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Abstract

Multi-agent path-finding (MAPF) is the problem of finding a plan for moving a set
of agents from their initial locations to their goals without collisions. Following this plan,
however, may not be possible due to unexpected events that delay some of the agents. In
this work, we propose a holistic solution for MAPF that is robust to such unexpected de-
lays. First, we introduce the notion of a k-robust MAPF plan, which is a plan that can be
executed even if a limited number (k) of delays occur. We propose sufficient and required
conditions for finding a k-robust plan, and show how to convert several MAPF solvers to
find such plans. Then, we propose several robust execution policies. An execution policy
is a policy for agents executing a MAPF plan. An execution policy is robust if following
it guarantees that the agents reach their goals even if they encounter unexpected delays.
Several classes of such robust execution policies are proposed and evaluated experimentally.
Finally, we present robust execution policies for cases where communication between the
agents may also be delayed. We performed an extensive experimental evaluation in which
we compared different algorithms for finding robust MAPF plans, compared different ro-
bust execution policies, and studied the interplay between having a robust plan and the
performance when using a robust execution policy.

1. Introduction and Overview

The Multi-Agent Path Finding (MAPF) problem is the problem of finding a plan for a set
of agents that moves the agents from their current vertices to their target vertices without
collisions. MAPF has practical applications in video games, traffic control, and robotics (see
Felner et al. (2017) for a survey). In many cases, there is also a requirement to minimize
some cumulative cost function, such as the time spent or costs incurred until all agents
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have reached their goals (Standley, 2010; Standley & Korf, 2011; Surynek, 2010). Solving
MAPF optimally is NP-Hard (Yu & LaValle, 2013b; Surynek, 2010). Nonetheless, efficient
optimal algorithms exist, some are even capable of finding optimal plans for more than a
hundred agents (Wagner & Choset, 2015; Boyarski, Felner, Stern, Sharon, Shimony, Bezalel,
& Tolpin, 2015; Surynek, 2012; Yu & LaValle, 2013a).

When executing a MAPF plan, however, unexpected events may delay some of the
agents. When such an event occurs, one may need to adjust the plan of one or more agents
to avoid collisions. However, such re-planning can be very costly or even impossible in some
applications, as it may require computing and communication capabilities as well as time
that the agents may not have. In such cases, one may wish to generate a plan that can
withstand unexpected delays, avoiding the need to replan if they occur. This is especially
desirable in safety-critical settings such as air traffic control. In this work we provide a
complete solution for solving MAPF problems in a way that is robust to such unexpected
delays.

In the first part of this work, we explore a novel form of robustness for MAPF plans that
we call k-robust. A k-robust plan is a plan that is robust to & delays per agent during plan
execution, i.e., each agent may be delayed up to k times during plan execution and the plan
would still be safe (no collisions). There are many applications in which finding a k-robust
plan is desirable. For example, consider agents with an imperfect localization mechanism,
where a control mechanism is employed to keep them on track. The k parameter in such
cases is dictated by how far from the plan the control mechanism allows the agent to be.

We establish necessary and sufficient conditions for a plan to be k-robust, and propose
several algorithms for finding optimal k-robust plans. Specifically, we show how to adapt
three existing MAPF algorithms to return k-robust plans: (1) an A* (Hart, Nilsson, &
Raphael, 1968) based pathfinding algorithm, (2) an algorithm based on the Conflict-Based
Search (CBS) (Sharon et al., 2015) algorithm, which is a commonly used MAPF solver, and
(3) an algorithm based on Picat (Zhou et al., 2015), a declarative constraint programming
language shown to be effective for solving MAPF problems (Zhou, Barték, Stern, Boyarski,
& Surynek, 2017). We evaluate experimentally these proposed algorithms on several stan-
dard benchmarks identifying when each solver works best.

In the second part of this work, we address the case where more than k delays occur
during plan execution. To this end, we follow the framework of Ma et al. (2017) in which
a plan is coupled with an execution policy to handle delays online, possibly modifying the
original plan. We propose and analyze several classes of execution policies and prove that
they are robust, which means that if they are used during plan execution then the agents
do not collide with each other even if unexpected delays occur. Then, we compare these
robust execution policies experimentally, and analyze the different tradeoffs they provide in
terms of CPU time, number of required plan modifications, and total cost of the executed
plan. We show also how using a k-robust plan integrates naturally in this framework,
resulting in a complete and robust solution that significantly reduces the number of times
that modifications to the plan are needed during execution.

Lastly, we consider cases where communication or synchronization between the agents
is imperfect, e.g., agents can not communicate or synchronize every time step or even at
all. We show how our execution policies can be slightly modified in order to be robust and
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avoid collisions, showing the relation between the communication delay and the required
degree of robustness.

This paper is organized as follows. Section 2 provides relevant background on MAPF.
Section 3 defines the notion of a k-robust plan and provides necessary and sufficient condi-
tions for finding such a plan. Section 2.1 presents two search-based algorithms for finding
optimal k-robust plan, one based on A* and the other based on CBS. Section 5 shows
another way to find optimal k-robust plans using a declarative constraint programming lan-
guage called Picat. Section 6 discusses how to handle unexpected delays during execution,
defining several robust execution policies. Section 7 discusses how to adapt these execution
policies to the case where communication between the agents may be delayed. Finally,
Sections 8 and 9 present relevant prior, conclusions, and future work.

Some of the material presented in this paper have been published earlier in a confer-
ence (Atzmon, Stern, Felner, Wagner, Bartdk, & Zhou, 2018). This paper provides a more
comprehensive and rigorous treatment of k-robust MAPF, including a new theorem that
specifies the relation between robust plans and conflicts (see Section 3), a more comprehen-
sive experimental evaluation, formal treatment of execution policies (see Section 6), and a
new extension of dealing with robust execution policies when facing unexpected events with
delayed communication (see Section 7).

2. Background

The Multi-Agent Path Finding (MAPF) problem is defined by a graph, G = (V, E) and a
set of n agents labeled a; ...an, where each agent aj has a start vertex sj 2 V and a goal
vertex gi 2 V. Time is discretized into time steps, and in each time step an agent can
perform an action. It can either move (move action) to an adjacent vertex or wait (wait
action) in its current vertex. A solution to a MAPF problem is a plan @ = fmy,...,mng
such that 8; 2 f1,...,ng, a path 7 is a sequence of adjacent vertices (from V') leading
agent aj from s;j to gi. We denote by mj(t) the expected location (vertex) of agent aj at
time t. Thus, 7(0) = sj and mi(jmij 1) = gi. Notice that each two consecutive vertices in
mi must have an edge between them, i.e., 8t : (mj(t), mi(t + 1)) 2 E.

Definition 2.1 (Conflict). A vertex conflict hai, aj, ti in a plan 7 occurs iff agents aj and
aj are planned to occupy the same vertex at time ¢, that is, if 7j(t) = 7j(t). A swapping
conflict haj, aj,ti in a plan 7 occurs iff agents aj and aj are planned to traverse the same
edge at time ¢, that is, if (mi(t 1) = mj(¢)) ™ (mi(t) = mj(t 1)). A conflict haj,aj, ti in
a plan 7 occurs iff haj, aj, ti is either a vertex conflict or a swapping conflict (Stern et al.,
2019).!

A plan 7 is said to have a conflict if there exists a pair of agents (aj,aj) and a time
step t for which haj, aj, i is a conflict. We say that 7 is a valid plan if it does not have
any conflict. A MAPF solver is sound if it outputs a valid plan. The sum-of-costs (SOC)
of a plan 7w ds defined in this work as the sum of actions planned for the agents in 7, i.e.,
SOC(r) =" i (jmij 1). The makespan of a plan 7 is the maximal number of actions in
its paths, i.e., the makespan of 7 is maxj ;(jmij 1). The optimization criteria for MAPF

1. In this work we allow following con icts and cycle con icts. See discussion on these types of con icts in
Stern et al. (2019).
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plans that we consider in this work is SOC. Thus, the cost of a MAPF plan is defined here
as its SOC, and a plan is optimal for a MAPF problem if it has the minimal SOC among
all other valid plans for that problem.

2.1 Conflict-Based Search

Conflict-based search (CBS) (Sharon et al., 2015) is a state-of-the-art MAPF solver with
many extensions (Ma et al., 2017; Boyarski et al., 2015). CBS does not search the n-
agent state space explicitly. Instead, it finds a plan by searching for a path for each agent
separately. Conflicts are avoided by imposing a set of constraints of the form haji, v, ti, repre-
senting that agent aj is prohibited from occupying v at time step t. A plan 7 = frry,...7n0
is called consistent with a set of constraints C if its paths satisfy all the constraints in C,
i.e., for every constraint haj,v,ti 2 C, it holds that mj(t) & v.2

CBS searches a constraint tree (CT) for a set of constraints such that a plan consistent
with this set of constraints is valid and optimal. The CT is a binary tree, in which each
node N represents:

1. A set of constraints imposed on the agents (N.constraints)
2. A plan (N.7) consistent with these constraints

We denote by N.cost the SOC of the plan N.7.

The root of the CT contains an empty set of constraints (thus, every plan is consistent
with the root). A successor of a node in the CT inherits the constraints of the parent node
and adds a single new constraint for one agent. Generating a successor node N means
finding a plan consistent with N.constraints and identifying the conflicts in this plan, if
they exist. With the exception of the root node, every node N in the CT was generated by
adding a single new constraint. Therefore, in every CT node except the root, only one agent
needs to replan, which can be done with any optimal single-agent path-finding algorithm,
e.g., A*. The algorithm used for this purpose is referred to as the CBS low-level solver. A
CT node N is a goal node when N.7 is valid. To search the CT for a goal node CBS runs
a best-first search where nodes are ordered by their costs (NV.cost).

The two key components of CBS are how to identify conflicts in a CT node N, and how

to choose which constraint to add when expanding N and generating its successors. We
describe them below.
Identifying conflicts in a consistent plan. Once a consistent plan has been found by
the low-level solver, it is wvalidated by simulating the movement of the agents along their
planned paths (N.7) and searching for conflicts between the agents. That is, for every time
step ¢ = 0 up to the makespan of N.w, and for every pair of agents aj and aj, CBS checks
if haj, aj, ti is a conflict (vertex or swapping). If all agents reach their goals without any
conflict, N is declared as a goal node, and N.7 is returned. Otherwise, a conflict is found
and the node is declared a non-goal.

2. In CBS, it is also possible to impose a constraint of the form ha;;e; ti, representing that agent a; is
prohibited from traversing the edge e at time step t. For a plan to be consistent with a set of
constraints C, it must also satisfy all constraints in C, including these edge constraints. That is, for every
constraint ha;; e; ti where e is an edge from v to v/, it holds that ( i(t) & v) _ ( i(t+1) & V).
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Resolving a conflict (expanding CT nodes). When a non-goal CT node N is chosen
in the best-first search of the CT, CBS generates its successor CT nodes as follows. First a
conflict haj, aj, ti is chosen from one of the conflicts in V.7r. Note that since IV is not a goal, it
contains at least one conflict. Let v be the vertex of this conflict, i.e., v = N.mj(t) = N.7j ().
CBS expands N and generates two new CT nodes, adding the constraint haj,v,ti to one
child and the constraint haj,v,ti to the other child. To obtain a consistent plan for each
child CT, the low-level search is activated to the agent for which the new constraint was
added. All other agents maintain their paths.

2.2 Robust Execution Policies

Ma et al. (2017) also considered the case where unexpected delays occur while the agents are
executing a MAPF plan. For such cases, they suggested a robust execution policy called
Minimal Communication Policy (MCP). During execution, MCP preserves the order by
which agents visit each vertex as in the original plan. That is, when an agent ¢ is about to
perform a move action and enter a vertex v, MCP checks whether agent ¢ this agent is the
next agent to enter that vertex by the original plan. If a different agent, j, is planned to
enter v next according to the original plan, then ¢ waits in its current vertex until until j
leaves v. In Section 6 we suggest several additional execution policies and compare them to
MCP. Moreover, we extend these execution policies in such a way that would still prevent
the collision of agents even in settings where the agents cannot communicate after each time
step.

3. k-Robust MAPF

In this section, we define the notion of a k-robust plan, provide necessary and sufficient
conditions for finding a k-robust plan, and defining what is an optimal k-robust plan.

A delay in an execution of a plan 7 is defined by a tuple haj, i, representing that agent
aj at time t stayed in the vertex in which it was at time ¢ 1 instead of performing the action
planned for it and moving to 7j(t). After experiencing a delay, an agent can try to continue
to follow the plan. As a result, the agents may end up executing a plan that is different
from the original plan. Formally, the planned execution of a plan 7 after experiencing delay
D = haj, tpi, denoted D[r] = fD[m1],..., D[mn]g, is the MAPF plan defined as follows:

8
=2mj (1) j&i
Dimj](t) = _mi(t) j=i"t<lp. (1)

mi(t 1) otherwise

The planned execution of 7 after experiencing a set of delays D = D;, ... Dy, denoted D[r],
is defined as Dt [Dy_1| Di[n]] |. A plan 7 is robust to a delay D if the delayed agent
can continue to follow its path after the delay without causing a collision, i.e., if D[n] is a
valid plan. 7 is robust to a set of delays D iff experiencing any subset of D yields a valid
plan. A plan is k-robust iff it is valid, and it is robust to any set of delays that contains at
most k delays for each agent.

As an example of how delays affects the execution of a MAPF plan. Figure 1(a) shows a
valid plan 7 with two agents a; and ag with paths m; = (s1,C, g1) and m = (s2, A, B, C, ¢2),
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Agent aq Agent a,

sp|s1|C |01

Agentay | |4 |B |C |g, Agenta; |o. |4 |B | C |g,

(b) (c)

Figure 1: (a) A MAPF plan 7w (b) The planned execution of 7 at time 1, after agent a;
experienced a delay (c) The planned execution of 7 at time 2, after agent a; experienced 2
delays.

respectively. Figure 1(b) presents the execution of m after agent a; experienced a de-
lay at time 1. This delay is defined by D = hay, 1i and the planned execution of = af-
ter experiencing this delay is D[r] = fDIm], D|m2|g where D[m|(1) = (s1,51,C,¢1) and
Dim](1) = (s2, A4, B,C,g2). Note that D[n]| is still a valid plan. Therefore, we can say
that 7 is a robust plan w.r.t. D. Figure 1(c) presents the execution of m after agent
a1 experienced two delays, at time 1 and at time 2. Formally, these delays are defined
by D; = hay,1li and Dy = hay,2i, and the planned execution after experiencing these
delays is Da[Dq[n]] = FD2[D1[m]], D2[D1[m2]]g where Do[D1[m]] = (s1,s1,51,C,g1) and
Dy [Dq[m3]] = (s2, A, B,C, g2). Note that Dy[D;[r]] is not a valid plan because both agents
are located in C' at the same time, hence, 7 is not a 2-robust plan.

Definition 3.1 (The kR-MAPF problem). A kR-MAPF problem is defined by a MAPF
problem and a non-negative integer value k. A solution to a kR-MAPF problem is a k-robust
plan to the given MAPF problem.

3.1 The Relation Between Robust Plans and Conflicts

A brute-force approach to check if a plan 7 is k-robust is to check every set of ¥ k conflicts,
compute the planned execution of 7 after experiencing these conflicts, and checking if it is
valid. Next, we provide a simpler and more efficient way to check if 7 is k-robust.

Definition 3.2 (k-delay Conflict). A k-delay conflict haj, aj,ti in a plan 7 occurs iff there
exists A 2 f0, ..., kg such that agents aj and aj plan to occupy the same vertex in timesteps
t and t + A, respectively, i.e, mi(t) = 7j(t + A).

Checking if a plan 7w has a k-delay conflict can be done in time that is polynomial in k,
n (the number of agents), and the makespan of .
Observation 1. A plan is k-robust iff it does not contain any k-delay conflicts.

We provide a formal proof of Observation 1 in Appendix A. Observe that swapping
conflicts cannot exist in a k-robust plan for any k& > 0. 3 Also, k-robust plans with k& > 0
do not allow agents to move to a vertex occupied by another agent in the previous time

3. If a swapping con ict ha;j; a;; ti exists in a plan  then by de nition haj; aj; ti is also a 1-delay con ict in
(see De nitions 2.1 and 3.2).
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step. Such a train-like motion (lockstep motion) is not allowed in some MAPF formula-
tion (Kornhauser, Miller, & Spirakis, 1984). Following the terminology defined by Stern et
al. (2019), we do not allow vertex, edge, or swapping conflicts in the solution, but do allow
following and cycle conflicts.

3.2 Optimal kR-MAPF

More than one k-robust plan may exist for a given MAPF problem. Since plans with lower
costs are preferred, we say that a k-robust plan is optimal if there is no other k-robust
plan with a lower cost.

Lemma 3.1. For any k1 and ko where k1 < ko it holds that the cost of the optimal kq-robust
plan is smaller than or equal to the cost of the optimal ko-robust plan.

Proof. A plan 7’ is kj-robust if there are no ki-delay conflicts (Observation 1). Since
k1 < ko, every plan 7" that is ko-robust is also a kj-robust plan. Thus, the set of all
ko-robust plans is a subset of the set of all ki-robust plan. Hence, the cost of an optimal
ki-robust plan is smaller or equal to the cost of an optimal ka-robust plan. O

As a consequence there is a tradeoff between the robustness of a plan and its cost. In
this work, we consider the robustness k£ as a hard constraint and optimize the plan cost.

That is, we explore several algorithms for finding an optimal k-robust plan, for a given value
of k.

4. Search-Based Solutions

In this section, we propose two algorithms for finding optimal k-robust plans, that are based
on graph search techniques.

4.1 A~

Several known MAPF algorithms (Silver, 2005; Standley, 2010; Goldenberg, Felner, Stern,
& Schaeffer, 2012; Wagner & Choset, 2015) are based on the well-known A* algorithm (Hart
et al., 1968). These algorithms search in a state space called the n-agent state space. A
state in this state space represents a possible way to place n agents into jVj vertices, one
agent per vertex. An action in this state space represents n single-agent move/wait actions,
one per agent. An action is applicable if its constituent single-agent actions do not create
a conflict. Hence, a path in this n-agent state space from the state (s1,...sn) to the state
(g1,--.gn) corresponds to a valid plan.

One way to modify A*-based solvers to return k-robust plans is to modify the way an
action in this state space is defined, such that combinations of single-agent actions that
lead to k-delay conflicts are prohibited. This modification by itself, however, may lead to
non-optimal plans. For example, consider finding a 2-robust plan for the problem depicted
in Figure 2(a). The optimal 2-robust plan is m = (s1, 4, B,C,¢g1) and m = (s2, D, g2),
with a cost of 6. Consider running A* on this problem. First, A* expands the state
(s1, $2), generating two children (A, C') and (A, D). Assume that (A, C') was expanded first,
generating state (B, g2) with cost 4 (2 per agent). Next, (B, g2) is expanded. Since ay was
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O
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Figure 2: A MAPF problem (a) its search tree (b), and its k-robust search tree (c¢). The
red lines show k-delay conflicts.

(a) (b)

Figure 3: (a) The graph (b) The CT using the original time/vertex constraints (¢) CT using
the range constraints

in C at t = 1, state (C, g2) will not be generated due to the 2-robustness constraint. Next,
state (A, D) is expanded. It will not generate (B, g2), as this state was already reached via
state (A, C) with the same cost (see Figure 2(b)). Thus, while there is a plan in which state
(B, g2) generates state (C, g2), this specific run of A* will not find it. As a result, A* will
return a suboptimal plan of cost 7.

To remedy this, the n-agent state space needs to be modified to keep track of the last
k steps of each agent in each state. In this state space, a state represents a possible way to
place n agents into V vertices (out of the |\r/1‘ possibilities), one agent per vertex, over k
consecutive time steps. Figure 2(c) shows the search tree of this extended state space. An
A* search over this state space will return an optimal k-robust plan. However, the size of
this search space grows exponentially with k. Thus, its size is much larger than the size of

the n-agent state space, resulting in poor search performance.
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