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Abstract

Conflicting information in an agent’s knowledge base may lead to a semantical defect,
that is, a situation where it is impossible to draw any plausible conclusion. Finding out the
reasons for the observed inconsistency (so-called diagnoses) and/or restoring consistency
in a certain minimal way (so-called repairs) are frequently occurring issues in knowledge
representation and reasoning. In this article we provide a series of first results for these
problems in the context of abstract argumentation theory regarding the two most important
reasoning modes, namely credulous as well as sceptical acceptance. Our analysis includes
the following problems regarding minimal repairs/diagnoses: existence, verification, com-
putation of one and enumeration of all solutions. The latter problem is tackled with a
version of the so-called hitting set duality first introduced by Raymond Reiter in 1987. It
turns out that grounded semantics plays an outstanding role not only in terms of com-
plexity, but also as a useful tool to reduce the search space for diagnoses regarding other
semantics.

1. Introduction

A well-known problem in knowledge representation and reasoning is the semantical collapse
of an agent’s knowledge base K, i.e. K is inconsistent and thus does not allow any plausible
conclusion. Hansson coined the term consolidation and defined it as an operation that
withdraws parts of K in such a way that, first, the resulting knowledge base K′ is consistent
and secondly, the change is as small as possible (Hansson, 1994). Even earlier, Reiter
introduced the by now presumably best-known formal treatment of this problem in his
seminal paper (Reiter, 1987). The so-called diagnostic problem for a given system arises
whenever we observe that the system does not behave as it should. Reiter used first-order
logic as representation formalism and his definition of a diagnosis contains the concepts of
consistency as well as minimality. We mention that even before Reiter first approaches to
handling inconsistencies in formal systems appeared (da Costa, 1974). However, over time,
the topic of restoring consistency under the requirement of minimal change received a lot
of attention in many different knowledge representation formalisms like situation calculus
(Mcilraith, 1999), logic programs (Sakama & Inoue, 2003), description logic including non-
monotonic versions (Lembo, Lenzerini, Rosati, Ruzzi, & Savo, 2011; Bienvenu, 2012; Eiter,
Fink, & Stepanova, 2013) as well as probabilistic conditional logic (Potyka & Thimm, 2014)
to mention a few.

In this paper we focus on the non-monotonic theory of abstract argumentation (Dung,
1995). More precisely, we consider an abstract argumentation framework (AF) as an agent’s
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knowledge base and the associated extensions correspond to her beliefs (Coste-Marquis,
Konieczny, Mailly, & Marquis, 2014; Nouioua & Würbel, 2014; Diller, Haret, Linsbichler,
Rümmele, & Woltran, 2018). In brief, Dung-style AFs consist of arguments and attacks
which are treated as primitives, i.e. the internal structure of arguments is not considered.
The major focus is on resolving conflicts. To this end a variety of semantics have been
defined, each of them specifying acceptable sets of arguments, so-called extensions, in a
particular way. The starting point of our study is a semantical defect of an agent’s AF
which prevents her from drawing any plausible conclusion in the sense that no argument is
accepted. That may mean, for example, that no argument is contained in each extension,
so-called sceptical acceptance. Our aim is to obtain an agent which is able to act. Therefore
we want to know what are minimal diagnoses of the given knowledge base, i.e. which parts
are causing the semantical defect. For instance, a certain minimal diagnosis may consist of
arguments which are somehow out of date or not as significant in comparison to the others.
Consequently, one may tend to discard these arguments. To illustrate a situation like this,
consider the following example from Ulbricht (2019b).

Example 1.1. Assume an agent is planning her vacation. The agent’s preferred travel
destinations are Macao, Stockholm and Melbourne. She only wants to visit one of them:

MacaoMelbourne

Stockholm

The agent is aware of the many poisonous animals in Australia and hence believes Melbourne
is quite dangerous. Macao is very far away. On the other hand, she visits Europe quite
often and thus finds Stockholm less spectacular than the other two options. She deems
being at a dangerous place or pretty far away as spectacular since it is unusual. There is
no relation between the distance and potential risks since dangerous places can be found
anywhere in the world.

MacaoMelbourne

Stockholm far awaydangerous

unspectacular
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Let us consider the most prominent semantics, namely the stable one. Informally, a set
of arguments is a stable extension if there are no conflicts between them and moreover,
all other arguments are attacked by at least one argument of the set. Although this AF
possesses some stable extensions, for example E1 = {Stockholm, dangerous, far away} and
E2 = {Macao, unspectacular}, our agent is not satisfied since when it comes to reasoning
about travel destinations, she is quite sceptical. However, there is no sceptically accepted
argument since obviously E1∩E2 = ∅. Our agent is thus unable to formally decide which city
to visit. As a possible solution, she tries to consider other semantics like the grounded one
which does not really help since the unique grounded extension is the empty set. Moreover,
other semantics induce similar problems. She would thus be interested in techniques to
modify this AF in a reasonable way until it possesses accepted arguments.

The main aim of this article is to study such semantical defects with regard to the
following naturally arising questions:

• Diagnosis – Which sets of arguments are causing the collapse?

• Properties – Do diagnoses always exist? Are there certain preferred diagnoses? How
computationally costly is it to verify a candidate diagnosis?

• Computation – How to compute one or even all diagnoses?

• Repair – How to use this information to obtain an agent which is indeed able to act?

In order to get a first impression of some mentioned points let us consider a more abstract
example.

Example 1.2 (Diagnosis and Repair). The AF F does not possess any stable extension.
More formally, stb(F ) = ∅.

a

b

c

d

f

eF :

One may argue that the arguments e and f together can be seen as a diagnosis for
the semantical defect of F since ignoring these arguments and their corresponding attacks
result in a meaningful AF denoted by F{e,f}. In particular, stb

(
F{e,f}

)
= {{d, b}}.

a

b

c

dF{e,f} :

Note that neither of both arguments can be omitted since the resulting frameworks
would collapse too. In this sense, the presented diagnosis {e, f} and the corresponding
repair F{e,f} are minimal.
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The structure of the article can be summarized as follows: After discussing necessary
preliminaries for abstract argumentation in Section 2 we consider in Section 3 the question
of existence of minimal diagnoses and we provide relations between diagnoses wrt. different
semantics. Grounded semantics plays a central role here since its minimal diagnoses repre-
sent bounds for diagnosis of other semantics. We tackle the second question in Section 4,
namely: How to systematically find all minimal diagnoses of a given AF under a given
semantics. In particular, we will see that the considered AF F indeed possesses further
minimal repairs. These formal results are mainly due to the well-known hitting set duality
first introduced by Reiter (1987) and a recently generalized version of it (Brewka, Thimm,
& Ulbricht, 2017). We also briefly discuss subclasses of AFs, namely symmetric, compact
and acyclic frameworks in Section 5. This section also demonstrates how to infer stronger
results regarding existence of repairs when given a splitting of an AF and discusses special
issues regarding infinite frameworks. Afterwards, we study the computational complexity
for the associated existence and verification problem. In the subsequent Section 7 we briefly
discuss repair strategies for stable and preferred semantics. Finally, we conclude as well as
discuss some related work in Section 8.

A preliminary version (Baumann & Ulbricht, 2018) of this paper appeared in the Pro-
ceedings of the 16th International Conference on Principles of Knowledge Representation
and Reasoning.

2. Background in Abstract Argumentation

In the original formulation (Dung, 1995), an abstract argumentation framework is a directed
graph F = (A,R) where nodes in A represent arguments and the relation R models attacks,
i.e. for a, b ∈ A, if (a, b) ∈ R we say that a attacks b or a is an attacker of b. We say that
F is self-controversial if any argument attacks itself. If not stated otherwise, we restrict
ourselves to non-empty finite AFs. Formally, we introduce an infinite reference set U , so-
called universe of arguments and require for any possible AF, A ⊆ U . The collection of all
possible AFs is abbreviated by F . Moreover, for a set E we use E + for {b | (a, b) ∈ R, a ∈ E}
and define E⊕ = E ∪E+. In case we need to be specific about the AF under consideration,
we use the more informative notation E⊕F . A further essential notion in argumentation
is defense. More precisely, an argument b is defended by a set A if each attacker of b is
counter-attacked by some a ∈ A. Then, the characteristic function of the AF F is given
via ΓF : 2A → 2A with E 7→ {a ∈ A | a is defended by E}.

An extension-based semantics σ : F → 22U is a function which assigns to any AF
F = (A,R) a set of sets of arguments σ(F ) ⊆ 2A. Each one of them, so-called σ-extension,
is considered to be acceptable with respect to F . Besides conflict-free and admissible sets
(abbr. cf and ad) we consider stable, semi-stable, complete, preferred, grounded, ideal and
eager semantics (abbr. stb, ss, co, pr , gr , il and eg , respectively). Recent overviews are given
by Baroni, Caminada, and Giacomin (2011, 2018).

Definition 2.1. Let F = (A,R) be an AF and E ⊆ A.

1. E ∈ cf (F ) iff there are no a, b ∈ E satisfying (a, b) ∈ R,

2. E ∈ad(F ) iff E ∈cf (F ) and E defends all its elements,
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3. E ∈stb(F ) iff E ∈cf (F ) and E⊕ = A,

4. E ∈ss(F ) iff E ∈ad(F ) and there is no I ∈ad(F ) satisfying E⊕⊂I⊕,

5. E ∈co(F ) iff E ∈ad(F ) and for any a ∈ A defended by E , a ∈ E
(equivalently, E ∈ cf (F ) and Γ(E) = E),

6. E ∈pr(F ) iff E ∈co(F ) and there is no I ∈co(F ) satisfying E⊂I
(equivalently, E ∈ cf (F ) and Γ(E) = E and ⊆-maximal wrt. the conjunction of both
properties),

7. E ∈gr(F ) iff E ∈co(F ) and there is no I ∈co(F ) satisfying I⊂E
(equivalently, E ∈ cf (F ) and Γ(E) = E and ⊆-minimal wrt. the conjunction of both
properties),

8. E ∈ il(F ) iff E ∈co(F ) and E⊆
⋂

pr(F ) and ⊆-maximal wrt. the conjunction of both
properties,

9. E ∈eg(F ) iff E ∈co(F ) and E⊆
⋂

ss(F ) and ⊆-maximal wrt. the conjunction of both
properties.

We say that a semantics σ is universally defined if σ(F ) 6= ∅ for any F ∈ F . If even
|σ(F )| = 1 we say that σ is uniquely defined. All semantics apart from stable are universally
defined. In addition, grounded, ideal and eager semantics are examples of uniquely defined
semantics. Stable semantics may collapse, i.e. there are AFs F , s.t. stb(F ) = ∅ (cf. running
example F depicted in Example 1.2). For two semantics σ and τ we write σ ⊆ τ if for any
AF F , σ(F ) ⊆ τ(F ). For instance, it is well-known that stb ⊆ ss ⊆ pr ⊆ co ⊆ ad ⊆ cf .

In the present article we are interested in situations where a given AF F = (A,R) does
not possess accepted arguments. To make the notion of acceptance precise, we utilize the
usual two alternative reasoning modes, namely credulous as well as sceptical acceptance. We
require σ(F ) to be non-empty for sceptical reasoning in order to avoid the (for our purpose)
unintended situation that every argument is sceptically accepted due to technical reasons.
Set-theoretically the intersection over the empty family of sets would yield any argument.1

However, in our setting it makes sense to define it as the empty set since the (sceptical or
credulous) acceptance of an argument a should imply the existence of at least one extension
containing a.

Definition 2.2. Given a semantics σ, an AF F = (A,R) and an argument a ∈ A. We say
that a is

1. credulously accepted wrt. σ if a ∈
⋃
σ(F ),

2. sceptically accepted wrt. σ if a ∈
⋂
σ(F ) and σ(F ) 6= ∅.

As already mentioned, our motivation for a concept of inconsistency is a semantical
defect of an agent’s AF which prevents her from drawing any plausible conclusion in the
sense that nothing is accepted. This is clearly not only relevant for credulous reasoning

1. Applying the standard set-theoretical definition leads to
⋂
∅ = {x ∈ U | ∀E ∈ ∅ : x ∈ E} = U (Baumann

& Spanring, 2015, Section 2).
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(at least one extension is non-empty), but also sceptical reasoning (there are undisputed
arguments). Since we require σ(F ) 6= ∅ for sceptical acceptance, we naturally obtain the
following notion of inconsistent argumentation frameworks.

Definition 2.3. Given a semantics σ, an AF F = (A,R). We say that F is

1. inconsistent wrt. credulous reasoning and σ if
⋃
σ(F ) = ∅,

2. inconsistent wrt. sceptical reasoning and σ if
⋂
σ(F ) = ∅ where we let

⋂
∅ = ∅.

We omit the specifications “wrt. credulous reasoning” and/or “wrt. σ” whenever the
reasoning mode, the semantics or both are implicitly clear or do not matter.

Having established this background including our notion of inconsistent AFs we are now
ready to tackle the problem of repairing AFs via moving to an appropriate subframework.
In the following section, we will discuss different notions of repairs, whether they exist and
connections between them.

3. On the Existence of Repairs

Clearly, before computing potential repairs one may wonder what types of repairs exist
and whether there are minimal diagnoses at all. In this section we provide the formal
notions and results wrt. this problem and in particular, we give an affirmative answer for
nearly all considerable cases. We also investigate the relationship between different repairs.
Unfortunately, the existence of a least repair is not guaranteed which leads to follow-up
question of how to repair? which will be considered in the subsequent section.

3.1 Notions for Repairs

Our repair approach involves moving to subgraphs of a given AF. So let us start by intro-
ducing the required notions and formalizing the concepts of diagnoses and repairs. Consider
an AF F = (A,R). For a given set S ⊆ A of arguments we use FS as a shorthand for the
restriction of F to the set A \ S, i. e.

F |A\S :=
(
A|A\S , R|A\S×A\S

)
= (A \ S, {(a, b) ∈ R | a, b ∈ A \ S}) .

In other words, for S ⊆ A, FS is the subframework of F induced by the removal of arguments
in S. Analogously, for a given set S ⊆ R of attacks we use FS or sometimes F \ S as a
shorthand for (A,R \ S). We will also sometimes abuse notation and write F ∪ {a} and
F ∪ {(a, b)} instead of F ∪ ({a}, ∅) and F ∪ ({a, b}, {(a, b)}), respectively. As usual, the
latter unions are understood pointwise. Consider the following frameworks.

Example 3.1. Recall the AF F from Example 1.2, i. e. F = (A,R) with

A = {a, b, c, d, e, f} R = {(a, b), (b, c), (c, a), (d, a), (e, d), (f, d)}.

Let S = {d} ⊆ A. Then,

FS = (A \ {d}, {(a, b) ∈ R | a, b ∈ A \ {d}})
=
(
{a, b, c, e, f}, {(a, b), (b, c), (c, a)}

)
.
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a

b

c

f

eF{d} :

(1)

a

b

c

d

f

eF{(a,b)} :

(2)

Figure 1: AFs F{d} and F{(a,b)} discussed in Example 3.1

Let S ′ = {(a, b)} ⊆ R. Then,

FS′ = (A,R \ {(a, b)})
=
(
{a, b, c, d, e, f}, {(b, c), (c, a), (d, a), (e, d), (f, d)}

)
.

The AFs F{d} and F{(a,b)} are depicted in Figure 1 (1) and (2), respectively.

Following the usual notions of “repairs” and “diagnoses” of knowledge bases we define:

Definition 3.2. Given a semantics σ and an AF F . We call S ⊆ A (S ⊆ R) an argument-
based (attack-based) σ-cred-diagnosis of F iff FS is consistent wrt. credulous reasoning.
Moreover, we call the AF FS an argument-based (attack-based) σ-cred-repair of F . 2 We use
the terms minimal and least for ⊆-minimal or ⊆-least σ-diagnosis as well as the associated
σ-repairs. We define (minimal, least) σ-scep-diagnoses and σ-scep-repairs analogously.

If clear from context or irrelevant we drop the considered semantics or reasoning mode.

Example 3.3. Again consider F and S from Example 3.1, i. e. F = (A,R) with the set
of attacks A = {a, b, c, d, e, f} and R = {(a, b), (b, c), (c, a), (d, a), (e, d), (f, d)} as well as
S,S ′ with S = {d} and S ′ = {(a, b)}. Let σ = stb. We see that FS possesses no stable
extension due to the (still existing) odd loop. Thus, S is no stb-diagnosis of F . However,
S ′ is a stb-diagnosis, since FS′ possesses the unique stable extension {a, b, e, f}. So, FS′ is a
stb-repair. Since only one attack is removed, it is quite easy to see that S ′ is even a minimal
diagnosis.

3.2 Relations between Credulous and Sceptical Reasoning Mode

We start with some general relations between credulous and sceptical diagnoses. The fol-
lowing theorem applies to any semantics. It states that minimal credulous diagnoses can
be found as subsets of sceptical diagnoses.

Theorem 3.4. Given an AF F and a semantics σ. If S is a scep-σ-diagnosis of F , then
there is a minimal cred-σ-diagnosis S ′ of F , s.t. S ′ ⊆ S.

Proof. Let S be a scep-σ-diagnosis of F . This means,
⋂
σ(FS) 6= ∅. Consequently, σ(FS) 6=

∅ and therefore
⋃
σ(FS) 6= ∅. Thus, S is a cred-σ-diagnosis of F . Moreover, by finiteness

of S we deduce the existence of a minimal cred-σ-diagnosis S ′ of F with S ′ ⊆ S concluding
the proof.

2. We do not fix the order of the specifications, so we also speak of cred-σ-diagnoses, cred-σ-repairs etc.
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Observe that the above theorem holds for both argument-based as well as attack-based
diagnoses.

Vice versa, sceptical diagnoses can be found as supersets of credulous ones. We want
to mention two issues. First, in contrast to the assertion before, the proof of Theorem 3.5
requires semantics specific properties and thus, does not hold for any argumentation se-
mantics. Secondly, it is not quite clear whether even minimality can be shown. More
precisely, the situation differs depending on the semantics and whether argument-based or
attack-based diagnoses are considered. Let us start with the existence of an arbitrary repair:

Theorem 3.5. Given an AF F and a semantics σ ∈ {stb, ss, co, pr , gr , il , eg}. If S is a
cred-σ-diagnosis of F , then there is a scep-σ-diagnosis S ′ of F , s.t. S ⊆ S ′.

Proof. We give two different proofs depending on whether S is argument- or attack-based.

Argument-based : We argue as in the proof of Theorem 3.5: Assume S is a cred-σ-diagnosis
of F . Then, there is an argument a ∈

⋃
σ(FS) 6= ∅. Since a σ-extension is conflict-

free, (a, a) /∈ FS . So define S ′ = (A \ {a}, ∅) yielding FS′ = ({a}, ∅). Thus, we obtain
σ(FS′) = {{a}} for any semantics σ. Hence,

⋂
σ(FS′) = {a} so S ′ is a scep-σ-diagnosis of

F .

Attack-based : This is trivial because S ′ = R yields an AF with no attacks, so σ(FS′) = {A}
for any considered semantics σ. Moreover, S ⊆ S ′ for any attack-based diagnosis S.

Now we turn to minimality, i. e. the following problem: Given an AF F , a semantics
σ ∈ {stb, ss, co, pr , gr , il , eg} and a minimal cred-σ-diagnosis S of F , is there a minimal
scep-σ-diagnosis S ′ of F , s.t. S ⊆ S ′? Let us first mention the trivial cases σ ∈ {gr , eg , il}
where the reasoning modes (due to uniqueness) coincide. Clearly, minimality is given as
noted in Corollary 3.13. For the other semantics the answer differs depending on the type
of diagnoses under consideration. So let us start with argument-based ones. Here we have
the following counterexample for σ ∈ {ss, co, pr}.

Example 3.6. Consider the following AF F = (A,R):

a c

b d

xF : y

Please observe the structure of this AF: We have an even loop consisting of arguments a, b,
c and d which is disturbed by two dummy arguments x and y. Let σ ∈ {ss, pr , co}. Clearly,
there is no way to defend anything from x and y and thus ∅ is the only σ-extension. Hence,
F is inconsistent wrt. σ. Now consider the AF F{x}, i. e. the argument x is removed. We
still have ∅ as the only extension: The two candidates {a, d} and {b, c} still lack defense
against y. However, removal of x and y yields the following AF F{x,y} possessing the two
non-empty extensions {a, d} and {b, c}:
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a

F{x,y} :

c

b d

We thus found the minimal σ-cred diagnosis {x, y}. In order to extend this diagnosis to
a σ-scep diagnosis, we need to remove a, b, c or d as well, so we have σ-scep diagnoses
{x, y, a}, {x, y, b}, {x, y, c} and {x, y, d} and their corresponding repairs as depicted below:

F{x,y,a} :

c

b d

a

F{x,y,b} :

c

d

a

F{x,y,c} :

b d

a

F{x,y,d} :

c

b

However, there is no minimal σ-scep diagnosis among them. For example, in F{x,y,a} the
argument a is removed in order to render c sceptically accepted. This, in turn, does not
depend on x, so there is no harm in moving to F{y,a} instead; c is still sceptically accepted:

c

b d

xF{y,a} :

Due to symmetry, we see in addition the minimal σ-scep-diagnoses {y, c}, {x, b} and {x, d}.
There is thus no minimal σ-scep-diagnosis S ′ with {x, y} ⊆ S ′.

For stable semantics, this is an open problem. We conjecture that minimality can be
guaranteed, but did not find a proof so far.

Conjecture 3.7. Let F be an AF. If S is a minimal argument-based stb-cred-diagnosis of
F , then there is a minimal stb-scep-diagnosis S ′ of F , s.t. S ⊆ S ′.

Let us now turn to attack-based diagnoses. They are more fine-grained since removing
a single attack is just removing an attack, where removing an argument yields an arbitrary
amount of removed attacks. We can thus answer the question affirmatively for preferred,
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stable and semi-stable semantics. We have the following, even stronger result. The proof of
the theorem below illustrates how precise attack-based diagnoses operate: Given (a, b) ∈ S
for a minimal σ-diagnosis (σ ∈ {ss, pr , stb}), then b is guaranteed to be sceptically accepted.

Theorem 3.8. Let F = (A,R) be an AF and let σ ∈ {ss, pr , stb}. Assume F is inconsistent
wrt. σ and credulous reasoning. If S ⊆ R is a minimal σ-cred-diagnosis of F , then S is a
minimal σ-scep-diagnosis as well.

Proof. Let (a, b) ∈ S. By assumption, FS ∪ {(a, b)} = FS\{(a,b)} is inconsistent wrt. σ and
credulous reasoning and FS is consistent, i. e. there is a non-empty extension E, so we have
∅ 6= E ∈ σ(FS). We claim that b is sceptically accepted in FS .

Stable: Let E be a stable extension of FS . By definition, E⊕FS = A and E is conflict-free in
FS . Assume for the sake of contradiction b /∈ E. We claim that in this case, E must be a
stable extension of FS ∪ {(a, b)} as well:

• Since E was conflict-free in FS and b /∈ E, E is also conflict-free in FS ∪ {(a, b)},

• due to E⊕FS = A we immediately infer A = E⊕FS ⊆ E⊕FS∪{(a,b)}, and hence we infer

A = E⊕FS∪{(a,b)} since the other inclusion is clear.

The two items above are the properties a stable extension requires. Now, since E is a
stable extension of FS ∪ {(a, b)}, we see that S is not a minimal stb-cred-diagnosis of F
contradicting our assumption. We thus conclude b ∈ E. Since E was an arbitrary σ-
extension of FS , b is sceptically accepted. We thus infer that S is even a stb-scep-diagnosis.
Minimality will be discussed below.

Preferred: Now let E be a non-empty preferred extension of FS . Hence E = ΓFS (E) with
E 6= ∅. Again assume b /∈ E. In this case, b is not defended by E, otherwise we had
b ∈ ΓFS (E). This means, there is an argument c ∈ A with (c, b) ∈ R \ S (hence, c 6= a) with
either c ∈ E or c is not attacked by E. Now consider FS ∪ {(a, b)}. Since b /∈ E, E is still
conflict-free. Moreover, there is the argument c as above, so we have b /∈ ΓFS∪{(a,b)}(E) as
well. This means the additional attack (a, b) is irrelevant for the characteristic function Γ
applied to E, i. e.

E = ΓFS (E) = ΓFS∪{(a,b)}(E)

and hence, E 6= ∅ is a complete extension of FS ∪ {(a, b)}. Thus, FS ∪ {(a, b)} is consistent
wrt. complete semantics and credulous reasoning, implying it is consistent wrt. preferred
semantics and credulous reasoning. As above, this contradicts minimality of S. We thus
conclude b ∈ E for any non-empty preferred extension E. Since there is at least one non-
empty preferred extension, ∅ /∈ pr(FS) and we thus see again that b is sceptically accepted.

Semi-Stable: As before, assume we are given an non-empty semi-stable extension E of FS
with b /∈ E. We may argue as above since E is also a preferred extension of FS . We thus
infer that E is a complete extension of FS ∪ {(a, b)}. This is the same contradiction as
before, implying b ∈ E. Again, E was an arbitrary non-empty extension and ∅ /∈ ss(FS),
so b is sceptically accepted.

Minimality: In all three cases we observed that S is a σ-cred-diagnosis as well. As a final
remark we note that S must be minimal since S was assumed to be minimal for credulous
reasoning already: a proper subset S ′ ( S cannot be a σ-scep-diagnosis.
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Observe that inconsistency of F wrt. credulous reasoning was a premise of the above
theorem. In case F possesses a non-empty σ-extension, it is clear that a minimal σ-scep-
diagnosis can be found as a superset of the single minimal σ-cred-diagnosis ∅. So we
summarize:

Corollary 3.9. Let F be an AF and let σ ∈ {ss, pr , stb}. If S is a minimal attack-based
σ-cred-diagnosis of F , then there is a minimal σ-scep-diagnosis S ′ of F , s.t. S ⊆ S ′.

Proof. If F is consistent wrt. σ and credulous reasoning, then S must be empty, so the
claim is trivial. Otherwise, if S is a minimal attack-based σ-cred-diagnosis of F , then due
to Theorem 3.8 we may set S ′ = S, i. e. we can even guarantee equality.

When considering complete semantics, we do not have minimality in Theorem 3.5 in
general. At a first glance, this might be surprising considering the affirmative answer for
preferred semantics. However, in the proof of Theorem 3.8 we could exclude ∅ as a possible
preferred extension once we found an arbitrary non-empty fixed point of Γ. This does not
work for complete semantics. Hence, we find the following counterexample:

Example 3.10. Consider the following AF F = (A,R):

a c

b d

wF : y

x z

Clearly, ∅ is the only complete extension. The reader may verify that S = {(w, a), (z, d)} is a
minimal co-cred-diagnosis of F , yielding the complete extension {a, d}. Since ∅ is a complete
extension of FS as well, this is no co-scep-diagnosis of F . One may check that S cannot
be extended to a minimal sceptical diagnosis: A minimal co-scep-diagnosis must ensure
that at least one argument is unattacked. Thus, they are given as {(w,w)}, . . . , {(z, z)} and
{(w, a), (b, a)}, . . . , {(z, d), (c, d)}. So there is no minimal co-scep-diagnoses S ′ with S ⊆ S ′.

Finally, we show two helpful, but not unexpected relations between different semantics
and their reasoning modes.

Theorem 3.11. Given two semantics σ and τ , s.t. σ ⊆ τ and σ is universally defined. Let
F be an AF.

1. If S ⊆ F is a cred-σ-diagnosis of F , then there is a minimal cred-τ -diagnosis S ′ of
F , s.t. S ′ ⊆ S.

2. If S ⊆ F is a scep-τ -diagnosis of F , then there is a minimal scep-σ-diagnosis S ′ of
F , s.t. S ′ ⊆ S.

1109



Baumann and Ulbricht

Proof. We prove the second item only. Let S be a scep-τ -diagnosis of F . This means,⋂
τ(FS) 6= ∅. Since σ ⊆ τ is assumed we deduce ∅ 6=

⋂
τ(FS) ⊆

⋂
σ(FS). Since σ is

universally defined we have σ(FS) 6= ∅ which implies that S is a scep-σ-diagnosis of F .
Moreover, by finiteness of S we deduce the existence of a minimal scep-σ-diagnosis S ′ of F
with S ′ ⊆ S concluding the proof.

3.3 Uniquely Defined Semantics

We now focus on uniquely defined semantics, i. e. we have |σ(F )| = 1 for any F ∈ F .
Considering the semantics we investigate in this article this means σ ∈ {gr , eg , il}.

Please note that in case of uniquely defined semantics we have that any (minimal)
sceptical diagnosis is a (minimal) credulous one and vice versa.

Lemma 3.12. If F is an AF and σ ∈ {gr , eg , il}, then S is a cred-σ-diagnosis of F iff it
is a scep-σ-diagnosis of F .

Proof. If |σ(F )| = 1, then
⋂
σ(F ) =

⋃
σ(F ).

This implies in particular that minimality in Theorem 3.5 can be shown.

Corollary 3.13. Given an AF F and a semantics σ ∈ {gr , eg , il}. If S is a minimal
cred-σ-diagnosis of F , then there is a minimal scep-σ-diagnosis S ′ of F , s.t. S ⊆ S ′.

Proof. Set S ′ = S and apply Lemma 3.12.

We proceed with grounded semantics since these results will play a central role for all
other semantics considered in this article. Dung originally defined the grounded exten-
sion of an AF F = (A,R) as the ⊆-least fixpoint of the so-called characteristic function
ΓF : 2A → 2A with E 7→ {a ∈ A | a is defended by E}. Moreover, he showed that this
definition coincides with the ⊆-least complete extension (Dung, 1995, Theorem 25) as intro-
duced in Definition 2.1. Since ΓF is shown to be ⊆-monotonic we may compute the unique
grounded extension G stepwise, i.e. applying ΓF iteratively starting from the empty set.

More precisely, G =
⋃|A|
i=1 ΓiF (∅) (Baumann & Spanring, 2017, Section 3.2). For instance, the

unique grounded extensions of F{c} and F{a} are {e, f, a} = Γ2
F{c}

(∅) and {e, f, b} = Γ1
F{a}

(∅),
respectively. Consequently, an AF possesses a non-empty grounded extension if and only
if there exists at least one unattacked argument. This renders argument-based diagnoses
weaker in some cases since there is no way to remove a single argument. It is thus clear
that a self-controversial AF does not possess an argument-based diagnosis. More precisely,
we find the following:

Fact 3.14. Let σ = gr. Let F be an AF.

1. There exists a minimal argument-based gr-repair for F iff F is not self-controversial.

2. There exists a minimal attack-based gr-repair for F .

Proof. For the first item, assume F = (A,R) and a ∈ A does not attack itself. Then,
S = A\{a} is a gr -diagnosis of F . Due to finiteness, we find a minimal one S ′ with S ′ ⊆ S.
For the second item observe that S = R is a diagnosis. Again we can move to a minimal
one.
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In addition to Fact 3.14, we observe that diagnoses for ideal and eager semantics can
be found as subsets of a grounded diagnosis. The intuitive reason is the fact that ideal
semantics accepts more arguments than grounded semantics and eager semantics is even
more credulous than ideal semantics.

Lemma 3.15. Let σ ∈ {il , eg}. Let F be an AF. If S ′ is a gr-diagnosis of F , then there is
a minimal σ-diagnosis S of F , s.t. S ⊆ S ′.

Proof. As already mentioned, S ′ is a gr -diagnosis of F if and only if FS′ contains an
unattacked argument, say a. In this case we see that a also occurs in the unique ideal
as well as eager extension. Hence, S ′ is a σ-diagnosis for σ ∈ {il , eg}. Due to finiteness,
there is a minimal σ-diagnosis S with S ⊆ S ′.

The subsequent main theorem claims the existence of minimal σ-diagnoses for the con-
sidered uniquely defined semantics (recall that we do not need to distinguish between cred-
ulous and sceptical reasoning for those semantics). Due to the above fact, we find the claim
for grounded semantics. Equipped with a grounded diagnosis, we find the other two by
applying Lemma 3.15. Moreover, the restriction to finite AFs even gives us the existence
of minimal ones.

Theorem 3.16. Let σ ∈ {gr , eg , il}. Let F be an AF.

1. There exists a minimal argument-based σ-repair for F iff F is not self-controversial.

2. There exists a minimal attack-based σ-repair for F .

Proof. For σ = gr , this is Fact 3.14. For σ ∈ {eg , il}, this can be inferred from Lemma 3.15
after applying Fact 3.14.

Example 3.17. The following simple framework G demonstrates that least σ-repairs do
not necessarily exist. For σ ∈ {gr , eg , il} we have σ(G) = {∅}, i.e. nothing is credu-
lously/sceptically accepted.

aG : b bG{a} : aG{b} : aG{(b,a)} : b aG{(a,b)} : b

Observe that all four depicted given diagnoses are minimal, i. e. {a}, {b}, {(a, b)} and
{(b, a)}. This example thus illustrates that a least repair does not necessarily exist. This is
true for both argument-based as well as attack-based diagnoses.

This finishes our discussion on uniquely defined semantics. In the subsequent section,
we turn to universally defined semantics.

3.4 Universally Defined Semantics

Let us consider now semantics which provide us with at least one acceptable position.
The following lemma shows that for these semantics minimal credulous as well as sceptical
diagnoses are guaranteed, whenever there is a grounded diagnosis.

Lemma 3.18. Let σ ∈ {ss, pr , co}. For any AF F there exists a minimal σ-diagnosis S,
whenever there exists a gr-diagnosis S ′ of F . Moreover, even S ⊆ S ′ can be guaranteed.
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Proof. Let σ ∈ {ss, pr , co} and S ′ a gr -diagnosis of F . Hence, gr(FS′) = {G} with G 6= ∅.
Since G is the ⊆-least fixpoint of ΓFS′ we deduce G ⊆ C for any C ∈ co(FS′). Due to
ss ⊆ pr ⊆ co and the universal definedness of σ we have ∅ 6= G ⊆

⋂
σ(FS′) as well as

∅ 6= G ⊆
⋃
σ(FS′). Hence, S ′ is a sceptical as well as credulous σ-diagnosis of F . Due to

finiteness of F , there exists a minimal σ-diagnosis S ⊆ S ′ concluding the proof.

Combining Theorem 3.16 and Lemma 3.18 yields the subsequent main theorem for the
considered universally defined semantics. As usual, there is a slight difference between
argument-based and attack-based diagnoses.

Theorem 3.19. Let σ ∈ {ss, pr , co}. Let F be an AF.

1. There exists a minimal argument-based σ-repair for F iff F is not self-controversial.

2. There exists a minimal attack-based σ-repair for F .

Proof. Apply Theorem 3.16 and Lemma 3.18.

The following example shows, as promised in Lemma 3.18, that already computed
grounded diagnoses can be used to find minimal preferred diagnoses. Moreover, in con-
trast to uniquely defined semantics we observe that minimal sceptical and minimal credu-
lous diagnoses do not necessarily coincide. This is the case for both argument-based and
attack-based diagnoses.

Example 3.20. Consider the following AF L. Since we have no unattacked arguments we
deduce gr(L) = {∅}, i.e. nothing is accepted.

Argument-based repairs: Please observe that L{a} and L{d} do not possess a grounded
extension, either. Consequently, L{a,d} is a minimal argument-based gr -repair since we have
gr(L{a,d}) = {{c}}. Note that {a, d} is even a sceptical as well credulous preferred diagnosis
of L. These diagnoses are not minimal for preferred semantics since pr(L) = {{a, d}, {c}}
implies

⋃
pr(L) 6= ∅ as well as pr(L{a}) = {{c}} entails

⋂
pr(L{a}) 6= ∅. Altogether, we

have strict subset relation (∅ ( {a} ( {a, d}) between minimal credulous preferred, minimal
sceptical preferred and minimal grounded diagnoses.

L :

a b

c d

L{a} :

b

c d

L{a,d} :

b

c

Attack-based repairs: Regarding attack-based diagnoses, we make similar observations with
the chain ∅ ( {(a, c)} ( {(a, c), (d, c)}.

L :

a b

c d

L{(a,c)} :

a b

c d

L{(a,c),(d ,c)} :

a b

c d
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3.5 Collapsing Semantics

Stable semantics is the only prominent semantics which may collapse even for finite AFs.
Consider e. g. the AF F from Example 1.2, which does not possess a stable extension as
we already explained. However, in terms of existence of repairs we do not observe any
differences to all other considered semantics.

Fact 3.21. Let F be an AF.

1. There exists a minimal argument-based stb-repair for F iff F is not self-controversial.

2. There exists a minimal attack-based stb-repair for F .

In contrast to all other considered semantics we have that stable diagnoses can not be
necessarily found as subsets of an already computed grounded one (Lemmata 3.15, 3.18).
For instance, the AF F from Example 1.2 possesses the unique grounded extension {e, f}.
Consequently, we have the trivial (least) gr -diagnosis, namely the empty set. As F does not
possess a stable extension, all minimal stb-diagnoses are non-empty. Nevertheless, credulous
as well as sceptical diagnoses for stable semantics can be found as supersets of grounded
ones.

Lemma 3.22. Let F = (A,R) be an AF. If S ′ is a gr-diagnosis of F , then there is a
stb-diagnosis S of F , s.t. S ′ ⊆ S.

Proof. Argument-based : Given S ′ as gr -diagnosis of F = (A,R), i.e. gr (FS′) = {E} with
E 6= ∅. Consider now E⊕ wrt. the attack-relation of FS′ . Obviously, S ′ ⊆ A \ E⊕ and
moreover, gr

(
FA\E⊕

)
= {E}. Obviously, by construction E ∈ stb

(
FA\E⊕

)
. Furthermore,

since E is non-empty we deduce that there is at least one unattacked argument a ∈ E.
Hence, for any E′ ∈ stb

(
FA\E⊕

)
we have a ∈ E′. Consequently, A \ E⊕ serves as a

credulous as well as sceptical diagnosis for stable semantics.

Attack-based : Trivial since we may set S = R.

Please note that Lemma 3.22 does not claim minimality of the stb-diagnosis S. Indeed,
the following example illustrates that existence of a minimal stb-diagnosis with S′ ⊆ S as
above is not obtained in general.

Example 3.23. Consider the following AF F

dc

a

bF :

Since every argument is attacked we infer that ∅ cannot be a gr -diagnosis. A possible
gr -diagnosis is {a}. Indeed, this is also a stb-diagnosis (wrt. credulous as well as sceptical
reasoning), but not minimal since F itself possesses the sceptically accepted argument d.
Moreover we make the same observations for the gr -diagnosis {(a, b)}. Hence, this is a
counterexample for both types of diagnoses.
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This finishes our discussion regarding rather general results pertaining to the existence
and relationships of repairs. In the next section, we show how to characterize all repairs
of a given AF. This is achieved via a generalized version of Reiter’s well-known hitting set
duality.

4. Characterizing all Diagnoses: A Hitting Set Duality for AFs

In his seminal paper, Reiter (1987) establishes – for his setting of a given system description
– a duality result between the set of all minimal repairs and the minimal conflicts. Recently,
it was shown by Brewka et al. (2019) that Reiter’s duality can be generalized to arbitrary
logics given that the knowledge bases in question can be modeled as a finite set of formulas.
In order to capture even non-monotonic logics a refinement of the notion of inconsistency
was necessary. In this section we will demonstrate how to utilize this generalized duality
for the non-monotonic theory of abstract argumentation.

4.1 Hitting Set Duality for General Logics

The result by Brewka et al. (2019) uses a generic definition of a logic adapted from Brewka
and Eiter (2007). In a nutshell, a logic L consists of syntax and semantics of formulas. To
model the syntax properly, we stipulate a set WF of so-called well-formed formulas. Any
knowledge base K consists of a subset of WF . To model the semantics, we let BS be a
set of so-called belief sets. Intuitively, given a knowledge base K, the set of all that can
be inferred from K is B ⊆ BS. To formalize this, a mapping ACC assigns the set B of
corresponding belief sets to each knowledge base K. Finally, some belief sets are considered
inconsistent. We call the set of all inconsistent belief sets INC. Hence, our definition of a
logic is as follows.

Definition 4.1. A logic L is a tuple L = (WF ,BS, INC,ACC) where WF is a set of
well-formed formulas, BS is the set of belief sets, INC ⊆ BS is an upward closed3 set of
inconsistent belief sets, and ACC : 2WF → 2BS is a mapping. A knowledge base K of L is a
finite subset of WF . A knowledge base K is called inconsistent iff ACC(K) ⊆ INC.

Let us briefly discuss the notion of strong inconsistency and how it induces a hitting set
duality for our setting.

Definition 4.2. Let K be any knowledge base. For H ⊆ K, H is called strongly K-
inconsistent if H ⊆ H′ ⊆ K implies H′ is inconsistent. H is minimal strongly K-inconsistent
if H is strongly K-inconsistent and H′ ( H implies that H′ is not strongly K-inconsistent.
Let SImin(K) denote the set of all minimal strongly K-inconsistent subsets of K.

We proceed with the well-known concepts of (minimal) hitting sets and (maximal) con-
sistent subsets.

Definition 4.3. LetM be a set of sets. We call S a hitting set ofM if S ∩M 6= ∅ for each
M ∈ M. A hitting set S of M is a minimal hitting set of M if S ′ ( S implies S ′ is not a
hitting set of M.

3. S is upward closed if B ∈ S, B ⊆ B′ implies B′ ∈ S.
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Definition 4.4. We say H ⊆ K is a maximal consistent subset of K if H is consistent and
H ⊆ H′ ⊆ K implies H′ is inconsistent. We denote the set of all maximal consistent subsets
of K by Cmax (K).

Now we are ready to phrase the duality result from Brewka et al. (2017).

Theorem 4.5. Let K be a knowledge base. Then, S is a minimal hitting set of SImin(K) if
and only if K \ S ∈ Cmax (K).

4.2 Strong Inconsistency in Abstract Argumentation

Our goal is to apply Theorem 4.5 to the theory of abstract argumentation frameworks.
So let us rephrase the notions we require appropriately. Clearly, the concept of maximal
consistency does not require a translation to AFs since these are the sub-AFs corresponding
to minimal repairs. We thus consider strong inconsistency. As usual, this can be done for
argument-based and attack-based diagnoses.

Definition 4.6. Let F = (A,R) be an AF and let σ be any semantics.

Argument-based : We call H ⊆ A a strongly inconsistent set of arguments of F wrt. σ
and credulous (sceptical) reasoning if for each H′ with H ⊆ H′ ⊆ A the AF FA\H′ =

(H′, R|H′) is inconsistent wrt. σ and credulous (sceptical) reasoning. Let SI A
min(F , σ, cred)

(SI A
min(F , σ, scep)) be the set of all minimal strongly inconsistent sets of arguments of F

wrt. σ and credulous (sceptical) reasoning.

Attack-based : We callH ⊆ R a strongly inconsistent set of attacks of F wrt. σ and credulous
(sceptical) reasoning if for each H′ with H ⊆ H′ ⊆ R the AF FR\H′ = (A,H′) is inconsistent

wrt. σ and credulous (sceptical) reasoning. Let SI R
min(F , σ, cred) (SI R

min(F , σ, scep)) be the
set of all minimal strongly inconsistent sets of attacks of F wrt. σ and credulous (sceptical)
reasoning.

As usual the semantics as well as the reasoning mode will sometimes be clear from the
context or irrelevant. In this case we will them implicit and simply write SI A

min(F ) resp.
SI R

min(F ).

Example 4.7 (Strong inconsistency for AFs). Consider the running example F .

Argument-based : For our running example AF F = (A,R) we had A = {a, b, c, d, e, f}. Let
us focus on credulous reasoning. We already observed that F has no stable extension, i.e. A
itself is a strongly inconsistent set of arguments wrt. stable semantics. The subset H1 ⊆ A
with H1 = {a, b, c} induces the AF F1 = ({a, b, c}, {(a, b), (b, c), (c, a)}) corresponding to
the odd circle contained in F . However, H1 is not a strongly inconsistent set of arguments
since the framework induced by H2 with H1 ⊆ H2 ⊆ A given as H2 = {a, b, c, d} has the
stable extension {b, d} (cf. AF F{e,f} depicted in Example 1.2). One may easily verify that

SI A
min(K) = {{a, b, c, e}, {a, b, c, f}}.

Attack-based : We have R = {(a, b), (b, c), (c, a), (d, a), (e, d), (f, d)}. Again consider credu-
lous reasoning and stable semantics. Now the subsetH1 ⊆ R withH1 = {(a, b), (b, c), (c, a)}
induces to the odd circle contained in F . Again, H1 is not strongly inconsistent since the
superset H2 with H1 ⊆ H2 ⊆ R given as H2 = {(a, b), (b, c), (c, a), (d, a)} induces the AF
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FR\H2
= F{(e,d),(f,d)} with the stable extension {b, d, e, f}. Note however that the repre-

sented framework is now different, namely F with two attacks removed:

a

b

c

d

f

eF{(e,d),(f,d)} :

We obtain

SI R
min(F ) = {{(a, b), (b, c), (c, a), (e, d)}, {(a, b), (b, c), (c, a), (f, d)}}.

Now we are ready to apply Theorem 4.5 to diagnoses of AFs. The result holds for all
semantics and both reasoning modes. It can be stated for both argument-based as well
as attack-based repairs. To prove this, we simply construct a logic where any formula α
of a knowledge base K corresponds to an argument (for argument-based diagnoses) resp.
attack (for attack-based diagnoses). Since an AF is a tuple consisting of both arguments
and attacks, one of them will be fixed.

Proposition 4.8. [Duality: argument-based] Let F = (A,R) be an AF. Let σ be any
semantics and consider any reasoning mode. Then, S is a minimal hitting set of SI A

min(F )
if and only if S is a minimal σ-diagnosis of F .

Proof. Assume the set R of attacks is fixed. Define a logic L = (WF ,BS, INC,ACC)
with WF = A (that is, a knowledge base K is a finite set of arguments in A), BS = A,
INC = ∅ and ACC(K) =

⋃
σ(F ) resp. ACC(K) =

⋂
σ(F ) where F is the AF F = (K, R|K).

Now given an AF F = (A,R) a minimal argument-based repair corresponds to a maximal
consistent subset H ⊆ K = A and a minimal strongly inconsistent set of arguments of F
corresponds to a minimal strongly inconsistent subset of K. Thus, the claim can be seen by
applying Theorem 4.5 to the logic L we defined here.

Proposition 4.9. [Duality: attack-based] Let F = (A,R) be an AF. Let σ be any semantics
and consider any reasoning mode. Then, S is a minimal hitting set of SI R

min(F ) if and only
if S is a minimal σ-diagnosis of F .

Proof. Assume the set A of arguments is fixed. Define a logic L = (WF ,BS, INC,ACC)
with WF = A×A (that is, a knowledge base K is a finite set of attacks over A), BS = A,
INC = ∅ and ACC(K) =

⋃
σ(F ) resp. ACC(K) =

⋂
σ(F ) where F is the AF F = (A,K).

Now given an AF F = (A,R) a minimal attack-based repair corresponds to a maximal
consistent subset H ⊆ K = R and a minimal strongly inconsistent set of attacks of F
corresponds to a minimal strongly inconsistent subset of K. Thus, the claim can be seen by
applying Theorem 4.5 to the logic L we defined here.

Example 4.10 (Maximal Consistent Subsets via Hitting Set Duality). Consider again the
running example F with stable semantics and credulous reasoning.
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Argument-based : For the argument-based diagnoses we checked that

SI A
min(K) = {{a, b, c, e}, {a, b, c, f}}.

According to Definition 4.3 we obtain four minimal hitting sets, namely {a}, {b}, {c} and
{e, f}. Observe that {e, f} is the already found stb-diagnosis presented in Example 1.2.
The minimal hitting sets for F can be interpreted as follows: Either one argument from the
odd circle needs to be removed or both e and f to facilitate d. These sets correspond to the
stb-repairs F{e,f} (considered in Example 1.2) as well as F{c}, F{b} and F{a} depicted below.
We obtain stb

(
F{c}

)
= {{e, f, a}}, stb

(
F{b}

)
= {{e, f, c}} and stb

(
F{a}

)
= {{e, f, b}}.

a

b

d

f

e

F{c} :

a

c

d

f

e

F{b} :

b

c

d

f

e

F{a} :

Attack-based : Recall

SI R
min(F ) = {{(a, b), (b, c), (c, a), (e, d)}, {(a, b), (b, c), (c, a), (f, d)}}

for the attack-based diagnoses. We find the hitting sets {(a, b)}, {(b, c)}, {(c, a)} as well
as {(e, d), (f, d)}. The latter one yields F{(e,d),(f,d)} from Example 4.7. The former ones
correspond to the following AFs:

a

b

c

d

f

e

F{(a,b)} :

a

b

c

d

f

e

F{(b,c)} :

a

b

c

d

f

e

F{(c,a)} :

This finishes our discussion regarding a characterization of all diagnoses of a given AF.
The results of this section indicate that finding repairs can be achieved in a straightforward
way or by consideration of the strongly inconsistent arguments resp. attacks. This might
not be the most efficient approach if one is just interested in one diagnosis, but it helps
representing all repairs in a concise way.

In his seminal paper, Reiter (1987) establishes a duality result between hitting sets of
minimal inconsistent subsets (“conflict sets”) and maximal consistent subsets. Reiter’s pa-
per is also concerned about computing hitting sets. In fact, many algorithms and systems
for enumerating minimal inconsistent sets build on the duality between minimal inconsis-
tent sets, maximal consistent sets, and their respective hitting sets (Bailey & Stuckey, 2005;
Liffiton & Sakallah, 2008; Liffiton, Previti, Malik, & Marques-Silva, 2016). For example,
Liffiton et al. (2016) take turns in computing minimal unsatisfiable sets and maximal con-
sistent sets and uses the duality between the two to compute remaining sets of either type.
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Hitting sets are also utilized in computation of causes and responsibilities of inconsistency in
databases (Bertossi & Salimi, 2017). It would thus be interesting to see whether approaches
like these can be adapted to repair inconsistent AFs.

The motivation of Reiter (1987) for establishing the duality result is finding diagnoses.
Many further approaches consider this problem as well and apply and extend his work. To
name just a few, Stern et al. (2012) exploit the duality between minimal inconsistent sets
and maximal consistent sets and, similarly as discussed above for the task of enumerating
these sets, interleaves construction of these two sets with each other, in order to solve the
diagnosis problem. The work by Metodi et al. (2014) casts the problem into SAT and
reports on to-date significant performance improvements. Similarly, Marques-Silve et al.
(2015) solve the diagnosis problem by casting it into a MaxSAT problem and leveraging
SAT solvers.

In the next section, we focus on particular aspects and properties of AFs in order to
infer tailored, more advanced properties.

5. Special Cases For AFs

We may obtain more insightful results when focusing on certain aspects of the AF under
consideration. We will start our investigation with symmetric AFs (Coste-Marquis, Devred,
& Marquis, 2005). In a nutshell, an AF is symmetric if the attack relation is. Symmetry
is a rather strong property, yielding a variety of additional connections between repairs
and diagnoses. Moreover, complexity results for symmetric AFs are quite encouraging (see
Section 6 below). The same is true for compact (Baumann, Dvorák, Linsbichler, Strass,
& Woltran, 2014) and acyclic AFs. We then continue with a splitting method (Baumann,
2011). Splitting methods are an important concept in non-monotonic reasoning which
allows for a certain modularization of the knowledge base under consideration which is
usually not given due to non-monotonic interactions between formulas (Baroni, Giacomin,
& Liao, 2018). The structural properties that come along with splitting can be utilized
to infer results for diagnoses. The last part of this section will be devoted to infinite AFs
(Baumann & Spanring, 2017). Allowing the underlying set of arguments to be infinite
possesses additional challenges since the behavior of an infinite AF is less intuitive and
existence and uniqueness of certain extensions as well as diagnoses is no longer guaranteed.

5.1 Symmetric, Compact and Acyclic Frameworks

According to Coste-Marquis et al. (2005) an AF F = (A,R) is symmetric if R is symmetric,
nonempty and irreflexive.

Definition 5.1. If F = (A,R) is an AF, then we call F symmetric if

• R 6= ∅,

• (a, b) ∈ R implies (b, a) ∈ R for any a, b ∈ A,

• (a, a) /∈ R for any a ∈ A.
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Example 5.2. The following AF F is symmetric:

dc

a

bF :

Now assume we are given a symmetric AF F . Clearly, when moving from F to FS
for S ⊆ A resp. S ⊆ R, we do not change the fact that the attack relation is irreflexive.
We might end up with an AF with no attack (violating non-emptiness), but this does not
concern us since an AF of the form F = (A, ∅) is consistent for both reasoning modes and
any considered semantics. However, we need to make sure that the symmetry of the attack
relation is preserved, otherwise we lose the properties we want to utilize. This is clearly no
issue for argument-based diagnoses:

Lemma 5.3. If F = (A,R) is symmetric and S ⊆ A, then the attack-relation of FS is
either empty or symmetric and irreflexive.

Of course, we want to consider attack-based diagnoses as well. Fortunately, the restric-
tion we need to make for the removal of attacks is quite natural. We simply need to ensure
that the diagnosis operates symmetric in the sense that removal of (a, b) implies removal of
(b, a) as well. Formally:

Definition 5.4. Let F = (A,R) be a symmetric AF. An attack-based diagnosis S ⊆ R of
F is symmetric iff (a, b) ∈ S ⇔ (b, a) ∈ S.

Clearly, we now have:

Lemma 5.5. If F = (A,R) is symmetric and S ⊆ R a symmetric diagnosis, then the attack
relation of FS is either empty or symmetric.

In case of stable, semi-stable and preferred semantics we obtain a very useful property,
namely any argument a ∈ A belongs to at least one extension (Coste-Marquis et al., 2005,
Proposition 6). Consequently, we may show the following properties.

Proposition 5.6. Given a semantics σ ∈ {stb, ss, pr} and a symmetric AF F = (A,R).

1. ∅ is the least cred-σ-diagnosis and

2. S ⊆ F is a (minimal) symmetric scep-σ-diagnosis iff S is a (minimal) symmetric
gr-diagnosis.

Let us assume that our current knowledge base underlies further external revision pro-
cesses (Coste-Marquis et al., 2014; Baumann & Brewka, 2015; Diller et al., 2018). Both
items can be gainfully used if we know that certain types of revision do not affect the sym-
metry of an AF. More precisely, the items 1 and 2 ensure that we have either nothing to
do (if interested in credulous reasoning) or we may act according to grounded semantics
instead of σ (if sceptical reasoning is chosen).
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Example 5.7. Consider again the symmetric AF F introduced in Example 5.2.

dc

a

bF :

We have stb(F ) = {{a, d}, {b, d}, {c}}. This means, no argument is sceptically accepted. In
order to repair regarding grounded semantics we have to ensure the existence of at least one
unattacked argument. Consequently, the least scep-gr -repair is given as F{c}. As promised
by Item 2 in Proposition 5.6 this indeed coincides with the least scep-stb-repair.

Let us briefly consider two further classes of frameworks, namely so-called compact and
acyclic ones. The first one is semantically defined and characterized by the feature that
each argument of the AF occurs in at least one extension of the AF (Baumann et al., 2014;
Baumann, 2018). For instance, the AF F depicted in Example 5.2 is compact wrt. stable
semantics. Compact frameworks obviously fulfill Item 1 of Proposition 5.6 and thus build
an interesting subclass of AFs if interested in credulous reasoning. The second class is
syntactically defined and as expected an AF is acyclic if it does not contain any cycles.
Such frameworks are known to be well-founded (Dung, 1995) which means, they possess
exactly one complete extension which is grounded, preferred and stable (Coste-Marquis
et al., 2005, Propositions 1 and 2). This means, the agent is able to act (in both reasoning
modes) whenever we are faced with an acyclic AF.

5.2 Splitting

Let us now investigate situations where we are given a splitting of the AF under considera-
tion. Splitting is an important concept in non-monotonic reasoning as it abuses structural
properties of a knowledge base in order to identify a certain monotonic behavior. More pre-
cisely, splitting methods try to divide a theory in subtheories such that the formal semantics
of the entire theory can be obtained by constructing the semantics of the subtheories. For
AFs, splitting was considered in several works (Baumann, 2011, 2014; Baroni et al., 2018).
We briefly recall the required notions here and then demonstrate how to infer properties of
repairs and diagnoses.

Definition 5.8. Let F1 = (A1, R1) and F2 = (A2, R2) be two AFs with A1 ∩ A2 = ∅. Let
R3 ⊆ A1 ×A2. We call (F1,F2, R3) a splitting of the AF F = (A1 ∪A2, R1 ∪R2 ∪R3).

In a nutshell, if (F1,F2, R3) is a splitting of F , then extensions of F1 can be computed
as a first step to compute an extensions of F . The AF F2 does not influence F1 and can
thus be considered later.

Example 5.9. Let F1 = (A1, R1) with A1 = {a, b} and R1 = {(a, b), (b, a)}, F2 = (A2, R2)
with A2 = {c, d} and R2 = {(c, d), (d, d)} and let R3 = {(a, d), (b, c)}. Then, (F1,F2, R3) is
a splitting of the following AF:
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a

b

F1 :

c

F2 :

d

The idea of splitting is as follows: Once we are given an extension E1 of the AF F1,
based on E1 we want to construct a reduced version of F2. Then we compute an extension
E2 of this reduced AF to obtain an extension E1 ∪ E2 of F . In the following, we define
how to reduce F2 when considering stable semantics. The other semantics will be discussed
afterwards.

Definition 5.10 (Reduct). Let F2 = (A2, R2) be an AF and A1 such that A1 ∩ A2 = ∅.
Let S ⊆ A1 and L ⊆ A1 ×A2. The (S,L)-reduct of F2, denoted by FS,L

2 , is the AF

FS,L2 =
(
AS,L2 , RS,L2

)
with AS,L2 = {a2 ∈ A2 | @a1 ∈ S : (a1, a2) ∈ L}

RS,L2 =
{

(a, b) ∈ R2 | a, b ∈ AS,L2

}
.

Example 5.11. Consider again our previous example. The AF F1 = (A1, R1) as above has
two stable extensions E1 = {a} and E′1 = {b}. So we are interested in the (E1, R3)- and

(E′1, R3)-reduct of F2 which are FE1,R3
2 = ({c}, ∅) and F

E′1,R3

2 = ({d}, {(d, d)}):

a

b

c d

a

b

c d

The former has the stable extension E2 = {c}, the latter none. Indeed, the unique stable
extension of the whole AF F is {a, c} = E1 ∪ E2.

Now the following theorem states that we can indeed find extensions E of F by consid-
ering an extension E1 of F1 and then reduce F2 and continue computing. More precisely,
we find all extensions of F this way:

Theorem 5.12. [(Baumann, 2011)] Let (F1, F2, R3) be a splitting of the AF F , i.e. we
have F = (A,R) = (A1 ∪A2, R1 ∪R2 ∪R3) where F1 = (A1, R1) and F2 = (A2, R2).

• If E1 is a stable extension of F1 and E2 a stable extension of the (E1, R3)-reduct of F2,
then E1 ∪ E2 is a stable extension of F .

• Vice versa, if E is a stable extension of F , then E1 = E ∩A1 is a stable extension of
F1 and E2 = E ∩A2 a stable extension of the (E1, R3)-reduct of F2.
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We can utilize this in order to find properties of repairs. Any stable extension contains
a stable extension of F1. So F1 has to be consistent wrt. credulous reasoning. This means
when trying to find repairs for F , one may start with repairs of F1. In the following, we
show that one can extend repairs of F1 even to minimal repairs of F .

Proposition 5.13. Let (F1, F2, R3) be a splitting of the AF F = (A1 ∪ A2, R1 ∪ R2 ∪ R3)
where F1 = (A1, R1) and F2 = (A2, R2). If S1 is a minimal stb-cred-diagnosis of F1, then
there is a minimal stb-cred-diagnosis S of F with S1 ⊆ S.

Proof. Let S1 be a minimal stb-cred-diagnosis of F1. Let E1 be a stable extension of (F1)S1 .
Now consider FE1,R3

2 , i. e. the (E1, R3)-reduct of F2. If FE1,R3
2 possesses a stable extension,

then we are done. If this is not the case, we need to be careful since two different extensions
of (F1)S1 might induce two reducts where the minimal repairs are in a subset relation; so
we cannot just take the minimal repair of FE1,R3

2 . So assume for the moment there is an
extension of (F1)S1 such that the reduct is not self-controversial and let

S2 ∈ min
E1∈stb((F1)S1)

{
S | S is a minimal repair of FE1,R3

2

}
where we quickly observe that the minimum exists since we are dealing with finite AFs.
Now let S = S1∪S2. We claim that S is a minimal diagnosis of F . For this, we observe that
we cannot remove any element from S1 since this was assumed to be a minimal diagnosis of
F1 and from Theorem 5.12 we know that it needs to possess a stable extension. Moreover,
if we are given S2 and the extension E1 in which the minimum is attained, we see that(

FE1,R3
2

)
S2

possesses a stable extension ensuring that S is a diagnosis. Now, minimality

is due to construction of S2. Finally, if the reduct is self-controversial for any extension of
(F1)S1 , we can set S2 = A2 for argument-based and S2 = R2 for attack-based diagnoses.

Even though being rather simple, the most important observation in the previous propo-
sition was that F1 needs to be consistent in order for F to be consistent. We can phrase
this observation in terms of SI A

min(F ) and SI R
min(F ), i. e. the strongly inconsistent sets of

arguments and attacks.

Proposition 5.14. If (F1, F2, R3) is a splitting of F = (A,R) = (A1 ∪ A2, R1 ∪ R2 ∪ R3),
then

• SI A
min(F1, stb, cred) ⊆ SI A

min(F , stb, cred),

• SI R
min(F1, stb, cred) ⊆ SI R

min(F , stb, cred).

Proof. We prove the first item only. Assume H1 ∈ SImin(F1, stb, cred) = SImin(F1). Then,

for any set H′1 with H1 ⊆ H′1 ⊆ A1 the AF
(
H′1, (R1)|H′1

)
has no stable extension. Due to

Theorem 5.12, this implies
(
H′1, (R1)|H′1

)
∪ F2 ∪ R3 has no stable extension, either. Since

we can also apply the splitting theorem after moving to a sub-AF of F2, we see that the AF(
H′1, (R1)|H′1

)
∪
(
H′2, (R2)|H′2

)
∪R3

is inconsistent for any H′1 with H1 ⊆ H′1 ⊆ A1 and any H′2 with H′2 ⊆ A2. Thus, H is a
strongly inconsistent sets of arguments of F . Minimality can be inferred from the splitting
theorem in a similar way. Hence, H1 ∈ SI A

min(F ).
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Let us now assume we are given SI A
min(F1). Due to the hitting set duality, i. e. Propo-

sitions 4.8 and 4.9 we find a minimal diagnosis of F1 by removing a minimal hitting set S1

of SI A
min(F1). In general it is not quite clear whether we can now extend S1 to a minimal

hitting set S of SI A
min(F ). Due to SI A

min(F1) ⊆ SI A
min(F ) we can surely extend S1 to a hitting

set of SI A
min(F ), but minimality is not clear. We can however prove it via Proposition 5.13:

Proposition 5.15. Let (F1, F2, R3) be a splitting of F = (A,R) = (A1 ∪A2, R1 ∪R2 ∪R3).
If S1 is a minimal hitting set of SI A

min(F1, stb, cred) (SI R
min(F1, stb, cred)), then there is a

minimal hitting set S of SI A
min(F , stb, cred) (SI R

min(F , stb, cred)) with S1 ⊆ S.

Proof. Due to Propositions 4.8 and 4.9, S1 is a minimal hitting set of SI A
min(F1, stb, cred)

(SI R
min(F1, stb, cred)) iff S1 is a minimal diagnosis of F1. Due to Proposition 5.13 there is

a minimal diagnosis S of F with S1 ⊆ S. Again due to Propositions 4.8 and 4.9, S is a
minimal hitting set of SI A

min(F , stb, cred) (SI R
min(F , stb, cred)).

We want to mention that the situation differs when considering sceptical reasoning. If
F1 is such that stb(F1) 6= ∅ but no argument is sceptically accepted, then it might still be
the case that F possesses a sceptically accepted argument due to F2. So consistency of F1

is not a necessary condition anymore. It is, however, almost sufficient:

Proposition 5.16. Let (F1, F2, R3) be a splitting of F = (A,R) = (A1 ∪A2, R1 ∪R2 ∪R3)
where F1 = (A1, R1) and F2 = (A2, R2). If F1 is consistent wrt. sceptical reasoning and
stable semantics, then so is F iff there is at least one extension E1 ∈ stb(F1) such that

stb
(

FE1,R3
2

)
6= ∅.

Proof. Immediate from Theorem 5.12.

So far, our investigation was restricted to stable semantics. The reason is quite simple:
Theorem 5.12 is based on the (E1, R3)-reduct which requires further adjustments to obtain
the desired result for other semantics. The intuitive reason is that there might be arguments
a ∈ A which are neither in a σ-extension E nor attacked by E if we consider σ 6= stb
(Baumann, 2011). Formally, we consider the set of undefined arguments wrt. E (also
known as undecided arguments) as follows.

Definition 5.17. If F = (A,R) is an AF, σ any semantics and E ∈ σ(F ), then the set of
undefined arguments wrt. E is

UE = {b ∈ A | b /∈ E,@a ∈ E : (a, b) ∈ R}.

To obtain the splitting result for other semantics, we use the (E1, R3)-reduct as usual,
but in addition we introduce dummy attacks to those arguments in F2 which are attacked by
an undefined argument from F1 wrt. E1. More precisely, the (S,L)-modification is defined
as follows:

Definition 5.18 (Modification). Let F2 = (A2, R2) be an AF and A1 such that A1∩A2 = ∅.
Let S ⊆ A1 and L ⊆ A1 ×A2. The (S,L)-modification of F2, denoted by F2, is the AF

modS,L(F2) = (A2, R2 ∪ {(b, b)} | ∃a ∈ S : (a, b) ∈ L).

1123



Baumann and Ulbricht

Please observe that we are not interested in modUE1
,R3(F2), but in modUE1

,R3

(
FE1,R3

2

)
,

so we consider the (UE1 , R3)-modifcation of the (E1, R3)-reduct of F2.

Theorem 5.19. [(Baumann, 2011)] Let (F1, F2, R3) be a splitting of the AF F , i.e. we
have F = (A,R) = (A1 ∪ A2, R1 ∪ R2 ∪ R3) where F1 = (A1, R1) and F2 = (A2, R2). Let
σ ∈ {stb, ad , pr , co, gr}.

• If E1 is a σ-extension of F1 and E2 a σ-extension of the (UE1 , R3)-modification of
FE1,R3

2 , then E1 ∪ E2 is a σ-extension of F .

• Vice versa, if E is a σ-extension of F , then E1 = E ∩ A1 is a σ-extension of F1 and
E2 = E ∩A2 a σ-extension of the (UE1 , R3)-modification of FE1,R3

2 .

For stable semantics and credulous reasoning, the splitting theorem can be used to infer
that consistency of F1 is necessary for consistency of F . For the other semantics, it is not
a necessary, but a sufficient condition.

Proposition 5.20. Let (F1, F2, R3) be a splitting of F = (A,R) = (A1 ∪A2, R1 ∪R2 ∪R3).
Let σ ∈ {ad , pr , co, gr}. If F1 is consistent wrt. σ, then F is consistent wrt. σ as well. This
holds for both credulous and sceptical reasoning.

Proof. Immediate from Theorem 5.19.

The treatment of an AF using splitting is convenient since the structural properties
induce strong results. It is thus not surprising, yet encouraging to see that this principle
is capable of improving the investigation of diagnoses and repairs of AFs. As it turns out,
splitting can be used to reduce the search space for repairs (see e.g. Proposition 5.20) or
compute minimal diagnoses stepwise (as in Proposition 5.13). Moreover, splitting is also
meaningful when looking for strongly inconsistent arguments resp. attacks. We believe this
is a promising research direction for further investigation, including concrete algorithms to
compute repairs.

5.3 Infinite AFs

Until now, our investigation was restricted to finite AFs, i. e. F = (A,R) where A is a
finite set of arguments (and thus R a finite set of attacks). Within this section we want
to drop this restriction and investigate which results still hold. In recent times, infinite
AFs receive more and more attention. One main reason was the observation that studying
finite AFs only is a limitation from a theoretical, conceptual, as well as practical perspective
(Baroni, Cerutti, Dunne, & Giacomin, 2013). In order to overcome this problem the authors
introduced deterministic finite automaton which represent infinite structures and provided
a rigorous study of their properties. To give an example, infinite set of arguments frequently
occur in case of structured argumentation which usually rely on the evaluation of induced
AFs (Besnard & Hunter, 2008). For instance, for rule-based argumentation formalisms like
ASPIC (Prakken, 2010) we may obtain infinite AFs even if we have a finite number of rules
only (Caminada & Oren, 2014; Strass, 2018). Consequently, results regarding diagnoses
and repairs are worth studying in the non-finite case too.
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As usual, when moving from the finite to the infinite case, we are concerned about
existence and uniqueness of certain sets as this might not be clear anymore (Baumann &
Spanring, 2015, 2017).

In order to keep this section concise, we focus on a few semantics σ only, i.e. we consider
σ ∈ {co, pr , ss, gr}. We will see that gr -diagnoses play an important role similar to the
finite case described in Section 3.

So let us start with the grounded one. In the finite case, we observed that an F is
consistent wrt. grounded semantics iff there is at least one unattacked argument. Let us
formally state that this is also the case for infinite AFs.

Proposition 5.21. If F = (A,R) is an infinite AF, then F possesses a non-empty grounded
extension iff there is at least one unattacked argument.

Proof. Observe that G =
⋃|A|
i=1 ΓiF (∅) is the grounded extension of F , not only for finite

AFs. Due to monotony of the characteristic function ΓF , we have G 6= ∅ iff ΓF (∅) 6= ∅, i. e.
iff there is an unattacked argument.

This also means we find gr -diagnoses as before, namely by removing arguments resp.
attacks until at least one argument is unattacked. Hence:

Fact 5.22. If F = (A,R) is an infinite AF, then F possesses a

• argument-based grounded diagnosis iff it is not self-controversial,

• attack-based grounded diagnosis.

Whether a minimal gr -diagnosis exists for a given AF F = (A,R) is no longer trivial
since we cannot just move from a diagnosis S to a minimal one S ′. Indeed, when considering
argument-based diagnoses, there is no minimal gr -diagnosis in general.

Example 5.23. Consider the AF F = (A,R) = (N, {(i, j) | i > j}):

1 2 3 4 5 . . .

It is easy to check that this AF possesses gr -diagnoses: Let j ∈ N. Then, there is an attack
(i, j) ∈ R for each i ∈ N with i > j. So in order to obtain a gr -diagnosis of F we may remove
each argument i with i > j, i. e. we let Sj = {i > j | i ∈ N}. This is a diagnosis since no
argument attacks j within FSj , so the grounded extension is non-empty. It is however not
minimal since j was arbitrary. More precisely, for any j′ > j, the set Sj′ is a gr -diagnosis
of F as well satisfying Sj′ ⊆ Sj . Since we can always move to a smaller diagnosis, we see
that there is no minimal one.

In case of attack-based diagnoses, the situation is different. We can guarantee the
existence of minimal repairs and their structure is rather simple as we see in the proof of
the following proposition.
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Proposition 5.24. If F = (A,R) is an infinite AF, then there is a minimal attack-based
gr-diagnosis.

Proof. Assume the gr extension of F is empty. Let a ∈ A and B = {(b, a) ∈ R | b ∈ A}.
Observe B 6= ∅ due to Proposition 5.21. We claim that B is a minimal gr -diagnosis of F .
Since a is unattacked in FB, it is a diagnosis due to Proposition 5.21. Now consider S ( B.
Then, FS contains an attack of the form (c, a) with (c, a) ∈ B \ S. Hence, a is attacked in
FS . Since the grounded extension of F is empty and S ⊆ B, any other argument in FS is
attacked as well. We thus see that FS is no gr -diagnosis of F . Since S was arbitrary, B is
minimal.

Now let σ ∈ {pr , co}. It has been noted (Dung, 1995) that those semantics are also
universally defined when considering infinite AFs. Thus given a gr -repair, we also have a
σ-repair as in the finite case.

Proposition 5.25. Let F = (A,R) be an infinite AF and σ ∈ {pr , co}. If S is a gr-
diagnosis of F , then S is a σ-diagnosis of F as well. This holds for both reasoning modes.

Proof. Consider complete semantics and sceptical reasoning. Since the gr -extension is the
least co-extension and nonempty for FS by assumption, we have that at least one argument,
say a ∈ A, is sceptically accepted wrt. complete semantics. This also implies the claim for
credulous reasoning. Now consider σ = pr . Recall that if E is a preferred extension, then
it is a complete extension as well. Hence,

a ∈
⋂

co(FS) ⊆
⋂

pr(FS)

implying a is also sceptically accepted for preferred semantics. This finishes our proof.

Please observe that it is not trivial in general whether we can turn the σ-diagnosis we
found in Proposition 5.25 into a minimal one. We note that Example 5.23 shows that
minimal argument-based σ-diagnoses do not necessarily exist for σ ∈ {pr , co} since this
example works analogously for σ ∈ {pr , co}.

Let us conclude this section we a short remark regarding so-called finitary AFs. In a
finitary AF, each argument is only allowed to have finitely many attackers. This solves
nearly all issues we had during this section with minimal diagnoses at once: Now, any gr -
diagnosis is necessarily finite and given a finite diagnosis, we can easily move to a minimal
one. Hence, we obtain existence of minimal complete and preferred diagnoses. Moreover,
any finitary AF possesses as semi-stable extension (Weydert, 2011; Baumann & Spanring,
2015), so the same can be guaranteed here.

Definition 5.26. The AF F = (A,R) is called finitary if {a ∈ A | (a, b) ∈ R} is finite for
each b ∈ A.

Theorem 5.27. Let F be finitary. Any minimal gr-diagnosis of F is finite. If S is a
gr-diagnosis of F , then there is a minimal gr-diagnosis S ′ of F with S ′ ⊆ S. If S ′ is a
minimal gr-diagnosis of F , then there is a minimal σ-diagnosis S ′′ of F with S ′′ ⊆ S ′ for
any σ ∈ {co, pr , ss}.
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Proof. The claims about gr -diagnoses are clear. Given a finite gr -diagnosis, apply Propo-
sition 5.25 to obtain a finite σ-diagnosis for σ ∈ {co, pr}. Due to finiteness, one can turn
this diagnosis into a minimal one. Moreover, due to Weydert (2011), any finitary AF F
possesses a semi-stable extension. Now if FS′ is a minimal gr -repair, then there is at least
one unattacked argument. It is easy to see that this occurs in each semi-stable extension,
so S ′ is a ss-diagnosis as well. Again we can move to a minimal one due to finiteness.

When investigating infinite instead of finite AFs, one needs to accept the possibility that
certain results are not conveyed. In our case, the investigation showed that argument-based
diagnoses are not well-behaved and minimality can almost never be guaranteed. It is worth
mentioning that a reasonably simple example suffices to demonstrate this for all considered
semantics and both reasoning modes. When considering attack-based diagnoses minimal
gr -diagnoses always exist (and thus, minimal scep-co-diagnoses as well) and their structure
is quite simple.

6. Computational Complexity

In this section we discuss the computational complexity of two decision problems that
naturally arise, namely the existence problem as well as the verification problem regarding
minimal repairs. To keep this section varied and within a reasonable space, we mostly
restrict our investigation to σ ∈ {gr , co, pr , stb}. We also consider argument-based diagnoses
only. We believe that this suffices to demonstrate the reader how to derive the expected
results.

We assume the reader to be familiar with the polynomial hierarchy. Furthermore, we
consider the differences classes Dpm = {L1∩L2 | L1 ∈ Σp

m, L2 ∈ Πp
m} as defined by Papadim-

itriou (1994). In the following let σ be a semantics and � one of the considered reasoning
modes, i. e. � ∈ {cred, scep}.

Ex-Min-Repairσ,�
Input: An AF F
Output: true iff there is a minimal σ-�-diagnosis for F

Ver-Min-Repairσ,�
Input: (F ,S) where F = (A,R) is an AF and S ⊆ A
Output: true iff S minimal σ-�-diagnosis for F

We start with the problem of deciding whether a minimal repair exists. As we know
from Theorems 3.16, 3.19 and Fact 3.21 it suffices to perform a simple syntactical check,
which can be done in linear time. In particular, it does not matter which reasoning mode
is considered. We thus find:

Proposition 6.1. For σ ∈ {ad , gr , eg , il , ss, pr , co, stb} and � ∈ {cred, scep} the problem
Ex-Min-Repairσ,� can be solved in linear time.

We turn to the problem Ver-Min-Repairσ,�, which will turn out to be more demanding
in most cases. Hardness results of the subsequent subsections are oftentimes adjustments
of existing constructions (Dvorák & Dunne, 2018). Membership results are a corollary of
the following observation.
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Proposition 6.2. Let � ∈ {cred, scep}. Let σ be any semantics. If deciding whether an AF
F is consistent wrt. σ and � is in Σp

m for any integer m ≥ 1, then Ver-Min-Repairσ,� is
in Dpm. If deciding whether an AF F is consistent wrt. σ and � is in Πp

m for any integer
m ≥ 1, then Ver-Min-Repairσ,� is in Πp

m+1.

Proof. If checking consistency is in Σp
m, then we check in Σp

m whether we are given a repair
FS and for minimality we non-deterministically guess a subset S ′ and verify that FS′ is not
a repair in Πp

m, which needs to be the case for every S ′ ⊆ S. In summary, this procedure is
in Dpm. The other case is similar.

The decision problem Ver-Min-Repairσ,scep involves checking all subsets of S. In the
first case of Proposition 6.2 this results in moving to the corresponding difference class. This
happens e.g. in Theorem 6.5 below. However, the reason is that the underlying decision
problem, i. e. “is the framework consistent wrt. credulous reasoning?” is in Σp

m for an m
(in case of Theorem 6.5 we have m = 1). Thus, verifying inconsistency is in Πp

m. Here,
verifying inconsistency for all subsets S ′ of S does not induce a quantifier alternation. That
is why the upper bounds are (under standard assumptions) below Πp

m+1. In case of sceptical
reasoning, however, we naturally face coNP resp. Πp

2 lower bounds. Here, oftentimes the
second case of Proposition 6.2 applies.

More importantly, most of the corresponding hardness results can indeed be shown as
we will see via the subsequent constructions.

6.1 Grounded Semantics

Given an AF (and a potential diagnosis), we know that the grounded extension is non-empty
if and only if there is an argument which is not attacked. Thus, verifying that a given set
is a gr -diagnosis is quite easy. It turns out that minimality is tractable as well.

Proposition 6.3. For � ∈ {cred, scep}, the problem Ver-Min-Repairgr ,� is in P.

Proof. If FS contains no unattacked argument, we reject.

Argument-based : If FS contains an unattacked argument, we check whether this is the case
for each FS\{α} with α ∈ S. If this is not the case, then S must be minimal.

Attack-based : S is minimal iff F itself is inconsistent and S is of the form {(b, a) ∈ R | b ∈ A}
for an a ∈ A.

We want to mention that we can even compute all gr -diagnoses in P. We believe this
observation is relevant since the grounded repairs play an essential role as the results from
Section 3 suggest. Assume we are given the AF F = (A,R) with gr(F ) = {∅}. Since
a grounded diagnosis needs to ensure that at least one argument a ∈ A is not attacked
anymore, we can successively look at any a ∈ A and consider S = {b ∈ A | (b, a) ∈ R} for
argument-based diagnoses and S = {(b, a) ∈ R | b ∈ A} for attack-based diagnoses. If S is
a minimal gr -diagnosis (verification is in P due to Proposition 6.3), we add S to our list,
otherwise we delete it. Since there are at most |A| gr -diagnoses, this procedure is in P. So:

Proposition 6.4. Computing all gr-diagnoses of a given AF F can be done in P.
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Now, even though finding a σ-diagnosis may become rather hard depending on σ, we can
efficiently compute all gr -diagnoses and then utilize Lemmata 3.15, 3.18 and 3.22 in order
to reduce the search space. This approach explains the central role of grounded semantics.
In a nutshell, the gr -repairs can be seen as a (polynomial time computable) starting point
in order to find minimal repairs for other semantics. A thorough investigation of this
approach is part of future work. Moreover, the investigation of further subclasses of AFs
seems rather promising considering computational complexity. For example, the ones we
considered trivialize credulous diagnoses in almost any case. Other restrictions might ensure
tractability of certain problems we considered here while being less restrictive.

6.2 Universally Defined Semantics

Considering the computational complexity of different reasoning problems in AFs, it is quite
unsurprising that Ver-Min-Repairσ,cred is intractable for most semantics σ as it requires
checking whether a non-empty extension exists. Due to the additional minimality check we
require, our problem turns out to be in the corresponding difference class.

Theorem 6.5. Ver-Min-Repairσ,cred is Dp1-complete for σ ∈ {pr , co}.

Proof. Membership is due to Proposition 6.2. For hardness, we reduce the problem MC
which is defined as follows: Given a formula Φ in 3-CNF, i. e. Φ = C1∧, . . . ,∧Cr. We
identify a formula with a set of clauses, i. e. Φ = {C1, . . . , Cr}. Let ϑ be a subformula, i. e.
ϑ is w. l. o. g. of the form ϑ = {C1, . . . , Cs} with {C1, . . . , Cs} ⊆ {C1, . . . , Cr}. The problem
MC is given via

MC
Input: (Φ, ϑ) where Φ is a formula in 3-CNF and ϑ ⊆ Φ
Output: true iff ϑ is satisfiable, but any formula ϑ′ with ϑ ( ϑ′ ⊆ Φ is not.

The problem MC is Dp1-complete (Papadimitriou, 1994).
So let Φ be as above. Let x1, ..., xn be the literals occurring in Φ, set ¬¬xi = xi. We

can prove hardness utilizing a minor adjustment of the standard construction (Dvorák
& Dunne, 2018) depicted in Figure 2 (a). Let F be the AF F = (A,R) with A =
{x1,¬x1, . . . , xn,¬xn, C1, . . . , Cr,Φ,Φ} and

R = {(xi,¬xi) | i ∈ {1, . . . , n}} ∪ {(¬xi, xi) | i ∈ {1, . . . , n}}
∪ {(xi, Cj) | xi occurs in Cj} ∪ {(Cj ,Φ) | j ∈ {1, . . . , r}}
∪ {(Φ,Φ)} ∪ {(Φ, xi) | xi occurs in Φ} ∪ {(Φ, Cj) | j ∈ {1, . . . , r}}.

Consider σ = ad . It is well-known that Φ is satisfiable iff there is a non-empty admissible
extension of the framework depicted in Figure 2 (a). The reader may verify that a non-empty
admissible extension E needs to contain some of the X arguments. In order to defend them,
Φ ∈ E is required. In order to find an admissible set of arguments defending Φ, the formula
needs to be satisfiable. Now let ϑ be a subformula of Φ, i. e. ϑ is w. l. o. g. of the form
ϑ = {C1, . . . , Cs}. Then, (Φ, ϑ) is “yes” instance of MC iff (F ,S) with S = {Cs+1, . . . , Cr}
is a “yes” instance of Ver-Min-Repairad ,cred.

Clearly, any framework possesses a non-empty admissible extension iff this is the case
for σ = co and σ = pr
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x1¬x1 . . .

(a)

xn ¬xn

C1 C2 . . . Cr

Φ Φ

. . .

x1¬x1 . . .

(b)

xn ¬xn

C1 C2 . . . Cr

Φ Φ

Figure 2: Standard Constructions for 3-SAT reductions

We turn to sceptical reasoning. Recall that the unique grounded extension of an AF F
is complete as well. Moreover we have gr(F ) ⊆

⋂
co(F ). Hence, any framework F possesses

a sceptically accepted argument wrt. grounded semantics if and only if this is the case for
complete semantics. Hence, applying Proposition 6.3 yields:

Corollary 6.6. Ver-Min-Repairco,scep is in P.

Now we consider σ = pr . Recall that deciding whether an argument is sceptically
accepted is Πp

2-complete (Dvorák & Dunne, 2018). Thus, given a framework F and a
set S ⊆ A of arguments, the decision problem Ver-Min-Repairpr ,scep involves checking
whether for all S ′ with S ′ ⊆ S the framework FS′ does not possess a sceptically accepted
argument. Since the latter check is in Σp

2 for each S ′, we immediately see a Πp
3 upper bound

for Ver-Min-Repairpr ,scep due to Proposition 6.2. So the main work for the following
theorem is the lower bound:

Theorem 6.7. Ver-Min-Repairpr ,scep is Πp
3-complete.

Proof. Membership is due to Proposition 6.2. Recall the construction from Dvorák and
Dunne (2018) with the property that the AF sceptically accepts an argument wrt. preferred
semantics if and only if a formula Φ = ∀Y ∃X : φ(X,Y ) in CNF evaluates to true.

HΠp
2

:

xi¬xi . . . yi ¬yi

C1 C2
. . . Cr

Φ⊥

. . .

In order to prove hardness in Πp
3 for our problem we the task is to simulate an additional

quantifier. This, however, comes natural since the decision problem Ver-Min-Repairpr ,scep

involves consideration of all subsets S ′ of a given set S ⊆ A of arguments.
So let us assume we are given a formula Ψ = ∃Z ∀Y ∃X : ψ(X,Y, Z) in CNF. we augment

the construction from Dvorák and Dunne (2018) with the intention that Ψ evaluates to true
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if and only if (F ,S) is a “no” instance of Ver-Min-Repairpr ,scep (that is, there exists a
subset S ′ with S ′ ( S such that FS′ possesses a sceptically accepted argument wrt. preferred
semantics).

We augment the construction HΠp
2
. We will construct an AF F = (A,R) with a set

S ⊆ A of arguments with the following properties:

• FS itself is consistent, i. e. there is a sceptically accepted argument,

• subsets of S, i. e. the sets S ′ ⊆ S may correspond to assignments to the Z-variables,

• there is one S ′ with S ′ ( S such that FS′ is consistent if and only if the formula
Ψ = ∃Z ∀Y ∃X : ψ(X,Y, Z) evaluates to true.

The first and the last item together ensure that (F ,S) is a “yes” instance of the problem
Ver-Min-Repairpr ,scep if and only if the formula Ψ is false.

Before depicting and explaining our construction, we name all arguments occurring in
the AF. We hope this helps readability of the proof. Which attacks we include will be
explained later. Our framework is F = (A,R) with

A = {x1,¬x1, . . . , xn,¬xn, y1,¬y1, . . . , ym,¬ym, z1,¬z1, z
′
1,¬z′1, . . . , zt,¬zt, z′t,¬z′t,

C1, . . . , Cr, D1,1, . . . , D1,4, . . . , Dt,1, . . . , Dt,4,Φ,>,⊥}

Moreover, we set

S = {D1,1, D1,2, . . . , Dt,1, Dt,2}

We will see that sets S ′ with S ′ ⊆ S induce AFs FS′ with the intuition that we assign values
to Z variables.

So first we consider Z variables z1,¬z1, . . . , zt,¬zt which attack the C1, . . . , Cr in the
natural way: We have (zj , Ci) ∈ R iff zj occurs in the clause Ci and (¬zj , Ci) ∈ R iff ¬zj
occurs in the clause Ci. We also consider copies z′1,¬z′1, . . . , z′t,¬z′t.

xi¬xi . . . yj ¬yj

C1 C2
. . . Cr

z1z′1 . . . ¬zt ¬z′t

. . .

. . .

The reason for the copies z′1, . . . ,¬z′t is to ensure that the Z arguments themselves are not
sceptically accepted. Now consider the following gadget, which will be included for any Z
variable.
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Di,3 Di,4

zi z′i

Di,1

¬zi ¬z′i

Di,2

The dummy arguments Di,1 and Di,2 as well as their attacks are depicted with dotted lines
to illustrate that they do not occur in FS , as those arguments belong to S. Augmenting
FS with Di,1, for example, ensures that zi and z′i are never defended and thus occur in no
preferred extension. Hence, this choice corresponds to letting zi be false. The role of the
Di,3 and Di,4 becomes apparent considering the following arguments:

HΠp
2

Φ

Di,3Di,4

Now, for any i ∈ {1, . . . , t} we observe: Since Di,3 and Di,4 attack all arguments in HΠp
2

we have that {D1,3, . . . , Dt,3} and {D1,4, . . . , Dt,4} are two preferred extensions for any FS′

with S ′ ⊆ S which contains both Di,1 and Di,2, i. e. in FS′ occur neither Di,1 nor Di,2.
Hence, the intersection

⋂
pr(FS′) is empty. We thus see: A framework FS′ with S ′ ⊆ S can

only possess a sceptically accepted argument if for each i ∈ {1, . . . , t}, Di,1 or Di,2 occur in
S ′.

Now assume this is given, i. e. we have a framework FS′ with S ′ ⊆ S as described.
Recall that the choice of the Di,1 and Di,2 naturally corresponds to a (partial) assignment
ω : Z → {0, 1}. As in the original construction HΠp

2
we see that Φ is sceptically accepted

iff ∀Y ∃X : ψ(X,Y, Z) evaluates to true under the assignment ω : Z → {0, 1}. In this
case, FS′ is consistent. Since this applies to any S ′ of the form described above we see:
Every FS′ with S ′ ⊆ S is inconsistent iff for any assignment ω : Z → {0, 1} the formula
∀Y ∃X : ψ(X,Y, Z) evaluates to false iff the formula ∃Z ∀Y ∃X : ψ(X,Y, Z) evaluates to
false.

To summarize, we have established: ∃Z ∀Y ∃X : ψ(X,Y, Z) is false iff FS′ is inconsistent
for all S ′ ( S. The latter nearly means that (F ,S) for S = A \H is a positive instance of
Ver-Min-Repairpr ,scep. What we have left to do is to make sure that FS itself is consistent,
i. e. there is at least one sceptically accepted argument. The following final gadget does the
job:
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D1,2D1,1 . . . Dt,1 Dt,2

>

There is no other argument attacking >. Hence, as long as no Di,1 resp. Di,2 argument is
chosen, > is sceptically accepted. As soon as a proper superset of H is under consideration,
> can never be defended and is thus rendered pointless.

6.3 Stable Semantics

Let us now turn to our only example for collapsing semantics, namely σ = stb. If we are
interested in credulous reasoning, we face a similar situation as in Theorem 6.5.

Theorem 6.8. Ver-Min-Repairstb,cred is Dp1-complete.

Proof. Membership is due to Proposition 6.2. For hardness, utilize the construction depicted
in Figure 2 (b) as in the proof of Theorem 6.5.

We turn to sceptical reasoning. Since finding a stable extension is NP-complete it is
not hard to see that there is a coNP lower bound for sceptical reasoning. However, as the
framework in question might collapse, we also need to verify that there is at least one stable
extension of a given framework. The result is a Dp1 lower bound (Rahwan & Simari, 2009).
Interestingly, however, this observation does not change anything in our case. The coNP
lower bound is already responsible for Ver-Min-Repairstb,scep to have a Πp

2 lower bound.
Given H ⊆ K the decision problem Ver-Min-Repairstb,scep involves checking whether all
sets H ′ with H ⊆ H ′ ⊆ K do not possess any sceptically accepted argument. Since the
latter test has a NP lower bound, we have a Πp

2 lower bound for Ver-Min-Repairstb,scep.
More precisely:

Theorem 6.9. Ver-Min-Repairstb,scep is Πp
2-complete.

Proof. Membership is due to Proposition 6.2. For hardness, recall how to prove that scepti-
cal reasoning is coNP-complete for stable semantics. Given a formula Φ = ∃X : φ(X) where
φ is a formula over variables in X = {x1, . . . , xn} in 3-CNF with φ(x) = C1 ∧ . . .∧Cr recall
the following construction HΦ from Rahwan and Simari (2009). It has the property that
the AF accepts Φ sceptically wrt. stable semantics if and only if Φ = ∃X : φ(X) evaluates
to false.

HΦ :

x1¬x1 . . . xn ¬xn

C1 C2
. . . Cr

ΦΦ

. . .
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We augment this construction in order to show that Ver-Min-Repairstb,scep is Πp
2-hard.

We proceed as in the proof of Theorem 6.7. We construct an AF F = (A,R) and consider
S ⊆ A as well as the induces sub-AF FS . We need to check whether in FS any argument is
sceptically accepted, while this is not the case for any FS with S ′ ( S. Hence, we may also
take possible subsets of S into account. Assume we are given Ψ = ∀Y ∃X : ψ(X,Y ) with
X as above and Y = {y1, . . . , ym}. Assume ψ(X,Y ) = ψ is in CNF with ψ = C1 ∧ . . .∧Cr.
We will construct a sub-AF FS with the following properties:

• FS itself is consistent, i. e. there is a sceptically accepted argument,

• subsets of S, i. e. the sets S ′ ⊆ S may correspond to assignments to the Y -variables,

• there is no AF FS′ with S ′ ( S which is consistent if and only if the given formula
Ψ = ∀Y ∃X : ψ(X,Y ) evaluates to true.

The first and the last item together ensure that (F ,S) with S is a “yes” instance of
Ver-Min-Repairstb,scep if and only if the formula Ψ is true.

Before depicting and explaining our construction we give the arguments A of the AF
F = (A,R) as we did in the proof of Theorem 6.7. We have

A = {x1,¬x1, . . . , xn,¬xn, y1,¬y1, . . . , ym,¬ym, C1, . . . , Cr,Φ,Φ, Φ̃, y1?, . . . , ym?, all?,>}

Moreover, our subset S ⊆ A is

S = {y1,¬y1, . . . , ym,¬ym}.

For the moment it suffices to observe that sets S ′ with S ′ ⊆ S correspond to choosing y
arguments.

Please observe that HΦ from above possesses a stable extension containing only Φ. Our
first step is consideration of a similar argument which will be called Φ̃. Similar to Φ, the
argument Φ̃ attacks all arguments. Moreover, Φ̃ and Φ attack each other.

HΦ

Φ

ΦΦ̃

This framework has at least two stable extensions, namely Φ and Φ̃. Note the intended
asymmetry between the two arguments: Φ is attacked by Φ while Φ̃ is not. The reason is
as follows: The purpose of Φ is as in the original construction to control whether there is a
satisfying assignment to the given formula or not. This is why it needs to be attacked by
Φ. However, Φ̃ is utilized to render some sub-AFs FS′ with S ′ ⊆ S inconsistent as we will
see later. This is why there is no attack from Φ to Φ̃.

As our next step, we consider arguments y1,¬y1, . . . , ym,¬ym which shall correspond to
the Y -variables in the given formula Ψ = ∀Y ∃X : ψ(X,Y ). As already pointed out, they
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do not occur in the AF FS as they belong to S. So, a subset S ′ with S ′ ⊆ S somewhat
corresponds to a partial assignment ω : Y → {0, 1}. Similar to the X arguments, they
attack the arguments C1, . . . , Cr in the natural way: We have (yj , Ci) ∈ R iff yj occurs in
the clause Ci and (¬yj , Ci) ∈ R iff ¬yj occurs in the clause Ci. Note that the Y arguments
do not attack each other.

x1¬x1 . . . xn ¬xn

C1 C2
. . . Cr

y1¬y1 . . . ym ¬ym

. . .

. . .

The Y arguments as well as their attacks are depicted with dotted lines to illustrate
that they do not occur in FS . Now let us make sure that only intended subsets of
{y1,¬y1, . . . , ym,¬ym} are relevant. Recall that they shall correspond to assignments
ω : Y → {0, 1}. Interestingly, we only need to prune away partial assignments, i. e. cases
where there is an index j such that neither yj nor ¬yj occurs in FS′ . The case that both
yj and ¬yj occur in FS′ –actually not corresponding to a well-defined assignment– does no
harm as we will explain later. Consider the following additional arguments and attacks:

y1

¬y1

...

ym

¬ym

y1?

ym?

all? Φ̃

Observe that the auxiliary argument “all?” attacks Φ̃ only and not Φ. The meaning of this
construction is as follows: In case for any j there is yj or ¬yj occurring in FS′ , each “yj?” is
attacked and hence, “all?” is defended from {y1?, . . . , ym?}. It may thus occur in a stable
extension. In this case, Φ̃ does not occur in any stable extension. Otherwise, it does.

However, Φ keeps attacking all arguments and is thus still a given possibility to find
a stable extension (otherwise some of the Y or auxiliary arguments could be sceptically
accepted):
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y1

¬y1

...

ym

¬ym

y1?

ym?

all? Φ̃

Φ

We thus see the following: For any FS′ with S ′ ⊆ S there is always a stable extension
containing Φ. There is another stable extension containing Φ̃ iff for at least one index j
neither yj nor ¬yj occur in FS′ . Then, no argument is sceptically excepted. The AF FS′ is
thus inconsistent.

Now let us assume that for any index j there is either yj or ¬yj occurring in FS′ . Then
we see that there are two cases:

1. The formula ∃X : ψ(X,Y ) evaluates to true under the corresponding assignment
ω : Y → {0, 1}. Then, as in the construction from Rahwan and Simari (2009) there
is a stable extension containing the corresponding X arguments as well as Φ, but not
Φ. Hence, no argument is sceptically accepted.

2. The formula ∃X : ψ(X,Y ) evaluates to false under the corresponding assignment
ω : Y → {0, 1}. Then, Φ is sceptically accepted.

Hence, the formula ∀Y ∃X : ψ(X,Y ) is true iff the former case always occurs. Assume
this is the case. Now consider a choice of the Y -variables which does not correspond to a
well-defined assignment, i. e. there is j such that both yj and ¬yj occur in FS′ . It is clear
that for this AF FS′ we also have the former case, i. e. no argument is sceptically accepted
since this was already the case with only yj or ¬yj occurring in the AF.

To summarize, we have established: ∀Y ∃X : ψ(X,Y ) is true iff FS′ is inconsistent for all
S ′ ( S. The latter almost means that (F ,S) is a “yes” instance of Ver-Min-Repairstb,scep.
What we have left to do is to make sure that FS itself is consistent, i. e. there is at least
one sceptically accepted argument. The following final gadget does the job:

y1¬y1 . . . ym ¬ym

>

There is no other argument attacking >. Hence, as long as no Y argument is chosen, > is
sceptically accepted. As soon as a proper superset of S is under consideration, > is rendered
pointless.
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6.4 Subclasses

Let us briefly discuss the subclasses of AFs we mentioned in Section 3. If the AF in question
is symmetric, Ex-Min-Repairσ,cred trivializes for any σ we considered in this article since ir-
reflexivity ensures that the AF is not self-controversial. The problem Ver-Min-Repairσ,cred
is trivial for σ ∈ {ad , stb, pr , co} since any symmetric AF possesses a credulously ac-
cepted argument. Hence, (F ,S) is a positive instance of Ver-Min-Repairσ,cred (with
σ ∈ {ad , stb, pr , co}) iff S = ∅. It is easy to see that Ver-Min-Repairgr ,cred can be solved
in linear time. If the framework is compact or acyclic, there is inherently nothing to solve
wrt. credulous reasoning. Sceptical reasoning is similarly easy.

The results of this section show that the problem of verifying a given minimal diagnosis
is rather demanding from a computational point of view. More precisely, in every case the
upper bound given in Proposition 6.1 -which is rather generic and thus appears to be weak-
is either a lower bound as well or there is a quite trivial reason why this is not the case. An
example for the latter is σ = ad and � = scep. This observation emphasizes the importance
of grounded diagnoses as they reduce the search space for every other case except σ = stb.
In view of that, tractability of computing all grounded diagnoses is quite encouraging.

7. How to Repair? - A Short Case Study

As mentioned before, due to Lemmata 3.15, 3.18 and 3.22 we may reduce the search space
for diagnoses as long as we are equipped with an already computed grounded one. If one
is interested in all diagnoses, the notion of strong inconsistency in order to use the hitting
set duality is proven to be useful. The aim of this section is to briefly demonstrate how to
repair a given AF. We discuss both credulous and sceptical reasoning.

First let us consider an example with stable semantics. Let us start with credulous rea-
soning. It is well-known that in case of finite AFs the non-existence of acceptable positions
implies the existence of odd-cycles. This means, by contraposition, one possible strategy
for repairing AFs in case of stable semantics is to break odd-cycles. This approach corre-
sponds to the minimal stb-repairs F{a}, F{b} and F{c} from Example 1.2. Since possessing
odd-cycles is not sufficient for the collapse of stable semantics further considerations are
required. Indeed, in case of our running example, we have seen that eliminating the argu-
ments e and f results in a minimal stb-repair, namely F{e,f}, too. Regarding the principle
of minimal change one may argue that breaking the odd-cycle in F has to be preferred over
the latter strategy since less arguments are involved. The following slightly modified version
of this example shows that this observation is not true in general. A further intensive study
of this issue will be part of future work.

Example 7.1. Consider the following AF F . One may easily confirm that there are 9
minimal cred-stb-diagnoses, namely {ai, bj , ck} with i, j, k ∈ {1, 2, 3}. They comply with
the idea to break all odd loops of the given AF. However, {e} is a minimal cred-stb-diagnosis
as well, and arguably the most immediate one.
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c1

c2

c3

b1
b2

b3

a2

a1

a3

d

e

F :

As the reader may have already observed, the same applies to attack-based diagnoses.
For example, {(a1, a2), (b1, b2), (c1, c2)} is an attack-based diagnosis breaking all odd loops.
However, consideration of {(e, d)} suffices.

The subsequent example considers a semantical defect wrt. preferred semantics which
is tackled via grounded repairs.

Example 7.2. The following AF F exemplifies a situation where preferred semantics do
not possess any sceptically accepted argument. More precisely,

⋂
pr(F ) = ∅ due to

pr(F ) = {{a, e}, {b, e}, {c, d, f}} .

F :

a b

c d

e

f F{c,d} :

a b

e

f

Our goal is to find a minimal scep-pr -diagnosis S, i.e. a set S such that
⋂

pr
(
FS
)
6= ∅ and

pr
(
FS
)
6= ∅. Lemma 3.18 suggests that looking for gr -repairs is a reasonable starting

point. In order to guarantee at least one unattacked argument one finds {c, d} as minimal
gr -diagnosis. Let F{c,d} denote the associated minimal repair. We have gr

(
F{c,d}

)
= {{e}}.

Hence,
⋂

pr
(
F{c,d}

)
6= ∅ is implied. This means, {c, d} is a scep-pr -diagnosis. Moreover,

{c, d} is even minimal proven by the following two AFs F{c} and F{d}.

F{c} :

a b

d

e

f F{d} :

a b

c

e

f
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Indeed, we have
⋂

pr
(
F{c}

)
=
⋂

pr
(
F{d}

)
= ∅ since {a, e}, {d, f} ∈ pr

(
F{c}

)
are disjoint

which is also the case for {a, e}, {c, f} ∈ pr
(
F{d}

)
.

8. Related Work and Future Directions

In this paper, we investigated approaches aiming at repairing argumentation frameworks
which are inconsistent in the sense that they do not possess any accepted argument. We
considered a reasonable range of semantics, the standard reasoning modes, namely credu-
lous and sceptical reasoning, and two different tools to repair, namely removal of certain
(minimal) sets of arguments or attacks. We identified repairs wrt. grounded semantics as
the arguably most important case: They can be utilized as a starting point in order to
calculate repairs wrt. other semantics, coincide for both reasoning modes and are tractable
from an algorithmic point of view. We illustrated how to derive stronger results for specific
situations like restricting the AFs to certain subclasses or if AFs allows for a splitting. We
also investigated infinite AFs. We studied the computational complexity of two natural
arising reasoning problems, i. e. existence and verification of repairs. Our hardness results
confirm the central role of the tractable gr -diagnoses. In a short case study, we illustrated
how to repair a concrete AF under consideration.

The topic of diagnoses and repairs as introduced by Reiter (1987) is less developed
in the area of abstract argumentation. The closest one to our work is by Nouioua and
Würbel (2014). The authors define an operator and provide an algorithm, s.t. the resulting
framework does not collapse. The mentioned work considers a semantical defect as the
absence of any extension. Consequently, only stable semantics can be considered in contrast
to our setup which additionally includes a treatment of semantics which may provide the
empty set as unique extension. Moreover, restoring consistency is achieved via dropping a
minimal set of arguments or attacks. In the latter case, all arguments survive the revision
process.

The concept of maximal consistency in non-monotonic logics, is not novel (Sakama &
Inoue, 2003, Definition 5.3). Extensions of consistency removal to non-monotonic logics
can also be found in the literature. An example in autoepistemic logic has been analyzed
by Inoue and Sakama (1995). The closest to our approach in Section 4 is probably the
one by Eiter et al. (2014) where the authors have studied ways of restoring consistency in
multi-context systems (Brewka & Eiter, 2007). They focus on the case where the source of
inconsistency can be attributed to the bridge rules of a multi-context system.

The very first and basic works which are dealing with dynamics in abstract argumen-
tation can be traced back to the beginnings of 2010. For instance, the so-called enforcing
problem and the related minimal change problem (Baumann & Brewka, 2010; Baumann,
2012; Baumann & Brewka, 2013) are still studied in further variations (de Saint-Cyr, Bis-
quert, Cayrol, & Lagasquie-Schiex, 2016; Wallner, Niskanen, & Järvisalo, 2017). More
precisely, these problems are dealing with the question whether it is possible (and if yes,
as little effort as possible) to add new information in such a way that a desired set of ar-
guments becomes an extension or at least a subset of one. Kim et al. (2013) studied a
similar problem under the name σ-repair and provided parameterized complexity results.
Although adding information as well as desired sets are not the focus of our study there
is at least one interesting similarity to our work, namely: given an AF where nothing is
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credulously accepted, then enforcing a certain non-empty set can be seen as a special kind
of repairing. Other works are case studies of what happens with the set of extensions if one
deletes or adds one argument (Cayrol, de Saint-Cyr, & Lagasquie-Schiex, 2010; Bisquert,
Cayrol, de Saint-Cyr, & Lagasquie-Schiex, 2011). The so-called destructive change is some-
how the inverse of our notion of credulous repair since the initial framework possesses at
least one credulously accepted argument whereas the result does not. Quite recently, the
so-called extension removal problem was studied (Baumann & Brewka, 2019). That is, is it
possible to modify a given AF in such a way that certain undesired extensions are no longer
generated?

We want to mention that the introduced notions of repairs do have a correspondence in
the general multistage reasoning process for knowledge bases (KBs) (Caminada & Amgoud,
2007). An argument-based repair can be seen as the result of forgetting some pieces of
knowledge in the original KB. In contrast, attack-based repairs correspond to changing the
underlying notion of attack in the overall instantiation process (Baumann, 2014, Section
1.1.1). Several future directions are already mentioned in the text. The most apparent one
stems from the observation that our approach involves removal of attacks resp. arguments
only. One could extend this approach to adding information similar in spirit to Ulbricht
(2019a) or one could simply consider a hybrid notion of repairs, involving the simultaneous
removal of arguments and attack relations. It will be interesting to see to which extent
shown results may change if a more liberal way of removal is allowed. For instance, for
specific AFs it might be the case that instead of removing three arguments, just removing
one argument and one attack could restore consistency too. Another direction would be
to generalize the considered notions of repairs in the sense that in addition to sceptical
or credulous acceptance we require the existence of at least/exactly/at most n extensions.
Such an requirement is directly linked to numerical aspects of argumentation semantics like
maximal and possible numbers of extensions (Baumann & Strass, 2013; Baumann, Dvorák,
Linsbichler, Spanring, Strass, & Woltran, 2016).

Moreover, a further intensive study of subclasses of AFs seems to be very promising
since certain useful semantical properties are already ensured by syntactic properties. Fur-
thermore, it is already known that AFs can be seen as a restricted class of logic programs
(LPs). More precisely, there is a standard translation T from AFs to LPs, s.t. for any AF F ,
σ(F ) coincides with τ(T (F )) for certain pairs of semantics σ and τ (Strass, 2013, Theorem
4.13). This means, one interesting research question is to which extent our results can be
conveyed to repairing in logic programming.

The present article contributes to a thorough understanding of inconsistency in abstract
argumentation, which might also benefit from the research area of measuring inconsistency
(Hunter & Konieczny, 2004). Measuring inconsistency in non-monotonic logics has recently
been studied (Ulbricht, Thimm, & Brewka, 2018a, 2018b) and could be extended in a similar
fashion to abstract argumentation.
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