Journal of Artificial Intelligence Research 66 (2019) 901-935 Submitted 12/2018; published 12/2019

General Game Playing with Imperfect Information

Michael Schofield MSCHOFIELD@CSE.UNSW.EDU.AU
Michael Thielscher MIT@CSE.UNSW.EDU.AU
School of Computer Science and Engineering

UNSW Sydney, Australia

Abstract

General Game Playing is a field which allows the researcher to investigate techniques
that might eventually be used in an agent capable of Artificial General Intelligence. Game
playing presents a controlled environment in which to evaluate Al techniques, and so we
have seen an increase in interest in this field of research. Games of imperfect information
offer the researcher an additional challenge in terms of complexity over games with perfect
information. In this article, we look at imperfect-information games: their expression,
their complexity, and the additional demands of their players. We consider the problems
of working with imperfect information and introduce a technique called HyperPlay, for
efficiently sampling very large information sets, and present a formalism together with
pseudo code so that others may implement it. We examine the design choices for the
technique, show its soundness and completeness then provide some experimental results
and demonstrate the use of the technique in a variety of imperfect-information games,
revealing its strengths, weaknesses, and its efficiency against randomly generating samples.
Improving the technique, we present HyperPlay-11I, capable of correctly valuing information-
gathering moves. Again, we provide some experimental results and demonstrate the use of
the new technique revealing its strengths, weaknesses and its limitations.

1. Introduction

General Game Playing (GGP) is becoming popular with Artificial Intelligence researchers
as it presents the challenge of designing a system capable of playing a game, without prior
knowledge or learning. Such games are described in the Game Description Language, spec-
ifying the initial state, legal moves, percepts (signals), terminal conditions and reward
structure (Genesereth, Love, & Pell, 2005). Games are invented that test the boundaries of
computing technology with intractable search spaces and no clear heuristic or strategy for
winning. In this arena, imperfect-information games are the most complex to play and the
least explored by researchers.

In this article we present the HyperPlay technique as a “bolt-on” solution to convert a
General Game Player designed to play perfect-information games into a player capable of
playing imperfect-information games. HyperPlay is not a move planning technique, it is a
method of sampling an information set so that the host player can plan moves using the
samples. In this paper we choose a simple host based on a Monte Carlo player. We use a
Monte Carlo host as it is not a “good” player; we resource the host so that it makes a large
variety of moves (from one playout to the next) and occasionally makes poor moves, testing
the robustness of the HyperPlay technique across the full extent of the game tree.

(©2019 AT Access Foundation. All rights reserved.

SCHOFIELD & THIELSCHER

We extend the formalism for imperfect-information games and players, we then introduce
the technique in sufficient detail so that it can be reproduced, we detail several implemen-
tations of the technique and experimental data that highlights its strengths, weaknesses,
limitations, and investigate its effectiveness and its efficiency.

A note on terminology: In the game playing community the term “imperfect” is used
where general Al often uses the term “incomplete.” We will use “imperfect” information
to mean that the game play may be hidden from one or more players. The initial state,
reward structure, etc. are declared in the rules which are fully known to all players.

1.1 Related Research

The General Game Playing community has been slow to pick up the challenge of imperfect-
information games and only a few players have been implemented with even fewer com-
petitions being conducted. The published approaches to designing general game players
for GDL-II show how existing perfect-information GDL players can be lifted to play gen-
eral imperfect-information games by using models or sampling of an information set as the
starting states for a perfect-information search (Edelkamp, Federholzner, & Kissmann, 2012;
Schofield, Cerexhe, & Thielscher, 2012). This takes advantage of previous research into in-
formation set generation for games specified in a variant of the Planning Domain Definition
Language (PDDL) (Richards & Amir, 2012) and the use of particle system techniques (Sil-
ver & Veness, 2010) with the sample of an information set either generated, or maintained
from one round to the next. Application of these techniques in the General Game Play-
ing setting requires their adaptation to the general Game Description Language (GDL),
which, in contrast to PDDL, supports the syntax of logic programming to define game
rules, including negation-by-failure, and can handle arbitrary state- and action-dependent
percepts, aka. observation tokens (Engesser, Mattmiiller, Thielscher, & Nebel, 2018). The
latter also distinguishes model sampling in GGP from information set sampling for specific
games in which a small, pre-defined set of possible observations can be sampled directly,
e.g. in Kriegspiel (Ciancarini & Favini, 2010).

The GGP-II international competitions have sparked the development of several players.
Edelkamp et al. (2012) have built a GDL-II player NEXUSBAUM based on perfect-information
Monte Carlo sampling, which they compared against FLUXII, an imperfect-information
extension of FLUXPLAYER (Schiffel & Thielscher, 2007) that maintains the full information
set throughout a game. An early development version of a HYPERPLAYER also competed
in the first international competition, coming second out of only three competitors. At the
Australasian Joint Conference on Artificial Intelligence! there was GDL-II track encouraging
entries by CADIAPLAYER (Bjornsson & Finnsson, 2009), LEJOUEUR (Hufschmitt, 2014) and
NExusBAUM (Edelkamp et al., 2012).

Outside of General Game Playing, the Monte Carlo tree search technique based on a
sample of an information set has been applied to a variety of specific perfect-information
and imperfect-information games alike (Browne et al., 2012). Frank and Basin (1998) have
presented a ‘game-general’ tree search algorithm for the card game Bridge that exploits
a number of imperfect-information heuristics. For the same game, Ginsberg (2001) has
applied perfect-information Monte Carlo sampling. Similar special case applications of

1. See https://wiki.cse.unsw.edu.au/ai2012/GGP.

902

GGP WITH IMPERFECT INFORMATION

sampling to reduce imperfect to perfect information can be found in Kupferschmid and
Helmert (2007). The Alberta Computer Poker Research Group has developed systems
at the forefront of computer Poker players (Billings et al., 2006). This is a challenging
domain combining imperfect and misleading information, opponent modeling, and a large
state space. They describe several techniques that could generalize to this field, including
miximiz, fast opponent modeling, and Nash equilibrium solutions over an abstracted state
space.

An obvious criticism of these sampling methods is that they value information at zero be-
cause each individual sample assumes perfect information at all times (Frank & Basin, 2001).
This was confirmed at the imperfect-information track of the GGP competition at the Aus-
tralasian Joint Conference on Artificial Intelligence, where three games, NumberGuessing,
Banker AndThief, BattleshipsInFog, were specifically designed to test the ability of players
to value information. None of the competitors were able to do so. This so-called strategy
fusion error has been identified as a main issue with straightforward perfect-information
model sampling (Frank & Basin, 1998). Long, Sturtevant, Buro, and Furtak (2010) analyze
the impact of this error and present three conditions on game trees under which it does not
have a strong adverse effect on the quality of play. For other games, the strategy fusion error
has led to variations of perfect-information sampling that have been successfully applied to
other card games (Wisser, 2015).

Another recent idea by Cowling, Powley, and Whitehouse (2012) is Information Set
Monte Carlo Tree Search (IS-MCTS) currently being applied to many deterministic games
of imperfect information. Instead of searching game trees constructed from game states
and moves the IS-MCTS algorithms search trees constructed of information sets providing
an alternative analysis of the game. In doing so the technique takes into consideration
aspects of game-play that might be outside the domain of other reasoners. IS-MCTS relies
on randomly guessing the missing information but considers each sample as an independent
game to be analysed and to guide a single iteration of MCTS. Instead of keeping the search
trees independent, IS-MCTS creates a conglomerate tree which includes portions of the
game tree known to be unreachable yet delivers statistically significant results. A later
variant SO-MCTS maintains role independent trees. There are strong parallels between
this approach and the Imperfect Information Simulation in section 6. Importantly IS-
MCTS and SO-MCTS still requires a deterministic sample of an information set. Taking
deterministic samples of an information set is what HyperPlay does very efficiently.

1.2 Contribution

This article draws on the General Game Playing research for perfect-information games and
extends it to imperfect-information games. We take the simple technique of using a sample
of the player’s information set? and confirm that only a weighted sample will provide the
correct results. We then devise a formulation for calculating weightings for the particle
filter from partial probabilities using Ockham’s Razor.

The idea of sampling an information set is then extended to search spaces where such
sampling would normally be intractable. We offer a technique (HyperPlay) that maintains
a bag of samples from one information set to the next in a computationally efficient and

2. Sometimes this is referred to as a “particle filter” (Silver & Veness, 2010).

903

SCHOFIELD & THIELSCHER

effective manner. This allows us to generate samples of an information set that would
otherwise be impossible within the time budget given for each move. The technique is
proven to be sound and complete for all imperfect-information games in General Game
Playing. A formalism for an implementation of the technique is presented and tested to
reveal its strengths, weaknesses, limitations, and its efficiency over randomly generated
samples. Experimental data is presented to support the conclusions.

The incorrect valuation of information-gathering moves is clearly identified as a limita-
tion to the basic technique, and so information set sampling is lifted to imperfect-information
models to overcome the problems that occur when sample is elevated to fact®. This im-
provement ensures that the player correctly values all information-gathering moves. Again,
a formalism for an implementation is presented and tested. Again, experimental data is
used to identify the strengths, weaknesses and limitations of the new technique.

We begin with an overview of General Game Playing in section 2, followed by the intro-
duction of the HyperPlay technique and an analysis of an information set sampling and the
use of a weighted particle filter for general GDL-II games in section 3. The implementation
of HyperPlay is set out in section 4 with some experimental results, concluding with an
example of its limitations. Section 5 shows the efficiency of the technique over random sam-
pling and demonstrates its ability to maintaining viable models in a truly massive search
space.

In section 6, we lift model sampling to imperfect-information models and present a
formalism for HyperPlay-II along with experimental result. The scalability of the new
technique is challenged in section 7 to reveal the computational resource required for play
large games. Finally, we draw some conclusions in section 9. Experimental results and
the imperfect-information game topologies used for testing are presented in the electronic
appendix to the paper.

2. General Game Playing

In this section, we introduce the basics of General Game Playing (GGP). We review the
Game Description Language - Imperfect Information (GDL-II) and show its use in describing
a game. We introduce the Monty Hall game as a running worked example to illustrate the
technical sections. Finally, we define a formalization for an imperfect-information game
that is used to underpin the proofs and experimental findings presented in later section.

2.1 Game Description Language

The standardization of the Game Description Language (GDL) (Love, Hinrichs, Schkufza,
& Genesereth, 2006) and its widespread adoption has led to an increase in the research
of General Game Playing. Each year we see competitions being held at Al conferences,
beginning with AAAT GGP Competition (Genesereth et al., 2005) with successful players
employing a variety of techniques including: automatically generated evaluation functions
(Clune, 2007; Schiffel & Thielscher, 2007); or some form of Monte Carlo technique such as
the modern UCT (Bjornsson & Finnsson, 2009; Mehat & Cazenave, 2011). However, these

3. Elevating sample to fact is an example of the strategy fusion error(Frank & Basin, 1998)

904

GGP WITH IMPERFECT INFORMATION

advancements have been in the field of perfect-information games, only a few advancements
have been made in the field of imperfect-information games.

Imperfect-information games were set as a challenge for existing Al systems (Thielscher,
2010; Schiffel & Thielscher, 2014) with a specification for the extension of the Game De-
scription Language (Quenault & Cazenave, 2007; Thielscher, 2011) to encompass “Imperfect
Information” (GDL-II) being accepted by the General Game Playing community. These
games present several new challenges for the AI player. Firstly, the search space is often
larger than similar perfect-information games as the player must search parts of the game
tree that would otherwise be known to be inaccessible. Secondly, the player must reason
across an information set of all possible game states that satisfies the percepts received by
the player and choose the move that is most likely to give a positive outcome.

The GDL is used to specify a set of declarative statements (rules) with a programming-
like syntax. Originally designed for games of perfect information, the GDL was formal-
ized by Love et al. (2006) and later enhanced to include games of imperfect information
(Thielscher, 2010; Schiffel & Thielscher, 2014) with percepts and a role for the random
player who often represents ‘nature’. The syntax and semantics of GDL are detailed in
Appendix A.

45 (<= (next (chosen ?2d))
1 (role random) 23 (<= (legal contestant noop) 46 (true (chosen 2d))
2 (role contestant) 24 (true (round 2))) 47 (not (does contestant switch)))
3 25 (<= (legal contestant noop) 48 (<= (next (chosen 2d))
4 (init (closed 1)) 26 (true (round 3))) 49 (does contestant switch)
5 (init (closed 2)) 27 (<= (legal contestant switch) 50 (true (closed ?2d))
6 (init (closed 3)) 28 (true (round 3))) 51 (not (true (chosen 2d))))
7 (init (round 1)) 29 52 (<= (next (round 2))
8 30 (<= (sees contestant ?2d) 53 (true (round 1)))
9 (<= (legal random (hide_car ?d)) 31 (does random (open_door ?2d))) 54 (<= (next (round 3))
10 (true (round 1)) 32 (<= (sees contestant ?2d) 55 (true (round 2)))
11 (true (closed 2d))) 33 (true (round 3)) 56 (<= (next (round 4))
12 (<= (legal random (open_door 2d)) 34 (true (car ?2d))) 57 (true (round 3)))
13 (true (round 2)) 35 (<= (next (car 2d)) 58
14 (true (closed 2d)) 36 (does random (hide_car 2d)) 59 (<= terminal
15 (not (true (car 2d))) 37 (<= (next (car 2d)) 60 (true (round 4)))
16 (not (true (chosen 2d)))) 38 (true (car 2d))) 61
17 (<= (legal random noop) 39 (<= (next (closed ?2d)) 62 (<= (goal contestant 100)
18 (true (round 3))) 40 (true (closed 2d)) 63 (true (chosen 2d))
19 (<= (legal contestant (choose 2d)) 41 (not (does random open_ (door 2d)))) 64 (true (car 2d)))
20 (true (round 1)) 42 (<= (next (chosen 2d)) 65 (<= (goal contestant 0)
21 (true (closed 2d))) 43 (does contestant (choose 2d))) 66 (true (chosen 2d))
22 44 67 (not (true (car 2d))))

68 (goal random 0)

Figure 1: A GDL-II description of the Monty Hall game (Rosenhouse, 2009) adapted from
Thielscher (2011).

Example 1. To illustrate we use a running example based on the GDL-II rules in Figure 1,
which formalize the simple Monty Hall game. The intuition behind the rules follows.

Lines 1 — 2 introduce the players’ names (the game host is modeled by random).

Lines 4 — 7 define the four features that comprise the initial game state.

The possible moves are specified by the rules for 1egal: in round 1, the random player
must decide where to place the car (lines 9 — 11) and, simultaneously, the contestant chooses
a door (lines 19 — 21); in round 2, random opens one of the other doors (lines 12 — 16) to
reveal a goat; finally, the contestant can either stick to their earlier choice (noop) or switch
to the other, yet unopened door (lines 25 — 26, 27 — 28).

905

SCHOFIELD & THIELSCHER

The contestant’s only percepts are: the door opened by the host (lines 30 — 31); and the
location of the car at the end of the game (line 32 — 34).

The remaining rules specify the state update (rules for next), the conditions for the
game to end (rule for terminal), and the payoff for the player depending on whether they
got the door right in the end (rules for goal). q

2.2 Game Formalization

Here we present the basic mathematics of a game described in the GDL-II. While there
have been many variations presented in the literature the differences are mostly superficial
in regard to the nomenclature. We follow the most common conventions but standardize
our nomenclature, with sets being upper-case Roman characters, elements being the cor-
responding lower-case character, and functions being lower-case Greek characters or short
words giving some intuition of the functions purpose. We follow the formalisation presented
by Schofield (2018) which builds upon the semantics of GDL-II presented by Schiffel and
Thielscher (2014) where they show that a set of clauses forming a valid GDL-IT description®
is a representation of a state transition system as follows.

Definition 1. Let G = (S, so, R, A, \, P, p,v,d) be an imperfect-information game given by
a valid GDL-II description, then:

1. S is a set of states, disjoint decision and terminal states S = D W T}

2. sg € S is the initial state of the game;

3. R is a set of roles in the game;

4. A is the set of all moves (actions) in the game;

5. X:D x R— 24 is a function giving a set of legal moves for 7 € R in d € D;

6. P is a set of all percepts in the game;

7. p: Dx ARl R — P is a function giving the percept (with multiple percepts conjoined
and null as the empty percept) for role r € R resulting from enacting a joint move in
a decision state d € D;

8. v:T x R — R is the payoff function on termination; and

9. §: D x Al 5 S is the successor function. O
Supplementary nomenclature used hereafter are detailed in Appendix B.

Example 1 continued. In the worked example shown in the GDL of Figure 1. Let s;
result from the random player placing the car behind door 1 and the contestant choosing
door 2 in the initial state sg. In round 2, random will open one of the closed, unchosen
doors that does not contain the car, defined at line 12. The contestant has a forced noop,
defined by at line 23. The percepts for the contestant are defined at line 30, and random
has no percepts. From Definition 1 we get:

da = ((open_door 3),noop)
so = 0(s1,a) = 0(s1, ((open_door 3),noop))
P = p(s1, ((open_door 3),noop)) = (null, 3)

4. Refer to section 2.3 Valid Game Descriptions of Schiffel and Thielscher (2014).

906

GGP WITH IMPERFECT INFORMATION

3. The HyperPlay Technique

In this section, we introduce the HyperPlay technique, both as a function that completes
imperfect play messages and as an implementation in a GGP player. We show that a
uniform sample of a player’s information set fails in some games and introduce a sampling
technique based on Ockham’s Razor. There is a proof sketch for soundness and completeness
of the technique by examining properties of the game tree. We also present sufficient detail
for the reader to implement the technique as a “bolt-on” to an existing perfect-information
General Game Playing agent.

3.1 Overview

The technique maintains a bag of models of the true game, each model being a perfect-
information game. In this respect the technique is a form of determinism, that is, it creates
perfect-information samples of the players information set. The differentiating feature of
the technique is that it is able to take samples of very large information sets. A case study
in section 5.7 shows many samples being taken in real time where the upper bound for
the information set is 6.0 E+23 and the probability of a valid sample is < 0.01% with an
efficiency 50 times greater than random sampling.

The technique is not a move planning tool as it has no forward-looking capabilities and
so it must be added onto an existing player. We choose to use a simple Monte Carlo player
because we want our experimental results to focus on the sampling of the information set,
not the cleverness of the move selection tool in finding the optimal solutions. We want the
perfect-information player to cover a large portion of the game tree, by making mediocre
move choices that will eventually converge to an optimal solution, so that we can validate
the sampling technique in every circumstance.

3.2 Game Tree

We have defined a game as a multi-agent state transition system, described by a set of
clauses in the GDL. We use the terminology of the GDL to describe agents as roles, actions
as moves, and signals as percepts. The natural progression of the game from one state to
its successor, beginning with the initial state, traces out paths in the induced game tree.

Definition 2. A game G = (S, so, R, A, \, P, p,v,) given by a valid GDL-II description
induces a game tree, which is a connected, acyclic graph G = (V,E) with a single root node
for the initial game state and where the edges are determined by the joint legal moves in
non-leaf nodes while leaves correspond to terminal game states. We will use the following
definitions:

1. state : V — S is a function that maps from a node (vertex) v € V in the game tree to
the corresponding game state s € S; and

2. moves : E — Al is a function that maps from an edge e € E in the game tree to the
corresponding joint move a;

3. € is a unique path of edges (e1, eg, ...e,) beginning at the single root node vy, corre-
sponding to the joint moves enacted in a game; and

4. node’ : EN x N — V is a function that returns the i node along a path e”. O

907

SCHOFIELD & THIELSCHER

As the game progresses, there is a state s; of the game described by a set of fluents as
well as an ordered list of play messages forming a history of joint moves and percepts. This
history can be traced out as a path from the root node vy to the current node vy, such that,
st = state(v;) and forms the basis of the model maintained by the technique.

3.3 Information Set

Schiffel and Thielscher (2014) show that a valid GDL-II game can be understood as a
partially-observable, extensive-form game and that there will be sets of legal play sequences
(histories) that a player cannot distinguish. Therefore, we define information sets for a
player in terms of indistinguishable histories.

Definition 3. Let G = (S, so, R, A, \, P, p,v,) be an imperfect-information game given by
a valid GDL-II description and G = (V,E) be the induced game tree, and a play message be
a move and percept tuple associated with an edge on the induced game tree and a history
be a sequence of such edges. Then:

1. M is the set of all play messages, m = (a,p) € M, for each role m, = (a,, p,) where
a, is the move enacted in decision state d and p, = p(d, @, r);

2. H is the set of all histories in the game with A € H being a history of m*, which
departs from the convention of a history of actions a* or edges e* so as to deal with
imperfect histories, where the percepts provide additional information that is not in
the state but aids in partitioning nodes into information sets;

3. £ :H x R — H gives the imperfect-information history as seen by role r € R, and

4. I, C H is the general form for an information set for role » € R in round n.]
Supplementary nomenclature used hereafter are detailed in Appendix B.

Now we can extract information from any node in the game tree about the moves and
percepts along its history including the imperfect-information history that represents the
view of one of the roles and defines that role’s information set.

3.4 Move Selection Policy

For a game to be played out to termination we require a move selection policy for each role.
This policy represents the role’s strategy for choosing a legal move in any decision state.

Definition 4. Let G = (S, so, R, A, \, P, p,v, J) be an imperfect-information game given by
a valid GDL-II description and G = (V,E) be the induced game tree and each role have a
move selection policy expressed as a probability distribution across all moves in all decision
states. We use the following definitions:

1. II is the set of all move selection policies 7 € 1II,

2. select : 11 x D x R — ¢(A) is a move selection function, as a probability distribution
across all moves, and

3. play : S x IIIAl — ¢(T) is the playout of a game from any state to termination
according to the given move selection policies, expressed as a probability distribution
across all terminal states. O
Supplementary nomenclature used hereafter are detailed in Appendix B.

908

GGP WITH IMPERFECT INFORMATION

We define the play() function from any state including a terminal state. In such a case
the distribution ¢(7") would have one certain value. From this definition, we formulate the
probability distribution across the set of terminal states (1) given an information set and
move selection policies. We also calculate the expected outcome of the game (2).

&(T)= Y P(h)-play(state(vy,),®) prima facie P(h;) = 1/|I.| (1)
hielnn

E(I,) =Y P(t;) x v(t;,r) (2)
t,eT
Note that the playout results in a probability distribution across all the terminal nodes,
those terminals that are unreachable from an information set would have zero probability.

3.5 Choice Factor

Car Goat Goat Car

null

(sees contestant 1)
(sees contestant 2)
(sees contestant 3)

(does random (hide car 1))
(does random (hide car 2))
(does random (hide car 3))
(does random (open door 1))
(does random (open:door 2))
(does random (open door 3))
(does random noop)

(does contestant (choose 1))
(does contestant (choose 2))
(does contestant (choose 3))
(does contestant switch)
(does contestant noop)

QEHEYOW P
HRoHD
WN ko

Figure 2: Monty Hall game tree, as seen by the contestant. Moves are serialized and (does
role noop) removed, for the sake of clarity. The moves in the game were (does
random (hide_car 3)), (does contestant (choose 1)), (does random (open_door 2)).

Example 1 continued. Consider the situation shown in Figure 2:

I. = {vo,v1} is the contestant’s information set

o(T) = > ,,c1, P(vi) x play(state(v;), mc) is the result of random playouts assuming
a uniform probability distribution across I.

&(T) = (...,0.25,0.25, ...,0.25,0.25, ...)

The reader will note that ¢(7") suggests an even distribution of the outcomes which is
incorrect for the real Monty Hall game, therefore, the assumed probability distribution
across I. must also be incorrect. q

909

SCHOFIELD & THIELSCHER

The probability distribution across an information set®, calculated in (1) and our ex-
ample will depend on the move selection policy m of the other roles. Prima facie, the move
selection policy for other roles is random, but that does not mean the probability distribu-
tion across an information set is uniform. We use Ockham’s Razor® and rules in the GDL
to formulate the probability distribution across an information set.

The original definition of ChoiceFactor (Schofield et al., 2012) focused on the choices
being made by a player as the game was being played. It let the ChoiceFactor of a node
vi (3) be the product of the size of the sets of legal moves (choices) in each decision node
along the path from the root node to the current round as defined by the history &(v;).

Finally, the likelihood of the node v; (4) being the true node v; was expressed in pro-
portion to the likelihood of all of the other samples of an information set.

n—1
ChoiceFactor(v;) = H \\(state(node! (€(vi), 1)))
7=0
_ _ 1/ChoiceFactor(v;)
P(vi=v) = >, e1, 1/ChoiceFactor(vy) (4)

This approach has appeal as an information set may be intractable and we may only
be able to take a sample. Therefore, our only indication of the likelihood of a sampled
node being the true node must be expressed in terms of the likelihood of the other samples.
However, we may have information about the move selection policy of other roles. Therefore,
we redefine (4) by including the move selection policy 7 for the choices being made.

P(d|d;) = H P(a, | select(n,,d;,7)) where d; = state(node'(&(vi),J)) (5)
reR

n—1
P(vi=v) =[] P(@ld;) (6)
=0

The probability expressed in (6) is only correct if we can sample the whole information
set and the game tree has a constant branching factor. Therefore, as in the previous case
(4), we must treat this a partial probability and use a normalizing factor to get an estimate
of the true probabilities.

1

n—1
P(vi=v) =+ [[P(@ld;) (7)
j=0

|

n—1
normalisation factor k= Z (H P(a| dj)> (8)
viel, j=0
Now we have an expression for the probability that an element of the sample of an
information set is in fact the true game, relative to the other samples in our bag’.

5. That is, the probability that an element in an information set is in fact the true node representing the
current game: P(vy = v;)

6. We look for the simplest expression of likelihood that a path would be selected at random.

7. We use a bag of samples instead of a set of samples, as there may be duplication.

910

GGP WITH IMPERFECT INFORMATION

Example 1 continued. Reworking our example of the situation shown in Figure 2:
I. = {vo,v1} is the contestant’s information set
o(T) = >y, cr, P(vi) x play(state(v;), mc) is the result of random playouts
¢(I.) = (0.33,0.67) (from equations (5)(7)(8))
&(T) = (...,0.17,0.17, ...,0.33,0.33, ...)

Which is now consistent with the probable outcomes of the real game. The expected
outcome for the two move choices are:
E(noop) = 0.33 x car + 0.67 x goat
E(switch) = 0.67 x car + 0.33 x goat

Suggesting that the Contestant should (switch), unless the goat has more utility than
the car. The distribution ¢(7) is consistent with the known outcomes of the real game.

3.6 HyperPlay Description

This technique (Schofield et al., 2012) maintains a bag of models of the real game, each
model being a perfect-information game. The technique updates the models from one move
to the next, replacing any unreachable models with new ones by backtracking along their
history until a reachable model can be instantiated. The models are used as a weighted
particle filter on an information set and provide a basis for perfect-information evaluation.
We define a function that maintains each model by completing an imperfect history of play
messages using the legal move choices available in each decision state. If the full history of
the game is known, then all of the models converge to the game. The function must choose
randomly from the set of legal moves and so we use a random seed x as an argument to the
function. The same random seed will always return the same choice.

Definition 5. Let G = (S, so, R, A, \, P, p,v,d) be an imperfect-information game given
by a valid GDL-II description and G = (V,E) be the induced game tree. The HyperPlay
function is defined as follows.

1. Ap: M xR — M™ is the function HyperPlay that completes an imperfect-information
play history h, by grounding the missing elements in the play messages consistent with
the legal moves a,; € \(state(node’(h,,i),