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Abstract

The aim of measuring inconsistency is to obtain an evaluation of the imperfections in a set of
formulas, and this evaluation may then be used to help decide on some course of action (such as
rejecting some of the formulas, resolving the inconsistency, seeking better sources of information,
etc). A number of proposals have been made to define measures of inconsistency. Each has its
rationale. But to date, it is not clear how to delineate the space of options for measures, nor is
it clear how we can classify measures systematically. To address these problems, we introduce a
general framework for comparing syntactic measures of inconsistency. It is based on the notion of
an inconsistency graph for each knowledgebase (a bipartite graph with a set of vertices representing
formulas in the knowledgebase, a set of vertices representing minimal inconsistent subsets of the
knowledgebase, and edges representing that a formula belongs to a minimal inconsistent subset).
We then show that various measures can be computed using the inconsistency graph. Then we
introduce abstractions of the inconsistency graph and use them to construct a hierarchy of syntactic
inconsistency measures. Furthermore, we extend the inconsistency graph concept with a labeling
that extends the hierarchy to include some other types of inconsistency measures.

1. Introduction

Inconsistency is a key issue for operating in the real world. Routinely, we are faced with inconsisten-
cies when we deal with information, opinions, requirements, desires, plans, etc. So if we are to build
computing systems that are inconsistency capable (i.e. systems that can handle inconsistency in
information, opinions, requirements, desires, plans, etc., for instance when making decisions), then
we need technologies for assessing and acting on inconsistency (Gabbay & Hunter, 1991; Bertossi,
Hunter, & Schaub, 2004; Grant & Hunter, 2011).

A key aspect of inconsistency capability is the ability to measure inconsistency so that we can
obtain a better assessment of the nature of the inconsistencies. Application areas being investigated
for inconsistency measures include software engineering (Zhu & Jin, 2005; Mu, Jin, Liu, Zowghi, &
Wei, 2013), network intrusion detection (McAreavey, Liu, Miller, & Mu, 2011), ontology systems
(Zhou, Huang, Qi, Ma, Huang, & Qu, 2009), knowledgebase systems (Mu, Liu, Jin, & Bell, 2011b;
Potyka, 2014; Mu, Wang, & Wen, 2016), databases (Decker & Martinenghi, 2011; Bertossi, 2018),
analysing spatial and temporal information (Condotta, Raddaoui, & Salhi, 2016), and answer set
programming (Madrid & Ojeda-Aciego, 2011; Ulbricht, Thimm, & Brewka, 2016).

Numerous proposals for inconsistency measures have been made (Grant, 1978; Knight, 2002;
Hunter, 2002; Konieczny, Lang, & Marquis, 2003; Hunter & Konieczny, 2004; Grant & Hunter,
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2006; Ma, Qi, Hitzler, & Lin, 2007; Qi & Hunter, 2007; Grant & Hunter, 2008; Zhou et al., 2009;
Jabbour, Ma, & Raddaoui, 2014) and some inter-relationships established (e.g. Grant & Hunter,
2011; Thimm, 2016b). Furthermore, some axioms have been proposed for the minimal properties
of measures of (Hunter & Konieczny, 2006, 2010), and some alternatives have been proposed (e.g.
Besnard, 2014), which offer some groupings of approaches. See Grant and Martinez (2018) for
a summary of the state-of-the-art on measuring inconsistency in information. Nevertheless, our
understanding of measures lacks a general framework in which to position and compare differ-
ent measures of inconsistency. To address this shortcoming, in this paper we propose a general
framework for inconsistency measures based on minimal inconsistent subsets of the knowledgebase.

The majority of the syntactic inconsistency measures are based on minimal inconsistent subsets.
Each measure focuses on a different aspect of these sets. To illustrate this point, consider the
following knowledgebases that have the same number and size of minimal inconsistent subsets. For
some key inconsistency measures, these knowledgebases are indistinguishable.

• For K1 = {a,¬a, b,¬b}, there are two minimal inconsistent subsets M1 = {a,¬a} and M2 =
{b,¬b}. There is no overlap between these minimal inconsistent sets.

• For K2 = {a,¬a ∧ ¬b, b}, there are two minimal inconsistent subsets M1 = {a,¬a ∧ ¬b} and
M2 = {b,¬a ∧ ¬b}. There is an overlap between these minimal inconsistent sets.

In this paper, we analyse inconsistency in terms of the minimal inconsistent subsets of the
knowledgebase. For this purpose, we introduce inconsistency graphs that capture information
about the minimal inconsistent subsets in graphical form. This provides substantial information
about the inconsistency in a knowledgebase and a number of existing inconsistency measures can
be captured this way. Conversely, we show how and when functions on inconsistency graphs yield
inconsistency measures, and new measures based on these functions are defined.

This paper extends substantially our previous paper (De Bona, Grant, Hunter, & Konieczny,
2018). In addition to providing all the proofs, we also include further results concerning the nature
of inconsistency graphs, computing inconsistency measures from consistency graphs, devising incon-
sistency measures from inconsistency graphs, constructing inconsistency graphs from inconsistency
measures, and creating a hierarchy of non-syntactic measures.

The plan of this paper is as follows. In Section 2 we provide general definitions needed in the
paper. In Section 3 we review some basic work on inconsistency measures including properties and
examples of inconsistency measures. We introduce inconsistency and consistency graphs and their
fundamental properties in Section 4. Then, in Section 5 we investigate in detail the relationship of
inconsistency and consistency graphs to inconsistency measures. Section 6 shows how abstractions
of inconsistency graphs can be used to create a hierarchy of syntactic inconsistency measures.
Furthermore, in Section 7 we enlarge the previous hierarchy in a way that allows us to capture
some semantic inconsistency measures as well. The paper is concluded in Section 8.

2. Preliminaries

We assume a propositional language L of formulas composed from a countable set of propositional
variables (atoms) P and the logical connectives ∧, ∨, ¬. We use ϕ and ψ for arbitrary formulas
and a, b, c, . . . for atoms. A knowledgebase K is a finite set of formulas. We write K for the set
of all knowledgebases (defined from the language L). We let ` denote the classical consequence
relation, and write K ` ⊥ to denote that K is inconsistent. Logical equivalence is defined in the
usual way: K ≡ K ′ iff K ` K ′ and K ′ ` K. We write R≥0 for the set of nonnegative real numbers,
R≥0
∞ for R≥0 ∪ {∞}, and 2X for the set of all subsets (the power set) of any set X.
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ϕ T T T B B B F F F
ψ T B F T B F T B F

ϕ ∨ ψ T T T T B B T B F
ϕ ∧ ψ T B F B B F F F F
¬ϕ F F F B B B T T T

Table 1: Truth table for Priest’s three valued logic (3VL). This semantics extends the classical
semantics with a third truth value, B, denoting “inconsistency”.

For a knowledgebase K, MI(K) is the set of minimal inconsistent subsets of K, i.e. MI(K) =
{K ′ | K ′ ⊆ K,K ′ ` ⊥, ∀K ′′ ⊂ K ′ K ′′ 0 ⊥}, and MC(K) is the set of maximal consistent subsets of
K, i.e. MC(K) = {K ′ | K ′ ⊆ K,K ′ 0 ⊥, ∀K ′′s.t. K ′ ⊂ K ′′ K ′′ ` ⊥}. Also, if MI(K) = {M1, ...,Mn}
then Problematic(K) = M1 ∪ ...∪Mn, and Free(K) = K \Problematic(K). So Free(K) contains the
formulas in K that are not involved in any minimal inconsistency and Problematic(K) contains the
formulas in K that are involved in at least one minimal inconsistency. The set of formulas in K that
are individually inconsistent is given by the function Selfcontradictions(K) = {ϕ ∈ K | {ϕ} ` ⊥}.
In the next section we will use these functions in definitions for syntactic inconsistency measures.

For one of the inconsistency measures we need to use Priest’s three valued logic (3VL) (Priest,
1979) with the classical two valued semantics augmented by a third truth value denoting inconsis-
tency. The truth values for the connectives are defined in Table 1. The inconsistency truth value
B denotes that a formula is both true and false (i.e. we have conflicting information about it). We
can assume a ranking over the truth tables from T to B to F (i.e. T is the maximum and F is the
minimum), and as can be seen from the truth table, conjunction takes the minimum truth value of
the two conjuncts, disjunction takes the maximum truth value of the two disjuncts, and negation
is an involution. An interpretation i is a function that assigns to each atom that appears in K
one of three truth values: i : Atoms(K)→ {F,B, T}, where Atoms(K) denotes the atoms occurring
in knowledgebase K. An interpretation i whose range is {F, T} is said to be classical. For an
interpretation i, Conflictbase(i) = {a ∈ Atoms(K) | i(a) = B} denotes the set of atoms that are
assigned the non-classical truth value B, and Truebase(i,K) = {ϕ ∈ K | i(ϕ) = T} denotes the
set of formulas evaluated as T in knowledgebase K. For a knowledgebase K we define the (3VL)
models as the set of interpretations where no formula in K is assigned the truth value F : Models(K)
= {i | for all ϕ ∈ K, i(ϕ) = T or i(ϕ) = B} Then, as a measure of inconsistency for K we define

Contension(K) = Min{|Conflictbase(i)| | i ∈ Models(K)}

So contension gives the minimum number of atoms that need to be assigned B in order to get a
3VL model of K.

Example 1. For K = {a,¬a, a ∨ b,¬b}, there are two models of K, i1 and i2, where i1(a) = B,
i1(b) = B, i2(a) = B, and i2(b) = F . Therefore, Conflictbase(i1) = 2 and Conflictbase(i2) = 1.
Hence, Contension(K) = 1.

When a set of classical interpretations H is such that, for each ϕ ∈ K, there is an i ∈ H such
that i(ϕ) = T , H is called a hitting set of K.1

Finally, we define the probabilistic satisfiability problem (PSAT), on which inconsistency
measures can be based. A PSAT instance is a set Γ = {P (ϕi) ≥ pi | 1 ≤ i ≤ m}, where

1. Note that this concept of hitting sets differs from Reiter’s definition (Reiter, 1987).
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ϕ1, . . . , ϕm ∈ L are formulas and p1, . . . , pm ∈ [0, 1] are real numbers. Intuitively, a PSAT instance
assigns probability lower bounds2 to formulas. To define the semantics, let IC denote the set of
classical interpretations. A probability function over a given set X is a function π : X → [0, 1]
such that

∑
x∈X

π(x) = 1. For each probability function π : IC → R≥0, let Pπ : L → R be the function

defined for all ϕ ∈ L as Pπ(ϕ) =
∑
{π(i) | i ∈ IC , i(ϕ) = T}. That is, the probability of a formula

ϕ according to π is the sum of the probabilities assigned to the interpretations assigning T to ϕ.
A PSAT instance Γ = {P (ϕi) ≥ pi | 1 ≤ i ≤ m} is satisfiable if there is a probability function
π : IC → R≥0 such that Pπ(ϕi) ≥ pi for all 1 ≤ i ≤ m.

Example 2. For simplicity, consider a propositional language over P = {a, b}. Assigning probabil-
ity lower bounds to formulas, we have PSAT instances; e.g., Γ = {P (a∧b) ≥ 0.5, P (¬a∨¬b) ≥ 0.5}.
To see that Γ is (probabilistically) satisfiable, consider the following (classical) interpretations: i1
assigns T both atoms; and i2 assigns F both atoms. Now consider a probability function π such
that π(i1) = π(i2) = 0.5. Since i1(a ∧ b) = T and i2(a ∧ b) = F , we have that Pπ(a ∧ b) = 0.5.
Analogously, i1(¬a ∨ ¬b) = F and i2(¬a ∨ ¬b) = T imply Pπ(¬a ∨ ¬b) = 0.5. Note that Γ′ =
{P (a∧ b) ≥ 0.5, P (¬a∨¬b) ≥ 0.6} would be unsatisfiable; intuitively, both probabilities should sum
up to one, as one formula is the negation of the other.

3. Inconsistency Measures and their Properties

An inconsistency measure assigns a nonnegative real value or infinity to every knowledgebase. In
this paper we consider only absolute inconsistency measures, that is, those measures that measure
the total amount of inconsistency. For such measures we make two requirements that we explain
below.

Definition 1. A function I : K → R≥0
∞ is an inconsistency measure if the following two

conditions hold for all K,K ′ ∈ K:

1. I(K) = 0 iff K is consistent.

2. If K ⊆ K ′, then I(K) ≤ I(K ′).

The first requirement ensures that all and only consistent knowledgebases get measure 0. The
second requirement enforces that the addition of a set formulas cannot decrease the inconsistency
measure. The above requirements are taken from Hunter and Konieczny (2006) where (1) is called
consistency and (2) is called monotony. A further property, usually required of inconsistency
measures, but not satisfied by all of them, requires that the addition of a free formula not increase
the inconsistency measure (Hunter & Konieczny, 2006):

Property 1 (Independence). For all ϕ ∈ L and K ∈ K, if ϕ ∈ Free(K ∪ {ϕ}), then I(K) ≥
I(K ∪ {ϕ}).

We wrote the independence property in a general way. However, for an inconsistency measure,
on account of the second property, independence is equivalent to writing I(K) = I(K ∪ {ϕ}).

There are many other properties that researchers have suggested for inconsistency measures.
We next introduce five such properties, usually called rationality postulates.

MI-separability If MI(K ∪K ′) = MI(K) ∪MI(K ′) and MI(K) ∩MI(K ′) = ∅, then I(K ∪K ′) =
I(K) + I(K ′).

2. Equivalently, upper bounds or precise probabilities could be used; see for instance (De Bona, Cozman, & Finger,
2014).
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Penalty If ϕ ∈ Problematic(K), then I(K) > I(K \ {ϕ}).

Super-additivity If K ∩K ′ = ∅, then I(K ∪K ′) ≥ I(K) + I(K ′).

Attenuation If K,K ′ are minimal inconsistent sets and |K| < |K ′|, then I(K) > I(K ′).

Equal Conflict If K,K ′ are minimal inconsistent sets and |K| = |K ′|, then I(K) = I(K ′).

Almost Consistency If K1,K2, . . . is a sequence of minimal inconsistent sets with lim
i→∞
|Ki| =∞,

then lim
i→∞

I(Ki) = 0.

MI-separability comes from Hunter and Konieczny (2010). Penalty and Super-additivity come
from Thimm (2009). Attenuation, Equal Conflict, and Almost Consistency come from Mu, Liu,
and Jin (2011a).

Now we introduce ten inconsistency measures from the literature: the rationale for each is given
below.

Definition 2. For a knowledgebase K, the inconsistency measures IB, IM , IA, IP , IC , I#, IH ,
Inc, Ihs and Iη are such that

• IB(K) = 1 if K ` ⊥ and IB(K) = 0 if K 6` ⊥

• IM (K) = |MI(K)|

• IA(K) = (|MC(K)|+ |Selfcontradictions(K)|)− 1

• IP (K) = |Problematic(K)|

• IC(K) = Contension(K)

• I#(K) =

{
0 if K is consistent∑

X∈MI(K)
1
|X| otherwise

• IH(K) = min{|X| | X ⊆ K and ∀M ∈ MI(K)(X ∩M 6= ∅)}

• Inc(K) = |K| −max{n | ∀K ′ ⊆ K : |K ′| = n implies K ′ 6` ⊥}

• Ihs(K) = min{|H| | H is a hitting set of K} − 1, where min∅ =∞

• Iη(K) = 1−max
{
η ∈ [0, 1]|{P (ϕ) ≥ η | ϕ ∈ K} is satisfiable

}
We explain the measures as follows: IB (Hunter & Konieczny, 2008) assigns the same value, 1, to

all inconsistent knowledgebases. IM (K) (Hunter & Konieczny, 2008) counts the number of minimal
inconsistent subsets of K. IA(K) (Grant & Hunter, 2011) counts the sum of the number of maximal
consistent subsets together with the number of contradictory formulas but 1 must be subtracted to
make I(K) = 0 when K is consistent. IP (K) (Grant & Hunter, 2011) counts the number of formulas
in minimal inconsistent subsets of K. IC(K) (Konieczny et al., 2003; Grant & Hunter, 2011) counts
the minimum number of atoms that need to be assigned B amongst the 3VL models of K. I#(K)
(Hunter & Konieczny, 2008) computes the weighted sum of the minimal inconsistent subsets of K,
where the weight is the inverse of the size of the minimal inconsistent subset (and hence smaller
minimal inconsistent subsets are regarded as more inconsistent than larger ones). IH(K) (Grant &
Hunter, 2013), originally called the d-hit inconsistency measure, is the size of the smallest set that
has a nonempty intersection with every minimal inconsistent subset. Inc(K) (Doder, Rašković,
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Marković, & Ognjanović, 2010; Thimm, 2016b) finds the maximum size for a subset of K to be
surely consistent and subtracts it from the size of the K. Ihs(K) (the hitting set measure) (Thimm,
2016b) computes the minimum number of classical interpretations i ∈ IC needed for all formulas in
K be evaluated to T by some i; then one is subtracted. This minimum will be infinite if there is a
selfcontradiction in K. Iη(K) (Knight, 2002) is one minus the maximum probability lower bound
one can consistently assign to all formulas in K. Each of these measures satisfies the definition of
being an inconsistency measure (i.e. Definition 1) and all but Inc and IC satisfy the property of
independence. To see the failure of independence, consider K = {a ∧ ¬a ∧ ¬b, b}. Here b is free in
K, but Inc(K) = IC(K) = 2 and Inc(K \ {b}) = IC(K \ {b}) = 1. For other properties that hold
for these measures, see (Thimm, 2016a).

The use of minimal inconsistent subsets, such as for IM , IP , and I#, and the use of maximal
consistent subsets such as IA, have been proposed previously for measures of inconsistency (Hunter
& Konieczny, 2004, 2008). The idea of a measure that is sensitive to the number of formulas
to produce an inconsistency emanates from Knight (2002) in which the more formulas needed to
produce the inconsistency, the less inconsistent the set. As explored in Hunter and Konieczny
(2008), this sensitivity is obtained with I#. Another approach involves looking inside the formulas
for the interaction of the atoms, such as IC , which is a semantic approach based on three-valued
logic (Konieczny et al., 2003; Grant & Hunter, 2011), and similar to the ones based on four-valued
logic (e.g. Hunter, 2002).

4. Inconsistency and Consistency Graphs

We now introduce several graphical representations of a knowledgebase. We will be using for most
of this article a special class of graphs, called bipartite graphs (bigraphs) where the vertices are
divided into two groups and edges may connect only vertices that are in different groups. Although
we will use labels primarily in Section 7, it is convenient for the presentation to start with labeled
bigraphs. The following defines both (unlabeled) bigraphs and labeled bigraphs.

Definition 3. Bigraphs and labeled bigraphs.

1. A bigraph is a tuple G = 〈U, V,E〉 where U and V are sets, U ∩ V = ∅ and E is a set of
pairs of the form {u, v} where u ∈ U and v ∈ V .

2. A labeled bigraph is a tuple LG = 〈U, V,E, L〉 where 〈U, V,E〉 is a bigraph and L is a
function L : U ∪ V → S, where S is a set of labels.

We will use u with subscripts for elements of U and v with subscripts for elements of V . For ease
of presentation when we draw bigraphs we will assume that U = {u1, . . . , um} and V = {v1, . . . , vn}.
We will draw bigraphs using small circles without labels representing the vertices in two rows: the
ones on the upper row represent the vertices in U , that we assume to be u1, . . . , um from left to
right, while the ones on the lower row represent the vertices in V that we assume to be v1, . . . , vn
from left to right and the edges are lines between the circles. For labeled graphs we use boxes for
the vertices with the labels inside. We note that the ordering of the vertices is arbitrary: U and
V are sets, not tuples; while a reordering would make the picture look different it would represent
the same (labeled) graph.

The following is a brief review of commonly used definitions about (bi)graphs. We write G for
a generic graph and assume that we have such a G. An edge e = {u, v} is said to connect (and
be incident to) u and v, which are then called adjacent vertices. We write Adj(u) (resp. Adj(v))
for the set of vertices adjacent to u (resp. v). A vertex is said to be isolated if there is no edge
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incident to it. Then deg(u) = |Adj(u)| (resp. deg(v) = |Adj(v)|). The null bigraph is 〈∅,∅,∅〉
and its labeled version is 〈∅,∅,∅,∅〉.

The concept of subgraph is defined in the usual way, that is, a bigraph G′ = 〈U ′, V ′, E′〉 is a
subgraph of G = 〈U, V,E〉 if U ′ ⊆ U , V ′ ⊆ V and E′ ⊆ E. As usual, a proper subgraph is a
subgraph not identical to the (bi)graph. For G = 〈U, V,E〉 let U ′ ⊆ U , V ′ ⊆ V , and W = U ′ ∪ V ′.
The subgraph G′ of G induced by W is G′ = 〈U ′, V ′, E′〉 where E′ = {{u, v} ∈ E | u ∈ U ′ and
v ∈ V ′}.

At this point we move from general graphs to our interest where the graphs are used to represent
information about the inconsistency in knowledgebases. We are interested in representing the
structure of minimal inconsistent subsets; that is, how the formulas combine to form them. We
start by using labeled bigraphs where the set of labels S is L ∪ K. Every u ∈ U is labeled as a
formula, and every v ∈ V , as a set of formulas. Our interest is in using labeled bigraphs to represent
the minimal inconsistent subsets of a knowledgebase.

The following definition defines both labelled inconsistency graphs and labelled augmented
graphs. These are identical notions except that the former considers only the formulas in
Problematic(K) whereas the latter considers all formulas in K.

Definition 4. The labeled inconsistency graph (resp. labeled augmented inconsistency
graph) for knowledgebase K where Problematic(K) = {ϕ1, . . . , ϕm} (resp. K = {ϕ1, . . . , ϕm}) and
MI(K) = {∆1, . . . ,∆n} is the labeled bigraph LIG(K)(resp. LIG+(K)) = 〈U, V,E, L〉 such that

• U = {u1, . . . , um}

• V = {v1, . . . , vn}

• E = {{ui, vj} | ϕi ∈ ∆j} (every edge corresponds to the set membership relation between a
problematic formula ϕi ∈ K and a minimal inconsistent subset ∆j ∈ MI(K))

• L : U ∪ V → L∪K, L(ui) = ϕi for all i, 1 ≤ i ≤ m and L(vj) = ∆j for all j, 1 ≤ j ≤ n

The labeled inconsistency graph for K, LIG(K), is a subgraph of the labeled augmented in-
consistency graph for K, LIG+(K), and is a proper subgraph if and only if Free(K) 6= ∅. The
free formulas have no effect on the minimal inconsistent subsets but without them we cannot
reconstruct the original knowledgebase. That is the reason for the augmentation. The labeled
inconsistency graph of a consistent knowledgebase is the null labeled bigraph. Isomorphic graphs
are considered identical, so that renaming vertices does not change the graph. We consider two
labeled graphs as isomorphic if there is a bijection between the sets of vertices that preserves both
the edges and the labels. Examples 3 and 4 illustrate labeled augmented inconsistency graphs for
two knowledgebases.

Example 3. Let K = {a,¬a ∨ ¬b, b,¬a ∨ c,¬c ∨ d,¬d}. Then MI(K) = {{a,¬a ∨ ¬b, b}, {a,¬a ∨
c,¬c ∨ d,¬d}}. As Free(K) = ∅, LIG+(K) = LIG(K).

a ¬a ∨ ¬b b ¬a ∨ c ¬c ∨ d ¬d

{a,¬a ∨ ¬b, b} {a,¬a ∨ c,¬c ∨ d,¬d}

Figure 1: LIG for K = {a,¬a ∨ ¬b, b,¬a ∨ c,¬c ∨ d,¬d}
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Example 4. Let K = {¬a, a∨b,¬b, b∨c,¬c, c∨d,¬d, a∨d, e}. Here MI(K) = {¬b, b∨c,¬c}, {¬a, a∨
b,¬b}, {¬c, c ∨ d,¬d}, {¬a, a ∨ d,¬d}. In this case Free(K) = {e} 6= ∅ hence the augmented graph
has an additional vertex in U with label e. Below we draw the labeled augmented inconsistency
graph.

¬a, a ∨ b,¬b ¬b, b ∨ c,¬c ¬c, c ∨ d,¬d ¬a, a ∨ d,¬d

¬a a ∨ b ¬b b ∨ c ¬c c ∨ d ¬d a ∨ d e

Figure 2: LIG+ for K = {¬a, a ∨ b,¬b, b ∨ c,¬c, c ∨ d,¬d, a ∨ d, e}

In the first part of this paper our interest will be the structure of the inconsistency graphs of
knowledgebases without labels.

Definition 5. The inconsistency graph (resp. augmented inconsistency graph) for knowledgebase K
is the bigraph IG(K) = 〈U, V,E〉 (resp. IG+(K) = 〈U, V,E〉) obtained from LIG(K) (resp. LIG+(K))
by omitting the labeling function L.

Now we show how to obtain the (augmented) inconsistency graphs for the examples given earlier.

Example 5. Here is IG+(K) = IG(K) for the knowledgebase of Example 3.

Figure 3: IG+(K) = IG(K) for the knowledgebase of Example 3

Example 6. Here is IG+(K) for the knowledgebase of Example 4.

Figure 4: IG+(K) for the knowledgebase of Example 4

(Unlabeled) inconsistency graphs are sufficient if one wants to focus on the structure of conflicts
of the base. They convey all the information on minimal inconsistent sets and their relationships.

We illustrate further the construction of inconsistency graphs in Figures 5 and 6. None of the
illustrated knowledgebases have any free formulas, hence the graphs are both the inconsistency and
the augmented inconsistency graphs.
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(a) Example: K = {a ∧ ¬a} and MI(K) = {{a ∧ ¬a}}.

(b) Example: K = {a,¬a} and MI(K) = {{a,¬a}}.

(c) Example: K = {a, a→ b,¬b} and MI(K) = {{a, a→ b,¬b}}.

(d) Example: K = {a,¬a, b,¬b} and MI(K) = {{a,¬a}, {b,¬b}}.

(e) Example: K = {a,¬a ∧ ¬b, b} and MI(K) = {{a,¬a ∧ ¬b}, {¬a ∧ ¬b, b}}.

Figure 5: Examples of inconsistency graphs
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(a) Example: K = {a, b, (¬a∨¬b)∧ (¬b∨¬c), c} and MI(K) = {{a, b, (¬a∨¬b)∧ (¬b∨¬c)}, {b, (¬a∨¬b)∧
(¬b ∨ ¬c), c}}.

(b) Example: K = {a, b,¬a ∧ ¬b ∧ ¬c ∧ ¬d, c, d} and MI(K) = {{a,¬a ∧ ¬b ∧ ¬c ∧ ¬d}, {b,¬a ∧ ¬b ∧ ¬c ∧
¬d}, {¬a ∧ ¬b ∧ ¬c ∧ ¬d, c}, {¬a ∧ ¬b ∧ ¬c ∧ ¬d, d}}.

(c) Example: K = {a,¬a∧ b,¬b∧ c,¬a∧¬c} and MI(K) = {{a,¬a∧ b}, {a,¬a∧¬c}, {¬a∧ b,¬b∧ c}, {¬b∧
c,¬a ∧ ¬c}}.

Figure 6: Additional examples of inconsistency graphs
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Figure 7: An inconsistency graph used in Example 7.

Our first result about inconsistency graphs is a representation theorem. We show under what
conditions a bigraph may represent an augmented inconsistency graph.

Theorem 1. Let G = 〈U, V,E〉 be a bigraph. Then G = IG+(K) for some knowledgebase K iff the
following two conditions hold for G:

1. No vertex in V is isolated.

2. For all v, v′ ∈ V , if v 6= v′ then Adj(v) 6⊆ Adj(v′).

Corollary 1. Let G = 〈U, V,E〉 be a bigraph. Then G = IG(K) for some knowledgebase K iff the
following two conditions hold for G:

1. G contains no isolated vertex.

2. For all v, v′ ∈ V , if v 6= v′ then Adj(v) 6⊆ Adj(v′).

Example 7. To illustrate the construction employed in the proof of Theorem 1, consider the graph
G = 〈U, V,E〉 in Figure 7. In this graph the vertices for U will be u1, u2, u3, u4, u5, and u6 and
for V will be v1, v2, and v3. Hence we will be using the atoms a1

1, a1
2, a2

2, a2
3, a2

4, a3
5, and a0

6. Then
Adj(v1) = {u1, u2}, Adj(v2) = {u2, u3, u4}, and Adj(v3) = {u5}.

• For v1 we obtain ψ1
1 = a1

1 ∧ ¬a1
2 and ψ1

2 = a1
1 → a1

2.

• For v2 we obtain ψ2
2 = a2

2 ∧ ¬a2
4, ψ2

3 = a2
2 → a2

3, and ψ2
4 = a2

3 → a2
4.

• For the last vertex v3 we obtain ψ3
5 = a3

5 ∧ ¬a3
5.

• Finally, for the formulas in K we get ϕ1 = a1
1∧¬a1

2, ϕ2 = a1
1 → a1

2∧a2
2∧¬a2

4, ϕ3 = a2
2 → a2

3,
ϕ4 = a2

3 → a2
4, ϕ5 = a3

5 ∧ ¬a3
5, ϕ6 = a0

6.

The graphs that we have constructed so far used minimal inconsistent subsets. In the same
way we can use maximal consistent subsets for the (labels of the) vertices in V to obtain 4 types
of (labeled) (augmented) consistency graphs. As we will show later there is a close relationship
between the various types of inconsistency graphs and their corresponding consistency graphs for
a knowledgebase. We use the notations LCG+, LCG, CG+, and CG for the four graphs obtained via
maximal consistent subsets.

Definition 6. The labeled consistency graph (resp. labeled augmented consistency graph)
for knowledgebase K where Problematic(K) = {ϕ1, . . . , ϕm} (resp. K = {ϕ1, . . . , ϕm)) and MC(K) =
{∆1, . . . ,∆n} is the labeled bigraph LCG(K)(resp. LCG+(K)) = 〈U, V,E, L〉 such that

• U = {u1, . . . , um}
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• V = {v1, . . . , vn}

• E = {{ui, vj} | ϕi ∈ ∆j} (every edge corresponds to the set membership relation between a
problematic formula ϕi ∈ K and a maximal consistent subset ∆j ∈ MC(K)).

• L : U ∪ V → L∪K, L(ui) = ϕi for all i, 1 ≤ i ≤ m and L(vj) = ∆j for all j, 1 ≤ j ≤ n.

Example 8. Let K = {a,¬a∨¬b, b,¬a∧c}. Then MI(K) = {{a,¬a∨¬b, b}, {a,¬a∧c}}, MC(K) =
{{a,¬a∨¬b}, {a, b}, {¬a∨¬b, b,¬a∧ c}}, and LCG+(K) is given in Figure 8. As Free(K) = ∅, we
have LCG+(K) = LCG(K).

a ¬a ∨ ¬b b ¬a ∧ c

{a,¬a ∨ ¬b} {a, b} {¬a ∨ ¬b, b,¬a ∧ c}

Figure 8: LCG for K = {a,¬a ∨ ¬b, b,¬a ∧ c}

Example 9. Let K = {a,¬a∨¬b, b,¬a∧a}. Then MI(K) = {{a,¬a∨¬b, b}, {¬a∧a}}, MC(K) =
{{a,¬a ∨ ¬b}, {a, b}, {¬a ∨ ¬b, b}}, and LCG+(K) is given in Figure 9. As Free(K) = ∅, we have
LCG+(K) = LCG(K).

a ¬a ∨ ¬b b ¬a ∧ a

{a,¬a ∨ ¬b} {a, b} {¬a ∨ ¬b, b}

Figure 9: LCG+ for K = {a,¬a ∨ ¬b, b,¬a ∧ a}

Example 10. Let K = {a,¬a, b,¬b, c}. Then MI(K) = {{a,¬a}, {b,¬b}}, and MC(K) = {
{a, b, c}, {a,¬b, c}, {¬a, b, c}, {¬a,¬b, c} }. In this case Free(K) = {c}, so LCG+(K) 6= LCG(K).
LCG+(K) is given Figure 10.

a b ¬b ¬a c

{a, b, c} {a,¬b, c} {¬a, b, c} {¬a,¬b, c}

Figure 10: LCG+ for K = {a,¬a, b,¬b, c}

Definition 7. The consistency graph (resp. augmented consistency graph) for knowledgebase K
is the bigraph CG(K) = 〈U, V,E〉 (resp. CG+(K) = 〈U, V,E〉) obtained from LCG(K) (resp.
LCG+(K)) by omitting the labeling function L.

948



Classifying Inconsistency Measures Using Graphs

Example 11. We return to the knowledgebase in Example 10. For this, CG(K) is in Figure 11
left, and CG+(K) is in Figure 11 right. Note that the difference is that CG+(K) contains a node
for the free formula c with edges to all the nodes in V because a free formula is a member of all the
maximal consistent subsets.

Figure 11: CG+ and CG for the knowledgebase in Example 10

By analogy with the inconsistency graphs we now obtain representation theorems for the two
types of consistency graphs without labels.

Theorem 2. Let G = 〈U, V,E〉 be a bigraph. Then G = CG+(K) for some knowledgebase K iff
the following two conditions hold for G:

1. V 6= ∅.

2. For all v, v′ ∈ V , if v 6= v′ then Adj(v) 6⊆ Adj(v′).

Corollary 2. Let G = 〈U, V,E〉 be a bigraph. Then G = CG(K) for some knowledgebase K iff the
following three conditions hold for G:

1. V 6= ∅.

2. For every u ∈ U , Adj(u) 6= V .

3. for all v, v′ ∈ V , if v 6= v′ then Adj(v) 6⊆ Adj(v′).

Again we show how the construction of the augmented consistency graph is performed by doing
an example.

Example 12. To illustrate the construction employed in the proof of Theorem 2, we use the same
graph we used in Example 7. In this graph the vertices for U will be u1, u2, u3, u4, u5, and u6 and
for V will be v1, v2, and v3. Hence we will be using the atoms a1

1, a1
2, a2

2, a2
3, a2

4, a3
5, and a0

6. Then
Adj(v1) = {u1, u2}, Adj(v2) = {u2, u3, u4}, and Adj(v3) = {u5}. We obtain the following formulas
for the vertices in U :

ϕ1 = a1
1 ∧ ¬a2

3 ∧ ¬a2
4 ∧ ¬a3

5

ϕ2 = a1
2 ∧ ¬a3

5

ϕ3 = a2
3 ∧ ¬a1

1 ∧ ¬a3
5

ϕ4 = a2
4 ∧ ¬a1

1 ∧ ¬a3
5

ϕ5 = a3
5 ∧ ¬a1

1 ∧ ¬a1
2 ∧ ¬a2

3 ∧ ¬a2
4

ϕ6 = a0
6 ∧ ¬a0

6

Although ignoring free formulas while representing the maximal consistent subsets of a knowl-
edgebase may not appear reasonable at first, it can be argued that they only change the size of
all such subsets. The next result shows the connection between using and ignoring free formulas.
First we observe that by the definitions the following hold:
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1. For every set M ∈ MC(K), Free(K) ⊆ M (that is, every maximal consistent subset contains
all the free formulas).

2. For every M ⊆ K, M = (Free(K) ∩M) ∪ (Problematic(K) ∩M) is a disjoint union.

Proposition 1. For every knowledgebase K and M ⊆ K, M ∈ MC(K) iff Free(K) ⊆ M and
M ∩ Problematic(K) ∈ MC(Problematic(K)).

5. Relationships between Inconsistency Measures and Graphs

In this section we investigate the relationship of inconsistency and consistency graphs to incon-
sistency measures. First, we show how several inconsistency measures from the literature can be
represented as functions from the inconsistency or the consistency graph, and how the latter is
a function of the former as well. Then, we study when functions on inconsistency graphs yield
inconsistency measures. Finally, we briefly discuss how inconsistency graphs (or even the whole
knowledgebase) could be recovered from some contrived inconsistency measures.

5.1 Computing Inconsistency Measures from the Inconsistency Graph

Employing only the inconsistency graph for a knowledgebase allows us to focus on the structure of
the conflicts (interrelationships between problematic formulas).

In order to characterize the inconsistency measures that are functions of the inconsistency graph,
as those in Proposition 2, we denote by G (G+) the set of all (augmented) inconsistency graphs.

Definition 8. An inconsistency measure I : K → R≥0
∞ is an augmented IG (aIG) measure if

there is a function f : G+ → R≥0
∞ such that I(K) = f(IG+(K)) for all K ∈ K. I is an IG measure

if there is a function f : G → R≥0
∞ such that I(K) = f(IG(K)) for all K ∈ K.

As we show next, numerous known inconsistency measures in the literature use this information
only.

Proposition 2. IB, IM , IP , I# and IH are IG measures.

We can show this proposition by using the following ways of calculating the measures where
IG(K) = 〈U, V,E〉 is the inconsistency graph for a knowledgebase K. Then,

1. IB(K) =

{
0 if V = ∅
1 otherwise

2. IM (K) = |V |

3. IP (K) = |U |

4. I#(K) =

{
0 if V = ∅∑

v∈V
1

| deg(v)| otherwise

5. IH(K) = min{|X| | X ⊆ U and every v ∈ V is adjacent to some u ∈ X}.

Since inconsistency graphs are recovered from augmented inconsistency graphs by simply dis-
carding the isolated vertices (which correspond to the free formulas), every IG inconsistency measure
is also an aIG measure. Even though we will show that the converse does not hold, in general most
aIG inconsistency measures in the literature are indeed IG; thus we focus on the latter. This is due
to the fact that IG measures are exactly the aIG measures satisfying the independence property
(i.e. Property 1), which holds for most measures in the literature (Thimm, 2018). Intuitively, the
independence property guarantees that free formulas do not affect the inconsistency measure.
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Proposition 3. An inconsistency measure is an IG measure iff it is an aIG measure and satisfies
the independence property.

Corollary 3. Inc is not an IG measure.

Another way to look at the result above is through the characterization of Inc(K) for any
inconsistent K as Inc(K) = |K| − min{|M | | M ∈ MI(K)} + 1. Besides the sizes of the minimal
inconsistent subsets in K, in order to compute Inc(K), one also needs to know the size of K.
By ignoring free formulas, inconsistency graphs do not encode |K|, but augmented inconsistency
graphs do.

Proposition 4. Inc is an aIG measure.

An aIG inconsistency measure depends only on how the formulas in a knowledgebase can be
combined to form minimal inconsistent subsets and on the quantity of free formulas. Consequently,
inconsistency measures that are sensitive to the formulas themselves are not aIG.

In particular, measures that are not based on the syntax of the knowledgebase and on minimal
inconsistent subsets can not be IG or aIG. This is for instance the case for variable-based measures
such as IC .

Proposition 5. IC is not an aIG measure.

5.2 Computing Inconsistency Measures from the Consistency Graph

We wish to show that we can recover the (augmented) consistency graph from the (augmented)
inconsistency graph and vice versa. First we prove two lemmas that characterize the maximal
consistent subsets in an augmented inconsistency graph and the minimal inconsistent subsets in an
augmented consistency graph.

Lemma 1. Let IG+(K) = 〈U, V,E〉, S ⊆ K, and write US for the subset of U corresponding to the
elements of S. Then S is a maximal consistent subset of K iff US is a maximal subset of U such
that there is no v ∈ V with Adj(v) ⊆ US.

As a direct consequence, the consistency graph can be recovered from the inconsistency graph,
as CG(K) = CG+(Problematic(K)) and IG+(Problematic(K)) = IG(K).

Lemma 2. Let CG+(K) = 〈U, V,E〉, S ⊆ K, and write US for the subset of U corresponding to
the elements of S. Then S is a minimal inconsistent subset of K iff US is a minimal subset of U
such that there is no v ∈ V with US ⊆ Adj(v).

Again, if one is interested in recovering only the inconsistency graph, the consistency graph
suffices, since IG(K) = IG+(Problematic(K)) and CG+(Problematic(K)) = CG(K).

Using these results, we can prove that the (augmented) inconsistency graph and the (augmented)
consistency graph are actually two sides of the same coin. This result is based on the well-known
relationship between minimally inconsistency subsets and maximally consistent subsets (see for
example Reiter, 1987). We denote by Gc (G+

c ) the set of all (augmented) consistency graphs.

Theorem 3. There is a bijection h : G+ → G+
c such that, for any K ∈ K, G = IG+(K) iff

h(G) = CG+(K).

Corollary 4. There is a bijection h : G → Gc such that, for any K ∈ K, G = IG(K) iff h(G) =
CG(K).
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Next we illustrate Theorem 3 on an example.

Example 13. We use the graph of Example 7 for G. In order to construct h(G) we determine
the following: Adj(v1) = {u1, u2}, Adj(v2) = {u2, u3, u4}, Adj(v3) = {u5}, X1 = {u1, u3, u4, u6},
X2 = {u2, u3, u6}, X3 = {u2, u4, u6}. We draw the graph h(G) in Figure 12.

Figure 12: h(G) for the graph of Example 7

In order to make the formulas easier to read we rewrite Example 7 using different letters instead
of subscripts and superscripts: K = {ϕ1, . . . , ϕ6} where

ϕ1 = a ∧ ¬b, ϕ2 = a→ b ∧ c ∧ ¬e, ϕ3 = c→ d, ϕ4 = d→ e, ϕ5 = f ∧ ¬f, ϕ6 = g.

Then MI(K) = {{ϕ1, ϕ2}, {ϕ2, ϕ3, ϕ4}, {ϕ5}}. So, for the structure of the graph G we have U =
{u1, . . . , u6} (each ϕi associated with ui and V = {v1, v2, v3} associated with the elements of MI(K).
For h(G) we get Adj(v1) = {u1, u3, u4, u6}, Adj(v2) = {u2, u3, u6}, Adj(v3) = {u2, u4, u6}, that is,
MC(K) = {{ϕ1, ϕ3, ϕ4, ϕ6}, {ϕ2, ϕ3, ϕ6}, {ϕ2, ϕ4, ϕ6}}. It is easy to check that h′(h(G)) = G.

Going in the opposite direction again we use the graph of Example 7 for G. In order to construct
h′(G) we determine the following: Adj(v1) = {u1, u2}, Adj(v2) = {u2, u3, u4}, Adj(v3) = {u5},
X1 = {u1, u3}, X2 = {u1, u4}, X3 = {u1, u5}, X4 = {u2, u5}, X5 = {u3, u5}, X6 = {u4, u5},
X7 = {u6}. We draw the graph h′(G) in Figure 13.

Figure 13: h′(G) for the graph of Example 7

In particular, suppose that K is the knowledgebase obtained in Example 12 but again using
different letters instead of subscripts and superscripts: K = {ϕ1, . . . , ϕ6} where

ϕ1 = a ∧ ¬b ∧ ¬c ∧ ¬d, ϕ2 = e ∧ ¬d, ϕ3 = ¬a ∧ b ∧ ¬d,
ϕ4 = ¬a ∧ c ∧ ¬d, ϕ5 = ¬a ∧ ¬e ∧ ¬b ∧ ¬c ∧ d, ϕ6 = f ∧ ¬f.

Then MC(K) = {{ϕ1, ϕ2}, {ϕ2, ϕ3, ϕ4}, {ϕ5}}. So, for the structure of the graph G we have U =
{u1, . . . , u6} (each ϕi associated with ui and each vj associated with an element of MC(K)). For
h′(G) we get Adj(v1) = {u1, u3}, Adj(v2) = {u1, u4}, Adj(v3) = {u1, u5}, Adj(v4) = {u2, u5},
Adj(v5) = {u3, u5}, Adj(v6) = {u4, u5}, Adj(v7) = {u6}. That is, MI(K) = {{ϕ1, ϕ3}, {ϕ1, ϕ4},
{ϕ1, ϕ5}, {ϕ2, ϕ5}, {ϕ3, ϕ5}, {ϕ4, ϕ5}, {ϕ6}}. It is easy to check that h(h′(G)) = G.
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As a consequence of this link between inconsistency and consistency graphs, we can show that
measures based on maximal consistent subsets are IG measures.

Corollary 5. 1. An inconsistency measure I : K → R≥0
∞ is an aIG measure iff there is a

function g : G+
c → R≥0

∞ such that I(K) = g(CG+(K)) for all K ∈ K.

2. An inconsistency measure I : K → R≥0
∞ is an IG measure iff there is a function g : Gc → R≥0

∞
such that I(K) = g(CG(K)) for all K ∈ K.

We next use Corollary 5 to show that some inconsistency measures are IG measures. In fact,
the following results show that some measures that are not overtly syntactic are actually in the
same category as the measures usually taken to be syntactic.

Proposition 6. IA and Ihs are IG inconsistency measures.

We end this subsection by showing that Iη is also an IG inconsistency measure, that is more
surprising than the previous ones, since it is not directly related to minimal inconsistent subsets,
so the proof will be less obvious. Recall that Iη is defined in terms of the probabilistic satisfiability
problem which involves finding a probability function over the set of classical interpretations (for
the language of K) so that certain inequalities hold. We will translate this problem to one where the
probability function is over MC(K). For this purpose it is useful to define a more general concept
of (uniform) satisfiability as follows. Let Z be a mathematical object with elements such as a set
or graph, X a set based on Z, C(Z,X) a condition on elements of Z involving X (that is, C(z, x) is
true or false), p ∈ [0, 1], π a probability function over X, and Pπ(z) =

∑
x∈X
{π(x) | C(z, x) is true }.

We say that the set of inequalities Γ = {P (z) ≥ p | z ∈ Z} is 〈Z,X,C〉-satisfiable for P if there
is a probability function π on X such that Γ with Pπ for P holds. In particular, the satisfiability
that was defined for Iη using this notation is 〈K, IC , i(ϕ) = t〉-satisfiability where ϕ ∈ K and i ∈ IC
(we write IC for the set of classical interpretations of the atoms of K). We will also use the
notation T (i) = {ϕ ∈ K | i(ϕ) = T}, that is, T (i) is the set of formulas of K that are true for
the interpretation i. In the proof we will show in 2 steps that for P , 〈K, I, i(ϕ) = T 〉-satisfiablity is
equivalent to 〈G,V, u ∈ Adj(v)〉-satisfiability where G is the consistency graph for K.

Proposition 7. Iη is an IG inconsistency measure.

Given this duality between consistency and inconsistency graphs, we will focus on the latter
in the remainder of the paper since their relation to inconsistency measuring is more intuitive.
Nonetheless, there are some existing proposals for inconsistency measures that are based on maximal
consistent subsets of a knowledgebase (for example Ammoura, Salhia, Oukachab, & Raddaoui,
2017)) and these can equivalently be defined in terms of an augmented consistency graph.

5.3 Devising Inconsistency Measures from the Inconsistency Graph

We will use the inconsistency graph to study the structure of the inconsistencies in a knowledgebase.
In particular, we will define several new IG inconsistency measures I(K) = f(IG(K)), via functions
f on the inconsistency graph. If f : G → R≥0

∞ is a function on inconsistency graphs, we denote by
If : K → R≥0

∞ the function on knowledgebases defined as If (K) = f(IG(K)) for every K ∈ K. Not
every f : G → R≥0

∞ yields a function If : K → R≥0
∞ that is an inconsistency measure, for If must

satisfy the rationality postulates of consistency and monotony, given in Definition 1. After defining
the concept of subgraph for bigraphs, we gave the usual definition for an induced subgraph. That
is, for G = 〈U, V,E〉, the induced subgraph is defined using a set W ⊆ U ∪V . For our purpose now
it will be useful to have another definition where the subgraph is induced by just a subset of U .
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Definition 9. Let G = 〈U, V,E〉 be a bigraph and W ⊆ U . Let V ′ = {v ∈ V |adj(v) ⊆ W}. Then,
let U ′ = {u ∈W |∃v ∈ V ′ such that {u, v} ∈ E}. Finally, let E′ = {{u, v} ∈ E|u ∈ U ′ and v ∈ V ′}.
Then we say that G′ = 〈U ′, V ′, E′〉 was U-induced by W .

We use this definition to obtain a correspondence between subsets of a knowledgebase and
subgraphs of the inconsistency graph of the knowledgebase.

Proposition 8. Let G = 〈U, V,E〉 be the inconsistency graph of a knowledgebase K where, as
usual, K = {ϕ1, . . . , ϕm} and MI(K) = {∆1, . . . ,∆n}. Let K ′ ⊆ K. Then G′ = 〈U ′, V ′, E′〉 is the
inconsistency graph of K ′ iff G′ is the bigraph U-induced from G by W where W ⊆ U corresponds
to the elements of K ′.

Proposition 8 gives the exact process of obtaining all the inconsistency graphs for all the subsets
of a knowledgebase. This allows us to specify a necessary and sufficient condition that a function
f on inconsistency graphs must satisfy in order for If to be an inconsistency measure.

Proposition 9. Let f : G → R≥0
∞ . If : K → R≥0

∞ is an inconsistency measure iff the following two
conditions hold:

1. f(G) = 0 iff G = 〈∅,∅,∅〉;

2. If G′ = 〈U ′, V ′, E′〉 was U-induced by W (W ⊆ U) from G = 〈U, V,E〉 then f(G′) ≤ f(G).

Corollary 6. Let f : G → R≥0
∞ be such that

1. f(G) = 0 iff G = 〈∅,∅,∅〉,

2. If G′ ⊆ G then f(G′) ≤ f(G).

Then If is an inconsistency measure.

Besides the inconsistency measures from Proposition 2, we can conceive of a number of IG
measures If based on functions on inconsistency graphs.

Proposition 10. The following functions f : G → R≥0
∞ defined below yield inconsistency measures

If : K → R≥0
∞ . We put in parentheses the meaning for the corresponding knowledgebase.

• f1(G) = |U |+ |V | (the number of problematic formulas plus the number of minimal inconsis-
tent subsets)

• f2(G) = |E| (the sum of the sizes of the minimal inconsistent subsets — as specified in
Definition 3, every edge in E denotes the membership of a formula in a minimally inconsistent
subset.)

• f3(G) = |U |+ |V |+ |E| (f1(G) + f2(G))

• f4(G) =


0 if U = ∅∑
v∈V

∑
u∈Adj(v)

deg(u)

deg(v)2
otherwise

(0 if K is consistent, otherwise the sum of the reciprocals of the sizes of the minimal inconsis-
tent subsets weighted by the average number of minimal inconsistent subsets containing their
elements)
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• f5(G) =

{
0 if U = ∅
1 + |{u ∈ U | deg(u) ≥ 2}| otherwise

(0 if K is consistent, otherwise one plus the number of formulas that are in at least two
minimal inconsistent subsets)

• f6(G) =

{
0 if U = ∅
1 +

∑ 1
|Adj(v)∩Adj(v′)|(∀v, v

′ 6∈ V, v 6= v′,Adj(v) ∩ Adj(v′) 6= ∅) otherwise

(0 if K is consistent, otherwise one plus the sum of the reciprocals of the sizes of the inter-
sections of each pair of minimal inconsistent subsets)

• f7(G) =

{
0 if U = ∅
max{deg(u) | u ∈ U} otherwise

(0 if K is consistent, otherwise the maximum number of minimal inconsistent subsets con-
taining the same formula)

• f8(G) =

{
0 if U = ∅
|{v ∈ V | deg(v) = 1}|+ max{deg(u) | u ∈ U} otherwise

(0 if K is consistent, otherwise the number of self-contradictions plus the maximum number
of minimal inconsistent subsets containing the same formula)

• f9(G) =

{
0 if U = ∅
max{deg(v) | v ∈ V } otherwise

(0 if K is consistent, otherwise the maximum number of formulas in a minimal inconsistent
subset)

We next show which of the rationality postulates we introduced earlier the inconsistency mea-
sures obtained from these functions satisfy.

Proposition 11. Consider the inconsistency measures introduced in Proposition 10. Ifi satisfies
Independence for 1 ≤ i ≤ 9, MI-separability for i = 2, Penalty for 1 ≤ i ≤ 4, Super-additivity for
1 ≤ i ≤ 6, Attenuation for i = 4, Equal Conflict for 1 ≤ i ≤ 9. and Almost Consistency for i = 4.

Previously we obtained several inconsistency measures using functions on the inconsistency
graph by finding conditions to yield inconsistency measures. However, functions on inconsistency
graphs violating these conditions may also be valuable, for there is other useful information in such
graphs concerning the inconsistency besides the inconsistency degree itself. For example, we may
be interested in the average size of the minimal inconsistent subsets. For this purpose we can define
a function

fAV (K) =

{
0 if U = ∅

1
|V |
∑

v∈V deg(v) otherwise

This function over inconsistency graphs does not lead to an inconsistency measure because the
monotony postulate is not satisfied. For example, unless all inconsistencies are due to selfcontradic-
tions, the addition of a selfcontradiction to an inconsistent knowledgebase K decreases fAV (IG(K)).
Nevertheless, fAV ((K)) = If2(K)/IM (K).

Example 14. Consider the table below showing 3 knowledgebases and the calculations of fAV for
them. On the left hand side of the equals sign, the first number is the reciprocal of the number
of vertices V (i.e. the number of minimal inconsistent sets) and the numbers in brackets are the
degrees of the vertices in V (i.e. the size of the minimal inconsistent sets).
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K fAV (K)

{a,¬a, b,¬b} 1/2× (2 + 2) = 2
{a, b, c,¬a ∨ ¬b ∨ ¬c, ϕ,¬ϕ ∨ ¬ψ,ψ} 1/2× (4 + 3) = 7/2
{a ∧ b, a ∧ ¬b,¬a ∧ b,¬a ∧ ¬b} 1/6× (2 + 2 + 2 + 2 + 2 + 2) = 2

Table 2: Examples of computations of fAV

In the same way that we devised new measures of inconsistency from the inconsistency graph
(as presented in Proposition 10), we can devise new measures of inconsistency from the consistency
graph. Because, of the equivalence of inconsistency and consistency graphs (as investigated in
Section 5.2), and the observation that it appears easier to motivate inconsistency measures using
inconsistency graphs, we will not present new inconsistency measures based on consistency graphs
in this paper. However, for some applications it may be easier and more intuitive to define in-
consistency measures based on consistency graphs. Consider for instance the IA measure which is
defined in terms of maximal consistent subsets, or the Iη measure that, as we show via Proposition
8, can be calculated in terms of maximal consistent subsets.

5.4 From Inconsistency Measures to the Inconsistency Graph

We have shown in the previous subsection that under certain conditions we get an inconsistency
measure from a function on bigraphs. In this subsection we investigate the reverse problem, that
is, finding a function from inconsistency measures to inconsistency graphs. The functions we have
constructed on inconsistency graphs are not 1-1, hence we cannot simply take their inverse and
must proceed in a different way. Formally, we would like to get an inconsistency measure I and a
function g : R≥0

∞ → G such that for all knowledgebases K, IG(K) = g(I(K)). In order to construct
this functions, we rely on an important fact:

Proposition 12. Both K and G are countable.

Now from Proposition 12 we conclude that there is an enumeration e : K → N, (which is a
bijection) and hence has an inverse e−1 : N→ K. We would like to define an inconsistency measure
from e, Ie, as follows:

Ie(K) =

{
0 if K is consistent
1 + e(K) otherwise

(1)

We add one to the number corresponding to an inconsistent knowledgebase in order to avoid the
possibility of Ie(K) = 0 in those cases. Although Ie is not 1-1 and hence has no inverse, all
inconsistent knowledgebases K can be recovered because e−1(Ie(K) − 1) = K. As all consistent
knowledgebases have the same inconsistency graph, there is a function ge : N → G such that
ge(Ie(K)) = IG(K) for all K ∈ K:

ge(x) =

{
〈∅,∅,∅〉 if x = 0
IG(e−1(x− 1)) otherwise

(2)

For Ie to be an inconsistency measure, monotony has to be satisfied as well. That is, we have
to show that there is a suitable enumeration e.

Proposition 13. There is a bijection e : K → N such that, if K ⊆ K ′, then e(K) ≤ e(K ′).
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Employing the enumeration e : K → N presented in the proof of Proposition 13, the function
Ie : K → N defined in Equation (1) is indeed an inconsistency measure. Also, as we pointed
out earlier, the function ge : N → G defined in Equation (2) is such that IG(K) = ge(Ie(K)) for
all K ∈ K. In fact, from the natural number Ie(K) we can recover even the knowledgebase K
if it is inconsistent, and therefore its augmented inconsistency graph IG+(K). By employing the
bijection h between augmented consistency and augmented inconsistency graphs from Theorem 3,
the augmented consistency graph CG+(K) can be recovered as well.

It is worth remarking that the independence property does not hold for Ie. If this property
is enforced, no inconsistency measure can be used to recover an inconsistent knowledgebase or
its augmented inconsistency graph since the free formulas would be ignored. However, as the
inconsistency graph takes into account only the problematic formulas, it could be recovered via an
inconsistency measure satisfying the independence property. Let the function I ′e : K → N be defined
as I ′e(K) = Ie(Problematic(K)) for all K ∈ K. Applying ge to I ′e(K) yields IG(Problematic(K)),
and IG(Problematic(K)) = IG(K) for all K ∈ K. Then, the consistency graph can also be recovered
using I ′e by applying the bijection h from Corollary 4.

The functions Ie and I ′e, despite satisfying the basic properties required for inconsistency mea-
sures, seem to be quite arbitrary in the sense that they lack an underlying intuition for the in-
consistency measurements. This poses the question of which further desiderata could be imposed
on inconsistency measures to preclude such cases. Discussions on how reasonable are the inconsis-
tency measuring postulates in the literature have claimed that they are over-constraining to some
extent (Ammoura, Raddaoui, Salhi, & Oukacha, 2015; Besnard, 2014; Thimm, 2016a). In contrast,
the absence of strong rationality postulates leave a vacuum for rather meaningless proposals to
arise, such as Ie and I ′e. To address this dilemma, more or less demanding properties, as those
proposed in De Bona and Hunter (2017), could be employed to describe and classify inconsistency
measures, instead of being required in their definition. Augmented inconsistency graphs, or simply
inconsistency graphs, can be useful for the formulation of properties of this kind.

In this section, we have shown how by focusing on the inconsistency graph, we can calculate
a number of the existing inconsistency measures. In other words, the inconsistency graph has
sufficient information that can be used to calculate these measures. In addition, we have identified
further interesting measures, each of which can be calculated from the inconsistency graph, such
as If4 and If5 in Proposition 10. Both measures take the overlap of minimal inconsistent subsets
into account to give finer grained inconsistency measures. If4 is a measure that regards smaller
inconsistent sets as worse than larger inconsistent sets but then weights this by the average size
of the inconsistent sets containing the elements, and If5 is a measure that counts the number of
formulas that are in at least two minimal inconsistent sets, thereby flagging the formulas that are
more than a “one-off” problem. These measures are indicative of a range of further measures that
can be defined based on the inconsistency graph. We also showed that, without requiring more
than the postulates of monotony and consistency, inconsistency measures can encode the whole
knowledgebase.

6. A Hierarchy for Syntactic Measures

So far we have investigated inconsistency measures that can be calculated from various graphs
constructed from knowledgebases. We had a particular interest in using the inconsistency graph.
But some inconsistency measures that can be computed from the inconsistency graph (the ones we
called IG measures) do not actually use all the information provided by the inconsistency graph.
This suggests that we look for simpler representations that still convey enough information to
calculate them. In this section we will build a hierarchy of such representations that will then
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provide a corresponding hierarchy for inconsistency measures based on how much information is
needed to compute them.

We call such a representation an abstraction as it abstracts some information from a knowledge-
base in a uniform way. We write A for the set of objects for a particular abstraction and call A an
abstraction space. For instance so far we have used the set of bigraphs as an abstraction space. We
also need a mapping that takes each knowledgebase to an object in the abstraction space. We do
not formally define what types of operations are allowed for a mapping but note that determining
if a set of formulas is consistent or inconsistent is allowed. In our case the mapping constructs
whichever bigraph we are considering, such as the inconsistency graph.

Definition 10. An abstraction class C (or simply a class) is a pair C = 〈A,mC〉 where mC :
K → A.
An inconsistency measure I is in class C if there is a function fC : A → R≥0

∞ such that I(K) =
fC(mC(K)) for all knowledgebases K. We then call I a C measure.

We will sometimes write a class as C with a subscript but often it will be convenient to use
just the subscript of C for the class name. Thus we write CIG = IG = 〈G, IG〉, where G is the
set of bigraphs and IG(K) is the inconsistency graph of K, is a class and the IG inconsistency
measures are exactly the ones in CIG. In order to be precise in the definition of fC , we should use
Range(mC) instead of A because it is possible that not all elements of A are in Range(mC). For
example, consider the class CIG. G is the set of all bigraphs but as we showed in Corollary 1 not
every bigraph is an inconsistency graph. So in that case we really require the domain of fIG to be
those bigraphs that are inconsistency graphs, namely the ones that satisfy the two conditions of
Corollary 1, that is, Range(IG). However, in order to make the presentation less cumbersome we
will use A instead of Range(mC) for all classes.

Another example is CB = 〈{0, 1}, IB〉, the binary class where IB was given in Definition 2. IB
is a measure in this class. In this case fCB

= ι{0,1}, the identity function on {0, 1}. Due to the
consistency postulate for inconsistency measures, no non-empty class can have a smaller abstraction
space. In general, for any inconsistency measure I we can define the class CI = 〈R≥0

∞ , I〉. Another
trivial case occurs if an inconsistency measure I ′ is obtained as a function of some I, that is,
I ′(K) = g(I(K)) in which case an I ′ measure is automatically an I measure. An example is the
function g that doubles the value of its argument (i.e. g(I(k)) = 2 × I(k)). We are interested
in classes that encompass genuinely different inconsistency measures given in the literature. We
should also note that not every class yields an inconsistency measure. For example, let C = 〈N,mC〉
where mC(K) is the number of formulas in K. There is no way to get an inconsistency measure
if that is the only information stored about K. We will be interested only in classes that yield
inconsistency measures. We call such a class proper and will discuss only proper classes.

Next we show how to compare classes with respect to their inconsistency measures. Consider
the class MI = 〈N,MI〉 which is obtained by abstracting from the knowledgebase its number of
minimal inconsistent subsets. But we can also calculate the number of minimal inconsistent subsets
from the inconsistency graph by counting the number of vertices in V . However, given the number
of inconsistent subsets we cannot construct the inconsistency graph. Thus, intuitively, the class IG
is more general than the class MI. The most general class is the one where we retain the entire
knowledgebase. This is what happens when we construct the labeled augmented inconsistency
graphs. We call this class the universal class and denote it as U = 〈LG, LIG+〉 where LG is the
set of labeled bigraphs (that can be obtained from knowledgebases) and LIG+(K) is the labeled
augmented inconsistency graph of K. Moving away from graph representation, we can simply
write this class as U = 〈K, ιK〉 where ιK is the identity function on K. Our interest now is in
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comparing the generality of classes. The following definition captures how we can represent classes
as a hierarchy. So we define the �, �, and ∼ relations to specify the hierarchy.

Definition 11. A class C = 〈A,mC〉 is at least as (more or equally) general as the class
C ′ = 〈A′,mC′〉, denoted C � C ′, if the relation hC,C′ = {〈mC(K),mC′(K)〉 ∈ A×A′ | K ∈ K} is a
function. As usual, we write C � C ′ when C � C ′ does not hold. We say that C and C ′ are equally
general written C ∼ C ′ if both C � C ′ and C ′ � C hold. Furthermore, C is more general than
C ′, denoted C � C ′, when C � C ′ but C 6∼ C ′. Finally, we call C and C ′ incomparable (for
generality) in case neither C � C ′ nor C ′ � C holds When hC,C′ is a function we will use function
notation, that is, write mC′(K) = hC,C′(mC(K)).

We are not using the phrase “more general” in the sense of “more abstract”, but rather in
the sense of “more discriminative”. We will show that whenever C � C ′ holds, any inconsistency
measure in class C ′ must also be in class C.

Example 15. Consider the class CIG = IG = 〈G, IG〉, where G is the set of bigraphs and IG(K) is
the inconsistency graph of K, and the class CB = 〈{0, 1}, IB〉 where IB was given in Definition 2.
So for each G = 〈U, V,E〉 ∈ G, if U = ∅, then hIG,B = 0, otherwise hIG,B = 1.

We start our investigation of the generality of classes by showing two fundamental properties
of the relation �.

Proposition 14. The relation � is reflexive and transitive.

Next we present several results that we will use to find generality relations between classes. We
start with a characterization for equally general classes.

Proposition 15. C = 〈A,mC〉 and C ′ = 〈A′,mC′〉 are equally general iff hC,C′ and hC′,C are
inverse functions.

Corollary 7. If C � C ′ and hC,C′ is not one-to-one then C � C ′.

As we next show, the generality relation between classes extends to their inconsistency measures.

Proposition 16. If C � C ′ then every C’ inconsistency measure is also a C inconsistency measure.

Corollary 8. If C � C ′ and there is a C inconsistency measure that is not a C ′ inconsistency
measure then C � C ′.

We can also characterize the case where two classes have incomparable generalities.

Proposition 17. C = 〈A,mC〉 6� C ′ = 〈A′,mC′〉 iff there exist knowledgebases K and K ′ such
that mC(K) = mC(K ′) but mC′(K) 6= mC′(K ′).

Corollary 9. The generalities of C = 〈A,mC〉 and C ′ = 〈A′,mC′〉 are incomparable iff

1. There exist K and K ′ such that mC(K) = mC(K ′) but mC′(K) 6= mC′(K ′) and

2. There exist K ′′ and K ′′′ such that mC′(K ′′) = mC′(K ′′′) but mC(K ′′) 6= mC(K ′′′).

We now formulate several classes that are intuitively less expressive than IG. In all of these cases
we first show how to obtain the value from the knowledgebase and in parentheses we indicate how to
obtain it from the inconsistency graph. We also give one or more examples of inconsistency measures
in that class. These inconsistency measures were defined in Definition 2 and Proposition 10. Table 3
gives all the formal definitions.
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Definition 12. Classes obtained from IG:

• PC (Problematic-Count) counts the number of problematic formulas (the size of U).
Example: IP is the number of problematic formulas.

• CC (Conflict-Count) counts the number of minimal inconsistent subsets (the size of V ).
Example: IM is the number of minimally inconsistent subsets.

• V C (Vertex-Count) combines the PC and CC values into a pair of numbers.
Example: If1 is the sum of IP and IM .

• PD (Problematic-Degree) counts for each positive integer n the number of formulas (if not 0)
that are in n minimal inconsistent subsets (the number of vertices in U that have degree n)
to form a set of ordered pairs of positive integers.
Examples: If5 is one plus the number of formulas that are in at least two minimal inconsistent
subsets and If7 is the maximum number of minimal inconsistent subsets containing the same
formula.

• CD (Conflict-Degree) counts for each positive integer n the number of minimal inconsistent
subsets (if not 0) that contain n formulas (the number of vertices in V that have degree n) to
form a set of ordered pairs of positive integers.
Examples: I# is the sum of the reciprocals of the sizes of the minimal inconsistent subsets
and If9 is the maximum number of formulas in a minimal inconsistent subset.

• V D (Vertex-Degree) combines the PD and CD sets into an ordered pair.
Examples: If4 is the sum of the reciprocals of the sizes of the minimal inconsistent subsets
weighted by the average number of minimal inconsistent subsets containing their elements and
If8 is the number of self-contradictions plus the maximum number of minimal inconsistent
subsets containing the same formula.

• EC (Edge-Count) counts the sum of the sizes of the minimal inconsistent sets
Example: If2 is the sum of the sizes of the minimal inconsistent subsets.

Example 16. Consider the knowledgebase K = {a,¬a ∧ ¬b, b, c} whose inconsistency graph G
is given in Figure 5(e). Then hIG,PC(G) = 3 (the size of U), hIG,CC(G) = 2 (the size of V ),
hIG,V C(G) = 〈3, 2〉 (placing the previous 2 numbers into a pair), hIG,PD(G) = {〈2, 1〉, 〈1, 2〉} (2
vertices in U have degree 1 and 1 vertex has degree 2), hIG,CD(G) = {〈2, 2〉} (the 2 vertices in V
both have degree 2), hIG,V D(G) = 〈{〈2, 1〉, 〈1, 2〉}, {〈2, 2〉}〉 (placing the previous 2 answers into a
pair), and hIG,EC(G) = 4 (there are 4 edges).

The generality relations among these classes are given by the next result and illustrated graph-
ically in Figure 14.

Theorem 4. The following generality relations hold between classes where B refers to class CB
(i.e. the binary class):

1. IG+ is more general than IG: IG+ � IG.

2. IG is more general than V D: IG � V D.

3. V D is more general than each of PD, V C, and CD: V D � PD, V C,CD.
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Name C A mC(K) hIG,C(G)

problematic-count PC N |Problematic(K)|) |U |
conflict-count CC N |MI(K)|) |V |
vertex-count V C N2 〈|Problematic(K)|, |MI(K)|〉 〈|U |, |V |〉

problematic-degree PD 2N
2

see caption see caption

conflict-degree CD 2N
2

see caption see caption

vertex-degree V D 2N
2 × 2N

2 〈mPD(K),mCD(K)〉 〈hIG,PD(G), hIG,CD(G)〉
edge-count EC N

∑
∆∈MI(K)

|∆| |E|

Table 3: Classes based on abstracting the inconsistency graph IG(K) = 〈U, V,E〉
For each class we give the full name as well as the class name, the abstraction space, the mapping
mC from K, and the function hIG,C from the inconsistency graph. The missing cases are below:

For PD,
mC(K) = {〈x, y〉 | x > 0 and x = |{ϕ ∈ Problematic(K) s.t. |{M ∈ MI(K) | ϕ ∈M}| = y}|}

hIG,C(G) = {〈x, y〉 | x > 0 and x = |{u ∈ U | deg(u) = y}|}
For CD,

mC(K) = {〈x, y〉 | x > 0 and x = |{M ∈ MI(K) s.t.i |M | = y}|}
hIG,C(G) = {〈x, y〉 | x > 0 and x = |{v ∈ V | deg(v) = y}|}

4. PD is more general than both PC and EC: PD � PC,EC.

5. V C is more general than both PC and CC: V C � PC,CC.

6. CD is more general than both EC and CC: CD � EC,CC.

7. Each of PC, EC, and CC is more general than B: PC,EC,CC � B.

8. The generalities of PD, V C, and CD are pairwise incomparable.

9. The generalities of PC, EC, and CC are pairwise incomparable.

To summarize, Figure 14 illustrates the generality relation between the proposed classes. We
can construct a similar hierarchy for the consistency graphs. Given the equivalence of (augmented)
consistency graphs and (augmented) inconsistency graphs, the top part and the bottom element of
the hierarchies would be the same. However, in between the top and bottom, new classes would
need to be defined for consistency graphs. We leave this to future work.

Using our hierarchy, we are able to position many of the existing proposals for inconsistency
measures. As we have already shown, we can situate IB (Hunter & Konieczny, 2008), IM (K)
(Hunter & Konieczny, 2008), IA(K) (Grant & Hunter, 2011) , IP (K) (Grant & Hunter, 2011),
I#(K) (Hunter & Konieczny, 2008), Inc(K) (Doder et al., 2010; Thimm, 2016b), Ihs(K) (Thimm,
2016b), IH(K) (Grant & Hunter, 2013), and Iη(K) (Knight, 2002). There are a number of further
measures that build on these measures, and these can also be captured in our hierarchy (e.g. Mu
et al., 2011a, 2011b; Jabbour et al., 2014; Jabbour, Ma, Raddaoui, Sais, & Salhi, 2016)). What we
cannot capture in the hierarchy (except in the most general class) are the semantic-based measures
such as IC(K) (Konieczny et al., 2003; Grant & Hunter, 2011) which counts the minimum number
of atoms that need to be assigned B amongst the 3VL models of K or measures based on fuzzy
answer set semantics (Madrid & Ojeda-Aciego, 2011). There are also syntactic measures based on
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augmented-
inconsistency-
graph, e.g., Inc

inconsistency-graph,
e.g., IA, Iη, Ihs

vertex-degree, e.g., If7

problematic-
degree, e.g., If4 , If6

vertex-count, e.g., If1 conflict-degree, e.g., I#

problematic-
count, e.g., IP

edge-count, e.g., If2 conflict-count, e.g., IM

binary, e.g., IB

Figure 14: The generalization hierarchy for the classes that contain syntactic inconsistency mea-
sures. Each arc from class C to C ′ denotes C � C ′. Each class is followed by at least one
inconsistency measure in the class that is not in a less general class.

other kinds of logics such as description logics (Ma et al., 2007; Qi & Hunter, 2007; Zhou et al.,
2009) that currently do not fit into the hierarchy but if we were to expand the framework to other
logics, it would be straightforward to also include those.

Much of the current version of the hierarchy could have been developed without recourse to
graphs, perhaps using just minimal inconsistent and maximal consistent subsets directly, but this
would not have captured all the measures that we wanted to consider, and it would not have allowed
us to easily identify some of the interesting new proposals for inconsistency measures. Furthermore,
by not basing the framework on graphs, we would miss the interesting potential to consider other
graph theoretic notions like connected components, matchings, cycles, kernels, etc. that could give
rise to further (yet unconsidered but) meaningful notions of inconsistency measures, where the
graph structure really would be particularly useful. We will be investigating these graph-theoretic
options in future work.

Finally, we note that there are some related works that have hypergraph representation of mini-
mal inconsistency subsets for inconsistency measures (Jabbour et al., 2014, 2016). The hypergraph
representation captures the overlap of the minimal inconsistent subsets, and can be captured using
our inconsistency graphs. The main point of their work is to define some specific new inconsistency
measures whereas the point of our work is to compare and classify inconsistency measures.
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7. A Hierarchy of Non-Syntactic Measures

In the previous sections we showed that what are usually called syntactic inconsistency measures are
in the IG (or IG+) class. But then we found that some such measures do not need all the information
from the inconsistency graph. This allowed us to define a hierarchy of abstraction classes, so that
when an inconsistency measure I is in class C but not in class C ′, where C is more general than
C ′ and I ′ is in C ′, I requires more information to compute than I ′. But not all inconsistency
measures are syntactic. In this section we extend the hierarchy we previously constructed from B
(the binary class) to IG by constructing a hierarchy on top of IG that goes up to the universal
class. While this hierarchy is not intended to capture all possible non-syntactical approaches to
inconsistency measuring, it provides an example of how our framework can be extended to cope
with some non-syntactic measures. We wish to point out that we are using the word “syntactic”
as it has been used in the literature, that is, at the knowledgebase level and based on the minimal
inconsistent subsets. Syntax-based measures are concerned with how the inconsistency is spread
among the elements (formulas) of the knowledgebase, without looking inside the formulas. The new
measures that we define in this section depend on both the structure of the minimal inconsistent
subsets and the formulas themselves.

The question we consider is how to make inconsistency graphs more informative so that we can
build these new classes from which we can define non-IG measures. The inconsistency graphs we
constructed do not reveal any information about the formulas themselves. Consider that one of the
syntactic measures we dealt with, IP , counts the number of problematic formulas. But we may want
to probe further and also consider the atoms in the formulas. For example, it seems reasonable to
count the number of atoms in the problematic formulas as an inconsistency measure. This cannot
be done with inconsistency graphs. Recall now that we started with labeled inconsistency graphs.
Then, for a knowledgebase K, LIG+(K) contains K: that is, K = ∪mi=1L(ui); V is not even needed
to recover K. But in order to count the number of atoms we don’t really need all the formulas,
just what atoms each formula contains. Our idea in this section is similar to what we did for
the hierarchy based on inconsistency graphs where we reduced the amount of information. The
difference is that now we start with the labeled inconsistency graph and reduce the information in
the labels. Then, in order to build the hierarchy on top of IG we must retain the entire unlabeled
graph.

Consider now the measure we presented earlier that is not a syntactic measure, IC . Recall
that IC(K) is the minimal number of atoms that must be assigned the value B to obtain a 3VL
model for K. Let us contrast IC with the one we just suggested, the one that counts the number
of distinct atoms in Problematic(K) that we call I1. Let K1 = {a∧¬a∧ b∧¬c}. The inconsistency
graph is very simple with |U | = |V | = |E| = 1. Here I1(K1) = 3 (for a, b, and c) but IC(K1) = 1
as IC counts only the atoms that are “really” involved in an inconsistency. After all, b and c just
happen to appear in the problematic formula without causing any problems themselves. Next, let
K2 = {a ∧ ¬a ∧ b ∧ ¬c,¬b ∧ d}. The only difference is the addition of the second formula which
happens to be free in K2. So IG(K1) = IG(K2); however, the augmented inconsistency graph has
an extra vertex in U . The formula ¬b ∧ d is called an iceberg inconsistency (De Bona & Hunter,
2017) as it is free in this set but if the first formula were broken into two formulas, as a ∧ ¬a and
b ∧ ¬c, where the two formulas together are logically equivalent to the original formula, ¬b ∧ d
would no longer be free. I1(K2) = I1(K1) = 3 as the atom d in the free formula is not counted.
But IC(K2) = 2 6= IC(K1) = 1 because b must also be given the value B for a 3VL model. In this
way IC is sensitive to iceberg inconsistencies that are not considered for I1. So it seems that even
with labels (that have limited information, not actual formulas) the inconsistency graph is not the
appropriate structure for computing IC . About all we can say is that I1 is an upper bound for
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IC , that is, for every knowledgebase K, IC(K) ≤ I1(K), as assigning the B value to all atoms in
problematic formulas always yields a 3VL model.

To simplify matters we will consider only inconsistency measures that satisfy the independence
property. Hence we will omit the free formulas and not deal with augmented inconsistency graphs.

We start by defining four new types of labeled inconsistency graphs. In each case U , V , and E
are the same as for the labeled inconsistency graphs defined in Definition 4. So these graphs deal
only with the formulas in Problematic(K). The difference is in the labeling. Hence in our definitions
it suffices to write only the labeling functions, whose codomains are assumed to be equal to the
ranges. As in some cases we will need multisets, we will use the notation where the elements of a
multiset are placed in brackets, as opposed to the braces used for sets. We also need the concept
of the length of a formula, denoted Length(ϕ) that we define as the total number of occurrences
of symbols in the formula ϕ.

Definition 13. New types of labeled inconsistency graphs:

1. For a multiset labeled inconsistency graph MLIG(K) = 〈U, V,E, LM 〉 where
LM (ui) = the multiset of atoms that occur in ϕi ∈ Problematic(K) for all i, 1 ≤ i ≤ m and
LM (vj) = the multiset of atoms that occur in the formulas of ∆j ∈ MI(K) for all j, 1 ≤ j ≤
n.

2. For a set labeled inconsistency graph SLIG(K) = 〈U, V,E, LS〉 where
LS(ui) = the set of atoms that occur in ϕi ∈ Problematic(K) for all i, 1 ≤ i ≤ m and
LS(vj) = the set of atoms that occur in the formulas of ∆j ∈ MI(K) for all j, 1 ≤ j ≤ n.

3. For a number labeled inconsistency graph NLIG(K) = 〈U, V,E, LN 〉 where
LN (ui) = |LM (ui)| for all i, 1 ≤ i ≤ m and
LN (vj) = |LM (vj)| for all j, 1 ≤ j ≤ n.

4. For a length labeled inconsistency graph LLIG(K) = 〈U, V,E, LL〉 where
LL(ui) = Length(ϕi) for all i, 1 ≤ i ≤ m and
LL(vj) =

∑
ϕi∈∆j

Length(ϕi) for all j, 1 ≤ j ≤ n.

Next we illustrate the new labeled graphs.

Example 17. In Example 3 we constructed LIG(K) for K = {a,¬a ∨ ¬b, b,¬a ∨ c,¬c ∨ d,¬d},
MI(K) = {{a,¬a ∨ ¬b, b}, {a,¬a ∨ c,¬c ∨ d,¬d}}, and Problematic(K) = K. Here we draw the 4
new labeled graphs just defined for K.

[a] [a, b] [b] [a, c] [c, d] [d]

[a, a, b, b] [a, a, c, c, d, d]

Figure 15: MLIG(K)
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{a} {a, b} {b} {a, c} {c, d} {d}

{a, b} {a, c, d}

Figure 16: SLIG(K)

1 2 1 2 2 1

4 6

Figure 17: NLIG(K)

1 5 1 4 4 2

7 11

Figure 18: LLIG(K)

As in the previous sections we define a class for each of these types of labeled graphs, that is,
the classes MLIG, SLIG, NLIG, and LLIG, where the corresponding functions mC : K → A are
given in Definition 13 (homonymous to the classes), and the abstraction spaces A can be defined
via the range of those functions.

Next we define 9 new inconsistency measures based on the new labeled graphs. It is clear
from the definitions that all of them satisfy the definition of inconsistency measure as well as the
independence property.

Definition 14. 1. I1(K) = the number of distinct atoms in the formulas of Problematic(K).

2. I2(K) = the number of occurrences of atoms in the formulas of Problematic(K).

3. I3(K) = the sum of the lengths of the formulas of Problematic(K).

4. I4(K) = the maximum number of distinct atoms in any formula of Problematic(K).

5. I5(K) = the maximum number of occurrences of atoms in any formula of Problematic(K).

6. I6(K) = the maximum length of any formula of Problematic(K).

7. I7(K) = the maximum number of distinct atoms in any minimal inconsistent subset of K.
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8. I8(K) = the maximum number of occurrences of atoms in any minimal inconsistent subset of
K.

9. I9(K) = 1+ the number of formulas of Problematic(K) in which an atom occurs more than
once, if Problematic(K) = ∅ then I9(K) = 0.

To illustrate the new inconsistency measures we compute them for the knowledgebase of Ex-
ample 17.

Example 18. For the knowledgebase K of Example 17 (i.e. for K = {a,¬a∨¬b, b,¬a∨c,¬c∨d,¬d},
MI(K) = {{a,¬a∨¬b, b}, {a,¬a∨c,¬c∨d,¬d}}, and Problematic(K) = K). I1(K) = 4, I2(K) = 9,
I3(K) = 17, I4(K) = 2, I5(K) = 2, I6(K) = 5, I7(K) = 3, I8(K) = 6 and I9(K) = 1.

These new measures provide further details about the inconsistencies. Each offers a dimension
that could be considered in an inconsistency resolution. For instance, in an incremental process
for reducing inconsistency in a software requirements specification, there could be an emphasis on
reducing the number of distinct atoms in the formulas of Problematic(K) (i.e. I1) or the maximum
length of any formula of Problematic(K) (i.e. I5). Choosing the exact measures may depend on
the application and on the participants involved in the inconsistency resolution process, but this
definition provides a useful range of options that could be used in practice.

Next we show to which class each new inconsistency measure belongs by writing its definition
using one of the new labeled inconsistency graphs of Definition 13.

Proposition 18. The classes for the 9 inconsistency measures are as follows:

• I1, I4, I7 are in SLIG

• I2, I5, I8 are in NLIG

• I3, I6 are in LLIG

• I9 is in MLIG

We now show the generality relation among the new classes we have defined and connect them
with the previous hierarchy.

Theorem 5. The following generality relations hold among classes:

1. LIG+ is more general than LIG and IG+: LIG+ � LIG, IG+.

2. LIG is more general than MLIG and LLIG: LIG �MLIG,LLIG.

3. MLIG is more general than SLIG and NLIG: MLIG � SLIG,NLIG.

4. SLIG, NLIG, and LLIG are more general than IG: SLIG,NLIG,LLIG � IG.

5. The generalities of LIG and IG+ are incomparable.

6. The generalities of MLIG, LLIG and IG+ are pairwise incomparable.

7. The generalities of SLIG, NLIG, LLIG and IG+ are pairwise incomparable.
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LIG+, e.g., Ie

LIG, e.g., ICP

IG+, e.g., IncMLIG, e.g., I9

SLIG, e.g., I4LLIG, e.g., I6 NLIG, e.g., I5

IG, e.g., Iη

Figure 19: The generalization hierarchy for the classes using the new labeled inconsistency graphs.
Each arc from class C to C ′ denotes C � C ′. Each class is followed by one inconsistency measure
in the class that is not in less general classes.

The hierarchy based on the new labeled inconsistency graphs and the above theorem is illus-
trated in Figure 19. Note that Ie, the inconsistency measure based on the enumeration e of the
knowledgebases, needs the whole knowledgebase to be computed, including the free formulas. To
illustrate the LIG class, we can define the measure ICP (K) = IC(Problematic(K)), that counts the
minimum number of atoms in the problematic formulas that must be assigned a B value in order
for a 3VL model to be obtained. To compute ICP one must know the connectives involved in each
problematic formula, not only its atoms, thus ICP is in LIG but is not in any less general class in
Figure 19.

Finally, let us sum up the whole hierarchy build from results of this paper in Figure 20.

8. Conclusion and Future Work

We have proposed in this paper a framework to classify syntactic inconsistency measures. We
started by introducing the inconsistency graph, which captures the structure of the minimal in-
consistent subsets in the knowledgebase, and showed how several inconsistency measures from the
literature can be computed from it. Abstracting the inconsistency graph, we introduced a hierarchy
that can order inconsistency measures according to the information needed for their calculation.

The introduction of the (augmented) inconsistency graph sheds light on the organization of
the inconsistency measures proposed in the literature. Even though we have intentionally avoided
defining syntactic inconsistency measures in this paper, the definition of IG measures seems to
formally capture this intuitive idea. Evidence for this is the fact that the inconsistency measures
usually considered syntactic in the literature are indeed IG, but we don’t know any measure said
to be semantic that is so. Within the IG measures, our framework of abstraction classes and
the generality relationship provides a principled way to classify the existing and possible future
proposals of syntactic inconsistency measures.

From a theoretical point of view, the framework helps to make sense of the space of possible
syntactic measures. We organize existing measures, providing relations between them through our

967



De Bona, Grant, Hunter, & Konieczny

LIG+, e.g., Ie

LIG, e.g., ICP

IG+, e.g., IncMLIG, e.g., I9

SLIG, e.g., I4LLIG, e.g., I6 NLIG, e.g., I5

IG, e.g.,
IA, Iη, Ihs

vertex-degree,
e.g., If7

problematic-
degree,

e.g., If4 , If6

vertex-count,
e.g., If1

conflict-degree,
e.g., I#

problematic-
count, e.g., IP

edge-count,
e.g., If2

conflict-count,
e.g., IM

binary, e.g., IB

Figure 20: The abstraction hierarchy for inconsistency graphs
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hierarchical structure, and we can fit new measures into the hierarchy which may involve identifying
new categories in the hierarchy. New measures can also be readily identified in the hierarchy.

From a practical point of view, this hierarchy can help us understand what measures mean in
applications, and how the measures relate to each other. Also, the hierarchy can help us develop
algorithms by for instance calculating different measures using the same subcomputations.

As future work note that the abstraction classes we introduced are based on simple computations
such as the number of vertices and edges. It would be good to refine the classification by introducing
additional abstraction classes that represent more complex interactions between formulas and how
inconsistencies are formed from them.

Finally, the framework is restricted to syntactic measures, plus some new non-syntactic mea-
sures. So it does not include consideration of semantic measures. However, syntactic measures are
currently the most important in applications studies. Nonetheless, we intend to investigate how
semantic measures can be organized either by extending the current hierarchy or by developing a
new framework.
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Appendix A: Proofs

Theorem 1. Let G = 〈U, V,E〉 be a bigraph. Then G = IG+(K) for some knowledgebase K iff the
following two conditions hold for G:

1. No vertex in V is isolated.

2. For all v, v′ ∈ V , if v 6= v′ then Adj(v) 6⊆ Adj(v′).

Proof. (→) Let G = IG+(K) for some knowledgebase K. By definition, each vertex in V represents
a minimal inconsistent subset; hence it must be incident to the vertices in U that comprise the
formulas in the subset. This gives condition 1). Condition 2) follows from the fact that a minimal
inconsistent subset cannot be a subset of another minimal inconsistent subset.

(←) Let G = 〈U, V,E〉 be a bigraph that satisfies the two conditions. We show how to construct
a knowledgebase K such that G = IG+(K). First we do special cases. If G = 〈∅,∅,∅〉 then let
K = ∅. Next, if V = E = ∅ and |U | = n > 0, let K = {a1, . . . , an}. Now we can assume that
V 6= ∅. By condition 1) this means that E 6= ∅. The idea of constructing K is as follows. For each
v ∈ V and each vertex adjacent to v we construct a formula so that the set of formulas in Adj(v)
form a minimal inconsistent set. For deg(v) = n the formulas will have the form: b1 ∧ ¬bn, b1 →
b2, . . . , bn−1 → bn where the atoms b1, . . . , bn do not appear in any formula associated with a vertex
different from v ∈ V . When a vertex in U has edges to several vertices in V , we take the conjunction
of the appropriate formulas for each vertex in V , each of which contains different atoms. This does
not change the minimal inconsistent sets because of condition 2).

Formally, we proceed as follows. Let G = 〈U, V,E〉 where U = {u1, . . . , um} and V =
{v1, . . . , vn}. K will have atoms of the form aji , for all {ui, vj} ∈ E as well as atoms of the
form a0

i for all isolated vertices (of U). The number of atoms will be the sum of the number of
edges and the number of isolated vertices. We will construct a formula ϕi for each i, 1 ≤ i ≤ m
that will stand for the formulas in U as follows. For each vj ∈ V , let Adj(vj) = {uj1, . . . , ujtj}
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where j1 < . . . < jtj . We associate with each vj , tj formulas as follows: ψjj1 = ajj1 ∧ ¬a
j
jtj
, ψjj2 =

ajj1 → ajj2, . . . , ψ
j
jtj = ajj(tj−1) → ajjtj . We take ϕi =

∧
{j|{ui,vj}∈E} ψ

j
i . For every isolated vertex

ui ∈ U , we take ϕi = a0
i . Then U = {ϕ1, . . . , ϕm}. The construction guarantees that all vj ∈ V

correspond to a minimal inconsistent set ∆j that contains the formulas associated with all ui ∈ U
that are adjacent to vj , that is, ∆j = {ϕj1, . . . , ϕjtj}.

Corollary 1. Let G = 〈U, V,E〉 be a bigraph. Then G = IG(K) for some knowledgebase K iff the
following two conditions hold for G:

1. G contains no isolated vertex.

2. For all v, v′ ∈ V , if v 6= v′ then Adj(v) 6⊆ Adj(v′).

Proof. The only difference between IG+(K) and IG(K) is that the free formulas of K are excluded
from consideration for IG(K). Hence the proof is the same as for the theorem but now the isolated
vertices for the free formulas (in U) cannot be present in the graph. Hence no vertex in U or V
can be isolated.

Theorem 2. Let G = 〈U, V,E〉 be a bigraph. Then G = CG+(K) for some knowledgebase K iff
the following two conditions hold for G:

1. V 6= ∅.

2. For all v, v′ ∈ V , if v 6= v′ then Adj(v) 6⊆ Adj(v′).

Proof. (→) Let G = CG+(K) for some knowledgebase K. The empty set, ∅, is a consistent subset
of every K. Hence there must be at least one maximal consistent subset. This proves condition 1).
Condition 2) follows from the fact that a maximal consistent subset cannot be a subset of another
maximal consistent subset.

(←) Let G = 〈U, V,E〉 be a bigraph that satisfies the two conditions. We show how to construct
a knowledgebase K such that G = CG+(K). First we do the special case where |V | = 1. In this
case, for |U | = m we choose K = {a1, . . . , am}. Now we can assume that |V | > 1. By condition 2)
this means that U 6= ∅ and E 6= ∅. The idea of constructing K is as follows. We associate an atom
aji with every edge connecting ui and vj . Then we obtain a formula ϕi for each ui that allows the
formulas of all the vertices for every Adj(vj) to be consistent but also including sufficient negated
atoms so that those consistent sets are maximal.

Formally, we proceed as follows. Let G = 〈U, V,E〉 where U = {u1, . . . , um} and V =
{v1, . . . , vn}. For each {ui, vj} ∈ E we will have an atom aji . Also, for each isolated vertex ui
we will have the atom a0

i . The formula for an isolated vertex ui, ϕi = a0
i ∧ ¬a0

i . For the rest of

the proof we will ignore the isolated vertices. For every ui let Ai = {aji |a
j
i is an atom}. Also, let

Bi = {aji |a
j
i is an atom such that vj 6∈ Adj(ui)}. Then we choose ϕi =

∧
aji∈Ai

aji ∧
∧
aji∈Bi

¬aji . We

choose ∆j = {ϕi|ui ∈ Adj(vj)}. It follows from the construction that each ∆j must be consistent.
Then, because of the negated atoms, if a formula associated with a vertex not in Adj(vj) is added,
the set becomes inconsistent. Hence those sets are maximal consistent.

Corollary 2. Let G = 〈U, V,E〉 be a bigraph. Then G = CG(K) for some knowledgebase K iff the
following three conditions hold for G:

1. V 6= ∅.
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2. For every u ∈ U , Adj(u) 6= V .

3. for all v, v′ ∈ V , if v 6= v′ then Adj(v) 6⊆ Adj(v′).

Proof. The only difference between CG+(K) and CG(K) is that the free formulas of K are excluded
from consideration for CG(K). In the augmented consistency graph the vertex for a free formula
is adjacent to all the vertices in V . Hence the proof is the same as for the theorem but now there
cannot be any vertex in U that is adjacent to all vertices in V .

Proposition 1. For every knowledgebase K and M ⊆ K, M ∈ MC(K) iff Free(K) ⊆ M and
M ∩ Problematic(K) ∈ MC(Problematic(K)).

Proof. We use the contrapositive in both directions.
(→) Suppose that Free(K) 6⊆M . Then there must be a ϕ ∈ Free(K) \M , and M ∪ {ϕ} ⊆ K is

consistent and M 6∈ MC(K). Now suppose that M ∩Problematic(K) 6∈ MC(Problematic(K)). There
are two possible reasons. First, suppose that M ∩ Problematic(K) is not consistent. As M is a
superset of an inconsistent set, it cannot be consistent. Now suppose that M ∩ Problematic(K)
is consistent but not maximal. Then there must be ϕ ∈ Problematic(K) \ M such that (M ∩
Problematic(K)) ∪ {ϕ} is consistent. But then M ∪ {ϕ} =

(
(M ∩ Problematic(K)) ∪ {ϕ}

)
∪
(
(M ∩

Free(K)) ∪ {ϕ}
)

may contain only additional free formulas and hence is also consistent. Hence
M 6∈ MC(K).

(←) Suppose thatM 6∈ MC(K). There are two possible reasons for this. First, suppose thatM is
not consistent. Then M∩Problematic(K) must already contain an inconsistency. Now suppose that
M is consistent but not maximal. Then there is a ϕ ∈ K such that M ∪ {ϕ} 6= M is consistent.
If ϕ ∈ Free(K), then Free(K) 6⊆ M . Otherwise, it follows that (M ∪ {ϕ}) ∩ Problematic(K), a
(consistent) subset of M ∪{ϕ}, strictly contains M ∩Problematic(K), hence M ∩Problematic(K) 6∈
MC(Problematic(K)).

Proposition 2. IB, IM , IP , I# and IH are IG measures.

Proof. Let IG(K) = 〈U, V,E〉 be the inconsistency graph for a knowledgebase K. Then,

1. IB(K) =

{
0 if V = ∅
1 otherwise

2. IM (K) = |V |

3. IP (K) = |U |

4. I#(K) =

{
0 if V = ∅∑

v∈V
1

| deg(v)| otherwise

5. IH(K) = min{|X| | X ⊆ U and every v ∈ V is adjacent to some u ∈ X}.

We justify the above claims as follows: (1) K is consistent iff V = ∅; (2) By the definition of
IG(K), |V | is the number of minimal inconsistent subsets of K; (3) By the definition of IG(K),
|U | is the number of problematic formulas in K; (4) The degree of a vertex v ∈ V is the size of
the corresponding minimal inconsistent subset of K; and (5) The formula computes the size of the
smallest hitting set for all the minimal inconsistent subsets of K.

Proposition 3. An inconsistency measure is an IG measure iff it is an aIG and satisfies the
independence property.
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Proof. (→) If I is an IG measure then it must be an aIG as explained above. Now suppose that
ϕ ∈ Free(K ∪ {ϕ}). Then IG(K) = IG(K ∪ {ϕ}), hence I(K) = I(K ∪ {ϕ}).

(←) Suppose that I is an aIG measure and satisfies the independence property. By indepen-
dence, I(K) = I(Problematic(K)). As I is an aIG, I(Problematic(K)) = f(IG+(Problematic(K)))
for some function f . As IG+(Problematic(K)) = IG(K), I(K) = f(IG(K)), and I is an IG mea-
sure.

Corollary 3. Inc is not an IG measure.

Proof. Consider the knowledgebases K1 = {a ∧ ¬a} and K2 = K1 ∪ {b} and note that Inc(K1) =
1 < 2 = Inc(K2), even though b is free in K2. Hence, Inc violates the independence property, and
the result follows from Proposition 3.

Proposition 4. Inc is an aIG measure.

Proof. Using IG+(K) = 〈U, V,E〉, Inc(K) can be written as:

Inc(K) =

{
0 if V = ∅
|U | −min{deg(v) | v ∈ V }+ 1 otherwise

Proposition 5. IC is not an aIG measure.

Proof. Consider the knowledgebases K1 = {a ∧ ¬a} and K2 = {a ∧ ¬a ∧ b ∧ ¬b}. Note that
IC(K1) = 1 < 2 = IC(K2). However, K1 and K2 have identical augmented inconsistency graphs
IG+(K1) = IG+(K2) = 〈{u1}, {v1}, {{u1, v1}}〉.

Lemma 1. Let IG+(K) = 〈U, V,E〉, S ⊆ K, and write US for the subset of U corresponding to the
elements of S. Then S is a maximal consistent subset of K iff US is a maximal subset of U such
that there is no v ∈ V with Adj(v) ⊆ US.

Proof. If V = ∅ then the only maximal consistent subset is U and the result follows. Assume now
that V 6= ∅.

(→) Let S ⊆ K be consistent. Then there cannot be any v ∈ V such that Adj(v) ⊆ US . As S
is maximal consistent, US must be a maximal subset with this property.

(←) Let S ⊆ K be such that there is no v ∈ V with Adj(v) ⊆ US . Then S must be consistent.
As US is a maximal subset of U with this property, it must be maximal consistent.

Lemma 2. Let CG+(K) = 〈U, V,E〉, S ⊆ K, and write US for the subset of U corresponding to
the elements of S. Then S is a minimal inconsistent subset of K iff US is a minimal subset of U
such that there is no v ∈ V with US ⊆ Adj(v).

Proof. (→) Let S ⊆ K be inconsistent. Then there cannot be a v ∈ V such that US ⊆ Adj(v)
because each Adj(v) is consistent. As S is minimal inconsistent, US must also be a minimal subset
of U with this property.

(←) Let S ⊆ K be such that there is no v ∈ V with US ⊆ Adj(v). Then S must be inconsistent.
Minimality for S follows because US is a minimal subset of U with this propeerty.

Theorem 3. There is a bijection h : G+ → G+
c such that, for any K ∈ K, G = IG+(K) iff

h(G) = CG+(K).
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Proof. We use Lemma 1 to construct the function h. Let IG+(K) = G = 〈U, V,E〉 ∈ G+. We
define h(G) = 〈U, h(V ), h(E)〉 where h(V ) contains a vertex vX for each X ⊆ U such that X is
a maximal subset of U with the property that there is no v ∈ V with Adj(v) ⊆ X. Then h(E)
contains edges only between each such vX and the elements of the corresponding X. By Lemma 1,
h(G) = CG+(K). Next, let CG+(K) = G = 〈U, V,E〉 ∈ G+

c . We define a function h′ : G+
c → G+ as

follows: h′(G) = 〈U, h′(V ), h′(E)〉 where h′(V ) contains a vertex vX for each X ⊆ U such that X
is a minimal subset of U with the property that there is no v ∈ V with X ⊆ Adj(v). Then h′(E)
contains edges only between each such vX and the elements of the corresponding X. By Lemma 2,
h′(G) = IG+(K). But actually, by the construction, h′ = h−1, that is, h′ is the inverse of h; hence
h is a bijection.

Corollary 4. There is a bijection h : G → Gc such that, for any K ∈ K, G = IG(K) iff h(G) =
CG(K).

Proof. Just note that IG(K) = IG+(Problematic(K)) and CG(K) = CG+(Problematic(K)) for any
K ∈ K and the result follows from Theorem 3.

Corollary 5. 1. An inconsistency measure I : K → R≥0
∞ is an aIG measure iff there is a

function g : G+
c → R≥0

∞ such that I(K) = g(CG+(K)) for all K ∈ K.

2. An inconsistency measure I : K → R≥0
∞ is an IG measure iff there is a function g : Gc → R≥0

∞
such that I(K) = g(CG(K)) for all K ∈ K.

Proof. This follows from Corollary 4 as we can use f = g ◦ h in Definition 4.

Proposition 6. IA and Ihs are IG inconsistency measures.

Proof. IA. Recall that IA(K) = (|MC(K)|+ |Selfcontradictions(K)|)−1 for each K ∈ K. In CG(K)
each self-contradiction is an isolated vertex in U . We write Iso(U) for the isolated vertices of U .
Then for CG(K) = 〈U, V,E〉 define g(CG(K)) = |V |+ |Iso(U)| − 1 and apply Corollary 5.

Ihs. Ihs is based on the concept of a hitting set H which is a set of classical interpretations
such that each formula is true in at least one element of H. In particular, this measure calculates
the smallest size that H might have. The maximal sets of formulas that can be made true by an
interpretation are exactly the maximal consistent sets. But these are exactly the ones represented by
the elements of V in CG(K). Hence using CG(K) we calculate Ihs(K) = min|W |{W ⊆ V and U ⊆⋃
v∈W Adj(v)} − 1 and apply Corollary 5.

Proposition 7. Iη is an IG inconsistency measure.

Proof. Let G = 〈U, V,E〉 be the consistency graph of K. As Iη is known to satisfy the independence
property (see Thimm, 2016a) it suffices to deal only with the problematic formulas of K which are
exactly the ones represented in U . We take care of two special cases first. If U = ∅ (K is consistent)
then let Iη(K) = 0; if U contains at least one isolated node (representing a selfcontradiction) then
let Iη(K) = 1.

For the rest of the proof we assume that U is not empty and does not contain an isolated vertex.
The key portion of the proof is to show that 〈K, IC , i(ϕ) = t〉-satisfiability for P is equivalent to
〈K,MC(K),∈〉-satisfiability. For this purpose we will construct two functions between IC and
MC(K), namely f : IC → MC(K) such that T (i) ⊆ f(i) for all i ∈ IC and g : MC(K) → IC such
that M ⊆ T (g(M)) for all M ∈ MC(K).

Suppose that Γ = {P (ϕ) ≥ p | ϕ ∈ K} is satisfiable. Then there is a probability function
π : IC → [0, 1] such that Pπ(ϕ) =

∑
i∈IC{π(i) | i(ϕ) = T} ≥ p for all ϕ ∈ K. Let i ∈ IC .
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Since T (i) is a consistent subset of K there must be M ∈ MC(K) such that T (i) ⊆ M . For the
function f pick such an M for each i so that T (i) ⊆M . Now define δ : MC(K)→ [0, 1] as follows:
δ(M) =

∑
i∈IC{π(i) | f(i) = M}. This definition assures that δ is a probability function over

MC(K) and also from Γ we obtain that ∀ϕ ∈ K,
∑

M∈MC(K){δ(M) | ϕ ∈M} ≥ p (by the condition
that T (i) ⊆ f(i) for all i ∈ IC). Hence Γ is 〈K,MC(K),∈〉-satisfiable.

Going in the opposite direction suppose that Γ is 〈K,MC(K),∈〉-satisfiable. Then there is a
probability function over MC(K) such that for all ϕ ∈ K,

∑
M∈MC(K){δ(M) | ϕ ∈ M} ≥ p. By

the consistency of M there must be i ∈ IC such that M ⊆ T (i). Pick such an i for each M to
define g that is g : MC(K) → IC such that M ⊆ T (g(M)). Then we define π : IC → [0, 1] as
π(i) =

∑
M∈MC(K){δ(M) | g(M) = i}. This definition assures that π is a probability function over

I that satisfies Γ and hence that Γ is 〈K, IC , i(ϕ) = T 〉-satisfiable.
Finally, we observe that 〈K,MC(K),∈〉-satisfiability is the same as 〈G,V, u ∈ Adj(v)〉-satisfiability

where G is the consistency graph of K. Hence the formula for Iη(K) is as follows.
Let G = IG(K). If U = ∅ then Iη(K) = 0. If ∃u ∈ U such that deg(u) = 0, then Iη(K) = 1.
Otherwise
Iη(K) = 1− (max{η ∈ [0, 1] | Γ is 〈G,V, u ∈ Adj(v)〉-satisfiable for η}). So by Corollary 5 Iη is an
IG inconsistency measure.

Proposition 8. Let G = 〈U, V,E〉 be the inconsistency graph of a knowledgebase K where, as
usual, K = {ϕ1, . . . , ϕm} and MI(K) = {∆1, . . . ,∆n}. Let K ′ ⊆ K. Then G′ = 〈U ′, V ′, E′〉 is the
inconsistency graph of K ′ iff G′ is the bigraph U-induced from G by W where W ⊆ U corresponds
to the elements of K ′.

Proof. The minimal inconsistent sets of K ′ are exactly the minimal inconsistent sets of K all of
whose elements are in K ′. In the construction of Definition 9 we start by putting into V ′ exactly
the elements of V that correspond to the minimal inconsistent sets of K ′. Then we obtain U ′ by
deleting from K ′ the formulas that have become free so that U ′ corresponds to Problematic(K ′).
Finally, E′ connects the appropriate edges for the vertices in U ′ and V ′ from E.

Proposition 9. Let f : G → R≥0
∞ . If : K → R≥0

∞ is an inconsistency measure iff the following two
conditions hold:

1. f(G) = 0 iff G = 〈∅,∅,∅〉;

2. If G′ = 〈U ′, V ′, E′〉 was U-induced by W (W ⊆ U) from G = 〈U, V,E〉 then f(G′) ≤ f(G).

Proof. The two conditions correspond exactly to the conditions of consistency and monotony of
Definition 1 by the fact stated earlier that 〈∅,∅,∅〉 is the inconsistency graph for all consistent
knowledgebases only and then using Proposition 8.

Corollary 6. Let f : G → R≥0
∞ be such that

1. f(G) = 0 iff G = 〈∅,∅,∅〉,

2. If G′ ⊆ G then f(G′) ≤ f(G).

Then If is an inconsistency measure.

Proof. From these two conditions, the two conditions of Theorem 9 follow.

Proposition 10. The following functions f : G → R≥0
∞ defined below yield inconsistency measures

If : K → R≥0
∞ . We put in parentheses the meaning for the corresponding knowledgebase.
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• f1(G) = |U |+ |V | (the number of problematic formulas plus the number of minimal inconsis-
tent subsets)

• f2(G) = |E| (the sum of the sizes of the minimal inconsistent subsets — as specified in
Definition 3, every edge in E denotes the membership of a formula in a minimally inconsistent
subset.)

• f3(G) = |U |+ |V |+ |E| (f1(G) + f2(G))

• f4(G) =


0 if U = ∅∑
v∈V

∑
u∈Adj(v)

deg(u)

deg(v)2
otherwise

(0 if K is consistent, otherwise the sum of the reciprocals of the sizes of the minimal inconsis-
tent subsets weighted by the average number of minimal inconsistent subsets containing their
elements)

• f5(G) =

{
0 if U = ∅
1 + |{u ∈ U | deg(u) ≥ 2}| otherwise

(0 if K is consistent, otherwise one plus the number of formulas that are in at least two
minimal inconsistent subsets)

• f6(G) =

{
0 if U = ∅
1 +

∑ 1
|Adj(v)∩Adj(v′)|(∀v, v

′ 6∈ V, v 6= v′,Adj(v) ∩ Adj(v′) 6= ∅) otherwise

(0 if K is consistent, otherwise one plus the sum of the reciprocals of the sizes of the inter-
sections of each pair of minimal inconsistent subsets)

• f7(G) =

{
0 if U = ∅
max{deg(u) | u ∈ U} otherwise

(0 if K is consistent, otherwise the maximum number of minimal inconsistent subsets con-
taining the same formula)

• f8(G) =

{
0 if U = ∅
|{v ∈ V | deg(v) = 1}|+ max{deg(u) | u ∈ U} otherwise

(0 if K is consistent, otherwise the number of self-contradictions plus the maximum number
of minimal inconsistent subsets containing the same formula)

• f9(G) =

{
0 if U = ∅
max{deg(v) | v ∈ V } otherwise

(0 if K is consistent, otherwise the maximum number of formulas in a minimal inconsistent
subset)

Proof. This follows from Corollary 6.

Proposition 11. Consider the inconsistency measures introduced in Proposition 10. Ifi satisfies
Independence for 1 ≤ i ≤ 9, MI-separability for i = 2, Penalty for 1 ≤ i ≤ 4, Super-additivity for
1 ≤ i ≤ 6, Attenuation for i = 4, Equal Conflict for 1 ≤ i ≤ 9. and Almost Consistency for i = 4.

Proof. (Independence) To see that all measures satisfy independence, note that they are all defined
via the inconsistency graph, which does not take free formulas into account.

(MI-separability) If MI(K)∩MI(K ′) = ∅ and MI(K∪K ′) = MI(K)∪MI(K ′), then MI(K),MI(K ′)
form a partition of MI(K ∪ K ′). Therefore, the sum of the sizes of the elements of MI(K ∪ K ′)
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(i.e., If2(K ∪K ′)) equals the sum of sizes of the elements of MI(K) (i.e., If2(K)) plus the sum of
the sizes of the elements of MI(K ′) (i.e., If2(K ′)), and If2 satisfies MI-separability. Now consider
K1 = {¬a, a}, K2 = {a,¬a ∧ ¬a}, K3 = {a ∧ ¬a} and K4 = {b ∧ ¬b}, which are all different
minimal inconsistent sets. Note furthermore that MI(K1 ∪K2) = MI(K1) ∪MI(K2) and MI(K3 ∪
K4) = MI(K3) ∪MI(K4). Nevertheless, If1(K1 ∪K2) = 5 6= 3 + 3 = If1(K1) + If1(K2), If3(K1 ∪
K2) = 9 6= 5 + 5 = If3(K1) + If3(K2), If4(K1 ∪ K2) = 1.5 6= 0.5 + 0.5 = If4(K1) + If4(K2),
If5(K3 ∪ K4) = 1 6= 1 + 1 = If5(K3) + If5(K4), If6(K3 ∪ K4) = 1 6= 1 + 1 = If6(K3) + If6(K4),
If7(K3 ∪K4) = 1 6= 1 + 1 = If7(K3) + If7(K4), If8(K3 ∪K4) = 3 6= 2 + 2 = If8(K3) + If8(K4), and
If9(K3 ∪K4) = 1 6= 1 + 1 = If9(K3) + If9(K4).

(Penalty) Removing a problematic formula ϕ from a knowledgebase K implies discarding one
vertex in U in the inconsistency graph IG(K) = 〈U, V,E〉, which implies discarding also at least one
edge in E and at least one vertex in V . Hence, Ifi(K \ {ϕ}) < Ifi(K) for 1 ≤ i ≤ 3. Furthermore,
If4(K \ {ϕ}) sums strictly fewer terms

∑
u∈Adj(v)

deg(u)/ deg(v)2 than If4(K), due to the smaller |V |,

and the numerator in each term cannot increase, for the degree of each u can only decrease when
discarding a formula. As each such term is positive, If4(K \ {ϕ}) < If4(K). To see that penalty
fails for the other measures, consider K = {a,¬a, b,¬b}. Note that Ifi(K) = 1 = Ifi(K \ {a}) for
5 ≤ i ≤ 8, and If9(K) = 2 = If9(K \ {a}).

(Super-additivity) Consider knowledgebases K1 and K2 such that K1 ∩ K2 = ∅, IG(K1) =
〈U1, V1, E1〉, IG(K2) = 〈U2, V2, E2〉, K = K1 ∪ K2 and IG(K) = 〈U, V,E〉. As |U | ≥ |U1| + |U2|,
|V | ≥ |V1| + |V2| and |E| ≥ |E1| + |E2|, Ifi(K) ≥ Ifi(K1) + Ifi(K2) for 1 ≤ i ≤ 3. Vertices
u ∈ U1 ∪U2 with deg(u) ≥ 2 are also in U , so If5(K) ≥ If5(K1) + If5(K2). Vertices v ∈ V1 ∪ V2 are
also in V , and the degree of the vertices in u ∈ Adj(v) in IG(K) cannot be smaller than in IG(K1) or
IG(K2). Thus, If4(K) ≥ If4(K1)+If4(K2). Note that intersections of pairs, in K1 or K2, of minimal
inconsistent subsets will be present inK as well, therefore If6(K) ≥ If6(K1)+If6(K2). Now consider
K1 = {a,¬a},K2 = {b,¬b} and K = K1 ∪K2. Note that Ifi(K) = 1 < 2 = Ifi(K1) + Ifi(K2) for
7 ≤ i ≤ 8 and If9(K) = 2 < 4 = If9(K1) + If9(K2).

(Attenuation) Consider a minimal inconsistent set K with |K| = m > 0, and its inconsistency
graph IG(K) = 〈U, V,E〉. Note that deg(u) = 1 for all u ∈ U and that V has a single vertex v, with
deg(v) = m. Thus, If4(K) = m/m2 = 1/m and, the greater the m, the smaller the inconsistency
measurement, satisfying attenuation. On the other hand, the measures If1(K) = 1+m, If2(K) = m,
If3(K) = 1 + 2m and If9(K) = m actually increase when m increases, violating attenuation. For
5 ≤ i ≤ 7, Ifi(K) = 1 is constant, also violating attenuation. Finally, if m ≥ 2, K is not a
self-contradiction, and If8(K) = 1 is also constant, and attenuation does not hold.

(Equal Conflict) This follows from the fact that all minimal inconsistent sets of a specific size
have the same inconsistency graph.

(Almost Consistency) If K is a minimal inconsistent set then If4(K) = |K|
|K|2 = 1

|K| whose limit

is 0 as K increases in size. All the other measures have value at least 1 no matter the size of the
minimal inconsistent set.

Proposition 12. Both K and G are countable.

Proof. As we are considering a countable set of atoms P, the set L of all formulas is also countable.
Since each element of K is a finite subset of L, K is countable as well. As each knowledgebase has
a single inconsistency graph, |G| ≤ |K|; hence G is also countable.

Proposition 13. There is a bijection e : K → N such that, if K ⊆ K ′, then e(K) ≤ e(K ′).

Proof. Let eL : L → N be an enumeration of L. Define e : K → N as e(K) =
∑
{2e`(ϕ) | ϕ ∈ K} for

all K ∈ K. Representing e(K) in binary notation, one can see that e is a bijection. Furthermore, it
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is clear by the construction of e that K ⊆ K ′ implies e(K) ≤ e(K ′), as e(K ∪ {ϕ}) = e(K) + 2e`(ϕ)

for any ϕ ∈ L \K.

Proposition 14. The relation � is reflexive and transitive.

Proof. In this proof we use K for an arbitrary knowledgebase. To show that � is reflexive we must
show that for every class C = 〈A,mc〉, C � C. In this case hC,C : ιA (the identity function on A).

For transitivity assume that C1 � C2 and C2 � C3 where Ci = 〈Ai,mCi〉 for i = 1, 2, 3.
Hence hC1,C2 and hC2,C3 are functions such that hC1,C2 : A1 → A2 and hC2,C3 : A2 → A3. So
mC2(K) = hC1,C2(mC1(K)) and mC3(K) = hC2,C3(mC2(K)). Therefore,

mC3(K) = hC2,C3(mC2(K)) = hC2,C3(hC1,C2(mC1(K))) = (hC2,C3 ◦ hC1,C2)(mC1(K)).

So hC1,C3 = hC2,C3 ◦ hC1,C2 is a function (composition of functions) and hence satisfies mC3(K) =
hC1,C3(mC1(K)) meaning that C1 � C3.

Proposition 15. C = 〈A,mC〉 and C ′ = 〈A′,mC′〉 are equally general iff hC,C′ and hC′,C are
inverse functions.

Proof. In the proof K is an arbitrary knowledgebase.
(→) Let C and C ′ be equally general. By definition there exist hC,C′ : A→ A′ such that mC′(K) =
hC,C′(mC(K)) and hC′,C : A′ → A such that mC(K) = hC′,C(mC′(K)). Hence,
(hC′,C ◦ hC,C′)(mC(K)) = hC′,C(hC,C′(mC(K))) = hC′,C(mC′(K)) = mC(K) and similarly
(hC,C′ ◦ hC′,C)(mC′(K)) = hC,C′(hC′,C(mC′(K))) = hC,C′(mC(K)) = mC′(K). This shows that
hC,C′ and hC′,C are inverse functions.
(←) Let hC,C′ and hC′C be inverse functions. C � C ′ and C ′ � C follow from the definitions.

Corollary 7. If C � C ′ and hC,C′ is not one-to-one then C � C ′.

Proof. Immediate from Proposition 15.

Proposition 16. If C � C ′ then every C’ inconsistency measure is also a C inconsistency measure.

Proof. In the proof K is an arbitrary knowledgebase. Let C = 〈A,mC〉 � C ′ = 〈A′,m′C〉. Then
there is a function hC,C′ : A → A′ such that mC′(K) = hC,C′(mC(K)). Let I ′ be a C ′ incon-
sistency measure. Hence there is a function fC′ : A′ → R≥0

∞ such that I ′(K) = fC′(mC′(K))) =
fC′(hC,C′(mC(K)). Choose fC : A → R≥0

∞ such that fC = fC′ ◦ hC,C′ and so I(K) = fC(mC(K)).
Therefore I ′ is a C inconsistency measure.

Corollary 8. If C � C ′ and there is a C inconsistency measure that is not a C ′ inconsistency
measure then C � C ′.

Proof. Immediate from Proposition 16.

Proposition 17. C = 〈A,mC〉 6� C ′ = 〈A′,mC′〉 iff there exist knowledgebases K and K ′ such
that mC(K) = mC(K ′) but mC′(K) 6= mC′(K ′).

Proof. By the definition of �, C � C ′ means the existence of a function hC,C′ : A→ A′ such that
for all K, mC′(K) = hC,C′(mC(K)). This means that for any K and K ′, if mC(K) = mC(K ′)
then mC′(K) = mC′(K ′). Hence such a function cannot exist iff there exist K and K ′ such that
mC(K) = mC(K ′) but mC′(K) 6= mC′(K ′).

Corollary 9. The generalities of C = 〈A,mC〉 and C ′ = 〈A′,mC′〉 are incomparable iff
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1. There exist K and K ′ such that mC(K) = mC(K ′) but mC′(K) 6= mC′(K ′) and

2. There exist K ′′ and K ′′′ such that mC′(K ′′) = mC′(K ′′′) but mC(K ′′) 6= mC(K ′′′).

Proof. Using Proposition 17 1. is equivalent to C 6� C ′ and 2. is equivalent to C ′ 6� C.

Theorem 4. The following generality relations hold between classes where B refers to class CB
(i.e. the binary class):

1. IG+ is more general than IG: IG+ � IG.

2. IG is more general than V D: IG � V D.

3. V D is more general than each of PD, V C, and CD: V D � PD, V C,CD.

4. PD is more general than both PC and EC: PD � PC,EC.

5. V C is more general than both PC and CC: V C � PC,CC.

6. CD is more general than both EC and CC: CD � EC,CC.

7. Each of PC, EC, and CC is more general than B: PC,EC,CC � B.

8. The generalities of PD, V C, and CD are pairwise incomparable.

9. The generalities of PC, EC, and CC are pairwise incomparable.

Proof. First we will prove cases where C � C ′ and then where they are incomparable. In the first
case we will start by showing that hC,C′ is a function to establish that C � C ′. Then, in all such
proofs, except for one, we will show that hC,C′ is not one-to-one, that is, find knowledgebases K
and K ′ such that mC′(K) = mC′(K′) but mC(K) 6= mC(K′) and use Corollary 7. For the second case
we will use Corollary 9 which requires finding 4 knowledgebases on which mC and mC′ differ.

In this process we will use 12 knowledgebases that we present here:

K1 = {a,¬a}

K2 = {a ∧ ¬a}

K3 = {a,¬a, b,¬b}

K4 = {a,¬a ∨ ¬b, b}

K5 = {a,¬a ∧ ¬b, b}

K6 = {a ∧ ¬a, b ∧ ¬b}

K7 = {a ∧ ¬a, b ∧ ¬b, c ∧ ¬c}

K8 = {a,¬a ∨ b,¬b, b ∨ c,¬c, c ∨ d,¬d}

K9 = {a,¬a ∨ b,¬b,¬b ∧ e, c,¬c ∨ d,¬d}

K10 = {a,¬a,¬a ∨ b,¬b ∨ c,¬c, c ∨ d,¬d}

K11 = {a,¬a ∧ b,¬b ∧ c,¬c}

K12 = {a, b, c, (¬a ∨ ¬b) ∧ (¬b ∨ ¬c) ∧ (¬a ∨ ¬c)}

978



Classifying Inconsistency Measures Using Graphs

Next we give the definition of 5 functions that we will use to define hC,C′ . Z is a set of pairs:
Z = {〈x1, y1〉, . . . , 〈xn, yn〉}.

• Proj1(〈X,Y 〉) = X

• Proj2(〈X,Y 〉) = Y

• MakePair(X,Y ) = 〈X,Y 〉

• SumFirst(Z) =
∑n

i=1 xi

• SumProduct(Z) =
∑n

i=1 xi × yi

Now we are ready to proceed with all the parts of the proof. To make the proof easier to read we
will write C(K) instead of mC(K).

1. IG+ � IG. Here hIG+,IG is the function that deletes the isolated vertices from the augmented
inconsistency graph. The result follows from Proposition 4, and Corollaries 3 and 8.

2. IG � V D. The function hIG,V D is given in Table 3. Consider now K8 and K9. V D(K8) =
V D(K9) = 〈{〈5, 1〉, 〈2, 2〉}, {〈3, 3〉}〉. However IG(K8) 6= IG(K9) because IG(K9) has 2 V -
vertices, v1 and v2 with edges to the same 2 U -vertices, u1 and u2 (corresponding to two
minimal inconsistent subsets sharing two formulas) but that is not the case for IG(K8).

3. There are three parts.

(a) V D � PD. Here hV D,PD = Proj1. Consider K4 and K7. Then PD(K4) = PD(K7) =
{〈3, 1〉} but V D(K4) = 〈{〈3, 1〉}, {〈1, 3〉}〉 6= V D(K7) = 〈{〈3, 1〉}, {〈3, 1〉}〉.

(b) V D � V C. Here hV D,V C = MakePair(SumFirst ◦Proj1, SumFirst ◦Proj2). Consider K9

and K10. Then V C(K9) = V C(K10) = 〈7, 3〉 but V D(K9) = 〈{〈5, 1〉, 〈2, 2〉}, {〈3, 3〉}〉 6=
V D(K10) = 〈{〈5, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈1, 3〉, 〈1, 4〉}〉.

(c) V D � CD. Here hV D,CD = Proj2. Consider now K3 and K5. Then CD(K3) =
CD(K5) = {〈2, 2〉} but PD(K3) = {〈4, 1〉} 6= PD(K5) = {〈2, 1〉, 〈1, 2〉} and so V D(K3) 6=
V D(K5).

4. There are two parts.

(a) PD � PC. Here hPD,PC = SumFirst. Consider now K4 and K5. Then PC(K4) =
PC(K5) = 3 but PD(K4) = {〈3, 1〉} 6= PD(K5) = {〈2, 1〉, 〈1, 2〉}.

(b) PD � EC. Here HPD,EC = SumProduct. Consider K3 and K5. Then, EC(K3) =
EC(K5) = 4 but as we showed in 3(c) PD(K3) 6= PD(K5).

5. There are two parts.

(a) V C � PC. Here hV C,PC = Proj1. Consider K4 and K5. Then PC(K4) = PC(K5) = 3
but V C(K4) = 〈3, 1〉 6= V C(K5) = 〈3, 2〉.

(b) V C � CC. Here hV C,CC = Proj2. Consider K1 and K2. Then CC(K1) = CC(K2) = 1
but V C(K1) = 〈2, 1〉 6= V C(K2) = 〈1, 1〉.

979



De Bona, Grant, Hunter, & Konieczny

6. There are two parts.

(a) CD � EC. Here hCD,EC = SumProduct. Consider K1 and K6. Then EC(K1) =
EC(K6) = 2 but CD(K1) = {〈1, 2〉} 6= CD(K6) = {〈2, 1〉}.

(b) CD � CC. Here hCD,CC = SumFirst. Consider K1 and K2. Then CC(K1) = CC(K2) =
1 but CD(K1) = {〈1, 2〉} 6= CD(K2) = {〈1, 1〉}.

7. PC,EC,CC � B Instead of showing that PC,EC,CC � B we show a more general result.
We show that for every proper class C, C = 〈A,mC〉 � B = 〈{0, 1}, IB〉 (every proper class
is at least as general as the binary class). For this purpose we need to find hC,B : A→ {0, 1}
such that IB(K) = hC,B(mC(K)). As C is a proper class there must be an inconsistency
measure, say I ′ in C and so we can calculate I ′(K). We define hC,B : A → {0, 1} by setting
hC,B(A) = 0 if I ′(K) = 0, hC,B(A) = 1 otherwise.
For the second part, note that B(Ki) = 1 for all Ki, 1 ≤ i ≤ 10. But for K1 and K3,
PC(K1) = 2 6= PC(K3) = 4, EC(K1) = 2 6= EC(K3) = 4, and CC(K1) = 1 6= CC(K3) = 2.

8. There are three parts.

(a) The generalities of PD and V C are incomparable.
PD(K1) = PD(K6) = {〈2, 1〉}
but V C(K1) = 〈2, 1〉 6= V C(K6) = 〈2, 2〉
and V C(K11) = V C(K12) = 〈4, 3〉
but PD(K11) = {〈2, 1〉, 〈2, 2〉} 6= PD(K12) = {〈3, 2〉, 〈1, 3〉}.

(b) The generalities of PD and CD are incomparable.
PD(K8) = PD(K10) = {〈5, 1〉, 〈2, 2〉}
but CD(K8) = {〈3, 3〉} 6= CD(K10) = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉}
and CD(K3) = CD(K5) = {〈2, 2〉}
but PD(K3) = {〈4, 1〉} 6= PD(K5) = {〈2, 1〉, 〈1, 2〉}.

(c) The generalities of V C and CD are incomparable.
V C(K8) = V C(K10 = 〈7, 3〉
but as shown in (b) CD(K8) 6= CD(K10)
and as shown in (b) CD(K3) = CD(K5)
but V C(K3) = 〈4, 2〉 6= V C(K5) = 〈3, 2〉.

9. There are three parts.

(a) The generalities of PC and EC are incomparable.
PC(K4) = PC(K5) = 3 but EC(K4) = 3 6= EC(K5) = 4 and
EC(K3) = EC(K5) = 4 but PC(K3) = 4 6= PC(K5) = 3.

(b) The generalities of PC and CC are incomparable.
PC(K4) = PC(K5) = 3 but CC(K4) = 1 6= CC(K5) = 2 and
CC(K1) = CC(K2) = 1 but PC(K1) = 2 6= PC(K2) = 1.
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(c) The generalities of EC and CC are incomparable.
EC(K1) = EC(K6) = 2 but CC(K1) = 1 6= CC(K6) = 2 and
CC(K1) = CC(K2) = 1 but EC(K1) = 2 6= EC(K2) = 1.

Proposition 18. The classes for the 9 inconsistency measures are as follows:

• I1 ∈ SLIG

• I2 ∈ NLIG

• I3 ∈ LLIG

• I4 ∈ SLIG

• I5 ∈ NLIG

• I6 ∈ LLIG

• I7 ∈ SLIG

• I8 ∈ NLIG

• I9 ∈MLIG

Proof. We write the definition of each inconsistency measure using the particular labeled inconsis-
tency graph. In all of these definitions I(K) = 0 whenever U = ∅ so to make the notation easier
we deal only with the case where Problematic(K) 6= ∅.

I1(K) = | ∪mi=1 L
S(ui)|

I2(K) =
∑m

i=1 L
N (ui)

I3(K) =
∑m

i=1 L
L(ui)

I4(K) = max1≤i≤m{|LS(ui)|}
I5(K) = max1≤i≤m{LN (ui)}
I6(K) = max1≤i≤m{LL(ui)}
I7(K) = max1≤j≤n{|LS(vj)|}
I8(K) = max1≤j≤n{LN (vj)}
I9(K) = 1 + |{u | u ∈ U,LM (u) is not a set3}|

Theorem 5. The following generality relations hold among classes:

1. LIG+ is more general than LIG and IG+: LIG+ � LIG, IG+.

2. LIG is more general than MLIG and LLIG: LIG �MLIG,LLIG.

3. MLIG is more general than SLIG and NLIG: MLIG � SLIG,NLIG.

4. SLIG, NLIG, and LLIG are more general than IG: SLIG,NLIG,LLIG � IG.

5. The generalities of LIG and IG+ are incomparable.

3. i.e. an atom is occuring twice.
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6. The generalities of MLIG, LLIG and IG+ are pairwise incomparable.

7. The generalities of SLIG, NLIG, LLIG and IG+ are pairwise incomparable.

Proof. The process is similar to what we did in Theorem 4. First we will prove cases where C � C ′
and then where they are incomparable. In the first case we will start by showing that hC,C′ is a
function to establish that C � C ′. Then, we will show that hC,C′ is not one-to-one, that is, find
knowledgebases K and K ′ such that mC′(K) = mC′(K′) but mC(K) 6= mC(K′) and use Corollary 7.
For the second case we will use Corollary 9 which requires finding 4 knowledgebases on which mC

and mC′ differ.
In this process we will use 7 knowledgebases (note the relevance of the parentheses) that we

present here:

K1 = {a,¬a}

K2 = {a,¬a, b}

K3 = {b,¬b}

K4 = {a ∧ a,¬a}

K5 = {a ∨ a,¬a}

K6 = {(a), (¬a)}

K7 = {a ∧ b, (¬a)}

As in the previous proof again we will write C(K) instead of mC(K). In order to make the
proof easier to follow here we compute for each class C in the theorem C(K). However, these are
all graphs and we don’t want to take up so much space drawing all these different inconsistency
graphs. Instead we will just write what is in the labels.

For LIG+(K1) and LIG(K1): L(u1) = a, L(u2) = ¬a, L(v1) = {a,¬a}.
LM (u1) = [a], LM (u2) = [a], LM (v1) = [a, a].
LS(u1) = {a}, LS(u2) = {a}, LS(v1) = {a}.
LN (u1) = 1, LN (u2) = 1, LN (v1) = 2.
LL(u1) = 1, LL(u2) = 2, LL(v1) = 3.

For LIG+(K2): L(u1) = a, L(u2) = ¬a, L(u3) = b.
For LIG(K2): L(u1) = a, L(u2) = ¬a.
The rest are the same for LIG+(K2) and LIG(K2).
L(v1) = {a,¬a}.
LM (u1) = [a], LM (u2) = [a], LM (v1) = [a, a].
LS(u1) = {a}, US(u2) = {a}, LS(v1) = {a}.
LN (u1) = 1, UN (u2) = 1, LN (v1) = 2.
LL(u1) = 1, LL(u2) = 2, LL(v1) = 3.

For LIG+(K3) and LIG(K3): L(u1) = b, L(u2) = ¬b, L(v1) = {b,¬b}.
LM (u1) = [b], LM (u2) = [b], LM (v1) = [b, b].
LS(u1) = {b}, LS(u2) = {b}, LS(v1) = {b}.
LN (u1) = 1, LN (u2) = 1, LN (v1) = 2.
LL(u1) = 1, LL(u2) = 2, LL(v1) = 3.
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For LIG+(K4) and LIG(K4): L(u1) = a ∧ a, L(u2) = ¬a, L(v1) = {a ∧ a,¬a}.
LM (u1) = [a, a], LM (u2) = [a], LM (v1) = [a, a, a].
LS(u1) = {a}, LS(u2) = {a}, LS(v1) = {a}.
LN (u1) = 2, LN (u2) = 1, LN (v1) = 3.
LL(u1) = 3, LL(u2) = 2, LL(v1) = 5.

For LIG+(K5) and LIG(K5): L(u1) = a ∨ a, L(u2) = ¬a, L(v1) = {a ∨ a,¬a}.
LM (u1) = [a, a], LM (u2) = [a], LM (v1) = [a, a, a].
LS(u1) = {a}, LS(u2) = {a}, LS(v1) = {a}.
LN (u1) = 2, LN (u2) = 1, LN (v1) = 3.
LL(u1) = 3, LL(u2) = 2, LL(v1) = 5.

For LIG+(K6) and LIG(K6): L(u1) = (a), L(u2) = (¬a), L(v1) = {(a), (¬a)}.
LM (u1) = [a], LM (u2) = [a], LM (v1) = [a, a].
LS(u1) = {a}, LS(u2) = {a}, LS(v1) = {a}.
LN (u1) = 1, LN (u2) = 1, LN (v1) = 2.
LL(u1) = 3, LL(u2) = 4, LL(v1) = 7.

For LIG+(K7) and LIG(K7): L(u1) = a ∧ b, L(u2) = (¬a), L(v1) = {a ∧ b, (¬a)}.
LM (u1) = [a, b], LM (u2) = [a], LM (v1) = [a, a, b].
LS(u1) = {a, b}, LS(u2) = {a}, LS(v1) = {a, b}.
LN (u1) = 2, LN (u2) = 1, LN (v1) = 3.
LL(u1) = 3, LL(u2) = 4, LL(v1) = 7.

Next we give the definition of three functions that we will use to define hC,C′ : Multiset where
Multiset(ϕ) is the multiset of atoms of ϕ and Multiset(∆) is the multiset of atoms of all the formulas
in ∆; Length where Length(ϕ) is the length of ϕ and Length(∆) is the sum of the lengths of all the
formulas in ∆; and MultiToSet where MultiToSet(S) is the set obtained from the multiset S.

Now we are ready to proceed with all the parts of the proof.

1. There are two parts.

(a) LIG+ � LIG. Here hLIG+,LIG is the function that deletes the isolated vertices. Then
LIG(K1) = LIG(K2) but LIG+(K1) 6= LIG+(K2).

(b) LIG+ � IG+. Here hLIG+,IG+ is the function that omits the labels. Then IG+(K1) =
IG+(K3) but LIG+(K1) 6= LIG+(K3).

2. There are two parts.

(a) LIG �MLIG. Here hLIG,MLIG(L(ui)) = Multiset(L(ui)) for all i, 1 ≤ i ≤ m
and hLIG,MLIG(L(vj)) = Multiset(L(vj)) for all j, 1 ≤ j ≤ n.
Then MLIG(K4) = MLIG(K5) but LIG(K4) 6= LIG(K5).

(b) LIG � LLIG. Here hLIG,LLIG(L(ui)) = Length(L(ui)) for all i, 1 ≤ i ≤ m
and hLIG,LLIG(L(vj)) = Length(L(vj)) for all j, 1 ≤ j ≤ n.
Then LLIG(K1) = LLIG(K3) but LIG(K1) 6= LIG(K3).

3. There are two parts.
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(a) MLIG � SLIG. Here hMLIG,SLIG(L(ui)) = MultiToSet(L(ui)) for all i, 1 ≤ i ≤ m
and hMLIG,SLIG(L(vj)) = MultiToSet(L(vj)) for all j, 1 ≤ j ≤ n.
Then SLIG(K1) = SLIG(K4) but MLIG(K1) 6= MLIG(K4).

(b) MLIG � NLIG. Here hMLIG,NLIG(LM (ui)) = |LM (ui)| for all i, 1 ≤ i ≤ m
and hMLIG,NLIG(LM (vj)) = |LM (vj)| for all j, 1 ≤ j ≤ n.
Then NLIG(K1) = NLIG(K3) but MLIG(K1) 6= MLIG(K3).

4. There are three parts. For each part hC,C′ deletes the labels.

(a) IG(K1) = IG(K3) but SLIG(K1) 6= SLIG(K3).

(b) IG(K1) = IG(K4) but NLIG(K1) 6= NLIG(K4).

(c) IG(K1) = IG(K4) but LLIG(K1) 6= LLIG(K4).

5. The generalities of LIG and IG+ are incomparable.
LIG(K1) = LIG(K2) but IG+(K1) 6= IG+(K2) and
IG+(K1) = IG+(K3) but LIG(K1) 6= LIG(K3).

6. There are three parts.

(a) The generalities of MLIG and LLIG are incomparable.
LLIG(K1) = LLIG(K3) but MLIG(K1) 6= MLIG(K3) and
MLIG(K1) = MLIG(K6) but LLIG(K1) 6= LLIG(K6) and

(b) The generalities of MLIG and IG+ are incomparable.
MLIG(K1) = MLIG(K2) but IG+(K1) 6= IG+(K2) and
IG+(K1) = IG+(K3) but MLIG(K1) 6= MLIG(K3).

(c) The generalities of LLIG and IG+ are incomparable.
LLIG(K1) = LLIG(K2) but IG+(K1) 6= IG+(K2) and
IG+(K1) = IG+(K4) but MLIG(K1) 6= MLIG(K4).

7. There are six parts.

(a) The generalities of SLIG and NLIG are incomparable.
SLIG(K1) = SLIG(K4) but NLIG(K1) 6= NLIG(K4) and
NLIG(K1) = NLIG(K3) but SLIG(K1) 6= SLIG(K3).

(b) The generalities of SLIG and LLIG are incomparable.
SLIG(K1) = SLIG(K4) but LLIG(K1) 6= LLIG(K4) and
LLIG(K1) = LLIG(K3) but SLIG(K1) 6= SLIG(K3).

(c) The generalities of SLIG and IG+ are incomparable.
SLIG(K1) = SLIG(K2) but IG+(K1) 6= IG+(K2) and
IG+(K1) = IG+(K3) but SLIG(K1) 6= SLIG(K3).
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(d) The generalities of NLIG and LLIG are incomparable.
NLIG(K1) = NLIG(K6) but LLIG(K1) 6= LLIG(K6) and
LLIG(K6) = LLIG(K7) but SLIG(K6) 6= SLIG(K7).

(e) The generalities of NLIG and IG+ are incomparable.
NLIG(K1) = NLIG(K2) but IG+(K1) 6= IG+(K2) and
IG+(K1) = IG+(K4) but NLIG(K1) 6= NLIG(K4).

(f) The generalities of LLIG and IG+ are incomparable.
LLIG(K1) = LLIG(K2) but IG+(K1) 6= IG+(K2) and
IG+(K1) = IG+(K4) but LLIG(K1) 6= LLIG(K4).
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