the Dragon
Age Origins (DAO) video game. Specifically, we chose the brc202d map, which has 43,151
vertices. This map is publicly available in the movingai repository (Sturtevant, 2012). We
generated 50 MAPF problems by randomly placing 30 agents in this map and choosing a
random goal vertex for each agent.

As observed in the experiment above, the two IkR-CBS variants were faster than kR-
CBS, and among them, the IkR-CBS with the symmetric constraints was faster than the
IkR-CBS with asymmetric constraints. This suggests that using symmetric ranges has a
good balance in the average case and we used it in the rest of our experiments. A systematic
study of the spectrum of ranges and investigating different ways to choose asymmetric ranges
is left for a future study. Regarding the IkR-CBS with the symmetric constraints, out of
50 instances, 44 instances were solved for all three k = 0, 1, and 2. The average plan cost
was 3,818.35, 3,818.43, and 3,818.53, respectively. The average runtime 213, 284, and 381
seconds, for k = 0, 1, and 2, respectively. These results show the same trends as observed
in the open grid experiments: increasing k results in slightly higher plan costs and longer
runtime. Notably, increasing k only increased plan cost slightly in these experiments, and in
fact the optimal 2-robust plan often had the same cost as the optimal plan that is not robust.
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Success rate

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

5 50 50 50 50 47 47 45 41
10 50 50 46 43 34 29 21 15
15 49 45 35 19 13 8 3 1

Cost

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

5 49 49 49 49 50 50 50 51
10 116 116 117 118 122
15 163 164 166

Time (ms)

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

5 5 7 7 34 58 344 1,231 9,210
10 12 1,683 36,142 53,944 93,559
15 17 8,805 38,678

Table 3: Number of instances solved within the allocated time out, average cost, and average
planning time, on an 16x16 open 4-neighborhood grid.

This is because the map is very large and thus provides more room to find alternative plans
of the same cost that are more robust.

4.4.3 Increasing k

Next, we checked the impact of increasing k to larger values beyond 2 (we tried up to 7).
We created 50 random problems on a 16x16 open 4-neighborhood grid with 5, 10, and 15
agents, and solved each problem with IkR-CBS with the symmetric constraints.

Table 3 shows the number of problems solved within a timeout of 5 minutes (top frame),
the average cost (middle frame), and the average planning time (bottom frame) for different
values of k (columns) and different number of agents n (rows). As can be seen, increasing k
and increasing n both affect the success rate. However, unless both were large, the majority
of the problem instances could be solved. The average cost and time reported (middle and
bottom frames) are of the instances that were solved for all k values up to the value for
which more than 30 instances were solved. Namely, for 5 agents this was up to k = 7 (41
instances), for 10 agents up to k = 4 (34 instances), and for 15 agents up to k = 2 (35
instances). As in previous experiments, increasing k and increasing n both increase the cost
and time. Remarkably, for all k values that we were able to solve, the increase to the cost
was very small.

4.4.4 Warehouse Domain

We also experimented on the warehouse domain described by Ma et al. (2017) (presented
in Figure 5) with kR-CBS and symmetric constraints . Table 4 shows the results for 5, 10,
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Figure 5: Warehouse domain, taken from Ma et al. (2017).

Cost Time (ms)

#Agents k=0 k=1 k=2 k=0 k=1 k=2

5 148.43 148.54 148.71 110 110 116
10 297.33 297.80 298.58 1,042 1,176 1,570
15 435.76 436.80 438.58 1,816 2,058 12,746

Table 4: Average cost and planning runtime of kR-CBS on the warehouse domain.

and 15 agents, and k = 0, k = 1, and k = 2. As seen in other experiments, increasing the
value of k or the number of agents increase also the cost and planning time.

5. A Declarative Solution

An alternative approach to solve a MAPF problems is to compile it into another known NP-
hard problem that has mature and effective general-purpose solvers. Surynek (2012, 2016)
showed how MAPF problems can be solved by a SAT solver. Yu and LaValle (2013a) showed
how to solve a MAPF problem optimally by formulating it as a network flow problem, which
is then compiled to an integer-linear program (ILP) and solved with a ILP solver. Erdem et
al. (2013) compiled MAPF into Answer Set Programming (ASP) and used an ASP solver
to obtain a solution. Gange et al. (2019) replaced the high-level solver of CBS with a lazily
constructed constraint programming model with nogoods (Lazy CBS). Lam et al. (2019)
solved MAPF using a decomposition framework developed for mathematical optimization
called branch-and-cut-and-price (BCP).

5.1 kR-MAPF using PICAT

Adapting such compilation-based solvers to return k-robust solutions is relatively simple.
To demonstrate this, we implemented a MAPF solver using Picat (Zhou et al., 2015),
a logic-based programming language that is publicly available. Our encoding is based on
Surynek’s SAT-based MAPF solver (Surynek et al., 2016), in which there is a Boolean
variable for every triplet (a, t, v) of agent (a), time (t), and vertex (v), where this variable
is true iff agent a occupies vertex v at time t. A set of constraints is imposed on these
variables, namely:

1. Each agent occupies exactly one vertex at each time step.

2. No two agents occupy the same vertex at any time.
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Obstacles Cost Planning time (ms)

k=1 k=2 k=1 k=2
CBS Picat CBS Picat

12 35.16 36.30 1,511 1,026 454 1,805

16 39.24 40.68 4,142 1,401 6,572 2,590

19 39.67 42.47 3,362 1,506 8,727 3,235

22 34.20 36.91 6,979 1,439 14,042 3,104

25 28.26 29.52 9,834 1,206 12,957 1,813

32 16.28 18.73 95 322 1,488 810

Table 5: Solution cost and runtime results for 8x8 4-neighborhood
grids with 6 agents, and a different number of obstacles.

3. In every time step an agent may only transition between two adjacent vertices.

For finding k-robust solutions, the second constraint is extended such that no two agents
occupy the same vertex in time steps that are closer than k from each other. The exact
Picat model we developed is available at https://tinyurl.com/kRobust. The advantage
of using Picat to encode MAPF is that the model can be compiled to SAT, to a constraint
program (CP), or to a Mixed Integer Linear Program (MILP), and then solved with an
appropriate solver. In our experiments we only run a SAT compilation of our Picat model.

5.2 Experimental Results

Next, we experimentally evaluated our Picat-based solver, and compared it with IkR-CBS
with symmetric range constraints, which is the CBS-based solver that performed best in
our experiments.

Table 5 shows the average plan cost and CPU runtime for 50 problem instances on a
8x8 4-neighborhood grid with 6 agents and k = 1 and k = 2. The success rate is 100% for
both solvers and is not reported. We experimented with problem instances with different
number of randomly allocated obstacles (the “Obstacles” column). For each value of k and
number of obstacles, we highlighted in bold the runtime results for the faster algorithm.5

As expected, for the Picat-based solver as in the CBS-based solver, increasing k results
in plans of higher cost and higher runtime. For example, with 12 random obstacles, the
plan cost is 35.16 and 36.30, and the average runtime for our Picat-based solver was 1,026
and 1,805, for k = 1 and k = 2, respectively.

For both algorithms, the impact of varying the number of obstacles on the planning
time follows a classical easy-hard-easy pattern: with either a few or many obstacles is easy,
and it becomes harder for the middle-ground, where the problem is not under- or over-
constrained. For example, for k = 1 our Picat-based solver required an average runtime of
1,026 ms for 12 obstacles, going up to 1,506 ms for 19 obstacles, and going down to 322 ms
for 32 obstacles.

Now we compare the results of kR-CBS and the Picat-based solver. Since both solvers
return optimal solutions, their solution cost is the same, and the relevant comparison be-

5. The process of creating problem instances was done by, first, randomly placing obstacles. Then, setting
agents such that the instances remain solvable.
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#Agents 10 15 20 25 30 35 40 45 50

k=1
Picat 50 50 47 35 15 2 0 0 0
CBS 50 49 42 27 22 7 1 0 0

k=2
Picat 50 49 38 9 0 0 0 0 0
CBS 50 45 31 6 4 0 0 0 0

Table 6: Number of instances solved within the allocated time out. The grids used are
32x32 4-neighborhood grids with 20% obstacles.

Cost Time

#Agents 10 15 20 10 15 20

k=1
Picat 228.2 337.9 438.9 63.0 97.6 111.3
CBS 228.2 337.9 438.9 15.1 33.3 249.8

k=2
Picat 228.9 339.7 441.6 88.6 173.8 193.7
CBS 228.9 339.7 441.6 15.3 107.4 1,455.8

Table 7: Planning cost and planning time. The grids used are 32x32 grids with 20%
obstacles.

tween them is only in their runtime.For this small 8x8 grid, the Picat-based solver shows
better performance in most settings. For example, consider the results in Table 5 for 25%
randomly allocated obstacles. The average runtime results for k = 1 and k = 2, were 1,206
and 1,813 ms for the Picat-based solver and 9,834 and 12,957 ms for the CBS-based solver,
respectively. Indeed, compilation-based approaches are known to perform well for small and
relatively dense grids (Surynek et al., 2016).

Next, we compared the Picat-based and CBS-based solvers on a larger, 32x32 grids,
with 20% obstacles at random cells, with 10, 15, 20, 25, and 30 agents, and k = 1 and
k = 2. These problems were harder to solve and thus we set a 5-minutes timeout for every
problem instance. Table 6 shows the number of instances solved under this timeout, out of
a total of 50 problem instances. Here, the results of both solvers are very similar, and there
is no clear advantage to either. Table 7 presents the average cost and time of the same
experiment, of the instances that both solvers were able to solve for both values of k. In our
case, this amounted to 50, 44, and 31 instances for 10, 15, and 20 agents, respectively. As
can be seen, in terms of planning time, the CBS-based solver is more sensitive to increasing
k and n. For example, for k = 2 solving for 20 agents is almost 100 times slower than when
solving for 10 agents. In contrast, solving for 20 agents with Picat is less than 3 times slower
compared to 10 agents.

Finally, we experimented with the brc202d DAO map described earlier (we used the
same instances as in Section 4), which is much larger than the 32x32 4-neighborhood grid
used in Table 6. Here, the Picat-based solver was not able to solve any problem instance,
even with only 5 agents. By contrast, the CBS-based solver was able to find even optimal 2-
robust solutions for some instances with 95 agents. Figure 6 shows the number of problems
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Figure 6: Success rate for kR-CBS over the brc202d DAO map.

solved within the 5-minutes timeout from a total of 50 problem instances, with k = 0, 1,
and 2 and 5, 10, 15, .. ,100 agents.

In conclusion, there is no universal winner: for small grids the Picat-based solver is
best, while for very large grids the CBS-based solver is much better. This trend was also
observed in prior works in regular MAPF (Surynek et al., 2016; Zhou et al., 2017).

6. Robust Execution

A k-robust plan is not enough to provide a completely robust solution, since the parameter
k is chosen a-priory while during plan execution more than k delays may occur. To address
this challenge and provide a holistic robust solution, we propose to use the framework
introduced by Ma et al. (2017) and mentioned in Section 2.2. In this framework, delays are
handled online according to a given execution policy. An execution policy specifies if and
how to modify π to take into account the experienced delays.

In this section, we propose several intuitive execution policies that integrate well with
having a k-robust plan, and under certain condition guarantee that a plan can be safely
executed even in the presence of unexpected delays. As a preliminary, we formally define
the notion of a robust execution policy and discuss how it relates to prior work by Ma et
al. (2017).

6.1 Robust Execution Policies

We say that an execution policy is robust with respect to a plan π iff it prevents all collisions
during the execution of π. Our definition of robust execution policy generalizes the concept
of robust plan-execution policy introduced by Ma et al (2017). They defined such an exe-
cution policy as a policy that prevent all collisions during execution of a valid MAPF-DP
plan. A valid MAPF-DP plan is a plan that has the following two properties:

• ∀i, j, t with i 6= j : πi(t) 6= πj(t) [two agents can not be in the same vertex at the same
time]
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• ∀i, j, t with i 6= j : πi(t+ 1) 6= πj(t) [an agent cannot be in time step t+ 1 in the same
vertex that another agent was at time step t (i.e., no following conflicts (Stern et al.,
2019))]

Ma et al. (Ma et al., 2017) proved that the MCP execution policy described in Section 2.2
is a robust execution policy.

Observe that a MAPF-DP plan is exactly a 1-robust plan (Definition 3.1). Since for
every k > 1, every plan that is k-robust is also 1-robust, this means that MCP is a robust
execution policy w.r.t any plan that is k-robust for k ≥ 1. However, there are other execution
policies that are also robust w.r.t to such plans. Next, we describe several classes of such
execution policies.

6.2 When to Modify the Plan

Here, we define three classes of execution policies. They differ in when they choose to
modify π:
(1) Eager. Modify π immediately when a delay occurs.
(2) Reasonable. Modify π when a delay occurs but only if that delay is expected to cause
a conflict later between the delayed agent and some other agent.
(3) Lazy. Modify π only when a conflict is expected to occur in the next time step.

Checking whether a conflict is expected to occur is done by simulating the execution of
π from the current vertices of the agents. The logic behind “Reasonable” is that if a conflict
is expected to occur then it is best to modify π to avoid it as soon as possible, while the
logic behind “Lazy” is that future unexpected delays may resolve expected conflicts even
without modifying π earlier.

6.3 How to Modify a Plan

Execution polices can also be classified by how the plans are modified:

• Replan. Modify π by creating a completely new plan starting from the current time
step using a MAPF solver.6

• Repair. Modify π by performing minor modifications to it.

In general, there is a tradeoff between replan or repair policies. Replan policies incur
significant CPU overhead compared to repair policies, but they may end up having lower
execution cost. In particular, when there are many delays it may be better to create a
completely new plan than to modify the original one.

There may be many ways to repair a plan (Felner, Stern, Rosenschein, & Pomeransky,
2007), but in this work we focus on repair execution policies that do so by forcing some of
the agents that were not delayed to wait. We distinguish between two types of such repair
policies:

• All. All agents that were not delayed in the current time step are forced to wait at
the next time step.

6. In our experiments, we used the same MAPF solver used to create the original plan π, but other MAPF
slover can also be used.
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Figure 7: Example where lazy repair leads to a deadlock

• Selective. Some of the agents that were not delayed in the current time step are
forced to wait at the next time step.

The advantage of an All repair execution policy is that unless other delays occur, the
configuration at the next time step is identical to the configuration planned for the current
time step. This is advisable in scenarios where preserving the relative positions of agents
during the plan is important. The advantage of a Selective repair execution policy is that
it may save execution cost, as it enforces fewer agents to wait. MCP (Ma et al., 2017) is an
example of a selective repair execution policy.

6.4 Combinations of Execution Policies

The choice of when to modify π is orthogonal to the choice of how to update it. Thus, we
can define 9 classes of execution policies: {Eager, Reasonable, Lazy} × {Replan, Selective
repair, All repair}. However, all combinations of Lazy and repair (either Selective or All)
are ill-defined since repair execution policies consider the agents that were not delayed in
the current time step, but Lazy execution policies are only invoked before a conflict is about
to occur. Thus, it may be the case that a lazy policy is invoked in a time step in which no
agent has been delayed at all, as the delays occurred several time steps earlier.

Moreover, a lazy repair policy may end up in a deadlock, as demonstrated in Fig-
ure 7. Assume that the original 1-robust plan π is: π1 = (s1, A,B,B,B,A, s2, g1) and
π2 = (s2, s2, s2, A, s1, g2). If a1 is delayed in s1 for two time steps, we reach a state where a1

is at s1 and a2 is at A. At this stage, a conflict occurs as according to π the agents will cross
paths. But, enforcing either of them to wait will not help. Thus, we did not implement any
Lazy repair execution policy.

Corollary 6.1. All replan execution policies are robust w.r.t. any k-robust plan for any
k > 0 if it replans using a planner that generates 1-robust plans

Proof. Since all edges are undirected, agents can always return to their initial start state,
e.g., by tracing back. Thus, every replan execution policy is robust.

Corollary 6.2. Eager-All and Reasonable-All are robust w.r.t. any k-robust plan for any
k > 0.

Proof. Eager-All immediately reverts back to a situation without the delay. Thus the initial
plan given by the solver, which is 1-robust, can be directly activated and will not cause a
collision, unless new delays occur which will be handled too.

568



Robust Multi-Agent Path Finding and Executing

Cost #Mod. Time (ms) Cost #Mod. Time (ms) Cost #Mod. Time (ms)

Delay probability = 0.001 Delay probability = 0.01 Delay probability = 0.1

Eager All 111.08 0.26 0 128.33 1.99 0 521.24 27.17 0
Reasonable All 108.51 0.06 0 117.20 0.48 0 282.93 9.11 0
MCP 108.34 0.21 0 111.08 2.79 0 127.88 7.38 0

Eager replan 108.10 0.2 14 108.28 1.04 254 111.17 26.47 27,313
Reasonable replan 108.18 0.08 16 108.56 0.93 975 115.76 11.75 11,332
Lazy replan 108.41 0.08 3 110.22 0.87 387 125.94 3.62 2,471

Table 8: Comparison of the different replanning polices.

Consider now the Reasonable-All policy. Whenever an agent gets a delay that will cause
a collision further in the plan (conflict), this policy fixes it by forcing the other agents to
wait. Thus, the order in which the agents arrive to a vertex, for every vertex, remains as
before. Therefore, Reasonable-All keeps the same agents order at vertex as in MCP, which
was proven by Ma et al. (2017) to be robust w.r.t any 1-robust plan.

The above discussion about robust execution policies assumed that agents obtain knowl-
edge about the delays that have occurred immediately after they all move.7 Other options
may exist. For example, the agents might know who is delayed before moving. In this case,
Corollaries 6.1 and 6.2 can be modified to require only 0-robust plans and planners that
generate 0-robust plans. We used this assumption in our experiments.

Note that we did not analyze in the above the Eager-Selective repair and Reasonable-
Selective repair execution policies. This is because these classes of execution policies repre-
sent a range of execution policies that differ by how they select which agents are forced to
wait. This choice directly affects their robustness.

6.5 Experimental Results

We compared experimentally the Eager All, Reasonable All, MCP, Eager Replan, Reason-
able Replan, and Lazy Replan execution policies. Delays occurred with probability p per
each move of each agent, where p is a parameter. We experimented with p = 0.1, 0.01, and
0.001. In this set of experiments the original plan was optimal, but without any k-robust
guarantee. As mentioned above, in our experiments agents know who is delayed before
moving and hence it is sufficient to use a 0-robust plan. Later in the paper, we investigate
cases in which we must use robust plans for k > 0. Table 8 presents the results of these ex-
periments on an 8x8 open 4-neighborhood grid with 20 agents, averaged over 50 instances.
Similar trends were observed for other settings. Column “Cost” reports the execution costs,
i.e., the sum of costs incurred until all agents reached their goals. Column “# Mod.” re-
ports the number of times the plan was modified by an execution policy. Column “Time
(ms)” reports the CPU runtime in milliseconds (ms) required by the execution policies until
all agents reached their goal. We highlighted in bold the lowest cost, # modifications, and
time for every value of p.

As expected, using the replan policies results in significantly lower execution costs com-
pared to the repair polices. For example, with delay probability of 0.1, Eager Replan yielded
an average execution cost of 111.17, while Eager All, Reasonable All, and MCP yielded an

7. We note that in these plans following moves do not exist as k > 0.
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Figure 8: kR-CBS for MCP on the instances succeeded in Table 3 on a 16x16 grid

execution cost of 521.24, 282.93, and 127.88, respectively. On the other hand, repairing is
done almost instantaneously while the runtime incurred when using the replan execution
policies is non-negligible. This establishes a natural tradeoff between execution cost and
(re)planning time.

Next, consider the relative performance of the evaluated repair execution policies, Eager
All, Reasonable All, and MCP. MCP achieves the minimal execution cost. This is because
it is a selective repair policy, forcing only a subset of the agents to wait instead of all of
them.

Lastly, consider the impact of the delay probability parameter p. As can be seen, both
execution costs and planning time increase with p. For example, the Eager All execution
policy yielded an execution cost of 111.08 for p = 0.001 and 521.24 for p = 0.1. This trend
is expected since higher delay probabilities means more delays and larger deviation from
the original plan.

To summarize, each policy has pros and cons and one should choose the policy that is
best suited for the given circumstance. An Eager replan execution policy provided the lowest
execution cost, but at the cost of a high running time. All repair policies were extremely
fast, and among them MCP yields the lowest solution cost by intelligently choosing which
subset of agents to force to wait.

6.5.1 Using k-Robust Plans

Corollaries 6.1 and 6.2 established that all the execution policies we experimented with are
robust w.r.t. k-robust plans for any k > 0. The next set of experiments were designed to
study the influence and benefit of using k-robust plans as input to our execution polices,
for a range of k values.

Figure 8 shows the results of using a k-robust plan as the original plan when using
the MCP execution policy, on a 16x16 open grid. This experiment is based on the solved
instances described in Table 3, executed with delay probability of 0.1. We chose MCP
since it provided a good balance between execution cost, number of modifications, and
replanning time (see Table 8). The x-axis shows the number of agents and the y-axis shows
the average number of modifications. The different curves represent different values of k.
The results show the benefit of using a k-robust plan: by increasing k we reduce the number
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of modifications. Indeed, when k = 2 the number of modifications is close to zero, even for
15 agents, while it increases to 2.5 when using the optimal plan (where k = 0).

7. Delayed Communication

So far, we assumed that agents can communicate with each other instantaneously, and that
they know about the delays experienced by all agents before moving. However, in many
settings communication between agents takes time (Spaan, Oliehoek, & Vlassis, 2008; Qin,
Gomez, & Orosz, 2017; Wu, Zilberstein, & Chen, 2009). In particular, consider the case
where agents only communication to each other their status (including who got delayed)
every fixed number of time steps. Let T be this fixed number. We refer to T as the
communication frequency, and call every T th time step a communication time step. In this
setting, the agents know about each others’ delays only during communication time steps,
which can be up to T time steps since the delay has actually occurred. As we show below,
the notion of k-robust plans is particularly useful for establishing robustness in this setting.

7.1 When to Modify the Plan

We adapt the Eager, Reasonable, and Lazy classes of execution policies described in Sec-
tion 6.2 to the settings with T > 0 delay frequency, as follows.

• Eager. If an agent experiences a delay, then modify π in the next communication
time step.

• Reasonable. If an agent experiences a delay, then in the next communication time
step check if there is a T -delay conflict. If it exists, modify π.

• Lazy. Modify π only if there is a T -delay conflict in the next T moves. Perform this
check only in communication time steps.

7.2 How to Modify the Plan

Next, we adapt the replan and repair classes of execution policies described in Section 6.3
to our settings, which has T > 0 delay frequency.

• T Robust replan. Modify π by creating a new T -robust plan starting from the
current time step.

• T Robust repair. Modify π by performing minor modifications to π to make it T
robust.

We propose two T robust repair methods called T robust all repair (T -All) and T robust
selective repair (T -Selective). In T -All, some agents are forced to wait in a way that ends
up with exactly the same amount of delay in executing their plans. Thus, if the original
plan was T robust then the repaired plan will also be T robust. In T -Selective, just enough
agents are forced to wait so as to avoid all T -delay conflicts. Formally, these plan repair
methods are described as follows.
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• T -All. Let ∆i be the number of delays agent i experienced in the last T time steps
and let ∆max be the maximum over all ∆i. In a T -All action, each agent needs to
wait ∆max −∆i time steps.

• T -Selective. This plan repair method is an iterative process that continues as long
as there is a T -delay conflict in the current plan π. Let 〈ai, aj , t〉 be such a conflict,
and and let ∆ ≤ T be the ∆ for which πi(t) = πj(t+ ∆). The T -selective plan repair
action will force agent aj to wait T − ∆ time steps in its current vertex, thereby
resolving the corresponding T -delay conflict.

7.3 Robustness with Communication Delays

Next, we explore which combination of {Eager, Reasonable, Lazy } × {T -Robust, T -All,
T -Selective } execution policies are robust execution plans in settings with communication
frequency T > 0.

Theorem 7.1. Eager T -replan, reasonable T -replan, and lazy T -replan, are robust for a
given communication frequency T w.r.t to an initial plan that is T -robust.

Proof. In each of these execution policies, in every communication time step t it is guar-
anteed that the executed plan has no T -delay conflict in the next T time step. Thus, no
conflict will occur until the next communication time step. This continues until all agents
reach their goal.

Theorem 7.2. Eager T -All, Reasonable T -All, and Reasonable T -Selective, are robust for
a given communication frequency T > 0 w.r.t to an initial plan that is T -robust.

Proof. Eager T -All and Reasonable T -All maintain that the plan being executed is always
T -robust. Thus, their robustness follows the same reasoning as the proof of Theorem 7.1.
For Reasonable T -Selective, an agent only moves to a potential conflict if the agents that
was supposed to be in that vertex before it has already moved out of it. Thus, robustness
follows.

7.3.1 MCP and Communication Delays

As mentioned above, when using the MCP execution policy (Ma et al., 2017), agents pre-
serve the order in the original plan in which they enter and leave each vertex. That is, if
in the original plan π agent ai and agent aj are both planned to enter a vertex loc such
that ai enters loc before aj does, then agent aj will not enter loc until it receives a message
from ai that it has already exited loc. MCP is a robust execution policy thanks to this
order-preserving mechanism.

In our delayed communication setting, agents can share their location (vertex) status
only during communication time steps. Thus, following MCP may result in agents being
forced to wait in their current vertex even if no delay has been experienced. Nevertheless, it
is easy to see that MCP’s order-preserving policy guarantees robustness even in this delayed
communication setting.
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Cost Time (ms)

Delay probability = 0.1

T=0 T=2 T=4 T=6 T=0 T=2 T=4 T=6

Eager T-All 89.53 72.12 69.58 73.61 0.00 0.00 0.00 0.00
Reasonable T-All 53.86 56.63 60.43 66.48 0.00 0.00 0.00 0.00
Reasonable T-Selective 48.72 53.03 58.78 66.00 0.00 0.00 0.00 0.00
MCP 48.72 52.31 58.74 65.80 0.00 0.00 0.00 0.00

Eager T-replan 47.57 52.37 58.65 62.96 9.06 13.30 12.36 11.84
Reasonable T-replan 47.53 53.12 58.25 65.85 7.23 9.57 5.68 3.51
Lazy T-replan 47.57 51.94 57.99 65.74 6.07 10.09 11.06 9.64

Delay probability = 0.2

T=0 T=2 T=4 T=6 T=0 T=2 T=4 T=6

Eager T-All 220.18 95.56 81.94 84.92 0.00 0.00 0.00 0.00
Reasonable T-All 67.67 68.22 70.33 74.59 0.00 0.00 0.00 0.00
Reasonable T-Selective 55.64 60.55 66.01 72.76 0.00 0.00 0.00 0.00
MCP 55.78 58.67 65.30 72.44 0.00 0.00 0.00 0.00

Eager T-replan 53.23 58.86 64.60 69.31 24.91 25.42 25.19 24.26
Reasonable T-replan 53.35 60.01 64.45 78.91 11.58 16.16 19.80 15.36
Lazy T-replan 53.57 58.63 64.19 71.11 7.08 28.05 37.57 25.58

Delay probability = 0.3

T=0 T=2 T=4 T=6 T=0 T=2 T=4 T=6

Eager T-All 651.97 122.80 101.04 100.55 0.00 0.00 0.00 0.00
Reasonable T-All 86.62 84.53 82.72 86.81 0.00 0.00 0.00 0.00
Reasonable T-Selective 65.04 69.28 75.15 81.79 0.00 0.00 0.00 0.00
MCP 64.75 68.80 73.30 81.25 0.00 0.00 0.00 0.00

Eager T-replan 60.99 67.73 71.52 76.62 29.23 37.23 40.85 41.47
Reasonable T-replan 61.14 68.08 72.17 80.16 15.23 23.77 25.59 37.44
Lazy T-replan 61.31 66.91 71.55 80.46 14.43 60.42 63.41 62.77

Table 9: Different replanning polices on instances with 10 agents.

7.4 Experimental Results

We performed a limited experimental evaluation of the different robust execution polices for
our delayed communication on an 8x8 open 4-neighborhood grid with 10 agents. Delays were
inserted randomly, with probability p per each move of each agent, where p is a parameter.
We experimented with p = 0.1, 0.2, and 0.3. In this set of experiments the communication
frequency was T = 0, 2, 4, and 6, and the original plans were built to match this frequency
and thus were optimal and T -robust for T = 0, 2, 4, and 6, respectively. Table 9 presents
our results, averaged over 50 instances. The columns report the execution costs (i.e., the
overall sum-of-costs incurred until all agents reached their goals) and the CPU replaning
runtime in ms required by the execution policies. The first four lines are for repair policies.
The last three lines are for replan policies. Consider the repair policies. The results show
that the T − All policies have a higher cost than the T − Selective policies. As expected,
delaying all of the agents produce a higher cost than delaying only some of the agents so
as to preserve their internal order. In addition, mostly the MCP policy had the lowest cost
among all the repair policies. Among the replan policies, mostly the Eager T-replan policy
had the lowest cost.

Overall we can see that executing with replan policies costs less than executing with
repair policies and that the MCP policy results in a good trade-off between cost and re-
planing time. However, there is a tradeoff because replan incurs extra overhead as shown
in the right side of the table. We have performed these experiments for other number of
agents and the same trends were observed.
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8. Related Work

There are several notable prior work that are related to kR-MAPF. We discuss these here
briefly and describe the relation of each work to ours.

kR-MAPF can be viewed as a special case of conformant planning (Cimatti & Roveri,
2000; Brafman & Hoffmann, 2006), where the task is to find a plan that will be successful
regardless of imperfect information about the initial state and action outcomes and without
sensing capabilities.

kR-MAPF is different from Nguyen et al.’s (2017) robust planning, which is for planning
and not MAPF, and address a setting in which an incomplete model of the domain is
available and the task is to find a plan that is likely to succeed.

As part of their work on execution policies for MAPF with delays, Ma et al. (2017) also
proposed a CBS-based algorithm that aims to minimize the expected makespan. Unlike our
work, they assumed prior knowledge of delay probabilities and do not provide any guarantee
on the returned plan. As describes earlier in this paper, they only produced MAPF-DP
plans, which are identical to 1-robust plan.

Wagner et.al. (2017) proposed a MAPF variant that considers uncertainty called MAPFU.
In MAPFU, there is uncertainty regarding the location (vertex) of each agent, including its
initial and goal vertices. The probability for two agents to collide in some vertex can be
measured using the given belief state of each agent. Given a threshold for each agent, a plan
is called a solution if the probability of each agent to collide with the other agents is below
its threshold. While in kR-MAPF the number of delays the agents experience is limited, in
MAPFU the probability of each conflict to occur is limited, given the agent belief states.

One of the approaches we proposed for solving kR-MAPF is based on CBS (Sharon et al.,
2015). Many improvements to CBS have been introduced throughout the years (Boyarski
et al., 2015; Cohen, Uras, Kumar, Xu, Ayanian, & Koenig, 2016). Most can be applied
on top of our k-robust CBS without further adjustments. These improvements can either
enhance the kR-CBS algorithm, or modify the search in order to find suboptimal solutions.

An exception to these improvements is the Meta-agent CBS (MA-CBS) (Sharon et al.,
2015) algorithm, where agents with many mutual conflicts are merged into a meta-agent
that is then treated as a joint composite agent by the low-level solver. A k-robust version
of MA-CBS requires a low-level solver that is also k-robust for meta-agents consisting two
or more agents. This is a topic for future work.

In many cases in grid-based domains, each shortest path of one agent conflicts with each
shortest path of other agent. This cause a rectangular area of conflicts. To decrease the
size of the CT and enhance the search of CBS, Li et al. (2019a) suggested to identify this
area and impose a large constraint on multiple cells (also called Barrier Constraint). As
other CBS improvements, this also can (in the future) be adapted by range constraints to
enhance the search of kR-CBS over grids.

A k-robust plan can be viewed as a plan in which each agent occupies more than one
vertex each time step. Li et al. (2019b) suggested a MAPF solution for multiple large agents
that occupy multiple vertices each time. These agents have a static shape and cannot occupy
a sequence of vertices as the k-robust does. Atzmon et al. (2019) proposed a solution for
multiple train-agents. While these agents occupy a fixed size sequence of vertices, in a k-
robust plan whenever an agent performs a wait action it shrinks in a sense that it occupies
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one less vertex. Therefore, the number of vertices that the agent occupies is dynamic and
changes as a results of the number of wait actions it performed in the last k steps.

9. Conclusions and Future Work

In this paper we explored how to solve the multi-agent pathfinding problem in a way that
is robust to unexpected delays. We proposed a robustness measure for MAPF plans called
k-robust, where a k-robust plan is a plan in which each agent can experience up to k delays
while still preserving the ability to follow the generated plan. Several ways to obtain k-
robust plan were proposed, including solvers based on A∗, CBS, and constraint programming
(using Picat). Our experimental results show that finding a k-robust plan is possible and
requires only a minimal increase in plan cost. In addition, our results also show that while
the Picat-based solver was better in small domains, the CBS-based solver was better in
large domains and solved successfully instances with up to 100 agents.

Then, we defined robust execution policies to be used online, when the agents are execut-
ing the plan. We proposed several classes of execution policies, compared their performance,
and showed that using a k-robust plan for k > 0 as the baseline plan results in fewer re-plans
during execution. Lastly, we explored how k-robust plans can be used in conjunction with
the proposed execution policies to address cases where agents can only communicate every
few time steps. We show in both cases the trade off between faster execution policies that
repair the original plan and cheaper (lower cost) execution policies that replan from a given
time and continue with a new plan.

There are many possible lines of future work, including: adapting other MAPF solvers
such as the ICTS algorithm (Sharon, Stern, Goldenberg, & Felner, 2013) to find k-robust
plans, finding k-robust plans for different objective functions (i.e. makespan), adjusting
the execution policies for a non-uniform communication frequency, exploring ways to have
different k values for each agent and between pairs of agents, and studying the impact of
weighted actions.
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Appendix A. Proof of Observation 1

As a reminder, Observation 1 states that a plan is k-robust iff it does not contain any
k-delay conflicts.

Proof. Direction #1: Not k-robust → exists a k-delay conflict. Assume that π is
not k-robust. This means there is a set of delays D that includes at most k delays for each
agent, such that D[π] is not valid. Since D[π] is not valid, there exists a pair of agents ai
and aj and a timestep t such that 〈ai, aj , t〉 is a conflict in D[π]. This conflict is either a
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vertex conflict or a swapping conflict.

Case #1: 〈ai, aj , t〉 is a vertex conflict. This means that D[πi](t) = D[πj ](t). Since
D contains at most k delays for each agent, there exists ∆i,∆j ∈ {0, . . . , k} such that
πi(t − ∆i) = πj(t − ∆j). Without loss of generality, assume that ∆i ≥ ∆j . Therefore,
〈ai, aj , t−∆i〉 is a (∆i −∆j)-delay conflict in π. Since ∆i −∆j ≤ k, we have that π has a
k-delay conflict, as required.
Case #2: 〈ai, aj , t〉 is a swapping conflict. This means that(

D[πi](t) = D[πj ](t− 1)
)
∧
(
D[πj ](t) = D[πi](t− 1)

)
(2)

Since D contains at most k delays for each agent, there there exists ∆i,∆j ∈ {0, . . . , k}
such that (

D[πi](t) = πi(t−∆i)
)
∧
(
D[πi](t− 1) = πi(t−∆i − 1)

)
(3)(

D[πj ](t) = πj(t−∆j)
)
∧
(
D[πj ](t− 1) = πj(t−∆j − 1)

)
(4)

From Equations 2-4, we have that

πi(t−∆i − 1) = πj(t−∆j) (5)

πi(t−∆i) = πj(t−∆j − 1) (6)

If ∆i = ∆j then 〈ai, aj , t−∆i − 1〉 is a 1-delay conflict in π and thus π has a k-delay
conflict, as required. If ∆i 6= ∆j , then assume without loss of generality that ∆i > ∆j .
If ∆j = 0, then 〈ai, aj , t−∆i〉 is a ∆i − 1-delay conflict due to Eq. 6. Since ∆i ≤ k, this
means π has a k-delay conflict, as required. Finally, if ∆i > ∆j > 0, then due to Eq. 5, we
have that 〈ai, aj , t−∆i − 1〉 is a (∆i + 1 −∆j)-delay conflict. Since ∆j > 0 and ∆i ≤ k,
then (∆i + 1−∆j) ≤ k and thus π has a k-delay conflict, as required.
Direction #2: Exists a k-delay conflict → not k-robust. Let 〈ai, aj , t〉 be a k-
delay conflict. By definition, there exists ∆ ∈ {0, . . . , k} such that πi(t) = πj(t + ∆). Let
Di = 〈ai, t+ i〉, and consider the set of delays D = D0, . . . , Dk−1. Clearly, D[π] is not valid,
having a vertex conflict at time t+ ∆, and thus π is not k-robust, as required.
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