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Abstract

General Game Playing is a field which allows the researcher to investigate techniques
that might eventually be used in an agent capable of Artificial General Intelligence. Game
playing presents a controlled environment in which to evaluate AI techniques, and so we
have seen an increase in interest in this field of research. Games of imperfect information
offer the researcher an additional challenge in terms of complexity over games with perfect
information. In this article, we look at imperfect-information games: their expression,
their complexity, and the additional demands of their players. We consider the problems
of working with imperfect information and introduce a technique called HyperPlay, for
efficiently sampling very large information sets, and present a formalism together with
pseudo code so that others may implement it. We examine the design choices for the
technique, show its soundness and completeness then provide some experimental results
and demonstrate the use of the technique in a variety of imperfect-information games,
revealing its strengths, weaknesses, and its efficiency against randomly generating samples.
Improving the technique, we present HyperPlay-II, capable of correctly valuing information-
gathering moves. Again, we provide some experimental results and demonstrate the use of
the new technique revealing its strengths, weaknesses and its limitations.

1. Introduction

General Game Playing (GGP) is becoming popular with Artificial Intelligence researchers
as it presents the challenge of designing a system capable of playing a game, without prior
knowledge or learning. Such games are described in the Game Description Language, spec-
ifying the initial state, legal moves, percepts (signals), terminal conditions and reward
structure (Genesereth, Love, & Pell, 2005). Games are invented that test the boundaries of
computing technology with intractable search spaces and no clear heuristic or strategy for
winning. In this arena, imperfect-information games are the most complex to play and the
least explored by researchers.

In this article we present the HyperPlay technique as a “bolt-on” solution to convert a
General Game Player designed to play perfect-information games into a player capable of
playing imperfect-information games. HyperPlay is not a move planning technique, it is a
method of sampling an information set so that the host player can plan moves using the
samples. In this paper we choose a simple host based on a Monte Carlo player. We use a
Monte Carlo host as it is not a “good” player; we resource the host so that it makes a large
variety of moves (from one playout to the next) and occasionally makes poor moves, testing
the robustness of the HyperPlay technique across the full extent of the game tree.
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We extend the formalism for imperfect-information games and players, we then introduce
the technique in sufficient detail so that it can be reproduced, we detail several implemen-
tations of the technique and experimental data that highlights its strengths, weaknesses,
limitations, and investigate its effectiveness and its efficiency.

A note on terminology: In the game playing community the term “imperfect” is used
where general AI often uses the term “incomplete.” We will use “imperfect” information
to mean that the game play may be hidden from one or more players. The initial state,
reward structure, etc. are declared in the rules which are fully known to all players.

1.1 Related Research

The General Game Playing community has been slow to pick up the challenge of imperfect-
information games and only a few players have been implemented with even fewer com-
petitions being conducted. The published approaches to designing general game players
for GDL-II show how existing perfect-information GDL players can be lifted to play gen-
eral imperfect-information games by using models or sampling of an information set as the
starting states for a perfect-information search (Edelkamp, Federholzner, & Kissmann, 2012;
Schofield, Cerexhe, & Thielscher, 2012). This takes advantage of previous research into in-
formation set generation for games specified in a variant of the Planning Domain Definition
Language (PDDL) (Richards & Amir, 2012) and the use of particle system techniques (Sil-
ver & Veness, 2010) with the sample of an information set either generated, or maintained
from one round to the next. Application of these techniques in the General Game Play-
ing setting requires their adaptation to the general Game Description Language (GDL),
which, in contrast to PDDL, supports the syntax of logic programming to define game
rules, including negation-by-failure, and can handle arbitrary state- and action-dependent
percepts, aka. observation tokens (Engesser, Mattmüller, Thielscher, & Nebel, 2018). The
latter also distinguishes model sampling in GGP from information set sampling for specific
games in which a small, pre-defined set of possible observations can be sampled directly,
e.g. in Kriegspiel (Ciancarini & Favini, 2010).

The GGP-II international competitions have sparked the development of several players.
Edelkamp et al. (2012) have built a GDL-II player Nexusbaum based on perfect-information
Monte Carlo sampling, which they compared against Fluxii, an imperfect-information
extension of Fluxplayer (Schiffel & Thielscher, 2007) that maintains the full information
set throughout a game. An early development version of a HyperPlayer also competed
in the first international competition, coming second out of only three competitors. At the
Australasian Joint Conference on Artificial Intelligence1 there was GDL-II track encouraging
entries by CadiaPlayer (Bjornsson & Finnsson, 2009), LeJoueur (Hufschmitt, 2014) and
Nexusbaum (Edelkamp et al., 2012).

Outside of General Game Playing, the Monte Carlo tree search technique based on a
sample of an information set has been applied to a variety of specific perfect-information
and imperfect-information games alike (Browne et al., 2012). Frank and Basin (1998) have
presented a ‘game-general’ tree search algorithm for the card game Bridge that exploits
a number of imperfect-information heuristics. For the same game, Ginsberg (2001) has
applied perfect-information Monte Carlo sampling. Similar special case applications of

1. See https://wiki.cse.unsw.edu.au/ai2012/GGP.
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sampling to reduce imperfect to perfect information can be found in Kupferschmid and
Helmert (2007). The Alberta Computer Poker Research Group has developed systems
at the forefront of computer Poker players (Billings et al., 2006). This is a challenging
domain combining imperfect and misleading information, opponent modeling, and a large
state space. They describe several techniques that could generalize to this field, including
miximix, fast opponent modeling, and Nash equilibrium solutions over an abstracted state
space.

An obvious criticism of these sampling methods is that they value information at zero be-
cause each individual sample assumes perfect information at all times (Frank & Basin, 2001).
This was confirmed at the imperfect-information track of the GGP competition at the Aus-
tralasian Joint Conference on Artificial Intelligence, where three games, NumberGuessing,
BankerAndThief, BattleshipsInFog, were specifically designed to test the ability of players
to value information. None of the competitors were able to do so. This so-called strategy
fusion error has been identified as a main issue with straightforward perfect-information
model sampling (Frank & Basin, 1998). Long, Sturtevant, Buro, and Furtak (2010) analyze
the impact of this error and present three conditions on game trees under which it does not
have a strong adverse effect on the quality of play. For other games, the strategy fusion error
has led to variations of perfect-information sampling that have been successfully applied to
other card games (Wisser, 2015).

Another recent idea by Cowling, Powley, and Whitehouse (2012) is Information Set
Monte Carlo Tree Search (IS-MCTS) currently being applied to many deterministic games
of imperfect information. Instead of searching game trees constructed from game states
and moves the IS-MCTS algorithms search trees constructed of information sets providing
an alternative analysis of the game. In doing so the technique takes into consideration
aspects of game-play that might be outside the domain of other reasoners. IS-MCTS relies
on randomly guessing the missing information but considers each sample as an independent
game to be analysed and to guide a single iteration of MCTS. Instead of keeping the search
trees independent, IS-MCTS creates a conglomerate tree which includes portions of the
game tree known to be unreachable yet delivers statistically significant results. A later
variant SO-MCTS maintains role independent trees. There are strong parallels between
this approach and the Imperfect Information Simulation in section 6. Importantly IS-
MCTS and SO-MCTS still requires a deterministic sample of an information set. Taking
deterministic samples of an information set is what HyperPlay does very efficiently.

1.2 Contribution

This article draws on the General Game Playing research for perfect-information games and
extends it to imperfect-information games. We take the simple technique of using a sample
of the player’s information set2 and confirm that only a weighted sample will provide the
correct results. We then devise a formulation for calculating weightings for the particle
filter from partial probabilities using Ockham’s Razor.

The idea of sampling an information set is then extended to search spaces where such
sampling would normally be intractable. We offer a technique (HyperPlay) that maintains
a bag of samples from one information set to the next in a computationally efficient and

2. Sometimes this is referred to as a “particle filter” (Silver & Veness, 2010).
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effective manner. This allows us to generate samples of an information set that would
otherwise be impossible within the time budget given for each move. The technique is
proven to be sound and complete for all imperfect-information games in General Game
Playing. A formalism for an implementation of the technique is presented and tested to
reveal its strengths, weaknesses, limitations, and its efficiency over randomly generated
samples. Experimental data is presented to support the conclusions.

The incorrect valuation of information-gathering moves is clearly identified as a limita-
tion to the basic technique, and so information set sampling is lifted to imperfect-information
models to overcome the problems that occur when sample is elevated to fact3. This im-
provement ensures that the player correctly values all information-gathering moves. Again,
a formalism for an implementation is presented and tested. Again, experimental data is
used to identify the strengths, weaknesses and limitations of the new technique.

We begin with an overview of General Game Playing in section 2, followed by the intro-
duction of the HyperPlay technique and an analysis of an information set sampling and the
use of a weighted particle filter for general GDL-II games in section 3. The implementation
of HyperPlay is set out in section 4 with some experimental results, concluding with an
example of its limitations. Section 5 shows the efficiency of the technique over random sam-
pling and demonstrates its ability to maintaining viable models in a truly massive search
space.

In section 6, we lift model sampling to imperfect-information models and present a
formalism for HyperPlay-II along with experimental result. The scalability of the new
technique is challenged in section 7 to reveal the computational resource required for play
large games. Finally, we draw some conclusions in section 9. Experimental results and
the imperfect-information game topologies used for testing are presented in the electronic
appendix to the paper.

2. General Game Playing

In this section, we introduce the basics of General Game Playing (GGP). We review the
Game Description Language - Imperfect Information (GDL-II) and show its use in describing
a game. We introduce the Monty Hall game as a running worked example to illustrate the
technical sections. Finally, we define a formalization for an imperfect-information game
that is used to underpin the proofs and experimental findings presented in later section.

2.1 Game Description Language

The standardization of the Game Description Language (GDL) (Love, Hinrichs, Schkufza,
& Genesereth, 2006) and its widespread adoption has led to an increase in the research
of General Game Playing. Each year we see competitions being held at AI conferences,
beginning with AAAI GGP Competition (Genesereth et al., 2005) with successful players
employing a variety of techniques including: automatically generated evaluation functions
(Clune, 2007; Schiffel & Thielscher, 2007); or some form of Monte Carlo technique such as
the modern UCT (Bjornsson & Finnsson, 2009; Mehat & Cazenave, 2011). However, these

3. Elevating sample to fact is an example of the strategy fusion error(Frank & Basin, 1998)
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advancements have been in the field of perfect-information games, only a few advancements
have been made in the field of imperfect-information games.

Imperfect-information games were set as a challenge for existing AI systems (Thielscher,
2010; Schiffel & Thielscher, 2014) with a specification for the extension of the Game De-
scription Language (Quenault & Cazenave, 2007; Thielscher, 2011) to encompass “Imperfect
Information” (GDL-II) being accepted by the General Game Playing community. These
games present several new challenges for the AI player. Firstly, the search space is often
larger than similar perfect-information games as the player must search parts of the game
tree that would otherwise be known to be inaccessible. Secondly, the player must reason
across an information set of all possible game states that satisfies the percepts received by
the player and choose the move that is most likely to give a positive outcome.

The GDL is used to specify a set of declarative statements (rules) with a programming-
like syntax. Originally designed for games of perfect information, the GDL was formal-
ized by Love et al. (2006) and later enhanced to include games of imperfect information
(Thielscher, 2010; Schiffel & Thielscher, 2014) with percepts and a role for the random
player who often represents ‘nature’. The syntax and semantics of GDL are detailed in
Appendix A.

1 (role random)
2 (role contestant)
3
4 (init (closed 1))
5 (init (closed 2))
6 (init (closed 3))
7 (init (round 1))
8
9 (<= (legal random (hide_car ?d))

10 (true (round 1))
11 (true (closed ?d)))
12 (<= (legal random (open_door ?d))
13 (true (round 2))
14 (true (closed ?d))
15 (not (true (car ?d)))
16 (not (true (chosen ?d))))
17 (<= (legal random noop)
18 (true (round 3)))
19 (<= (legal contestant (choose ?d))
20 (true (round 1))
21 (true (closed ?d)))
22

23 (<= (legal contestant noop)
24 (true (round 2)))
25 (<= (legal contestant noop)
26 (true (round 3)))
27 (<= (legal contestant switch)
28 (true (round 3)))
29
30 (<= (sees contestant ?d)
31 (does random (open_door ?d)))
32 (<= (sees contestant ?d)
33 (true (round 3))
34 (true (car ?d)))
35 (<= (next (car ?d))
36 (does random (hide_car ?d))
37 (<= (next (car ?d))
38 (true (car ?d)))
39 (<= (next (closed ?d))
40 (true (closed ?d))
41 (not (does random open_(door ?d))))
42 (<= (next (chosen ?d))
43 (does contestant (choose ?d)))
44

45 (<= (next (chosen ?d))
46 (true (chosen ?d))
47 (not (does contestant switch)))
48 (<= (next (chosen ?d))
49 (does contestant switch)
50 (true (closed ?d))
51 (not (true (chosen ?d))))
52 (<= (next (round 2))
53 (true (round 1)))
54 (<= (next (round 3))
55 (true (round 2)))
56 (<= (next (round 4))
57 (true (round 3)))
58
59 (<= terminal
60 (true (round 4)))
61
62 (<= (goal contestant 100)
63 (true (chosen ?d))
64 (true (car ?d)))
65 (<= (goal contestant 0)
66 (true (chosen ?d))
67 (not (true (car ?d))))
68 (goal random 0)

Figure 1: A GDL-II description of the Monty Hall game (Rosenhouse, 2009) adapted from
Thielscher (2011).

Example 1. To illustrate we use a running example based on the GDL-II rules in Figure 1,
which formalize the simple Monty Hall game. The intuition behind the rules follows.

Lines 1 – 2 introduce the players’ names (the game host is modeled by random).

Lines 4 – 7 define the four features that comprise the initial game state.

The possible moves are specified by the rules for legal: in round 1, the random player
must decide where to place the car (lines 9 – 11) and, simultaneously, the contestant chooses
a door (lines 19 – 21); in round 2, random opens one of the other doors (lines 12 – 16) to
reveal a goat; finally, the contestant can either stick to their earlier choice (noop) or switch
to the other, yet unopened door (lines 25 – 26, 27 – 28).
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The contestant’s only percepts are: the door opened by the host (lines 30 – 31); and the
location of the car at the end of the game (line 32 – 34).

The remaining rules specify the state update (rules for next), the conditions for the
game to end (rule for terminal), and the payoff for the player depending on whether they
got the door right in the end (rules for goal). ¶

2.2 Game Formalization

Here we present the basic mathematics of a game described in the GDL-II. While there
have been many variations presented in the literature the differences are mostly superficial
in regard to the nomenclature. We follow the most common conventions but standardize
our nomenclature, with sets being upper-case Roman characters, elements being the cor-
responding lower-case character, and functions being lower-case Greek characters or short
words giving some intuition of the functions purpose. We follow the formalisation presented
by Schofield (2018) which builds upon the semantics of GDL-II presented by Schiffel and
Thielscher (2014) where they show that a set of clauses forming a valid GDL-II description4

is a representation of a state transition system as follows.

Definition 1. Let G = 〈S, s0, R,A, λ, P, ρ, υ, δ〉 be an imperfect-information game given by
a valid GDL-II description, then:

1. S is a set of states, disjoint decision and terminal states S = D ] T ;
2. s0 ∈ S is the initial state of the game;
3. R is a set of roles in the game;
4. A is the set of all moves (actions) in the game;
5. λ : D ×R→ 2A is a function giving a set of legal moves for r ∈ R in d ∈ D;
6. P is a set of all percepts in the game;
7. ρ : D×A|R|×R→ P is a function giving the percept (with multiple percepts conjoined

and null as the empty percept) for role r ∈ R resulting from enacting a joint move in
a decision state d ∈ D;

8. υ : T ×R→ R is the payoff function on termination; and
9. δ : D ×A|R| → S is the successor function.

Supplementary nomenclature used hereafter are detailed in Appendix B.

Example 1 continued. In the worked example shown in the GDL of Figure 1. Let s1

result from the random player placing the car behind door 1 and the contestant choosing
door 2 in the initial state s0. In round 2, random will open one of the closed, unchosen
doors that does not contain the car, defined at line 12. The contestant has a forced noop,
defined by at line 23. The percepts for the contestant are defined at line 30, and random
has no percepts. From Definition 1 we get:

~a = 〈(open door 3), noop〉
s2 = δ(s1,~a) = δ(s1, 〈(open door 3), noop〉)
~p = ρ(s1, 〈(open door 3), noop〉) = 〈null, 3〉

¶

4. Refer to section 2.3 Valid Game Descriptions of Schiffel and Thielscher (2014).
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3. The HyperPlay Technique

In this section, we introduce the HyperPlay technique, both as a function that completes
imperfect play messages and as an implementation in a GGP player. We show that a
uniform sample of a player’s information set fails in some games and introduce a sampling
technique based on Ockham’s Razor. There is a proof sketch for soundness and completeness
of the technique by examining properties of the game tree. We also present sufficient detail
for the reader to implement the technique as a “bolt-on” to an existing perfect-information
General Game Playing agent.

3.1 Overview

The technique maintains a bag of models of the true game, each model being a perfect-
information game. In this respect the technique is a form of determinism, that is, it creates
perfect-information samples of the players information set. The differentiating feature of
the technique is that it is able to take samples of very large information sets. A case study
in section 5.7 shows many samples being taken in real time where the upper bound for
the information set is 6.0 E+23 and the probability of a valid sample is < 0.01% with an
efficiency 50 times greater than random sampling.

The technique is not a move planning tool as it has no forward-looking capabilities and
so it must be added onto an existing player. We choose to use a simple Monte Carlo player
because we want our experimental results to focus on the sampling of the information set,
not the cleverness of the move selection tool in finding the optimal solutions. We want the
perfect-information player to cover a large portion of the game tree, by making mediocre
move choices that will eventually converge to an optimal solution, so that we can validate
the sampling technique in every circumstance.

3.2 Game Tree

We have defined a game as a multi-agent state transition system, described by a set of
clauses in the GDL. We use the terminology of the GDL to describe agents as roles, actions
as moves, and signals as percepts. The natural progression of the game from one state to
its successor, beginning with the initial state, traces out paths in the induced game tree.

Definition 2. A game G = 〈S, s0, R,A, λ, P, ρ, υ, δ〉 given by a valid GDL-II description
induces a game tree, which is a connected, acyclic graph G = (V,E) with a single root node
for the initial game state and where the edges are determined by the joint legal moves in
non-leaf nodes while leaves correspond to terminal game states. We will use the following
definitions:

1. state : V→ S is a function that maps from a node (vertex) v ∈ V in the game tree to
the corresponding game state s ∈ S; and

2. moves : E→ A|R| is a function that maps from an edge e ∈ E in the game tree to the
corresponding joint move ~a;

3. ~en is a unique path of edges 〈e1, e2, ...en〉 beginning at the single root node v0, corre-
sponding to the joint moves enacted in a game; and

4. nodei : EN × N→ V is a function that returns the ith node along a path en.
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As the game progresses, there is a state st of the game described by a set of fluents as
well as an ordered list of play messages forming a history of joint moves and percepts. This
history can be traced out as a path from the root node v0 to the current node vt, such that,
st = state(vt) and forms the basis of the model maintained by the technique.

3.3 Information Set

Schiffel and Thielscher (2014) show that a valid GDL-II game can be understood as a
partially-observable, extensive-form game and that there will be sets of legal play sequences
(histories) that a player cannot distinguish. Therefore, we define information sets for a
player in terms of indistinguishable histories.

Definition 3. Let G = 〈S, s0, R,A, λ, P, ρ, υ, δ〉 be an imperfect-information game given by
a valid GDL-II description and G = (V,E) be the induced game tree, and a play message be
a move and percept tuple associated with an edge on the induced game tree and a history
be a sequence of such edges. Then:

1. M is the set of all play messages, m = 〈a, p〉 ∈ M , for each role mr = 〈ar, pr〉 where
ar is the move enacted in decision state d and pr = ρ(d,~a, r);

2. H is the set of all histories in the game with h ∈ H being a history of ~mk, which
departs from the convention of a history of actions ak or edges ek so as to deal with
imperfect histories, where the percepts provide additional information that is not in
the state but aids in partitioning nodes into information sets;

3. ξ : H×R→ H gives the imperfect-information history as seen by role r ∈ R, and
4. Ir,n ⊆ H is the general form for an information set for role r ∈ R in round n.

Supplementary nomenclature used hereafter are detailed in Appendix B.

Now we can extract information from any node in the game tree about the moves and
percepts along its history including the imperfect-information history that represents the
view of one of the roles and defines that role’s information set.

3.4 Move Selection Policy

For a game to be played out to termination we require a move selection policy for each role.
This policy represents the role’s strategy for choosing a legal move in any decision state.

Definition 4. Let G = 〈S, s0, R,A, λ, P, ρ, υ, δ〉 be an imperfect-information game given by
a valid GDL-II description and G = (V,E) be the induced game tree and each role have a
move selection policy expressed as a probability distribution across all moves in all decision
states. We use the following definitions:

1. Π is the set of all move selection policies π ∈ Π,
2. select : Π×D ×R→ φ(A) is a move selection function, as a probability distribution

across all moves, and
3. play : S × Π|R| → φ(T ) is the playout of a game from any state to termination

according to the given move selection policies, expressed as a probability distribution
across all terminal states.
Supplementary nomenclature used hereafter are detailed in Appendix B.
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We define the play() function from any state including a terminal state. In such a case
the distribution φ(T ) would have one certain value. From this definition, we formulate the
probability distribution across the set of terminal states (1) given an information set and
move selection policies. We also calculate the expected outcome of the game (2).

φ(T ) =
∑

hi∈Ir,n

P (hi) · play(state(vhi
), ~π) prima facie P (hi) = 1/|Ir| (1)

E(Ir) =
∑
ti∈T

P (ti)× υ(ti, r) (2)

Note that the playout results in a probability distribution across all the terminal nodes,
those terminals that are unreachable from an information set would have zero probability.

3.5 Choice Factor

Figure 2: Monty Hall game tree, as seen by the contestant. Moves are serialized and (does
role noop) removed, for the sake of clarity. The moves in the game were (does
random (hide car 3)), (does contestant (choose 1)), (does random (open door 2)).

Example 1 continued. Consider the situation shown in Figure 2:

Ic = {v0, v1} is the contestant’s information set
φ(T ) =

∑
vi∈Ic P (vi)×play(state(vi), ~mc) is the result of random playouts assuming

a uniform probability distribution across Ic
φ(T ) = 〈..., 0.25, 0.25, ..., 0.25, 0.25, ...〉

The reader will note that φ(T ) suggests an even distribution of the outcomes which is
incorrect for the real Monty Hall game, therefore, the assumed probability distribution
across Ic must also be incorrect. ¶
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The probability distribution across an information set5, calculated in (1) and our ex-
ample will depend on the move selection policy π of the other roles. Prima facie, the move
selection policy for other roles is random, but that does not mean the probability distribu-
tion across an information set is uniform. We use Ockham’s Razor6 and rules in the GDL
to formulate the probability distribution across an information set.

The original definition of ChoiceFactor (Schofield et al., 2012) focused on the choices
being made by a player as the game was being played. It let the ChoiceFactor of a node
vi (3) be the product of the size of the sets of legal moves (choices) in each decision node
along the path from the root node to the current round as defined by the history ξ(vi).

Finally, the likelihood of the node vi (4) being the true node vt was expressed in pro-
portion to the likelihood of all of the other samples of an information set.

ChoiceFactor(vi) =

n−1∏
j=0

|λ(state(nodei(ξ(vi), j)))| (3)

P (vi = vt) =
1/ChoiceFactor(vi)∑

vj∈Ir 1/ChoiceFactor(vj)
(4)

This approach has appeal as an information set may be intractable and we may only
be able to take a sample. Therefore, our only indication of the likelihood of a sampled
node being the true node must be expressed in terms of the likelihood of the other samples.
However, we may have information about the move selection policy of other roles. Therefore,
we redefine (4) by including the move selection policy π for the choices being made.

P (~a | dj) =
∏
r∈R

P (ar | select(πr, dj , r)) where dj = state(nodei(ξ(vi), j)) (5)

P (vi = vt) =
n−1∏
j=0

P (~a | dj) (6)

The probability expressed in (6) is only correct if we can sample the whole information
set and the game tree has a constant branching factor. Therefore, as in the previous case
(4), we must treat this a partial probability and use a normalizing factor to get an estimate
of the true probabilities.

P (vi = vt) =
1

k

n−1∏
j=0

P (~a | dj) (7)

normalisation factor k =
∑

vi∈Ir

( n−1∏
j=0

P (~a | dj)
)

(8)

Now we have an expression for the probability that an element of the sample of an
information set is in fact the true game, relative to the other samples in our bag7.

5. That is, the probability that an element in an information set is in fact the true node representing the
current game: P (vt = vi)

6. We look for the simplest expression of likelihood that a path would be selected at random.
7. We use a bag of samples instead of a set of samples, as there may be duplication.
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Example 1 continued. Reworking our example of the situation shown in Figure 2:
Ic = {v0, v1} is the contestant’s information set
φ(T ) =

∑
vi∈Ic P (vi)× play(state(vi), ~mc) is the result of random playouts

φ(Ic) = 〈0.33, 0.67〉 (from equations (5)(7)(8))
φ(T ) = 〈..., 0.17, 0.17, ..., 0.33, 0.33, ...〉

Which is now consistent with the probable outcomes of the real game. The expected
outcome for the two move choices are:

E(noop) = 0.33× car + 0.67× goat
E(switch) = 0.67× car + 0.33× goat

Suggesting that the Contestant should (switch), unless the goat has more utility than
the car. The distribution φ(T ) is consistent with the known outcomes of the real game. ¶

3.6 HyperPlay Description

This technique (Schofield et al., 2012) maintains a bag of models of the real game, each
model being a perfect-information game. The technique updates the models from one move
to the next, replacing any unreachable models with new ones by backtracking along their
history until a reachable model can be instantiated. The models are used as a weighted
particle filter on an information set and provide a basis for perfect-information evaluation.
We define a function that maintains each model by completing an imperfect history of play
messages using the legal move choices available in each decision state. If the full history of
the game is known, then all of the models converge to the game. The function must choose
randomly from the set of legal moves and so we use a random seed x as an argument to the
function. The same random seed will always return the same choice.

Definition 5. Let G = (S, s0, R,A, λ, P, ρ, υ, δ) be an imperfect-information game given
by a valid GDL-II description and G = (V,E) be the induced game tree. The HyperPlay
function is defined as follows.

1. hp : Mn×R→Mn is the function HyperPlay that completes an imperfect-information
play history hr by grounding the missing elements in the play messages consistent with
the legal moves ari ∈ λ(state(nodei(hr, i), r)) ∀ i : 0 ≤ i < n known to the role r. The
function takes a random seed x to randomize the grounding choices, the same seed
will produce the same grounding choices.

2. Bad Move: ~a is labeled as ”bad” in decision state dk if the percepts do not match for
the round k + 1, ie. ρ(dk,~a, r) 6= ht[k + 1, r, ip].

We can now formulate an expression to sample an element in an information set (9) by
completing an imperfect history and then obtaining the last node in the play sequence.

vi = nodei(hp(ξ(vt, r), x), n) (9)

Example 1 continued. The HyperPlay function takes the imperfect history for the
Contestant and constructs a perfect history to one of the nodes in an information set.

ξ(vt, Contestant) = 〈〈〈( ? ), ( ? )〉, 〈(noop), ()〉〉, 〈( ? ), ( ? )〉, 〈〈(choose 1), ()〉〉〉
hp(ξ(vt, Contestant), x) = 〈〈〈(hide car 1), ()〉, 〈(noop), ()〉〉, 〈(noop), ()〉, 〈〈(choose 1), ()〉〉〉

¶
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3.7 Implementing HyperPlay

The technique maintains a bag of models of the true game, each model being a perfect-
information game. The models are given the name HyperGames8 as a reminder that they
are more than just a grounding of the state variables, but a full instantiation of the game
currently being played with agents in every role.

The HyperGame also contains the ability to re-instantiate the model if new percepts
makes the model invalid, referred to as ”backtracking”. So, a HyperGame is more than a
model. It is a data structure that contains a model that represents one possible state of
the true game. When new percepts arrive the current model of the HyperGame becomes
invalid and a new model is selected that is consistent with the newly received percepts and
existing information. This also allows the calculation of the likelihood that the new model
is the true game.

The term HyperGame will be used to mean a self-correcting data structure that con-
tains a model of the current game instantiated in code for experimental purposes. So, the
HyperGame is one of many self-correcting instantiations of the game containing a model
that is utilized by a HyperPlayer to make move selection in the game. The ”bag of models”
refers to the collection of models contained within the HyperPlayer. A bag is used as some
models may be identical.

The logic for the technique is as follows.

1. Models are updated from one move to the next using legal moves to replace the missing
moves for all of the roles.

2. Replacement moves are made randomly using a random seed. The same random seed
will produce the same move choices.

3. Bad9 move choices are recorded in memory by each HyperGame and not repeated.
Subtrees with no good move choices are discarded.

4. Invalid models that do not have any move choices consistent with the play messages
received are replaced with new models by backtracking along the play history until a
valid model can be instantiated in the current round.

5. Choice factors are calculated by each HyperGame along the models play history, and
hence a weighting factor is determined for calculation of expected outcomes.

6. The models are used as a weighted particle filter on an information set and provide a
basis for perfect-information evaluation.

Additionally, it is possible to place a counter into the update process so that any Hy-
perGame taking too long to update its model can be taken off line. This prevents the
player from stalling when one HyperGame becomes hopelessly lost. This merely postpones
the update process to a later round; it does not permanently invalidate the model. Time
permitting, the model can be brought back on line especially if the game is a turn taking
game.

A function is defined, below, that maintains each model by completing a history of
imperfect-information play messages using the legal move choices available in each decision

8. In the original analysis the term HypoGame was used to mean a hypothetical game, but the term was
not popular and it morphed into HyperGame, and hence HyperPlay.

9. The term ”bad” was coined in the original paper to mean legal, at the time, but inconsistent with later
information.
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state.10 The function must choose randomly from the set of legal moves and so a random
seed x is used.

hi = hp(ξ(ht, r), x) (10)

Put in words, the player receives an imperfect-information play history ξ(ht, r) from the
Game Controller and uses a random seed to construct a deterministic sample in the form
of a perfect-information play history.

Example 1 continued. The HyperPlay function takes the imperfect-information play
history for the Contestant and constructs a complete history to one of the nodes in the
current information set.

ξ(ht, Contestant) = 〈〈〈 〉, 〈L0〉〉, 〈〈 〉, 〈H0〉〉, 〈〈 〉, 〈L2〉〉〉
hp(ξ(ht, Contestant), x) = 〈〈〈A0〉, 〈L0〉〉, 〈〈G0〉, 〈H0〉〉, 〈〈E2〉, 〈L2〉〉〉

A different random seed x would produce a different sample.

The union of all such samples, in the limit, is an expression of an information set:

Ir,n =
⋃
lim

hp(ξ(ht, r), x) (11)

as the HyperPlay function can return any and every element of an information set.

3.8 Pseudo Code

Below is a presentation of the original process with some alterations to the nomenclature.
Previously the procedure was described using mathematical notation, but here it is described
using object-oriented pseudo code.

The procedures forward(), and backward() have been combined into Update().
Previously, the procedure forward() would replace missing information moving forward
to the current round, while the procedure backward() would backtrack invalid paths until
a new, untested branch could be found.

The HyperPlay algorithm is summarized in Figure 4 as part of an imperfect-information
game player in Figure 3. In the code for the player:

• classes are declared for a Game, Step and HyperGame for the operation of the player,
• line 15 shows the initialization of the bag of models (HyperGames), each being equal

to the initial node of the game,
• line 18 uses the bag of models as a weighted particle filter to calculate the move with

the highest utility,
• line 19 submits the move to the game controller and receives a percept, and
• line 22 updates each model to agree with the most recent move and percept.

Each HyperGame randomly completes the imperfect-information history to provide a
statistically valid sample of an information set.

10. If the full history of the game is known then all of the models converge to the true game.
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1 class Game
2 Node
3 Round
4 class Step
5 MyMove
6 MyPercept
7 Legal<Move>
8 Bad<Move>
9 class HyperGame

10 Node
11 Round
12 Path<Step>
13 RandomSeed
14 procedure Player(GameController)
15 Bag = <HyperGame, ... , HyperGame>
16 Round = 0
17 repeat
18 MyMove = SelectMove(Bag)
19 MyPercept = GameController.SubmitMove(MyMove)
20 Round = Round +1
21 for each HyperGame in Bag
22 HyperGame.Update(MyMove, MyPercept, Round)
23 next HyperGame
24 until IsTerminal(GameController)
25 end

Figure 3: An imperfect-information player using the HyperPlay technique.

1 procedure HyperGame.Update(MyMove, MyPercept, Round)
2 NewStep = Step.New(MyMove, MyPercept)
3 HyperGame.Path.Add(NewStep)
4 // Advance the HyperGame to the current round
5 while HyperGame.Round < Round
6 CurrentStep = HyperGame.Step[HyperGame.Round]
7 // Find a move that is consistent with the play messages
8 for each Move in CurrentStep.Legal and not in CurrentStep.Bad
9 if IsCongruent(Move) then

10 HyperGame.DoMove(Move)
11 NextStep = HyperGame.Step[HyperGame.Round]
12 NextStep.ResetLegalAndBad(RandomSeed)
13 continue while
14 end if
15 CurrentStep.Bad.Add(Move)
16 next Move
17 // Backtrack the previous move as all of its children are bad
18 BadMove = HyperGame.UndoLastMove()
19 PreviousStep = HyperGame.Step[HyperGame.Round]
20 PreviousStep.Bad.Add(BadMove)
21 end while
22 end

Figure 4: The HyperPlay technique used to maintain a model of the game.
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Looking at the Update() code in Figure 4 in more detail:

• lines 2 and 3 add a new step to the imperfect-information history,
• at first call, the HyperGame will be one round behind the game,
• lines 12 clears the array of bad moves and randomizes the array of legal moves,
• line 8 enumerates the legal, as yet untested, moves for the current search round,
• lines 9 - 14 advance the HyperGame with a move that is consistent with the known

moves and percepts,
• line 15 records ‘bad’ moves that are inconsistent with the known moves and percepts,

and
• if there are no ‘good’ moves then line 18 - 20 backtracks the HyperGame to the previous

round, records the ‘bad’ move and continues the search, preserving all information so
backtracking can pick up where the previous search left off.

3.9 Soundness and Completeness

The HyperPlay technique ”maintains” a collection of HyperGames which update their mod-
els from one round to the next. This proof sketch treats the Update() procedure shown
in Figure 4 as a logical system and shows that it is both sound and complete, that is:

• Everything that the Update() procedure says is a valid model, is in fact valid, and
• Every valid model can be obtained by using the Update() procedure.

In this context a valid model corresponds to a play history from an information set for the
current round.

Figure 5: The Game Tree for a GDL-II game at rounds n and n + 1, showing the subtree
defined by an information set.

As there is a bijective relationship between the play histories and the simple paths in
the induced game tree and it is easier to visualize a tree than a set of histories then the
following discussion will make use of the game tree in Figure 5 to illustrate an analysis of
the maintenance of a sample of an information set.
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The HyperPlay software was originally developed using the context of the game tree for
inspiration and so memory structures and functions were developed using nodes and paths.
In this context the soundness and completeness of the Update() procedure is modified by
considering the return value of the procedure as being the game tree node corresponding
to the model in the HyperGame and so the term ‘HyperGame.Node’ is used to mean the
output of the logical system. So, the test for soundness and completeness is modified to be:

• Every HyperGame.Node returned by the Update() procedure corresponds to a play
history in an information set of the current round; and
• Every node corresponding to a play history in an information set of the current round

can be returned by the Update() procedure.

Consider the game tree for an imperfect-information game and identify the subtree
GIr,n defined by the player’s information set, which is induced by the players imperfect-
information play histories received from the Game Controller. In Figure 5 there is a stylized
representation of a game in progress. In round n the player’s play messages define a subtree
GIr,n of all of the paths representing possible histories identified within an information set,
and that no paths pass outside the subtree. The converse being that any path outside the
subtree leads to a node that is not in an information set, remembering that the tree is
acyclic in its undirected form.

In round n+ 1 the new play messages define a similar subtree. From Definition 3 it can
be seen that the play messages for round n+ 1 are built upon the play messages for round
n and hence the new subtree may not include any nodes outside the original subtree, other
than those nodes in round n+ 1.

Definition 6. Let G = (S,R,A, P, υ, δ) be an imperfect-information game that satisfies
the restrictions of the GDL-II and G = (V,E) be a game tree induced by the game. The
following definitions apply.

1. ∼=: ξ(h1, r) ∼= ξ(h2) ⇐⇒ ξ(h1, r) = ξ(h2, r) defines the congruence of a history of
imperfect-information play messages with a history of complete play messages.

2. GIr,n is the subtree given by all of the paths ~e n from the initial node v0 to a node
vhi

: hi ∈ Ir,n induced by an information set.

Theorem 1. All nodes corresponding to an information set Ir,n+1 succeed nodes corre-
sponding to an information set Ir,n.

Sketch. by construction, showing that the simple paths in the subtree GIr,n+1 can only be
built upon simple paths in the subtree GIr,n .

Let G = 〈S,R,A, P, υ, δ〉 be an imperfect-information game that satisfies the restrictions
of the GDL-II and G = (V,E) be a game tree induced by the game, then:

Base case n = 0:
h0 = ∅, v0 = path(h0)

the empty history inducing the root node of the game tree
General case for round n+ 1:
∀hi ∈ Ir,n+1 path(hp(ξ(hi, r), x)) ∈ GIr,n+1 from definitions 3, 5 and 6

an information set subtree is a set of paths corresponding to a set of histories
ξ(hn+1, r) ∼= ξ(ht,n+1) from equation 10 and definition 6
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a history in an information set subtree is congruent with the true game history
ξ(hn+1) = 〈m0, ...mn,mn+1〉 = 〈ξ(hn),mn+1〉 from definition 3

each history can be split into an existing history and an extension
ξ(hn, r) ∼= ξ(ht,n) from equation 10 and definition 6

as before this existing history is congruent with the true game history
∀hi ∈ Ir,n path(hp(ξ(hi, r), x)) ∈ GIr,n from definitions 3, 5 and 6

each existing history corresponds to the previous information set subtree

Corollary 2. All paths in an information set subtree for a role must pass through all
previous information sets for that role.

Corollary 3. Not all paths in the previous information set subtree for a role are in the
information set subtree for the current round.

These corollaries underpin the backtracking process in the HyperPlay algorithm as they
facilitate the finding of a ”good” path without the need to start from the initial state of
the game, and the pruning of ”bad” paths at the earliest opportunity. Otherwise, the bad
paths could not be pruned until the subtree they initiate was completely checked.

The tools are in place to show the soundness of the HyperPlay Update() procedure.
From Corollary 2 any move can be safely tested at any round from the initial state of the
game to the current round. If the imperfect play messages are not congruent with the
game11, then this move will never lead to a history in the current information set. In the
context of the Update() procedure these moves are labeled as ”bad”.

Sketch. Let G = (S,R,A, P, υ, δ) be an imperfect-information game that satisfies the re-
strictions of the GDL-II and G = (V,E) be a game tree induced by the game, then:

Update() labels all moves outside the subtree GIr,n as bad
line 15 labels incongruent moves as Bad
line 20 labels moves as Bad if all subsequent moves are Bad

Update() backtracks all Bad moves
line 18 backtracks Bad moves

Update() only returns nodes in the current round
line 22 only exits when HyperGame.Round = CurrentRound

The HyperPlay Update() procedure randomly selects from all of the states in an
information set of the current round when returning a value. The random choice does not
have a uniform probability distribution. The selected node will be the one that required the
least backtracking as all shallow options are exhausted before backtracking more deeply.
This also speak to the efficiency of the process.

Sketch. Let G = (S,R,A, P, υ, δ) be an imperfect-information game that satisfies the re-
strictions of the GDL-II and G = (V,E) be a game tree induced by the game, then:

11. Up to and including the round in question.
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Update() can return any of vhi
: hi ∈ Ir,n

line 22 only exits with a valid sample in the current round
every path in the game tree originates the initial node
every path is accessible from every other path

Update() randomizes the evaluation of moves
line 12 resets the forward search using a RandomSeed

4. Implementing an Imperfect-Information Player

In this section, we present a simple imperfect-information player incorporating two basic
elements, the HyperPlay algorithm and Monte Carlo sampling as the perfect-information
reasoner. A formalism for the move selection policy is presented which allows for the
aggregation of move utilities across a player’s information set. We design and conduct some
experiments to validate the player and identify its strengths, weaknesses and limitations.

4.1 Formalism for Our Player

We take a simple Monte Carlo player that runs a number of random simulations for each
move in the set of move choices then averages the terminal values as a measure of utility.
And thus, we define an evaluation function based on a number of “playouts” of the game
after making a specific move.

Definition 7. Let G = 〈S,R,A, P, υ, δ〉 be an imperfect-information game given by a valid
GDL-II description, and let G = (V,E) be a game tree induced by the game, then:

1. Br is a bag of models of G, each being an element of an information set Ir, and
2. eval : S ×Π|R| ×R× N→ R is the evaluation function defined as
eval(s, ~π, r, n) = 1

n

∑n
1 υ(play(s, ~π), r).12

From this definition, we can formulate an expression for the evaluation of a specific move
in a specific decision state (12) for the Monte Carlo Player. Equation (13) sums the utility
of the move class across all of the samples in the bag, testing to make sure the move class is
legal each of the states13 and applying the probability that the node is the true game node.
Finally, the move selection policy (14) for our simple player, across the bag of models Br of
the game and using the weighted particle filter on an information set.

utility(d, arj) = eval(δ(d, 〈~a−r, aj〉), ~mc), r, n) (12)

classUtility(arj) =
∑

vi∈Br

{
P (vi)× utility(state(vi), arj), arj ∈ λ(state(vi))

0
(13)

ar = argmaxarj
[
∀ vi ∈ Br

[
∀ arj ∈ λ(state(vi))

[
classUtility(arj)

]]]
(14)

12. The variable n is not the round number, but some number of playouts used for an average eval().
13. There is no guarantee that each move class is legal in each sample of an information set.

918



GGP With Imperfect Information

4.2 Testing the Player

Three games are chosen to test the move selection policy outlined in Equation (14). The
Monty Hall game is used to validate the use of a weighted particle filter, Krieg-TicTacToe
to represent two player simultaneous move games, and Blind Breakthrough as an example
of a turn taking game with a very large search space. Each game is played with a variety
of configurations and the results reported in Appendix D.

Strengths The maintenance of the imperfect-information path, the lists of legal moves
and bad moves clearly works. It also facilitates the calculation of the probability P (vi = vt)
of the sample being the true game. This was demonstrated in the experimental results.

The player operated under a time budget with the ability for the Update() process for
each model (HyperGame) to be taken off line so that slow updates would not slow down
the player’s move selection. So that the large search space in Blind Breakthrough did not
cause the player to stall due to excessive backtracking. The HyperGame in question was
simply taken off-line until it had finished its calculations and then returned on line. The
efficiency of the technique in very large search spaces is the topic of the next section.

Weaknesses The primary weakness is that the search space may be extremely large and
the enumeration of the possible imperfect-information histories given by ξ(vt,MyRole) may
take so long as to make the Update() process appear to be never ending.

In practical terms, there will always be a few HyperGames in the bag that have randomly
chosen a path that is close to the true path. However, the size of the search space is a genuine
concern for any implementation of this technique.

Limitations of the Player The problem that comes from elevating sample to fact (Frank
& Basin, 1998) can be clearly demonstrated with this player, resulting in all information-
gathering moves valued at zero utility; as all the information has already been gathered.

The HyperPlay-based player is unable to correctly value information-gathering moves.
This is the HyperPlay’s Achilles’ heel and it motivates the technique in section 6.

5. The Efficiency of HyperPlay Over Random Sampling

This section tests the efficiency and effectiveness of the HyperPlay technique as a method
of taking a deterministic sample of an information set (Schofield & Thielscher, 2017). The
test is a comparison with a random sample taken by tracing out a play history from the
initial state to the current round. Games were chosen as a representative sample of General
Game Playing with Imperfect Information. Experiments focus on: efficiency over a random
sampling approach, games where random sampling is impossible, samples being uniformly
distributed across an information set, and rectifying a biased sample.

5.1 Random Sampling

The random sampling process starts at the root node and makes substitutions in the
imperfect-information play history using the legal move choices in the state correspond-
ing to the node. As the joint move vector is selected, the successor function is applied, and
percepts received. If there are no legal move choices, then the sample is invalid and the
process is started again. The probability equations use h for history, 1 ≤ i ≤ n for round,
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~a for joint move vector, s for state, G for game, ρ() for percepts arising from actions, and
δ() as the successor function.

At each round a valid sample is determined by the equality of the play histories:

V alid(~ai) = [ρ(δ(si,~ai), r) = ρ(Gi+1, r)] (15)

if the percepts produced, for role r, from the enacting of the randomly chosen joint move
vector are equal to the actual percepts received from the Game Controller in round R then
this is a valid grounding in that round.

The probability of randomly selecting a valid joint move vector is expressed as the ratio
of valid/total joint move vectors.

P (V alid(~ai)) = |{V alid(~ai)}|/|{~ai}| (16)

The overall probability of randomly constructing a valid play history is:

P (V alid(h)) ≤
n∏

i=1

P (V alid(~ai)) (17)

less than or equal to the product of all of the probabilities along the path. The inequality
comes from the possibility of making a valid choice in an early round that produces a dead
end for all subsequent joint moves.

Figure 6: An example of a silo defined by the first move in a game. The black nodes are
marked ”bad” by the HyperPlay technique.

Experimentally it is prohibitive to measure P (V alid(~ai)) for every node on the tree,
but it is possible to find an estimate of this by measuring the average probability of such a
sample being made in each round of the game. When such an average probability is taken
across many experimental runs a reasonable value for P (V alid(h)) can be obtained.

5.2 Biased Samples

The HyperPlay technique advances each model by randomly substituting a legal move for
missing information. If the move is invalid, then it searches the local sub tree for a valid
combination. In extreme cases the subtree is expanded beyond the local region until a new
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model is found. This gives rise to a shortcoming of this technique. That is, the game tree
can be divided into a small number of subtrees based on the first legal move substitution.
These subtrees are called ”silos”, as shown in Figure 6. Initially there will be an equal
number of models in each silo. As the game progresses one silo may have only one viable
play history resulting in an over sampling as all of the models converge to that play history.

Experimentally it is possible to compare sample histories and look for duplicate histories,
thereby identifying biased samples.

5.3 Uniformly Distributed Samples

A weighted particle filter is used14, and so, some samples are more likely than others.
However, a priori it must be assumed a uniform distribution across an information set.

When the sample size is smaller than the size of an information set | Br | < | Ir | then it
is difficult to measure the uniformity of the distribution. But when the sample size is much
larger than the size of an information set | Br | � | Ir | then the task becomes much easier.

By counting the number of times each element of an information set is sampled it
is possible to use Pearson’s χ2 measure for a uniform distribution as a measure of the
probability that the observed distribution matches the expected distribution:

Ev = | Br,i | / | Ir,i | (18)

as the ration of the size of the bag of models Br,i to the size of an information set Ir,i for
role r in round i.

The Pearson’s chi squared statistic is then calculated:

χ2 =
∑

v∈Ir,i

(Ov − Ev)2/Ev (19)

from the sum of the squares of the differences between observed Ov and expected Ev sam-
pling frequencies. The resulting statistic is converted to a probability via pre-calculated
tables.

5.4 Experimental Results

This section presents and interprets the experimental results in Appendix E. A summary
of the experimental results is given below.

A batch of games is played while recording the states visited in each round when up-
dating each of the models. The resources for each role are set so that it plays at well
below the optimal level to ensures good variety in the game-play and a broad base for the
calculation of the statistics. The basket of games chosen for experiments was drawn from
the games available within the GGP community, and from the newly converted security
games. A variety of information imperfections are represented in the games. Cut down
versions of the game are used, when possible, without loss of generality. For example, the
Blind Breakthrough would normally be played on an 8x8 board, but a 5x5 version is used
to examine sampling efficiency. The roles were chosen to give meaningful results. In two

14. Weighted particle filters are described in Section 3.5.
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Figure 7: Cost of sampling using HyperPlay compared to performing a random sample, as
measured by states visited.

player turn-taking games the second player is used for the statistic as they receive imperfect
information first.

The HyperPlay process tests each move substitution in a random order; thus it is possible
to gain an accurate estimate of the probability in equation 16 by calculating the “first time”
successes in that round.

5.5 Sampling Efficiency

Figure 7 shows the HyperPlay cost of sampling compared to taking a random sample. The
lines on the chart do not represent any continuous function, they just connect results from
the same game. The horizontal axis is a measure of completion of the game. When a game
is 100% complete then it is terminal, and no sampling is required. The vertical axis is the
ration of states visited for each technique, a value of 50% means that HyperPlay visits only
half the number of states per sample and is twice as efficient as random sampling.

The game-play is different for each game with some being turn-taking others not, some
games have watershed rounds where percepts collapse an information set. The results show
a significant reduction of the cost of sampling by using HyperPlay. The intuition here is
that the cost of backtracking the local subtree will always be cheaper than starting each
new sample attempt from the root node. See Appendix E for more comments.
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5.6 Uniform Distribution

Bias is measured by playing a batch of games and logging the history footprint of each
model for each round. The footprints are examined for repetition and a frequency chart is
created. A Pearson’s χ2 test is then performed on the distribution and a probability value
is calculated.

Game Round Q1 Median Q3

Battleships In Fog 6 0.030 0.158 0.454

Blind Breakthrough 6 0.006 0.156 0.663

Border Protection 4 0.005 0.040 0.262

Guess Who 5 0.001 0.001 0.094

Hidden Connect 4 0.001 0.001 0.001

Krieg TTT 3 0.001 0.001 0.001

Mastermind 3 0.027 0.211 0.520

Transit 5 0.001 0.001 0.116

Table 1: Probability of a uniformly distributed sample of an information set created by
HyperPlay in mid game.

The first remedy is to inversely weight the results from each model based on its sample
frequency. If an element was represented by 5 models, then each model contributed only 20%
of its outcomes to the evaluation process. The second remedy is to re-balance the sample
by replacing a more frequently sampled history with a less frequently sampled history so
that each element was sampled the same number of times.

The results in Appendix E show that in every game tested the sample became biased,
with least mid-game bias in Mastermind with a 21% probability of an unbiased sample.
However, by the end-game three of the games had given the agent enough percepts to
allow it to re-sample in an unbiased way. As one playout of a game is not the same as
another it is not possible to average the results so a median and upper and lower quartile
readings of the probability value from a Pearson’s χ2 test are shown. The median value for
Battleships in Fog of 0.158 infers that there is a 15.8% probability the sample is uniformly
distributed. Some median values are extremely low at 0.001, or 0.1% probability of a
uniform distribution.

The biased sample is a genuine concern as many of the search techniques are mathe-
matically predicated on a uniform random sample of an information set.

It is worth noting that some samples are more uniform at the end of the game than
they were in the middle of the game as the information set shrinks under certainty. Blind
Breakthrough becomes a pawn swapping exercise towards the end game and nears certainty.
Mastermind becomes certain as the binary search nears completion and the Transit game
almost always becomes certain at the end when the evader is caught.
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The table in Appendix E.6 show the results of a batch of games played with different
player configurations. The base case is two evenly matched player with no attempt to correct
biased samples. The weight remedy reduce the weighting of a sample proportional to its
repetition so that each unique sample is given equal consideration before the application of
the particle filter weighting, and the balance remedy re-balances the sample every round
by replacing the oversampled play history with an under-sampled play history.

This was the hardest aspect of this research. That is, to find a repeatable, reproducible,
realistic, in-game situation where the bias needs to be corrected in order to improve the
agent’s performance. While it was possible to manipulate the game-play to create scenarios
where the agent’s choices were significantly compromised by biased samples, these scenarios
were so improbable as to have little impact on the average game. Generally, the remedies
for biased samples do not improve the agent’s performance. However, the cost of both
remedies is so small that it is prudent and mathematically reassuring to implement them.

5.7 Case Study

In previous experiments the game variants and sizes have been chosen to prove (or disprove)
the experimental objectives with a minimum of computational resources. However, there
is value in extending the experimentation using one of the full-scale versions of a common
game in the form of a case study. Blind Breakthrough in the full 8x8 format is used to show
how impractical random sampling can be. The intention is to show that random sampling
would become impossible within the normal time constraints, yet the HyperPlayer could
successfully maintain a bag of models throughout the entire game. It should be noted that
the HyperPlayer is capable of taking a model off-line if the backtracking process consumes
too many resources. This is one of its design features for managing large search spaces.

Table 2 shows the results from the full-sized version of Blind Breakthrough. Both players
were resourced just enough so as to exhibit a variety of game plays without making ”stupid”
moves. The results show a probability that a randomly chosen play history will be valid
in the game being played, an estimated upper bound on the set of play histories and the
number of active HyperPlay models.

This game is popular in GGP competitions, and so the results are very relevant to this
work. In the 32nd round of a game the HyperPlayer could expect 1.3 models of a bag of
100 models to become inactive after each backtracking 100,000 states15. The successful
models took an average of 745 states to update, giving a total cost of 166, 000 states to take
the sample. Each valid random sample would cost approximately 32/2/0.01% = 160, 000
states16. In this context, the random sampler would be completely ineffective taking only
one sample for every 48 samples taken by the HyperPlayer. This result is totally consistent
with the cut down version of the game reported in Figure 7 which shows a long-term cost
of 2.2% for HyperPlay over random.

The conclusion is that HyperPlay is generally more efficient than a random search, and
in some cases an order of magnitude more efficient. Clearly HyperPlay samples become
biased, but with easy remedy. In some cases, random sampling is impossible within the
time constraints of the game.

15. In turn taking games HyperPlay can use the idle turn to bring inactive models back on-line.
16. Each random sample will average 32/2 states before failure when the game is in the 32nd round
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Round P (V alid(hR)) sup|{hR}| Active Models

1 100% 22 100%

2 100% 22 100%

- - - -

16 1.19% 4.2 E+11 71.9%

17 0.73% 1.5 E+13 70.3%

- - - -

32 < 0.01% 6.0 E+23 50.0%

33 < 0.01% 1.7 E+25 48.7%

Table 2: Full sized Blind Breakthrough with the probability of randomly choosing a valid
play history, an upper bound on the set size and the models still active.

This technique is expected to be applicable in Artificial General Intelligence applications
wherever an information set of indistinguishable action histories exists. Any search that
can be described using a connected, directed graph with a single root node that is acyclic
in its undirected form will benefit from this technique.

6. Lifting Model Sampling to Imperfect-Information Models

In this section, we offer a new improved technique that reasons with imperfect information.
We present a formalism for a simple player based on the new technique then conduct
experiments to validate the technique and to identify its strengths, weaknesses and failures.

Example 2. In the ExplodingBomb game in Appendix C and Figure 8 we see the following
sequence of events:

• A spy secretly arms a bomb using either the Red wire or the Blue wire,
• A second spy must disarm the bomb, or both will die,
• The second spy may ask “Which Color?” for a small cost, and
• The second spy cuts one wire.

Using the HyperPlay algorithm, the second spy never asks the question as the samples of
the players information set have perfect information. ¶

Example 2 continued. If we evaluate the legal moves in the Exploding Bomb game by
reasoning on perfect information with Monte Carlo-based playouts we always (wait), we
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Figure 8: The game tree for the Exploding Bomb. At Round 1 the agent has an information
set of two nodes; that is, Iagent = {v0, v1}.

never (ask):

eval(do(hi, ask), ~mc, agent, 4)

= 0.25× (90 + 0 + 90 + 0) = 45

eval(do(hi, wait), ~mc, agent, 4)

= 0.25× (100 + 0 + 100 + 0) = 50 (selected) ¶

6.1 The Intuition Behind Imperfect Information Models

The original techniques updates models by grounding the missing information in the imper-
fect-information play histories. It does so with a randomly selected valid choice, then
evaluates that model with a playout using a random move selection policy (aka. a random
playout).

But what if it were possible to evaluate the model with an intelligent playout using move
selection policies for all roles that were based on some experience of the game. This is the
intuition behind an Imperfect-Information Model.

To implement this new technique, we are faced with three problems. Firstly, we must
duplicate the game for each role. Secondly, we must replay the game from the start, not
playout the game from the current round, as this will impact the valid choices in our sample.
Thirdly, we must play out the game at every round as if it were the current round to calculate
the move selection policies.

The solution to each of these problems leads to a multiplication of the number of states
visited and characterizes the new techniques as a nested player. For simplicity we nest mul-
tiple HyperPlayers (one for each role) inside the simulations of another HyperPlayer reusing
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the same code for both parent and child. In Figure 3, line 18, the call to SelectMove()
being the only difference between the parent HyperPlayer and the child HyperPlayer(s).
This nested pair is the new player and the higher level simulation is described below.17

6.2 Imperfect-Information Simulations

The extended technique includes an Imperfect-Information Simulation (IIS) in the decision-
making process. The IIS reasons directly with imperfect information, exploring the conse-
quences of every action in the correct imperfect-information context. The new technique
reasons across larger subsets of the information partition encompassing the upper bound
of the union of information sets of all roles in the game. The result is that it places the
correct value on information and will choose information-gathering moves and information
protecting moves when it is cost effective to do so.

We use the term HyperPlay-II to indicate that this is the HyperPlay technique reasoning
with imperfect information instead of reasoning with perfect-information models. Every-
thing about the original technique remains in place, with an additional layer added in the
form of the Imperfect-Information Simulation (IIS).

As before, the new technique requires a bag of models of an information set, representing
a weighted sample. These models are updated, as before, based on moves and percepts
from the game. But unlike before they are not evaluated directly using perfect-information
evaluations but are the mid-point of an imperfect-information playout that starts at the
original starting point of the game and passes through the model as if the model were the
true game.

6.3 Formalism for HyperPlay-II

We recapitulate the formalism from (Schofield & Thielscher, 2015) adopting notation for
finite games in extensive form; we refer to the original technique (Schofield et al., 2012) and
we refer to the definitions in the previous sections.

For the correct valuation of information-gathering moves, the player must be able to
evaluate a move using some type imperfect-information reasoning. In this case, we conduct
a playout with imperfect information. To do this we take the path for a state corresponding
to a sample of an information set and use it for an IIS with a HyperPlayer in each role,
starting from the initial state of the game. The IIS will pass through the state sampled
from the current information set on its way to termination. The terminal value is then used
as a measure of utility in an imperfect-information context.

Definition 8. Let G = 〈S,R,A, P, υ, δ〉 be an imperfect-information game given by a valid
GDL-II description, and let G = (V,E) be a game tree induced by the game, then:

1. replay : S × H × Π → S|R| is the replay of a game consistent with the history of a
state corresponding to a sample of a ninformation set,

2. replay(s0, hr, ~π) is the replay of a game, as if hr = hp(ξ(st, r), x) and generating
information sets for all roles, such that, hp(ξ(hr, i), x) ∈ Hi where r is our role and i
is any other role,

17. This nested player could, itself, be nested inside another HyperPlayer such that the SelectMove()
function could call on a full game played between multiple HyperPlayer-II players. This would be very
resource intensive and does not appear, prima facie, to offer any advantage.
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3. IIS : S ×Π×R× N→ R is the imperfect-information simulation, where
4. IIS(hr, ~πhp, r, n) is an evaluation using n imperfect-information simulations, and is

defined as eval(replay(s0, hr, ~πhp), ~πhp, r, n) and ~πhp is the move selection policy de-
termined by the embedded HyperPlayer.

Example 2 continued. The IIS generates multiple paths. Row one is what the agent
knows, row two is a model in the agent’s information set, row three shows two imperfect
paths created by the IIS (one for each role), and row four shows models from an information
sets of each of the IIS roles.

1 ξ(st, agent) 〈H0, 〉
〈E0, 〉

2 hp(ξ(st, agent), x)→ ha 〈H0, A0〉
〈E0, C0〉

3 ξ(ha, role) 〈H0, 〉 〈 , A0〉
〈E0, 〉 〈 , C0〉

4 hp(ξ(ha, role), x) 〈H0, B0〉 〈H0, A0〉
〈E0, C0〉 〈D1, C0〉

It is worth noting that one of the models in row four may represent a state known to be
outside our agent’s information set. This is to be expected when the agent is considering
the basis for its opponent’s reasoning18. ¶

6.4 Move Selection Policy

We now show an abbreviated formalism for the HyperPlay-II technique, by only introducing
the new aspects and assuming the reader will fill in the gaps from the original technique.

utility(d, arj) = IIS(δ(d, 〈~a−r, arj〉), ~πhp, r, n) (20)

classUtility(arj) =
∑

vi∈Br

{
P (vi)× utility(state(vi), arj), arj ∈ λ(state(vi))

0
(21)

ar = argmaxarj
[
∀ vi ∈ Br

[
∀ arj ∈ λ(state(vi))

[
classUtility(arj)

]]]
(22)

Equation 20 gives the utility of a move for a role in a particular decision state (model)
based on the terminal value of a complete path that passes through the decision state and
chooses that particular move for that role. All other moves a chosen intelligently by a
HyperPlayer performing its own evaluation on every move in every round.

Equation 21 collects the utility values for syntactically identical moves using a weighting
factor calculated using Equation 4. While equation 22 finds the maximum utility across all
equivalence classes across all models in the bag.

Note the similarity with the move selection policy ~πhp given in Equation 12. In this
respect, we characterize the new technique as a nested player.

18. The agent also considers the question ”What might my opponent think about me?” based on what the
agent knows about its opponent.
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Example 2 continued. Reasoning on imperfect information using the move selection
policy ~πhp gives the following,

IIS(do(hi, ask), ~πhp, agent, 4)

= 0.25× (90 + 90 + 90 + 90) = 90 (selected)

IIS(do(hi, wait), ~πhp, agent, 4)

= 0.25× (100 + 0 + 100 + 0) = 50 ¶
The use of the IIS extends the domain of reasoning to the least upper bound of the

information partition supI ⊆ D. As the hp() function generates paths across an informa-
tion domain that is closed with respect to what the other roles can know, based on an
information set of our role:

Ir = Cn(hp(ξ(st, r), x)) (23)

supIr =
⋃
i∈R

Cn(hp(ξ(Ir, i), x)) (24)

It is both the expanded domain and the use of imperfect-information reasoning that
gives the new technique an advantage over its predecessor. That is to say, there is an
improvement in both the quantitative and qualitative aspects of the player.

6.5 Testing the Player

To validate our claim that HyperPlay-II correctly values information-gathering moves we
implemented a version of the new technique using the move selection policy outlined in
Equation (14). Games were selected from a variety of game topologies to cover different
aspect of imperfect information. Games played at the Australasian Joint Conference on
Artificial Intelligence 2013 were used as inspiration for the experiments.

Each game was played with a variety of configurations and the results reported in
Appendix F.

Strengths The experimental results show the value that the new technique places on
information, and how it correctly values information-gathering moves by itself and its op-
ponents. It is able to collect information when appropriate, withhold information from its
opponents, and keep its goals secret. The use of the Imperfect-Information Simulations is
an effective tool for reasoning with imperfect information. A HyperPlayer-II was easily able
to outperform an equally resourced HyperPlayer in all of the experiments.

Weaknesses We observe that the new technique is resource intensive as it uses nested
playouts to evaluate move selections (Schofield & Thielscher, 2016) and have genuine con-
cerns about its ability to scale up for larger games. These concerns motivate the next
section of this article. Also, the IIS is effectively a search and can be influenced by the type
of search. We observed that a simple search is susceptible to shallow traps and will follow
this up with future work.

Limitations of HyperPlay-II There is an interesting type of games requiring what is
known as “coordination without communication” (Fenster, Kraus, & Rosenschein, 1995)
that goes beyond what our technique can achieve.
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Consider the following cooperative variant of the Spy vs. Spy game. Spy1 sees which
wire is used to arm a bomb. They then signal the name of a color to Spy2, who must try
to disarm the bomb. Both win if Spy2 cuts the right wire and lose otherwise. Clearly Spy1
has an incentive to help Spy2, and there is one obvious way to do this: signal the color of
the wire. The crux, however, is that the game rules can be designed such that the color
being signaled is logically independent of the color of the armed wire. Whilst a human spy
would see the syntactic similarity in the colors and hence the semantic link, the logic of the
AI sees them as merely labels and does not make the connection.

7. Scalability of HyperPlay

Our motivation for this section is that the HyperPlay-II technique is resource intensive as
it uses nested playouts for move selections. We focus on the consumption of computational
resources for a particular level of performance. We make comparisons between HyperPlay
and HyperPlay-II for a variety of games as well as measuring the increase in resources used
by HyperPlay-II when a game is scaled up. We test several pruning techniques that have had
some success in nested perfect-information players and measure the resources consumed.

The experiments examine the cost of the imperfect-information aspects of a player, not
the embedded perfect-information search techniques. While the latter is fertile ground for
improvement, we focus on the resource used by the imperfect-information algorithms.

7.1 States Visited

The new technique utilizes a nested playout for evaluating move choices, which causes a
significant increase in the number of states visited during the analysis. However, because
we are dealing with imperfect information the nested playout must start from the initial
state of the game, not the current round. This doubles the number of states visited in a
game compared to the perfect-information version of a nested playout.

There is a significant increase in computational resources required to play a game; from
O(bf ·d2) for the HyperPlay-based player to O(bf 2 ·d4) for the HyperPlay-II player (Schofield
& Thielscher, 2016), where bf is the Branching Factor and d is the depth of the game.

7.2 Imperfect-Information Game Topology

In the General Game Playing domain for imperfect-information games, the rules of the
game and the reward structure is fully known to each player. What is not automatically
known are the moves made by other players in the game. Player receive percepts from the
game controller according to the rules of the game expressed in the GDL-II. And so, we look
at the variations that can occur in the structure of a game. These topologies are detailed
in Appendix G and one of each type of game is used in the experiments.

7.3 Heuristics and Pruning

Using a heuristic to improve the search and/or pruning the search space are effective way
to improve the computational efficiency of the move selection process. We examine several
techniques implemented in a Nested Monte Carlo player (Cazenave, Saffidine, Schofield, &
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Thielscher, 2016) as there is a high degree of similarity between the nesting in this player
and the nesting in the new technique.

Discounting Discounting is a way of improving the information extracted from a playout
to give a rich set of terminal results instead of the usual 0 or 100. Discounting based on the
depth of the playout has been demonstrated (Cazenave et al., 2016) to improve the search
performance and to facilitate search pruning.

Discounting can only be effective in games with variable playout depth. For this reason
our player’s performance will not be improved when playing any of the games with fixed
depth.

Cut on Win This technique works well with a Nested Monte Carlo player in turn taking
two-player win/loss games, but has problems being implemented in games where players
purchase information. The Cut on Win (CoW) technique requires a strict win/loss reward
structure to be effective. We explore a variation where the player “knows” the maximum
achievable score under optimal play conditions and uses that as a cut-off-point for the CoW
pruning.

Pruning on Depth This technique also works well with a Nested Monte Carlo player
in turn taking two-player win/loss games. Pruning on Depth (PoD) is ineffective when the
playout depth is fixed.

7.4 Design of Experiments

We design experiments to answer two basic questions:

• Does HyperPlay-II perform better than HyperPlay at this type of game, and at what
computational cost, and
• What is the impact of up-sizing the game on the computational cost for HyperPlay-II

to achieve the same level of performance?

7.5 Experimental Results

The experimental results are shown in Appendix H.

HP versus HP-II When the topology is favorable the HP player performs as well as
the HP-II player, improving its score as resources increase and reaching the same level of
optimal play. Therefore, we would conclude that the HP player is an acceptable choice,
except where the game topology makes it ineffective.

Computation Cost of HP-II The HP-II player requires significantly more resources to
instantiate than the HP player. In each of the games tested, the number of states visited
increased by an order of magnitude. The only benefit in using the HP-II player is that it
correctly values information. Therefore, we conclude that the HP player should be the first
choice, except where the game topology makes it ineffective.

Up-sizing the Game In all of the games tested we saw a significant impact when the
game was up-sized. This was consistent with the theoretical analysis that stated the HP
player as being O(bf ·d2) and the HP-II player as being O(bf 2 ·d4) (Schofield & Thielscher,
2016).
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Discounting In all of the games, discounting had little impact on the outcome. In games
with fixed depth, discounting is known to have no impact. In the other games, discounting
did not hasten the win, or prolong the loss in any real way.

Pruning There was only one game out of five where pruning had a positive impact. Cut
on Win and Pruning on Depth are known to be safe (Cazenave et al., 2016) for Nested
Monte Carlo players with perfect information. The results from Banker and Thief, and
Battleships in Fog suggest they may not be safe in Imperfect-Information Simulations, but
the reason is not clear19.

General The HP-II player will always play as well as the HP player, and will correctly
value information in the context of the reward structure and the expected outcome of
the game. Whereas, the HP player falls into the trap of elevating sample to fact and
consequently values information at zero.

The player of choice should be the HP player, only utilizing the information valuing
properties of the HP-II player when the game topology dictates.

8. Conclusions

We present a summary along with some comments and projections as to future direction of
this research.

A formalism for the implementation of a “bolt-on” technique that converts a perfect-
information player into an imperfect-information player was presented with sufficient detail
to implement the technique is an existing player. A weighted particle filter was used on
the player’s information set. Whilst this is not a new idea, the confirmation of the need for
weightings in GGP and the use of partial probabilities to calculate the weightings is useful.

The technique for maintaining samples is both sound and complete. That is, the
Update() procedure will only return a state in the new information set and will select
from all of the states. This provides a reliable sampling method for the weighted particle
filter, even in a very large search space and a tight time constraint.

The question of the efficiency and the effectiveness of the Update() procedure compared
to another sampling method has not been explored. The intuition is that the backtracking
process will always be more efficient than forward tracking from the start of the game for
each new sample.

The limitation of elevating sample to fact when correctly valuing information-gathering
moves is identified with a specific game that is not played correctly. The player “believes” it
has all of the information and so values any information-gathering (or withholding) moves
at zero utility.

An improved technique that correctly values information-gathering moves is formalized.
It is based on an Imperfect-Information Simulation that plays out an entire game with
imperfect information and uses the terminal value as a measure of imperfect-information
utility. The domain for reasoning is expanded considerably to the least upper bound of the
information partition. Experimental results validating the improved technique are presented
showing its strength at correctly value information in all of its forms.

19. Samples of an information set may not contain the same legal moves, but to offer this as a reason would
be speculation.
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An analysis showing the original technique as O(bf · d2) and the improved technique as
O(bf2 · d4) is investigated. Additional experimental results are presented along with the
conclusion that the new technique was always effective, whereas the old technique was only
effective when information-valuing was not required. In the case of non information-valuing
games, the new technique was indeed resource intensive, consuming resources consistent
with the theoretical analysis. Attempts to improve efficiency using pruning techniques
borrow from nested perfect-information players were unsuccessful, but no real insight was
afforded from the experimental data. This was a disappointment as these techniques were
successful in perfect-information nested players.
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